
On the Consistency of DHT-Based Routing

Jayanth Kumar Kannan
Matthew Chapman Caesar
Ion Stoica
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-22

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-22.html

January 31, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On the Consistency of DHT-Based Routing

Paper ID #378, 14 pages

ABSTRACT
DHT-based routing has been proposed recently in the litera-
ture and this new routing paradigm promises several advan-
tages (e.g., decreased state requirement) over conventional
routing protocols. However, the robustness of such schemes
is questionable given the difficulty of maintaining even over-
lay DHTs on Planetlab. In this work, we seek to address this
issue head-on by taking the first steps towards a theory of the
consistency of DHT-based routing. We do so by proposing
the first fully-decentralized maintenance algorithm for DHT-
based routing and then prove that it guarantees the property of
eventual consistency. We then go on to explore a generaliza-
tion of DHT-based routing, called a rendezvous service, and
explain how routing protocols built using a rendezvous ser-
vice may offer better convergence properties as compared to
DHT-based routing. Although it is presently unclear whether
DHT-based routing will ever be deployed in the Internet, we
address one of the main technical objections against them:
their perceived lack of robustness.

1. INTRODUCTION
DHT-based routing (UIP [1], VRR [2], ROFL [3]) is a new

routing paradigm that seeks to leverage DHT algorithms for
the purposes of routing. Whereas standard Distributed Hash
Tables (DHTs) require an underlying routing protocol (such
as IP) in order to function, DHT-based routing schemes lever-
age DHT algorithms in order to provide routing.

DHT-based routing appears to have several attractive tech-
nical features, including close to O(1) or O(log(N)) state
per host as opposed to at least O(N) state per host in con-
ventional routing protocols, minimal overhead under most
typical churn conditions [2], acceptable overhead under ex-
treme churn, and low stretch. Despite these advantages, these
scheme also invoke a well-justified sense of skepticism in the
seasoned networking researcher for the following reason.

The difficulty of maintaining overlay DHTs on Planetlab
over the routing service provided by IP is well known [12–
14]. Generally, DHTs have come to be considered to be frag-
ile beasts that are not at home in the real-world Internet, for
reasons like, non-transitivity and transient connectivity. Thus,
expecting DHTs to do the job of routing, the bed-rock of any
distributed system that needs to be completely reliable, ap-
pears at first glance to be far too optimistic. Their lack of
robustness is one of the principal technical objections against
DHT-based routing.

In this work, we seek to directly address this concern by
taking the first steps towards a theory of the consistency of
DHT-based routing. We believe that the consistency aspect of
DHT-based routing is ideally suited for theoretical attention
because an absolute guarantee on convergence can never be
obtained by any empirical means. Our contributions towards
such a theory are three-fold.

First, we demonstrate a decentralized DHT-maintenance
algorithm that is provably correct in the following sense: after
any series of churn events involving the failure or reinstate-
ment of any number of links and nodes, any two nodes that
have a physical path between them can eventually reach each
other. The issue of correctness is only addressed in passing in
VRR [2] and ROFL [3], which rely on a few centralized nodes
to ensure correctness. Our algorithm, on the other hand, is the
first provably correct decentralized DHT-based routing algo-
rithm. Although our theoretical guarantees leaves much to be
desired in terms of its limited semantics (only eventual con-
sistency in the presence of fail stop failures is guaranteed)
and quantitative properties (high convergence time), it cer-
tainly serves as strong evidence to the robustness of DHT-
based routing.

Second, as it turns out, this exercise in eventual consistency
has an unexpected payoff of immediate usefulness. We show
that our maintenance algorithm for DHT-based routing can be
applied in the context of an overlay DHT (e.g., on Planetlab)
to help deal with the non-transitivity issues on the Internet.
We first argue that, in order to ensure strong consistency in the
face of non-transitivity, it is necessary for every node to have
a list of all nodes in the system. Given this assumption, our
decentralized maintenance algorithm can be suitably trans-
ferred to this context to guarantee strong consistency. This
provides the first theoretically supported algorithm to deal
with non-transitivity issues for overlay DHTs, a problem for
which there has been no known theoretical solutions or com-
plete practical schemes so far.

Third, in order to redress the high convergence time of
DHT-based routing, which turns out to be a fundamental trade-
off known in the theoretical community [4], we define the no-
tion of a rendezvous service, a generalization of DHT-based
routing schemes. This notion helps us in developing new
routing protocols with faster convergence properties at the
expense of greater state requirement. We will first provide
a generic prescription to build a routing service on top of any
rendezvous scheme. Then, we will identify existing schemes

1

A

B C

Physical network
A

D

E
B

F G

C

Overlay-level
Overlay
Topology

A
B

C

Figure 1: Model of DHT-Based Routing

in literature (and propose a new one) as satisfying our notion
of a rendezvous service, and build routings protocol based on
these rendezvous services. We will then argue that these rout-
ing protocols have much improved convergence properties as
compared to DHT-based routing. We are the first to observe
this general connection between a rendezvous service and a
routing service.

We note that while a skeptic may claim that overlay-level
DHTs failed to work despite being supported by theoretical
proofs of convergence, this misses the point: those theoret-
ical proofs assumed that Internet did not suffer from non-
transitive routing. This assumption failed in practice, and
hence, those results were simply not applicable. Our theo-
retical results, on the other hand, take this factor into consid-
eration, and therefore argue for the robustness of DHT-based
routing in practice.

Despite these technical arguments for investigating DHT-
based routing, a valid question is whether real-life Internet
routing protocols would ever incorporate this new paradigm.
The current prospects are certainly dismal: in recent years,
the networking community has seen several routing proposals
(e.g., NIRA [31], HLP [30], FBR [32]) that have had rather
limited deployment. Even so, we believe that the paradigm
of DHT-based routing bears investigation. Most of these re-
cent proposals were imaginative engineering exercises, that
worked with the building blocks of distance vector routing,
path vector routing, and link state routing, in order to fash-
ion a scalable Internet routing protocol. DHT-based routing,
and its generalization, rendezvous-based routing, on the other
hand, we believe, are new building blocks with some superior
technical features that should be investigated to support rout-
ing designs of the future.

2. MODEL OF DHT-BASED ROUTING
We first discuss a general model (shown in Figure 1) for a

DHT-based scheme that captures the three DHT-based rout-
ing proposals so far, UIP, VRR, and ROFL.

The Structure: Each node is assigned a random unique
identifier from some namespace [0, 2n) and maintains point-
ers to its overlay-neighbors. In this case, A has two overlay-
neighbors, B, and C. An overlay neighbor for a node is cho-
sen to be a node whose identifier satisfies some relationship
with the former’s identifier; this exact relationship is pre-
scribed by the DHT algorithm (the region-based design of
CAN [6], the exponential splayed out fingers for Chord [7],
the tree / hyper-cube structure of Tapestry [9] and Pastry [8]).
Unlike the overlay DHT case, where the neighbor is directly

reachable using an underlying routing protocol, in the DHT-
based routing scenario, contacting the neighbor may require
going through multiple hops. For this purpose, a pointer
is maintained for every overlay neighbor as a source-route
through the network. This source-route consisting of a set of
physical links that constitute a path from the node hosting the
pointer to its overlay-neighbor. In the figure, for instance, A
uses the source-route D,E to reach B and the source-route
F, G to reach C. This pointer is periodically refreshed from
the originating node, and if it detects that its overlay neigh-
bor is not reachable because of the failure of a on-path link
or node or the neighbor itself, it initiates a joining procedure
once again.

Routing: When routing to a destination, the node resorts
to simple greedy routing: it selects the overlay-neighbor that
makes the most progress in the namespace, and then forwards
the packet along the pointer to the DHT-neighbor. Forward-
ing along this pointer can be achieved either through a source-
route inserted by the sender (as in ROFL) or through embed-
ded state in the network in the form of incremental source-
routes to the overlay neighbor (as in VRR). When the packet
reaches the overlay-neighbor, it repeats the same greedy rout-
ing process until the packet makes it all the way to the desti-
nation. Therefore, routing proceeds at two levels: along the
overlay from one overlay neighbor to another, and then from
one overlay neighbor to another along the pointer source-
route.

Dealing with Churn: When a new node arrives, it discov-
ers and constructs paths to its overlay-neighbors by routing
using a physical neighbor that has already joined to act as a
proxy. This is possible by the boot-strapping nature of DHTs:
a node n can simply route to its own identifier, and discover
its overlay neighbors. Since we have already described how
to route to a neighbor, when a new node routes to its new iden-
tifier (or some function of it), the path taken by this packet
as a concatenation of all the pointers it traverses constitutes
a source-route to its prospective overlay-neighbor. The new
node can use this in setting up a pointer to its neighbor. When
a node leaves the network or a link fails, all nodes who had
pointers to that node or traversing that link will soon realize
the failure of the link, and will effectively rejoin the network.
This simple protocol however only works under carefully se-
rialized joins and leaves, which is clearly not realistic.

Path Caches: We discuss VRR’s path caches in some de-
tail since it is a useful mechanism we refer to later. The basic
idea of a path cache is that nodes on the path of a pointer
from A to B, cache (a) the identifier of B (b) the rest of the
path up to B (c) optionally, the identifier of A and the reverse
path Upton A. This cache is used during routing as follows.
When a packet is sent over the pointer from A to B, nodes
on the path are free to look at the ultimate destination of the
packet C, and then if the have a path cache entry to a node D
closer in the identifier space to C than B, they simply “short-
cut” the packet to D. These path caches are maintained by
soft-state refreshes, and help in significantly reducing stretch
in practice. The state required to maintain these path caches
should also be included in the state requirements for DHT-
based requirement, but this cache is typically so small and its
size tunable, so that we omit it in the state calculations.

2

The list of UIP, VRR, and ROFL, reveals the diverse as-
pects of DHT-based routing: their allowing (not mandating)
all nodes to act as routers, their superior technical properties
such as minimal overhead and state, and finally, the fact that
they allow the node to be reachable by only its identity in a
scalable fashion.

3. EVENTUAL CONSISTENCY
We believe it is important to have theoretical guarantees

regarding the consistency DHT-based routing, which at first
glance, appears to be fairly complicated for a routing proto-
col. It is well known that getting overlay-level DHTs running
on Planetlab itself has been a ordeal [12, 14], complicated
by non-transitivity connectivity issues and the heavily loaded
Planetlab machines. Thus, some convincing evidence is re-
quired to make the case that DHT-based routing is robust.
In work, we prove the correctness of DHT-based routing in
the eventual consistency sense: if the system is quiescent for
some pre-determined time after any series of node/link churn
events, then our maintenance algorithms will ensure that the
DHT-based routing algorithm will converge correctly.

We note that the correctness issue in the fully-decentralized
case has not been dealt with before. UIP, VRR, and ROFL, all
deal with correctness in passing and do not formally prove it,
and the last two rely on a few reliable nodes for ensuring cor-
rectness. Our results, on the other hand, are concerned with
the decentralized case, where all node has the same responsi-
bilities, and we offer a theoretical proof of correctness.

The main limitation in our theoretical results on eventual
consistency is that the proof works for any sequence of events
(nodes and links events, failures and recovery events) pro-
vided the system remains quiescent for O(N4) time afterward
(N is the total number of nodes). Though the time require-
ment appears impractically high and the quiescent require-
ment rather stringent, we note that this is the time complexity
that we have been able to prove by our analytical results; our
empirical results indicate the number is much lower in prac-
tice. Also, the assumption that the system be quiescent for
that duration of time, may appear rather strict; once again,
this is more a limitation of our analysis rather than DHT-
based routing. Most proofs of practical networking protocols
(such as [7]) using the distributed systems formal model of
analysis appear to be proofs that make some requirement of
this sort. And further, even such proof have been very diffi-
cult to obtain for overlay-level DHTs. We now describe our
maintenance algorithm and then present its analysis.

3.1 Decentralized Maintenance Algorithm
We now decibel our decentralized maintenance algorithm

for DHT-based routing. It borrows from both standard DHT
maintenance algorithms (such as Chord’s stabilization algo-
rithm) and classical routing protocols (such as distance-vector,
path-vector) protocols. Note that applying standard DHT al-
gorithm as such does not work because the fact that the DHT
is incorporated into the physical layer brings in other issues
(this will become clearer during the description of the algo-
rithm). We will use Chord (with only successors) as the run-
ning example during our correctness discussion.

3.1.1 Node State
Before describing the algorithm, we will first detail the

state maintained at every node. Each node x (we refer to
a node by its identifier x) maintains the following dynamic
state: a pointer to the node who it considers to be its successor
which includes (a) its successor’s identifier, denoted by S(x)
(b) a source-route to its successor, denoted by SSR(x). It is
clear that if these two pieces of state are set correctly for ev-
ery node x (i.e., S(x) is the correct successor of x according
to the consistent hashing algorithm, and SSR(x) is a valid
source-route originating from x and terminating at S(x) that
consists of alive nodes and links), then routing is guaranteed
to work correctly by the greedy routing properties of Chord.
(of course, fingers would also be used for routing, but the cor-
rectness of those fingers is ensured by the correctness of the
successor pointers [7]). The state at each node is initialized
when it comes up as S(x) = x, SSR(x) = {x}.

3.1.2 Maintenance Algorithm

Algorithm 1 Dynamic State Maintenance At Node x

1: PROCEDURE: update routing table()
2: RETURNS: nothing
3: // state at node x: Successor S(x), Source Route SSR(x)
4: // Phase 1: If probe to successor fails, then reset it
5: if S(x) or SSR(x) is down, reset S(x) = x, SSR(x) = {x}
6: cand succs = {(S(x), SSR(x))} // a temporary set used to keep

track of candidate successors suggested by x’s neighbors
7: // Physical Reconciliation (PR) Phase: Ask phys. ngbrs. for succes-

sors
8: for all y such that y is a physical neighbor of x do
9: // ask y for candidate successor and a route to it

10: (cand succ, rt to cand succ) = y.route(x + 1)
11: // add the candidate and source-route to the set we maintain
12: cand succs = cand succs ∪ {(cand succ, rt to cand succ)}
13: end for
14: // Strong Stabilization Phase: Ask current successor as well
15: (cand succ, rt to cand succ) = S(x).route(x + 1)
16: // add the candidate to the set we maintain
17: cand succs = cand succs ∪ {(cand succ, rt to cand succ)}
18: // Phase 4: Invoke Virtual Reconciliation (VR) phase if necessary
19: if (|cand succs| > 1) then
20: reconcile inconsistency(cand succs)

21: end if

We now describe the maintenance algorithm that is required
to maintain this state correctly. We will describe it as a peri-
odic action that is initiated by every node, although later, we
describe how it can be converted to a mostly on-demand reac-
tive protocol with a very low period background action. We
will refer to the neighbors of a node in the physical network
as its physical neighbors, and the neighbors of a node in the
DHT-topology as its virtual neighbors.

The algorithm is presented as pseudo-code in Algorithm 1;
this procedure is invoked periodically at every node. Of course,
each node may invoke this at different times. Its operation is
divided into four phases:

• Detect successor/route failure: Node x probes its cur-
rent successor S(x) by sending a probe packet along
the current source-route to its successor. If the probe is
successful, then no action need be done. Otherwise, it
resets its successor and successor source-route to point

3

to itself.
• Obtain successors via physical neighbors: This is called

the physical reconciliation (PR) phase because, intu-
itively, it helps a node discover in-consistencies in the
opinion of its physical neighbors on its successor, and
seeks to resolve them. In this phase, a node proceeds to
ask all its physical neighbors y to route to x + 1. Ide-
ally, all physical neighbors y should return its current
successor S(x) and some source-route to it. If, on the
other hand, the network is in the convergence process,
then its physical neighbors can return different answers.
All such candidate successors and routes are retained in
a set of candidate successors. Note that the physical
neighbor simply invokes the routing algorithm on the
identifier (x + 1), and the node at which this algorithm
terminates is returned as the candidate successor. The
physical route (list of all nodes visited on the path, not
just overlay neighbors) followed during this process is
retained during the packet, and returned along with the
identifier of the candidate successor.

• Obtain successors via current successor: Node x now
asks its current successor S(x) to route to (x + 1). It
can use its source-route SSR(x) to reach S(x) and then
issue this request for routing. This process should again
return the successor S(x) upon convergence, but can
return a different node until then. Once again, the can-
didate successor and source-route to it are retained in
the set of candidate successors. We refer to this as the
strong stabilization phase.

• Reconcile the set of possible successors: When mul-
tiple candidate successors are available in cand succs,
then the node x needs to invoke a reconciliation proce-
dure that anoints one of these candidates as the current
successor, and inform the others. This phase is called
the virtual reconciliation (VR) phase.

The first phase is simple; if the current successor or the
route to it has failed, then node x simply elects itself as its
successor (since it knows of no other nodes at this point).
In this case, the successive phases will ensure that the cor-
rect successor is soon chosen. Also, periodic probes are not
needed to detect failure if every node along the path maintains
semi-soft state and agrees to notify the originating node if the
downstream node/link fails. In this case, the last alive node at
the end of the last live link on the path will send back a no-
tification if the path goes down. This is the approach used in
VRR [2]. The successor pointer is reset on such notification.

The PR phase has the flavor of routing protocols like path-
vector where each node periodically obtains a route to ev-
ery destination from each of its physical neighbors, and then
chooses the best route from those. In a very similar fash-
ion, the node x asks its physical neighbors for their “opinion”
on what its successor, and adds them to the set of candidate
successors. The reconciliation procedure is responsible for
picking out the “best” successor. We note that this phase be
invoked only at node x only when one of its link goes up or
down; periodic execution is not required for correctness as
our analysis will show.

The third phase is borrowed from Chord’s strong stabi-
lization procedure. This is responsible for ensuring that the

Algorithm 2 Reconciliation Protocol At Node x

1: PROCEDURE: reconcile inconsistency(cand succs)
2: RETURNS: nothing
3: Send “Succ Setup” messages to all nodes in (cand succs)
4: // confirm any waiting successors or predecessors
5: For any received “Succ Setup” message from node pi, send “Succ Con-

firm” message to pi, and add pi to cand preds
6: For any received “Succ Confirm” message from candidate successor si,

add si to cand succs
7: // invoke linearization
8: if |cand succs| > 1 or |cand preds| > 1 then
9: Let cand succs = {s1, · · · , sb} and cand preds =

{p1, · · · , pa}
10: Linearize p1, p2, · · · , pa, x, s1, s2, · · · , sb
11: For i ∈ {1, · · · , (a− 1)}, Send “Succ Setup” message to pi+1 on

behalf of pi

12: For j ∈ {1, · · · , (b− 1)}, Send “Succ Setup” message to sj+1 on
behalf of sj

13: Send “Succ Setup” to s1 and “Succ Confirm” to pa−1

14: Set cand succs = {s1}, S(x) = s1, and cand preds = {pa}
15: end if
16: Go to Step 4

......

......

p1 p2 p(a-1) pa

s1 s2 s(b-1) sb

..

..

p1 p2 p(a-1)

s1 s2 s(b-1) sb

(a) Before Linearization (b) After Linearization

Figure 2: The linearization procedure: light green (solid) pointers represent
pointers from candidate predecessors, while dark green (dashed) pointers repre-
sent pointers to candidate successors. The source-routes used in constructing the
new pointers are shown by the curved dotted arrows.

“ring” (the graph induced by the successor relationships) does
not converge to a so-called loopy cycle (where the node iden-
tifiers wrap around more than once) instead of the ideal Chord
ring (where the node identifiers wrap around exactly once,
and they are well-ordered according to the consistent hashing
relationship).

The combination of the PR phase and strong stabilization
reflects how our maintenance algorithm borrows from both
classical routing protocols as well as DHT maintenance al-
gorithms. The final phase, the VR phase, is achieved by a
procedure of linearization, which we now describe.

3.2 Virtual Reconciliation: Linearization
The VR phase is shown in Algorithm 2. First, node x sends

a “Succ Setup” messages to all candidate successors si. This
successor setup message includes the source route from x to
si. This message expresses x’s intent that it has chosen si

as its successor. Second, it responds to any incoming “Succ
Setup” messages from any nodes pi with “Succ Confirm”
messages, and adds pi to its list of candidate predecessors. A
“Succ Confirm” message implies that x is acknowledging that
pi can choose x as its successor. Note that the source route
from pi to x sent in pi’s “Succ Setup” message. Any “Succ
Confirm” messages from any nodes are noted, and such nodes
(and their source routes) are added to its list of candidate suc-
cessors. Note that Step 6 is required because it is possible
that a node sends a “Succ Confirm” message to node x with-

4

out having received a “Succ Setup” message from x; this will
become clear later.

It now remains for the node x to choose a single successor
and allow a single predecessor. This is achieved by the lin-
earization procedure (shown in Figure 2) locally reconciles
the list of candidate successors and predecessors. Each node
x first locally orders the set of successors and set of prede-
cessors. It locally computes the sorted ordering of all these
nodes p1 → p2 · · · → pa → x → s1 → s2 · · · sb (note that
this may involve wrap-around). It then sends a Succ Setup
message on behalf of p2 to p1. This Successor Setup message
includes a source route from p1 to p2 which is obtained by
concatenating the source-route from p1 to x with the reverse
of that from p1 to x. This Succ Setup message notifies p2 that
p1 has chosen it as its successor. This Succ Setup message is
confirmed by a Succ Confirm message from p1 to p2. Thus,
at the end of this message exchange, p1 is added to p2’s list
of candidate predecessors, and p2 is added to p1’s list of can-
didate successors. This process is repeated for all the new
successor pointers that are implied by the linearization (note
that since pa and s1 already point to and from n, so they need
not be notified). Each node locally repeats this process until
it has in-degree and out-degree of exactly one.

The linearization is similar in spirit to Chord’s weak stabi-
lization where a node, on finding a better successor, notifies
its current successor of its new choice. The main difference
is that linearization handles multiple set of prospective prede-
cessors and successors at one go, and that the source-routes
have to be suitably transformed before reconciliation.

The intuition behind linearization is that it performs local
reconciliation of all successors and predecessors, while en-
suring that all nodes have at least one successor and predeces-
sor. This is why, for instance, when node x chooses s1 as its
successor among the candidates s1, s2, s2 is notified that s1

is a possible predecessor, instead of node x simply dropping
s2. Thus, no nodes will be “lost” from the ring once they are
part of it. Further, the linearization procedures ensures that
each node keeps finding a better and better successor. Also
note that, although the pseudo-code for simplicity requires
the node to wait for “Succ Setup” or “Succ Confirm” mes-
sages in Step 5/6, in an implementation, this is not necessary.
The node can simply go on to the linearization procedure,
and process the “Succ Setup” and “Succ Confirm” messages
after it is done with linearization. In the limit, it can even pro-
cess one of these messages every time during linearization (of
course, if there are no new messages, linearization will not be
invoked at all).

We also wish to note that our maintenance algorithm is
fully asynchronous. Each node indulges in the PR phase,
strong stabilization, and VR phase periodically without re-
gard to the action of other nodes. Of course, if the PR phase
and strong stabilization do not throw any new candidate suc-
cessors and the node doest not receive any “Succ Setup” mes-
sages, then the VR phase is never invoked for that iteration.

3.3 Analysis
In this section, we will define a correctness criterion for

DHT-based routing, and then prove that, irrespective of any
patterns of churn events, given enough time, the system will

eventually converge to its correct state, thus supporting the
robustness of DHT-based routing. The correctness criterion
basically ensures that if two nodes have even one active path
between them, then they can reach other via the DHT. This
result applies only under fail-stop failures (not byzantine fail-
ures) and is of the self-stabilizing kind: the system is guaran-
teed to recover to the correct state even if the current state is
arbitrarily corrupted. More precisely:

THEOREM 1. For a system of N nodes, after any sequence
of link and node joins and failures, irrespective of what state
the system is currently in, the routing is guaranteed to satisfy
our correctness criterion in a maximum of O(N4) time units
and O(N6) messages. The assumption is that there are no
additional churn events during this time.

The proof technique is to prove that the set of nodes that
can talk to one another through the DHT-level pointers con-
verges to the set of nodes that can talk to another via the
physical network. In other words, we prove that the “vir-
tual graph” (the set of nodes that can talk successfully to
one another using greedy routing on pointers) converges to
the “physical graph”. The proof technique is presented in a
textbook-style invariant assertion argument [11]; we prove
that a certain invariant holds at every point in time, and then
rely on induction, to prove our required result.

We will present our correctness criterion and failure model
in detail before delving into the analysis.

3.3.1 Correctness Criterion
We define the following correctness criterion for DHT-based

routing: If there is a path between nodes X and Y consisting
of alive nodes and active links, X should be able to reach Y
by routing through the DHT. In other words, the state should
be such that simple greedy routing starting at X is guaranteed
to deliver the packet to Y . There are at least two pathological
cases where the structure of the DHT may rendered un-usable
for routing and further never recover from them. First, certain
join orderings may cause a ring to miswrap and contain mul-
tiple zeros (this is referred to as a loopy cycle [7]). Second,
network-level partitions can cause the ring to partition into
multiple pieces, even though the underlying network remains
connected.

3.3.2 Failure Model
We assume that nodes undergo fail-stop failures (as op-

posed to arbitrary Byzantine failures) and come back online
at any time. Links are also allowed to fail and recover. In
terms of the timing model, we have a choice between the
fully asynchronous model (where every node operates at its
own speed) and fully synchronous model (where there is a
notion of rounds, and all nodes operate in lock-step with each
other). In our analysis, we will assume a locally enforced
synchronous timing model (similar to that adopted by Subra-
maniam et al. [15]).

In this model, the assumption is that the notion of time is
locally enforced by the amount of time that a packet takes to
traverse a physical link. Thus, each node counts a time step as
the amount of time that a packet takes to traverses a physical
link. We assume that the links do not have infinite delay, and
thus, a upper bound on the delivery times of packets across

5

Table 1: The Message Generation Function σ

(Current Phase, State) Msg Type (New Phase, State)
(ProbeGeneration, S(n)) ProbeSuccessor (PhysicalReconciliation,S′(n)

(PhysicalReconciliation,S(n)) Routing (WaitForRoutingReply,S(n))
(StrongStabilization,S(n)) Routing (WaitForRoutingReply1,S(n))

(Reconciliation,S(n)) SuccSetup (ProbeGeneration, S(n))

the links in the network is locally used by each node as a
time tick. Thus, a packet can be sent across a link in at most
one time unit. In our analysis, we ignore packet losses; if the
link is active, we assume that the packet can re-transmitted, if
required, and sent within one time unit.

3.3.3 Simplifying Assumptions
First, we assume that only successor pointers are main-

tained by each node. The correctness of routing is depen-
dent only on the correctness of the state of successor point-
ers, since other state such as fingers and path caches are gen-
erated by the successor pointers (which themselves are not
influenced by this additional state). Second, we will assume
that in the event of failure of a node (or link), its neighbors
(or neighbor on the other side of the link) will be able to de-
tect this fail-stop failure within a single time step (as in our
model of locally synchronized model). This detection can be
accomplished by a periodic ping process between neighbors.
For this reason, we assume that when a node sets up a pointer
with a source-route to a DHT-level neighbor, the node is no-
tified of failures of this source-route immediately. In other
words, we assume that the state of the source-routes is known
to the originating node.

3.3.4 Definitions
Following the recipe of the distributed systems analysis

methodology (Lynch et al. [11]), we explicitly identify the
notion of states, messages, message generation functions, and
message transition functions within our system, before em-
barking on the consistency proof. In the rest of the proof, we
will use n or x to refer to a particular node.

State Space: The dynamic state associated with a node
n is denoted by S(n). S(n) consists of two ordered lists
Succ(n) = {s1, s2, · · · , sb}, Pred(n) = {p1, p2, · · · , pa}.
Succ(n) includes all the successors of n and Pred(n) con-
tains all the predecessors of n. Note that this state includes all
the temporary candidate successors and candidate predeces-
sors maintained in the intermediate steps in Algorithm 1, 2.
The state S associated with the set of nodes N is simply the
union of the states associated with all nodes in the system. In
other words, S(N) = {S(n) : n ∈ N}.

Physical Graph: The physical graph, in contrast to the ab-
stract virtual graph that models the dynamic state maintained
in the system, captures the state of all the physical nodes and
physical links in the system.

Virtual Graph: We use the notion of a virtual graph to vi-
sualize the state space and state transitions of this system. The
virtual graph is the graph induced by the set of successor rela-
tionships and predecessor relationships associated with each
node. This graph contains a directed edge from node n1 to
node n2 if n2 ∈ Succ(n1). Note that, this automatically im-
plies that n1 ∈ Pred(n2) because, in Algorithm 2, since a

node remembers all the nodes it sent a “Succ Confirm” mes-
sage to.

In general, each node in a virtual graph can have multiple
incoming and outgoing successor pointers since it can main-
tain several candidate successors and predecessors. Based on
our correctness criterion, we define the notion of a correct vir-
tual graph. An correct virtual graph is one where each node
has a single outgoing pointer to its correct global successor
on the ring and has a single incoming pointer from its cor-
rect global predecessor. By global successor / predecessor,
we mean the node considered as the closest successor / pre-
decessor among the set of all alive nodes, according to the
consistent hashing relationship. The goal of the maintenance
algorithm is to ensure that the virtual graph of the system con-
verges to the correct one; in this state, greedy routing based on
these pointers (and fingers constructed on the basis of these
pointers) will work correctly.

In addition to the notion of correctness, we also say that
a virtual graph is weakly connected if the underlying undi-
rected graph of the directed virtual graph is connected. In
other words, there is a path from any vertex to another in the
virtual graph if the direction of the edges is ignored. An-
other notion useful in the analysis is the characterization of a
successor-consistent cycle. A cycle induced by a set of nodes
in the virtual graph is said to be successor-consistent if the
edges among this set match exactly those in the correct virtual
graph defined for that particular set of nodes. For example, in
a network of 3 nodes, with identifiers from 1 to 6, there can
be two successor-consistent cycles at the same time: (2, 5, 6),
(1, 3, 4).

Messages: The messages in our protocol are: the “Rout-
ing” message (which is used in the PR and strong stabiliza-
tion phases), the “Routing Reply” message which is sent in
response to the “Routing” message, the “Probe Successor”
message which is a simple probe, the “Succ Setup” mes-
sage which are used to request for a successor setup, and the
“Succ Confirm” message which confirms the establishment
of a node as a predecessor. The “Routing” message does not
affect the state of a node; it is simply processed according to
the greedy routing algorithm, and the source-route to the con-
cerned node is returned to the requesting node in the form of a
“Routing Reply” message. The “Succ Setup” and “Succ Con-
firm” messages are processed according to the reconciliation
procedure, and update the state S(n) accordingly.

Message Generation Function: In order to specify the
message generation function σ, apart from the state S(n) of
a node, we will also allow a variable P (n), to represent the
phase in which the node is in. Initially, the P (n) is set to
ProbeSuccessor. The message generation function σ maps
the current phase and the current state of the node to (a) the
messages it should send out (b) the new phase and the new
state of the node. A node is initially in the ProbeGeneration
phase, where it sends out a probe to its current successor, and
updates its state according to the result of the probe. Then,
it moves to the PhysicalReconciliation where it sends a Rout-
ing request via its physical neighbors, and then, upon receiv-
ing Routing Reply messages from them, updates its successor
list Succ(n) accordingly, and moves to the StrongStabiliza-
tion phase. In this phase, it sends out a Routing message

6

via its current successor, and after receiving a Routing Re-
ply message in response, adds the source-route and candidate
successor list to its successor list S(n). It finally moves then
to the Reconciliation phase, where it sends all the SuccSetup
messages as required by the linearization phase, and finally
reverts back to the ProbeGeneration phase.

Message Transition Function: The message transition func-
tion π specifies how the state of the node changes in response
to incoming messages. It is implicitly involved in the message
generation function. We will simply specify it informally
since the full function is rather extensive. On receiving a
Routing Reply message, at either the end of the PhysicalRec-
onciliation phase or the StrongStabilization phase, the new
candidate successor is added to the successor list Succ(n).
On receiving a Succ Setup message, the candidate predeces-
sor (and source-route) is added to the predecessor list Pred(n),
and a Succ Confirm message is sent to the neighbor. On re-
ceiving a Succ Confirm message, the newly confirmed suc-
cessor is added to the successor list Succ(n).

3.3.5 Analysis
We finally delve into the analysis. The particular scenario

we consider is as follows. Consider the case where there has
been severe node churn and link flapping for a sustained pe-
riod of time, at the end of which the network is left in a
completely erroneous state. We will show that irrespective
of what this state might be, our maintenance algorithm will
guarantee that the system eventually converges to the correct
virtual graph.

First, for simplicity, we will analyze the algorithm without
the strong stabilization phase. We will prove that the virtual
graph will converge to the ideal virtual graph or a loopy cycle
over all the alive and connected nodes in the system. Then,
intuitively, we can let the strong stabilization phase operate
from this point on. By the properties of the strong stabiliza-
tion phase [7], then we are guaranteed this loopy cycle con-
verges to the ideal virtual graph. It remains to show that if the
strong stabilization phase operates alongside the initial con-
vergence phase, the same convergence is obtained. We will
justify this argument later.

Proof Outline: In what follows, we will use N to refer to
the number of nodes in the system, and use n or x to refer to a
particular node. Under our assumption of local synchronicity,
consider the system as it passes through multiple iterations of
the PhysicalReconciliation and Reconciliation phases (note
that we are skipping StrongStabilization for now). We will
model system transitions by following the changes in prop-
erties of the virtual graph V G representing the state of the
system S(N).

We will associate a potential function for every virtual graph
V G that roughly corresponds to the “distance” of the graph
V G from the correct virtual graph. The proof relies on show-
ing that this potential function has to decrease monotonically.
We show that the potential function is upper-bounded by U ;
this implies that the process has to necessarily stabilize within
period U since the value of the potential function can be at
most U in the beginning, and it keeps decreasing at every iter-
ation. Thus, this is a classic invariant assertion proof (Lynch et
al. [11]), since we establish an invariant about the state transi-

PR Phase VG(Phase 1,Step 1)

VG(1,1)

VR PhaseVG(0)

PR Phase VR PhaseVG(2,1) VG(Phase 1,Step 2)

VG(1,2)

VG(Phase 2,Step 2)

VG(2,2)

VG(Phase 2,Step 1)

VG(2,1)

...

Figure 3: The State Transitions during the Maintenance Protocol

tion (since the virtual graph is simply an encoding of the state
of the system S(N)), and thus prove that the state converges
to the ideal state.

Definition of Potential Function: We define the node po-
tential for a node n in a virtual graph V G as

∑
(n,n′)∈V G d(n, n′)+∑

(n′,n)∈V G d(n′, n) where d(n, n′) is defined in the distance
in the correct virtual graph from n to n′ (adjusted by sub-
tracting 1). The offset by one ensures that the node potential
for a node that has found its successor is zero. We define
the potential function d(V G) for a virtual graph V G as the
sum of node potentials d(n) over all nodes n in V G. Since
d(n, n′) < N , this implies that d(n) ≤ N2, which in turn
implies that, d(V G) ≤ N3.

Proof: Figure 3 introduces the notation used to describe
the state transitions during the maintenance protocol. De-
note by V G(0) the virtual graph (the state) of the system
at the end of the stress phase where there is active churn.
Since there is no additional churn, we do not need to analyze
the ProbeSuccessor phase, since any source-routes discov-
ered during the maintenance will continue to work. Further,
as we commented before, we will incorporate the effect of
the StrongStabilization phase later. Thus, we can restrict our
attention to the Physical Reconciliation and the Virtual Rec-
onciliation phases. The self-arcs on the VR phase reflect that
the linearization procedure may be invoked multiple times in
Algorithm 2.

Denote by V G(1, i) to be the state at the end of the ith iter-
ation of the Physical Reconciliation (PR) phase, and V G(2, i)
to be the state at the end of the ith iteration of the Virtual Rec-
onciliation (VR) phase. This is indicated in the figure for two
time steps. Our main theorem follows from the following
lemmas:

• PR Connectivity: If the physical graph G is connected,
then the virtual graph V G(1, 1), produced at the end of
the PR phase in the first iteration, is weakly connected.

• VR Phase Retains Connectivity: If the virtual graph
V G(1, i) is weakly connected, then the virtual graph
V G(2, i) is weakly connected..

• PR Phase Retains Connectivity: If the virtual graph
V G(2, i) is weakly connected, then the virtual graph
V G(1, i + 1) is weakly connected.

• VR Phase decreases potential function: Provided V G(1, i)
has any node with indegree or outdegree exceeding 1,
then d(V G(2, i)) < d(V G(1, i)).

• PR + VR Phase decrease potential function: d(V G(2, i+
1)) ≤ d(V G(2, i)).

7

• Convergence: If V G(2, i) does not have any node with
indegree or outdegree exceeding 1, then it must be a
union of successor-consistent or loopy cycles.

The PR Connectivity lemma along with the two following
lemmas on connectivity implies that the virtual graph V G(1|2, i)
is always weakly connected: the property of weak connec-
tivity of the virtual graph is ensured by the PR phase, and
is retained by the VR phase. The potential function lem-
mas implies that, the potential function of the virtual graphs
V G(1|2, i) keep decreasing with increasing i. The Conver-
gence lemma indicates that, when the potential function stops
improving, the virtual graph V G(final) is necessarily a union
of successor-consistent and loopy cycles. In combination with
the fact that all virtual graphs retain the weak connectivity
property, this implies that the V G(final) is either the cor-
rect virtual graph or a loopy cycle spanning all nodes. This
concludes the proof. Conceptually invoking strong stabiliza-
tion at this point, leads to the conversion of the loopy cy-
cle to the ideal virtual graph. Even if the strong stabiliza-
tion is involved alongside the convergence procedure, it can
be shown that strong stabilization only improves the poten-
tial function, and thus the convergence is not slowed down
by this process. Note that, in fact, a single invocation of the
PR phase and possibly multiple invocations of the VR phase
at every node is sufficient for correctness, but because each
node operates asynchronously, it has to necessarily repeat the
PR phase along with the VR phase every time.

At a single node, each invocation of the PR phase takes
O(N) time and O(N2) messages (since the routing may tra-
verse all the nodes in the worst case, assuming no fingers).
Each linearization phase takes O(N) time and O(N2) mes-
sages (since at most N Succ Setup / Succ Confirm messages
will be sent, each of them taking at most N hops). Thus, the
total count for the system per iteration of both linearization
and PR phase is O(N) time and O(N3) messages. Com-
bining this with the upper-bound of O(N3) on the potential
function, since the ending potential function is at least zero,
the total number of iterations is O(N3). Combining the num-
ber of iterations with the time and overhead per iteration, we
get the upper-bound on the convergence time as O(N4) and
on the message complexity as O(N6). Note that strong stabi-
lization may take at most O(N3) time and O(N3) overhead
per node [7], so that term can be absorbed into O(N4) time
and O(N6) messages. We will now prove each of these lem-
mas, and thus the main theorem is proved.

LEMMA 1. PR Connectivity: If the physical graph G is
connected, then the virtual graph V G(1, 1), produced at the
end of the PR phase in the first iteration, is weakly connected.

PROOF. Consider any edge in the physical graph between
two nodes m,n. Then, we will show there is a sequence
of edges (ignoring direction) from m to n in V G(1, 1). To
see this, consider the edge (m,n) and the Routing messages
sent from, say, m to n during this PR phase in order to find
a successor. Let the Routing Reply message from n have
the source-route n, n1, n2, · · · , na where na is the prospec-
tive successor and n1, · · · are the nodes on the physical path.
Then, na is added to the list of candidate successors, and thus
m will send a Succ Setup message to na. Thus, the state at m,
Succ(m), is updated with na, which implies that there is an

edge from m to na in the virtual graph V G(1, 1). Since there
is a sequence of virtual edges from n1 to na and a newly
added edge from m to na, ignoring the direction of these
edges, there is a path from m to n. Note that na can be equal
to n, in which case, the source-route is empty, and proof still
holds.

Since this holds for any edge (m,n) in the original graph
G, the fact the graph G is connected and the fact that an edge
(m, n) corresponds to a path (ignoring edge orientation) from
m to n in V G(1, 1), together imply that V G(1, 1) is weakly
connected.

LEMMA 2. VR Phase Retains Connectivity: If the vir-
tual graph V G(1, i) is weakly connected, then the virtual
graph V G(2, i) is weakly connected.

PROOF. This fact is easy to see from the nature of the lin-
earization phase (illustrated in Figure 2). Notice that every
edge in the virtual graph between the linearizing node and
any of its prospective successors or predecessors is replaced
by either a path or retained as a edge. The edge from the node
x to the chosen successor s1 and the chosen predecessor pa

are retained. The edge from x to si (1 < i ≤ b) is replaced
by a path x, s1, · · · , si−1. Similarly, the edge from pi to x is
replaced by the path pi, pi+1, · · · , pa, x. Thus, if the virtual
graph V G(1, i) is weakly connected, upon the completion of
any number of invocations of the VR phase, it will continue
to be weakly connected.

LEMMA 3. PR Phase Retains Connectivity: If the vir-
tual graph V G(2, i) is weakly connected, then the virtual
graph V G(1, i + 1) is weakly connected.

PROOF. The PR phase only adds prospective successors to
the virtual graph; it does not remove any existing ones. And
since, we are analyzing the time duration where there is no
churn, the current successor and the source-route to it remain
valid. Therefore, this fact is trivially true.

LEMMA 4. VR Phase always decreases potential func-
tion: Provided V G(1, i) has any node with indegree or out-
degree exceeding 1, then d(V G(2, i)) < d(V G(1, i)).

PROOF. Consider the actions performed by node n in the
linearization phase. It has a number of outgoing successor
pointers s1, · · · , sb and a number of incoming successor point-
ers p1, · · · , pa. Consider any node n with in-degree/out-degree
exceeding 1. Both cases are symmetric, so let us consider
the case when the out-degree of n exceeds 1. In this case, a
pointer from n to sj in V G(1, i) is replaced by a pointer from
sj−1 to sj in V G(2, i) (for j > 1). The contribution by the
old pointer to d(V G(1, i)) is d(n, sj), while the contribution
by the new pointer to d(V G(2, i)) is d(sj−1, sj). Notice that
since sj−1 ∈ [n, sj], d(n, sj−1) + d(sj−1, sj) = d(n, sj).
Further, since n 6= sj−1, d(n, sj−1) > 0, which implies that
d(sj−1, sj) < d(n, sj). Thus, expressing d(V G(1, i)) and
d(V G(2, i)) as sum over pointers, it is clear that d(V G(2, i)) ≤
d(V G(1, i)) since the contribution by each individual pointer
either decreases or remains the same. Further, since there is
at least one pointer whose contribution decreases (since there
is at least one node with in-degree or out-degree exceeding
1), d(V G(2, i) < d(V G(1, i)).

LEMMA 5. PR + VR Phase decrease potential function:
d(V G(2, i + 1)) ≤ d(V G(2, i)).

8

PROOF. First, observe that the PR phase might add addi-
tional successors to the state Succ(n) at node n. If these new
successors help node x gain a closer successor, then the node
potential of n decreases. Otherwise, the VR phase will reject
those successors by sending Succ Setup messages on behalf
of other nodes. Thus, even if the potential function increases
due to the PR phase, (as it does due to the addition of a new
node to Succ(n)), the distance metric will still suffer a over-
all drop due to the VR phase. This argument is the same as in
the previous lemma. .

LEMMA 6. Convergence: If V G(2, i) does not have any
node with indegree or outdegree exceeding 1, then it must be
a union of successor-consistent or loopy cycles.

PROOF. If V G(2, i) does not have any node with inde-
gree/outdegree exceeding 1, then it is clear that V Gi is a
union of node-disjoint cycles C1, C2, · · · (to see this, sim-
ply follow pointers from any node n, it has to terminate at n
eventually due to the fact that the in-degree and out-degree of
every node is 1). If each node n locally ensures that it lies
between its successor s and predecessor p, then it has to be
the case that each cycle Ci is either the successor-consistent
cycle or a loopy graph.
3.3.6 Evaluation

We now present some empirical results on maintenance
overhead and convergence time of our maintenance algorithm.
We ignore stretch because it has been well studied in VRR
and ROFL: with path caches, VRR reports a stretch of 1.57
in the wireless context, and ROFL reports 2.5 in the Internet
context. The maintenance overhead and convergence time is
shown under two kinds of simulations. In the first kind, we
allow a network of N nodes to boot up one after another, and
we let it converge correctly. Then, we allow a single node to
join/leave this network. We then measure the amount of time
units elapsed and the number of messages exchanged until
convergence. Our second kind of simulations is a stress test,
where after the network of N nodes has converged, we in-
duce a period of high stress where a fraction α of the current
nodes leave and an equal number of new nodes join simul-
taneously (in our simulation) giving the protocol no time to
adjust. Then, we measure the overhead and convergence time
as a function of the stress parameter α. Also, due to space
constraints, we only present results due to node failures here;
results due to link failures present similar trends. We present a
summary of our results here; for more details, please refer our
technical report (not presented due to anonymity constraints).

Setup: We experimented with networks of size ranging
from 20 nodes to 600 nodes placed in a grid, and the links are
induced by the disk model of radio connectivity. The average
degree of the network of 20 nodes is 6, and this linearly scales
up as the number of nodes increase (since we place them in
the same area). In calculating the convergence time, we as-
sume that a message takes one time unit to traverse a link. We
present the convergence overhead in terms of the number of
messages (we detect convergence by checking if the virtual
graph matches the correct one).

Single node joins and leaves: The control overhead and
single node join varies between 13 messages for a 20 node
network to about 80 messages for a 600 node network. The

convergence time varies between 8 and 39 over the same range
of network sizes. We not discuss results for failures because
they are similar. The join overhead and convergence time
both grow slowly (much slower than linear) with the size for
the network, thus reflecting that the theoretical analysis is far
too conservative.

Stress test: We now describe the control overhead and the
convergence time for the stress test in a 600 node network.
The convergence time remains nearly constant (between 24
and 25 units) reflecting that the diameter of the network is
short enough to allow fast convergence. The message over-
head, on the other hand, increases linearly since as the frac-
tion of stressed nodes increases, the number of nodes rejoin-
ing also increases. The average message overhead per node
is about 30 messages per node at a stress parameter of 0.1,
while it reaches about 400 messages per node at 0.5 stress.
The convergence time is between 20 and 24 seconds reflect-
ing that the number of rounds of the VR phase is nearly con-
stant, but that the number of messages sent per invocation is
increasing rapidly. We have not explored optimizations to the
VR phase in detail, but it is possible to envision simple op-
timizations that may help, such as re-concile one successor
after another, instead of all at once.

4. APPLICATION TO OVERLAY DHTS
We now draw an unexpected connection between the even-

tual consistency of DHT-based routing and the eventual con-
sistency of overlay-level DHTs. It is been well-noted [14]
in the research literature that building DHTs on Planetlab is
hard because of non-transitivity connectivity issues, transient
connectivity, and heavily-loaded nodes. While the last is-
sue is specific to Planetlab, it is believed that the issues of
non-transitive connectivity and transient connectivity may be
more pervasive and symptomatic of the general Internet.

Such connectivity issues generally lead to problems in the
maintenance of the structure of the DHT. For example, if A
can talk to B and B can talk to C, but A cannot reach C,
then A might consider B as its successor, while B may re-
peatedly nominate C as A’s successor. This can occur when
the identifiers of these nodes are distributed as [A,C,B] in
the identifier space. A however would repeatedly attempt
to gain B as its successor since it assumes that C is down.
Thus, when different nodes have different notions of which
nodes are alive, the inconsistency can lead to convergence is-
sues. Further, transient connectivity problems typically lead
to some induced churn in the DHT, and, in combination with
the non-transitivity issues, the structure of the DHT may be
disrupted, and in fact, may never converge to the correct struc-
ture. Even worse problems occur when the DHT nodes may
be partitioned from one another, in which case even the set of
DHT nodes in one partition may not be able to discover each
other, and maintain a DHT amongst themselves.

At present, there is no clean solution, theoretical or practi-
cal, to this problem. In practical deployments of OpenDHT [13]
and Pastry [8], the leaf sets run a link-state like protocol to
maintain reachability in the face of non-transitivity. This so-
lution does not guarantee consistency in the face of large-
scale non-transitivity, when members of a leaf set may be able
to reach other only through nodes not in this leaf set.

9

We now show how our decentralized maintenance algo-
rithm for DHT-based routing applies in the overlay context,
and thus helps us develop the first clean theoretically correct
solution to this problem.

4.1 Leveraging our Maintenance Algorithm
One can model a overlay-level DHT as follows. One can

consider it as a complete graph on the N DHT nodes. Thus,
the adjacency matrix is typically all ones, provided the Inter-
net is working properly. During periods of non-transitivity
etc, this need not be true. Now, one can simply treat these
overlay-level DHT participants as nodes participating in a
DHT-based routing protocol over the complete graph. These
nodes can run our maintenance algorithm in response to alter-
ations in the connectivity of the Internet, which is perceived
by the algorithm as the churn in links and nodes in the com-
plete graph. Thus, even if the DHT is used for data storage,
in order to ensure consistency, the overlay nodes choose ran-
dom identifiers, and then participate in this DHT-based rout-
ing protocol so as to ensure the DHT remains consistent.

This solution is elegant in that it both achieves consistency
in the face of Internet link failures, as well as, automatically
doing overlay routing (similar to RON [29]), if and when
the need arises. When the Internet offers perfect connectiv-
ity, the overlay-level neighbors can reach directly over IP. If
this is not true, then the algorithm automatically discovers
source routes and guarantees consistency. In our previous ex-
ample, concerning the non-transitivity pattern of connectivity
between A,B, and C, when A asks B in the maintenance al-
gorithm to discover its successor, B would return the source-
route via itself to C. Thus, A would use the source-route [B,C]
in setting up a link to its successor C, and would successfully
setup a bi-directional link with C by relaying through B. The
properties of our solution (in terms of convergence time and
overhead) are similar to those analyzed theoretically and em-
pirically in the previous section, so we do not aim to provide
such results here. Our previous experiments modeled extreme
non-transitivity (since the graph is far from fully connected),
and thus those experiments are, in fact, a serious stress test
from the point of view of overlay DHTs. We now deal with
some of the details of applying our maintenance scheme to
overlay DHTs.

Knowledge of Physical Neighbors: We note that in or-
der to implement our DHT-based routing maintenance algo-
rithm, each node is required to know all its physical neigh-
bors. This is trivially possible in, say, a wireless network, but
in the wide-area Internet, this requires that each node have
a exhaustive list of all nodes in the system. This list is al-
lowed to include dead nodes, but no new node can join the
system unless everyone’s list includes that new node. This
property is required so that all nodes have a consistent view
of all nodes in the system; otherwise, the complete graph ab-
straction breaks down, and the consistency can no longer be
guaranteed.

We believe that, although far from trivial, this property can
be achieved if it is acceptable for joins of new nodes to be
delayed until it can be ensured that all nodes have included
the new node in their list. We also note that this condition
is necessary for strong consistency. Otherwise, if the list of

nodes on node X does not include all nodes in the system,
then upon the failure of all nodes in this list and those nodes
pointing to and from X , the node X would be disconnected
from the rest of the DHT nodes, who themselves may still
be connected. Thus, if one desires the strong consistency re-
quirement that, “irrespective of the connectivity pattern of the
Internet, if the graph induced by the DHT nodes is connected,
then the DHT is required to function correctly”, then each
node necessarily has to know all nodes in the system. If this
assumption is reasonable, as it may be for carefully run DHTs
offering services on Planetlab and running on a few hundred
to a thousand nodes, we believe our work may be useful in
this context.

Overhead of the PR Phase: We note that the PR phase,
as described in the maintenance algorithm in the previous
section, requires periodic successor requests via all physical
neighbors. In the context of overlay-level DHTs, this period
can be set extremely high to ensure low overhead in prac-
tice. We simply require a background gossiping style process
at every node that operates as follows: it chooses a random
node from the list of all nodes in the system, and requests its
successor through that node (directly over IP). If this returned
successor does not match its current successor, then the back-
ground process invokes the VR phase, which performs the
reconciliation; otherwise, this process repeats its actions af-
ter its chosen period. This period can be chosen to be fairly
low in practice, since our only goal is to provide eventual
consistency; any non-transitivity will be detected and healed
eventually. Thus, we believe the overhead of the PR phase
can be held fairly low in practice.

Overhead of Probing: We distinguish between the nearly
static state, the list of all nodes maintained at every node, and
the dynamic state, the list of overlay neighbors at every node.
The former is updated only when new nodes join the system,
and further, need only be stored in memory or on disk. The
latter is the one that requires constant probing in order to en-
sure that the overlay neighbors are up. Thus, our requirement
of this complete list of nodes at every node does not imply an
increasing in probing overhead. Of course, any source-routes
of multiple hops set up to deal with any non-transitivity in the
Internet will require probing over each of these hops; this is
clearly necessary to route over multiple hops, and further, this
increasing in probing overhead is proportional to the degree
of non-transitivity in the Internet. Also, note that any uni-
directional links will be simply considered as a failed link
in our algorithm, since for a link to be considered active, it
should be possible for one side to receive an acknowledg-
ment from the other. Thus, the presence of uni-directional
links does not lead to any consistency issues with our algo-
rithm; such links will simply go unused.

5. RENDEZVOUS AND CONVERGENCE
The convergence results in Section 3 show that the con-

vergence time, although low in practice for reasonable-sized
networks, is still higher than, say, link-state routing, where
the convergence time is constrained only by the diameter of
the network (and in practice, timers etc). This trade-off is in
some sense fundamental; intuitively, the lesser state require-
ment in DHT-based routing requires a carefully maintained

10

A

B

C

N1

N2

N4

N3

N5

C = Terminus(fA(x)) = Terminus(fB(x))

fB(x)

fB(x)

fB(x)

fA(x)

fA(x) fA(x)

Figure 4: Our Model of a Rendezvous Service (Grey solid lines refer to links,
Dashed blue lines refer to the path taken by the rendezvous service computation)

structure, which clearly requires some time to converge.
In this section, we seek to develop new protocols that im-

prove on the convergence time aspect of DHT-based routing
at the expense of higher state requirements. Our methodology
is to define the notion of a rendezvous service, a generaliza-
tion of DHT-based routing, and then describe how to use a
rendezvous service to build a routing service. We will thus
expose the connection between a rendezvous service and a
routing service. Of course, this exercise would be of aca-
demic interest if a DHT were the only way (or, at least, the
only known way) to build a rendezvous service. This for-
tunately is not true; we go on to discuss other proposals in
the literature (and even invent a new simple one) that may be
viewed as a rendezvous service, and this suggests new routing
protocols based on our prescription.

In the next section, we will discuss our general notion of a
rendezvous service, and then describe the new routing proto-
cols that we can obtain based on this notion.

5.1 Rendezvous Service
We now define a rendezvous service as follows. A ren-

dezvous service is some distributed service (illustrated in Fig-
ure 4) built over a set of nodes N that allows them the follow-
ing functionality: every node n ∈ N can compute a func-
tion fn : x 7→ N∗ where x is any k − bit value for some
k (i.e., x ∈ [0, 2k)). The output of this function is a route
y originating at n and terminating at some other node n′. It
is represented by a sequence of node labels where, implic-
itly, there is a physical link between consecutive nodes on a
source-route. We will use the notation terminus(y) to rep-
resent the last node on the source-route y. Such a distributed
service must satisfy the following requirements to be termed
as a rendezvous service:
• The rendezvous service is responsible for updating the

state used in the distributed computation of the function
fn, so that, when any node n computes the function
y = fn(x) (for any x), after waiting for a sufficiently
long time after any network churn events, the route y
is guaranteed to terminate in an alive node and consist
only of live links.

• When any two nodes n1, n2 compute their functions
fn1 , fn2 for any value x, we require that the routes y1 =
fn1(x), y2 = fn2(x) both terminate at the same node
(even if the exact nodes on the routes themselves are
different). In other words, we require that for all nodes
pairs n1, n2 and all possible x, terminus(fn1(x)) =
terminus(fn2(x)).

The second criterion is the reason where we have chosen to
call this service as a rendezvous service; it allows two nodes

A

B

C

N1

N2

N4

N3

N5

C = Terminus(f(A)): State (A => <N2, N1, A>)

fB(A)

fB(A)

fB(A)

fA(x)

fA(x)
fA(x)

Figure 5: Building Routing From Rendezvous (The Dotted red line reflects the
path of the packet, The Blue dashed line and Grey solid lines reflect the rendezvous
service computation and physical links respectively)

with a common “intent” x to reach the same node. Once
again, this property need only be satisfied after a sufficiently
long time after any failure event. Although the definition may
seem complex, a very simple rendezvous scheme can be eas-
ily built on top of a routing scheme like path-vector routing.

Consider a path-vector routing scheme which allows every
node to deduce the set of all alive and reachable nodes in the
system (since the neighbors of a dead node would withdraw
their advertisements). Further, each node would also know
a source-route to every other alive and reachable node in the
system. We now construct a simple rendezvous service fn(x)
from this routing protocol. In order to compute the function
fn(x), the node n first performs a (local) consistent hash (as
defined by Karger et al. [5]) to compute a suitable terminus
t. Since the set of all alive node labels is known locally, they
can be hashed into a common bit-space along with the value
x. Then the numerically closest node label to x, but not over-
shooting it, as per the consistent hashing definition, is chosen
as the terminus t. After picking the terminus t, the node n
then looks up its path vector table to pick a route to the ter-
minus t, and this route represents fn(x). Clearly, provided
the path-vector protocol converges in some finite time after
any failure events, this satisfies both our requirements of a
rendezvous service.

This description of building a rendezvous service from a
regular routing protocol is merely an elucidatory excursion;
it is hardly of any practical interest since our goal is to build
routing protocols on top of rendezvous services, not the other
way around. This is the direction we will pursue now.

Building Routing from Rendezvous: After having de-
fined a rendezvous service, we discuss a generic technique
(shown in Figure 5) to convert it to a routing scheme.

The first part of the idea is that each node A contacts its
rendezvous location terminus(fA(A)) periodically, and de-
posits state that enables its rendezvous location to reach it.
Notice the self-referential computation: node A computes
the function fA(A). We refer to terminus(fA(A)) as the
rendezvous location of A. This state is simply the reversed
source-route: the rendezvous location terminus(fA(A)) (in
this case, C) is simply notified of the path corresponding to
the reverse of fA(A). It maintains this state mapping from
the identifier of A to this reverse source route.

The second part of the idea is that any node B can reach
terminus(fA(A)) by computing fB(A) itself; by our def-
inition of a rendezvous service, this computation is guaran-
teed to give a route that terminates in terminus(fB(A)) =
terminus(fA(A)). Thus, packets can be routed from B to
A in two stages. First, B sends them to the rendezvous loca-
tion of A by using the route fB(A). Second, the rendezvous

11

location of A retrieves the periodic state deposited by A, and
now sends these packets using that state to A. Thus, the ren-
dezvous location simply serves as a repository of state for a
prescribed set of nodes, and this state is then used by any node
in sending packets to this prescribed set of nodes.

We now formalize this scheme. Every node A periodically
computes fA(A), and deposits the source-route correspond-
ing to fA(A) at its rendezvous location terminus(f(A)).
Any node B which wishes to sends packets to A computes
fB(A) and sends them to the node terminus(f(A)). The lat-
ter is responsible for retrieving the source-route fA(A) from
its stored state, and using them to send packets on to A.

We now wish to make a few finer points about this scheme.
First, there is no need to perform the computation of the source-
route, and then use it to send packets. The distributed com-
putation can be simply tagged along with the packet, if de-
sired. Second, although it appears that node A needs to up-
date its state periodically, this is actually not the case if nodes
on the path fA(A) are willing to maintain hard state, and in-
form the node n in the event of any link / node failure. Of
course, it is always best to maintain a low periodic update
in order to avoid the problems of hard state, but this rate
can be very low. The fault in the route can even be discov-
ered on-demand when a packet that needs to be sent using
that route is dropped. Third, since the source route fA(A)
needs to be reversed at the rendezvous location, we only ex-
pose bi-directional links to the rendezvous service. Finally,
it might appear that triangular routing is a general problem
with our prescription, but as shown in VRR [2], embedding
pointer caches in the network allows one to “shortcut” these
rendezvous points, significantly improving stretch and avoid-
ing congestion at the rendezvous point. For example, when
the packet for n is sent by some node to the rendezvous loca-
tion for n, with careful selection of the number of rendezvous
locations (since more than one location can be chosen for
a given node), it is possible to engineer things so that, this
packet is likely to hit a path cache containing a pointer to n,
and thus, need not go to the rendezvous location at all. This
is the approach taken in VRR.

DHTs and Rendezvous: The link between a DHTs and
rendezvous service is now easy to see. To illustrate this, we
will use Chord as the DHT algorithm due to its simplicity; and
for now, we will consider Chord with only successor pointers.

The rendezvous location function terminus(fn(x)) im-
plemented by a DHT is the consistent hashing function, the
same as in our earlier hypothetical example. Note, that since
the terminus function does not depend on the node n comput-
ing the rendezvous function, we refer to it as terminus(f(x)).
In the case of a DHT, the key x and node identifiers are hashed
to a common space, and then if the key x falls between node
identifiers, [n1n2] (appropriately defined for circular wrap-
ping), then we consider n1 to be terminus(fn(x)). In Chord’s
terminology, thus, terminus(fn(n)) would thus refer to the
predecessor of n. This is the node that is supposed to con-
stantly maintain a pointer to n.

The analogy to the rendezvous based prescription routing
scheme is clear; the node n is the one responsible for notify-
ing its predecessor when joining the network, and the prede-
cessor of n is the one who volunteers to maintain the source-

route to the node n. Thus, rendezvous function fn(n′) is then
simply the path of a lookup from the node n for the node n′

which, after following the pointers along the lookup, termi-
nates at the predecessor of n. Packets are sent to n along
the path of the lookup, and then pick up the source-route de-
posited at the predecessor of n, and finally reach n. This de-
scription can be easily generalized to accommodate the com-
plete Chord algorithm which includes multiple fingers (one
can think of the multiple nodes pointing to n as the multiple
rendezvous locations for n).

It is clear that our rendezvous service notion does not cap-
tures all the aspects of DHT-based routing. In particular,
DHTs have two other notions which have no counterpart in
our definition of a rendezvous service: the equal distribution
of load among all nodes and the ability to bootstrap construc-
tion of these pointers using the DHT itself. Of course, it is
not our intention to capture DHT-based routing precisely; our
rendezvous service is supposed to be a generalization inspired
by DHT-based routing, and if it was specified too precisely
so as to completely model DHTs in every aspect, it would be
hard to find other algorithms that provide the same service.
As such, our definition of a rendezvous service is lax enough
to allow other interesting implementations; this is the subject
of the next section.

5.2 Building Rendezvous Routing Protocols
After we defined a rendezvous service as a generalization

of DHT-based routing, we were surprised to find that we were
able to cast two other proposals in literature as rendezvous
services: Geographic Location Service [16] and Geographic
Routing(e.g., GPSR [17]). We will not discuss GLS here;
please refer our technical report for more information. The
high level point is that any location service (including GLS)
can be seen as a rendezvous service, and thus, used to build a
routing protocol constructed We now cast geographic routing
as a rendezvous service which is a little more surprising.

Geographic Rendezvous Routing: The basic idea is that
the rendezvous location function, terminus(fn(x)), is de-
fined as the node closest to the geographic location obtained
by hashing n’s identifier into the geographical coordinate space.
The rendezvous function fn(x) is obtained by n by simply us-
ing the geographical routing algorithm to route to the hashed
value of x and recording the source-route along this path if
required. The GPSR [17] algorithm is guaranteed to termi-
nate at the node closest to the geographical position at x. (of
course, if there is a node at position x, GPSR will terminate
there). Thus, a node n can periodically route to the geograph-
ical location corresponding to the hashed value of n, and the
source-route accumulated on the way (or) its geographical
position can be deposited at the rendezvous location. Any
other node n′ can route to the rendezvous location of n by
using geographic routing to the hashed value of n, and then
use the source-route or the geographical location to continue
thereafter to n. Note that this proposal is somewhat similar
to Geographical Hash Tables [18] and Beacon Vector Rout-
ing [19]; the main difference being that our protocol stores
source-routes at the rendezvous point, instead of coordinates.

We refer to this routing method as geographic rendezvous
routing, since we rely on the geographic system for rendezvous,

12

and then build a routing service out of this rendezvous ser-
vice. The main advantage of geographic rendezvous rout-
ing is that, unlike geographic routing, it can route directly on
node identifiers; no location service is required. This idea
can be trivially extended to virtual coordinate routing (e.g.,
NoGeo [26]) as well. The main advantage of geographic ren-
dezvous routing in terms of consistency is in the following
easily proved lemma.

LEMMA 7. Consider a node n that updates its source-
route at fn(n) at time T in geographic rendezvous routing.
Consider a node n′ that desires to send a packet to node n at
time T ′ (T ′ > T + D where D is the network diameter). If
there are no intervening churn events between T and T ′ + I ,
where I is the in-transit time of the packet, then geographic
rendezvous routing is guaranteed to deliver the packet.
This lemma is easy to prove, and is based on the fact that geo-
graphic routing itself does not require any state, and its greedy
routing procedure requires a node to know only the location
of its neighbors. This guarantee is clearly much stronger than
our guarantee for DHT-based routing; thus, in this case, our
rendezvous based routing prescription has allowed us to gain
faster convergence.

Beacon Rendezvous Routing: We now demonstrate the
simplicity of our rendezvous primitive by illustrating a beaconing-
based rendezvous service. The rendezvous location function,
terminus(f(x)), that it implements is exactly the same con-
sistent hashing function used in the DHT-based routing scheme;
however, the difference is that instead of choosing from the
entire set of nodes in the system, the consistent hashing func-
tion is applied only over a select set of beacons. The scheme
works as follows.

A set of O(
√

(N)) beacons are chosen by some means;
for example, each node can toss a coin and decide to be a
beacon. These beacons use standard routing protocols (path-
vector/distance-vector) to advertise themselves. Thus, every
node can route to any of the beacons. The rendezvous func-
tion fn(x) is computed as follows: the node n locally deter-
mines the set of alive beacon nodes, uses consistent hashing
to determine the beacon for fn(x), and uses the source-route
to reach the beacon which serves as terminus(fn(x)).

The beacon rendezvous routing protocol is extremely sim-
ple, and offers a state versus stretch trade-off that may be de-
sirable in certain scenarios. The simplicity of this protocol
also allows the following easily proven lemma.

LEMMA 8. Consider a node n and its rendezvous location
beacon B(n). Let T be the time at which the beacon B(n) (or
some other node, on its behalf) last sent propagated a path-
vector advertisement, and let T ′ be the most recent time at
which time at which node n has updated its source-route at
B(n). Now, consider a node n′ that wishes to send a packet
to n at time T ′′ (T > T + D,T > T ′ + D where D is
the diameter of the network). Then, if there are no churn
events on the path between B(n) and n, n′ in the duration
[min(T, T ′), T ′′ + I], where D is the in-transit time of the
packet, then the packet is guaranteed to be delivered.
Thus, beacon rendezvous routing is much easier to analyze
in terms of its convergence, and also boasts a much shorter
convergence period as compared to DHT-based routing. This
scheme has the advantage that every node maintains O(D

√
(N))

state (a path vector to all the beacons) which compares favor-
ably to standard path vector schemes, but imposes a penalty
on the beacons (here D is the diameter in terms of number of
hops). We believe this penalty is acceptable since, in a regular
routing protocol, such beacons would send these updates any-
way. Of course, a different number of beacons can be chosen
to obtain other trade-offs.

Note that it is possible to improve the robustness of the
scheme by allocating multiple beacons to one node. Instead
of choosing a single rendezvous node for one node, multi-
ple hash functions (or) a modified consistency hash function
could be used to map the identifier to a set of beacons. Each
node is responsible for updating the source-route maintained
at each of these multiple beacons, while a node wishing to
send packets to another can send to any of the latter’s ren-
dezvous point. Further, with the addition of path caches, most
traffic need never traverse any beacon.

Discussion: We believe that these two examples demon-
strate that our definition of a rendezvous service, although
inspired from DHT-based routing, allows new protocols with
potentially much faster convergence time and other features
lacking in DHT-based routing schemes. We hope that our
identification of the rendezvous service as a more fundamen-
tal building block than DHT-based routing itself may pave the
way for the development of new rendezvous services in the
future, and perhaps newer routing protocols. It is as yet un-
clear whether any drastically new protocol will emerge from
this abstraction; however, both the geographic rendezvous
routing and the beacon rendezvous routing protocols are sim-
ple in construction and boast fast convergence. This connec-
tion between rendezvous service and routing appears novel
and may be prove fruitful to explore.

6. RELATED WORK
We discuss related work into four categories. First, we dis-

cuss the research literature in Distributed Hash Tables (DHTs)
and DHT-based routing. Second, we compare our algorithm
for DHT-based routing maintenance with proposals for con-
sistency in DHTs. Third, we list other recent for routing al-
gorithms, and compare DHT-based routing with these pro-
posals. Finally, we consider other rendezvous-based commu-
nication abstractions.

DHT Literature: Distributed Hash Tables [6–9] (DHTs)
are highly scalable mechanisms for routing and object lookup.
Traditional DHTs rely on an underlying routing protocol that
provides point-to-point routing between overlay nodes. UIP [1]
was the first to observe that a DHT itself could be used for
routing and used to route between nodes in disparate address
spaces. DHT-based routing was further explored in VRR [2]
for wireless routing and for Internet Routing in ROFL [3].

One particularly challenging problem in DHT-based rout-
ing is in dealing with partitions and other inconsistencies.
VRR [2] and ROFL [3] provided mechanisms for partition
recovery. The schemes work by using a DSDV-like mecha-
nism to discover and flood the identifier of the nodes closest
to zero on the ring. These nodes are referred to as beacons.
In particular, at each time step, each node looks at the identi-
fiers it received through advertisements and its own identifier,
selects the one closest to zero, and broadcasts that identifier

13

to its neighbors. This ensures that any node that should have
the beacon as its successor can discover a path to the bea-
con. This approach works well for networks where there is
a well-known stable node (small ad-hoc networks/sensornets
and ISP networks), but is subject to poor performance in more
decentralized networks where such a stable node cannot be
found. Our work on eventual consistency includes a fully
decentralized algorithm, and further, includes a proof of its
eventual consistency.

DHT Consistency Literature: There has also been much
work on maintaining ring consistency in traditional DHTs.
ePost [27] detected partitions by periodically rejoining via
a set of well-known bootstrap nodes. Chord [7] and Chen
et. al. [28] used strong stabilization to detect and recover
from loopy cycles. Our work on eventual consistency can
be viewed as a generalization of these techniques to the case
when DHTs are used to substitute IP routing.

Recent Routing Algorithms: The area of routing has seen
considerable progress in the last 7-8 years. Geographic rout-
ing, or more generally, coordinate routing, has been been
heavily researched in recent years. This area has progressed
from the early work on geographical routing [17, 25] to vir-
tual coordinate routing based on computed virtual coordi-
nates [19,26]. The main limitation of these proposals is that a
location service is required to translate from node identifiers
to node coordinate. As our work points out, geographical
routing itself may be used as a location service. There is even
older literature in the theoretical community on compact rout-
ing [22,23] aimed at optimizing state trading off stretch. Most
of these schemes are designed for the static case, and are diffi-
cult to extend directly to the dynamic case. A recent proposal
for the dynamic case, based on the compact routing litera-
ture, is LAND [23], which however still relies of the seminal
PRR structure [24] which is considered difficult to maintain
correctly [8]. Thus, we believe that our DHT-based routing
algorithms may be more amenable to the dynamic case, be-
sides allowing a proof of eventual consistency.

Rendezvous-Based Communication Abstraction: Core-
Based Trees (CBT [20]) and Internet Indirection Infrastruc-
ture (i3 [21]) share some similarity with our notion of a ren-
dezvous service, since in both case, they attempt to offer mul-
ticast or unicast functionality using rendezvous. The main
difference is that, our definition is valid at the network layer
and includes source-routes etc, whereas i3 and publish-subscribe
systems do not directly apply in the absence of underlying
routing. We however believe CBT is closer to the spirit of
rendezvous service since it is at the network layer; we plan
to integrate the notion of multicast into our definition of ren-
dezvous service in the future.

7. CONCLUSION
UIP, VRR, and ROFL have demonstrated that DHT-based

routing presents an interesting and radical alternative that is
technically superior to traditional routing algorithms in terms
of state requirement and convergence overhead under most
normal churn conditions. Yet, the fundamental principle be-
hind DHT-based routing and its robustness remain unclear.
Our work seeks to advance the theory of DHT-based routing
by two major contributions: (b) by designing and proving the

eventual consistency of a fully decentralized maintenance al-
gorithm. (b) by generalizing DHT-based routing to the mech-
anism of rendezvous-based routing, and using the latter to de-
velop routing protocols with faster convergence as compared
to DHT-based routing. We hope that our work will inspire
confidence in the DHT-based routing model and perhaps lead
to newer instantiations of the rendezvous-based protocol. Al-
though primarily an abstract exercise, we have pointed out
several practical implications of our work throughout, rang-
ing from the consistency of overlay DHTs to the requirement
of location services for coordinate routing.

8. REFERENCES
[1] B. Ford, “Unmanaged Internet Protocol: taming the edge network management

crisis, ” CCR 34(1):93-98 (2004).
[2] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, A. Rowstron, “Virtual Ring

Routing: Network routing inspired by DHTs”, Sigcomm, September 2006.
[3] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, S. Shenker,

“Routing on Flat Labels,” Sigcomm, September 2006.
[4] Y. Afek, E. Gafni, M. Ricklin, “Upper and Lower Bounds for Routing Schemes in

Dynamic Network”, FOCS, ’89.
[5] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin, R. Panigrahy,

“Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the World Wide Web”, STOCS, 1997.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable
Content-Addressable Network,” SIGCOMM, 2001.

[7] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications”,
MIT-LCS-TR-819, 2002.

[8] A. Rowstron, P. Druschel, “Pastry: Scalable, Distributed Object Location And
Routing For Large-Scale Peer-To-Peer Systems,” IFIP Middleware, 2001.

[9] K. Hildrum, J. Kubiatowicz, S. Rao, B. Zhao, “Distributed Object Location in a
Dynamic Network,” SPAA, August 2002.

[10] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony: Distributed hashing in a
small world”, Proc. USITS, 2003

[11] N. Lynch, “Distributed Algorithms,” Morgan Kaufmann Publishers.
[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT”,

In Proc. of USENIX Technical Conference, June 2004.
[13] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I.

Stoica, H. Yu, “OpenDHT: A Public DHT Service and Its Uses,” SIGCOMM,
August 2005.

[14] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica,
“Non-Transitive Connectivity and DHTs”, WORLDS, 2005.

[15] L. Subramanian, R. H. Katz, V. Roth, S. Shenker, I. Stoica, “Reliable Broadcast
in Unknown Fixed-Identity Networks”, PODC 2005.

[16] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A Scalable
Location Service for Geographic Ad Hoc Routing”, Proc. Mobicom, August 2000.

[17] B. Karp and F.T Kung, “Greedy Perimeter Stateless Routing for Wireless
Networks”, MobiCom, Boston, MA, August, 2000.

[18] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,
“GHT: A Geographic Hash Table for Data-Centric Storage in SensorNets”, In
Proc. WSNA, 2002.

[19] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, I. Stoica,
“Beacon-Vector Routing: Scalable Point-to-Point Routing in Wireless Sensor
Networks”, NSDI 2005.

[20] T. Ballardie, ”Core Based Tree (CBT) multicast – architectural overview and
specification.” Internet Draft, October 1995.

[21] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, Sonesh Surana,
”Internet Indirection Infrastructure,” ACM SIGCOMM, August, 2002.

[22] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, M. Thorup, “Compact
name-independent routing with minimum stretch”, SPAA, 2004.

[23] I. Abraham , D. Malkhi , O. Dobzinski, “LAND: stretch (1 + ε) locality-aware
networks for DHTs”, Proc. Soda, 2004.

[24] C. Plaxton, R. Rajaram, and A. Richa, “Accessing nearby copies of replicated
objects in a distributed environment”, Proc. SPAA, 1997.

[25] P. Bose, P. Morin, I. Stojmenovi, J. Urrutia, “Routing with guaranteed delivery in
ad hoc wireless networks”, Wireless Networks, Vol. 7, No. 6, 2001.

[26] Ananth Rao, Sylvia Ratnasamy, Scott Shenker, Ion Stoica, “Geographic Routing
without Location Information”, MOBICOM, 2003.

[27] A. Mislove, A. Post, A. Haeberlen, P. Druschel, “Experiences in building and
operating ePOST, a reliable peer-to-peer application,” EuroSys, April 2006.

[28] W. Chen, X. Liu, “Enforcing routing consistency in structured peer-to-peer
overlays: should we and could we?” IPTPS, February 2006.

[29] D. Andersen, “Resilient overlay networks”, Master’s thesis, Department of
EECS, MIT, May 2001.

[30] L. Subramanian, M. Caesar, C. Ee, M. Handley, Z. Mao, S. Shenker, I. Stoica,
”HLP: A next-generation interdomain routing protocol,” SIGCOMM, 2005.

[31] Xiaowei Yang, David Clark, and Arthur Berger, “NIRA: A New Routing
Architecture”, IEEE/ACM ToN, 2007.

[32] D. Zhu, M. Gritter, and D. R. Cheriton, “Feedback Based Routing”, HotNets-I,
Sept. 2002.

14

