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Abstract

This paper proposes new methods for web authentication thatare secure against phishing and pharm-
ing attacks. We explore the use of browser cookies as authenticators that cannot inadvertently be given
away by users, and introducelocked cookies, which are cookies that are bound to the originating server’s
public key. Locked cookies defeat phishing, pharming, and network-controlling active attacks, since the
user’s browser can verify that the attacker’s public key is different from that of the server that set the
cookie in the first place, even though the domain names may be the same. Locked cookies are trans-
parent to the user and do not require any server-side changes. We evaluate and compare authentication
schemes based on conventional cookies, IP cookies, and locked cookies.

1 Introduction

Phishing is a social engineering attack in which a criminal lures an unsuspecting Internet user to a web
site posing as a trustworthy business with which the user hasa relationship [2]. The broad goal is identity
theft; phishers try to fool web visitors into revealing their login credentials, sensitive personal information, or
credit card numbers with the intent of impersonating their victims for financial gain. Phishers commonly lure
victims by sending an email containing a warning about a “problem” which requires immediate attention,
along with a link the user can click to take action. If a user clicks on the link, however, she will in fact reach
the phishing site. Typically the user is prompted to enter some personal information, such as a login name,
password, or social security number, before the “problem” with her account can be addressed.

In a more advanced phishing attack known aspharming[40], the adversary subverts the domain-name
lookup system (DNS), which is used to resolve domain names toIP addresses. In the attack, the DNS
infrastructure is compromised so that DNS queries for the victim site’s domain (say,google.com) return
an attacker-controlled IP address. This can be accomplished via several techniques, including DNS cache
poisoning and DNS response forgery. Pharming attacks are particularly devious because the browser’s URL
bar will display the domain name of the legitimate site, potentially fooling even the most meticulous users.

Recent research has exposed complex and subtle dependencies between names and name servers [46],
suggesting the DNS infrastructure is more vulnerable to DNSpoisoning attacks than previously thought.
In March 2005, the security organization SANS issued a warning about a DNS poisoning attack which
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affected at least 1300 domain names, 8 million HTTP GET requests, and 75,000 email messages [48, 54].
More focused DNS poisoning attacks have also affected Hushmail [24], panix.com [42], and Ebay [11].

The ubiquity of public wireless access points and wireless home routers introduce new pharming threats.
Users are becoming more and more accustomed to accessing wireless routers in airports, restaurants, con-
ferences, libraries, and other public spaces. Adversariescan set up malicious wireless routers in these areas
which offer free Internet access but redirect users to spoofed web sites. Also, many users leave the default
settings on their home wireless home routers unchanged. Since the default settings on home routers are opti-
mized for ease of use rather than security, these settings often disable encryption and access control, permit
wireless access to router administration, and use published, weak passwords to guard access to administra-
tive functions. These vulnerabilities enablewarkitting attacks [56, 57], a combination of wardriving and
rootkitting, where an adversary maliciously alters wireless a router’s configuration over a wireless connec-
tion. In the worst case, the adversary might be able to completely overwrite the router’s firmware. Warkitting
attacks enableactive attacks, giving an adversary complete control of users’ network connections.

Phishing attacks have become a serious threat. In 2006, Gartner Research estimates 109 million Ameri-
cans received phishing emails, and approximately 24.4 million Americans clicked on a phishing email [17].
Financial losses stemming from phishing attacks reached $2.8 billion. Phishing sites have become more
elusive and harder to shut down. Over the last few years, the average lifetime of phishing sites has shrunk
from a week to only a few hours. Some phishing sites use distributed, fault-tolerant architectures based on
botnets which serve phishing content from compromised machines to evade authorities [45]. We anticipate
these trends will continue.

Most web sites currently authenticate users with a simple password submitted via an HTML form.
Unfortunately, information submitted via HTML forms has proven to be highly susceptible to phishing. Ev-
idence suggests somewhere between 3–5% of phishing targetsdisclose sensitive information and passwords
to spoofed web sites [18, 33], and phishing attacks are becoming more and more sophisticated [45]. These
problems are not easy to fix: good phishing techniques can fool even the most vigilant users [8, 26]; trusted
paths in browsers for entering sensitive information are susceptible to spoofing [39, 62]; and multi-factor
authentication schemes are also vulnerable [50].

The problem with passwords is that it is too easy for users to reveal their passwords to parties who should
not receive them. Phishing works by tricking users into voluntarily sharing their passwords in dangerous
ways. Our insight is that if it is impossible for the user to give away her authenticator (even if she wanted to),
then attackers will no longer be able to use social engineering to steal the user’s authentication credentials.
In particular, computers are not fooled by social engineering attacks, so they are perfect candidates to store
and release authenticators on behalf of their users. We refer to authentication credentials that users can not
easily give away asdisclosure resistant. Other researchers have also noted the benefits of disclosure resistant
authentication credentials [43].

In this paper, we tackle the problem of designing a web authentication scheme that resists phishing
and pharming attacks. In one standard classification of authentication schemes, passwords are “something
you know”; but the problem with using “something you know” for authentication is that anything the user
knows, she can—and in a nontrivial fraction of cases, will—reveal to a phisher. We instead suggest relying
on “something your computer knows.” This is roughly equivalent to “something you have,” except that we
do it in software, without requiring the physical hardware tokens normally used to fill that role.

HTTP cookies are a natural candidate to be used as web authentication credentials (§ 4.1). In this regime,
a site should require a particular cookie be sent from the client for authentication; additional authentication
methods, such as passwords, may also be implemented. As we will show later, since the browser cannot be
“tricked” into giving a useful cookie to an attacker, socialengineering is eliminated.
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We will also show how web sites can authenticate users with cookies without requiring major changes
to the infrastructure of the web. We first analyze cookie authentication schemes compatible with legacy
browsers, usingSSL-only cookies(§ 4.1.1) andIP cookies(§ 4.1.2), which provide security against phishing
and pharming, respectively.

Although IP cookies resist pharming attacks, they can be cumbersome and tricky for web sites to deploy.
If an anti-pharming solution is too expensive, complicated, or restricts scalability, web sites will choose
efficiency, simplicity, and functionality over security. To address the drawbacks of IP cookies, Juels et al.
proposeactive cookies(§ 4.1.3), an extension of IP cookies designed to resist pharming attacks. However, we
show active cookies are vulnerable todynamic pharming, a new pharming attack against web authentication
which enables pharmers to hijack users’ web sessions. We also show authentication via client-side SSL,
currently considered the most secure option for web authentication by many researchers and application
developers, is vulnerable to dynamic pharming as well.

1.1 The locked same-origin policy

The same-origin policy in web browsers governs access control among different web objects and prohibits a
web object from one origin from accessing web objects from a different origin. Browsers currently enforce
the same-origin policy using the domain name from which the object originated. However, enforcing same-
origin based on domain name is problematic in the presence ofpharming attacks because pharmers can
influence the mapping from domain name to subject.

To resist pharming attacks, we propose thelocked same-origin policy, a new same-origin policy for
browsers based on cryptography (§ 5). The locked same-origin policy enforces access control for SSL web
objects based on servers’ public keys, which cannot be spoofed by attackers. The locked same-origin policy
permits enforcement of a more robust and consistent same-origin policy: name-based enforcement allows
pharmers to access objects that they did not originate. Instead of comparing domain names to enforce access
control, the browser compares the public key stored with theweb object to the public key sent with a new
connection; access in granted only if they match. It is this key-matching requirement that gave rise to the
term “locked.”

Applying the locked same-origin policy to SSL-only cookiesyields locked cookies(§ 5.1), an extension
to SSL-only cookies which binds them to the public key of the originating server. Locked cookies are an
attractive solution for pharming resistant authentication. Locked cookies require no changes to the HTTP
cookie specification, SSL, or web servers; web sites set and receive cookies in the same manner as before.
In addition to phishing and pharming attacks, locked cookies resist active attacks, where adversaries have
complete control of the network, including the routing infrastructure. Locked cookies also protect legacy
applications of cookies for authentication. Finally, for web sites needing to authenticate clients to multiple
servers within the same domain, we propose locked domain cookies, which do the same thing for domain
cookies that locked cookies do for host cookies (§ 5.2). We summarize our results in Table 2.

We emphasize that in this paper, we are concerned only with attacks that target web authentication
credentials. We do not consider the problem of protecting other kinds of credentials; for instance, our
methods do not help to protect users’ social security numbers, credit card numbers, birth dates, bank account
numbers, or other personal information from phishing.
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Auth cookie type Scope New? How verified

SSL-only host cookies Host No Match server’s domain name against host field of cookie
SSL-only IP cookies IP address No Match server’s IP address against host field of cookie
SSL-only domain cookies Domain suffix No Match server’s domain name against wildcard indomain

field of cookie
Locked cookies Host Yes Match server’s public key against public key stored in

locked cookie
Locked domain cookies Domain suffix Yes Match server’s domain name against wildcard certificate

sent in server’s cert chain

Table 1:Types of authentication cookies.Scope: A scope of “Host” does not mean a particular physical
machine, but rather a fully-qualified domain name, such asmail.google.com. A scope of “Domain
suffix” means a set of hosts characterized by a common suffix, for example*.google.com.

Strongest threat model protected against
Server authentication mechanism With legacy browsers With locked same-origin policy

Passwords (no protection) (no protection)
SSL-only cookies with domain names phishing active attacks
IP cookies pharming active attacks
Client-side SSL phishing active attacks

Table 2: Security of cookie authentication mechanisms using legacybrowsers and locked cookie
browsers.Each cell reports the strongest threat model resisted by each combination of authentication mech-
anism and browser type. We consider phishing, pharming, andactive attacks (Section 2.1).

2 Threat models and goals

2.1 Threat models

We consider three broad classes of threats, classified according to the capabilities of the attacker.

Phishing attacks. To implement phishing attacks, no capabilities are needed beyond control of a single
internet node. In this scenario, an attacker can:

• Have complete control over some web server with a public IP address

• Send communications such as emails and instant messages to potential victims

• Effect application-layer man-in-the-middle attacks, representing a legitimate server to the victim and
proxying input from the victim to the real server as needed.

Pharming attacks. An attacker with pharming capability has all the abilities of a phisher, plus

• The ability to change DNS records for the target site, such that the victim will resolve the target site’s
name to the attacker’s IP address.

In practice, such an attack might work through DNS poisoning, spoofed DNS responses, or by social engi-
neering attacks against a domain name registry. We assume pharmers do not have the same IP address as
the victim and cannot receive packets destined to the victim’s IP address.
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Active attacks. An active attack is the most powerful threat we consider here. In addition to pharming
capability, an active attacker can:

• Control the internet routing infrastructure and can re-route traffic destined to particular IP addresses

• Eavesdrop on all traffic

• Mount active, network-layer, man-in-the-middle attacks

To date, phishing has been by far the most prevalent class of attack; however, looking to the future, it seems
prudent to defend against more powerful attackers as well, to the extent possible.

Significantly, we assume that an active attacker doesnot have access to the target site’s server machines
or any secrets, such as private keys, contained thereon.

We also do not address cross-side scripting (XSS) attacks, and we assume that the target web site is free
of XSS vulnerabilities. Other research efforts address XSSvulnerabilities [23, 32, 34, 63, 64].

Initialization of authentication credentials. We separate the web authentication problem into two dis-
tinct subproblems: the initialization of users’ authentication cookies and the use of those cookies to au-
thenticate users to web sites. Our primary focus is on the latter, but there are several options available for
initialization. We discuss the initialization problem further in Section 8.

2.2 Goals

There are three metrics by which we measure our authentication mechanisms: security, usability, and de-
ployability.

2.3 Security

Our primary security goal is to authenticate a user to a web site and create an authenticated, trustworthy
channel between the user and web site, via a web browser. Section 2.1 is the basis for our security evaluation,
and we classify each mechanism according to the strongest threat it can resist: phishing, pharming, or active
attacks, in order from weakest to strongest.

2.4 Usability

Users’ psychological acceptance of an authentication mechanism is vital to its success [47]. Psychologi-
cal acceptance means that a mechanism’s behavior must closely match users’ expectations. To meet users’
expectations, we must understand users’mental models. Essentially, a user’s mental model is her under-
standing of a mechanism’s goals, interface, assumptions, risks, guarantees, and operation.

Unfortunately, studies have shown many users have an incomplete or inaccurate mental model of cur-
rent web security mechanisms. Users’ interpretations of “secure” web connections vary significantly, and
many users have trouble accurately interpreting browser security indicators and cues, such as the URL bar,
the “lock” icon, certificate dialogs, and the myriad of security warnings [8, 14, 15, 61]. In addition, users’
awareness of risks on the web are only loosely correlated to the spectrum of vulnerabilities and necessary
countermeasures, and studies show users can manage risks they are familiar with, but have trouble extrapo-
lating to unfamiliar risks [9].

This evidence suggests web authentication must be robust toinaccuracies in users’ mental models;
otherwise, adversaries could leverage users’ misconceptions, misunderstandings, and mistakes in an attack.
We identify four design principles to minimize the effects of imperfect mental models:
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Authentication should be nearly invisible to users. Since security is generally not users’ primary goal,
a security mechanism should not make unnecessary demands which interfere with their ability to complete
tasks or interrupt their workflow [49]. If given the choice between complying with security requirements or
working towards their goals, users will circumvent or disable the mechanism if it is annoying or too hard
to use [19, 35, 66]. This problem is exacerbated if users do not understand the necessity of these security
mechanisms.

Users should be able to understand how to use web authentication securely. When users do not un-
derstand what they need to do to be secure, they often make poor decisions [7]. For instance, users will take
the “path of least resistance” and ignore confusing security alerts they do not comprehend [8]. Users should
not have to understand the technical details of how an authentication scheme works to use it securely.

It should be difficult or impossible for users to take actionsthat defeat security. Security protections
should be mandatory, and not up to the user’s discretion; there should be no way for the user to bypass or
disengage the security mechanisms. If there is a way for users to switch the system to an insecure mode,
then phishers will try to trick users into flipping this switch.

Web authentication should use disclosure-resistant credentials. One usability problem with passwords
is that users must decide whether or not it is safe to discloseher password to a web site when prompted
to do so. Unfortunately, this imposes an impossible burden;users must thoroughly analyze and understand
the contents of the URL bar and site’s X.509 certificate, and interpret any browser messages and errors.
Phishing exploits this flaw. There are limits to what we can doabout this [1]: we cannot prevent users
from visiting phishing sites (because of the problem of false positives), and warning messages do not seem
to be effective [8, 61]. Therefore, we need authentication schemes that remain secure even if users should
happen to visit phishing sites. Since we cannot fully anticipate the tricks phishers may use to solicit users’
passwords and how users will behave in these situations, we conclude that authentication credentials should
bedisclosure-resistant. In other words, since it seems likely that any authentication credential the user can
readily give away will be vulnerable to phishing, we proposethat credentials should be designed so that
users cannot easily disclose them.

2.5 Deployability

If a new solution is to be successful, it should be easy to deploy and backwards-compatible: New authen-
tication mechanisms should not “break the web” because of problems in deployment or interoperability.
Naturally, any security benefits of the new scheme may not be gained when interoperating with existing
systems.

Another goal is to preserve web sites’ ability to control theuser experience. We prefer, when possible,
not to impose restrictions on how users must interact with the site at login or thereafter. We hope this will
increase the chances that our schemes will be adopted. For the same reasons, we also prefer schemes that
have few configuration parameters, especially those that can jeopardize compatibility with other implemen-
tations.
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3 Background

3.1 HTTP cookies.

HTTP cookies are a general mechanism for web servers to storeand retrieve persistent state on web
clients [44]. Since HTTP is a stateless protocol, cookies enable web applications to store persistent state
over multiple HTTP requests. For example, web shopping applications can use cookies to track which items
a user adds to her shopping cart.

When a client makes an HTTP request to a server, the server hasthe option of including one or more
Set-Cookie headers in its response. TheSet-Cookie header requests clients to store a cookie—a
simple name-value pair of strings—in the client’s cookie jar and to return it on subsequent visits to this web
site by providing it in theCookie header associated with the subsequent HTTP requests.

Additional attributes may be specified. Theexpires attribute indicates when the cookie should be
deleted by the browser. If theexpires attribute is omitted, then the cookie is called asession cookie
and should be deleted when user closes the web browser. Cookies with anexpires attribute are called
persistent cookies.

The domain and path attributes are used to qualify the set of HTTP requests for which clients
should send back cookies. The client searches its cookie jarfor cookies whose domains which suffix-
match the domain of the request and whose paths prefix-match the path of the request. For example, if
the user requests the URLhttp://online.foobar.com/store/index.html, then a cookie with
domain=.foobar.com andpath=/store would be included with this request, but a cookie with
domain=pics.foobar.comwould not. The default values of thedomain andpath attributes are the
host name of the server which generated the cookie response and the full path of the document described by
the HTTP header, respectively. We refer to a cookie with an explicit domain attribute as adomain cookie
and a cookie which omits it as ahost cookie.

Web browsers use thedomain andpath attributes to enforce asame-origin policyfor cookies. The
same-origin policy in web browsers prohibits a web object from one origin from accessing web objects
from a different origin. In particular, a browser will only append a cookie to an HTTP request if the domain
attribute of the cookie tail-matches the domain of the request. Cookies are also accessible through the
Javascript propertydocument.cookie. For this mode of access, web browsers use the URL of the
document executing the Javascript to determine the appropriate cookies.

The final optional cookie attribute,secure, indicates that the cookie should only be sent over SSL
connections. We refer to a cookie including thesecure attribute as anSSL-only cookie. We now give
some background on SSL.

3.2 Secure Sockets Layer (SSL) and X.509 certificates.

The Secure Sockets Layer (SSL) and its successor, TransportLayer Security (TLS), are cryptographic pro-
tocols for establishing end-to-end secure channels for HTTP and other Internet traffic [13, 55]. HTTP over
SSL is also known as HTTPS.

SSL uses X.509 certificates [22] to identify the server participating in the SSL connection. An X.509
certificate contains the server’s public key, the domain name of the web site (specified in theCN subfield
of the certificate), the public key of the issuer of the certificate, the time period for which the certificate is
valid, and the issuer’s signature over these fields. The private key corresponding to a X.509 certificate can
be used to sign another certificate, and so on, creating a chain of trust.

The root of this trust chain is a certificate authority (CA). Web browsers ship with the certificates of
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some number of CAs which are deemed to be trusted; these are called root certificates. Most commonly,
a web site’s certificate is signed directly (“issued”) by a CA, and this length-two chain is sent at the start
of an SSL connection. For example, if the CA Verisign issues acertificate towww.foobar.com, the
resulting chain is of length two: Verisign’s root certificate is sent, followed by the Verisign-signed certificate
for www.foobar.com.

Longer certificate chains can be constructed if a CA issues asigning certificateto an entity. Signing
certificates can sign other certificates. For example, iffoobar.com has several domains for which it
needs certificates (e.g.,www.foobar.com, accounts.foobar.com, mail.foobar.com, etc.), it
could request a signing certificate from a CA and then issue its own certificates for each its subdomains using
its public key in the signing certificate. In this case, the issuer forfoobar.com’s signing certificate would
be the CA, but the issuer for each of thefoobar.com’s subdomain certificates would befoobar.com’s
signing certificate.

When the client’s web browser makes a connection to an SSL enabled web server over HTTPS, the
browser must verify the server’s certificate is valid. This involves numerous checks, but at the high level the
browser must:

1. Verify that the first certificate in the chain is from a trusted CA.

2. Verify that (a) every certificate in the chain has a valid signature from its predecessor, using the public
key of the predecessor and (b) that no certificate has expired.

3. Verify that theCN field of the last certificate in the chain matches the domain name of the web site the
browser intended to visit.

If any of these checks fail, the browser warns the user and asks the user if it is safe to continue. If the user
chooses, the user may permit the SSL connection to continue even though any or all of these checks have
failed.

Note that browsers treat failure of these checks as a “soft” error and prompt the user, rather than preemp-
tively blocking access to the affected web site. The reason is to ensure compatibility with misconfigured
certificates and SSL servers; a periodic survey by Security Space shows that approximately 60% of SSL
certificates have such problems [52]. Also, this behavior bybrowsers allows web sites to use self-signed
certificates if they choose, instead of paying a CA for a certificate.

Unfortunately, asking users whether to continue anyway in such cases is a serious security vulnerability.
Researchers have shown that users routinely ignore such security warnings and just click “OK” [5, 8, 61].

4 Phishing and pharming resistant authentication for legacy browsers

In this section, we examine what web site administrators cando to protect users’ authentication credentials
from phishing and pharming, given the constraints imposed by existing browsers. We discuss two general
approaches:authentication cookiesandclient-side SSL certificates.

4.1 Using HTTP cookies for authentication

HTTP cookies are an excellent candidate for web authentication credentials, since they meet many of the
goals of§ 2.2 well. HTTP cookies have several advantages:
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• Excellent usability: they areeasy to usefor authentication anddisclosure-resistant. Browsers auto-
matically determine the appropriate cookies for web requests and require little to no user involvement
to make security decisions, reducing the chance of human error. Also, because it is the browser and
not the user who makes decisions about when to disclose cookies, cookies are inherently disclosure-
resistant. Since cookies operate below the human-computerinteraction level, users do not usually
interact with cookies and many users are not even aware of their existence or how to find them on
their computers. Phishers could try to solicit cookies fromusers by giving instructions on how to
navigate the file system, find the cookie file and appropriate cookie, and manually type in the cookie
data into a web form; but since the process of manually findinga cookie in the browser or file system
deviates significantly from the normal authentication and interaction experience, asking users to do so
is more likely to be met with suspicion and distrust.

• Ease of deployment: Cookies are well supported in production web servers and major web browsers,
and web sites already use cookies for authenticating users’requests after they login. Since cookies
operate at the HTTP protocol level, they impose no restrictions on the type of user experience or
branding that web sites present to users.

In short, cookies are attractive because they meet our usability and deployability goals. We will now discuss
how to build on cookies to provide the desired security properties.

Our solutions useauthentication cookies– persistent cookies that authenticate users. First, we show how
web sites can use SSL-only persistent cookies to defend against phishing. Then, we show how to defend
against pharming as well by using SSL-only persistent IP cookies. Finally, we analyzeactive cookies[31],
a variant of IP cookies.

4.1.1 Using SSL-only cookies

In the simplest scheme, when a user creates a new account withthe web site, the site sets an SSL-only per-
sistent cookie on the user’s computer. Possession of a validcookie is sufficient for authentication: users only
need to present a valid cookie to authenticate themselves. The authentication cookie itself should contain a
unique value to identify the user and an expiration time withcryptographic integrity protection [16].

Setting thesecure flag on this cookie ensures that the cookie will only be sent over SSL connections,
so eavesdroppers and web proxies cannot learn this secret. The browser’s same-origin policy ensures that
the cookie will only be sent back to the site that set the cookie, so third parties and phishers cannot learn
the secret. When the user returns to the site, the browser will send this cookie and the site can use that
to authenticate the user. After the user is authenticated, the user and web site can use the SSL connection
between the browser and the server to communicate, and the browser’s same-origin policy prevents content
from other domains from eavesdropping on or tampering with this connection. Because SSL-only persistent
cookies are part of the HTTP specification, sites can deploy this mechanism today without requiring browser
extensions. This scheme could be used as a replacement for passwords.

Of course, SSL-only persistent cookies can be combined withother authenticators. For instance, a
security-critical site might require the user to present both the authentication cookie and a password to gain
access to their account. The cookie authenticates the user’s computer and defends against phishing, while
the password might be useful to ensure that even if the computer is shared among several family members,
other family members cannot gain access to the user’s account.

Existing implementations. Some web sites already use persistent authentication cookies. For example,
some web sites offer a “remember me” option, which sets a persistent cookie on a user’s machine. The
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browser will present this cookie during subsequent visits to the web site, enabling the user to bypass the
initial login process.

Some existing anti-phishing solutions also use authentication cookies to complement regular password
authentication. Examples include Bank of America’s Sitekey [4] and similar approaches by ING Direct [25],
Vanguard [58], and Yahoo [65]. Before a user is permitted to login from a particular computer, she must
“register” it. The registration process sets a SSL-only persistent authentication cookie on the user’s com-
puter, and only computers with authentication cookies are permitted to access the user’s account.

Security and usability analysis. Phishing sites may be able to fool users into revealing theirpasswords,
but the browser’s same-origin policy denies phishers access to the users’ authentication cookies. However,
this enforcement mechanism is vulnerable to DNS attacks, enabling pharmers to steal users’ authentica-
tion cookies and gain unauthorized access to users’ accounts. Authentication cookies usually include the
secure attribute, but thesecure attribute does little to protect cookies against DNS poisoning attacks.
Thesecure attribute specifies that a cookie should only be sent only over SSL connections, but it does
not specifywhichSSL connection. Suppose a pharmer uses DNS poisoning to hijack www.xyz.com and
a user subsequently visitshttps://www.xyz.com/index.html. The user’s browser will attempt to
establish an SSL connection, requiring the pharmer to present an X.509 certificate. If the server certificate is
not signed by one of the root CAs in the browser or the certificate’sCN does not match the server’s domain
(i.e.,www.xyz.com), the browser will warn the user and ask her if it is safe to proceed. If the user heeds the
warning and answers “no”, the browser will cancel the connection and the user’s cookies forwww.xyz.com
will remain safe. Unfortunately, most users ignore these warnings and click “OK” [5, 8, 61]. In this case,
the browser will establish an SSL connection to the pharmer and append all cookies (secure and not) for
www.xyz.com to the request.

Because the user has the option to override browser warningsand mistakenly connect to pharming sites,
legacy SSL-only persistent cookies do not satisfy our usability goals (§ 2.2). To prevent pharmers from
stealing these cookies, users must understand certificate error prompts and respond to them correctly, which
is not something we can count on.

Deployability analysis. SSL-only persistent cookies are well supported in web servers and browsers. As
evidenced by Sitekey and others, some web sites are already deploying SSL-only persistent cookies as part
of an anti-phishing mechanism.

4.1.2 IP cookies

We use the termIP cookieto refer to a SSL-only host cookie whosedomain attribute is an IP address. IP
cookies can be used for web authentication in the same way described above. When a user creates a new
account, a web site sets an IP authentication cookie on the user’s machine. Then for subsequent requests,
only computers which present a valid IP cookie are permittedto access the user’s account.

Security analysis. Like regular cookies, IP cookies resist phishing attacks, since the browser’s same-
origin policy denies phishers access to users’ authentication cookies. IP authentication cookies also resist
pharming attacks, because an IP cookie will only be sent overconnections to the IP address listed in the
cookie’sdomain attribute: the DNS infrastructure is irrelevant.

Schemes using IP cookies are, however, vulnerable to activeattackers that control some of the routing
infrastructure. Since these attackers can intercept a client’s HTTP requests to the site’s IP address, they may
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be able to steal its IP cookies, if users are willing to click through certificate error dialogs.

Usability analysis. Browsers automatically and transparently regulate accessto IP cookies based on the
server’s IP address. With respect to pharming attacks, users cannot take actions which bypass or override
this policy. However, an active attacker may be able to pilfer a user’s IP cookie for a web site if she responds
incorrectly to certificate error prompts.

Deployability analysis. Users typically access a web site through its domain name, but this usage is
incompatible with IP cookies. For instance, if the browser has an IP cookie for the IP address1.2.3.4,
this cookie will be sent with a request for the URLhttps://1.2.3.4/index.html, but it will not be
sent with a request forhttps://www.xyz.com/index.html, even if the DNS namewww.xyz.com
resolves to IP address1.2.3.4 for this HTTP connection.

The consequence is that if we want to use IP cookies, all URLs must identify the server using its IP
address instead of its domain name. However, we cannot expect users to start accessing web sites using
IP addresses. To address this problem, web sites can allow users to initially access content using URLs
containing domain names, but when the user logs in, the server redirects her browser to a URL containing
the server’s IP address (e.g.,https://1.2.3.4/login.html). The browser will include her IP cookie
with this request, enabling the server to authenticate the user.

After authentication, navigating via URLs with the site’s domain name may be unsafe, since these
requests may be intercepted by the pharmer. This has unfortunate consequences for the user experience,
because it means that the URL shown in the browser’s address bar will contain an IP address instead of the
site’s human-recognizable site name. The presence of URLs containing IP addresses in the URL bar or links
might be psychologically unacceptable to some users, causing suspicion or confusion. Since a common
phishing modus operandi is to lure users with emails containing URLs with IP addresses, anti-phishing
education efforts have urged users to be suspicious of URLs containing IP addresses. Also, sites may be
reluctant to deploy a security solution that affects the branding of their site in this way.

IP cookies have other deployment problems as well. IP cookies make it harder to do DNS-based load
balancing, requiring web sites to use a long-lived static IPaddress, and are less flexible. More seriously,
they may require substantial changes to the web site’s architecture, because every page requiring authenti-
cation has to redirect to the IP address of the web server if the user is not already authenticated. Also, for
sensitive content, such as banking information, it is desirable to use SSL, but it is unclear whether certificate
authorities issue SSL certificates for IP addresses – for example, Verisign does not [59]. These factors may
make sites reluctant to embrace IP cookies.

4.1.3 Active cookies

To address these drawbacks of IP cookies, Juels, Jakobsson,and Stamm proposeactive cookies[31], a
repurposing of IP cookies within a dynamic authentication protocol designed to resist pharming attacks.
Authentication using active cookies requires no additional user involvement and is supported on existing
browsers. Active cookies use IP cookies to authenticate users, but after authentication completes, the server
conducts the remainder of the web session with URLs containing the site’s domain name. This approach
allows the web site to use SSL after authentication and helpsavoid any usability and branding problems
caused by IP addresses in the URL bar.

To resist pharming attacks after authentication, active cookies useclient IP binding[16]. With client
IP binding, the web server traces the IP address of the user’smachine during authentication and binds this
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User: Alice
Server: xyz.com at 
IP address 1.2.3.4

1. GET https://xyz.com/index.html

4. HTTP 302 Location: http://1.2.3.4/ac.cgi?SID=9876

3. POST https://xyz.com/login.cgi uname=Alice Server:
• generates session id (SID)
• records Alice’s IP address 

Server:
• validates Alice’s IP in step 5

against Alice’s IP in step 3
• verifies Alice’s IP cookie

Server validates Alice’s 
IP address

Alice visits
xyz.com

2. HTTP 200 OK /index.html

Alice identifies 
herself

5. GET http://1.2.3.4/ac.cgi?SID=9876Browser sends
IP cookie

6. HTTP 302 Location: https://xyz.com/accounts.html?SID=9876

7. GET https://xyz.com/accounts.html?SID=9876

8. HTTP 200 OK /accounts.html

9. POST https://xyz.com/withdraw.cgi SID=9876 amt=10000… Server validates Alice’s 
IP address

Alice requests
a transaction

Figure 1:Active cookies authentication protocol.

IP address to the session. After the client authenticates herself with her IP cookie, the server only accepts
requests from the traced IP address. The server determines the client’s IP address from the connection over
which it received client’s IP cookie. Since this request must use an explicit IP in the URL, it is outside the
influence of pharming attacks and enables the server to reliably determine the client’s IP address.

We now present the active cookies protocol in more detail. Weillustrate an instantiation of this protocol
in Figure 1, where a user, Alice, authenticates herself to a server hostingxyz.com at IP address 1.2.3.4. We
assume Alice previously obtained an IP cookie for 1.2.3.4. Alice first visits the web site and identifies herself
(steps 1-3), for example, with a username. This interactionoccurs using URLs containing domain names,
which rely on the DNS system. Juels et al. refer to requests for URLs which rely on DNS as occurring over
thesoft channel, since a pharmer can intercept these requests.

After the server receives the user’s login request in step 3,the server verifies the username and password,
creates a unique session id (SID), and traces the user’s IP address over the soft channel. Then in step 4, the
web server redirects the user (e.g., using the HTTP 302 status code) to a URL containing the server’s IP
address and the SID (http://1.2.3.4/ac.cgi?SID=9876). Juels et al. refer to requests for URLs
containing the server’s IP address as occurring over thehard channel, since these requests do not use the
DNS system and cannot be intercepted by pharmers. In step 5, Alice’s browser fetches this URL over the
hard channel and attaches Alice’s IP cookie for 1.2.3.4.
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User: Alice
Server: xyz.com at 
IP address 1.2.3.4

Pharmer: xyz.com at
IP address 6.6.6.6

PO
ST

 h
ttp

s:
//x

yz
.c

om
/lo

gi
n.

cg
i u

na
m

e=
A

lic
e 

pw
d=

fo
ob

ar
PO

ST https://xyz.com
/login.cgi unam

e=A
lice pw

d=foobar

H
TT

P 
30

2 
Lo

ca
tio

n:
 h

ttp
://

1.
2.

3.
4/

ac
.c

gi
?S

ID
=9

87
6

H
TTP 302 Location: http://1.2.3.4/ac.cgi?SID

=9876

GET http://1.2.3.4/ac.cgi?SID=9876 with Alice’s IP cookie 

compromised
DNS server

xyz.com?

6.6.6.6

Figure 2:Active cookies in the presence of a MITM pharming attack.

13



The server verifies the IP cookie and compares client’s IP address in step 5 against the client’s IP address
it previously traced in step 3. If these IP addresses are the same, Juels et al. argue there is no pharming attack
and the server should allow Alice access to her account, but if they are different, then a MITM pharming
attack is likely in progress and the server should deny access. In addition, after the server authenticates
Alice, it uses client IP binding to bind Alice’s IP address tosession and only accepts requests from the
traced IP address from steps 3 and 5.

Juels et al. argue that if a pharmer attackingxyz.com is present, then it will man-in-the-middle Alice’s
requests and the server’s responses, and in step 3, attempt to log in as Alice. The server responds with a
redirect to the hard channel. Since the server will not successfully authenticate Alice without her IP cookie,
the pharmer must forward the redirect to Alice. Alice’s browser then connects to the server over the hard
channel and sends her IP authentication cookie. Since from the server’s perspective, the soft channel request
(in step 3, from the pharmer) and the hard channel request (instep 5, from Alice) originate from different IP
addresses, the server denies access and warns Alice that shemay be under attack. We illustrate this scenario
in Figure 2. Based on this analysis, Juels et al. conclude that authentication using the active cookie protocol
resists pharming attacks.

Security analysis: Dynamic pharming attacks. We show active cookies are vulnerable to pharming.
To help motivate our attack, we first make a few observations about the active cookies protocol. Alice’s
IP cookie is necessary to gain access to Alice’s account, andAlice’s machine will only release Alice’s IP
cookie over the hard channel to the legitimate server. Sincethe pharmer cannot influence the outcome of IP
tracing for the hard channel, the pharmer’s only option is toalso originate soft channel requests from Alice’s
machine, but maintain control of the session.

To trigger this chain of events while maintaining control ofAlice’s session, the adversary uses adynamic
pharming attack. A dynamic pharming attack is a pharming attack where the adversary changes the DNS
entry (i.e, the domain name/IP address mapping) for the target site during the course of the attack. First,
the pharmer initializes the DNS entry forxyz.com to the pharmer’s IP address, say 6.6.6.6. The pharmer
also indicates in the DNS record that requesters should not cache this result, i.e., it sets the TTL=0. Then,
when Alice requestshttps://xyz.com/index.html in step 1 of Figure 1, her browser sends this
request to 6.6.6.6, and the pharmer returns a “trojan”index.html document. This trojan document will
monitor and influence Alice’s subsequent interactions withthe legitimatexyz.com.1 The trojan document
has following general structure:

<html>
<body>
<script>
---MALICOUS JAVASCRIPT CODE---
</script>
<iframe
src=’’https://xyz.com/index.html’’>

<\body>
<\html>

After the pharmer returns the trojan document to Alice, it updates the DNS entry forxyz.com to the IP ad-
dress of the legitimate server forxyz.com, say 1.2.3.4. The goal is to force the browser load the legitimate

1This request may use SSL, which we assume here. Since it is unlikely the pharmer can obtain a valid certificate forxyz.com,
the user will probably receive a certificate warning dialog.Unfortunately, researchers have shown that users routinely ignore such
security warnings and just click “OK” [5, 8, 61], allowing the attack to proceed.
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https://xyz.com/index.html document into the<iframe>, which the browser displays to the
user. The adversary then waits for the user to login and the active cookie authentication protocol completes,
after which the server switches the session back to the soft channel.

At this point the trojan takes control and begins to monitor the user’s interactions in the<iframe>.
Since the parent document and the<iframe> both “originated” fromxyz.com, the browser’s same-
origin policy will allow the malicious Javascript running the parent document to access the content in the
<iframe>. The trojan effectively hijacks control of Alice’s session– it can eavesdrop on sensitive content,
forge transactions, keylog secondary passwords, etc.

One complication to mounting this attack is web browsers’ use of DNS pinning. With DNS pinning,
a web browser caches the result of a DNS query for the user’s entire browsing session (i.e., until the user
closes the browser), regardless of DNS entry’s specified lifetime. Browsers implement DNS pinning to
defend against variants of the “Princeton attack” [20]. In the “Princeton attack”, a malicious web server
first lures a victim who resides within a firewalled network containing privileged web servers. We assume
these servers are accessible only to machines behind the firewall. After the victim connects to the malicious
server, the adversary changes its DNS entry to the IP addressof a sensitive web server located on the
victim’s internal network. Same-origin policy restricts malicious code from accessing other domains, but
since the adversary’s domain now resolves to an internal IP address, this attack enables Javascript served by
the adversary to the victim to access internal web servers.

DNS pinning poses a problem for dynamic pharming attacks because once a browser resolves a domain
name using DNS, it will use the resolved IP address for the entire browsing session and ignore any sub-
sequent changes the pharmer makes in the DNS system. However, since DNS pinning “breaks the web”
in certain scenarios, e.g., dual homed IPv6/IPv4 servers, dynamic DNS, and automatic failover, browsers
implementors have recently relaxed their DNS pinning policies. For example, the results of DNS queries
are now only pinned for a fixed amount time.

However, Martin Johns discovered a technique for circumventing DNS pinning completely [28]. Johns
discovered that a pharmer can force a victim to renew its DNS entry for a given domain on demand by
rejecting connections from the victim, e.g., by sending an ICMP “host not reachable” message. The browser
reacts by refreshing its DNS entry for the domain. Put in the context of our dynamic pharming attack,
after the pharmer delivers the trojan page to the user, it rejects subsequent requests from user’s machine and
updates the DNS entry forxyz.com to the IP address of the legitimate server. Now, when the user’s browser
loads the<iframe>, it will first attempt to contact the pharmer, fail, refresh its DNS entry, receive the IP
address of the legitimate server, and load the legitimateindex.html document into the<iframe>. The
attack now proceeds as before.

To parallelize this attack against multiple concurrent users, it is inefficient to repeatedly update the DNS
entry forxyz.com. If the adversary has compromised a local, root, or authoritative DNS server, or changed
the authoritative server of record forxyz.com, the adversary can selectively respond with the pharmers IP
or the legitimate server’s IP depending on the stage of attack. However, if the adversary only has the ability
to change DNS entries forxyz.com, say at a local or root DNS server, this attack is unscalable because the
pharmer must update the DNS entry for each instance of the attack and reset it after the attack completes.

In the latter scenario, the pharmer can use round robin DNS entries to make this attack scalable. A round
robin DNS entry consists of multiple IP addresses for a single domain name. Web sites use round robin DNS
to implement load balancing. The DNS server returns an ordered list of the IP addresses in response to a
query, but rotates the order for each response. Browsers usually connect to the first IP address in the list, and
this achieves some degree of load balancing among clients. When the connection fails, the browser tries the
next IP address on the list, until it successfully makes a connection.
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To leverage round robin DNS entries in a dynamic pharming attack, the pharmers creates a round robin
DNS entry containing two IP address: the pharmer’s IP and thelegitimate server’s IP. Roughly half the DNS
responses will be in the order: pharmer’s IP, server’s IP. Inthis case, the user will connect to the pharmer
first, and pharmer delivers the trojan page. The pharmer rejects subsequent connections from the user, and
the user’s browser will automatically failover to the legitimate server, after which the attack proceeds as
before.

Although dynamic pharming attacks against active cookies do not enable pharmers to steal users’ au-
thentication credentials (i.e., their IP cookies), they enable pharmers to compromise users’ sessions in real
time. Since this is a significant vulnerability, we concludeactive cookies are insecure in the presence of
pharming.

4.2 Client-side SSL

The most common usage of SSL is for server authentication, but in the SSL specification, a server can also
requestclient-side authentication, where the client also presents an X.509 certificate and proves knowledge
of the corresponding private key. Using client-side SSL, servers can identify a user with her SSL public
key and authenticate her using the SSL protocol. Since client-side SSL authentication relies on end-to-end
public key cryptography, currently, it is generally considered the most secure option for web authentication.

Security analysis. Client-side SSL authentication resists phishing attacks.Although a phisher may be able
to trick a user into participating in mutual authenticationusing SSL, the phisher cannot use this interaction
to impersonate the user at another web site. Authenticationrequires knowledge of the private key, which the
users’ browser always keeps secret.

However, client-side SSL is vulnerable to the dynamic pharming attack described in Section 4.1.3. The
attack is nearly identical. After returning the trojan page, the pharmer switches the DNS entry (or uses
round robin DNS entries), and denies subsequent connections from the client. The browser will then load
content from legitimate server into the<iframe> and mutually authenticate itself to the server using its
client-side certificate. After authentication completes,the same-origin policy will allow the trojan Javascript
in the outer document to affect the authenticated session with legitimate server in the<iframe>.

Usability and deployability analysis. An advantage of client-side SSL is that the user’s authentication
credential, i.e., her private key, is disclosure resistant. The user is not required to memorize her private
key, and after the user imports her private key, her browser uses it (almost) automatically. It is difficult for
attackers to trick a user into inadvertently disclosing herprivate key.

However, research studies have shown there are significant usability problems with client-side SSL [3,
10, 21]. To use client-side SSL, a user first must import a certificate and corresponding key pair into her
browser. Web sites may provide users these certificates or user may be required to obtain her own certificate
signed by a certificate authority. Regardless, studies haveshown that obtaining and installing a certificate
and key pair is a cumbersome and confusing process for users,and when users make mistakes, they are
hard to correct. Also, most users do not understand cryptography, why need they certificates, and do not
understand their connection with authentication [60].
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5 Resisting pharming and active attacks with the locked same-origin policy

Dynamic pharming attacks pose a significant challenge to thedevelopment of deployable pharming resistant
authentication for legacy browsers. Although dynamic pharming attacks leverage the implementation details
DNS pinning, “fixing” DNS pinning is unlikely. DNS pinning has a lengthy and controversial history in
Firefox and Mozilla [37], and the current implementation isan explicit compromise to support dynamic
DNS and round robin DNS for failover [36, 38]. Developing better authentication protocols is not the
right approach either; since dynamic pharming hijacks a user’s session after authentication completes by
exploiting weaknesses in browsers’ same-origin policy, a better authentication protocol is unlikely to help.

To resist dynamic pharming, we must upgrade browsers’ same-origin policy. Enforcing same-origin
based on domain name is problematic in the presence of pharming attacks because pharmers can influence
the mapping from domain name to subject. We argue browsers should enforce same-origin policy crypto-
graphically. Instead of identifying web objects by name (i.e., domain name), we propose browsers should
identify web objects by public key. We refer to web objects identified by public key aslocked web objects.
For locked web objects, we propose browsers enforce alocked same-origin policy: the browser allows a
web object to access another web object only if their public keys match.

Since the majority of web objects on the Internet are not associated with any public key, enforcing the
locked same-origin policy for all objects is impractical. However, browsers already associate web objects
retrieved over SSL with a public key: the key of the server hosting the object. We propose browsers should
enforce the locked same-origin policy only for SSL web objects, and use the legacy same-origin policy (i.e.,
using domain names) for non-SSL objects.

To use the locked same-origin policy browsers must enforce three properties: 1) unlocked web objects
are prohibited from accessing locked web objects, 2) the owner of a locked web object (i.e., the server
from which is was retrieved) must prove knowledge of the associated private key, and 3) a locked web
object is allowed to access another locked web object only iftheir public keys match. Legacy browsers
already enforce the first property: objects not retrieved over SSL are not allowed to access SSL objects,
even if the domains of the objects would otherwise allow it. Browsers already enforce the second property
as well: retrieving a web object over SSL requires the browser to successfully establish an SSL connection
to the server, and establishing an SSL connection requires the server to prove knowledge of the private
key associated with its advertised public key. Upgrading browsers to enforce the locked same-origin policy
requires changing browsers to support the third property: regulating inter-object accesses between locked
objects.

Our locked same-origin policy requires no changes to the HTTP cookie specification, SSL, or web
servers; web sites operate in the same manner as before. To take advantage of the locked same-origin policy
and protect its users from pharming attacks, a web site only needs to use SSL.

5.1 Locked cookies

In Section 4.1, we argued HTTP cookies are an excellent candidate for web authentication credentials, but
they have some limitations with legacy browsers. SSL-only cookies are a highly deployable and usable
option, but are vulnerable to pharming attacks. Although IPcookies resist pharming attacks, they can be
cumbersome and tricky for web sites to deploy. To take advantage of IP cookies a web site must use URLs
containing the IP address of the server. With IP based URLs, we lose many advantages of using URLs
containing domain names, e.g., SSL, load balancing, branding, and usability. If an anti-pharming solution
is too expensive, complicated, or restricts scalability, it will likely be passed over in favor of simplicity and
functionality.
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Figure 3:A locked host cookie.We show how a sitewww.mysite.com sets a locked cookie over a SSL
connection. The rectangle depicts the X.509 certificate chain associated with the SSL connection, and the
cylinder at the bottom represents the browser’s cookie jar after the cookie is accepted.

However, with browsers enforcing the locked same-origin policy, web sites can now use SSL-only per-
sistent cookies to authenticate users and resist phishing,pharming, and active attacks. We refer to SSL-only
cookies under a locked-same-origin policy aslocked cookies. Browsers enforce the same-origin policy for
locked cookies by binding SSL-only cookies to the public keyfrom the originating server’s X.509 certificate
when the cookies are set. Then, instead of using domain namesto enforce access control, the browser uses
servers’ public keys. Locked cookies require no changes to the HTTP cookie specification, SSL, or web
servers; web sites set and receive cookies in the same manneras before.

The design of locked cookies is straightforward in concept.When a web site at domainD sets an SSL-
only host cookieC, using either theSet-Cookieheader or thedocument.cookieJavascript interface,
the browser stores the server’s public keyPK from its X.509 certificate along with the cookie. Then, for
subsequent HTTPS requests toD, the browser will appendC to the request only if it has successfully
established an SSL connection withD, andD’s certificate has public keyPK. For cookie accesses via
the document.cookie Javascript interface, the browser grants access toC if the requesting script is
executing in a document requested over an SSL connection from D, andD’s certificate has public keyPK.
If the public keys do not match, the browser does not send the cookie and does not prompt the user to
override the decision. See Figure 3.
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Security analysis. Locked cookies protect authentication cookies against allthreat models in Section 2.1:
phishing, pharming, and active attacks. With locked cookies, a browser only allows a server access to a host
cookie tagged with public keyPK if 1) the server presents a certificate forPK, and 2) the browser and
server can successfully establish an SSL connection. In contrast to current browser policy, locked cookies
do not depend on users correctly answering prompts in response to certificate errors (e.g., an adversary
presenting a self-signed certificate with a spoofed domain name) to prevent cookie theft; locked cookies
rely solely on the public key in the server’s certificate and do not depend on how users respond to any errors.
If the adversary tries to present a certificate forPK and does not know the private key corresponding to
PK, she will not be able to successfully complete the SSL handshake; the browser will then automatically
cancel the connection with no option of user override.

Usability analysis. Locked cookies satisfy all of our usability goals. As we discussed in Section 4.1,
cookies are easy to use and disclosure-resistant. In contrast to existing SSL-only cookies, a user cannot
take any actions that will cause her browser to send her authentication cookies to attackers, e.g., by ignoring
certificate warnings. Locked cookies cryptographically enforce the same-origin policy for authentication
cookies automatically; users do not need to understand SSL certificates or how locked cookies work to
securely authenticate to web sites and protect their authentication credentials.

Deployability analysis. Implementing locked cookies in browsers would require onlyminimal changes.
Browsers only need to extract and store the public key from the SSL session when a server sets a cookie,
and perform an equality check on each cookie access. See Section 7 for details about our implementation of
locked cookies in Firefox.

Since we are proposing a change in browser policy, we must make sure this new cookie policy does
not “break the web”: no browser developer is likely to embrace an extension that makes their browser
incompatible with existing web sites, so legacy web servershad better continue to work even when visited
with locked cookie-enabled browsers. Locked cookies seem safe from this point of view. Locked cookies
are host cookies, and browsers currently enforce the same-origin policy for host cookies by allowing access
only to the same fully qualified domain name which set the cookie. Since the binding between a fully
qualified domain name and its public key is relatively staticand long-lived, in the absence of malicious
activity, the locked cookie policy should be for the most part equivalent to today’s cookie policy.

One exception is that the relationship between a domain and its public key may change when its cer-
tificate expires. The business model of many CAs is to issue certificates that are valid only for a relatively
modest period of time, e.g., one or two years, and require customers to renew their certificates when they
expire. The idea is that a subscription type service will generate a continuous revenue stream and CAs
can adjust their prices on a yearly basis. Unfortunately, when web sites renew their certificates they often
generate a server certificate from scratch using a new publickey. If server uses a new public key every time
its certificate changes, this means its SSL-only persistentcookies on users’ machines will expire when the
certificate expires, regardless of the value of the cookie’sexpires attribute. At first glance, this might
appear to pose a risk of “breaking the web.” However, we believe that this risk is minimal. Since clients
occasionally delete persistent cookies stored in their browsers, web sites cannot rely on long-term access
to persistent cookies, and they already have a strong incentive to structure their applications accordingly.
Therefore, we expect that expiring persistent cookies prematurely will not break legacy web sites, though
it may inconvenience users slightly. To avoid this inconvenience, web sites aware of locked cookies can
arrange for their renewed server certificates to use the samepublic keys as their old ones.

Any web site that already uses secure host cookies will automatically gain protection from pharming
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and active attacks as users upgrade to locked cookie-enabled browsers. Some current anti-phishing schemes
(e.g., Sitekey [4]) already utilize secure host cookies; locked cookies would transparently strengthen the
security that these schemes provide, without any work from the web site operator.

5.2 Locked domain cookies: Authenticating to multiple servers in a domain

In Section 5.1, we showed how web sites can take advantage of locked cookies to authenticate users to a
single web server and resist pharming and active attacks. More generally, a web site might be composed
of several host names, e.g.,mail.xyz.com,www.xyz.com,login.xyz.com, and the web site must
authenticate users to all these servers. We assume these servers share the same second-level domain name,
e.g., xyz.com. Legacy servers commonly solve this problem using domain cookies. To authenticate
clients to multiple servers atxyz.com, the web site can set a domain authentication cookie on clients with
domain attributexyz.com. Then clients will include this cookie with requests to any with xyz.com as
part of its domain name.

However, domain cookies are vulnerable to pharming attacks. If an adversary pharms any host name in
xyz.com, she can steal users’ domain authentication cookies forxyz.com. To address pharming attacks
against domain cookies, we proposelocked domain cookies, a cryptographic same-origin policy for secure
domain cookies which enables web sites to specify access rights for domain cookies in an incrementally
deployable and backward compatible way. Applying a cryptographic same-origin policy to domain cookies
is challenging. We cannot simply extend the same rules for locked host cookies to domain cookies. Since
the public key of the server setting the domain authentication cookie is probably different from the public
keys of the other servers in the domain, such a policy would deny those servers access to the cookie. To
address this problem, our policy tags cookies with a public key, like locked host cookies; however, where
locked cookies associate a key with a particular host, SSL domain cookies associate a key with a subdomain
range.

To infer this association, locked domain cookies utilize wildcard certificates. A wildcard certificate is
an X.509 certificate with a wildcard expression in theCN field (e.g.,*.xyz.com). CAs currently offer
wildcard certificates as an option for deploying multiple SSL servers within a subdomain range. Customers
purchase a single wildcard certificate and install it (and the corresponding private key) on all their servers in
the subdomain range. Modern browsers already support wildcard certificates, and they require no additional
user interaction.

To specify access rights for a secure domain cookie withdomain attributeD (e.g.,xyz.com), servers
install a wildcard certificate in their certificate chain with CN=*.D. Unlike the common usage and for more
detailed reasons we discuss later, we require this wildcardcertificate not be the leaf (i.e., server) certificate,
but instead be a signing certificate part of the server’s certificate chain (i.e., an internal node). When a server
sets a secure domain cookieC with domain attributeD, the browser searches the server’s certificate chain
for a wildcard signing certificate withCN=*.D. If it finds such a certificate, it tagsC with the wildcard
certificate’s public keyPK. Then, for a future HTTPS request to a server in subdomain range D, the
browser will appendC to the request only if it can successfully establish an SSL connection to the server,
and server’s certificate chain includes a wildcard signing certificate withCN=*.D and public keyPK. A
similar policy applies to cookies accesses viadocument.cookie. If a server sets a secure domain cookie
and its server chain does not contain such a wildcard signingcertificate, the browser applies the legacy
same-origin policy to the cookie (i.e., using domain names). See Figure 4.

Security analysis. Locked domain cookies protect secure domain cookies against all threat models in
Section 2.1: phishing, pharming, and active attacks. With locked domain cookies, a browser only allows
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Figure 4:A locked domain cookie.We show how a sitewww.mysite.com sets a locked cookie over a
SSL connection. The rectangle depicts the X.509 certificatechain associated with the SSL connection, and
the cylinder at the bottom represents the browser’s cookie jar after the cookie is accepted.
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a server access to a domain cookie tagged with public keyPK if 1) the server presents a certificate chain
containing a non-leaf wildcard signing certificate withPK, and 2) the browser and server can successfully
establish an SSL connection. Since the private key of a signing certificate is required to construct a valid
certificate chain containing it (as an interior node), an adversary without knowledge of the private key cannot
construct a valid certificate chain containing the wildcardcertificate. If the certificate chain is invalid, the
browser will cancel the SSL connection with no option of useroverride.

Usability analysis. Like locked host cookies, locked domain cookies satisfy allof our usability goals.
The enforcement of the same-origin policy for locked domaincookies does not depend on whether users
understand locked domain cookies or how users respond to anycertificate errors.

Deployability analysis. For web browser developers to adopt locked domain cookies, and for web sites
to take advantage of them we must verify two properties: 1) browsers enforcing the stronger same-origin
policy for locked domain cookies will not “break the web” when users visit legacy sites, and 2) users of
legacy browsers must still be able to interact with web sitesthat use wildcard signing certificates to protect
domain cookies (even though legacy browsers will not enforce the stronger security policy).

For the first property to hold, no legacy web server must use wildcard signing certificates as a non-leaf
node in its certificate chain. Otherwise, there is a chance a browser using locked domain cookies might
misinterpret a wildcard certificate, enforce the stronger same-origin policy, and wrongly deny a legitimate
server access to a domain cookie.

To check whether servers use wildcard certificates as non-leaf nodes in their certificate chains, we con-
ducted a survey of SSL servers. In our survey, we crawled the web on May 26, 2006 for SSL servers,
starting from a list of major news, portal, and financial sites. For the sake of simplicity, we restricted our
study to the following top-level domains:com, org, net, gov, edu, biz, info, andname. We excluded
international top-level domains. We found 10,814 fully qualified SSL domains from 4,878 second-level do-
mains. This corresponds to roughly 6% of the SSL servers found by the more extensive monthly SSL survey
conducted by E-Soft andsecurityspace.com [53]. In our SSL server survey, we found no evidence of
web sites using wildcard signing certificates as non-leaf nodes in certificate chains. This is strong evidence
that new browsers which enforce our stronger same-origin policy will not break legacy web sites2.

The second property also holds. Since modern browsers already accept wildcard certificates, servers
which use them will continue to interoperate with legacy browsers. Although legacy browsers will not
enforce the stronger same-origin policy of locked domain cookies and thus will be vulnerable to pharming
and active attacks, legacy browsers will still enforce the current policy based on domain names.

Locked domain cookies require a few additional changes to the locked same-origin policy. Browsers
need to extract and store the public key from the wildcard certificate when a server sets a cookie, and
perform an equality check on each cookie access. Server changes are minimal. Web sites can continue to
use domain cookies as before; the only required change is foroperators to purchase and install wildcard
signing certificates in the chains on the servers requiring access to secure domain cookies. Web sites are
already starting to use wildcard certificates for other purposes; 6% (305) of the sites in our survey already
use wildcard certificates. Also, installing wildcard signing certificates as internal nodes in certificate chains
does not require the distribution of any additional privatekeys to servers—only the distribution of new
certificate chains. Web sites can safely store the private keys for their signing certificates in protected storage,

2Note that if we had instead used leaf wildcard certificates inour policy, then we would risk breaking legacy web sites. In our
survey, we found 88 web sites that used wildcard leaf certificates for some servers in a domain range, but used individual certificates
for other servers in the same range, and these sites might notwork with new browsers implementing our stronger same-origin policy.
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disconnected from the Internet. Finally, locked domain cookies do not restrict how web sites organize server
(i.e., leaf) certificates for subdomains. Web sites could use a single wildcard certificate for all subdomains or
deploy a certificate with a unique public key for each subdomain; the structure of the servers’ leaf certificates
is inconsequential to locked domain cookies.

5.2.1 Server configuration changes are necessary to supportlocked domain cookies

To maximize chances of deployment, an ideal same-origin policy for SSL-only domain cookies would ide-
ally only require modifications to browsers, but no changes to server cookie handling, web site organization,
or protocols. Without help from servers to help indicate authorized servers, browsers must infer whether the
X.509 certificates for two different subdomains represent the same real world subject. We found developing
a heuristic for this to be challenging. The heuristic must not be too conservative; for it to be embraced by
browser developers, it must never “break the web” and deny a domain cookie to legitimate server. However,
if the heuristic is too liberal, a clever pharmer might be able to purchase certificates which enable him to
steal sites’ domain cookies.

Unfortunately, due to the large number of misconfigured servers and various inconsistencies in the way
some web sites deploy certificates, achieving this with onlybrowser changes in a way which does not “break
the web” is unlikely. Our SSL survey (see Section 5.2) found that certificate hierarchies in subdomains are
both diverse and disconnected. Of the 4,878 second-level domains in our survey, 9% had subdomains with
SSL certificates issued by more than one CA, or used a mixture of self-signed and CA issued certificates.
For example, forwellsfargo.com, we found 21 different SSL subdomains, with 16 certificates issued
by GTE CyberTrust and 5 issued by Verisign. To further complicate matters, the Verisign issued certificates
were directly signed by Verisign, but the server certificates in the GTE CyberTrust tree were issued by a
Wells Fargo Certification Authority certificate (presumably an internal CA for Wells Fargo), which in turn
was issued by GTE CyberTrust. The subject names and auxiliary information of the server certificates also
varied significantly.

Requiring theCN of the certificate to match the domain name of the server seemspromising, since it is
more unlikely a major CA would issue such a certificate to a pharmer targeting a major web site. However,
a significant number of legitimate servers are misconfiguredand we cannot impose this policy without
risking “breaking the web”. The monthly SSL server survey byE-Soft andsecurityspace.com shows
approximately 11% of SSL servers haveCN/domain mismatches [52]. If a misconfigured web site uses a
SSL-only domain session cookie to authenticate users’ requests, and we incorrectly deny legitimate servers
access to those cookies, the site may become unusable. Relying on users to manually verify mismatches
will likely be ineffective; users routinely ignore these warnings and just click “OK” [5, 8, 61].

Since we cannot anticipate all the ways sites may use SSL-only cookies, and we cannot distinguish
between 1) a well-organized web site under a pharming attackusing a self-signed certificate, and 2) a mis-
configured and unstructured web site, we must liberally sendSSL-only domain cookies to avoid “breaking
the web”. Unfortunately, this means the current same-origin policy for SSL-only domain cookies is likely
the best we can do without any server or protocol changes.

6 Cross-site request forgeries (XSRFs)

Cross-site request forgery (XSRF)vulnerabilities [6, 51] can arise when a user’s web browser uses implicit
authentication. An implicit authentication mechanism is one which is automatically executed by the user’s
browser and requires little or no user interaction. Examples of implicit authentication mechanisms include
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cookies, client-side SSL, and HTTP authentication. In a XSRF, an adversary causes a victim’s web browser
to unintentionally send an HTTP request for a resource whichuses the victim’s implicit authentication
credentials. For example, if a user visitsattacker.org and uses implicit authentication forbank.com,
the attacker could return an page with an hidden<iframe> containing a request to withdraw money from
the user’s account atbank.com, and the victim’s browser will automatically authenticatethis request,
without the victim’s knowledge.

One approach to resist XSRFs is use session tokens embedded in URLs and hidden form fields which
are associated with a user’s implicit authentication credentials [27, 30]. Since the same-origin policy denies
adversaries access to these tokens, a user must explicitly interact with the site to generate valid requests.
Researchers have also proposed client-side solutions which remove implicit authentication information from
requests which may be unintentional [29].

7 Implementation

We have implemented locked host cookies for Firefox 1.5 in approximately 500 lines of C++ and Javascript.
We plan on extending this implementation to enforce Javascript accesses to HTML documents, images,
XMLHttpRequest, and other web objects. We have used our prototype locked cookie browser in daily
browsing without encountering any problems with any web sites, including those which use secure cookies.

We slightly modified the storage mechanism for cookies in Firefox. Browsers currently manage cookies
as a map(domain, name) 7→ value. The cookie interface in browsers has no notion of “modify”;setting
a cookie overwrites any previously stored cookie with the same (domain, name) pair. This approach is
insufficient for locked cookies, because it allows pharmersto overwrite the cookies of legitimate web sites.
Note that it does not work to deny the overwrite if the public key in the pharmer’s certificate does not
match the one in the stored cookie; legitimate web sites may change the public key in the server certificates
from time to time, and we must allow these sites to set new cookies. For this reason, our implementation
manages cookies as a map(domain, name, PK) 7→ value, wherePK is the public key in the certificate
of the server which set the cookie. Consequently, we might have multiple cookies associated with a single
(domain, name) pair, but only one will be sent back on any particular SSL connection.

8 The registration problem

We have thus far ignored one crucial aspect of using cookies for authentication: how does a user’s machine
initially receives an authentication cookie from the web site? This is commonly known as theregistration
problem. The registration problem is an interesting problem in its own right, and we do not attempt to solve
it here.

One key challenge is that the registration procedure must besecure againstregistration attacks. For
instance, a phisher or pharmer might trick the user into believing her computer must be unnecessarily re-
registered and then somehow attack the re-registration procedure. Bank of America’s Sitekey and similar
anti-phishing mechanisms have registration attack vulnerabilities [67]. When a Sitekey user initially regis-
ters, she gives answers to several “personal entropy” questions [12], questions to which a phisher is unlikely
to be able to guess the answers, e.g., “What is the name of yourhigh school mascot?”. Users who need to
register another computer must correctly answer these questions before receiving an authentication cookie.
However, phishers and pharmers can use a man-in-the-middleregistration attack to solicit the correct an-
swers from unsuspecting victims and obtain valid authentication cookies, making Sitekey insecure against
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registration attacks. The problem is that “in-band” (HTTP-based) registration procedures are normally vul-
nerable to the same attacks we are trying to prevent. In future work, we plan to explore solutions utilizing
email, cell phones, and other “out of band” channels to distribute authentication cookies to users.

9 Future work

Recent studies have found that about 58% of users have deleted their cookies at least once [41]. This is
problematic for web authentication cookies, since frequent cookie deletion requires frequent re-registration,
potentially frustrating users. It would be useful to develop interfaces for protecting authentication cookies
from regular deletions. We must be careful these interfacesdo not create opportunities for abuse, e.g.,
enabling advertisers to set “undeleteable” tracking cookies.

10 Conclusion

We have seen that web browser cookies are a good choice for persistent web authentication: they are trans-
parent to the user and, thus, hard for the user to reveal to an attacker; the contents can be signed and
client IP-bound by the server to provide integrity and non-transferability; and they are already supported
by existing web server software. Solutions available at present, SSL-only cookies and IP cookies, provide,
respectively, defense against phishing or pharming attacks that try to steal authentication credentials. Our
extension, locked cookies, adds client-side binding of host cookies to the originating server’s public key
and in the process hardens cookies against more powerful active attackers. We also describe locked domain
cookies, which perform a similar hardening operation for domain cookies, and allow cookies to be shared
across many subdomains. Locked cookies and locked domain cookies do not require any code modifications
on servers, but in some cases may require changes to the distribution and type of certificates that are used.
In short, we feel that locked cookies and locked domain cookies represent a practical, secure approach to
authentication and urge their adoption as a component of future authentication schemes.
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