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Catchconv: Symbolic execution and run-time

type inference for integer conversion errors

David Molnar? and David Wagner??

UC Berkeley and UC Berkeley

Abstract. We propose an approach that combines symbolic execution
and run-time type inference from a sample program run to generate test
cases, and we apply our approach to signed/unsigned conversion errors
in programs. A signed/unsigned conversion error occurs when a program
makes control flow decisions about a value based on treating it as a
signed integer, but then later converts the value to an unsigned integer
in a way that breaks the program’s implicit assumptions. Our tool fol-
lows the approach of Larson and Austin in using an example input to
pick a program path for analysis [21], and we use symbolic execution
to attempt synthesis of a program input exhibiting an error [19, 17, 8,
34]. We describe a proof of concept implementation that uses the Val-
grind binary analysis framework and the STP decision procedure, and
we report on preliminary experiences. Our implementation is available
at http://www.sf.net/projects/catchconv.
Keywords: Software security, symbolic execution, test generation, de-
cision procedure, dynamic binary analysis

1 Introduction

We present a method of test generation by symbolic execution with run-time
type inference from an example program run, describe an application of the
method to signed/unsigned integer conversion errors, and report on a prototype
implementation. The approach of “symbolic execution” was originally outlined
by King [19] and was recently applied by the EXE, DART, and CUTE projects [8,
17, 34] to find bugs in C programs. In symbolic execution, inputs to a program
are treated as symbolic values. For each path, or sequence of branches taken or
not taken in the program, we then collect the path condition, which is the set
of constraints on the input that must be satisfied for the program to execute
that path. Then, to determine if a particular program path leading to an error
is feasible or not, we pass the path condition to a decision procedure.

As originally described, symbolic execution focuses on systematic exploration
of program paths. The problem with this approach is that it may miss “deep”
bugs. For example, consider the problem of testing a Javascript interpreter inside
a web browser by loading HTML pages with embedded scripts. Before we can
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begin testing the interpreter, we must ensure that our test case passes the web
browser’s HTML parsing code. With systematic path exploration, a tool must
“get through” the HTML parsing code before it can start generating Javascript
test cases.

Our approach, instead, is to start with an example input, collect the path
condition followed by the program on that example, and then use this as a start-
ing point for bug-finding. In the web browser example, we might take an existing
web page off the web with embedded JavaScript and use this as our example
input. We then measure the path condition and attempt to infer “related” path
conditions that lead to an error. Here we are inspired by the work of Larson and
Austin, who looked for buffer overflow errors by observing length constraints
placed on buffers given an example input [21]. We differ, however, in that we
look for signed/unsigned conversion errors, which we now describe.

1.1 Signed/Unsigned Conversion Errors

A signed/unsigned conversion error is a sub-class of errors that arise due to the
difference between machine arithmetic and arithmetic over the integers. Such an
error arises when a program makes control flow decisions based on treating a
value as a signed integer, but then treats the same value as an unsigned integer.
This can violate implicit assumptions made by the program about the value.

For example, consider the case where a program checks whether a signed
integer i is less than a constant upper bound, then passes i as an argument to
memcpy. If i is negative, then it will pass the bounds check, yet be converted
to a large positive integer when passed to memcpy. This may in turn overflow a
destination buffer. blexim gives an overview of these and other program errors
due to machine arithmetic [6].

We recognize that signed/unsigned conversion errors are a narrow class of
bug. We focus on this class because it often leads to security issues. Furthermore,
as we will see in Section 5, it is possible to use run-time type inference for a simple
type system to drive test generation for such errors.

1.2 Problem Statement

The problem we address is the following: given an execution of a program P on
an example input x, decide if there exists an input y such that P (y) exhibits a
signed/unsigned conversion error. If there exists such an input y, output y.

1.3 Context : Fuzz Testing

Our tool works given an observation of the program P on an example input x.
While this would work in principle for any given input x, the context for our work
is the practice of fuzz testing programs. There are several different types of fuzz
testing, including mutation fuzzing, where a captured “normal” input is changed
before feeding it to the program, and block-based fuzzing, where the tester writes



a probabilistic grammar for valid program inputs and the tool generates random
productions of that grammar as tests.

The key point in fuzz testing we address is that “near miss” inputs do not
typically aid the fuzz tester in finding a bug. Put another way, consider the
following over-simplified equation for the expected number of bugs found by a
testing method:

E[#Bugs] =
#trial

time
· time · Pr[bug per trial]

While this does not by itself capture important information such as the dif-
ficulty of exploiting a bug once found, or the cost to fix bugs, it does allow us
to think about some testing tradeoffs. Fuzz testers tend to have a high number
of trials per time period, but a relatively low chance per trial of exhibiting a
bug. Furthermore, in basic fuzz testing hitting a bug does not usually increase
the chance that future test cases will exhibit a bug. A recent tool that addresses
this is autodafe, which uses libgdb to instrument functions such as strcpy and
determine if test input data affects the arguments to these functions, and then
adjusts its testing accordingly [38]. In general, however, directing fuzz testing
based on prior test cases is not well understood.

Our work addresses this by using a decision procedure to test for inputs
“close” to the example input x which exhibit a bug. If this drives up the prob-
ability that a bug is found on a given trial without paying too much in number
of trials per time period, we can achieve a win over classical fuzz testing. Put
another way, a key question in the background for our work is this: can we com-
bine fuzz testing with symbolic execution to achieve a testing method that does
better than either alone?

1.4 Overview

Our test generation approach has four main steps. First, we generate a path
condition from observing a program execution on a concrete input x. We use
dynamic taint flow analysis to identify execution that depends on untrusted in-
put and so optimize our formula generation. Second, we use a run-time type
inference algorithm to identify potential conversion errors. If we discover poten-
tial errors, we emit a query formula that is false if and only if an input exists
that exhibits an error. Third, we pass the resulting path condition and query
to a decision procedure, which then attempts to falsify the query. Finally, if the
decision procedure succeeds, we extract a new program input from its answer,
then check whether the input in fact triggers an error.

In Section 2 we describe the underlying tools used by our prototype, the
Valgrind dynamic binary analysis framework and the STP decision procedure.
Then, in Section 3 we outline the generation of STP formulas from Valgrind’s
intermediate representation. Sections 4 and 5 describe taint flow tracking and
run-time type inference. Finally, we report on preliminary experiences with our
prototype in Section 6 and cover related work in Section 7.



2 Valgrind and STP

Our prototype depends on two underlying tools, Valgrind and STP [35, 16]. Val-
grind is a dynamic binary instrumentation and program analysis framework best
known for tracking memory errors, but which is flexible enough to allow imple-
mentation of many different program analyses. The current version of our pro-
totype uses Valgrind release 3.2.2 as a starting point, with minor modifications
to the Valgrind core.

The second tool is STP, a decision procedure for quantifier-free bitvector
arithmetic with arrays. STP accepts a sequence of variable declarations and
formulas, followed by a QUERY statement. The argument to QUERY is a formula
φ. STP then attempts to decide whether φ is valid given the asserted formulas
or invalid. If φ is invalid, STP provides a counterexample, in the form of an
assignment to the variables that satisfies the set of asserted formulas but causes
φ to be false.

2.1 Valgrind Overview

Valgrind consists of two major components plus an assortment of program anal-
yses, or “tools,” built on these components. The first component is the VEX li-
brary, which converts blocks of machine code to an intermediate representation.
The second component is the Valgrind “core,” which handles program loading,
interaction with the operating system, and just-in-time translation of the pro-
gram to VEX intermediate representation, instrumentation, and compilation to
machine code.

Valgrind runs as a standard Linux process and acts as a program loader for
the program to be analyzed, which is referred to as a guest. The Valgrind core
then passes each basic block of the guest as it is loaded to the VEX library. The
library converts the basic block to an intermediate representation and passes the
result to the specified Valgrind tool. The tool then instruments the basic block
and passes the result back to the Valgrind core, which uses VEX to compile it
to machine code. Valgrind then keeps a cache of compiled instrumented blocks
and manages flow of execution between them. In this respect, Valgrind can be
thought of as an instrumenting just-in-time compiler.

2.2 Valgrind Intermediate Representation

The VEX library used by Valgrind 3.2.2 converts machine code to a platform-
independent intermediate representation. Versions of Valgrind prior to 3.0 used
a different intermediate representation called UCode, which differs significantly
from the VEX representation used in current versions of Valgrind. We now give
a brief overview of the VEX intermediate representation as preparation for de-
scribing our tool. Figure 1 shows a subset of the representation in BNF notation,
and a complete description is in the VEX/pub/libvex ir.h file in the Valgrind
distribution.



The basic block is the unit on which a tool operates. A basic block is a
sequence of guest program machine code with a single entry point, but which may
have multiple exit points. A single machine code operation in a block is translated
into one or more IRStmt operations. Each IRStmt is an operation with side
effects, such as storing a value to memory or assigning to a temporary variable.
Each IRStmt may incorporate one or more IRExpr , which are operations with
no side effects, such as arithmetic expressions or loads from memory.

Associated with each basic block is a type environment. The type environ-
ment declares the names of IRTemp temporary values in the basic block, and it
associates an IRType with each IRTemp. Examples of IRTypes include Ity I32

and Ity I64, for 32-bit and 64-bit integer values. VEX IR satisfies the single
static assignment property; each IRTemp is assigned to only once in a single
basic block.

Besides IRTemp temporaries, VEX IR may refer to guest memory or guest
machine state. Memory is accessed through store and load IR operations. Guest
machine state is an array of bytes accessed through PUT and GET operations,
which specify an offset into the array for writing and reading respectively. The
most common use of the machine state array is to represent reading from and
writing to guest machine registers. For example, for an x86 guest, offset 60 rep-
resents eip, so each machine instruction translated therefore includes a PUT(60)

statement in its IR representation to set eip to its new value.
Finally, VEX supports adding calls to special IRDirty statements in a basic

block. These are functions with side effects, such as changing memory or printing
values to stdout. Our tool makes extensive use of such functions to update
metadata about the program’s execution and to emit formulas for STP.

The basic mode of operation for a Valgrind tool is as a VEX-to-VEX trans-
formation. First, the tool registers a callback with the Valgrind core. Each time
a new basic block of machine code is ready for JIT’ing, Valgrind does a prelim-
inary conversion to IR and then calls the tool. The tool inspects the resulting
sequence of IR statements, then updates its metadata, adds or deletes IR state-
ments from the basic block, and finally returns. The Valgrind core then uses
the VEX library to sanity check the basic block and compile it to machine code
before finally executing the result.

2.3 Concurrency and Syscalls

Concurrency and syscalls require special handling from the Valgrind core, be-
cause the core must retain control of program execution. In the case of concur-
rency, the core intercepts signals and passes notifications to the tool. The core
also emulates fork within the host process.

Many syscalls, however, cannot be fully emulated by the core. Instead, Val-
grind comes with a library of syscall annotations for Linux. Each annotation
specifies whether the syscall writes to memory or guest state, and if so, at which
addresses. Tools can then register callbacks that are invoked after each such side
effect. While this approach was originally developed for Valgrind’s Memcheck
memory checking tool, we found that this abstraction was well-suited for our



IRStmt :== NoOp

| IMark of Addr64 * Int

| AbiHint of IRExpr * Int

| Put of Int * IRExpr

| PutI of IRArray * IRExpr * Int * IRExpr

| Tmp of IRTemp * IRExpr

| Store of IREndness * IRExpr * IRExpr

| Dirty of IRDirty

| MFence

| Exit of IRExpr * IRJumpKind * IRConst

IRExpr :== Binder of Int

| Get of Int * IRType

| GetI of IRTemp * IRArray * IRExpr * Int

| Tmp of IRTemp

| Qop of IROp * IRExpr * IRExpr * IRExpr * IRExpr

| Triop of IROp * IRExpr * IRExpr * IRExpr * IRExpr

| Binop of IROp * IRExpr * IRExpr

| Unop of IROp * IRExpr

| Load of IREndness * IRType * IRExpr

| Const of IRConst

| CCall of IRCallee * IRType * IRExprVec

| Mux0X of IRExpr * IRExpr * IRExpr

IRExprVec :== IRExpr | IRExprVec

IREndness :== LittleEndian | BigEndian

IRArray :== Int * IRType * Int

IRTemp :== UInt

IRConst :== Bool | UChar | UShort | UInt | ULong | Double

IRJumpKind :== Ijk_Boring | Ijk_Call | Ijk_Ret

| Ijk_ClientReq | Ijk_Yield

| Ijk_EmWarn | Ijk_NoDecode | Ijk_MapFail | Ijk_TInval

| Ijk_NoRedir | Ijk_Trap | Ijk_Sys_syscall | Ijk_Sys_int32

| Ijk_Sys_int128 | Ijk_Sys_sysenter

IRType :== Ity_INVALID | Ity_I1 | Ity_I8 | Ity_I16 | Ity_I32

| Ity_I64 | Ity_I128 | Ity_F32 | Ity_F64 | Ity_V128

Fig. 1. A subset of VEX intermediate representation in BNF notation. Definitions
for IRDirty, IROp, and IRCallee, in particular, are not shown. The header file
VEX/pub/libvex ir.h contains an annotated description.



0x8048102: popl %esi

------ IMark(0x8048102, 1) ------

PUT(60) = 0x8048102:I32

t4 = GET:I32(16)

t3 = LDle:I32(t4)

PUT(16) = Add32(t4,0x4:I32)

PUT(24) = t3

Fig. 2. Translation of x86 popl instruction at address 8048102 to VEX intermediate
representation. The instruction is rendered as five IRStmt operations: a PUT to write the
instruction pointer to guest offset 60, a read from guest offset 16, a load from memory
into IRTemp t3, and then storing to offsets 16 and 24. The suffix I32 indicates that the
value is a 32-bit integer. The header VEX/pub/libvex guest x86.h reveals that offset
16 corresponds to the register esp, offset 24 is esi, and offset 60 is eip.

purposes as well. Specifically, these notifications allow us to emit appropriate
“fixup” formulas for exactly the affected locations after each syscall.

2.4 STP Overview

STP is a decision procedure for bitvector arithmetic with arrays. A bitvector

is a sequence of Boolean variables. STP works with formulas over such vari-
ables which include a variety of predicates, including arithmetic and compar-
ison. Given a sequence of formulas asserted to be true and a query formula,
STP attempts to determine whether the query formula is valid, i.e. whether it
is necessarily true given the asserted formulas. If the query is invalid, then STP
provides a counterexample, in the form of an assignment to the variables of the
asserted formulas that makes the query false. The algorithms in STP have been
tailored for the needs of program analysis tools; STP is the decision procedure
used by the EXE, Replayer, and Sweeper tools, and test cases from these tools
as well as from Catchconv have influenced its development [8, 37, 30].

2.5 STP Presentation Language

We now give a brief overview of the subset of the STP input language used by
the Catchconv tool. While STP can be linked as a library with a tool, we chose
to emit formulas as ASCII text and pass them to STP for ease of debugging. In
particular, we can quickly troubleshoot syntax errors by editing input files and
re-running STP. For a full overview, see the STP web site [16].

The STP input language is similar to that used by CVC Lite, but with
some additions [3]. STP supports variable declarations with type BITVECTOR(X),
meaning an array of X boolean variables, and of type BOOLEAN. Declarations may
be mixed with ASSERT statements; each ASSERT takes as an argument a formula
involving variables previously declared.



Formulas in STP can use a variety of arithmetic predicates and comparison
operations. Of special concern for us is that STP offers native support for both
signed and unsigned bitvector comparisons. For example, BVLT is an unsigned
less-than comparison predicate, but BVSLT is a signed less-than comparison.

STP also supports bitvector arrays that are themselves indexed by bitvectors.
To use such arrays, we first declare a new variable of type ARRAY BITVECTOR(X)

OF BITVECTOR(Y), where X is the size of the array address and each entry is
a bitvector with Y bits. STP allows non-constant indices for arrays, such as
bitvector variables of the appropriate length or sub-ranges of longer bitvector
variables. This makes it straightforward to represent loading a value from a
symbolic memory address in STP; we simply read from an address represented
as a variable of type bitvector.

Writes to an array directly are not supported by STP. Instead, STP offers a
special syntax for array updates. An update takes the form of a declaration of
a new array, together with a statement that the new array is identical to an old
array except for a specified entry. For example, the following declarations

A : ARRAY BITVECTOR(4) OF BITVECTOR(32);

B : ARRAY BITVECTOR(4) OF BITVECTOR(32) = A WITH [0hex5] := 0hex00000001;

state that the array B is an update of the array A with a new value for
entry 0hex5. We will refer to these types of declarations in the paper as update

constraints.

i : BITVECTOR(32);

j : BITVECTOR(32);

ASSERT(BVSLT(i,0hex0000000a));

ASSERT(i = j);

QUERY(BVLT(j,0hex00000032));

Fig. 3. A tiny example of an STP input file. This file declares two 32-bit bitvector
variables i and j, then asserts that i is less than 10 as a signed integer. Finally, it
asserts that i equals j and emits a QUERY asking whether j as an unsigned integer is
always less than 50.

Finally, STP inputs may contain at most one QUERY statement, which takes a
formula as its argument. STP then reports whether the QUERY is valid or invalid
given the formulas previously ASSERTed.. Figure 3 shows a small example STP
input, while Figure 4 shows the output of STP.

3 Formula Generation From VEX IR

The first step of our approach is the generation of formulas that capture the
execution of a program P on an example input x. Our prototype implements



[dmolnar@glimmung catchconv] ~/solvers/smt/stp/stp-01-17-07 -p quicktest

Invalid.

ASSERT( i = 0hex8000004C );

ASSERT( j = 0hex8000004C );

Fig. 4. Output from running STP on Figure 3. The -p flag asks STP to print an
assignment to the bitvector variables which makes the QUERY false. The QUERY is invalid
because 0hex80000004C is negative, and so less than 10 when interpreted as a signed
integer, but greater than 50 when treated as unsigned.

formula generation as a map from VEX intermediate representation to STP
formulas. For each VEX statement, we define a corresponding STP formula that
captures the semantics of the IR statement. We then instrument basic blocks of
the program with helper functions that print ASSERT statements with these STP
formulas to stdout.

Figure 5 shows an example translation. Here, a x86 popl instruction is trans-
lated to VEX IR, and then to a set of STP formulas. This example shows how
guest memory and guest state are modelled by STP arrays.

3.1 Memory Regions

The naive approach to modeling memory of a 32-bit machine with STP is to
declare an array indexed by 32-bit bitvector values. Each load expression trans-
lates into a read from the corresponding array entry. Each store then translates
into an update of the corresponding array entry. The main advantage of this
approach is that it allows for exact pointer arithmetic and bit-level precision
modeling of symbolic memory.

Unfortunately, this naive approach also leads to performance problems. De-
spite the fact that the array is extremely sparse, we have found that using a
single array for all of memory leads to STP hitting the 3 GB per-process mem-
ory limit on our 32-bit test machine. Therefore, we use an optimization found in
the EXE tool, namely that of dividing memory into different regions [8]. Each
region is modelled by a separate bit-vector array. We also keep track of a base
address for each region and a total size for the region. The main benefit of mem-
ory regions is that they free STP from having to reason about aliasing between
reads and writes in different memory regions. The main downside is that use of
regions can lead to a loss of precision.

Loads from and stores to memory then pass through three steps in their
conversion to STP. First, we use the concrete value of the memory address to
select the appropriate memory region. Second, we declare a new offset variable

of the appropriate size to be an offset into memory region. Finally, we ASSERT

formulas that set the offset variable to the value of the original address minus
the base address of the region. Figure 6 shows an example of the result.

We can also emit QUERY statements that ask whether the resulting offset is
always within the bounds of the memory region (not shown). If the QUERY is



0x8048102: popl %esi

------ IMark(0x8048102, 1) ------

PUT(60) = 0x8048102:I32

t4 = GET:I32(16)

t3 = LDle:I32(t4)

t25 = Add32(t4,0x4:I32)

PUT(24) = t3

MemState0p22034th1 : ARRAY BITVECTOR(32) OF BITVECTOR(32);

MaSt0p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32);

[...]

MaSt2p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt1p22034th1 WITH [0hex03C] := 0hex08048102;

ASSERT(CV0e1t4p22034th1 = MaSt2p22034th1[0hex010]);

ASSERT(CV0e1t3p22034th1 = MemState0p22034th1[CV0e1t4p22034th1]);

ASSERT(CV0e1t25p22034th1 = BVPLUS(32,CV0e1t4p22034th1,0hex00000004));

MaSt3p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt2p22034th1 WITH [0hex018] := CV0e1t3p22034th1;

Fig. 5. Result of translation from VEX IR to STP formulas for popl instruction. Each
IRTemp is given a name that encodes the number of the basic block as translated (e.g.
CV0), the number of basic blocks executed so far (e.g. e1), the name of the IRTemp , the
process PID, and the current thread ID. The MemState and MaSt arrays model guest
memory and guest state, respectively.



MemRegion0p22034th1baseBEFFEAE8 : ARRAY BITVECTOR(16) OF BITVECTOR(32);

[...]

MaSt2p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt1p22034th1 WITH [0hex03C] := 0hex08048102;

ASSERT(CV0e1t4p22034th1 = MaSt2p22034th1[0hex010]);

% LoadAddr BEFFF790 Type I32 Value 00000002 RegionBase BEFFEAE8

CV0e1t4p22034th1OFFSET : BITVECTOR(16);

ASSERT(CV0e1t4p22034th1OFFSET = BVSUB(32,CV0e1t4p22034th1,0hexbeffeae8));

ASSERT(CV0e1t3p22034th1 =

MemRegion0p22034th1baseBEFFEAE8[CV0e1t4p22034th1OFFSET]);

ASSERT( CV0e1t25p22034th1 = BVPLUS(32,CV0e1t4p22034th1,0hex00000004));

MaSt3p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt2p22034th1 WITH [0hex018] := CV0e1t3p22034th1;

Fig. 6. Translation of popl instruction to STP formulas with memory regions. The
32-bit load address in variable CV0e1t4p22034th1 is translated to a 16-bit offset by
subtracting the base address of the memory region. The region used is chosen by the
concrete value of the load address at execution time. We could optionally emit a QUERY

to check that the offset is always smaller than the size of the memory region.

falsified, then there is an input that causes an out-of-region memory access. At
the least, this indicates imprecision in our modeling, and at worst may indicate
a program error such as an out-of-bounds memory access.

Our current implementation defines regions in two ways. First, we intercept
calls to malloc and related functions. Second, the tool takes as an auxiliary input
a user-defined list of memory region base addresses and corresponding sizes. We
have also written a small script that graphs memory addresses accessed given
output by our tool. We have used this graph successfully to craft memory regions
“by eye” for small test cases.

3.2 Bug Oracles

The Valgrind framework allows us to conduct run-time checks to reveal whether
a specific concrete input triggers a bug. By using these checks as bug oracles,
we can ensure that an input in fact causes a bug before reporting that input to
the user. While a wide variety of checks are possible, our prototype focuses on
two. First, we intercept malloc() and related functions and check whether the
high bit of the number of bytes to allocate is set, i.e. whether the argument is
negative. Second, we check for segmentation faults in the guest program.



3.3 Recording the Path Condition

For each conditional exit statement, our per-basic-block instrumentation declares
a boolean variable named JUMPCONDXeYcZ, where X is the number of the basic
block translated, Y is the number of basic blocks executed so far, and Z is the
number of previous JUMPCOND variables declared. We need both Y and Z because
a single basic block may have multiple conditional exit statements. Our tool,
however, cannot tell at instrumentation time whether the exit will be taken or
not taken, because we do not yet know the concrete value of the guard expression
for the exit statement. Therefore, we need to add instrumentation that records
at execution time whether the exit is taken or not taken so that we can emit the
correct path condition later.

To do so, we borrow an idea from the Valgrind lackey tool. At Valgrind
startup, we initialize a hash table to hold the path condition. Each node of the
hash table holds the name of a JUMPCOND variable and the status “Taken” or
“Not Taken.” We insert a helper function before the exit IRStmt that inserts
the corresponding JUMPCOND with the status “Taken.” We then insert a helper
function following the exit that changes the status to “Not Taken.”

Assuming that execution is straight-line within a single basic block, the sec-
ond helper is executed if and only if the exit is not taken. This gives us a record
of which exit statements were taken and which not taken during execution. We
use this to assert the appropriate path condition after guest execution has ended.

3.4 Future Improvements

Our prototype emits formulas for many VEX IR statements, but not all. In
particular, we do not yet handle multiplexor expressions, such as Mux0X, we
do not translate guest state indirect PUTI or GETI operations, and we do not
accurately model floating-point arithmetic. There are also helper expressions
used by VEX to model certain machine updates, such as calculation of condition
flags, that are not transformed to STP. Instead, we capture the concrete value
of these calls and emit a constant assignment. This leads to a loss of precision in
modeling guest execution. To fix these issues, we need to write helper functions
that emit the appropriate STP formulas when these IR statements are executed.

Modeling memory as an array BITVECTOR(32) OF BITVECTOR(32) raises at
least two issues. First, non-aligned memory loads may not see the effects of pre-
ceding stores, because each address points to a separate BITVECTOR(32) value.
Second, if all loads are guaranteed to be word-aligned, then it is not necessary
to have a full BITVECTOR(32) for each address. As such, our modeling choice is
imprecise. Similar issues apply to memory regions. Our original rationale for this
choice was ease of implementation: with this modeling, temporary variables can
be directly used as addresses, and can be destinations and sources for memory
assignments

With respect to the first issue, one approach would be to declare memory
as an array of BITVECTOR(8) instead of an array of BITVECTOR(32). Then each
VEX store would be rendered as an update to the appropriate entries of the



array; for example, a 32-bit store would emit four update constraints, one for
each byte. This has the advantage of being straightforward to implement, at the
cost of quadrupling the number of array update constraints and introducing a
significant number of bitvector extraction operations. A second approach would
be to detect loads that are not word-aligned and compile them into assignments
from sub-ranges of the appropriate BITVECTOR(32) variables. For constant index
loads, this is straightforward, but variable indices seem to require embedding a
case analysis into the generated formulas. This second approach would also allow
us to shorten the size of array address variables.

We faced a similar issue when deciding whether to model guest machine state
as an array of BITVECTOR(32) or BITVECTOR(8). In particular, x86 registers
can be subregisters of other registers : for example, ch is a subregister of ecx.
We discovered that this led to inconsistent formulas following executions that
updated ecx and then read from ch. Preliminary test cases, however, found a
significant slowdown for modeling machine state as a vector of BITVECTOR(8).
Instead, we used the second approach, buoyed by the fact that all accesses to
machine state in our test cases are for constant offsets, and as such detecting
non-word-aligned reads to the array is easy. We further discovered that for our
test cases, the number of “non-aligned” guest state accesses is small compared
to the total number of accesses, so the fact that the second approach incurs no
overhead on aligned accesses is a win.

For memory regions, a clear improvement would be automatic generation of
memory regions corresponding to the stack or individual stack frames. Together
with the memory regions we already generate by intercepting malloc, this would
significantly reduce the need for hand-generated memory regions. Ideally, this
improvement would mean that hand-generated memory regions become unnec-
essary. Implementing this requires a method for determining the size of the pro-
gram stack and detecting stack switches by the program. Fortunately, Valgrind
already provides infrastructure for reporting changes in the stack pointer, and
the Memcheck tool has some example heuristics for detecting stack switches.

Our tool does not yet automatically translate counterexamples emitted by
STP into new program inputs. To fix this, we need to write scripts to parse
the output of STP, identify variables in the counterexample corresponding to
tainted inputs, and then create new program inputs. A stopgap measure is to
look at the assignments in the counterexample to memory locations marked as
symbolic, and then use those assignments to create new program inputs.

The performance of guest programs could be improved. Currently, our tool
translates VEX IR to STP formulas on a statement-by-statement basis. While
easiest to implement, we add at least one new IRDirty helper for each IRStmt

in the original basic block. This leads to an extreme slowdown for the guest
program. In principle, we could instrument the guest to record only the identity
of the basic block executed and memory operations, then perform the translation
to STP formulas after the fact. This is important if we are interested in example
inputs generated by interacting with humans. This may also be useful if we have



a way to “pre-filter” inputs before starting the translation to STP, as then we
can raise the number of inputs tested per time unit.

Finally, we could output formulas in SMT-LIB format to facilitate compari-
son of different decision procedures. While there is a CVC2SMT tool that con-
verts the STP presentation language to SMT-LIB format, this tool segfaults on
the test cases we have generated. This would also allow us to contribute test
cases to the SMT-LIB competition.

4 Optimization : Taint Tracking

We have described how to translate program execution to a set of STP formu-
las. In practice, however, only a fraction of the program’s execution depends on
untrusted values. Our observation is that if we can identify locations that are in-
dependent of untrusted values, then we can simplify the STP formulas generated
by the tool.

To do so, we implement a basic dynamic taint flow analysis. In such an
analysis, we start by marking a set of memory locations as taint sources. Dur-
ing execution, we propagate taint as follows: program locations that read from
tainted program locations become tainted, while locations that are overwritten
with untainted values become untainted.

4.1 Valgrind Implementation

At Valgrind startup, we initialize a hash table that maps program locations to
“tainted” or “untainted.” A program location is a memory address, a guest
state offset, or an IRTemp. Our tool then instruments each side-effect generating
VEX IR statement with a helper function that checks whether the statement’s
arguments are tainted or not tainted. If they are tainted, the helper function
marks the destination program location as tainted. If all arguments are not
tainted, then the helper function marks the destination as not tainted. We then
expose an interface to the hash table that allows our formula generation to
check at any point during execution whether a program location is tainted or
not tainted.

We note that Valgrind’s Memcheck tool does a similar kind of taint flow to
determine “definedness” of memory addresses, i.e. whether an address is a valid
target for memory accesses [35]. While we were inspired by Memcheck, we found
it easier to simply implement our own taint flow analysis from scratch rather than
use Memcheck directly. One issue we found was that Memcheck keeps track of
taint for IRTemp values in special “shadow temps”; while this significantly speeds
execution of the guest program, it complicates determining whether a particular
IRTemp is tainted or not tainted at formula generation time.

Figure 7 shows an example of how our current prototype uses taint informa-
tion to simplify formula generation. Just as in Figure 5, these represent an x86
popl instruction. In this case, however, neither the target of the GET instruction
nor the memory address loaded are tainted.



MaSt2p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt1p22034th1 WITH [0hex03C] := 0hex08048102;

% EmitTmpAssignConcrete. lhstype : I32 value : BEFFF790

ASSERT(CV0e1t4p22034th1 = 0hexBEFFF790);

% LoadAddr BEFFF790 Type I32 Value 00000002 RegionBase BEFFEAE8

ASSERT(CV0e1t3p22034th1 = 0hex00000002);

ASSERT( CV0e1t25p22034th1 = BVPLUS(32,CV0e1t4p22034th1,0hex00000004));

MaSt3p22034th1 : ARRAY BITVECTOR(12) OF BITVECTOR(32) =

MaSt2p22034th1 WITH [0hex018] := CV0e1t3p22034th1;

Fig. 7. Translation of popl instruction on untainted inputs. Notice how reads from
arrays have been replaced by constant values.

We use taint flow information to suppress the generation of array update
constraints when a memory value or register value does not depend on untrusted
input. In these cases, it is safe to assign the concrete value to the appropriate
destination. Figure 7 shows an example of the resulting formulas.

4.2 Future Improvements

First, we could take advantage of the fact that each basic block is JIT’ed as a
unit. Therefore, instead of adding a helper function after each IR statement, we
could add a call to a single function that propagates taint for the basic block as a
whole1. The goal of this optimization would be to improve the speed of the guest
program’s execution. We could also look again at leveraging the infrastructure
used by Memcheck for tracking definedness.

Second, we could be more aggressive in using taint information to prune
the set of formulas. For example, we could simply not emit formulas for values
which both arise from untainted reads and are never arguments to operations on
tainted data. Currently, our prototype does emit these expects STP to determine
which can be safely dropped. A rough check suggests that we may be able to cut
the size of our test cases by an order of magnitude.

Finally, the current handling of system calls is primitive. We only treat the
result of read system calls as tainted, and we do not take the arguments to
system calls into account when deciding whether to mark memory locations as
tainted or not. For example, we might want to specify that only reads from
certain files should be marked as tainted.

1 We thank Daniel Wilkerson for pointing out this optimization.



5 Optimization : Type Inference

Given the path condition, we can emit a QUERY formula involving any memory
location, register, or IR temporary value we like. To find signed/unsigned conver-
sion errors, however, we need to emit the correct QUERY for the correct location.
We now describe a run-time type inference approach for identifying program
locations of interest, and our tool’s current implementation of that approach.

5.1 Signed/Unsigned and a Four-Point Lattice

Our basic approach is to consider four types for integer-valued program locations
: “Unknown,” “Signed,” “Unsigned,” or “Contradictory.” Here “Signed” means
that the location has been used in a way “consistent with” the value being a
signed integer, while “Unsigned” means the location has been used in a way
“consistent with” being an unsigned integer. By “consistent with,” we mean
that the location has been the source of an argument to a signed or unsigned
comparison.

These types form a simple four-point lattice, with “Unknown” corresponding
to > and “Contradictory” corresponding to ⊥. Our goal is to determine the set of
program locations during a concrete execution that have type ⊥. These program
locations are candidates for signed/unsigned conversion errors.

One of the attractive features of the four-point lattice is that it is easy to
solve the resulting type constraints “on the fly.” We associate each program
location with a type variable. Then, when we update a type variable based on
observing the location used as signed or unsigned, we can simply set the variable
to the meet of its old type and the new type. It is not necessary to keep a set of
constraints associated with each variable for later solving.

5.2 Valgrind Implementation

At Valgrind startup, we initialize two hash tables. The first maps program lo-
cations to type variables. The second maps type variables to elements of the
four-point lattice. We then expose interfaces to query and update both hash
tables.

We then implement run-time type inference in two parts. The first part adds
instrumentation to manage the mapping from program locations to type vari-
ables. If we copy a value from one location to another, we set both locations to
map to the the same type variable. If we perform an operation on a location, or
we read from a location not previously seen, we declare a new type variable and
update the mapping accordingly.

The second part adds instrumentation to update the type value of each type
variable. For a signed comparison, we set the type variables of each argument to
the meet of their current types and “Signed .” We perform a similar update for
arguments to an unsigned comparison. For binary operations, we leave the types
of the arguments alone, but we set the type of the destination to “Unknown.”



int main (int argc, char** argv)

{

int i = atol(argv[1]);

unsigned int j = 0;

if (i < 10)

{

j = i;

if ( j > 50)

{

printf("Surprise! \n");

return 1;

}

}

return 0;

}

Fig. 8. Simple test case program for dynamic type inference and query generation. If
argv[1] is positive and greater than 10, then only the signed comparison i < 10 is
executed. In contrast, if argv[1] is between 0 and 10, then the signed comparison i <

10 and unsigned comparison j > 50 emit contradictory type constraints for the same
type variable. The resulting type of ⊥ then causes Catchconv to emit a QUERY .

Finally, if a type variable is set to ⊥, our instrumentation emits a QUERY for
the program location involved in the most recent type update. The QUERY asks
the solver to determine if the program location is always a positive signed integer
value. If the QUERY is false, therefore, there is a program input that causes the
program location to contain a negative value; this negative value will cause a
divergence between signed and unsigned comparisons.

Our type inference is not guaranteed to be sound or complete. Because we
use a decision procedure to generate new program inputs from invalid QUERY

statements, however, we can test these inputs on the program and filter our
false positives. The key tradeoff then is between the cost of false negatives due
to faulty type inference and the cost to answer valid QUERY statements.

5.3 Future Improvements

Currently, our type inference sets the type for the destination of all binary oper-
ations to “Unknown.” A simple improvement would be to make this configurable
on a per-operation basis. The choice of which rules to use for binary operations
then becomes an empirical question that can be investigated on test programs of
interest. We could also emit QUERY statements for all program locations associ-
ated with a particular type variable, instead of only the location most proximate
to the assignment to ⊥.

Second, we realized during the implementation of our tool that a cleaner way
to implement type variable propagation would be to use a union-find data struc-



ture. In effect, we would keep track of equivalence classes of program locations
with respect to typing information, and associate a single type variable with
each equivalence class. Besides being more elegant, such an implementation may
be faster than our current hash table mapping each location to a type variable.

Third, our tool currently emits the entire path condition in addition to QUERY

statements. This includes assertions for JUMPCOND variables that occur logically
following the QUERY of interest. As a result, the current formula outputs need
to be edited by hand to remove these anachronistic JUMPCOND values, or else
the formulas may unintentionally preclude possible inputs that could cause the
QUERY to be false. Fortunately, both the location named in the QUERY and the
JUMPCOND encode the number of total basic blocks executed in their name, so
filtering the path condition is straightforward.

Finally, the four-point lattice is only one possible type system. We could
extend our approach to test generation for other type systems. In principle, any
type system that admits run-time inference and an STP query for inputs that
cause a type violation could be used. The key challenge here is identifying type
systems that capture security properties, admit efficient run-time inference, and
which also lead to queries efficiently solvable by STP.

6 Tool Status

------ IMark(0x8048102, 1) ------

PUT(60) = 0x8048102:I32

DIRTY 1:I1 ::: ogEmitPutConstConstraints{0x380073d9}(0x3C:I32,0x0:I32)

DIRTY 1:I1 ::: cgEmitPutConstStmt{0x3800222e}(0x3C:I32,0x8048102:I32,0x11003:I32)

t4 = GET:I32(16)

DIRTY 1:I1 ::: ogTmp2GetAliasHelper{0x38006a6c}(0x4:I32,0x10:I32,0x0:I32)

DIRTY 1:I1 ::: isFlowMapByKey{0x38007925}(0x10:I32,0x10000:I32)

DIRTY 1:I1 ::: cgEmitTmpAssignConcrete{0x38004d99}(0x4:I32,0x0:I32,0x11003:I32,t4)

DIRTY 1:I1 ::: cgEmitTmpGetConstraints{0x380048ce}(0x10:I32,0x4:I32,0x0:I32,0x11003:I32)

Fig. 9. Part of a basic block after instrumentation by Catchconv. Each IRDirty

statement will be turned into a call to the named function by the VEX library
and compiled to machine code. In this example, ogEmitPutConstConstraints

and ogTmp2GetAliasHelper handle type inference, cgEmitPutConstStmt,
cgEmitTmpAssignConcrete, and cgEmitTmpGetConstraints emit STP formulas,
and isFlowMapByKey checks for taint and propagates if necessary.

Our tool currently comprises 6223 lines of code, as measured by SLOC-
Count [39], developed over roughly five months of work. The majority of this
code consists of the Catchconv tool implemented on top of Valgrind 3.2.2. Fig-
ure 9 shows a fragment of a basic block post Cachconv instrumentation. The
tool is available on Sourceforge at www.sf.net/projects/catchconv under the
GNU General Public License version 2.



We have developed toy examples to test type inference, such as the one
shown in Figure 8. Our tool successfully generates QUERY statements from type
inference in these test cases. We noticed that the tool emits QUERY statements
for several pieces of code that are dynamically linked with our test cases, but we
have not yet followed up to attempt test generation for these queries. We can
also generate path conditions for some small but real programs such as gzip,
the thumbnail program in the libTIFF 3.8.3 distribution, cat, and ls.

We have been able to generate new candidate inputs exhibiting a bug from a
QUERY for the test case shown in Figure 8, but not yet for larger programs. For
this test case, STP on our test machine koschei.cs.berkeley.edu reports the
query invalid and generates a counterexample in 6260.2 seconds, using 2238.38
MB of memory on 105947 non-comment lines of STP input. Our parsing of coun-
terexamples to yield new test inputs is currently primitive, but simply looking
at all assignments to bitvector variables associated with symbolic memory ad-
dresses yields 40 distinct new trial inputs, of which 4 in fact trigger the “bug”
in the test case.

The main issue with our current prototype is that the resulting test cases
are too large. For example, the output from Catchconv from observing gzip

or ls on small inputs are in excess of 900 megabytes, while the outputs from
observing thumbnail are 300 to 400 megabytes in size. Even the test case shown
in Figure 8, statically linked, generates a constraint set 6.6 megabytes in size.

This has led to two problems when attempting to solve the resulting con-
straints. The first problem is that STP may quickly hit the 3 gigabyte per-
process memory limit during initial processing of the test case on our machine,
koschei.cs.berkeley.edu, running Red Hat Enterprise Linux 4 with 4 giga-
bytes total RAM. Recently, however, new versions of STP have been able to
successfully solve many of these test cases, including all of the thumbnail test
cases, without hitting the memory limit.

The second problem we have observed is that on some test cases, STP enters
a tight loop of generating CNF formulas and then calling the MiniSat solver. By
itself, this is not a problem. The issue is that each iteration of the loop grows the
memory footprint of STP by a small but significant amount. After several hours,
STP hits the 3 G memory limit and errors out. We are currently investigating
the limits of this phenomenon. An alternative approach would be to move to a
64-bit machine, but we prefer to focus on algorithmic improvements first.

Both problems appear to stem from the fact that our current queries include
formulas from translation of all code executed during the program run, not just
the code of interest. For example, with our current taint tracking settings, glibc
code that reads from disk as part of dynamic linking will become tainted and
emit formulas with array updates, even if that code has little to do with the
program of interest. We plan to pursue more aggressive methods of pruning
formulas before passing them to STP.

A second issue is the program slowdown due to the tool. We have made
little effort to optimize the running time of programs inspected by Catchconv.
For testing and development purposes, the resulting slowdown is annoying but



livable. For improving fuzz testing, however, this slowdown directly affects the
expected number of bugs we will find in a given period of time. One simple
improvement here is to delay printing STP formulas until the end of program
execution; this would remove the overhead from calling the Valgrind printf

function after most IR instructions. As mentioned, another approach would be
to reduce the amount of guest instrumentation and do more conversion to STP
formulas after the fact.

Our tool does not currently work correctly with programs that use fork.
While the tool does emit output in this case, the resulting formulas do not pass
STP syntax checking. The issue here seems to be that some output is not printed
to stdout correctly during the Valgrind core’s emulation of fork.

Finally, we have discovered a few programs where Catchconv causes a trans-
lation error in the VEX library. Examples include bzip2 and the cjpeg program
in the libjpeg distribution. We have not yet investigated the cause of these errors.

6.1 Test Cases

Over the course of developing our prototype implementation, we have created
over twenty test cases for the STP solver. These test cases reflect different deci-
sions regarding constraint generation, such as whether to use memory regions or
not. The running time of STP on these test cases has helped us drive decisions
regarding formula generation, such as whether or not to implement memory re-
gions. Our test cases have also been helpful in communicating the needs of our
tool to the authors of STP. The resulting improvements in STP have been dra-
matic: one new version of STP cut running times on our test cases from in excess
of one hour to less than 3 minutes.

These test cases can be found in the catchconv-cases project in the Source-
forge catchconv repository. Each test case is stored in .tar.bz2 form, and in-
cludes the source file for the program under analysis with a short description of
the test case. Also included are scripts to extract the test cases and run STP on
the results.

We have also created scripts that compute statistics related to the use of
arrays in each test case. For example, we compute the number of read and up-
date constraints, and the number of such constraints with non-constant indices.
This is important because a read or update with a non-constant index involves
reasoning about aliasing. The doreport script in the catchconv-cases project
automatically computes and displays these statistics.

7 Related Work

King outlined the basic idea of symbolic execution for program testing and gave a
simple implementation called EFFIGY [19]. More recently, several projects have
focused on symbolic execution for programs written in C. The EXE project at
Stanford uses the CIL front end to parse C code and emit formulas for the
same STP decision procedure that we use [8]. Also closely related are DART



and CUTE [17, 34], which look at integrating random testing with symbolic
execution. These projects attempt to explore the space of program executions
looking for errors; EXE in particular uses integer overflows as a heuristic to drive
its search.

The main difference between our work and these projects is that we do not
focus on systematic exploration of program executions. Instead, we attempt to
generate a bug exhibiting input given an observation of a program run on a
specific example input. The most directly related project to ours is the work of
Larson and Austin, who generated array size constraints from observation of a
program run on a concrete input to look for possible buffer overflow errors [21].
We look for a different class of errors, and we attempt to actually synthesize an
input exhibiting the bug. A secondary difference is that these projects focus on
source-level analysis, while our use of Valgrind means that we can analyze Linux
binaries.

Decision procedures have also been used to reduce the number of false pos-
itives from a static analysis tool. In this approach, the static analysis gener-
ates verification conditions for an error, and the decision procedure attempts
to determine if the error path is feasible or not. An example of this work is
Check’n’Crash, which combines the ESC/Java prover with the POOC integer
constraint solver [12].

The Synergy algorithm uses dynamic testing with symbolic execution to re-
fine a program abstraction for property checking [18]. This line of work follows
on earlier model-checking efforts such as SLAM and BLAST [2] [4]. Given an
abstraction, Synergy generates a test case designed to refine the abstraction and
uses the path condition of the concrete path executed by the test case. We differ
in that we begin with an instrumented example program run and then attempt
to generate test cases; our approach does not provide the same guarantees as
Synergy, but it does allow us to leverage user-generated or fuzz test inputs.

Decision procedures have also been employed for understanding the behavior
of malware. Seshia et al. use the UCLID decision procedure to detect code with
semantics equivalent to a malware signature; in particular, their work detects
and eliminates code sequences that act as no-ops [10]. Sweeper uses STP to
find “trigger-based behavior” in malware [37]. The Replayer tool also uses STP,
not to understand malware, but to aid in automatically analyzing binaries to
discover characteristics of a protocol necessary for replaying a conversation [30].

Dynamic taint tracking has been previously implemented in Valgrind in the
TaintCheck tool for the purposes of detecting attack by malware [31]. LIFT is a
highly optimized implementation of taint tracking using DynamoRIO [33]. The
Minos project proposed hardware support for enforcing an information flow se-
curity policy and gave a prototype implementation using the Bochs full-system
emulator [11]. Recent versions of Perl also provide a taint mode for marking
certain inputs as untrusted. These projects focus on detecting and preventing
malicious behavior at runtime. Garfinkel et al. used dynamic taint tracking to
understand the lifetime of sensitive data, such as passwords, in commodity op-
erating systems [9]. Our approach, in contrast, uses taint analysis to prune the



constraints submitted to our solver instead of trying to detect run-time malicious
behavior.

Our approach to type inference by solving type constraints is similar to that
proposed by Mycroft [29]. His approach, however, was aimed at providing in-
formation for decompilation and reverse engineering of a program, and so used
a significantly different type system. Xu, Miller, and Reps proposed a method
for statically checking type safety of machine code, given typestate annotations
on the program inputs [40]. In contrast, we work without such annotations, and
we do not aim at guarantees that the program is type-safe. Instead, we attempt
to generate inputs that exhibit a possible typing failure. Loginov et al. describe
run-time type checking for debugging; the high-level idea of using type infor-
mation to detect possible bad program behavior is similar, but they focus on
providing warnings to a programmer while we focus on using type information
to drive a decision procedure [23].

Besides STP, there are many other decision procedures, such as Yices and
UCLID [14, 20]. Many of these take part in the annual SMT-LIB competition,
which includes test cases from both hardware and software verification applica-
tions [36]. Automatic theorem provers have also been widely applied to program
analysis, such as the Microsoft Zap prover [1].

We mentioned above that one approach to improving guest execution speed
would be to instrument a program to retain side effects only, and defer the
translation to STP formulas. The Amber debugger uses Valgrind to perform
such side effect recording; O’Callahan reports that Amber can record a Mozilla
session in roughly half an hour [32]. The Nirvana system from Microsoft Re-
search integrates such tracing with a binary instrumentation framework roughly
comparable to Valgrind [5]. Besides Valgrind and Nirvana, there are also other
dynamic binary instrumentation frameworks, such as DynamoRIO, Vulcan, and
Pin [7] [15] [24]. We chose Valgrind because the VEX intermediate representation
is fairly close to STP’s input language; in addition, the entire source of Valgrind
is available, which we have found helpful in troubleshooting interactions between
Catchconv and the Valgrind core.

We are agnostic about the source of the example input required by our tool,
but we anticipate using our work on the output of fuzz testing tools. Our hy-
pothesis is that using fuzz testers to generate the concrete input will allow us to
reach deeper bugs than direct exploration with symbolic execution alone. Fuzz
testing has received a great deal of attention recently, having been successfully
employed in the Month of Browser Bugs and Month of Kernel Bugs [28, 22]. The
term “fuzzing” is due to Miller et al., who ran early tests of UNIX and Win-
dows utilities, and more recently tests of the MacOS GUI [27] [25] [26]. DeMott
surveys recent work on fuzz testing, including the autodafe fuzzer, which uses
libgdb to instrument functions of interest and adjust fuzz testing based on those
functions’ arguments [13, 38].



8 Conclusion

Our tool successfully generates path conditions and QUERY statements for syn-
thetic test cases and some small but real programs. Synthesizing test inputs,
however, for all but the smallest cases is a problem because of the large size of
the resulting formulas. While the STP decision procedure we use has made and
continues to make major improvements on our test cases, scaling up to large
programs appears out of reach with the current implementation of formula gen-
eration. Fortunately, there are several directions available for pruning formulas
before passing them to the decision procedure. Therefore, at this point it is too
early to determine whether our approach will be a success. Future work will
tell if our approach can combine fuzz testing and symbolic execution to perform
better testing than either alone.
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