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ABSTRACT. We study the following game between a “cut” player C and a “matching” player M.
The game starts with an empty graph G on n vertices. In each round, the cut player chooses a
bisection (S, S) of vertices and the matching player then adds a perfect matching M (not necessarily
belonging to G) between S and S to the (multi-)graph G. The choices of the players in each round
may depend on those in the previous rounds. The game ends when G becomes an edge-expander.
The value of this game, denoted by VAL(n,C, M), is the total number of rounds in the game before
it ends. We study this game for its connection with the SPARSEST CUT problem in undirected
graphs: if there is a polynomial-time cut player Cy such that vaL(n,Cy, M) < f(n) for all M, then
there is a polynomial-time O(f(n))-approximation algorithm for the SPARSEST CUT problem.

We show that there is no cut player C, even unbounded-time, that can ensure VAL(n,C, M) =
o(y/GAP(n)) for all matching players M, where GAP(n) is the integrality gap of the well-studied
SDP with triangle inequality constraints for the SPARSEST CUT problem. Recall that GaP(n) =
Q(loglogn) [5]. Thus, we prove that this approach cannot yield a o(y/GAP(n))-approximation (and
in particular, o(y/loglog n)-approximation) algorithm for this problem. Furthermore, we show that
there is a (super-polynomial time) cut player C* such that, for all M, we have VAL(n,C*, M) =
O(logn).

1. Introduction

1.1. The game of expansion

In this paper, we study the following game between two players called the “cut” player and the
“matching” player. The game starts with an empty graph G on n vertices (where n is an even
integer) and goes in several rounds. In each round,

e The cut player chooses a bisection (S,5) of the vertex set [n]. B
e The matching player then chooses a perfect matching M between S and S.
e The matching M is then added to the (multi-)graph G.

In any round, the choices made by the players could depend on those made by the players in the

previous rounds and can be assumed to be deterministic. We identify the cut player with the

strategy C it picks and the matching player with the strategy M it picks from the set of all possible

strategies available for them respectively. The game stops when G becomes an edge-expander, i.e.,

the ratio of the number of edges across U and the number of vertices in U is ©(1) for all subsets U

with 0 < |U| < n/2. For a cut player C and a matching player M, the value of the game, denoted by
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VAL(n,C, M), is the number of rounds in the game. The goal of the cut player is to use a strategy
Copt Which minimizes max g VAL(n, Copt, M) or ensure that independent of the strategy employed
by the matching player, the graph G becomes an expander as quickly as possible. On the contrary,
the goal of the matching player is to use a strategy Mop that maximizes mine VAL(n,C, Mopt).

1.2. Significance and History

The significance of the game of expansion lies in the fact that a polynomial-time cut player Cs
that ensures that maxa VAL(n,Cy, M) < f(n) gives a polynomial-time O(f(n))-approximation
algorithm for the SPARSEST CUT problem! in undirected graphs. Furthermore, if the cut player’s
strategy takes time 7'(n) in each round, this approximation algorithm runs in time O(f(n)-(T'(n)+
Tfiow)) where T'fio, is the time needed to compute a single commodity maximum flow in the input
graph.

The SPARSEST CUT problem is very useful as a sub-routine in designing graph theoretic al-
gorithms via the divide-and-conquer paradigm. In practice, typical inputs to this problem consist
of very large graphs, and hence, it is imperative to find algorithms that run fast and have a guar-
antee about the quality of the cut they produce. A comprehensive survey of the applications of
the SPARSEST CUT problem can be found in [10]. The seminal work of Leighton and Rao [8] gave
an O(logn)-approximation algorithm for SPARSEST CUT via an LP relaxation based on multicom-
modity flows. A breakthrough result of Arora, Rao and Vazirani [2] showed how to achieve an
O(v/log n)-approximation to the SPARSEST CUT problem using semidefinite programming (SDP).
Though their algorithm improves the quality of the solution produced, it does worse as far as the
running time is concerned. Subsequent attempts by Arora, Hazan and Kale [1], and more recently
by Arora and Kale [3], have reduced the running time of the Arora, Rao and Vazirani algorithm to
that of computing poly-logarithmic number of multi-commodity flows.

On the other hand, a seemingly different and more efficient approach was proposed by Khan-
dekar, Rao and Vazirani [7]. They reduced the problem of finding the sparsest cut in a graph to
a poly-logarithmic number of single commodity max-flow computations. This, for the first time,
brought the SPARSEST CUT problem into the domain where an algorithm, with theoretical guaran-
tees on the quality of the cut produced, could possibly compete with the heuristics such as METIS
[6] in terms of the running time. More precisely, Khandekar, Rao and Vazirani [7] presented an
O(log? n)-approximation algorithm for the SPARSEST CUT problem that runs in time O(m +nl9).
The cut-matching game was implicit in their work and they achieve this approximation by pre-
senting an O(n)-time cut player Cxry that ensures maxp VAL(n,Cxry, M) = O(log?n). Their
approximation guarantee has been improved to O(logn) independently by Arora and Kale [3] and
by Schulman, Orecchia, Vazirani and Vishnoi [9]. Both these algorithms follow the Khandekar-
Rao-Vazirani paradigm and reduce the problem of SPARSEST CUT to single commodity max-flow
computations.

Given this connection, the following questions are interesting:

(1) Is there is a polynomial-time cut player C* such that maxaq VAL(n,C*, M) = o(y/logn)? If

true, it would improve the best known approximation [2] for the SPARSEST CUT problem.
A priori, this seems possible, since the approach of [7] seems different from that [2].

(2) From a point of view of practical algorithms, is there a fast strategy C* for the cut player
for which max( VAL(n,C*, M) is small? For example, a near-linear time strategy C* with
max n VAL(n,C*, M) = o(logn) would be very interesting.

(3) Are there inherent bottlenecks in this approach in obtaining better approximations and
better running times for the SPARSEST CUT problem?

Recall that the SPARSEST CUT problem is to find a cut (U,U) with 0 < |U| < n/2 such that |E(U,U)|/|U| is
minimum.
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1.3. Our results

In this paper, we study the quantities mine maxyg VAL(n,C, M) and maxyg ming VAL(n,C, M).
The goal of the paper is to understand this min-max (or max-min) quantity as a function of n. We
prove the following two results regarding the abstraction of the cut-matching game presented in
this paper:

e Lower Bound. There is a matching player M™* such that

ngnVAL(n,C,M*) = Q(yv/car(n)) (= Q(y/loglogn) [5]),

where GAP(n) is the integrality gap of the well-studied SDP with triangle inequality con-
straints for the SPARSEST CUT problem. Thus, in particular we rule out this approach for
obtaining a o(y/GAP(n))-approximation (and hence o(v/log log n)-approximation) algorithm
for this problem.

e Upper Bound. There is a cut player C* such that

max VAL(n,C*, M) = O(logn).

The strategy C* is not known to have a polynomial time implementation.

1.4. Our techniques

Our lower bound argument, in Section 3, is based on the dual of the standard sDP relaxtion for the
SPARSEST CUT problem and the integrality gap instances for this SDP. The strategy M* of the
matching player is similar to [7] when the input graph is the integrality gap example. We argue
that a feasible dual solution can be extracted from the set of matchings computed by the matching
player. Using Cheeger’s relationship [4] between the sparsity and the eigenvalue gap for the graphs,
we compare the value of the dual solution with the sparsity of the integrality gap example. This
enables us to obtain a lower bound on the number of rounds in terms of the integrality gap of the
SDP.

Our upper bound argument, in Section 4, is based on an alternate formulation of edge ex-
panders [7]. We associate, with the sequence of matchings added by the matching player, a natural
random walk; and prove that G becomes an expander when the random walks mix. To measure
the progress of mixing, we consider the entropy potential. This is in deviation from [7] who use
the 3 potential and show that their potential becomes small enough to imply the expansion of G
in O(log?n) rounds. We, on the other hand, argue that O(logn) rounds suffice for the entropy
potential to become large enough to imply the expansion of G.

2. The Cut-Matching Game

Preliminaries. All graphs considered in this paper are undirected, they may have parallel edges
but have no loops. Let G(V, E) be a graph on n vertices, where n is assumed to be even throughout
the paper. For S C V, the cut (5,5 := V \ 9) is called c-balanced if min{|S|,|S|} > cn. A
“bisection” is a 1/2-balanced cut. The expansion of a cut (S,S), where 0 < |S| < n/2, is defined
as |E(S,S)|/|S|. Here E(S,S) denotes the set of edges that have one end point in S and another
in S, counted with multiplicities. For 0 < ¢ < 1/2, let

,_ . |E(S,9)
9c(G) = min —g—
en<|S|<n/2



Cut-Matching Game G(n, ¢):
e G := (V,0) be an empty graph where |V| = n is even.
e Fix a cut player C and a matching player M.

While ¢.(G) < 1/4 do:

(1) C chooses a bisection (5, S) in G.

(2) M chooses a perfect matching M between S and S. The edges of M may or may
not belong to G.

(3) G— G+ M.

The value of the game, VAL(n,C, M), is the number of iterations of the while loop.

Figure 1: The Cut-Matching game

denote the minimum expansion among all c-balanced cuts. Note that ¢o(G) denotes the minimum
expansion among all cuts in G, i.e., the expansion of the sparsest cut in G. The SPARSEST CUT
problem is, given a graph G(V, E), find the cut that achieves ¢o(G).

The game. We consider the multi-round game G(n,c), given in Figure 1, between two players
called a “cut” player and a “matching” player. We identify the cut player with the strategy C it
uses and the matching player with the strategy M it uses. We start with an empty graph G on n
vertices, where n is an even integer. We denote by G¢(V, E}) the graph after ¢ rounds of the game.
In each round ¢ > 1, first the cut player C chooses a bisection (S, S;) of V. This choice may depend
on the actions of the players in the pervious rounds and, in particular, G;—;. The matching player
M, then, chooses a perfect matching M; that matches each vertex in S; to a unique vertex in S;.
The matching M; is not required to belong to Gy_;. This choice may also depend on the actions of
the players in the pervious rounds and also on (S, S;). The matching is then added to the graph
G¢—1 to obtain a (multi-)graph G;. Thus G; := G;—1 + M; where the sum is interpreted as the
multi-set union. The game G(n, ¢) ends when ¢.(G;) > 1/4, i.e., each c-balanced cut has expansion
at least 1/4. The bound of 1/4 on the expansion is arbitrary and can be replaced by any constant
at most 1.

The value VAL(n,C, M) of the game is the total number of rounds, i.e., iterations of the while
loop before the game ends. The goal of the cut player is to minimize VAL(n,C, M) while that of
the matching player is to maximize it.

Connection with the SPARSEST CUT problem. The following lemma states a connection be-
tween the game G(n,0) and the SPARSEST CUT problem.

Lemma 2.1. If there is a strategy C of the cut player in G(n,0) that ensures max VAL(n,C, M) <
f(n) and that runs in time T(n) per round, there is an O(f(n))-approximation algorithm for the
SPARSEST CUT problem on any undirected graph H on n vertices and m edges that runs in time
O(f(n)-(T(n)+Triow)) where Tpipw = O(m>/?) is the time to compute a single-commodity mazimum
flow in H.

For the proof, we refer the reader to [7]. A similar connection exists between the game G(n, ¢) for
0 < ¢ <1/2 and the balanced separator problem. We omit the details.



3. SDP Based Lower Bound

We first recall the well-studied SDP relaxation 3.1 for the SPARSEST CuUT problem introduced
in [2]:

Minimize 737, syepllvi — vil?
SDP : s.t.
Vi k €V vi—vill? + lIv; = vil®

Vv

> v — vl (3.1)
T2 Vi = vill? =1

With each vertex ¢ € V, we associate an n-dimensional vector v; € R™ and try to minimize

12 ek llvi— v,||? subject to the given “triangle inequality w.r.t. ¢3” and normalization con-

straints. It is easy to see that half the optimum value of the SDP is a lower bound on the sparsity of

the sparsest cut in G as follows. Given a cut (S, S) with |S| < 2 in G, let v; := ———(—1,0,...,0)f

b 1 Lt (55) wih 5]< 3 im )

———(1,0,...,0)Tif 7 & S. It is easy to see that this forms a feasible solution
EEl 5\( ) ¢ s easy
to the sSDP and has value Wﬁg\ |E(S,9)| < 2%, where E(S,5) is the set of edges crossing the
cut (9, 9).

Let GAP(n) denote the integrality gap, i.e., the maximum ratio of the sparsity to the value of
the above SDP, on graphs with n vertices. We know that cap(n) = Q(loglogn) from a result of
Devanur, Khot, Saket and Vishnoi [5]. We prove the following theorem which implies that there is
no cut player C, even unbounded-time, such that vaL(n,C, M) = o(,/GAP(n)) for all M.

if7 €S and v; :=

Theorem 3.1. There is a matching player M* for the game G(n,0) to ensure that
Ir}:inVAL(n,C,./\/l*) = Q(y/GAaP(n)).

The rest of the section is devoted to proving Theorem 3.1.

3.1. Preliminaries

For a symmetric matrix M € R"*" let L(M) € R™ " be its Laplacian which is defined below.
o Zj#Mij ifi=3j
L(M)i; = { “My o ifi .
The following are simple facts about the Laplacian of a matrix.

Fact 3.2. For any non-negative symmetric matriz M, the Laplacian L(M) is positive semidefinite.

Proof. For all x = (x1,...,1,) € R", we have x' £(M)x = Zi<j M;j(x; — xj)z >0,as M;; >0. =

Fact 3.3. If M, N are two symmetric matrices such that M;; > Ny; for alli, j, then L(M) = L(N).

Proof. Notice L(M)—L(N) = L(M —N). But M — N is symmetric and non-negative as M;; > Nj;.
Hence, by the previous fact, L(M — N) = 0. [



For a graph G, let £(G) denote the Laplacian of the adjacency matrix of G. Let K, denote the
complete graph on n vertices and its adiacency matrix. The following is a simple characterization
of the second smallest eigenvalue of M in terms of £L(M) and L(K,).

Lemma 3.4. For a non-negative symmetric matriz M € R "™ the maximum z such that L(M) —
2L(Ky) =0 is ’\251M), where Aa(M) denotes the second smallest eigenvalue of L(M).

Proof. First notice that the minimum eigenvalue of both £(M) and L£(K,) is 0, with eigenvector
1:=(1,1,...,1). Let A\; be the i-th smallest eigenvalue of £(M). Consider an orthonormal basis

{ui,...,u,} of eigenvectors for L£(M), where u; is associated with the eigenvalue \;. We have
A1 =0 with u; = ﬁ Finally, notice that for all ¢ > 1, qu(Kn)ui =n as L(K,) =nl — J, where
J is the matrix with all entries set to 1, and u; L 1. Further, for any x € R", let (z1,...,2,) be

such that x = >, z;u;. Then

x (L(M) — 2L(Ky))x =Y a?ul (L(M) — 2L(K))u; =
=1

n n

> aPul(L(M) — 2L(K)wy =D (N — zn).

=2 =2
This will be positive for all x if and only if As > zn. Hence, the maximum z such that £(M) —
2L(K,) = 0is 2 = 22 as required. ]

Another fundamental fact is the relation between \2(G) and expansion for a ¢-regular graph [4]:

Theorem 3.5 (Cheeger’s Bound). For an undirected t-reqular graph G, we have:

(¢0(G))?
M(G) > ——2

2(0) 2 ==
For the lower bound, it would be more convenient for us to work with the dual of the spp (3.1).
We first rewrite the primal replacing (v;, v;) with a variable z;; for all 4, j. Moreover, we let ¢;; to
be the (i,7) entry of the adjacency matrix of the instance graph G. We also let P;; be the set of

undirected paths between i and j in K,. (We do not distinguish between the sets P;; and P;;.)

Then, the primal can be expressed as below.
Minimize % Zi<j CijLij
S.t.

Vi, j Vp € Pij Zg“’“)ep Tup = Tij

(3.2)
12 i<ty = 1
Vi, Tij = zy+ 255 — 2%
Z >0
The spp-dual is:
Maximize 42/
s.t.
Vi,j 2+ Sij — Zpepij fijp + ZpB(Lj) fijp = %Cij (3-3)
Vp Jp >0
L(S) =0
By substituting the s variables out and rescaling, we obtain the following simpler form of the dual:
Maximize n-z
DUAL-SDP : s.t. (3.4)

L(G) — 2L(K,) + L(D) — L(F) = 0
6



Here, the variables are z, F' and D. The matrices F' and D arise as follows: Fj; is defined to be the
the total flow on the edge (4, j), while D;; denotes the total flow between i and j. Formally,

Fiji= Y fop and Dij= Y fijp-
s, t, pEPgy: pGP"
p3(0.3) “

If F'is “routable” in G, then G;; > F;j, and hence, £L(G) = L(F') by Lemma 3.4. Therefore, the
objective of the DUAL-SDP (3.4) is at least Ao(D). It follows from strong duality? that the optimum
of the primal is the same as that of the dual. For a graph G, we denote this optimum to be SDP(G).

Finally, let G,, be a graph on n vertices for which the integrality gap of the SDP relaxation
in 3.1 is GAP(n). Let ¢o(Gn) := oy, and SDP(Gp) = oy, so that % = GAP(n). Furthermore, we
may assume that i is an integer. Recall that [5] has showed that Gap(n) = Q(loglogn).

3.2. Proof of Theorem 3.1

Strategy M* of the Matching player in G(n,0):
e Given a bisection (S, S), find a perfect matching M across (S, S) which is routable in
aLnGn, where iG” is the graph obtained from G, by multiplying each edge-capacity by

1
On
e Output the matching M.

Figure 2: A strategy M™* of the matching player that ensures ming VAL(n,C, M*) = Q(y/GAP(n))

Now we show that there is a strategy for the matching player such that the cut player cannot
end the game before Q(1/GAP(n)) rounds. For a given n (recall that n is even in our setting), the
matching player bases his strategy on the graph G,,. A bisection (S, S) is interpreted as a cut in
G, and the matching player produces a perfect matching across (S, S) which is routable in ﬁGn,
where éGn is the graph obtained from G, by multiplying each edge-capacity by i The next
lemma (from [7]) shows that there exists such a matching.

Lemma 3.6. Given a graph G,, with expansion o, such that 1/, is integral, for every bisection
(S,S), it is possible to construct a pair of graphs (Ms, Fs) such that Mg is a perfect matching
across (S,8) and that Fs is a flow routing Mg in iG”’ by doing a single commodity mazx-flow
computation in Gy,.

Proof. Consider a max-flow problem set up on aiGn as follows: every vertex in S is connected

to an auxiliary vertex s with an edge of capacity 1. Similarly, every vertex in S to an auxiliary
vertex t with an edge of capacity 1. Since the capacity of the cut separating s from S is n/2, the
min-cut in this new graph is at most n/2. Suppose now that the min-cut had value strictly less
than n/2 and let the number of edges in the min-cut incident to the source s (resp. sink t) be ng
(resp. m¢). The remaining capacity of the cut is strictly less than n/2 — ng — ny, and thus uses at
most (n/2 — ng — ng) capacity in the graph iG”' Moreover, the cut consisting of edges in the
graph separates at least n/2 — ng vertices in S from n/2 — n; vertices in S. The expansion of this
cut is strictly less than (n/2 — ng —ny)/ min(n/2 — ng,n/2 — ny), i.e. strictly less than 1. But «,,
is the expansion of G, so iG” must have expansion equal to 1. Hence, the min-cut must have

2In our case we just need weak duality.



value n/2. By the max-flow-min-cut theorem for single commodity, there is a flow Fg of value n/2
between s and t. This flow Fg can be chosen to be integral as all the edge capacities are integral.
Since Fy is integral and the capacity of each of the edges connecting s to S and ¢ to S are 1, the flow
paths connecting vertices in S to those in S must be edge disjoint. This gives rise to a matching
Mg between the vertices in S and S. [

Let Mg be the matching output by the matching player when presented with partition (.5,5).
We let Fs and Mg also denote the adjacency matrices corresponding to the flow Fg and the
matching Mg respectively. The matching player gets the bisections (Si,S1), (S2,52),... (S, S),
and it outputs the matchings M; := Mg, (along with the corresponding flows F; := Fg, routable in
iG") based on the procedure described above.

Using the pairs (M;, F;), for 1 < i < t, we produce a feasible solution to the SDP (3.4) for G,
as follows. We let F' := %= (F1+---+F}), and D := 9 (My +-- -+ M;). Since each M; is routable in
iG" with routing Fj, the pair (F, D) is feasible for the DUAL-SDP (3.4). Since each F; is routable

in éGn, F is routable in G and hence we have SDP(G,) > A2(D). By Cheeger’s Inequality, and
the fact that the union of matchings is a t-regular graph, it follows that

(079 (¢0(M1++Mt))2 [07%Y
> -
M2(D) 2 = ot = 3212

Hence,

Qp,

So, t > /532 = Q(y/GAP(n)). This completes the proof of Theorem 3.1.

4. Upper Bound

The following theorem is the main result of this section.

Theorem 4.1. There is a strateqy C* of the cut player in the game G(n,0) to ensure that
max VAL(n,C*, M) = O(logn).

To prove the above theorem, we first prove the following result.

Theorem 4.2. In the game G(n,c), the strategy C* of the cut player (see Figure 3) that chooses a
bisection in the current graph G that does not “cross” the c-balanced cut with minimum expansion
ensures that maxg VAL(n, C*, M) = O(%logn).

Strategy C* of the cut player in G(n, ¢):

e Find a c-balanced cut (7,T) with minimum expansion, with, say |T| < |T|. Let S be an
arbitrary superset of T' such that |S| = n/2.
e Output the bisection (S, 5).

Figure 3: A strategy C* of the cut player in G(n,c) that ensures that maxy( VAL(n,C*, M) =
O(Llogn)

We first introduce some technical tools to prove Theorem 4.2. These tools were also used
by [7]. Recall that in the game, the graph G starts from being empty and after & rounds it is
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the (multi-set) union of k perfect matchings Mj, Mo, ..., M} each of size n/2. Given a sequence
{M, ..., My} of perfect matchings, we associate, with each starting vertex u € V, a k-step random
walk on the vertex set V. Imagine a particle located at vertex u € V. Assume that in step ¢ (where
t =1,...,k), the particle stays at its current position with probability 1/2 and jumps across the
(unique) edge incident to the current position in the ¢th matching M;. Let p,,(t) denote the
probability that the particle starting at u reaches vertex v after ¢ steps. It is easy to see that the
probabilities p,, . (t) satisfy the following properties.

Lemma 4.3. (1) puu(0) =1 for all w and py(0) =0 for u # v.

(2) puo(t) = LealEDEPeel=D) gy > 1 ang (v, w) € M.
(3) ZUEV Puw(t) =1 for all w and t > 0.

(4) > pey Puu(t) =1 for all w and t > 0.

Proof. Ttems 1 and 2 follow from the initialization and the averaging update explained above. Items
3 and 4 can be easily proved by induction on t. [

We associate a potential ¥ (k) with the sequence {Mj, ..., My} of perfect matchings. Unlike
[7] who use £3 potential, we use simply the sum of the entropies of all the n random walks:

\Ij(k) = Z <_ Zpu,v(k) lnpu,v(k)> . (4.1)
ueV veV

Here we use the usual convention that —0Iln0 = lim,_,p+ —zInz = 0. Observe that the potential
satisfies the following properties.

Lemma 4.4. (1) ¥(0) =0.
(2) ¥(t) <nlnn for allt.
(3) W(t) > V(t—1) fort>1.

Proof. Item 1 follows from the definition. Item 2 follows from the fact that the entropy of a
probability distribution on n points can be at most Inn. Item 3 follows from the fact that the
entropy does not decrease if we average the probabilities on two points: for 0 < p,q < 1 such that
p+q <1 we have

p+gq p+yq p+q p+yq
— — < S e i
plap—qhngs ( 2 >ln< 2 ) ( 2 >ln< 2 )

4.1. Proof of Theorem 4.2

Proof Idea. Recall that the game G(n,c) ends when all the c-balanced cuts have expansion at
least 1/4. We show that as long as there is a c-balanced cut with expansion less than 1/4, the
potential ¥ increases by Q(cn) in each round, i.e., ¥(t + 1) — ¥(¢) = Q(cn). Since the potential
does not increase beyond nlnn, we get that the number of rounds is O(% logn).

To this end, we fix a round ¢ and assume that the c-balanced cut (7,7T) after ¢ rounds has
expansion less than 1/4. Say min{|T|,|T|} = |T| = bn where ¢ < b < 1/2. This implies that
|E(T,T)| < bn/4. We next argue that the total probability that has “crossed” from T-side to
T-side is at most bn/8, i.e., > ueTweT Pup(t) < bn/8. Using this, we argue that there are at least
bn/2 vertices u € T such that the total probability starting at u that has crossed the cut (7, T) is
at most 1/4. We then prove that after adding the matching M;; in the sequence, the entropy of
the probability distribution associated with the random walk starting at each such u increases by
Q(1). This, in turn, implies that the overall potential increases in this round by Q(bn).
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For the purpose of this section, we assume that the cut player uses the strategy given in
Figure 3. The following lemma directly implies Theorem 4.2, since the potential is always at most
nlnn.

Lemma 4.5. During any round of the game, the potential increases significantly: W(t+1)—¥(t) =
Q(cn).

To prove the above lemma, fix a round ¢ and assume that the c-balanced cut (7, T) in G; with
minimum expansion has expansion less than 1/4. Let, without loss of generality, min{|T|, |T|} =
|T| = bn where ¢ < b < 1/2. Thus |E(T,T)| < bn/4. Recall that p, ,(t) denotes the probability
that the particle starting at vertex u reaches v after ¢ steps of the random walk defined above. For
u €T, let qu(t) = Y, o7 Puw(t) be the total probability of the random walk starting at u that has

crossed the cut (T,7).
Lemma 4.6. ) qu(t) < bn/8.

Proof. Note that when we add an edge (v,w) € M, to G in round r, a total of 1/2 units of
probability currently present at v (from all the starting points summed up) travels from v to w and
1/2 units of probability present at w travels from w to v. Moreover each edge is used exactly once
to mix the random walks. Thus each edge in E(T,T) contributes at most 1/2 unit of probability
cross over from T to T. This completes the proof since E(T,T) has less than bn/4 edges. ]

Using averaging argument, it is clear from Lemma 4.6 that there are at least bn/2 vertices
u € T such that ¢,(t) < 1/4. Fix a vertex u € T such that ¢,(t) < 1/4. We prove that the
contribution of u to the potential ¥ increases by (1) in this round ¢ + 1, i.e., the entropy of the
distribution {p,(t+1)} is more than that of the distribution {p,(t)} by an amount at least €(1).

In round t 4+ 1, we add a matching My to G. Since T' C Sy41, each v € T is matched to a
unique 7(v) € T in Myy1. Call a vertex v € T “good” if pyy(t) > 2py x(v)(t), or “bad” otherwise.
The total probability present in T isY 7 Puw(t) < 1/4. Therefore the total probability present
on the bad vertices is at most 2 - 1/4 = 1/2. Since the total probability on 7" is 3/4, at least 1/4
probability is present on good vertices: Zv:good Puw(t) > 1/4.

In round t + 1, each good vertex u € T' averages its probability py ,(t) with p, »(,)(t). Note
that if p > 2¢, we have

(—plnp —gqlng) — <—2 <p;q> In (p;rq» =Q(p).

Therefore the good vertices together contribute Q(Zv:good Puw(t)) = Q(1) increase in the entropy.
This, in turn, implies Lemma 4.5, and therefore Theorem 4.2.

4.2. Proof of Theorem 4.1

The cut player first uses the strategy in Figure 3 for ¢ = 1/4. As proved in Theorem 4.2, after
O(logn) rounds, the expansion of the every c-balanced cut becomes at least 1/4. The cut player
repeats this strategy 4 times to ensure that every c-balanced cut has expansion, in fact, at least
1. After this, the cut player iteratively computes the sparsest cuts in the graph as described in
Figure 4. Let T be the union of all the vertices removed in the above procedure. The following
lemma proves that |T'| < n/4. In the next and the last round, the cut player outputs a bisection
(S, S) where S is an arbitrary superset of T such that |S| = n/2.

Lemma 4.7. |T| < n/4.
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Strategy C* of the cut player in G(n,0):
e Use the strategy C* in Figure 3, four times, to ensure that every c-balanced cut in G has
expansion at least 1.
e In the next and the last round do:
(1) Let G' — G.
(2) While there is a cut in G’ with expansion less than 1/2 do:
(a) Let (U,U) be the sparsest cut in G, with |U| < |U].
(b) Remove vertices U (and their incident edges) from G'.
(3) Let T be the union of all the vertices removed in the while loop above.
(4) Let S be an arbitrary superset of T" such that |S| =n/2.
(5) Output the bisection (S, S).

Figure 4: A strategy C* of the cut player in G(n,0) that ensures that maxaq VAL(n,C*, M) =
O(logn)

Proof. Assume on the contrary that |T'| > n/4. We handle two cases separately: (1) |T'| < n/2,
(2) |T] > n/2. In case 1, it is easy to argue that the expansion of (T, T) in the graph G is at most
1/2. This follows from the fact that the edges in E(7T,T) can be charged to the vertices in the sets
U whose union forms 7. This, in turn, implies that |T'| < 1/4, since every 1/4-balanced in G has
expansion at least 1. This yields a contradiction.

In the second case, let Uy, Us, ... be the sets of vertices removed in the above procedure. Let
k be the smallest index such that | UF_, U;| > n/2. Clearly we have k > 2. Let 7" = U~} U;. Since
|T'| < n/2, we have, by an argument similar to the one above, that the expansion of (T” ,T/) in
the graph G is at most 1/2. This implies that |T’| < n/4, again since every 1/4-balanced cut in G
has expansion at least 1. Thus we have that |Ug| > n/4 > | Uf;l Ui|. Since each U; has expansion

less than 1/2 in the graph G\ U};llUj, we get that the expansion of (U, Uy) in G is less than 1.
This follows from the fact that |Uy| < n/2 and that the edges in E(Uy,Uy) can be charged to the
vertices in U¥_,U; and from the fact that |Uy| > | UFZ! U;]. This leads to a contradiction, again,

since every 1/4-balanced cut in G has expansion at least 1. [

We now show that the graph G becomes an expander after the last round described in Figure 4.
Let [ be the index of the last round and let G; and M; be the graph after [ rounds and the perfect
matching added in the [th round. We show that the expansion of any cut in G is at least 1/3. Let
(W, W) be any cut in G; with |[W| < |W|.

Lemma 4.8. The expansion on (W, W) in G, is at least 1/3: |E(W,W)|/|W| > 1/3.

Proof. We consider two cases: (1) [W NT| > |W|/3, (2) [WNT| < |W|/3. Consider the first
case. From the procedure to construct 7' in the last round, it is clear that every cut in g \ T has
expansion at least 1. Since at least |W|/3 vertices in W lie in G\ T', we have that |E(W,W)| in G}
is at least |W|/3, establishing the expansion of 1/3.

In the second case, it is easy to see that at least [W|—2|W NT| > [W|/3 edges in M; belong
to E(W,W) in G}, thereby again establishing the expansion of 1/3. [

This completes the proof of Theorem 4.1.
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5. Concluding Remarks and Open Problems

e The main open problem is to establish tight bounds for maxa ming VAL(n,C, M) and
ming max g VAL(n, C, M) for the cut-matching game. From the lower bound perspective, it
would be extremely interesting to improve the lower bound beyond 2(y/loglogn). The cur-
rent lower bound relies on the non-trivial integrality gap construction for spp (3.1). Ideally,
one would like to improve the lower bound to Q(y/logn) without relying on the integrality
gap constructions (which are harder to come by), while at the same time establishing that
the Khandekar, Rao and Vazirani paradigm is no more powerful than that of Arora, Rao
and Vazirani.

e Another variant, which we refer to as the game of flow may be of independent interest. The
game of flow proceeds like the expansion game, but stops when G (with unit capacity on
each of its edges) can support a concurrent uniform multi-commodity flow in which each
vertex sends 1/n flow to every other vertex. This is equivalent to saying that the complete
graph K, is routable in G with congestion at most n. This game has a connection with
the max-flow-min-cut gap for the uniform multi-commodity flows in undirected graphs. In
particular, a strategy C* of the cut player that ensures max VAL(n,C*, M) < f(n) for the
flow game implies a f(n) max-flow-min-cut gap for the (uniform) multi-commodity flows.
Thus a cut player strategy with f(n) = O(logn) would yield an alternate proof of O(logn)
max-flow-min-cut gap for undirected graphs [8].

e All our results can be appropriately generalized to the case when the cut player is supposed
to output only a balanced cut and not necessarily a bisection.
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