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Abstract

This paper proposes new methods for web authenticatioathaecure against phishing and pharm-
ing attacks. We explore the use of browser cookies as authémts that cannot inadvertently be given
away by users, and introdutmcked cookieswvhich are cookies that are bound to the originating sesver’
public key. Locked cookies defeat phishing, pharming, agttvork-controlling active attacks, since the
user’s browser can verify that the attacker’s public keyiffecent from that of the server that set the
cookie in the first place, even though the domain names malideame. Locked cookies are trans-
parent to the user and do not require any server-side chaWgesvaluate and compare authentication
schemes based on conventional cookies, IP cookies, anedadokies.

1 Introduction

Phishingis a social engineering attack in which a criminal lures asuspecting Internet user to a web
site posing as a trustworthy business with which the useahatationship [2]. The broad goal is identity
theft; phishers try to fool web visitors into revealing thieigin credentials, sensitive personal information, or
credit card numbers with the intent of impersonating thiitims for financial gain. Phishers commonly lure
victims by sending an email containing a warning about aBfmm” which requires immediate attention,
along with a link the user can click to take action. If a usa@rkd on the link, however, she will in fact reach
the phishing site. Typically the user is prompted to entenespersonal information, such as a login name,
password, or social security number, before the “problentfi Wer account can be addressed.

In a more advanced phishing attack knowrpaarming[40], the adversary subverts the domain-name
lookup system (DNS), which is used to resolve domain namédP @ddresses. In the attack, the DNS
infrastructure is compromised so that DNS queries for théngisite’s domain (saygoogl e. con return
an attacker-controlled IP address. This can be accompligiaeseveral techniques, including DNS cache
poisoning and DNS response forgery. Pharming attacks atieydarly devious because the browser's URL
bar will display the domain name of the legitimate site, ptigdly fooling even the most meticulous users.

Recent research has exposed complex and subtle depersdbatieeen names and name servers [46],
suggesting the DNS infrastructure is more vulnerable to EiSoning attacks than previously thought.
In March 2005, the security organization SANS issued a war@ibout a DNS poisoning attack which



affected at least 1300 domain names, 8 million HTTP GET rsigu@nd 75,000 email messages [48, 54].
More focused DNS poisoning attacks have also affected Haslig4], panix.com [42], and Ebay [11].

The ubiquity of public wireless access points and wirelesadarouters introduce new pharming threats.
Users are becoming more and more accustomed to accessilgssirouters in airports, restaurants, con-
ferences, libraries, and other public spaces. Adversaarset up malicious wireless routers in these areas
which offer free Internet access but redirect users to subwfeb sites. Also, many users leave the default
settings on their home wireless home routers unchangede 8ie default settings on home routers are opti-
mized for ease of use rather than security, these settings disable encryption and access control, permit
wireless access to router administration, and use publjsheak passwords to guard access to administra-
tive functions. These vulnerabilities enablarkitting attacks [56, 57], a combination of wardriving and
rootkitting, where an adversary maliciously alters wissl@ router’s configuration over a wireless connec-
tion. In the worst case, the adversary might be able to caedgleverwrite the router’s firmware. Warkitting
attacks enablactive attacksgiving an adversary complete control of users’ networknemtions.

Phishing attacks have become a serious threat. In 200&&d&esearch estimates 109 million Ameri-
cans received phishing emails, and approximately 24.4amihmericans clicked on a phishing email [17].
Financial losses stemming from phishing attacks reache8l §ifion. Phishing sites have become more
elusive and harder to shut down. Over the last few years,wbeage lifetime of phishing sites has shrunk
from a week to only a few hours. Some phishing sites use bligad, fault-tolerant architectures based on
botnets which serve phishing content from compromised imasho evade authorities [45]. We anticipate
these trends will continue.

Most web sites currently authenticate users with a simpksyard submitted via an HTML form.
Unfortunately, information submitted via HTML forms ha®pen to be highly susceptible to phishing. Ev-
idence suggests somewhere between 3-5% of phishing tdigelisse sensitive information and passwords
to spoofed web sites [18, 33], and phishing attacks are biegpmore and more sophisticated [45]. These
problems are not easy to fix: good phishing techniques cdref@m the most vigilant users [8, 26]; trusted
paths in browsers for entering sensitive information aresptible to spoofing [39, 62]; and multi-factor
authentication schemes are also vulnerable [50].

The problem with passwords is that it is too easy for usersveal their passwords to parties who should
not receive them. Phishing works by tricking users into mtduily sharing their passwords in dangerous
ways. Our insight is that if it is impossible for the user tegaway her authenticator (even if she wanted to),
then attackers will no longer be able to use social engingda steal the user’s authentication credentials.
In particular, computers are not fooled by social engimegsattacks, so they are perfect candidates to store
and release authenticators on behalf of their users. Wetegaithentication credentials that users can not
easily give away agisclosure resistantOther researchers have also noted the benefits of diselossistant
authentication credentials [43].

In this paper, we tackle the problem of designing a web atiteion scheme that resists phishing
and pharming attacks. In one standard classification ofeatittation schemes, passwords are “something
you know”; but the problem with using “something you know' fauthentication is that anything the user
knows, she can—and in a nontrivial fraction of cases, wikveal to a phisher. We instead suggest relying
on “something your computer knows.” This is roughly equévelto “something you have,” except that we
do it in software, without requiring the physical hardwaskdns normally used to fill that role.

HTTP cookies are a natural candidate to be used as web agttamt credentialsg(4.1). In this regime,

a site should require a particular cookie be sent from tlentfior authentication; additional authentication
methods, such as passwords, may also be implemented. Aslvghaovi/ later, since the browser cannot be
“tricked” into giving a useful cookie to an attacker, so@algineering is eliminated.



We will also show how web sites can authenticate users wibkies without requiring major changes
to the infrastructure of the web. We first analyze cookie antication schemes compatible with legacy
browsers, usingSL-only cookie§ 4.1.1) andP cookies(§ 4.1.2), which provide security against phishing
and pharming, respectively.

Although IP cookies resist pharming attacks, they can bebemsome and tricky for web sites to deploy.
If an anti-pharming solution is too expensive, complicatedrestricts scalability, web sites will choose
efficiency, simplicity, and functionality over securityo Biddress the drawbacks of IP cookies, Juels et al.
proposeactive cookiegs 4.1.3), an extension of IP cookies designed to resist pmarattacks. However, we
show active cookies are vulnerabledgnamic pharminga new pharming attack against web authentication
which enables pharmers to hijack users’ web sessions. Weshlsv authentication via client-side SSL,
currently considered the most secure option for web adtteditin by many researchers and application
developers, is vulnerable to dynamic pharming as well.

1.1 The locked same-origin policy

The same-origin policy in web browsers governs accessaanimong different web objects and prohibits a
web object from one origin from accessing web objects fronffarént origin. Browsers currently enforce
the same-origin policy using the domain name from which thjea originated. However, enforcing same-
origin based on domain name is problematic in the presenghafming attacks because pharmers can
influence the mapping from domain name to subject.

To resist pharming attacks, we propose kbheked same-origin poligya new same-origin policy for
browsers based on cryptographyys). The locked same-origin policy enforces access controS5L web
objects based on servers’ public keys, which cannot be spdwf attackers. The locked same-origin policy
permits enforcement of a more robust and consistent saigie-@olicy: name-based enforcement allows
pharmers to access objects that they did not originateeddstf comparing domain names to enforce access
control, the browser compares the public key stored withatb object to the public key sent with a new
connection; access in granted only if they match. It is tleg-knatching requirement that gave rise to the
term “locked.”

Applying the locked same-origin policy to SSL-only cookigeldslocked cookiegs 5.1), an extension
to SSL-only cookies which binds them to the public key of thigioating server. Locked cookies are an
attractive solution for pharming resistant authentigatibocked cookies require no changes to the HTTP
cookie specification, SSL, or web servers; web sites seteralve cookies in the same manner as before.
In addition to phishing and pharming attacks, locked cookésist active attacks, where adversaries have
complete control of the network, including the routing astructure. Locked cookies also protect legacy
applications of cookies for authentication. Finally, foelvsites needing to authenticate clients to multiple
servers within the same domain, we propose locked domaikienonvhich do the same thing for domain
cookies that locked cookies do for host cookie$.@). We summarize our results in Table 2.

We emphasize that in this paper, we are concerned only widitkat that target web authentication
credentials. We do not consider the problem of protectingeokinds of credentials; for instance, our
methods do not help to protect users’ social security nusloeedit card numbers, birth dates, bank account
numbers, or other personal information from phishing.



Auth cookie type Scope New? | How verified

SSL-only host cookies Host No | Match server's domain name against host field of cookie
SSL-only IP cookies IP address No | Match server's IP address against host field of cookie
SSL-only domain cookie$ Domain suffix| No | Match server's domain name against wildcardlomai n
field of cookie

Locked cookies Host Yes | Match server’s public key against public key stored
locked cookie

Locked domain cookies | Domain suffix| Yes | Match server's domain name against wildcard certificate
sent in server’s cert chain

in

Table 1: Types of authentication cookies.Scope A scope of “Host” does not mean a particular physical
machine, but rather a fully-qualified domain name, sucleisl . googl e. com A scope of “Domain
suffix” means a set of hosts characterized by a common suffixeample* . googl e. com

Strongest threat model protected against
Server authentication mechanism | With legacy browsersf With locked same-origin policy

Passwords (no protection) (no protection)
SSL-only cookies with domain names phishing active attacks
IP cookies pharming active attacks
Client-side SSL phishing active attacks

Table 2: Security of cookie authentication mechanisms using legacgrowsers and locked cookie
browsers. Each cell reports the strongest threat model resisted byaanbination of authentication mech-
anism and browser type. We consider phishing, pharminggaatice attacks (Section 2.1).

2 Threat models and goals

2.1 Threat models
We consider three broad classes of threats, classifieddiagdo the capabilities of the attacker.
Phishing attacks. To implement phishing attacks, no capabilities are needgdrd control of a single
internet node. In this scenario, an attacker can:
e Have complete control over some web server with a public lRes$
¢ Send communications such as emails and instant messageembigl victims
e Effect application-layer man-in-the-middle attacks,resgnting a legitimate server to the victim and
proxying input from the victim to the real server as needed.
Pharming attacks. An attacker with pharming capability has all the abilitigsaghisher, plus

e The ability to change DNS records for the target site, suahttie victim will resolve the target site’s
name to the attacker’s IP address.

In practice, such an attack might work through DNS poisonsppofed DNS responses, or by social engi-
neering attacks against a domain name registry. We assuammets do not have the same IP address as
the victim and cannot receive packets destined to the Velihaddress.
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Active attacks. An active attack is the most powerful threat we consider .hémeaddition to pharming
capability, an active attacker can:

e Control the internet routing infrastructure and can retedraffic destined to particular IP addresses
e Eavesdrop on all traffic

e Mount active, network-layer, man-in-the-middle attacks

To date, phishing has been by far the most prevalent clagtagkahowever, looking to the future, it seems
prudent to defend against more powerful attackers as wethe extent possible.

Significantly, we assume that an active attacker dmtfiave access to the target site’s server machines
or any secrets, such as private keys, contained thereon.

We also do not address cross-side scripting (XSS) attankisyva assume that the target web site is free
of XSS vulnerabilities. Other research efforts address ¥88erabilities [23, 32, 34, 63, 64].

Initialization of authentication credentials. We separate the web authentication problem into two dis-
tinct subproblems: the initialization of users’ autheation cookies and the use of those cookies to au-
thenticate users to web sites. Our primary focus is on ther]diut there are several options available for
initialization. We discuss the initialization problem fioer in Section 8.

2.2 Goals

There are three metrics by which we measure our authewticatechanisms: security, usability, and de-
ployability.

2.3 Security

Our primary security goal is to authenticate a user to a wiebasid create an authenticated, trustworthy
channel between the user and web site, via a web browseroisact is the basis for our security evaluation,

and we classify each mechanism according to the strongesttilhcan resist: phishing, pharming, or active

attacks, in order from weakest to strongest.

2.4 Usability

Users’ psychological acceptance of an authentication ar@sin is vital to its success [47]. Psychologi-
cal acceptance means that a mechanism’s behavior muslyainatch users’ expectations. To meet users’
expectations, we must understand usengntal models Essentially, a user’s mental model is her under-
standing of a mechanism’s goals, interface, assumpti®ks, iguarantees, and operation.

Unfortunately, studies have shown many users have an inetengr inaccurate mental model of cur-
rent web security mechanisms. Users’ interpretations efuse” web connections vary significantly, and
many users have trouble accurately interpreting browsargg indicators and cues, such as the URL bar,
the “lock” icon, certificate dialogs, and the myriad of setyuwarnings [8, 14, 15, 61]. In addition, users’
awareness of risks on the web are only loosely correlatedetgpectrum of vulnerabilities and necessary
countermeasures, and studies show users can manage egksdHamiliar with, but have trouble extrapo-
lating to unfamiliar risks [9].

This evidence suggests web authentication must be robusatcuracies in users’ mental models;
otherwise, adversaries could leverage users’ miscomreptmisunderstandings, and mistakes in an attack.
We identify four design principles to minimize the effectsraperfect mental models:
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Authentication should be nearly invisible to users. Since security is generally not users’ primary goal,
a security mechanism should not make unnecessary demaiutsinterfere with their ability to complete
tasks or interrupt their workflow [49]. If given the choicetlveen complying with security requirements or
working towards their goals, users will circumvent or disathe mechanism if it is annoying or too hard
to use [19, 35, 66]. This problem is exacerbated if users daunderstand the necessity of these security
mechanisms.

Users should be able to understand how to use web authenti¢ah securely. When users do not un-
derstand what they need to do to be secure, they often makelpogions [7]. For instance, users will take
the “path of least resistance” and ignore confusing secatérts they do not comprehend [8]. Users should
not have to understand the technical details of how an atitlaion scheme works to use it securely.

It should be difficult or impossible for users to take actionsthat defeat security. Security protections
should be mandatory, and not up to the user’s discretiome thlgould be no way for the user to bypass or
disengage the security mechanisms. If there is a way fosueeswitch the system to an insecure mode,
then phishers will try to trick users into flipping this switc

Web authentication should use disclosure-resistant creddials. One usability problem with passwords
is that users must decide whether or not it is safe to disdiesgassword to a web site when prompted
to do so. Unfortunately, this imposes an impossible burdears must thoroughly analyze and understand
the contents of the URL bar and site’s X.509 certificate, amtdrpret any browser messages and errors.
Phishing exploits this flaw. There are limits to what we canatlout this [1]: we cannot prevent users
from visiting phishing sites (because of the problem ofdgissitives), and warning messages do not seem
to be effective [8, 61]. Therefore, we need authenticatichremes that remain secure even if users should
happen to visit phishing sites. Since we cannot fully apéite the tricks phishers may use to solicit users’
passwords and how users will behave in these situationspa@uze that authentication credentials should
be disclosure-resistantln other words, since it seems likely that any authenticatredential the user can
readily give away will be vulnerable to phishing, we propdisat credentials should be designed so that
users cannot easily disclose them.

2.5 Deployability

If a new solution is to be successful, it should be easy toayephd backwards-compatible: New authen-
tication mechanisms should not “break the web” because aflpms in deployment or interoperability.
Naturally, any security benefits of the new scheme may notdired when interoperating with existing
systems.

Another goal is to preserve web sites’ ability to control tlser experience. We prefer, when possible,
not to impose restrictions on how users must interact wighsite at login or thereafter. We hope this will
increase the chances that our schemes will be adopted. &sathe reasons, we also prefer schemes that
have few configuration parameters, especially those timajecgardize compatibility with other implemen-
tations.



3 Background

3.1 HTTP cookies.

HTTP cookies are a general mechanism for web servers to atateretrieve persistent state on web
clients [44]. Since HTTP is a stateless protocol, cookiesbknweb applications to store persistent state
over multiple HTTP requests. For example, web shoppingieatibins can use cookies to track which items
a user adds to her shopping cart.

When a client makes an HTTP request to a server, the servehéaption of including one or more
Set - Cooki e headers in its response. TBet - Cooki e header requests clients to store a cookie—a
simple name-value pair of strings—in the client’s cookiegad to return it on subsequent visits to this web
site by providing it in theCooki e header associated with the subsequent HTTP requests.

Additional attributes may be specified. Th&pi r es attribute indicates when the cookie should be
deleted by the browser. If thexpi r es attribute is omitted, then the cookie is calledession cookie
and should be deleted when user closes the web browser. €8oakh anexpi r es attribute are called
persistent cookies

The dormai n and pat h attributes are used to qualify the set of HTTP requests fachvilients
should send back cookies. The client searches its cookitoijarookies whose domains which suffix-
match the domain of the request and whose paths prefix-mlagécpath of the request. For example, if
the user requests the URIt t p: / / onl i ne. f oobar. cont st or e/ i ndex. ht nl , then a cookie with
domai n=. f oobar . comand pat h=/ st or e would be included with this request, but a cookie with
domai n=pi cs. f oobar . comwould not. The default values of tlimmai n andpat h attributes are the
host name of the server which generated the cookie respadgbefull path of the document described by
the HTTP header, respectively. We refer to a cookie with gli@k dormai n attribute as alomain cookie
and a cookie which omits it astst cookie

Web browsers use thdonmai n andpat h attributes to enforce same-origin policyfor cookies. The
same-origin policy in web browsers prohibits a web objeotrfrone origin from accessing web objects
from a different origin. In particular, a browser will onlyppend a cookie to an HTTP request if the domain
attribute of the cookie tail-matches the domain of the retjueCookies are also accessible through the
Javascript propertgocunent . cooki e. For this mode of access, web browsers use the URL of the
document executing the Javascript to determine the agpteookies.

The final optional cookie attributesecur e, indicates that the cookie should only be sent over SSL
connections. We refer to a cookie including thecur e attribute as ar8SL-only cookie We now give
some background on SSL.

3.2 Secure Sockets Layer (SSL) and X.509 certificates.

The Secure Sockets Layer (SSL) and its successor, Transpgat Security (TLS), are cryptographic pro-
tocols for establishing end-to-end secure channels forHamd other Internet traffic [13, 55]. HTTP over
SSL is also known as HTTPS.

SSL uses X.509 certificates [22] to identify the server pgoditing in the SSL connection. An X.509
certificate contains the server’s public key, the domain enaimthe web site (specified in tHeéN subfield
of the certificate), the public key of the issuer of the cexdifie, the time period for which the certificate is
valid, and the issuer’s signature over these fields. Thegikey corresponding to a X.509 certificate can
be used to sign another certificate, and so on, creating a oh#iust.

The root of this trust chain is a certificate authority (CA)eMbrowsers ship with the certificates of



some number of CAs which are deemed to be trusted; these l&d mt certificates Most commonly,
a web site’s certificate is signed directly (“issued”) by a,@Ad this length-two chain is sent at the start
of an SSL connection. For example, if the CA Verisign issuezificate towww. f oobar . com the
resulting chain is of length two: Verisign’s root certifieds sent, followed by the Verisign-signed certificate
for wwv. f oobar . com

Longer certificate chains can be constructed if a CA issugigriang certificateto an entity. Signing
certificates can sign other certificates. For examplé,oibbar . comhas several domains for which it
needs certificates (e.gmwv. f oobar. comaccount s. f oobar. commai |l . f oobar. cometc.), it
could request a signing certificate from a CA and then issuma certificates for each its subdomains using
its public key in the signing certificate. In this case, thauer forf oobar . conmis signing certificate would
be the CA, but the issuer for each of theobar . comnis subdomain certificates would h®obar . conis
signing certificate.

When the client’'s web browser makes a connection to an SShleshaveb server over HTTPS, the
browser must verify the server’s certificate is valid. Timgalves numerous checks, but at the high level the
browser must:

1. Verify that the first certificate in the chain is from a teiCA.

2. Verify that (a) every certificate in the chain has a valghsiture from its predecessor, using the public
key of the predecessor and (b) that no certificate has expired

3. Verify that theCNfield of the last certificate in the chain matches the domainenaf the web site the
browser intended to visit.

If any of these checks fail, the browser warns the user ansl thekuser if it is safe to continue. If the user
chooses, the user may permit the SSL connection to contivere ttough any or all of these checks have
failed.

Note that browsers treat failure of these checks as a “softt and prompt the user, rather than preemp-
tively blocking access to the affected web site. The reasdn ensure compatibility with misconfigured
certificates and SSL servers; a periodic survey by Secupsc& shows that approximately 60% of SSL
certificates have such problems [52]. Also, this behavioblowsers allows web sites to use self-signed
certificates if they choose, instead of paying a CA for a fiestie.

Unfortunately, asking users whether to continue anywayah£ases is a serious security vulnerability.
Researchers have shown that users routinely ignore sughtgagarnings and just click “OK” [5, 8, 61].

4 Phishing and pharming resistant authentication for legag browsers

In this section, we examine what web site administratorsdeato protect users’ authentication credentials
from phishing and pharming, given the constraints imposedxisting browsers. We discuss two general
approachesauthentication cookieandclient-side SSL certificates

4.1 Using HTTP cookies for authentication

HTTP cookies are an excellent candidate for web autherditaredentials, since they meet many of the
goals of§ 2.2 well. HTTP cookies have several advantages:



e Excellent usability: they areasy to usdor authentication andisclosure-resistantBrowsers auto-
matically determine the appropriate cookies for web retgumsd require little to no user involvement
to make security decisions, reducing the chance of human ekiso, because it is the browser and
not the user who makes decisions about when to discloseexiatdokies are inherently disclosure-
resistant. Since cookies operate below the human-computgaction level, users do not usually
interact with cookies and many users are not even aware ofakistence or how to find them on
their computers. Phishers could try to solicit cookies frosers by giving instructions on how to
navigate the file system, find the cookie file and appropriatkie, and manually type in the cookie
data into a web form; but since the process of manually findingokie in the browser or file system
deviates significantly from the normal authentication amdriaction experience, asking users to do so
is more likely to be met with suspicion and distrust.

e Ease of deployment: Cookies are well supported in prodaatieb servers and major web browsers,
and web sites already use cookies for authenticating ussggests after they login. Since cookies
operate at the HTTP protocol level, they impose no resbristion the type of user experience or
branding that web sites present to users.

In short, cookies are attractive because they meet ourlitganid deployability goals. We will now discuss
how to build on cookies to provide the desired security prige

Our solutions usauthentication cookies persistent cookies that authenticate users. First, we Bbao
web sites can use SSL-only persistent cookies to defenaistgatiishing. Then, we show how to defend
against pharming as well by using SSL-only persistent IFkiezo Finally, we analyzactive cookie$31],
a variant of IP cookies.

4.1.1 Using SSL-only cookies

In the simplest scheme, when a user creates a new accourtheitheb site, the site sets an SSL-only per-
sistent cookie on the user’'s computer. Possession of ac@dikie is sufficient for authentication: users only
need to present a valid cookie to authenticate themseles alithentication cookie itself should contain a
unique value to identify the user and an expiration time witfptographic integrity protection [16].

Setting thesecur e flag on this cookie ensures that the cookie will only be seet 8SL connections,
so eavesdroppers and web proxies cannot learn this sedretbrowser’s same-origin policy ensures that
the cookie will only be sent back to the site that set the amogo third parties and phishers cannot learn
the secret. When the user returns to the site, the browsksevitl this cookie and the site can use that
to authenticate the user. After the user is authenticabteduser and web site can use the SSL connection
between the browser and the server to communicate, anddiesér's same-origin policy prevents content
from other domains from eavesdropping on or tampering vaihdonnection. Because SSL-only persistent
cookies are part of the HTTP specification, sites can deplgynmiechanism today without requiring browser
extensions. This scheme could be used as a replacemenskwqals.

Of course, SSL-only persistent cookies can be combined ettier authenticators. For instance, a
security-critical site might require the user to presernhlibe authentication cookie and a password to gain
access to their account. The cookie authenticates thesusariputer and defends against phishing, while
the password might be useful to ensure that even if the ca@nishared among several family members,
other family members cannot gain access to the user’s atcoun

Existing implementations. Some web sites already use persistent authentication amokior example,
some web sites offer a “remember me” option, which sets agterns cookie on a user’s machine. The
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browser will present this cookie during subsequent vigitthe web site, enabling the user to bypass the
initial login process.

Some existing anti-phishing solutions also use authergitaookies to complement regular password
authentication. Examples include Bank of America’s Siygké and similar approaches by ING Direct [25],
Vanguard [58], and Yahoo [65]. Before a user is permittedotprl from a particular computer, she must
“register” it. The registration process sets a SSL-onlysiséent authentication cookie on the user’'s com-
puter, and only computers with authentication cookies arejited to access the user’s account.

Security and usability analysis. Phishing sites may be able to fool users into revealing thesiswords,
but the browser's same-origin policy denies phishers actethe users’ authentication cookies. However,
this enforcement mechanism is vulnerable to DNS attackablery pharmers to steal users’ authentica-
tion cookies and gain unauthorized access to users’ acoénithentication cookies usually include the
secur e attribute, but thesecur e attribute does little to protect cookies against DNS pdisprattacks.
Thesecur e attribute specifies that a cookie should only be sent only 8&. connections, but it does
not specifywhich SSL connection. Suppose a pharmer uses DNS poisoning tk jaw. xyz. comand

a user subsequently visitd t ps: / / www. xyz. conl i ndex. ht m . The user’s browser will attempt to
establish an SSL connection, requiring the pharmer to pteseX.509 certificate. If the server certificate is
not signed by one of the root CAs in the browser or the certdis&€N does not match the server's domain
(i.e.,www. xyz. com), the browser will warn the user and ask her if it is safe tapeal. If the user heeds the
warning and answers “no”, the browser will cancel the cotine@nd the user’s cookies fasw. xyz. com
will remain safe. Unfortunately, most users ignore thesmimgs and click “OK” [5, 8, 61]. In this case,
the browser will establish an SSL connection to the pharmdrappend all cookies (secure and not) for
wWww. Xyz. comto the request.

Because the user has the option to override browser waraimfymistakenly connect to pharming sites,
legacy SSL-only persistent cookies do not satisfy our Uisalgioals § 2.2). To prevent pharmers from
stealing these cookies, users must understand certificarepeompts and respond to them correctly, which
is not something we can count on.

Deployability analysis. SSL-only persistent cookies are well supported in web ssraled browsers. As
evidenced by Sitekey and others, some web sites are alregdlyythg SSL-only persistent cookies as part
of an anti-phishing mechanism.

4.1.2 IP cookies

We use the terniP cookieto refer to a SSL-only host cookie whodemai n attribute is an IP address. IP
cookies can be used for web authentication in the same wayiled above. When a user creates a new
account, a web site sets an IP authentication cookie on #rsusachine. Then for subsequent requests,
only computers which present a valid IP cookie are permitbeabcess the user’s account.

Security analysis. Like regular cookies, IP cookies resist phishing attacks;esthe browser's same-
origin policy denies phishers access to users’ autheitit@bokies. |IP authentication cookies also resist
pharming attacks, because an IP cookie will only be sent coenections to the IP address listed in the
cookie’sdomai n attribute: the DNS infrastructure is irrelevant.

Schemes using IP cookies are, however, vulnerable to aatizekers that control some of the routing
infrastructure. Since these attackers can intercept atslid TTP requests to the site’s IP address, they may
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be able to steal its IP cookies, if users are willing to clickotugh certificate error dialogs.

Usability analysis. Browsers automatically and transparently regulate adwel3 cookies based on the
server's IP address. With respect to pharming attackssusemot take actions which bypass or override
this policy. However, an active attacker may be able to pédfaser’s IP cookie for a web site if she responds
incorrectly to certificate error prompts.

Deployability analysis. Users typically access a web site through its domain namtethimi usage is
incompatible with IP cookies. For instance, if the browsas n IP cookie for the IP addreks?2. 3. 4,
this cookie will be sent with a request for the URLt ps: // 1. 2. 3. 4/ i ndex. ht m , but it will not be
sentwith arequest fdrt t ps: // www. xyz. com i ndex. ht m , even if the DNS nameww. Xyz. com
resolves to IP addreds 2. 3. 4 for this HTTP connection.

The consequence is that if we want to use IP cookies, all URUst dentify the server using its IP
address instead of its domain name. However, we cannot expers to start accessing web sites using
IP addresses. To address this problem, web sites can alless tesinitially access content using URLS
containing domain names, but when the user logs in, the isesd@ects her browser to a URL containing
the server’s IP address (e.gt,t ps: // 1. 2. 3. 4/ 1 ogi n. ht m ). The browser willinclude her IP cookie
with this request, enabling the server to authenticate $ee u

After authentication, navigating via URLs with the site’'smdain name may be unsafe, since these
requests may be intercepted by the pharmer. This has un&eiiconsequences for the user experience,
because it means that the URL shown in the browser’s addegssgilbcontain an IP address instead of the
site’s human-recognizable site name. The presence of URiisining IP addresses in the URL bar or links
might be psychologically unacceptable to some users, mgusispicion or confusion. Since a common
phishing modus operandi is to lure users with emails commgityRLs with IP addresses, anti-phishing
education efforts have urged users to be suspicious of URh&ming IP addresses. Also, sites may be
reluctant to deploy a security solution that affects thentliiag of their site in this way.

IP cookies have other deployment problems as well. IP csakiake it harder to do DNS-based load
balancing, requiring web sites to use a long-lived statiadEress, and are less flexible. More seriously,
they may require substantial changes to the web site'stantbire, because every page requiring authenti-
cation has to redirect to the IP address of the web servee ififler is not already authenticated. Also, for
sensitive content, such as banking information, it is édxér to use SSL, but it is unclear whether certificate
authorities issue SSL certificates for IP addresses — fanpba Verisign does not [59]. These factors may
make sites reluctant to embrace IP cookies.

4.1.3 Active cookies

To address these drawbacks of IP cookies, Juels, JakobmsdrStamm proposactive cookieqd31], a
repurposing of IP cookies within a dynamic authenticatiootgrcol designed to resist pharming attacks.
Authentication using active cookies requires no additiarszr involvement and is supported on existing
browsers. Active cookies use IP cookies to authenticatesubet after authentication completes, the server
conducts the remainder of the web session with URLs comigitlie site’s domain name. This approach
allows the web site to use SSL after authentication and tealp&l any usability and branding problems
caused by IP addresses in the URL bar.

To resist pharming attacks after authentication, activekies useclient IP binding[16]. With client
IP binding, the web server traces the IP address of the usaichine during authentication and binds this
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9 4 IP address

a transaction
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Figure 1:Active cookies authentication protocol.

IP address to the session. After the client authenticateseli@vith her IP cookie, the server only accepts
requests from the traced IP address. The server determi@etiént’'s IP address from the connection over
which it received client’s IP cookie. Since this request tuse an explicit IP in the URL, it is outside the
influence of pharming attacks and enables the server tdolelketermine the client’'s IP address.

We now present the active cookies protocol in more detaililNMgrate an instantiation of this protocol
in Figure 1, where a user, Alice, authenticates herself tonaes hostingkyz. comat IP address 1.2.3.4. We
assume Alice previously obtained an IP cookie for 1.2.3liteXirst visits the web site and identifies herself
(steps 1-3), for example, with a username. This interaatimours using URLS containing domain names,
which rely on the DNS system. Juels et al. refer to requestgiRi_s which rely on DNS as occurring over
the soft channelsince a pharmer can intercept these requests.

After the server receives the user’s login request in stépe3server verifies the username and password,
creates a unique session id (SID), and traces the user'diiesslover the soft channel. Then in step 4, the
web server redirects the user (e.g., using the HTTP 302sstatte) to a URL containing the server’s IP
address and the Si(tp: // 1. 2. 3. 4/ ac. cgi ?SI D=9876). Juels et al. refer to requests for URLs
containing the server’s IP address as occurring ovehérd channel since these requests do not use the
DNS system and cannot be intercepted by pharmers. In stepc®'stbrowser fetches this URL over the
hard channel and attaches Alice’s IP cookie for 1.2.3.4.
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Pharmer: xyz.com g
IP address 6.6.6.6

GET http://1.2.3.4/ac.cgi?SID=9876 with Alice’s |Bakie Server: xyz.com at
IP address 1.2.3.4

User: Alice

6.6.6.6

Xyz.com?

compromised
DNS server

Figure 2:Active cookies in the presence of a MITM pharming attack.
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The server verifies the IP cookie and compares client’s IlPesddn step 5 against the client’s IP address
it previously traced in step 3. If these IP addresses areatine sJuels et al. argue there is no pharming attack
and the server should allow Alice access to her account,fliboey are different, then a MITM pharming
attack is likely in progress and the server should deny acchsaddition, after the server authenticates
Alice, it uses client IP binding to bind Alice’s IP addressgession and only accepts requests from the
traced IP address from steps 3 and 5.

Juels et al. argue that if a pharmer attackiryg . comis present, then it will man-in-the-middle Alice’s
requests and the server’s responses, and in step 3, atterogtin as Alice. The server responds with a
redirect to the hard channel. Since the server will not ssafally authenticate Alice without her IP cookie,
the pharmer must forward the redirect to Alice. Alice’s bsawthen connects to the server over the hard
channel and sends her IP authentication cookie. Since fiersdrver’s perspective, the soft channel request
(in step 3, from the pharmer) and the hard channel requestgm5, from Alice) originate from different IP
addresses, the server denies access and warns Alice thmaghee under attack. We illustrate this scenario
in Figure 2. Based on this analysis, Juels et al. concludeatithentication using the active cookie protocol
resists pharming attacks.

Security analysis: Dynamic pharming attacks. We show active cookies are vulnerable to pharming.
To help motivate our attack, we first make a few observatidmmitithe active cookies protocol. Alice’s
IP cookie is necessary to gain access to Alice’s accountAdind’s machine will only release Alice’s IP
cookie over the hard channel to the legitimate server. Sime@harmer cannot influence the outcome of IP
tracing for the hard channel, the pharmer’s only option &l$0 originate soft channel requests from Alice’s
machine, but maintain control of the session.

To trigger this chain of events while maintaining controlAdite’s session, the adversary usedyaamic
pharming attack A dynamic pharming attack is a pharming attack where theisdvy changes the DNS
entry (i.e, the domain name/IP address mapping) for thetaite during the course of the attack. First,
the pharmer initializes the DNS entry fayz. comto the pharmer’s IP address, say 6.6.6.6. The pharmer
also indicates in the DNS record that requesters shouldaubtecthis result, i.e., it sets the TTL=0. Then,
when Alice requesthitt ps:// xyz. com i ndex. ht ml in step 1 of Figure 1, her browser sends this
request to 6.6.6.6, and the pharmer returns a “trojamiex. ht mM document. This trojan document will
monitor and influence Alice’s subsequent interactions Withlegitimatexyz. com?® The trojan document
has following general structure:

<htm >

<body>

<scri pt >

---MALI COUS JAVASCRI PT CCDE- - -
</script>

<ifrane
src=""https://xyz.comindex.htm’’ >
<\ body>

<\htm >

After the pharmer returns the trojan document to Alice, daies the DNS entry foryz. comto the IP ad-
dress of the legitimate server feyz. com say 1.2.3.4. The goal is to force the browser load the lagik

1This request may use SSL, which we assume here. Since itlielyrthe pharmer can obtain a valid certificate fyz. com
the user will probably receive a certificate warning dialbgfortunately, researchers have shown that users roytigebre such
security warnings and just click “OK” [5, 8, 61], allowingehattack to proceed.
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https://xyz.com index. ht Ml document into thei f r ame>, which the browser displays to the
user. The adversary then waits for the user to login and ttiveazpokie authentication protocol completes,
after which the server switches the session back to the kaftrel.

At this point the trojan takes control and begins to monite tiser’s interactions in thei f r ame>.
Since the parent document and thief r ame> both “originated” fromxyz. com the browser's same-
origin policy will allow the malicious Javascript runninge parent document to access the content in the
<i f r ame>. The trojan effectively hijacks control of Alice’s sessielit can eavesdrop on sensitive content,
forge transactions, keylog secondary passwords, etc.

One complication to mounting this attack is web browserg asDNS pinning With DNS pinning,

a web browser caches the result of a DNS query for the usetile dimowsing session (i.e., until the user
closes the browser), regardless of DNS entry’s specifigdirtie. Browsers implement DNS pinning to
defend against variants of the “Princeton attack” [20]. He tPrinceton attack”, a malicious web server
first lures a victim who resides within a firewalled networktaining privileged web servers. We assume
these servers are accessible only to machines behind tivalfirdfter the victim connects to the malicious
server, the adversary changes its DNS entry to the IP addfesssensitive web server located on the
victim’s internal network. Same-origin policy restrictsaahicious code from accessing other domains, but
since the adversary’s domain now resolves to an internadldffeas, this attack enables Javascript served by
the adversary to the victim to access internal web servers.

DNS pinning poses a problem for dynamic pharming attackalmeonce a browser resolves a domain
name using DNS, it will use the resolved IP address for theeshtowsing session and ignore any sub-
sequent changes the pharmer makes in the DNS system. Howawe DNS pinning “breaks the web”
in certain scenarios, e.g., dual homed IPv6/IPv4 servemsamdic DNS, and automatic failover, browsers
implementors have recently relaxed their DNS pinning pedic For example, the results of DNS queries
are now only pinned for a fixed amount time.

However, Martin Johns discovered a technique for circuringrDNS pinning completely [28]. Johns
discovered that a pharmer can force a victim to renew its DNtB/dor a given domain on demand by
rejecting connections from the victim, e.g., by sending@WP “host not reachable” message. The browser
reacts by refreshing its DNS entry for the domain. Put in thetext of our dynamic pharming attack,
after the pharmer delivers the trojan page to the usergttesubsequent requests from user’s machine and
updates the DNS entry fatyz. comto the IP address of the legitimate server. Now, when thésisewser
loads the<i f r anme>, it will first attempt to contact the pharmer, fail, refrest DNS entry, receive the IP
address of the legitimate server, and load the legitimatdex. ht 1 document into theti f r ane>. The
attack now proceeds as before.

To parallelize this attack against multiple concurrentrsisigis inefficient to repeatedly update the DNS
entry forxyz. com If the adversary has compromised a local, root, or autitiré DNS server, or changed
the authoritative server of record feyz. com the adversary can selectively respond with the pharmers IP
or the legitimate server’s IP depending on the stage oflattdowever, if the adversary only has the ability
to change DNS entries foryz. com say at a local or root DNS server, this attack is unscaladtatse the
pharmer must update the DNS entry for each instance of thekadind reset it after the attack completes.

In the latter scenario, the pharmer can use round robin DN&emo make this attack scalable. A round
robin DNS entry consists of multiple IP addresses for a sidgimain name. Web sites use round robin DNS
to implement load balancing. The DNS server returns an eddkst of the IP addresses in response to a
query, but rotates the order for each response. Browseadlyisonnect to the first IP address in the list, and
this achieves some degree of load balancing among clierften\he connection fails, the browser tries the
next IP address on the list, until it successfully makes aeotion.
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To leverage round robin DNS entries in a dynamic pharmirackttthe pharmers creates a round robin
DNS entry containing two IP address: the pharmer’s IP antetfitmate server’s IP. Roughly half the DNS
responses will be in the order: pharmer’s IP, server’s IRhis case, the user will connect to the pharmer
first, and pharmer delivers the trojan page. The pharmecteegibsequent connections from the user, and
the user’s browser will automatically failover to the legiate server, after which the attack proceeds as
before.

Although dynamic pharming attacks against active cookesat enable pharmers to steal users’ au-
thentication credentials (i.e., their IP cookies), thegl#a pharmers to compromise users’ sessions in real
time. Since this is a significant vulnerability, we concluatdive cookies are insecure in the presence of
pharming.

4.2 Client-side SSL

The most common usage of SSL is for server authenticatidrintibe SSL specification, a server can also
requestlient-side authenticatignwhere the client also presents an X.509 certificate andegrkmowledge

of the corresponding private key. Using client-side SSkyess can identify a user with her SSL public
key and authenticate her using the SSL protocol. Sincetdigle SSL authentication relies on end-to-end
public key cryptography, currently, it is generally coresigld the most secure option for web authentication.

Security analysis. Client-side SSL authentication resists phishing attadkfiough a phisher may be able
to trick a user into participating in mutual authenticatissing SSL, the phisher cannot use this interaction
to impersonate the user at another web site. Authenticagigmires knowledge of the private key, which the
users’ browser always keeps secret.

However, client-side SSL is vulnerable to the dynamic pliagnattack described in Section 4.1.3. The
attack is nearly identical. After returning the trojan patfee pharmer switches the DNS entry (or uses
round robin DNS entries), and denies subsequent connedtiom the client. The browser will then load
content from legitimate server into tk& f r ame> and mutually authenticate itself to the server using its
client-side certificate. After authentication completag, same-origin policy will allow the trojan Javascript
in the outer document to affect the authenticated sessitmlegitimate server in thei f r ane>.

Usability and deployability analysis. An advantage of client-side SSL is that the user’s authatbic
credential, i.e., her private key, is disclosure resistaftie user is not required to memorize her private
key, and after the user imports her private key, her browses it (almost) automatically. It is difficult for
attackers to trick a user into inadvertently disclosing frérate key.

However, research studies have shown there are signifisabilitly problems with client-side SSL [3,
10, 21]. To use client-side SSL, a user first must import afwate and corresponding key pair into her
browser. Web sites may provide users these certificateseomesy be required to obtain her own certificate
signed by a certificate authority. Regardless, studies Blawe/n that obtaining and installing a certificate
and key pair is a cumbersome and confusing process for umaiswhen users make mistakes, they are
hard to correct. Also, most users do not understand cryapbyy why need they certificates, and do not
understand their connection with authentication [60].
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5 Resisting pharming and active attacks with the locked samerigin policy

Dynamic pharming attacks pose a significant challenge tdelielopment of deployable pharming resistant
authentication for legacy browsers. Although dynamic phiag attacks leverage the implementation details
DNS pinning, “fixing” DNS pinning is unlikely. DNS pinning Isaa lengthy and controversial history in
Firefox and Mozilla [37], and the current implementationais explicit compromise to support dynamic
DNS and round robin DNS for failover [36, 38]. Developing teetauthentication protocols is not the
right approach either; since dynamic pharming hijacks a'sisession after authentication completes by
exploiting weaknesses in browsers’ same-origin policyetdgn authentication protocol is unlikely to help.

To resist dynamic pharming, we must upgrade browsers’ sangey policy. Enforcing same-origin
based on domain name is problematic in the presence of phguattiacks because pharmers can influence
the mapping from domain name to subject. We argue browserddlkenforce same-origin policy crypto-
graphically. Instead of identifying web objects by name.(idomain name), we propose browsers should
identify web objects by public key. We refer to web objectsnitified by public key atocked web objects
For locked web objects, we propose browsers enfortlked same-origin policythe browser allows a
web object to access another web object only if their puldigskmatch.

Since the majority of web objects on the Internet are not@asad with any public key, enforcing the
locked same-origin policy for all objects is impracticalowkever, browsers already associate web objects
retrieved over SSL with a public key: the key of the servettingsthe object. We propose browsers should
enforce the locked same-aorigin policy only for SSL web otgjeand use the legacy same-origin policy (i.e.,
using domain names) for non-SSL objects.

To use the locked same-origin policy browsers must enfdmmetproperties: 1) unlocked web objects
are prohibited from accessing locked web objects, 2) theeowih a locked web object (i.e., the server
from which is was retrieved) must prove knowledge of the eissed private key, and 3) a locked web
object is allowed to access another locked web object onlgeir public keys match. Legacy browsers
already enforce the first property: objects not retrievedr &SL are not allowed to access SSL objects,
even if the domains of the objects would otherwise allow ttovsers already enforce the second property
as well: retrieving a web object over SSL requires the browssuccessfully establish an SSL connection
to the server, and establishing an SSL connection requiesdrver to prove knowledge of the private
key associated with its advertised public key. Upgradirmsers to enforce the locked same-origin policy
requires changing browsers to support the third propedgulating inter-object accesses between locked
objects.

Our locked same-origin policy requires no changes to the PI€dokie specification, SSL, or web
servers; web sites operate in the same manner as before&keladeantage of the locked same-origin policy
and protect its users from pharming attacks, a web site adgsto use SSL.

5.1 Locked cookies

In Section 4.1, we argued HTTP cookies are an excellent datelfor web authentication credentials, but
they have some limitations with legacy browsers. SSL-owlgkies are a highly deployable and usable
option, but are vulnerable to pharming attacks. AlthougttdBkies resist pharming attacks, they can be
cumbersome and tricky for web sites to deploy. To take a@epgnof IP cookies a web site must use URLs
containing the IP address of the server. With IP based URleslose many advantages of using URLs
containing domain names, e.g., SSL, load balancing, bngn@ind usability. If an anti-pharming solution
is too expensive, complicated, or restricts scalabilitwill likely be passed over in favor of simplicity and
functionality.
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www.mysite.com

Root cert
CN=verisign.com
Public key = xxx

Auth cookie

Host cert
CN=www.mysite.com
Public key = zzz

Cert chain for www.mysite.com

—

('Host=www.othersite.com,UID=44', unlocked)
('Host=www.mysite.com,UID=53" , lock: Public key = zzz)

Figure 3:A locked host cookie.We show how a sitemw. nysi t e. comsets a locked cookie over a SSL
connection. The rectangle depicts the X.509 certificaténchassociated with the SSL connection, and the
cylinder at the bottom represents the browser’s cookiefjar the cookie is accepted.

However, with browsers enforcing the locked same-origilicgoweb sites can now use SSL-only per-
sistent cookies to authenticate users and resist phigpivagming, and active attacks. We refer to SSL-only
cookies under a locked-same-origin policylasked cookiesBrowsers enforce the same-origin policy for
locked cookies by binding SSL-only cookies to the public feyn the originating server’s X.509 certificate
when the cookies are set. Then, instead of using domain ntaneegorce access control, the browser uses
servers’ public keys. Locked cookies require no changekddTTP cookie specification, SSL, or web
servers; web sites set and receive cookies in the same mambefore.

The design of locked cookies is straightforward in conc®gihen a web site at domaih sets an SSL-
only host cookie”', using either th&et - Cooki e header or thdocunent . cooki e Javascript interface,
the browser stores the server’s public kY from its X.509 certificate along with the cookie. Then, for
subsequent HTTPS requests iy the browser will append’ to the request only if it has successfully
established an SSL connection with and D’s certificate has public key’ K. For cookie accesses via
the docunent . cooki e Javascript interface, the browser grants access tbthe requesting script is
executing in a document requested over an SSL connectionfroandD’s certificate has public keyP K.

If the public keys do not match, the browser does not send do&ie and does not prompt the user to
override the decision. See Figure 3.
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Security analysis. Locked cookies protect authentication cookies againshight models in Section 2.1:
phishing, pharming, and active attacks. With locked camkiéebrowser only allows a server access to a host
cookie tagged with public ke K if 1) the server presents a certificate B¢, and 2) the browser and
server can successfully establish an SSL connection. Iltmasirto current browser policy, locked cookies
do not depend on users correctly answering prompts in resptmcertificate errors (e.g., an adversary
presenting a self-signed certificate with a spoofed domaine) to prevent cookie theft; locked cookies
rely solely on the public key in the server’s certificate ancdt depend on how users respond to any errors.
If the adversary tries to present a certificate fak and does not know the private key corresponding to
PK, she will not be able to successfully complete the SSL haaddshthe browser will then automatically
cancel the connection with no option of user override.

Usability analysis. Locked cookies satisfy all of our usability goals. As we dissed in Section 4.1,
cookies are easy to use and disclosure-resistant. In sbrtraxisting SSL-only cookies, a user cannot
take any actions that will cause her browser to send her atitagion cookies to attackers, e.g., by ignoring
certificate warnings. Locked cookies cryptographicalljoere the same-origin policy for authentication
cookies automatically; users do not need to understand $8lficates or how locked cookies work to
securely authenticate to web sites and protect their atitia¢ion credentials.

Deployability analysis. Implementing locked cookies in browsers would require anipimal changes.
Browsers only need to extract and store the public key froenSBL session when a server sets a cookie,
and perform an equality check on each cookie access. Sdersédbr details about our implementation of
locked cookies in Firefox.

Since we are proposing a change in browser policy, we muserafte this new cookie policy does
not “break the web”: no browser developer is likely to embram extension that makes their browser
incompatible with existing web sites, so legacy web serlias better continue to work even when visited
with locked cookie-enabled browsers. Locked cookies sesfmfsom this point of view. Locked cookies
are host cookies, and browsers currently enforce the saigie-policy for host cookies by allowing access
only to the same fully qualified domain name which set the @olSince the binding between a fully
qualified domain name and its public key is relatively stainc long-lived, in the absence of malicious
activity, the locked cookie policy should be for the mosttayuivalent to today’s cookie policy.

One exception is that the relationship between a domaintarmlblic key may change when its cer-
tificate expires. The business model of many CAs is to issudicates that are valid only for a relatively
modest period of time, e.g., one or two years, and requirtomess to renew their certificates when they
expire. The idea is that a subscription type service willeggate a continuous revenue stream and CAs
can adjust their prices on a yearly basis. Unfortunatelyermwveb sites renew their certificates they often
generate a server certificate from scratch using a new pkejiclf server uses a new public key every time
its certificate changes, this means its SSL-only persisteokies on users’ machines will expire when the
certificate expires, regardless of the value of the cool@&pi r es attribute. At first glance, this might
appear to pose a risk of “breaking the web.” However, we telibat this risk is minimal. Since clients
occasionally delete persistent cookies stored in theiwbeos, web sites cannot rely on long-term access
to persistent cookies, and they already have a strong imeetat structure their applications accordingly.
Therefore, we expect that expiring persistent cookies pteraly will not break legacy web sites, though
it may inconvenience users slightly. To avoid this inconeane, web sites aware of locked cookies can
arrange for their renewed server certificates to use the pabie keys as their old ones.

Any web site that already uses secure host cookies will aatically gain protection from pharming

19



and active attacks as users upgrade to locked cookie-ehblme/sers. Some current anti-phishing schemes
(e.g., Sitekey [4]) already utilize secure host cookieskéal cookies would transparently strengthen the
security that these schemes provide, without any work fioenieb site operator.

5.2 Locked domain cookies: Authenticating to multiple serers in a domain

In Section 5.1, we showed how web sites can take advantagekdd cookies to authenticate users to a
single web server and resist pharming and active attackse igenerally, a web site might be composed
of several host names, e.gri | . xyz. comwww. xyz. com| ogi n. xyz. com and the web site must
authenticate users to all these servers. We assume thesessdrare the same second-level domain name,
e.g.,,Xyz. com Legacy servers commonly solve this problem using domaokies. To authenticate
clients to multiple servers atyz. com the web site can set a domain authentication cookie ontsleith
domai n attributexyz. com Then clients will include this cookie with requests to anytwxyz. comas
part of its domain name.

However, domain cookies are vulnerable to pharming attd€lkes adversary pharms any host name in
Xyz. com she can steal users’ domain authentication cookiezyfar. com To address pharming attacks
against domain cookies, we propdeeked domain cookies cryptographic same-origin policy for secure
domain cookies which enables web sites to specify acceBsrigr domain cookies in an incrementally
deployable and backward compatible way. Applying a crymphic same-origin policy to domain cookies
is challenging. We cannot simply extend the same rules ftkdd host cookies to domain cookies. Since
the public key of the server setting the domain authentioatiookie is probably different from the public
keys of the other servers in the domain, such a policy woult dirose servers access to the cookie. To
address this problem, our policy tags cookies with a pul@ig, kke locked host cookies; however, where
locked cookies associate a key with a particular host, S$hailo cookies associate a key with a subdomain
range.

To infer this association, locked domain cookies utilizédaard certificates. A wildcard certificate is
an X.509 certificate with a wildcard expression in 1B field (e.g.,*. xyz. conm). CAs currently offer
wildcard certificates as an option for deploying multipleLS®rvers within a subdomain range. Customers
purchase a single wildcard certificate and install it (arddbrresponding private key) on all their servers in
the subdomain range. Modern browsers already supportavddmertificates, and they require no additional
user interaction.

To specify access rights for a secure domain cookie ddatimai n attribute D (e.g.,xyz. con), servers
install a wildcard certificate in their certificate chain EN=*. D. Unlike the common usage and for more
detailed reasons we discuss later, we require this wildcarificate not be the leaf (i.e., server) certificate,
but instead be a signing certificate part of the server'sfuzte chain (i.e., an internal node). When a server
sets a secure domain cookiewith domai n attribute D, the browser searches the server’s certificate chain
for a wildcard signing certificate witkN=*.D. If it finds such a certificate, it tagS with the wildcard
certificate’s public keyPK. Then, for a future HTTPS request to a server in subdomaigerdh the
browser will append” to the request only if it can successfully establish an SSineotion to the server,
and server’s certificate chain includes a wildcard signiedificate withCN=*. D and public keyPK. A
similar policy applies to cookies accessesdtunent . cooki e. If a server sets a secure domain cookie
and its server chain does not contain such a wildcard sigoémtificate, the browser applies the legacy
same-origin policy to the cookie (i.e., using domain namg8gg Figure 4.

Security analysis. Locked domain cookies protect secure domain cookies dagalhthreat models in
Section 2.1: phishing, pharming, and active attacks. Wittkéd domain cookies, a browser only allows
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o8
Aw.mysite.com

Root cert
CN=verisign.com
Public key = xxx

Wildcard signing cert

CN=*.mysite.com
Public key = yyy Auth cookie

Host cert
CN=mail.mysite.com
Public key = zzz

Cert chain for www.mysite.com

N/

('‘Domain=*.othersite.com,UID=45", unlocked)
('Domain=*.mysite.com,UID=53", lock: Public key = yyy)

Figure 4: A locked domain cookie.We show how a siteww. nysi t e. comsets a locked cookie over a
SSL connection. The rectangle depicts the X.509 certifich#en associated with the SSL connection, and
the cylinder at the bottom represents the browser’s coakiaffer the cookie is accepted.
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a server access to a domain cookie tagged with public/kByif 1) the server presents a certificate chain
containing a non-leaf wildcard signing certificate witti(, and 2) the browser and server can successfully
establish an SSL connection. Since the private key of argigoertificate is required to construct a valid
certificate chain containing it (as an interior node), areaslary without knowledge of the private key cannot
construct a valid certificate chain containing the wildceedttificate. If the certificate chain is invalid, the
browser will cancel the SSL connection with no option of usesrride.

Usability analysis. Like locked host cookies, locked domain cookies satisfyohlbur usability goals.
The enforcement of the same-origin policy for locked don@inkies does not depend on whether users
understand locked domain cookies or how users respond toeatificate errors.

Deployability analysis. For web browser developers to adopt locked domain cookiesf@a web sites
to take advantage of them we must verify two properties: tvbers enforcing the stronger same-origin
policy for locked domain cookies will not “break the web” whasers visit legacy sites, and 2) users of
legacy browsers must still be able to interact with web gites$ use wildcard signing certificates to protect
domain cookies (even though legacy browsers will not eeftine stronger security policy).

For the first property to hold, no legacy web server must usdcawd signing certificates as a non-leaf
node in its certificate chain. Otherwise, there is a chanceader using locked domain cookies might
misinterpret a wildcard certificate, enforce the strongena-origin policy, and wrongly deny a legitimate
server access to a domain cookie.

To check whether servers use wildcard certificates as raimtaes in their certificate chains, we con-
ducted a survey of SSL servers. In our survey, we crawled e on May 26, 2006 for SSL servers,
starting from a list of major news, portal, and financial sit€or the sake of simplicity, we restricted our
study to the following top-level domainsiom or g, net , gov, edu, bi z,i nf o, andnanme. We excluded
international top-level domains. We found 10,814 fully liffued SSL domains from 4,878 second-level do-
mains. This corresponds to roughly 6% of the SSL serversftmyrthe more extensive monthly SSL survey
conducted by E-Soft arglecur i t yspace. com[53]. In our SSL server survey, we found no evidence of
web sites using wildcard signing certificates as non-leafesadn certificate chains. This is strong evidence
that new browsers which enforce our stronger same-origieypwill not break legacy web sités

The second property also holds. Since modern browsersdgli@zcept wildcard certificates, servers
which use them will continue to interoperate with legacywsers. Although legacy browsers will not
enforce the stronger same-origin policy of locked domaiokées and thus will be vulnerable to pharming
and active attacks, legacy browsers will still enforce thirent policy based on domain names.

Locked domain cookies require a few additional changesaddbked same-origin policy. Browsers
need to extract and store the public key from the wildcardifazte when a server sets a cookie, and
perform an equality check on each cookie access. Servegebare minimal. Web sites can continue to
use domain cookies as before; the only required change igp@rators to purchase and install wildcard
signing certificates in the chains on the servers requirtctgss to secure domain cookies. Web sites are
already starting to use wildcard certificates for other pags; 6% (305) of the sites in our survey already
use wildcard certificates. Also, installing wildcard sigmicertificates as internal nodes in certificate chains
does not require the distribution of any additional priviéys to servers—only the distribution of new
certificate chains. Web sites can safely store the private fice their signing certificates in protected storage,

2Note that if we had instead used leaf wildcard certificatesuinpolicy, then we would risk breaking legacy web sites. un o
survey, we found 88 web sites that used wildcard leaf ceatde for some servers in a domain range, but used indivigutficates
for other servers in the same range, and these sites migivomkbivith new browsers implementing our stronger samehopglicy.
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disconnected from the Internet. Finally, locked domainkee®do not restrict how web sites organize server
(i.e., leaf) certificates for subdomains. Web sites coutdaisingle wildcard certificate for all subdomains or
deploy a certificate with a unique public key for each subdarrthe structure of the servers’ leaf certificates
is inconsequential to locked domain cookies.

5.2.1 Server configuration changes are necessary to suppdéotked domain cookies

To maximize chances of deployment, an ideal same-origiity&dr SSL-only domain cookies would ide-
ally only require madifications to browsers, but no changesetver cookie handling, web site organization,
or protocols. Without help from servers to help indicatehatized servers, browsers must infer whether the
X.509 certificates for two different subdomains represkatsame real world subject. We found developing
a heuristic for this to be challenging. The heuristic mugtb®too conservative; for it to be embraced by
browser developers, it must never “break the web” and dergnaath cookie to legitimate server. However,
if the heuristic is too liberal, a clever pharmer might beeatal purchase certificates which enable him to
steal sites’ domain cookies.

Unfortunately, due to the large number of misconfiguredessrand various inconsistencies in the way
some web sites deploy certificates, achieving this with bnbyvser changes in a way which does not “break
the web” is unlikely. Our SSL survey (see Section 5.2) foumat tertificate hierarchies in subdomains are
both diverse and disconnected. Of the 4,878 second-leveaiis in our survey, 9% had subdomains with
SSL certificates issued by more than one CA, or used a mixfuselsigned and CA issued certificates.
For example, fomel | sf ar go. com we found 21 different SSL subdomains, with 16 certificatssi@éd
by GTE CyberTrust and 5 issued by Verisign. To further congté matters, the Verisign issued certificates
were directly signed by Verisign, but the server certifisatethe GTE CyberTrust tree were issued by a
Wells Fargo Certification Authority certificate (presumahbh internal CA for Wells Fargo), which in turn
was issued by GTE CyberTrust. The subject names and apiditiformation of the server certificates also
varied significantly.

Requiring theCN of the certificate to match the domain name of the server speonsising, since it is
more unlikely a major CA would issue such a certificate to amiea targeting a major web site. However,
a significant number of legitimate servers are misconfigumed we cannot impose this policy without
risking “breaking the web”. The monthly SSL server surveyih$oft andsecuri t yspace. comshows
approximately 11% of SSL servers ha@b/domain mismatches [52]. If a misconfigured web site uses a
SSL-only domain session cookie to authenticate usersestquand we incorrectly deny legitimate servers
access to those cookies, the site may become unusable.nRelyiusers to manually verify mismatches
will likely be ineffective; users routinely ignore thesenviangs and just click “OK” [5, 8, 61].

Since we cannot anticipate all the ways sites may use SStLamdkies, and we cannot distinguish
between 1) a well-organized web site under a pharming attaitlg a self-signed certificate, and 2) a mis-
configured and unstructured web site, we must liberally $8id-only domain cookies to avoid “breaking
the web”. Unfortunately, this means the current same-onigilicy for SSL-only domain cookies is likely
the best we can do without any server or protocol changes.

6 Cross-site request forgeries (XSRFs)
Cross-site request forgery (XSR®)Inerabilities [6, 51] can arise when a user’'s web browsesumplicit

authentication. An implicit authentication mechanismme evhich is automatically executed by the user’s
browser and requires little or no user interaction. Exaspleimplicit authentication mechanisms include
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cookies, client-side SSL, and HTTP authentication. In a KSR adversary causes a victim’s web browser
to unintentionally send an HTTP request for a resource whids the victim’s implicit authentication
credentials. For example, if a user visdtist acker . or g and uses implicit authentication foeank. com

the attacker could return an page with an hiddeii r anme> containing a request to withdraw money from
the user's account diank. com and the victim's browser will automatically authenticadkes request,
without the victim’s knowledge.

One approach to resist XSRFs is use session tokens embeaddétls and hidden form fields which
are associated with a user’s implicit authentication anéids [27, 30]. Since the same-origin policy denies
adversaries access to these tokens, a user must explitghact with the site to generate valid requests.
Researchers have also proposed client-side solutionwdricove implicit authentication information from
requests which may be unintentional [29].

7 Implementation

We have implemented locked host cookies for Firefox 1.5 preximately 500 lines of C++ and Javascript.
We plan on extending this implementation to enforce Jayatsaccesses to HTML documents, images,
XMLHttpRequest, and other web objects. We have used ouotyymt locked cookie browser in daily
browsing without encountering any problems with any wedssiincluding those which use secure cookies.
We slightly modified the storage mechanism for cookies ierfBix. Browsers currently manage cookies
as a mapdomainnameg — value The cookie interface in browsers has no notion of “modifg&tting
a cookie overwrites any previously stored cookie with theesé&domain name pair. This approach is
insufficient for locked cookies, because it allows pharnersverwrite the cookies of legitimate web sites.
Note that it does not work to deny the overwrite if the publeykn the pharmer’s certificate does not
match the one in the stored cookie; legitimate web sites rhagge the public key in the server certificates
from time to time, and we must allow these sites to set new iesok-or this reason, our implementation
manages cookies as a mégomain name PK) — valug where PK is the public key in the certificate
of the server which set the cookie. Consequently, we migh inaultiple cookies associated with a single
(domain name pair, but only one will be sent back on any particular SSL @mtion.

8 The registration problem

We have thus far ignored one crucial aspect of using cookieauthentication: how does a user’'s machine
initially receives an authentication cookie from the wee3i This is commonly known as thmegistration
problem The registration problem is an interesting problem invis oight, and we do not attempt to solve
it here.

One key challenge is that the registration procedure musiebare againgegistration attacks For
instance, a phisher or pharmer might trick the user intceblg her computer must be unnecessarily re-
registered and then somehow attack the re-registratiocedure. Bank of America’s Sitekey and similar
anti-phishing mechanisms have registration attack valitties [67]. When a Sitekey user initially regis-
ters, she gives answers to several “personal entropy” igmedtL2], questions to which a phisher is unlikely
to be able to guess the answers, e.g., “What is the name ofhyglurschool mascot?”. Users who need to
register another computer must correctly answer thesdiqnedefore receiving an authentication cookie.
However, phishers and pharmers can use a man-in-the-nmegligtration attack to solicit the correct an-
swers from unsuspecting victims and obtain valid authatito cookies, making Sitekey insecure against
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registration attacks. The problem is that “in-band” (HTh#&sed) registration procedures are normally vul-
nerable to the same attacks we are trying to prevent. Indutark, we plan to explore solutions utilizing
email, cell phones, and other “out of band” channels toidiste authentication cookies to users.

9 Future work

Recent studies have found that about 58% of users have dietet cookies at least once [41]. This is
problematic for web authentication cookies, since frejgenkie deletion requires frequent re-registration,
potentially frustrating users. It would be useful to degeinterfaces for protecting authentication cookies
from regular deletions. We must be careful these interfalmesot create opportunities for abuse, e.g.,
enabling advertisers to set “undeleteable” tracking oemki

10 Conclusion

We have seen that web browser cookies are a good choice fisteait web authentication: they are trans-
parent to the user and, thus, hard for the user to reveal tdtackar; the contents can be signed and
client IP-bound by the server to provide integrity and n@msferability; and they are already supported
by existing web server software. Solutions available asgmg SSL-only cookies and IP cookies, provide,
respectively, defense against phishing or pharming atttiwkt try to steal authentication credentials. Our
extension, locked cookies, adds client-side binding ot lsoskies to the originating server’s public key
and in the process hardens cookies against more poweriug attackers. We also describe locked domain
cookies, which perform a similar hardening operation fomdm cookies, and allow cookies to be shared
across many subdomains. Locked cookies and locked domelknesodo not require any code modifications
on servers, but in some cases may require changes to thibwudistt and type of certificates that are used.
In short, we feel that locked cookies and locked domain @®kepresent a practical, secure approach to
authentication and urge their adoption as a component widuthentication schemes.
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