
Simplifying Access Control in Enterprise Networks

Cheng Tien Ee
John Lee
Dave Maltz
Scott Shenker
Lakshminarayanan Subramanian

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-33

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-33.html

March 11, 2007



Copyright © 2007, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Simplifying Access Control in Enterprise Networks

Cheng Tien Ee†, John Lee‡, Dave Maltz§, Scott Shenker†\, Lakshminarayanan Subramanian‡
†UC Berkeley, ‡NYU, §Microsoft Research, \ICSI

Abstract

Today, access control configuration in large enterprise
environments is a highly complex process that involves
the manual configuration of a wide range of network
devices including routers, VLANs and firewalls. Much
of this complexity arises from the asynchrony between
routing and access control that often requires contorted
network topologies that lack redundant paths, have
tight pinning of routes, and physical placement of fire-
walls along the data path to achieve access control.

In this paper, we propose Access Control Routing
(ACR), a clean-slate and flexible approach to simplify
access control configuration in large-scale enterprise net-
works. ACR uses a single parameter, class, to couple
access control and routing. It requires that each end-
host specify its access control policies at the granularity
of a class. On the network side, the control plane estab-
lishes logical reachability networks for every class, and
the data plane explicitly labels each packet with a class
based on the source. Unlike traditional access control
configuration approaches, ACR can easily adapt to net-
work topology or routing changes and is better suited
to handle network failures. ACR eliminates the need for
VLANs and also provides the flexibility of automatically
routing traffic through arbitrary middle-boxes without
physical topology manipulation. Using a software-based
router implementation of ACR and access control poli-
cies gathered from four large commercial enterprise net-
works, we show that ACR can easily be adopted in
large enterprise environments with little additional per-
formance overhead.

1 Introduction

Enterprise networks play a critical role in the security
policies of the organizations they serve by enforcing ac-
cess control. Access control typically involves two com-
ponents (1) blocking packets between hosts that are not
allowed to communicate at all, and (2) ensuring that a
host does not receive or send packets unless they are
first passed through a middle-box where they can be
inspected, audited, or scrubbed.

Many techniques exist for implementing access con-
trol [1, 3, 7, 16, 17, 23, 24]. However, setting up and

operating these systems requires maintaining the con-
sistency of a tremendous amount of state that is dis-
tributed across all the components of the network. For
example, the rules that define which hosts can commu-
nicate are typically written in terms of hosts’ IP ad-
dresses, yet the middle-boxes or firewalls where these
rules must be installed can be located anywhere in the
network, with no obvious or direct relationship to the
hosts. Any change to the IP address assigned to a host
invalidates the rules, but the burden of ensuring consis-
tency falls to the network administrators. An example
of maintaining the consistency of state would be the
BGP routing policies used in some enterprises to en-
force coarse-grained reachability policies, and the phys-
ical manipulation of links to ensure packets traverse a
particular middle-box. The tremendous amount of state
that has to be considered simultaneously makes the net-
work brittle and configuration error-prone.

This paper proposes and evaluates Access Control
Routing (ACR), a way of using the routing protocols
themselves to distribute the state needed for access con-
trol, thereby automatically maintaining consistency and
reducing configuration. Our approach to network access
is inspired by the model of file access control, where
users belong to groups and, in turn, groups are permit-
ted or denied access to files.

In ACR, administrators define classes in their net-
work. For any entity in the network, administrators
can specify the classes that entity can send packets to
and the classes it can receive packets from. We use the
routing protocol to create logically separate networks
for each class, so that if a host is not allowed to send
packets to a particular class, none of the destinations
in that class will even appear routable. Packets are
explicitly marked with the class they are part of, but
middle-boxes are able to change the class markings on
packets and re-advertise destinations from one class to
another. This primitive creates an easy and flexible way
to channel packets through middle-boxes.

ACR has four major benefits: (1) Configuration is
simplified because the designer needs only group the ap-
propriate end-hosts based on their roles, and thereafter
the routing protocols themselves maintain the resulting
reachability and path constraints. (2) ACR provides a
flexible framework for channeling packets through any
number of “bump-in-the-wire” firewalls [3,7] and deep-

1



packet inspectors [15,16] in any order desired. (3) ACR
frees administrators to assign IP addresses based on net-
work topology rather than what will ease writing packet
filters, since filters will no longer be written in terms of
addresses but rather classes. (4) ACR retains the ad-
vantages of network-level access control over pure host-
based access control in that Denial-of-Service attacks or
worms that might overwhelm or subvert a host can be
discarded before they even reach the host.

In this paper, we first motivate our work using high-
level observations of deployed networks in §2. In §3
we motivate the basic idea of how configuration using
classes and describe its benefits. Later in §4, we describe
the ACR design in detail. Implementation details are
given in §5 and we argue that the modifications involve
only slight tweaks. In §6, we discuss our implementation
of ACR on the Click modular router [12], as well as pro-
vide analysis of four large commercial networks. Using
a combination of qualitative and quantitative analysis,
we show how ACR will reduce configuration and ad-
ministrator burden. Also, we show that ACR can easily
handle the access control requirements of existing large
enterprise networks. Since ACR is clearly reminiscent
of virtual LANs (VLANs) and other network virtualiza-
tion techniques like MPLS, we explain the differences
between ACR and these approaches, as well as other
related work, in §8.

2 Networks in Practice

To better understand the issues with current networks
and to facilitate comparison later, we gathered topol-
ogy and configuration information from two large intra-
domain networks: a large commercial enterprise (Com-
Net) that interacts with a variety of client entities and
a university campus network (UNet). These networks
follow two general models, which we call core and edge.
We begin by describing the similarity between these two
models, followed by an elaboration on the differences
between them.

2.1 Aggregation of Hosts via VLANs

In both core and edge models, hosts that should have
the same reachability policies may be plugged into dif-
ferent switches. To ensure these hosts all receive IP
addresses from the same subnet so that IP routing poli-
cies and packet filters can be applied to them as a group,
designers are forced to drag VLANs through multiple
switches to gather each set of related hosts into a single
virtual layer-2 LAN before connecting them to a layer-3
router. Configuring these VLANs (which are essentially
multi-point permanent virtual circuits) is a painful and
often manual process, requiring designers to carefully
assign the order in which switches will become the root

bridge and explicitly prune links to ensure the spanning
tree protocols behave reasonably [4].

At layer-3, configuration methodologies between
these two types of network begin to diverge, in terms
of routing and middle-box set up. We next elaborate
on the two models, focusing on the differences between
them. We begin with the ComNet network.

2.2 The Core Model: A Commercial
Network

As shown in Figure 1a, the commercial network is com-
prised of two main regions: an external MPLS network
that provides connectivity to various client organiza-
tions, and an internal network that hosts various ser-
vices. A demilitarized zone (DMZ) sits between these
two network partitions, filtering unwanted packets from
the external network.

The internal network consists of VLAN subnets at the
periphery, and these are connected via OSPF [13]. At
the center of the network, core routers running BGP [19]
restrict the flow of packets in a coarse-grain manner us-
ing import and export policies. Firewalls are co-located
with core routers, siphoning off packets for inspection
and re-injecting them via alternate ports.

ComNet epitomizes the Core Model (CM), which has
the following characteristics:

Few, Heavy-Weight Middle-boxes: A relatively
small number of middle-boxes are placed at locations
traversed by most traffic, such as within the network
core region. Since packets can be sent from any source
and destined to any end-host (as opposed to edge
routers that see packets destined for or sent from its
subnet), firewall rules tend to be numerous resulting
in an increase in state required and processing delays.
Furthermore, such rules are often difficult to debug, and
rely to a large extent on the routing protocol, which ul-
timately dictates which traffic flows traverse the middle-
boxes. On the other hand, having fewer middle-boxes
may ease configuration time and complexity.

Controlled Routing: The second characteristic of
CM is that routing, or more precisely the actual paths
taken, is explicitly configured. In the case of ComNet,
the export and import rules of BGP, which in ISPs are
used to reflect economic policies, are enlisted here to
enforce this control. In addition to BGP, the physical
configuration of the network has to be restricted as well,
as exemplified by the single link through the DMZ to en-
sure all packets traverse the two firewalls there. In gen-
eral, currently available means for implementing secu-
rity push designers towards static routing that is partic-
ularly prone to network link failures, resulting in brittle
networks that lack redundancy. Furthermore, addition

2



Router
OSPF

Key

ISP 2
ISP 3

Admin

ISP 1

(b)(a)

VLAN

Key

Firewall
BGP

Router

DMZ

Client 1

Client 2

Client 3

Client 4

Client 5

Internal External

EECS Stats Business

Router
Edge

Router
Core

MPLS Cloud

Firewall

R2

R4

R1

R1

R3

R01 R02 R12

R4

R11

R2

R3

Figure 1: (a) General layout of the ComNet commercial network, where firewalls are placed in the core of the
network, and routing is constrained for traffic to traverse these firewalls. (b) The UNet university campus network
structure, firewalls are usually placed at the edges, next to the departmental subnets, and routing is unconstrained.

of new links can unintentionally result in the availability
of alternate paths that bypass middle-boxes [6].

2.3 The Edge Model: A Campus Net-
work

Figure 1b gives the high-level view of the UNet cam-
pus network. Since this is primarily a network that
caters to learning and research purposes, the interior of
the network has no access restrictions. As such, a single
intra-domain routing protocol, OSPF, is sufficient with-
out requiring BGP. The network itself serves multiple
departments, which may or may not utilize the firewalls
placed at the edge close to the departmental networks.
The UNet network is representative of the Edge Model
(EM), which has the following features:

Multiple, Light-Weight Edge Middle-boxes:
Middle-boxes are placed as close to the client
subnets as possible, allowing them to handle
smaller destination and source sets thus reducing
the state and number of rules required. However,
the total number of middle-boxes to configure is
therefore higher, increasing configuration complex-
ity. On the up side, unintentional bypassing of
middle-boxes is less likely to occur since it is easier
to control the physical connections to the subnets.

Unrestricted Routing: The advantage of placing
middle-boxes at network edges is that fewer con-
straints are needed on routing, since the physical
chokepoint makes it harder to bypass the middle-
boxes. Consequently, these networks allow addi-
tional links to be added, with the routing protocol

automatically adjusting paths to take the new links
into account.

2.4 Summary of Differences

In summary, current network designers either control
routing to constrain traffic paths, resulting in brittle
networks, or push the complexity to edges of the net-
work, thereby necessitating the configuration of more
middle-boxes. In some instances, BGP’s route import
and export ability has been enlisted to provide the nec-
essary level of path control. In others, alternate paths
are eliminated to produce physical chokepoints that
channel the traffic. Unfortunately, both approaches de-
crease path diversity, making the network failure prone
and increasing recovery times.

Additionally, high-level access policies need to be
translated manually into the form of rules and installed
at middle-boxes. The difficulty in translating between
high-level policies and low-level rules means that nu-
merous firewall rules are difficult to make correct. From
anecdotal evidence, the lack of coupling between routing
and access control at the protocol level can be further
compounded by the fact that they may not be under
the same administration. In the next section we de-
scribe our design, and show how the entire configuration
process can be simplified.

3 Configuration Using Classes

In this section, we describe how the basic notion of
classes in ACR can be used to simplify configuration
in enterprise environments. We begin by describing the
configuration interface followed by a brief description of

3



how ACR uses class information to achieve access con-
trol. Finally, we summarize the benefits of class-based
configuration.

3.1 ACR Configuration Interface

The fundamental idea behind ACR is to use the abstract
notion of classes to simplify enterprise configuration by
establishing logically distinct networks corresponding to
each class. In ACR, sources and destinations specify ac-
cess control policies using classes, and traffic that flows
through the network is categorized into different classes.
A destination host or service specifies an access policy
that states the classes of incoming traffic it will accept.
Thus, configuration of a source’s access control policies
is reduced to specifying the class(es) of traffic allowed
to originate from that source.

Table 1: Access Policy Assignment
Host Can Receive Packets of Class

Researcher R, A
Financial Department F, A

Database 1 D, A
Database 2 E, A

Administrator A

Table 2: Class Membership Assignment
Host Can Send Packets of Class

Researcher D,E
Financial Department D

Database 1 R, F, A
Database 2 R, A

Administrator A

We motivate this using a simple example. Consider
a network where we have two databases 1 and 2, and
three entities who wish to access the databases: a re-
searcher, end-users in the finance department and the
administrator. While the researcher needs access to
both databases, end-users in the finance department are
given access to only database 1 and the administrator
can access all the resources in the network. For this
example, Tables 1 and 2 specify the access policy con-
figuration for each destination and the class membership
configuration for every source respectively.

We make several important observations. First, spec-
ifying access control configuration using classes is trivial
both for traffic sources and sinks. From an administra-
tor’s standpoint, a class represents an abstract category
of traffic on which the administrator can set access and
class membership policies. In practice, a class can re-
fer to a particular network service, an end-host, or the
current state associated with the packet as it makes its
way across the network. Therefore, the translation from
access control rules to class assignments need not be
unique.

Next, for any given class, it is easy for an administra-
tor to visualize as well as manually verify its configura-
tion settings. Furthermore, all hosts that have similar
access control requirements can be grouped into a single
class e.g. class F for the finance department. This is
critical to reduce the number of classes required in the
network. Finally, class assignment need not be sym-
metric; in the example above, packets from researcher
to database 1 are marked as class D, and those in the
reverse direction are marked with R.

3.2 How Does ACR Work?

Considering the same example, we next describe how
ACR translates class-based policies to achieve access
control. We have again the case of databases 1 and
2, which the administrator determines are able to ac-
cept packets of class D and E respectively (Table 1).
This information is installed in the router(s) to which
the databases are connected, and it is propagated by the
routing protocol. In the control plane, routers compute
reachability on a per-class granularity. For example,
if the underlying routing protocol is link-state routing,
then the link to database 1 is labeled class D and this
information is used in the route computation process.
Therefore, all routers within the network will establish
class D and class E routes to databases 1 and 2.

Next, suppose the researcher is to be given access
to the databases. The class membership configuration
for a host is stored in its first-hop router. When the
researcher’s machine generates a packet destined for
database 1, the first-hop router examines the class mem-
bership list to determine if there exists any class in this
list for which a class-based route to database 1 exists.
Upon finding a matching class (class D), the first-hop
router marks the packet as class D and forwards it along
a class-D route. Every intermediary router examines
the class header and forwards it along the corresponding
class route. At the last-hop router, the label is removed,
thus eliminating the need to alter either the researcher’s
or databases’ machines.

Hence, ACR explicitly binds access control with the
routing protocol and establishes routes on a class granu-
larity that is in sync with reachability constraints. The
role of the data plane is simplified to a straightforward
verification of whether the class membership list of the
source matches with any of the available class-based
routes to the destinations.

3.3 Why Classes?

Apart from simplifying access control configuration, dis-
tinguishing packets based on logical classes, rather than
physical connectivity, provides the following properties:

Network End-to-End Visibility: Since the destina-

4



tions reachable by a packet are determined by its
tag and enforced by routers, a packet that does
not have the necessary permission to traverse the
logical network in which the destination resides is
dropped immediately. Verification is performed as
part of the forwarding process, and takes place at
all hops along the path.

Route Redundancy: The mechanism to check eligi-
bility of access has shifted from traffic channeling
and packet header inspection at firewalls to classi-
fication at first-hop routers and verification at all
intermediate ones. The usage of classes as a mech-
anism to enforce access has therefore become or-
thogonal to the routing process. As a result, it
is no longer necessary to constrain path diversity
in order to channel packets through middle-boxes,
and the network designer is free to add any number
of links at any place in the network.

Topology-Independent Middle-box Placement:
One of the distinctive features of the edge and core
models discussed earlier in §2 is the placement of
the middle-boxes. The locations of these boxes
must be carefully chosen to align with the routing
protocols, routing design, and physical topology
of the network so that the desired set of packets
traverse them. Otherwise, the middle-boxes have
to be placed at every point along the network
edge.

Current networks are designed with the physical
dimension in mind: for a source A and destination
B, the middle-box has to be placed along the path
A B. In ACR, we think in terms of the class di-
mension: for a source class A and destination class
B, the middle-box has to bridge the two domains.
In other words, the middle-box forms the “path”
between the two points, and if it is the only path,
then packets traversing between the two class do-
mains must go through it. Thus, the actual net-
work links traversed, as well as the physical loca-
tion of the middle-box, no longer matter.

Ease of Understandability: Last but not least, since
the network designer works with high-level policies
in place of low-level details, the required inputs to
the system are easier to understand. This eases
the transition phase when another administrator
takes over, or when changes need to be made to the
network, hence reducing the likelihood of errors.

4 ACR Design

In this section, we describe how we realize this abstract
notion of multiple logical networks in ACR. Bearing in
mind the conditions commonly encountered in networks

today, we begin by stating our design space that pro-
vides scope and allows us to focus on the most relevant
issues. Then, we describe the ACR control and data
plane operations in detail.

4.1 Design Space and Assumptions

As mentioned earlier, fine-grain access control to indi-
vidual objects is best implemented on the hosts them-
selves in application-specific ways, such as through Ker-
beros [14], TLS [5], or file Access Control Lists (ACLs).
At the network-level, however, designers may wish to
have a class represent an entire organization, or a par-
ticular user, with the decision dependent on the nature
of the policies they are trying to implement. Our so-
lution provides that flexibility, and does not place any
constraints on actual class assignment.

Next, we assume that routers can be trusted, that
physical access to them is restricted and that they
are not compromised. These assumptions are all true
in typical enterprise networks, though security mea-
sures, such as the cryptographic authentication option
in OSPF2 [13], can be used to reduce further the prob-
ability of successful attacks. In general, routers share
fate and thus the bringing down of one is likely to sig-
nificantly and negatively impact the entire network.

We believe that any solution to network-level access
control must not depend on changes to hosts connected
to the network, since these hosts may not be under the
control of the network administrators. Further, one of
the benefits of network-level control is having an in-
dependent line-of-defense even when hosts are compro-
mised.

4.2 The Control Plane

We begin with the control plane, operations of which
include (1) the assignment of classes to hosts, (2) dis-
semination of access control information by the routing
protocol, and (3) installation of classification informa-
tion at first-hop routers.

As a result of these operations, the control plane es-
tablishes the following state in each router. (1) For
each destination reachable from that router, the latter
will also know what classes the destination is willing to
accept. (2) Each router with directly-connected hosts
knows the classes each of them are allowed to send. §4.3
explains how the first-hop router uses this information
to label the packets sent by a directly-connected host
with the correct class.

4.2.1 Assignment of Classes

The network designer can implement static policies that
specify which entities on their network should be al-
lowed to communicate. A network entity be any of the

5



following: an end-host (defined by MAC or IP address),
a group of hosts (defined by IP prefix), or a well-known
service (defined by port number). For each entity, the
administrator defines the classes the entity is allowed
to use when sending packets (the entity’s class member-
ship) and the classes of the packets the entity is allowed
to receive (the entity’s access policy).

As an example, suppose we have the following end-
hosts: a researcher, the financial department, databases
1 and 2, and an administrator. Tables 2 and 1 show the
classes each host can send to and receive packets from
respectively. We see that the researcher’s packets are
tagged with class D and E, thus allowing them to reach
databases 1 and 2, but not the financial department nor
administrator. In general, since communication is typi-
cally bi-directional (e.g. via TCP) we require access to
be symmetrical, that is, we expect the sender to be able
to receive response packets. Thus, databases 1 and 2
can send class R packets that can reach the researcher.
However, a class need not be symmetric: just because
a host can send packets of class A does not necessarily
imply it is allowed to receive packets in class A. For ex-
ample, by the policy in Tables 2 and 1, two hosts in the
financial department are not allowed to communicate
with each other.

4.2.2 Class Dissemination via Routing

Routing protocols, either link-state, distance-vector or
path-vector, need only be slightly modified to account
for the use of classes (details in §5). Access policies asso-
ciated with end-hosts are installed at their correspond-
ing first-hop routers and disseminated by the routing
protocol in use. For the example in Table 1, the sub-
net to which financial department hosts belong will be
advertised with classes F and A.

Next, the routing process is carried out for each
class, with intermediate routers storing corresponding
forwarding information for each. One of the advantages
of integrating routing with access control is the ease
with which traffic channeling can be performed. This
is important, as middle-boxes that perform deep-packet
inspection for worms etc., firewall filtering, or statis-
tics gathering are not useful unless the target traffic is
routed through them.

While channelling traffic by physically manipulating
network connections may sound simple and straight-
forward, it is much more complex at the ground level,
where machine rooms are often filled with intertwined
cables plugged into a multitude of switchers. This com-
plexity increases the likelihood of errors — for instance,
the administrator may inadvertently add a link and thus
unintentionally allowing traffic to bypass the firewall.

ACR achieves traffic channeling through the concept
of class transformation. The middle-boxes, which we
call class transformation boxes or t-boxes in short, al-

Class B
NetworkClass A

t-box
Network
Class Bt-box

(a) (b)

Network

C1

S1

S2

R2

S2

R1C1R1

R2

S1

Figure 2: T-boxes translate packets between classes. (a)
Original access configuration: servers S1 & S2 are in
class A, client C1 in class B. (b) (from viewpoint of C1)
By re-advertising reachability of S1 and S2 into class
B, the t-box puts itself on the path for reaching S1 and
S2. Packets from C1 to S1 cannot avoid the t-box, even
though alternate physical paths exist, because the only
route in Class B to S1 comes from the t-box.

ter the classes associated with destinations as routes
are propagated. Data packets’ class tags are also al-
tered accordingly as they are forwarded through these
t-boxes. For example, servers that should only receive
packets that been through a scrubber t-box will accept
packets of class after-scrubber. T-boxes that offer the
scrubbing service are the only devices allowed to send
packets of class after-scrubber. When the t-box re-
ceives a route to destination in class after-scrubber, it
reannounces the destination in class before-scrubber.
Hosts wishing to contact the server then send packets
to class before-scrubber.

For link-state routing, t-boxes re-advertise reachabil-
ity of destinations in the new class(es). This is similar
to area border routers in OSPF [13], and is illustrated
in Figure 2, where in (a) one can view the classes as
separate logical networks, and (b) from the viewpoint
of hosts in a particular network, those in the other are
reachable only via the t-box. Thus, there can be mul-
tiple t-boxes placed in the network, providing robust-
ness without reconfiguration if any one fails.1 However,
as before, if both directions of a flow has to traverse
a t-box, say for reasons of completeness necessary for
flow analysis, then introducing multiple t-boxes with
the same functionality may cause the flows to become
asymmetrical.

1We expect many t-boxes will be stateless, such as packet log-
gers or inspectors. Even if t-boxes are stateful, such that the
failure of a t-box or rerouting means that connections through
the t-box will need to be restarted, our proposed system is still
more reliable overall that today’s networks, where the failure of a
t-box typically partitions the network in a manner that end-hosts
cannot recover from at all.

6



Source IP,

...

... ...
Assigned
Class(es)

D,E
...

...

...

...

Incoming
packet

D

Outgoing
packet

Allowed
Class(es)Destination

IP

Researcher

IPdatabase1 D

Classification Rules Packet Lookup

...
D,E

First-Hop Router

In-Port

Figure 3: Packet forwarding at the first-hop router. The
packet is first classified based on source IP, incoming
interface port, etc., then the intersection set I of as-
signed classes and classes permissible at destination is
determined. The packet is dropped if a null set results,
otherwise it is tagged with one class in I and forwarded.

4.2.3 Class Information Installation

Given the current practice in enterprise networks, we ex-
pect that most network designers will choose to assign
the classes a host can send and receive by configuring
this information into the interface/port on the first-hop
router when the host is connected. Alternatively, net-
works that already inventory their hosts’ MAC and/or
IP addresses might choose to configure classes based on
this table.

4.3 Data Plane

In our framework, a host’s first-hop router (that is, the
first router its outgoing packets arrive at) is responsible
for labeling the host’s packets with an appropriate class
marking. We choose this approach for three reasons: (1)
thanks to the distribution of class information through
the control plane, routers have the required information
to know which classes a packet’s destination will accept,
(2) marking packets at the routers eliminates the need
for changes at the hosts, and hosts typically outnumber
routers by almost 100 to 1; and (3) routers are assumed
to be trusted.

The classification and forwarding of data packets at
the first-hop router is shown in Figure 3. We begin with
classification based on source IP, the interface port the
packet arrived on, etc.. A packet may be tagged with
multiple classes at this time, representing permissions
to access various resources. Next, we look up the next
hop interface using the destination IP address. If the
destination is reachable, the routing table will contain
both the next-hop (as normal) and the set of classes the
destination accepts (as established by the control plane
extensions described in §4.2).

If the intersection of the tagged and permissible
classes results in a non-null set, the packet is forwarded
after inserting in its header one of the classes in the
intersection set. Otherwise the packet is deemed not
to have permission to reach the destination, and is
dropped. For intermediate routers other than t-boxes,

no additional classification needs to be performed. In-
stead, we simply check that the destination is able to
accept the traffic class carried by the packet. Finally, as
noted before, packets traversing t-boxes may have their
class tags altered before being forwarded.

4.4 Using ACR in Practice

In the sections above we described the core framework
and mechanisms of ACR. This section illustrates how
these mechanisms are sufficiently general to handle de-
ployment scenarios that arise in enterprise networks,
both common and uncommon ones.

4.4.1 Connectivity to External Networks

ACR provides an easy mechanism to control reachabil-
ity to external networks. The designer configures the
border routers to announce all external routes into the
enterprise network with a class external. Hosts can then
be granted reachability to the outside world simply by
giving them permission to send and receive packets with
class external. In general, there is no longer a need for
a rigidly structured DMZ as in the CM model. If de-
signers are concerned about DoS traffic entering their
internal networks and congesting links, they still have
the option to place firewalls near their borders as de-
scribed next.

4.4.2 Stateful Firewalls

A very common middle-box in today’s networks is a
stateful firewall that allows packets into a network only
if they are associated with packets that have previously
been sent out of the network. The intuition is that the
packets sent from inside the network constitute an in-
vitation for the response traffic, and only the response
traffic, to enter the network. In the most common incar-
nation, TCP packets are allowed from outside to inside
only if they belong to the same flow as a TCP SYN sent
from inside to outside. Some such middle-boxes are also
network address translators, modifying the addresses of
the packets as they flow through, but this is orthogonal
to the stateful firewalling.

Under ACR, the logic inside the middle-box remains
exactly as it is today, and they can NAT or not as
they choose. The only difference is that under ACR the
middle-box will change the class of packets as they flow
through. In a typical deployment, the administrator will
define classes internal and external, with the hosts to be
protected by the firewall sending and receiving packets
of class internal and the border routers handling exter-
nal packets as described above. The middle-boxes can
now be placed wherever desired in the enterprise net-
work, and the appropriate traffic will be routed through

7



RS

5

1

Inputs
Administrator

2

4

6

3

Configuration
Engine

C

S

RC

5

Figure 4: High-level view of configuration and auto-
mated network-level operations supporting ACR. C is
the client machine that intends to communicate with
server S. RC and RS are the first and last-hop routers
respectively.

them. Even though there is a single internal class, pack-
ets from the outside cannot go to a internal host that
does not expect them, as the existing logic will ensure
that the packet is part of an established and desired flow
before mapping it from external to internal.

4.4.3 Eliminating VLANs

Networks using ACR should no longer need VLANs, as
classes serve the same function. Where a designer would
have created a VLAN to separate traffic on their net-
work, they can now create a class. As explained in §5,
ACR can run over link-state, distance vector or path
vector routing protocols, so the limitations of the span-
ning tree algorithms currently used to control VLANs
are avoided.

Using ACR to eliminate VLANs will not increase the
amount of forwarding state contained in the switches.
Today, switches must store a forwarding entry for ev-
ery MAC address present in the network (otherwise
frames are flooded, resulting in terrible performance).
The worst possible case for ACR is if every host in a
subnet belongs to a different class. This prevents any
route aggregation, and forces the routing protocol into
flat-address routing – each host needs its own route ad-
vertised with its own /32 prefix so that it can list the
classes it belongs to. Note, however, that this is no
more state than the switches are currently storing for
forwarding based on MAC addresses.

We next discuss our implementation of ACR, and
evaluate the general framework as well as the imple-
mentation.

5 Implementation

We have implemented a version of ACR on top of the
Click modular router code base [12]. Figure 4 illustrates
the four basic entities in our implementation and how
they interact: (a) Configuration engine; (b) First-hop
router (which also acts the last-hop router for the des-
tination); and (c) Intermediary router. The configura-
tion engine acts as a centralized controller that takes in
configuration inputs and sends out configuration infor-
mation to the individual routers and firewalls. We first
describe the configuration setup, network entities, then
a version of ACR link-state routing.

5.1 Configuration setup and Network
entities

The network administrator inputs access control poli-
cies at a single location: the Configuration Engine (CE)
(Figure 4 1©). Based on the topological configuration of
real world enterprises, a physically-separate control net-
work exists such that the CE can directly connect to all
the other entities in the network (routers and firewalls)
and specify configuration information for each. Apart
from the configuration inputs, the CE needs to be aware
of the end-hosts/prefixes that connect to each first-hop
and last-hop router. Using the access control rules pro-
vided, the CE determines the configuration that is to
be distributed to the boundary routers (first and last-
hop routers). The current CE implementation assumes
that each prefix’s subnet connects to a single first-hop
router but it can easily be extended to the case where
this assumption does not hold. At the first-hop router
(Figure 4 2©), the CE specifies the source classes and
at the last-hop router (Figure 4 3©), classes associated
with the destination prefix(es) are modified. The only
intermediary routers that are configured by the CE are
those that directly connect to a firewall. Any fine-grain
access control specification at the CE is installed at the
firewall.

Next, we briefly elaborate on the remaining three
entities. The code corresponding to the Intermedi-
ary router implements the simple ACR route computa-
tion and forwarding mechanism described earlier. The
First-hop router uses the same code base as the In-
termediary router with two additional functionalities:
(a) identification and marking of the class correspond-
ing to each packet; (b) propagating of the set of pre-
fixes that the first-hop router connects to, and the set
of classes associated with each prefix. The firewall in
our case is similar to a router except with an addi-
tional access filter list. In our current implementa-
tion, the access filter list supports fine-grain access con-
trol rules of the form <srcAddr, dstAddr, dstPort,
protocol, accept/deny> and does not support any
deep-packet inspection rules. In our implementation,

8



only rules that accept packets are used, and the default
action is to drop unmatched packets.

5.2 Link-State ACR

Next, we describe the propagation of access informa-
tion by the routing protocol. We implemented a sim-
ple version of ACR-based link-state routing where ev-
ery router maintains the topology of the entire network.
Every first-hop router announces a set of prefixes that
it connects to, as well as their associated classes (Fig-
ure 4 4©). Here, a prefix represents the smallest gran-
ularity on which access control policy is applied. For
example, if control is applied on a per-host basis, the
first hop router advertises /32 IP addresses. Typical
announcements can vary between /24 to /32 prefixes
depending on the required granularity within the en-
terprise. While one can extend the implementation to
support aggregation of classes across prefixes, our cur-
rent implementation does not support it.

Route computation: We compute class-based
routes on a per-prefix granularity (Figure 4 5©). The
route computation process is a straightforward per-
class shortest-path computation with class information
along the final edges for every path. Hence, the route
computation overhead is small.

For t-boxes re-advertising reachability, the intended
class transformation (e.g. from a prefix-class, say
1.2.3.0/24-C to another prefix-class combination, say
1.2.3.0/24-D) is installed by the CE. Thereafter, the t-
box first computes the shortest path cost to 1.2.3.0/24
using class C, and advertises reachability with the same
cost, but with class D instead.

Forwarding process: At the ingress, or first-hop
router, the data packet is tagged with the appropriate
class (§4.3), or dropped if there is none (Figure 4 6©). In
general, since changes to end-hosts are not necessary,
class information is inserted in the form of a shim layer
between the link and IP headers. To minimize the addi-
tional overhead of classification at the first hop router,
we implemented an efficient hash-based process to per-
form the set intersection operation of classes. While we
maintain forwarding entries on a per-class basis, often
the amount of state associated with the forwarding table
is very small. For the majority of routes not traversing
t-boxes, the routing table can be simplified to main-
taining a simple prefix-based routing table and a list
of allowed classes per prefix. If t-boxes are to be tra-
versed, this implies the possibility of differing next-hops
depending on the class, and hence additional routing ta-
ble entries.

6 Evaluation

In this section, we use a combination of qualitative and
quantitative measures to demonstrate that ACR is prac-
tical and that it indeed simplifies access control config-
uration in real-world enterprise networks.

Qualitative analysis: To really argue that ACR sim-
plifies access control configuration, we need to show that
ACR reduces the amount of configuration work that an
administrator needs to perform to achieve a certain ob-
jective. However, there exists no standard metric to
measure configuration complexity. Here, we introduce
a simple configuration complexity metric: the configura-
tion complexity of an access control policy event equals
the number of rules in different network entities that
an administrator needs to manipulate or check for that
event. Based on this metric, we consider a variety of ba-
sic but commonly occurring scenarios in enterprise en-
vironments and measure the configuration complexity
for each scenario across three types of networks: ACR,
Core Model and Edge Model (as defined earlier in Sec-
tion 2). We show that across all these scenarios, the
configuration complexity for ACR is lower than that of
current configuration models (Core and Edge models).

Quantitative Analysis: From a quantitative per-
spective, we consider the access control policies in four
large real-world enterprise networks and demonstrate
how these policies can be easily translated to configu-
ration using classes in ACR. The real-world enterprise
networks that we consider in our analysis are currently
operational large enterprise networks with very tight
fine-grain access control requirements. As part of the
transformation from access control policies to classes,
we show that the resulting number of classes required
by ACR in each of the enterprise environments is not
high. Finally, we perform simple performance bench-
marks on various operations of ACR to show that the
performance overhead incurred by ACR is not high.

6.1 Qualitative Analysis

To perform a qualitative comparison between ACR and
the Edge and Core Models for controlling reachabilty,
we consider three basic and regularly occurring scenar-
ios in enterprise networks: (a) adding a new entity to
the network; (b) communication cessation between two
entities previously allowed to communicate; and (c) ad-
dition of a new link. For each scenario, we compare the
configuration complexity of making the change for each
of the three models (Core, Edge, ACR). We define con-
figuration complexity to be the number of entities in the
system whose configuration an administrator needs to
manipulate or validate when updating an access control
policy.

9



We use the following parameters in our qualitative
analysis. We assume that there are a total of n en-
tities for which the network is controlling the reach-
ability, with each entity being defined by source pre-
fix, destination prefix, and/or transport-layer port num-
bers. Therefore, the maximum number of rules is O(n2).
With respect to the Core model, we use rc to denote
the total number of core routers in the network. Note
that in the core model, firewalls are co-located with core
routers; hence, the number of firewalls is also assumed
to be rc. Similarly, we use re to denote the number of
edge routers in the Edge model.

6.1.1 Addition of New Entity

Core: In the core model, adding a new entity (E) to
a network like ComNet requires O(rc) router checks to
ensure packets to and from E traverse intended middle-
boxes. On the other hand, subnets that can access E
will need to know its existence, thus also necessitating
O(rc) configuration.

With regards to the middle-boxes, rules associated
with E can be distributed amongst the firewalls, the
number of which is expected to be about O(rc). Even if
the network is one-connected, resulting in all complexity
being pushed onto a single firewall, there is still the need
to verify O(n) rules.

Edge: A network structured like UNet with re edge
routers would require O(re) middle-boxes at the pe-
riphery. While there is no longer the need to configure
routers to enforce routes when adding a new entity, all
middle-boxes, where re>rc with high probability, will
need to be checked to ensure their rules handle the new
entity appropriately.

ACR: Addition of E requires knowledge of the classes
E can access and receive packets from. This information
is obtained directly from the high-level access policies,
and installed just once at E’s first-hop router.

6.1.2 Communication Cessation

In this scenario, two entities previously allowed to com-
municate with each other is now forbidden to do so.

Core: The simplest way of achieving this is to set the
appropriate filter to drop packets sent between the two
entities. An alternative, or if firewalls are not in use,
is to configure the core routers such that reachability
information is withdrawn. Therefore, the complexity
of the operations remain unchanged, O(rc) routers and
middle-boxes, and O(n) for rules.

Edge: As before, the number of places at which rules
have to be altered is O(re).

ACR: For ACR, either a source’s (S) permission to
access a class (C) of destinations is revoked, or a des-
tination ceases to accept packets of class C. For the
former, the change can be effected once the first-hop
router of the source is notified. Similarly, for the desti-
nation that stops accepting class C packets, changes in
the last-hop router is sufficient to ensure that no pack-
ets tagged with that class is forwarded across the last
hop. This is in spite of the convergence time required,
during which a packet may begin to be forwarded, but
will ultimately be dropped along the way.

6.1.3 Addition of Network Link

Core: Adding a new link in the core model may re-
sult in unintentional bypassing of middle-boxes. Link
weights in the case of OSPF, and route policies for
BGP, have to be carefully adjusted to ensure packets
take the intended path. Additional middle-boxes may
be installed to monitor traffic traversing the new link.
In this case, rules may be moved from other boxes re-
sulting in O(rc) complexity.

Edge: Inserting links in the network itself does not
require additional configuration, since the routing pro-
tocol automatically takes the new link into account.
However, additional links to edge subnets may require
duplication of the associated middle-box.

ACR: Since the introduction of a new link triggers
routing updates but does not result in destinations be-
ing assigned new classes, this event cannot result in
hosts’ packets reaching unintended destinations. Thus,
no additional configuration is required.

Table 3: Qualitative Comparison Between Existing
Models and ACR

C.M. E.M. ACR

Entity Addition O(rc) O(re) O(1)
Communication

O(rc)+O(n) O(re) O(1)
Cessation

Link Addition O(rc) O(1) O(1)

Table 3 summarizes the complexity of each operation
for current configuration models and ACR. We observe
that across these three basic scenarios, the configuration
complexity of ACR is significantly better than current
configuration methods. While this notion of configura-
tion complexity is not precise, it does provide a way of
visualizing how ACR simplifies configuration when com-
pared to the number of additional checks that we need
to perform in current systems to achieve access control.

10



6.2 Quantitative: Evaluating ACR in
Real-world Enterprises

In this section, we evaluate the effectiveness of ACR in
real-world enterprise networks. We consider real-world
access control policies used in four large and varied
enterprise environments, all very closed networks with
very tight access control requirements, and we describe
how these access control policies can be transformed
to configuration using classes in ACR. Our analysis is
aimed at answering the following questions:

1. What do access control policies look like in enter-
prise networks?

2. How do we translate access control policies to class
definitions?

3. How many classes would ACR need to achieve ac-
cess control in these networks?

4. How would we aggregate hosts/services to define
classes in ACR?

6.2.1 Description of Enterprise Networks

In our analysis, we consider four different enterprise net-
works all that belong to the Core Model with tightly
constrained access control policies (i.e. each source only
has access to a limited set of destinations/services):

ManageNW: The large commercial entity that we
study is a huge amalgam of individual enterprises each
dedicated to providing a specific functionality. Mana-
geNW is a large management network that forms the
overall management backbone of the entity that inter-
connects management devices in different enterprises.
Within ManageNW, there are several access control
policies that restrict administrators within a specific
enterprise from accessing devices (routers, firewalls)
within this backbone or in other enterprises. Mana-
geNW is a large network that serves nearly 65 individ-
ual subnets ranging from /16 to /24 prefixes. Within
ManageNW, there are tight restrictions on access con-
trol across subnets.

CorporateNW: CorporateNW is an internal net-
work consisting of corporate resources such as HR and
email systems for various subnets throughout the en-
terprise. These various subnets consist of multiple /16
prefixes. The access control policies dictate which of the
corporate resources can be utilized by groups within the
enterprise.

PerimeterNW: PerimeterNW is a security infras-
tructure network that controls access to internal servers
from external networks through the use of proxy servers.

Within PerimeterNW there are access control policies
that dictate the proxy servers that can communicate
with internal servers, this results in rules that are /32
based. PerimeterNW has over 250 individual hosts and
almost all of the access control policies are specified at
the host level.

AuthNW: AuthNW forms a large authorization net-
work that entities outside of the commercial enterprise
use to access resources and services within the enter-
prise. Given the large number of outside firms that re-
quire access to the enterprise, AuthNW is composed of
over 70 prefixes (many of which being /24) and nearly
2000 individual internal hosts (not overlapping with the
prefixes). Many of these internal hosts are servers,
databases, proxies, firewalls, routers that outside en-
tities connect to. Finally, many of the access control
policies in AuthNW are at the level of a host or a group
of hosts.

6.2.2 Translating Access Control Policies to
Classes

There are several possible class assignments that can
correspond to the same set of access control policies.
We present one such class assignment mechanism which
we term Greedy-aggregation. First, we identify the ba-
sic entities in the system which represents the smallest
granularity of prefix (could be a /32 address signifying a
host) over which ACL rules are specified in the network.

Once we identify these entities, we model the access
control rules in the form of a bipartite graph from source
entities (host or prefix) to destination entities (host or
prefixes). We then identify aggregate groups of the form
(src − grp, dst − grp) where src − grp and dst − grp
each represent a group of entities such that any entity
within the src − grp can access any in the dst − grp.
We use a simple greedy algorithm to identify these ag-
gregate groups such that every access control rule is
captured in at least one group. While one can define a
class optimization problem that attempts to minimize
the number of classes for a given access control matrix,
a detailed discussion of such a problem is outside the
scope of this paper.

6.2.3 Applying ACR to Enterprises

Table 4: Number of classes of ACR in real-world enter-
prises

Enterprise Network Number of Entities Number of classes
ManageNW 373 105

CorporateNW 400 140
PerimeterNW 267 40

AuthNW 2110 640

11



Table 4 indicates the total number of classes required
by ACR for each of the four enterprise networks using
the Greedy-Aggregation based class allocation mecha-
nism. We make three observations. First, as per the
Greedy-aggregation approach, the number of classes re-
quired by ACR is small. The number of classes should
be considered relative to the total number of entities;
often, the total number of entities may be much smaller
than the number of end-hosts given that many entities
may represent prefixes. Second, the number of classes
corresponding to a single host is very small. In all these
networks, this number ranged typically from 1 to 10.
Hence, the class-based routing table at every first hop
router is small. Later in our performance benchmark
study, we show that the overhead of class-based lookup
is minimal. Third, one common trend across all net-
works is the structure of the aggregated classes. In
many of the aggregated groups, the src − grp and the
dst− grp often referred to entities in the system which
are physically not co-located. The implication of this is
that in real enterprise networks, the set of entities that
have similar access control policies are often dispersed.
Hence, it appears that real world enterprises will greatly
benefit from the way ACR decouples the access policies
of a host from its IP address, allowing a class to rep-
resent directly a logical network of disparate hosts that
are not physically co-located and do not share a com-
mon IP prefix.

In summary, this analysis shows that ACR can easily
be adopted in real-world enterprise networks to provide
access control, and that the corresponding number of
classes invoked within ACR is also small.

6.3 Quantitative: Performance Over-
head of ACR

In this section, we describe micro-benchmarks that mea-
sure the per-packet processing time in ACR in compari-
son to a normal routing protocol. These benchmarks are
performed using our implementation on a Intel Dual-
core Pentium 3.40 Ghz processor machine running Click
version 1.5.0.

Table 5: ACR forwarding delay as a function of routing
table size

Routing Table Size ACR (µsec) non-ACR (µsec)
10 1.58 1.19
25 1.60 1.25
50 1.62 1.29
100 1.72 1.34
250 2.23 1.61
500 2.97 2.11
1500 5.46 4.56
3000 9.39 7.77

Table 5 shows the average time, in microseconds, for
the class-based forwarding engine to process a packet for

varying routing table sizes for both ACR and normal
routing (non-ACR). For ACR, we analyze the perfor-
mance from the stand-point of a first-hop router which
has to perform class-based lookup and forwarding for
every packet. For non-ACR, in comparison, we perform
a simple routing table lookup operation. For this ACR
benchmark, we installed 20 classes for each source and
destination prefix in the routing table. A packet was
created with a random destination address (within the
specified prefixes) with a randomly generated genuine
class and passed to the class-based forwarding engine.
Based on these results we observe that the overhead of
class-based lookup is relatively small but not insignif-
icant (roughly 20 − 30%) and this constant overhead
(when computed as a fraction) reduces as the routing
table size increases. We view this additional overhead
as the tradeoff for having the class-based functionality
at the routing layer.

Table 6: ACR forwarding delay as a function of number
of classes per routing prefix

Number of Classes Routing Table Size Time (µsec)
10 1500 5.48
20 1500 5.59
30 1500 5.89
40 1500 6.09
50 1500 6.35

In the previous case, we fixed the number of classes
per prefix to be 20 (which is a relatively high number).
Table 6 shows the average time, in microseconds, for
the class-based forwarding engine to process a packet
for varying numbers of classes for each routing table
prefix while keeping the routing table size constant. We
observe that the additional computational overhead due
to having more classes per routing table entry is small.
The implementation uses an efficient hash-based process
to perform the set intersection operation of classes.

To summarize, we showed that ACR scales well in
terms of routing table size as well as number of classes.
Furthermore, we found that the number of classes
and network entities in large networks in practice can
be considered small, and should be handled easily by
routers today.

7 Discussion

In this section we discuss various miscellaneous issues
related to ACR. In particular, we focus on the dynamic
installation of classes at first-hop routers, and the min-
imizing of classes used in an enterprise network.

12



7.1 Location-Independent Class Assign-
ment

In §4.2.3, we discussed how classification rules can be
installed at first-hop routers based on inputs to the Con-
figuration Engine. In general, end-users may be mobile
and connect to the network at different locations, thus
requiring the installation of rules to be dynamic. The
bootstrapping process involves obtaining IP addresses
etc. for communication with other network elements,
as well as classification rule(s) installation. We describe
these next.

We begin by permitting all hosts access to basic ser-
vices in the network, such as DHCP. We set a default
classification rule, which says that all packets that do
not match any other rule will be assigned a minimal-
service class Cms. The set of services in Cms as usual
can be determined by the network administrator, and
the corresponding servers must be configured to accept
packets tagged Cms. Since end-hosts that have been
granted permission to send packets of certain classes
may still require access to these basic services later (say
to renew DHCP leases), they must continue to have the
ability to send class Cms packets.

Next, a logically centralized entity in the network has
to install the relevant classification rule. In cases where
end-hosts are relatively immobile, this role can be taken
on by the Configuration Engine. To accommodate mo-
bile users who authenticate themselves, say via Ker-
beros [14], the two roles (authentication and configu-
ration) can be co-located at a single server. This co-
location allows the end-host to contact a single network
entity (Kerberos server) for the sole-purpose of authen-
tication, with the latter installing rules at the first-hop
router after a successful authentication. Thus, we elim-
inate the need for changes in the end-host.

In general, since access control at the network level
should involve the administrator as well and not solely
the user, the end-host should not be able to directly
configure the first-hop router. Furthermore, since the
end-host identity should be verified before being granted
permission to contact corresponding services, we expect
both the authentication and configuration entities to be
present. Consequently, the authentication servers are
the only network entities that need to be extended to
accommodate class-assignment that is independent of
the hosts’ locations.

7.2 Class Optimization

In general, having a smaller set of classes results in faster
route computation (and hence convergence) and state
required. We now describe an algorithm to reduce the
number of necessary classes, and begin with the assump-
tion that at least one physical path exists between any
two end-hosts. We model the problem using an Access

(a) (b)

2212 22

21 31

32 12

11 21

22 32

312111

Figure 5: From the bipartite graph in (a), there ex-
ists two distinct complete bipartite subgraphs (b), with
common vertices 21 and 22 and common edge (21, 22).

Graph, which is a bipartite graph where each network
entity2 is represented by a unique vertex in each parti-
tion. Each entity is represented by a node in partition 1
and a node in partition 2. The former represents the en-
tity’s ability to send packets and the latter the entity’s
ability to receive packets. An undirected edge (u1, v2)
exists if client u’s packets are allowed to reach server
v, that is, the vertex representing u in partition 1 has
an edge to v in partition 2. Since an entity can always
communicate with itself, the edge (u1, u2) always exists
for all vertices u.

One of our primary focuses is on determining dis-
tinct complete bipartite graphs (CBG) in this Access
Graph. Unlike convention, edges and vertices may be-
long in different CBGs. Thus in Figure 5(a), there are
two such distinct graphs (Figure 5(b)). Next, the algo-
rithm in Figure 6, where the Access Graph is denoted
by Gxs=(Vxs, Exs), is used to determine the minimum
number of classes required, and returns that number as
well as the set of labeled edges.

The intuition behind the algorithm is as follows: as
far as possible, we would want to assign the same class
to the set of entities that can communicate with one an-
other, i.e. those that form a complete bipartite graph.
Thus, we begin by finding combinations of such com-
plete graphs (step 1), where we push as many edges into
CBGs that are made as large as possible. Next, for each
CBG, we assign the same class, which is distinct from
those of other CBGs (steps 7-12), this is possible since
every entity is allowed to communicate with the rest
in the same CBG. Edges that are present in different
CBGs can be assigned either class. For the remaining
edges, we use a greedy algorithm and assign the same
class to edges incident on vertices (say one of which is
v) with the highest degree (steps 13-27). This means
that v is allowed to send or receive packets tagged with
the same class. If the number of classes used is less than
the previous combination of CBGs, we update the win-
ning combination accordingly (steps 28-30). Applying
the algorithm to the access graph in Figure 5, we will
end up with three classes: one each for the CBG graphs
in Figure 5(b), and another for the edge (12, 31).

2where an entity can be a particular user, group of users, traffic
of the same port number, etc..

13



1: find set of combinations of sets of graphs Gcbg s.t. ∀ Gcbg ∈
Gcbg , where Gcbg consists of CBGs and remaining edges, and

no of CBG graphs(Gcbg) + no of edges left is minimal
2: set Gwin ← (∅, ∅), least class←∞
3: for each set of graphs Gcbg ∈ Gcbg do
4: set Gtmp ← Gcbg

5: class counter ← 0
6: for each CBG gcbg ∈ Gtmp,

where no of incident vertices(gcbg) > 2 do
7: find unused class C
8: for each edge (u, v) ∈ gcbg and u 6= v do
9: set class(u, v)← C

10: class counter ← class counter + 1
11: for each vertex u, in descending order of degree (consider-

ing unlabeled edges) do
12: if degree(u) = 2 then
13: find unused class C
14: for each edge (u, v), u 6= v do
15: set class(u, v)← C
16: class counter ← class counter + 1
17: else
18: if in Gtmp,

∃ class C′ s.t. v1 = u ∀ class(v1, v2) = C′ then
19: ∀ (u, v2) ∈ gcbg , set class(u, v2)← C′

20: else
21: find unused class C
22: ∀ (u, v2) ∈ gcbg , set class(u, v2)← C
23: class counter ← class counter + 1
24: if least class > class counter then
25: least class← class counter
26: set Gwin ← Gtmp

27: return least class, Gwin

Figure 6: Pseudo-code for heuristically determining
minimum number of classes required.

It is not difficult to see that this algorithm is NP-
hard in the general case, so we use a greedy heuristic in
obtaining a near optimal assignment. Since the access
graph is unlikely to change frequently, we believe it is
feasible to compute a near optimal assignment for those
networks where it is desirable to minimize the number
of classes.

8 Related Work

Conceptually, ACR works by creating multiple virtual
networks on top of the same physical network, where
each class is associated with its own network. Other
mechanisms for network virtualization exist, but are not
appropriate for access control of the kind that enterprise
networks attempt to perform.

VLANs [9] are widely used to aggregate traffic as de-
scribed in Section 2. However, a host cannot belong to
more than one VLAN, whereas ACR supports being a
member of multiple classes. VLANs also allow commu-
nication between every member of the VLAN, whereas
ACR can easily define policies such that members of a
class cannot talk to each other.

MPLS [21] is a virtualization technology that assigns
labels to packet flows, and sets up corresponding paths

through the network. However, using MPLS to imple-
ment a class among n hosts would require setting up
and maintaining O(n2) Label Switched Paths (LSPs).
Further, MPLS by itself does not solve the problem of
making sure the right packets get into the right LSP
— that would require still more configuration on the
routers. Using MPLS to force traffic through middle-
boxes might be possible, but again would require an ad-
ditional technology for directing packets into the right
LSP.

BGP-VPNs [22] are similar to MPLS in that they en-
able the creation of logically separate virtual networks
on top of the same physical topology. However, like
MPLS, BGP-VPNs are aimed at completely separating
traffic. Implementing access control also requires pro-
viding conceptually simple and easy to use methods of
specifying what reachability should be allowed between
the virtual networks.

The Multi-Topology OSPF [18] proposal is concerned
only with low-level implementation information, and ex-
plicitly states that it does not deal with high-level de-
tails such as the assignment of classes and their seman-
tics. The proposal is encouraging as it provides an im-
portant piece of the overall ACR solution and confirms
the fact that virtualization at layer-3 is being seriously
looked into.

A different type of solution involves end-host based
access control, using protocols such as IPSEC [8] and
SOCKS [11]. ACR can work in tandem with these end-
host solutions. However, as a network-based solution
ACR has the benefits that it can continue to enforce
access control policy even in the presence of network-
level DoS attacks, end-host misconfigurations, software
bugs or other vulnerabilities.

Finally, 4D [6] and SANE [2] both propose centraliza-
tion of the decision and control planes to provide better
security. Rather than explicitly configuring, at a cen-
tral location, every single aspect of communication, we
believe that the same level of immunity from inconsis-
tency can be achieved via distributed routing protocols
by introducing the simple concept of a class.

9 Conclusion

This paper proposes Access Control Routing that uses
classes to define virtual networks, and allows clients and
servers to separately decide on the networks they can
access or receive packets from. Virtual networks can
also be defined to correspond to whether a packet has
traversed a middle-box, thus class transformation boxes,
by bridging two virtual networks, can force traversal
of traffic through it. This separation of configuration,
and altering of classes rather than routing or topology,
simplifies configuration, which we showed qualitatively.
Also, analysis of networks in practice showed that the

14



number of classes and routes required for full access
control is sufficiently small, and can readily be handled
by our software-level router implementation.

References

[1] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
internet denial-of-service with capabilities. SIGCOMM
Comput. Commun. Rev., 34(1):39–44, 2004.

[2] M. Casado, T. Garfinkle, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: A
Protection Architecture for Enterprise Networks. In
Proc. 15th USENIX Security Symposium, Vancouver,
BC, Aug. 2006.

[3] W. Cheswick, S. Bellovin, and A. Rubin. Firewalls and
Internet Security: Repelling the Wily Hacker. Addison-
Wesley Professional Computing Series, 2003.

[4] Cisco Systems. Spanning tree protocol
problems and related design considerations.
http://www.cisco.com/warp/public/473/16.html
Document ID: 10556, Aug 2005.

[5] T. Dierks and E. Rescorla. RFC 4346: The Transport
Layer Security (TLS) Protocol, Apr. 2006.

[6] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang.
A clean slate 4D approach to network control and
management. SIGCOMM Comput. Commun. Rev.,
35(5):41–54, 2005.

[7] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a distributed firewall. In
CCS ’00: Proceedings of the 7th ACM conference on
Computer and communications security, pages 190–
199, New York, NY, USA, 2000. ACM Press.

[8] S. Kent and R. Atkinson. RFC 2401: Security archi-
tecture for the Internet Protocol, Nov. 1998.

[9] LAN/MAN Standards Committee of the IEEE Com-
puter Society. IEEE Standard for Local and Metropoli-
tan Area Networks - Virtual Bridged Local Area Net-
works, May 2003.

[10] LAN/MAN Standards Committee of the IEEE Com-
puter Society. IEEE Standard for Local and Metropoli-
tan Area Networks - Port-Based Network Access Con-
trol, Dec. 2004.

[11] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. RFC 1928: SOCKS Protocol Version 5, Mar.
1996.

[12] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. In SOSP ’99: Proceedings of
the seventeenth ACM symposium on Operating systems
principles, pages 217–231, New York, NY, USA, 1999.
ACM Press.

[13] J. Moy. RFC 2328: OSPF version 2, Apr. 1998.

[14] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC
4120: The Kerberos Network Authentication Service
(V5), July 2005.

[15] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A First Look at Modern Enterprise
Traffic. In Proceedings of Internet Measurement Con-
ference, October 2005.

[16] V. Paxson. Bro: a system for detecting network intrud-
ers in real-time. Comput. Networks, 31(23-24):2435–
2463, 1999.

[17] Payment Card Industry (PCI) Data Security Standard
version 1.1. https://www.pcisecuritystandards.

org/, Sept. 2006.
[18] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and

P. Pillay-Esnault. Multi-Topology (MT) Rout-
ing in OSPF. http://tools.ietf.org/wg/ospf/

draft-ietf-ospf-mt/, Nov. 2006.
[19] Y. Rekhter, T. Li, and S. Hares. RFC 4271: A Border

Gateway Protocol 4 (BGP-4), Jan. 2006.
[20] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Re-

mote Authentication Dial In User Service (RADIUS).
http://www.ietf.org/rfc/rfc2865.txt, June 2000.

[21] E. Rosen, A. Viswanathan, and R. Callon. RFC 3031:
Multiprotocol Label Switching Architecture, Jan. 2001.

[22] E. Rosen and Y.Rekhter. BGP/MPLS VPNs. RFC
2547, March 1999.

[23] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: vulnerability-driven network filters for prevent-
ing known vulnerability exploits. In SIGCOMM ’04:
Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 193–204, New York, NY, USA,
2004. ACM Press.

[24] N. Weaver, D. Ellis, S. Staniford, and V. Paxson.
Worms vs perimeters: The case for hardLANs. In Hot
Interconnects, Aug. 2004.

15

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/
http://tools.ietf.org/wg/ospf/draft-ietf-ospf-mt/
http://tools.ietf.org/wg/ospf/draft-ietf-ospf-mt/
http://www.ietf.org/rfc/rfc2865.txt

	Introduction
	Networks in Practice
	Aggregation of Hosts via VLANs
	The Core Model: A Commercial Network
	The Edge Model: A Campus Network
	Summary of Differences

	Configuration Using Classes
	ACR Configuration Interface
	How Does ACR Work?
	Why Classes?

	ACR Design
	Design Space and Assumptions
	The Control Plane
	Assignment of Classes
	Class Dissemination via Routing
	Class Information Installation

	Data Plane
	Using ACR in Practice
	Connectivity to External Networks
	Stateful Firewalls
	Eliminating VLANs


	Implementation
	Configuration setup and Network entities
	Link-State ACR

	Evaluation
	Qualitative Analysis
	Addition of New Entity
	Communication Cessation
	Addition of Network Link

	Quantitative: Evaluating ACR in Real-world Enterprises
	Description of Enterprise Networks
	Translating Access Control Policies to Classes
	Applying ACR to Enterprises

	Quantitative: Performance Overhead of ACR

	Discussion
	Location-Independent Class Assignment
	Class Optimization

	Related Work
	Conclusion

