LATEST : Lazy Dynamic Test Input Generation

Rupak Majumdar
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-36
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-36.html

March 20, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

L ATEST: Lazy Dynamic Test | nput Generation

Rupak Majumdar Koushik Sen
UCLA UC Berkeley
rupak@cs.ucla.edu ksen@cs.berkeley.edu
Abstract able states are guaranteed to contain the concretely reachable states.

Static analysis is automatic and complete, and many recent imple-
We presentazy expansiona new algorithm for scalable test in- mentations show it is scalable (for many abstractions of practical
put generation using directed concolic execution. Lazy expansion is interest) to millions of lines of code. Unfortunately, it iimpre-
an instantiation of the counterexample-guided refinement paradigmcise unlike testing, which only exercises feasible executions, static
from static software verification in the context of testing. Our algo- analysis can return errors or warnings even if the code is error free,
rithm works in two phases. It first explores, using concolic exe- because it has lost too much information in abstraction.
cution, an abstraction of the function under test by replacing each Clearly, testing and static analysis have complementary
called function with an unconstrained input. Second, for each (pos- strengths. Is it then possible to combine the two in hybrid algo-
sibly spurious) trace generated by this abstraction, it attempts to rithms that can amplify the advantages of both, while alleviating
expand the trace to a concretely realizable execution by recursivelytheir individual disadvantages?
expanding the called functions and finding concrete executions in This is also a well-studied question. One instantiation, symbolic
the called functions that can be stitched together with the original execution [14, 6, 26, 27], has been applied to test generation since
trace to form a complete program execution. Thus, it reduces the the 70’s. In pure symbolic execution, a program is executed using
burden of symbolic reasoning about interprocedural paths to rea-symbolic variables in place of concrete values for inputs. Each
soning about intraprocedural paths (in the exploration phase), to- branch statement in the program generates a symbolic constraint
gether with a localized and constrained search through functionsthat determines aexecution pathThe goal is to generate concrete
(in the concretization phase). values for inputs which would result in different paths being taken.
Lazy expansion is particularly effective in testing functions that Completeness is achieved by depth first exploration of the paths
make more-or-less independent calls to lower level library func- using backtracking [13]. While in theory automatic and complete,
tions (that have already been unit tested), by only exploring rel- for large or complex programs, symbolic execution is expensive,
evant paths in the function under test. We have implemented our and worse, imprecise as complex program behaviors cannot always
algorithm on top of the CUTE concolic execution tool for C and be predicted statically, and these techniques have been limited in
applied it to testing parser code in small compilers. In preliminary their application.
experiments, our tool, calledAresT, outperformed CUTE by an To address the limitations of pure symbolic execution, we have
order of magnitude in terms of the time taken to generate inputs, recently proposed concolic testing [10, 23, 16] based on dynamic
and in contrast to CUTE, produced many syntactically valid in- methods for test input generation [15, 25]. Concolic testing iter-
put strings which exercised interesting paths through the compiler atively generates test inputs by combining concrete and symbolic
(rather than only the parser error handling code). execution, observing that the complexity and imprecision of purely
. symbolic techniques can be alleviated by using concrete values
1. Introduction from random executions. During a concrete execution, a conjunc-
Automatic complete andscalabletest input generation has been tion of symbolic constraints placed on the symbolic input vari-
an important research problem in software engineering for a long ables along the path of the execution is generated. These con-
time. Over the years, several different test generation techniquesstraints are modified and then solved, if feasible, to generate addi-
have been suggested that satisfy a subset of the above propertiegional test inputs which would direct the program along alternative
For examplerandom testinghooses the values over the domain of paths. Specifically, conjuncts in the path constraint are systemati-
potential inputs randomly [3, 8, 7, 20, 21]. The problem with ran- cally negated to generate a set of inputs that provides a depth first
dom testing is twofold: first, many sets of values may lead to the exploration of all paths. If it is not feasible to solve the modified
same observable behavior and are tlagBindantand second, the constraints, then simply substitute random concrete values.
probability of selecting particular inputs that cause buggy behavior ~ Concolic testing shows how static and dynamic program analy-
may be astronomically small [19]. Thus, while automatic and scal- ses can be combined to automatically and completely generate test
able, random testing is rarely complete. In contrast, specification- inputs. Unfortunately, concolic testing does not scale to large pro-
guided manual test generation can pick the right set of tests andgrams, because the number of feasible execution paths of a program
achieve high coverage (completeness), but it is neither automatic,increases exponentially with the increase in the length of an execu-
nor scalable. The search for techniques that achieve all three prop-tion path. The problem is exacerbated in the presence of function
erties is important, not only academically but also economically, calls. A sequence of calls to a function witlk paths already leads
as the major cost of software development today is in testing and to k™ distinct paths to be explored. We call this th&th explosion

validation. problem.

Testing is adynamic analysis technique. By running the Static analysis techniques deal with the path explosion problem
program on concrete inputs, testing is constructing an under- using several techniques. There are a couple of key insights in these
approximation of the set of reachable program st&eatic analy- techniques that can be used. First, perfanterprocedural anal-

sis provides a dual view: instead of running the program on con- ysis by memoizingsummarieginput-output behaviors) for func-
crete inputs, one algorithmically simulates running the program tions, so that subsequent calls to the function can simply look up
over some abstract space of constraints, so that the abstractly reachthe summary rather than explore all paths of the function [24, 22].

Second, always explore the most abstract version of the program,int strcmp(char *stri, char *str2) {
refining the abstraction on demand based on particular executions ~ ¥hile (xstri != >\0 .
(“counterexample-guided refinement”) [5, 1, 12]. These techsique Zi ::zrf ;: *;2 2 {
are orthogonal, and complementary. Concolic execution with sum- Stritt: strott: t T
marization was studied recently [9], and found to have a dramatic ’ ’
increase in scalability. In this paper, we propose a novel technique return *strl - *str2;
similar to counterexample-guided refinement to address the path}
explosion problem in concolic testing.
In counterexample-guided refinement (CEGAR) [5, 12], one void testme() {
starts with a coarse abstraction of the program. The algorithm then1: int tmpl, tmp2;
uses counterexample paths (i.e., abstract paths to an error state§: char *si, * s2;
to either find concrete executions (if the abstract path is realizable
concretely) or to find refinements of the abstraction (if the abstract
path is not feasible). This process is repeated until either there isa™"
test case that reaches an error state, or there is a proof thatthe errog. s1 = input();
states are not reachable. 6: s2 = input();
Counterexample-guided refinement has been used for test gen-
eration before [2]. However, the previous technique had several 7: tmpl = strcmp(sl,constl);
shortcomings. First, abstract exploration is still orders of magnitude 8: tmp2 = strcmp(s2,const2);
slower than program execution. Second, good abstract domains aré@: if (tmpl == 0) {
currently known only for control-dominated programs. For applica- . if (emp2 == 0) {
tions with complicated data flow, abstract exploration fails to pro-))
duce test cases leading to interesting program points. Third, the re-
finement phase was performed purely symbolically [12], inheriting }
all the imprecisions of symbolic execution. (A recent implemen-
tation of CEGAR uses concolic execution for refinement [11].) In
this paper, we instead explorefly dynamic implementationf
the CEGAR loop, where both abstract path exploration and refine-
ment are driven by concolic execution.

char *constl = "Hello World";
char *const2 = "Hello ESEC/FSE";

printf ("Success");

Figure 1. Example

. . . programs after running for one day; howevenTEST generated
We assume that we are interested in complete exploration of aall 99 PL/O programs having 8 tokens within 5 hours. We believe

:zgggogéléﬁdfgﬁzgt:éh'%uun;a\ljveesacrzllisntgtgs?egbiga%ﬁ;teg ai‘o?/lér_that through the novel interpretation of static analysis technique in
age of the top level function, and want to explore only the paths a dynamic context, the ATEST algorithm takes an important step

in the library that lead to observably different behaviors in the top towards automatic, scalable, and complete test generation for large

level. We assume we also have the code for the library. software systems.

Our algorithm, calledazy expansiorworks as follows. We ex- 2, Motivating Example and Overview
plore the function unc_ier test using concolic testing, but replace the We motivate our lazy expansion test generation algorithm using a
return value of each library call, whose behavior depends on a pro- small example
gram input, with an unconstrained input. This creates an abstraction)
of the program: by ignoring data correlations in the library calls, The Problem. Consider the example in Figure 1. We want to unit
we can generate paths that are not concretely realizable. However{est the functiortestme. The function has two inputsi ands2,
the abstraction reduces the complexity of interprocedural path ex- Which can get any null-terminated string from an external envi-
ploration tointraprocedural path exploration. Given such a path ronment. We use the statement input () ; to indicate that the
« in the abstraction, we perforipath refinementthat is, expand variablev is assigned an external input. The functigsstme com-
the called functions along the path to get a concretely realizable paress1 with the constant stringonst1="Hello World" (line7)
path whose projection on the function under test.i®ath refine- ~ ands2 with the constant stringonst2="Hello ESEC/FSE" (line
ment performs a backtracking search over the pathying to find 8). If both checks return 0 (indicating that the stringsand s2
concrete paths through each called function that can be stitchedare respectively equal to the stringigello World" and"Hello
together. The expansion of functions recursively invokes the lazy ESEC/FSE", the statement at line number 11 is reached.
expansion algorithmazily expanding functions along the path. By The functionstrcmp performs the string comparison opera-
expanding the paths inside the nested functions on demand, and untions. It takes two null-terminated stringsr1 andstr2 as input,
der the constraints of the overall path in the top level function, we and walks down the string buffers, comparing character by char-
On|y exp|ore relevant parts of the program path space. This s|gn|f|- acter until it reaches the first character at which either the strings
cantly prunes our search while retaining the relative soundness anddiffer or one or both of them reach the last null character.' At

completeness of concolic testing. this point, the difference between the current characters is returned.
We have implemented the lazy expansion algorithm in a tool A difference of 0 indicates that the strings are the same.
called LATEST, built on top of CUTE, a concolic unit testing engine We assume that we have already performed unit testing of the

for C [23]. We applied laTESTto generate test inputs for programs, function stremp and the function has no bdgOur goal is to
most of which are parsers. Parser programs are especially suited foperform unit testing of the functionestme. In particular, we
our technique. The parser makes many almost independent calls tovant to getpath coverageof testme. We focus on test input
the lexer. The lexer has many different paths through it. However, generation forestme that will cover all feasible execution paths of
lazy expansion ensures that a minimal number of paths through
the lexer gets explored. In our experiments, we find thatdsT I Note that the functiomtrcmp is not bug-free: it crashes #ftr1 or str2
outperforms CUTE by several orders of magnitude. For example, are NULL; however, to keep the function simple we ignore these cases

on a parser for PL/0, CUTE never managed to generate valid PL/0 and assume that the arguments to the functiencmp are always null-
terminated.

testme. A feasible execution path afestme is a path (sequence We generate abstract execution paths of the abstracted function
of assignments, conditionals, and function call statements) in its usingconcolic executiofil0, 23, 4]. In this technique, the function
control flow graph that can be executed for some setting of the is run simultaneously with concrete inputs as well as with symbolic

inputss1 ands2. inputs. Along the execution, the symbolic part gathers constraints
The functiontestme has 720 distinct execution paths and these on the program inputs that cause execution to follow the current
paths can be executed by setting the values of the inpuind path. The symbolic constraints are simplified using the concrete

s2 suitably. The number 720 is derived as follows. The function values that are available during execution. As a result of concolic
strcmp with an input string and a constant string (i.e., where the execution, each point of the executed path is annotated with (1)
argumentstril is an input and the argumestr2 is a constant the concrete store at that point, (2) the symbolic store that maps
string) ha2(n + 1) distinct execution paths, whereis the length addresses to symbolic expressions, and (3) a path constraint that
of the constant string. Therefore, the first invocationsefcmp tracks symbolic constraints for the conditionals executed along the
(line 7) can result in 24 distinct execution paths and the second path to reach the point. At any branch point, the path constraint
invocation ofstrcmp (line 8) can result in 30 distinct execution can be modified so that any input satisfying the modified con-

paths. However, the return values from the two callstecmp straints will cause the corresponding program execution to follow
determine the path exercised trstme. We can combine each the branch of the conditional opposite to the one followed in the
execution path through the first invocation of tercmp function current execution. In this way, all paths of the abstract function can
with each execution path through the second invocation of the be explored.

function strcmp to get a distinct path in the functiotiestme. In the abstraction ofestme from Figure 2, concolic execution

Therefore, there arg0 « 24 = 720 execution paths in the function explores the three execution paths by generating the following
testme. A dynamic test input generation tool based on concolic sets of values fotmp1 and tmp2: {tmp1=1, tmp2=5}, {tmp1=0,
testing, such as DART, CUTE, or EXE [10, 23, 4], willgenerate 720 tmp2=5}, and{tmp1=0, tmp2=0}.

distinct inputs to perform unit testing of this function. We verified The explored paths are abstract because they are obtained by
this fact by invoking CUTE on this code. concolic testing of the abstraction téstme. These paths may not
However, if we overlook the paths inside thercmp function, be feasible in practice: one has to “stitch together” paths from the

then the functiortestme has only 3 paths. Therefore, to success- called functionstrcmp in order to get a feasible execution with
fully unit test the functiortestme, assuming thattrcmp has been the same branching behaviortestme. This is the responsibility
separately tested, rather than generating 720 test inputs, we shoulaf the concretizatiorphase, which expands the called functions to
ideally generate 3 sets of values for the inpttsands2 on which find concrete paths through them.

the function will execute each of these 3 paths exactly once. This In order to do this, theoncretize function uses the symbolic
would be possible if the functiostrcmp could return any possible stores generated by the concolic execution while exploring the path
value (i.e., acted as an input). In general, though, one would haveas well as the path constraint for the (abstract) path. For each
to search through the possible executions©fcmp to find paths function callg() along the pathconcretize performs systematic
that return appropriate return values for the 3 paths to be executedpath exploration through the called functignstarting from the

in testme. This search can often be performed independently for symbolic store at that point in the path. The concolic execution
each call tastrcmp. is used to find a pathr throughg such that the path constraint

Our lazy dynamic test input generati@hgorithm, called laT- of the top level function is consistent with the path constraint
EST, is based on this observation. In particular, we observe that a of w. This ensures that this path can be stitched together with
number of paths of the functiostrcmp have the same effect on the abstract path in the top level function. Notice that the same
the outcome of the conditional statements at line 9 and line 10 of abstract exploration followed by concretization can be recursively
the functiontestme. In fact, for the purpose of testing the function applied while exploringg, thus, transitively called functions are
testme, all the paths through the functicstrcmp can be parti- lazily expanded in the search for paths.
tioned into two sets: one set of paths that returns a non-zero value If several functions are called in sequence along the path,
and the other set of paths that returns a zero value. Therefore, toconcretize implements a backtracking search through the paths of
efficiently test the functionestme, we need to consider only one the functions until it finds concrete paths in each of the functions
execution path from each partition (or equivalence class). This key that can be feasibly stitched together. Of course, this may not al-
insight motivates our ATEST algorithm. ways be possible, in which case it returns that the abstract path
cannot be concretized.

The LATEST algorithm calls the abstract exploration and con-
cretization routines in a loop until there are no more abstract ex-
ecution paths to explore. Each concretizable path gives a test in-
put. The concretized paths are used to update coverage goals in the
function under test.

eApplication to testme. In testme, we lazily expand the function
calls tostrcmp for each of the three paths as follows. Consider the
abstract path

The LATEST Algorithm. The LATEST algorithm lazily expands
called functions when testing a unit. Conceptually, the algorithm
has two phases: an initiabstract exploratiorphase, followed by

a concretizationphase. Here, we describe the algorithm under the
assumption that there are no globals and functions do not have sid
effects. We shall lift this restriction in Section 4.

The abstract exploration phase systematically explores paths of
the function under test, but assumes that every called function can
return any possible value, that is, abstracts all called functions into (5,6;7;8;9;10;11)
unconstrained external inputsl that we obtain by executingestme in Figure 2 on the input

In our example, when expandingstme, the nested function ~ {tmp1=0, tmp2=0}. The constraint on the variablesp1 andtmp2
calls tostrcmp are abstracted to return any value. The pseudo-code for this path is
for the abstraction is given in Figure 2. We have removed the calls (tmp1l = 0) A (tmp2 = 0) (1)
to the functionstrcmp, and assiginputs to tmpl andtmp2. This Given this abstract path constraint, we try to find concrete paths in
creates ambstractionof the functiontestme: the set of paths ex- the two invocations oftrcmp (on lines7 and8) so that the values
plored in this abstraction is a superset of the concretely executablereturned by these invocations satisfy the abstract path constraint.
paths, however, some paths can arise because of the imprecision in In order to concretize the abstract path, we start concolic ex-
modeling the called function and may not be concretely feasible. ploration of the paths inside the first invocationsafrcmp under

void testme() { Token lex() {

char *constl

3: = "Hello World’’; istream = input();
4: char *const2 = "Hello ESEC/FSE’’; ...
5: sl = input(); if (strcmp(istream,"while")==0) {
6: s2 = input(); // return WHILE token

}
7: tmpl = input(); .
8: tmp2 = input(); if (strcmp(istream,"else")==0) {
9: if (tmpl == 0) { // return ELSE token
10: if (tmp2 == 0) { ¥
11: printf ("Success");) s

}

} parse() {

Token token;

Figure 2. Abstraction oftestme while (token = lex()) {
// do something with token

}
the actual context (in the actual context the argursemt. denotes }
the inputs1 and the argumenétr2 is set to the string'Hello
World"). After generating 24 input values fern, we find a path Figure 3. Example

inside the first invocation adtrcmp that satisfies the abstract path
constraini{tmp1l = 0)A(tmp2 = 0). This path is obtained when

= "Hello World". At this point, the path is partially expanded:
the first call tostrcmp has been concretized, but now we have to
find a path through the second call. We update the path constraint to
be the conjunction of the path constraint from (1) with the path con-
straint generated by the path insigtercmp (which iss1[0]=H’
Asi[1]=’e’ A...As1[12]="\0").

Next, we try to find a path inside the second invocation of
strcmp that satisfies this updated abstract path constraint. Such a
path is obtained by the concolic exploration of #tercmp in the
actual context. The path is obtained after generating 30 inputs. For
this path concolic exploration generates-"Hello ESEC/FSE".
Finally, we generate the actual inputs = "Hello World" and
s2="Hello ESEC/FSE" for which the functiontestme takes the
desired path. This path is generated after 55 iterations (i.e., after
exploring 55 paths.)

In a similar way, for the other two abstract paths, we generate
values fors1 ands2 by expanding the invocations of the function
strcmp. These inputs are generated after 26 and 32 iterations re- gy
spectively. In total, we perform 113 iterations to obtain complete de
path coverage in theestme function only. This number is signifi-
cantly less than 720.

Notice that each concolic execution is only intraprocedural:
nested function calls are expanded only in the concretization phase
This novel way of exploring the nested functions on demand en-
ables LATEST to avoid unnecessary exploration of the nested func-
tions, which we have already unit tested.

Our technique is similar to inter-procedural exploration with
summarization [22], recently suggested as an improvement to con-
colic execution [9]. However, our requirements are weaker (only
test the top level function, assuming the callees have been unit
tested), and so we can optimize the exploration further by only con-
structing summaries for relevant paths in the top level functions.
Without this assumption, the technique of [9] has to comprehen-
sively explore all paths in the callees as well. Of course, these tech-3. Abstract Concolic Exploration
nigues are complementary: in the exploration of called functions
we can summarize states and use the summaries in subsequent
plorations. However, we leave out this optimization in our descrip-
tion and experimentation as it is orthogonal to the technique of the
paper, and also confounds the benefits of our approach with the
benefits of summarization in the experimental results.

ability of DART or CUTE to generate valid inputs for parsers. A
parser usually invokes a lexer function, 9ax, several times along

a path. Theex function in turn may calktrcmp function or sim-

ilar regular expression matching functions several times. A simple
skeleton of such a parser is shown in Figure 3. In practice, a sim-
ple1lex () functions can have many paths (for exampld 0000.)
Therefore, DART or CUTE requires to generaf@00° inputs to
even generate valid programs with 5 tokens for the parser. In sum-
mary, the problem of test input generation for parsers and similar
programs becomes intractable due to pla¢h-space explosiom\
recently developed technique called SMART, tries to address this
path explosion problem, by summarizing functions. However, a
summary for complex function such asx () can result in a huge
disjunctive formula. Our experience shows that a conjunction of
such huge summaries usually makes the constraint solving prob-
lem intractable.

LATEST tries to address this problem by employing a demand-
ven and sound strategy for exploring paths. For a pargag &1

lays the expansion of the functiohsx and strcmp. LATEST
abstracts those functions using unconstrained inputs. The abstract
parser function is then explored using concolic execution. Suppose,
LATEST gets 100 abstract paths in the parser function with say 5 to-
‘kens. Then for each such abstract pathT&ST tries to expand the

5 invocations of théex function. Assuming that theex function

has at most 0000 execution paths, ATEST usually ends up ex-
panding the 5 invocations afx in less tharb « 10000 iterations.
Finally, LATEST completes the complete path exploration of the
parser function with 5 tokens #x* 10000 * 100 iterations which is
exponentially less thah0000°® iterations. Note that during the ex-
ploration of the paths insideex, LATEST abstracts the invocation

of the functionsstremp. This way LATEST reduces the number of
iterations recursively.

' Our LATEST algorithm has two phases: abstract exploration
e)f)'hase, followed by aoncretizatiorphase. The abstract exploration
phase uses concolic testing to explore all paths of a function in
which all function calls has been abstracted. We call #iistract
concolic explorationWe next describe the abstract concolic explo-
ration algorithm in terms of the functiowbstract_next_path. The
Motivation from a Real-World Test Generation Problem. The abstract_next_path function is almost similar to concolic execu-
technigue behind ATEST was primarily motivated due to the in- tion [23, 10], except the fact that in concolic execution we do not

abstract function calls. To keep the paper complete and to clarify execution pathw of P is a finité sequence ifExecs := L*, where

the differences we give the definition ebstract_next_path.

3.1 Programsand Concrete Semantics

We fix an imperative programming language to illustrate our ab-
stract concolic exploration algorithm as well as owTEST al-

gorithm. The operations of the programming language consist of

labeled statements : s, where labels correspond to the program
counter. A statement is either (1) &mput statemen? : m :=
input() that reads an external input into the Ivalue(2) anassign-
mentstatement of the form := e, wherem is an Ivalue ana is a
side-effect free expression, (3)anditionalstatement of the form
if (e)goto £, wheree is a side-effect free expression ahis a pro-
gram label, (4) dunction callof the formm := f(m1,..., mz),
for lvaluesm, m1, ..., my, or (5) a return statement of the form
return ret for a speciaketurn variableret used to pass back re-
turn values.

Execution begins at the program coundgr For a labeled as-
signment statemelét: m := e or input statement : m := input()
we assumé + 1 is a valid program counter, for a labeled condi-
tional? : if (e)goto ¢ we assume botH and/+1 are valid program
counters, and for a function calt := f(...), we assume that the
function f is defined and starts at a valid program coujerand
additionally,Z + 1 is a valid program counter.

The set ofdata valuesconsists of program memory addresses

L = La U Lc U Lg is the set of statement labels Bf

The concrete semantics #f at the RAM machine level allows
us to define for each input mélglap an execution path: the result of
executingP on IMap. Let Execs(P) be the set of such execution
paths generated by all possitlap. Note that the execution of
P on several input maps may result in the same execution path.
The setExecs(P) defines acomputation treewhich is a rooted
directed tree with nodes corresponding to program labels with root
£o. A node/ corresponding to an assignment statement, a function
call statement, or a return statement has one succéssor; a
node corresponding to a conditional statement has two successors
for the then and the else branches. The leaves of the computation
tree correspond teeturn statements.

3.2 Abstract Concolic Execution

The pseudo-code of thebstract_next_path function is given in
Figure 4. This function takes the following as inputs: a function
f whose abstract paths we want to explore, an initial symbolic
store Sp, and an initial symbolic path constraigt The initial
symbolic store and the initial path constraint gives the symbolic
context in which we want to explorg This is essential for ATEST
because in BTEST we will use abstract_nezxt_path to explore
paths in nested functions under different contexts. If we want to
explore f in an empty context thes, should be an empty map

and integer values. The semantics of the program is given using@nd ¢ should betrue. The functionabstract_next_path returns
a memory M consisting of a mapping from program addresses an abstract path in the functiof and the path constraint along

to values. Execution starts from the initial memat, which

that abstract pathabstract_next_path behaves like arnterator,

maps all addresses to some default value in their domain. GivenWhich on every invocation returns a new abstract pathtinat was

a memory M, we write M[m +— o] for the memory that maps
the addressn to the valuev and maps all other addresses to

not returned before. Any input, sdivap’, that satisfiesp gives
a valid path inf. For an inputiMap’, the initial concrete state is

M(m’'). We assume that the concrete semantics of the programobtained by replacing all symbolic variablesdp using the input

is implemented as a functiotval_concrete that takes a memory

maplMap’.

and an expression, and evaluates the expression in the memory Like an iteratorabstract_next_path has to maintain some per-

M. Additionally, we assume that a functietmt_at(¢) returns the
statement with program countér

sistent state across calls to it. This persistent state comprises of
the next input mapMap, a concise historypath of the paths that

Statements update the memory. The concrete semantics of theve have so far explored, and a flagmpleted indicating whether

program is given in the usual way as a relation from program

our exploration is over. We make these varialsi@sic in the func-

counter and memory to an updated program location (correspond-tion abstract_next_path. (Actually, abstract_nezt_path needs to

ing to the next instruction to be executed) and updated mem-

ory [17]. For an assignment stateméntm := e, this relation cal-
culates, possibly involving address arithmetic, the addres$the
left-hand side, where the result is to be stored. The express®on
evaluated to a concrete valuén the context of the current memory
M, the memory is updated t&1[m — v], and the new program
location is¢ + 1. For an input statemeiit: m := input(), the tran-
sition relation updates the mematyt to the memoryM[m +— v]
where v is a nondeterministically chosen value from the range
of data values, and the new locationfis+ 1. For a conditional

¢ : if(e)goto £, the expression is evaluated in the current mem-

maintain one set of static variables for each functfoand each
contextS and¢. We show only one set of static variables for read-
ability.)

The functionabstract_nezt_path initializes a number of local
data structures as follows: the symbolic stdtas initialized to
So; a maplMap’ from the symbolic values to concrete values is
obtained by solvingp and the map is used to obtain the initial
concrete memoryM from S; the program countegc is initialized
to the labell; of the first statement of; the variablesi and k&
denoting the number of inputs and the number of conditionals,
respectively, encountered so far in the execution are initialized to 0;

ory M, and if the evaluated value is zero, the new program location & sequenceath_c of symbolic constraints generated so far along

is ¢ while if the value is non-zero, the new locatior¢ig- 1. In ei-

the execution is initialized to the empty sequence; a sequence

ther case, the new memory is identical to the old one. For a function recording the annotated trace is initialized to the empty sequence.

call ¢ : m := f(ma1,...,my), the values of the actual arguments
M(mi),..., M(my) are copied to the formal parameters fof
and the return addregs+ 1 and the return Ivaluen are pushed
onto a stack. The new location4g, the start location for function
f. At a return statementturn ret for a function f when the top
of the program stack i§/, m), the new location i€ (function re-
turn to caller), and the memory is updatedté[m — M (ret)],

The annotated trace, which is a sequence of pairs of symbolic stores
and statements, is returned by the functidtract_next_path.
The LATEST algorithm uses this annotated trace for concretization
as described in Section 4.

The functions abstract_next_path returns NoMorePath if
completed is true, i.e., we have explored all the abstract paths in
the functionf. Otherwise, the functionsbstract_next_path ex-

reflecting the copy-back of the return value. If the program stack is ecutes the statements gfin a loops as follows. It computes the

empty, the execution terminates.

Let La be the set of labels of assignment and input statements,

Lc be the set of labels of the conditional statements, &pd
the set of labels of function call and return statement$’ofAn

next statemerxto be executed by callingmt_at(pc) and appends

2We thus assume that all program executions terminate; inipeattis can
be enforced by limiting the number of execution steps.

(where~ is the append operator) the pé&f, s) of the current sym-
bolic store and the current statement to the annotated tralfes
is an assignment statement, then the right hand side expression is
evaluated both concretely and symbolically and the results are used
to update the left hand side memory location in both the concrete
state and symbolic store, respectively. The program courntés
incremented by 1 to point at the next instruction. As an optimiza-
tion, if the symbolic expression is a concrete value, then we drop
m from the domain of the symbolic store. Thus, we maintain that
all addresses in the domain Sfare not concrete values.

If s is a conditional statement, then the predicate inside the
conditional is evaluated both concretely and symbolically to get
b andc, respectively. Ifb is true, thenc is appended to the path
constraintpath_c; otherwise,~c is appended t@ath_c. If k, the
number of conditionals executed so far, is equal to the sipaf,
thenO is appended tpath to record that the current branch needs
to be negated in future to generate a new input that would force
the program along a new unexplored execution path. Finalig,
incremented since we have executed a conditional.

If s a function call statement of the form := g(ma, ..., mx),
then we abstract the return value of the functjooy an input. We
check if we have a value of the input available in iMap (by
checking ifIMap[¢] is defined). If not, we initializéMap[i] with a
random number as in DART and CUTE. We use the vélep|:]
to update the mapping af in the concrete memory. We also create
a fresh symbolic value; and use it to update the mappingef
in the symbolic store. We perform the same stepsiff an input
statement. Finally, we increment the and thei.

Once we have reached the return statemenf, efe terminate
the execution and invok@lve_constraint to generate a new input
that would force execution of along a different path at the next
call of abstract_next_path. To do so, we find the last branch that
has not been negated before, sayh_c[j], and generate a new
IMap by solving¢ A path_c[0] A ... A =path_c[j]). The entry
pathlj] is update to 1 to indicate that the same branch should not
be negated in a future execution.

If we do not manage to generate a new input thempleted
is set totrue. At the end, we return the paifr, path_c[0] A
... A path_c[k — 1]) containing the current annotated trace and
the current path constraint inside the functjfin

We use the functioevaluatesymbolicto evaluate an expression
symbolically in the symbolic store. Due to space constraints, we do
not define this function here; however, interested readers can refer
to [10, 23] for further details. An important feature of our sym-
bolic evaluator is the following. Since the concrete values stored in
all memory addresses are available at the time of symbolic evalu-
ation, the symbolic evaluator can “fall back” on concrete values if
either the expressions get too big, or the constraints go beyond the
purview of the underlying constraint solver. For example, the tools
described in [10] implement a solver for the theory of integer linear
constraints. When an expression falls outside the theory, as in the
multiplication of two non-constant sub-expressions, the symbolic

abstractnextpath f Sp ¢

pc =Ly
S:=8p
let IMap’ satisfiesp in
obtain M from S usingIMap’
i:=k:=0
path_c := w := empty sequence
static IMap := empty map
static path := empty sequence
static completed := false
if completed then
return (NoMorePath, -)
s := stmt_at(pc)
mi=17"(S,s)
while (s # return ret)
match (s)
case (m :=e):
S := §[m — evaluatesymboli¢e, M, S)]
M := M|m — evaluateconcretée, M)]
pc:=pc+1
case (if (e)goto ¢'):
b := evaluateconcretée, M)
¢ := evaluatesymbolige, M, S)

if bthen
path_c := path_c ~ ¢
pe =4
else
path_c := path_c ~ (—c)
pc=pc+1

if [path| = k then
path := path ~ 0
k:=k+1
case (m := input()):
case (m := g(mi,...,mn)):
/I abstract the function. will be expanded byncretize
if IMap[¢] not definedhen
IMapli] := random()
M = M[m — IMapli]]
S :=8m— s4)

=1+ 1

pc:=pc+1
s := stmt_at(pc)
m:=m"(S,s)

(IMap, path, completed) := solve_constraint ¢ path_c path k
return (m, path_c[0] A ... A path_clk — 1])

solve_constraint ¢ path_c path k

ji=k—1
while (j > 0)
if (path[j] = 0) then
if (3IMap’ that satisfieg) A path_c[0] A ...
path[j] :=1
return (IMap’, path[0..5] false)
dsej:=j5—1;
dsej:=j5—1;
return (-, -, false) // complete search is over

A —path_c[j]) then

evaluator simply falls back on the concrete value of the expression,
which is used as the result. In such cases, we set a fltagoto
indicate that our search algorithm can no longer be complete, i.e.
we cannot explore all feasible abstract pathg.in

4. Lazy Expansion

We now describe the ATEST algorithm wusing the
abstract_next_path function as a building block. We give a
recursive formulation of the algorithm. The key point is that
we always use abstract concolic execution implemented in

Figure 4. Abstract Concolic Exploration

"method to stitch together the intra-procedural paths to form an
inter-procedural path.

4.1 Lazy Expansion: Conceptual Algorithm

We first illustrate the algorithm assuming that functions have no
side-effects and always return a single value of primitive type. We
shall lift this restriction in the next subsection.

Figure 5 shows the organization of the code. The maim-L

abstract_next_path to enumerate over intra-procedural abstract EST algorithm takes as input a function under t¢sand system-
executions (i.e., executions where called functions are not followed atically tests it by generating abstract execution pathg ins-

but assumed to return any value), and use a speoiatretize

ing abstract_next_path (with the argumentsf, an initial empty

LATEST f = The concretize function walks over the annotated patind

while (true) _ tries to justify each step by a concrete execution. An empty path is
!ft (’_Tﬁ)l\jl “b‘gmﬁth"eféffgﬁh f So truein trivially justified. Otherwise, it looks at the first annotated operation
(o ath then bre (S,¢ : op) of the path, wheré is the program countes is the
(7',) = concretize w ¢ in . - - .
if =/ £ NoMorePath then symbo!lc store used by the qoncollc executlo_tﬁ atong _thls path_,
update coverage information using andop is the program operation. The concretize function considers
the following two cases afp.
If op is a function calm := g(z1,...,zxs), thenconcretize
concretize T ¢ = has to expand the current call goto find a concretely realizable
Input: pathr, path constraing _ path ing that can be stitched to the path fn In order to do this,
Output: concretized path” and path constraint’ for =/ the current symbolic stor§’, where symbolic expressions for the
n?;tgﬁMmiEath if (w, ¢) cannot be concretized actual arguments tg in S are copied to the formal arguments of
T g (performed by functiorcopy_args) is computed. A concretely
casee: . . . , . .
return (e, ¢) reallzab_le paf[h iry, starting fromS anq also satisfying the path
case (S, ¢ : op) :: rest: constrainte, is obtained by the functiomezt_path as follows.
match op with next_path finds a concrete path (if one exists) by recursively invok-
casem = g(x1,...,Tn): ing the abstract concolic exploration functiabstract_next_path
let S’ = copy_args(S, op) in on g, &', and ¢, and then concretizing this abstract path using
let (n',¢') = next_path g S" ¢ in concretize. If there are no more concrete pathsgodtarting from
IefI;/ = NoMorePath then return (NoMorePath, -) S’ and satisfyingp, then concretize returnsNoMorePath. How-

ever, if the current path throughis such that it cannot be stitched
together (i.e., there is no way to find inputs that simultaneously sat-
isfy the constraintp as well as the path constraint on the return

let ¢ = copy_ret m S ¢’ in
if ¢ A 1) is unsatisfiablehen
return (concretize w)

dse value ofg that constrains the value af), then the next path ig
let (x, ¢") = is searched. If, on the other hand, one can find a concrete execution
concretize rest (¢ A 1) in throughg that can extend the current path, concretize recursively
if 7'/ = NoMorePath then justifies the rest of the trace, and returns a stitched concrete inter-
return (concretize m ¢) procedura| path.
otherw?:la:e' return ((¢, op) :: (append 7’ 7”), ¢"") In this way, concretize performs a backtracking search through

concrete executions of the called functions in order to find an inter-
procedural valid execution.

If on the other handep is some other program operation (an
assignment, conditional, or a return), themcretize recursively

let (7',) = concretize rest ¢ in
if 7 = NoMorePath then return NoMorePath
esereturn ((¢: op)uin’,)

nest_path g S ¢ = concretizes the rest of the path, and returns the inter-procedural
Input: Functiong, symbolic storeS, path constraing path obtained by prepending the current operafién: op) to
Output: Either NoMorePath or the recursively constructed path. If the rest of the path cannot be
a concrete patlr and a path constraigt’ for = concretized, themoncretize returnsNoMorePath in the recursive
let (,) = abstract_next_path g S ¢ in call, and this is returned by the current call as well.
match m with The algorithm uses the helper function®py_args and

case NoMorePath: return (NoMorePath, -)

atherwise : refurn concretize 7 ¢ copy_ret that perform symbolic copying of actual parameters to

formal parameters and symbolic copy back of the return parame-
ter to the caller, respectively. The descriptions of these functions
- - are omitted. In particular, the functiatwpy_ret is used to add a
Flgure 5. The algonthms IATEST, concretize, andnemt,path for Constrainta"L = Qret to the path Constraint’ Whemn was the
Lazy Expansion free input corresponding to the return value frgnassumed by
abstract_next_path. This new constraint ensures that the return
value is now constrained by the constraints imposed by the path
throughg.

The soundness and the completeness property of tredr
algorithm is given with respect to the CUTE search algorithm.

symbolic storeSy, and an initial path constraintrue). The ab-
stract path is concretized using a functiasmcretize (described
below). If the path can be concretized, then the concrete path is
used to update coverage information (e.g., the branches visited).

However, if the path cannot be concretize@r(cretize returns THEOREM 1. [Relative Soundness and Completeness] Given a
NoMorePath), the loop runs again to generate the next abstract program f having a finite computation tree and given any state-
path inf. The loop continues until there are no new abstract paths ments in f, CUTE executesif and only if LATEST executes.

(i.e., abstract_next_path returnsNoMorePath).

Given an abstract (intra-procedural) path through the 42 Implementation of Lazy Expansion
concretize function is used to find a concretely realizable execu-
tion of the program by expanding out the called functions (and In the presence of side effects, the algorithm in the previous section

by recursively finding and concretizing abstract paths in the tran- €0 b€ unsound. This is because the updated path constraints may
sitively called functions.) The input tooncretize is an abstract 1Ot réflect concrete updates to global state by the called function,
pathr that is annotated with the symbolic store at each point, and &S the following example illustrates.

the path constrainp of runningz concolically. The function out- ExamMPLE 1: The code in Figure 6 demonstrates that simply con-
puts a concrete (inter-procedural) execution whose projectigh on joining additional constraints on the path may lead to unsound re-
is the pathr together with the path constraint for the entire path, sults. In the example, the labelis unreachable, since the func-

or returnsNoMorePath indicating that the current path cannot be tion foo sets theglobal bit to 1, thus invalidating the conditional
concretely realized. guardingL. The first phase of concolic execution generates the path

int global;
int foo(int w) {
global = 1;
if (u == 0) return 0; else return 1;

}

int main() {
global = 0;
y = input();
x = foo(y);
if (global == 0 && x == 0) {
L:
}
}

Figure 6. Unsoundness of the algorithm from Figure 5 in the
presence of side effects

constrainta, = 0 and the store maps the address of the Ivalte
a.. When the function calfoo is expanded, we get the additional
constraintret(foo) = 0. There are no other symbolic constraints
(from the store or the path) sin€eo is purely concrete. This leads
us to mistakenly conclude that the pathLt@an be executed, and
that the path taking thelse branch cannot be executed. O

// locate index of first character c in s
int locate(char *s, int c) {

int i = 0;
while (s[i] '= c¢) {
if (s[i] == 0) return -1;
i++;
}
return i;
}

void top(char *input) {
int z;

z = locate(input, ’a’);

if (z == -1) return -1;
if (input[z+1] != ’:’) return 1;
return 0O;

Figure7. Comparison with summarization (from [9])

the path can be extendechncretize will return the partially ex-
panded patHby : b1), where the concrete path through(and its
transitively called functions) have been appendeéytto getby,

and then find a concrete realization of the rest of the pat&ince

the concolic execution explicitly executes the program along the

In order to provide sound results in the presence of side effects, Path, we ensure that the algorithm is oblivious to side effects.

we have to ensure that the implementation af EST is oblivious
to side effects in function calls. We ensure this by modifying the
algorithm so that it is stateless. Intuitively, instead of working with

4.3 Comparison with Summarization
For ease of exposition, we have presented the algorithm without

explicit symbolic stores and path constraints, we work with the memoization. However, we can apply summarization at function
bitvector of conditionals that are executed along a certain path. boundaries (similar to [22, 9]) imoncretize, that first checks if

Recall that this bitvector is constructed in thistract_next_path
function (variablepath). We informally describe the main changes
in the algorithm, which is implemented in our tool.

First, we modify theabstract_next_path function to take as
inputs a functionf, and two bit sequencels, and b>. The bit

a concrete path in the current function with the current symbolic
constraints has been seen before (and if so, returns it), and only
performs the exploration if a summary has not been seen before.
The result is an algorithm that is similar to [9], but which can
explore many fewer paths in testing the function-under-test. Unlike

sequence; denotes the sequence of conditionals that have been[9], where all possible execution summaries for a called function

executed to reach the call to functign The bit sequenck; gives

g are constructed as soon @ass called, we only construct enough

the sequence of conditionals executed along the entire abstractsummaries in the called functions to explore all the paths in the

execution path. We maintain the invariant thatis a prefix ofb..
Givenb; andbs, we can reconstruct the symbolic sté&fg¢and the
path constrain®, by performing concolic execution along the path
determined bys.

Next, we changeoncretize to make it side-effect oblivious
and stateless. Similar tabstract_nezt_path, instead of propa-

top level function. Since we work under a stronger, but realistic,
assumption that all the library calls have already been (separately)
tested, we can afford this optimization.

Figure 7 shows an example from [9]. For a stringf length less
than or equal ta, the functionlocate has2n distinct executions
for any non-zero character(and at most: if c is zero). There are

gating path constraints, we shall propagate bitvectors. The func- n possible return values:1 if ¢ does not occur is, and any index

tion concretize will take a bitvector representing the condition-

1in0ton — 1if c occurs in theth place ins.

als executed along an abstract execution path and attempt to find a The functiontop calls locate, and itself has three different
concrete execution through the program. When the next statementpaths: eitherlocate returns a—1 (i.e., ‘a’ is not present in the

along the abstract path is a function cabycretize executes the

input), or ‘a’ is present in the input and is either followed by a *’

bitvector sequence concolically to generate a symbolic store at theor not.

function call and starts finding a concrete path in the function. How-

Usual concolic execution without lazy expansion or summariza-

ever, when the function returns, we do not simply conjoin its path tion searche8n — 1 paths in the code. Of these paths terminate

constraint to the path constraint of the original function. We try

after the then branch on line &, paths terminate after the then

to concolically execute the partially expanded path to find inputs branch on line 2, anék — 1 terminate on line 3. The summary-
that can force the execution down the partially expanded path. Pre-based concolic execution of [9] computes a summawekte by

cisely, suppose thabncretize is called with a bitvector sequence
(bo : b1), where the bitvectob, represents a partially expanded
path up to the function call tg, andb; is the rest of the abstract
path after the return frorg. Then, concretize will perform con-
colic execution to generate the symbolic store aftethen recur-
sively expand the function call tg. When the expansion af hits
the return statement af, instead of returning from the recursive
call, it will check if the current store (at the return pointgfcan

be extended to execube. This process is similar to the counterex-
ample refinement algorithm using concolic execution from [11]. If

executing then executions inlocate, creating a summary with
2n terms, and uses this summary subsequently when analyzing the
three paths irtop. In all, it performs2n + 3 iterations:2n for
locate and3 for top.

In comparison, lazy expansion searchegaths (which is inde-
pendent o) in the code. This is becauseatesTdoes not attempt
to explore all possible paths through the entire program, but to se-
lectively find paths throughocate that ensure full coverage of
the function under testop. The first abstract path inop returns
1. This path gets concretized in 2 more iterations. The second ab-

Tool Program Running | # of % Branch Tool #of | Running | # of #of valid | % Branch
Name Name Time Iterations | Coverage Name Ops | Time Iterations | Inputs Coverage
CUTE programl.c| 30s 676 100.00 CUTE 1 20m26s | 19435 6 97.62
LATEST | programl.c| 2s 59 100.00 LATEST | 1 3s 206 6 97.62
CUTE program2.c| 21s 651 100.00 CUTE 2 > 26hr > 108 0 97.62
LATEST | program2.c| 1.5s 63 100.00 LATEST | 2 47s 1671 26 97.62
CUTE program3.c| 20s 841 100.00 CUTE 3 - - - -
LATEST | program3.c| 1.5s 68 100.00 LATEST | 3 6m8s 10000 104 97.62
CUTE 4 - - - -
Table 1. Testing 3 Simple Programs LATEST | 4 431mills| 485256 | 3126 97.62

stract path irtop returns 0. This abstract path gets concretized in 4
iterations. The third abstract path returns -1 and this path gets con-

cretized in 1 iteration (because the elementdmdut array gets
initialized randomly and it is very unlikely that an element in this
array is’a’ or’:’.)

Notice though that summarization and lazy expansiorcane-

Table 2. Testing A Simple Calculator

5.2 A Simple Calculator

We considered a C implementation of a simple calculator that can
perform basic operations such addition, subtraction, multiplication,
and division. The implementation has around 120 lines of C code.

plementarytechniques. In the example above, every time we ex- Like any other calculator, this calculator takes numbers and oper-
pand functionlocate, we can construct a path summary, and in ators as inputs. When we restrict the number of operations of the
subsequent expansions, we can first check if one of the already-calculator along an execution path to one, the number of feasible
constructed summaries provide a witness path. execution paths of the calculator becomes less than 20000. This en
ables CUTE to explore all the paths in the calculator in a reasonable
amount of time. We picked this example because we can run both
i)]) LATEST and CUTE to completion and get an accurate comparison
In the abstract concolic exploration algorithm (Section 3), we ab- of the two techniques.

stract all functions that we encounter along an execution path. Ob- Taple 2 shows the result of running both CUTE anarEsT
serve that a number of such function’s behavior may not depend on the simple calculator. The second column in the table gives
on the program input. Such function calls will have a single path the number of calculator operations that we performed along an
thl’OUgh them. Therefore, abstracting their return values with in- execution path We say an |nput\‘al|d if the calculator produces
puts will give rise to infeasible redundant abstract execution paths. no syntax error on the input. CUTE failed to terminate with merely
In the implementation of ATEST, we dynamically identify if the two operations along an execution path. Moreover, after running
input (or any memory read) by a function call has a mapping in for 26 hours, CUTE produced no valid input sequence for the
the symbolic state. If not, then we execute the function without ab- ¢gculator. On the other hand ALEST completed testing in 47
stracting it. Otherwise, we abstract the function. This optimization seconds after generating 26 valid inputs. With one operation along
prunes a lot of infeasible abstract execution paths. a path, we attained a branch coverage of 97.62% with both tools.
5. Implementation and Evaluation This provides evidence to our main theorem in SectionArdsT

4.4 Avoiding Abstraction of Input Independent Functions

) . . also managed to terminate when we had 4 operations along a path.
We have implemented ATEST on top of CUTE, a concolic unit For this case, we estimated that the number feasible execution

testing engine for C [23]. Currently ATESTrequires us toidentify paths is more than0'® and CUTE will run for several days before

case study we identify theex, the strcmp, and theregex func-
tions as abstract. ATEST has a switch: if the switch is off, then

LATEST abstracts no function and falls back to concolic testing;

if the switch is on, then RTEST invokes the lazy algorithm. The
front-end of LATEST that instruments C code is written on top of

CIL [18] and back-end that performs the actual symbolic execution

is written in SmartEiffel. In this section, we report the results of

our experiments with several programs, including simple calcula-
tor implementation and a parser of a simple imperative language

called PL/O.

For each program, we describe the experimental setup and the

results of comparing ATEST to concolic testing. We conducted the
experiments on a Core 2 Duo Linux Desktop with 1 GB RAM.

5.1 Miscellaneous Small C Programs

We considered three small C programprogrami.c and
program2.c are similar to the code in Figure 7, except that we
make 2 calls to th&ocate function in programi.c on differ-
ent input buffers and we make 2 calls to thecate function in
program2.c on the same input buffeprogram3.c is a variant

generate test inputs for complex programs, where CUTE fails to
terminate.

5.3 PL/0 Parser

We next report our experience with a recursive descent parser im-
plementation of PL/O written in C. PL/O is a simplified version of
the general-purpose programming language Pascal. The language
usually serves as an example of how to construct a compiler. It was
originally introduced in the book, Algorithms + Data Structures =
Programs, by Niklaus Wirth in 1975. It features quite limited lan-
guage constructs: basic arithmetic operations on integers and no
control-flow constructs other than “if” and “while” blocks. While
these limitations makes writing real applications in this language
impractical, it helps the compiler remain compact and simple. We
picked an implementation of this language because the implemen-
tation is written completely in C without any use of the compiler
tools such as yacc or lex. This helped us to annotate the functions
that can be abstracted easily.

Table 3 shows the result of running both CUTE anaresT
on the parser. The parser has infinite number of executions paths,

of the code in Figure 1. Table 1 gives the results of running both because a program in PL/0 can have unbounded size. In order to

CUTE and LATEST on these programs. In all cases, we got com-

make the test input generation experiment tractable, we bounded

plete branch coverage. The table shows that number of iterationsthe size of a program in PL/O to a finite number from the{Se8}.

and the running time usingATEST is significantly smaller than
that in CUTE.

We started with 7 tokens, because there in no valid program in PL/O
with less than 7 tokens. The second column gives the number of

Tool # of Running | # of #ofvalid | % Branch [6] L. Clarke. A system to generate test data and symboliedscute
Name | Tokens | Time Iterations | Inputs Coverage programs|EEE Trans. Software Eng2:215-222, 1976.

CUTE | 7 > 24hr | > 10° 0 -) i)
LaTEST | 7 56m13s | 98485 99 74.96 [7] C. Csallner and Y. Smaragdak}s. JCrasher: an automaticstobss
CUTE 8 - - - - tester for Java.Software: Practice and Experiencg4:1025-1050,
LATEST | 8 4hr37m | 448046 399 74.26 2004.

[8] J. E. Forrester and B. P. Miller. An Empirical Study of theliistness
of Windows NT Applications Using Random Testing. Froceedings
of the 4th USENIX Windows System Sympos2@a0.

[9] P. Godefroid. Compositional dynamic test generationP@PL 07:
Principles of Programming LanguageACM, 2007.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed@mated
random testing. IfPLDI 05: Programming Language Design and
Implementation2005.

[11] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori, and=&jamani.
SYNERGY: a new algorithm for property checking. $f\GSOFT FSE
06, pages 117-127. ACM, 2006.

[12] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazgtédztion.

Table 3. Testing a Parser of PL/O

tokens that we considered in an input. We say an input is valid
if the PL/O parser can parse the input without syntax error. The
table shows that CUTE never managed to generate valid inputs
when the number of tokens was restricted to 7 or 8. We estimated
that CUTE will take many days to generate all valid inputs with
7 tokens. IATEST generated valid inputs in reasonable amount of
time even when the number of tokens was 8 (we estimatg@ &1

can also generate inputs with 9 or 10 tokens if we allow#sT to

run for a couple of days.) We obtained a branch coverage of 74.26% . |
with LATEST.pWe four¥d t))y manual code inspection thatgthe branch Z]CPMOZI(_)OOZZ Principles of Programming Languaggmages 58-70.
coverage cannot be increased beyond 74.26% due to the presence ' B .)

of dead code. This case study shows that#sT can be effective ~ [13] S. Khurshid, C. Pasareanu, and W. Visser. Generaligetslic
in generating significantly large number of test inputs for parsers. execution for model checking and testing. Rroc. TACAS pages

. 553-568, 2003.
6. Conclusion _ : , , .
.) [14] J. C. King. Symbolic Execution and Program Testi@pmmunica-
In the recent years, there has been a renewed interest in automated tions of the ACM19(7):385-394, 1976.
testing techniques due to the increasing affordability of power- [15] B. Korel. A dynamic Approach of Test Data Generation. IBEE

fgl program analysis, model-checking, and theo_rem proving tech- Conference on Software Maintenangages 311-317, November
nigues. Several recent tools for automated testing such as DART, 1990.

CUTE, and EXI.E have taken_ the ﬂr.St step in adapting ideas frome[le] R. Majumdar and K. Sen. Hybrid concolic testing. I[BSE 07:
program analysis and model-checking. These tools have shown th International Conference on Software EngineeriAGM, 2007
potential to automatically test real-world programs having exten- .)] ' '
sive pointer and data structure usage. Unfortunately, these new gen{17] J. Mitchell. Foundations for Programming LanguageMlIT Press,
eration tools suffer from the notorious path explosion problem. This
scenario is quite comparable with the state explosion problem that[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
haunted the model checking community few years ago. The state Intermediate language and tools for analysis and transf@mat
explosion problem in model checking has been tackled partly by € Programs. InCC 02: Compiler ConstructigrLecture Notes in
developing sophisticated techniques for abstraction, automated the- ~ COmPuter Science 2304, pages 213-228. Springer, 2002.
orem proving, and reduction. Now we need to develop similar tech- [19] J. Offut and J. Hayes. A Semantic Model of Program Fauift®roc.
niques in the domain of automated test generation. of ISSTA'96 pages 195-200, 1996.

In this paper, we develop a new technique to tackle the path [20] C. Pacheco and M. Ernst. Eclat: Automatic generation and
explosion problem by adapting a well-known idea from static pro- classification of test inputs. IECOOP, 2005.
gram analysis. In the context of dynamic test generation, we show [21] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedbaickeded
that counterexample-guided refinement can be effective in quickly random test generation. ICSE’07: International Conference on
generating inputs for complex programs. Our experimental results Software Engineering2007.

validate this fac_t. [22] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocatiu
The results in this paper show that there is a great opportunity dataflow analysis via graph reachability. ROPL 95: Principles

for improving systematic automated testing by bringing in ideas of Programming Languagepages 49-61. ACM, 1995.
from program analysis and model checking. The challenge that [23] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit tieg

remains IS to flgure_out rlght ways of adapting various program engine for C. InFSE 05: Foundations of Software Engineerid@€M,
analysis technigues in testing. 2005,

References [24] M. Sharir and A. Pnueli. Two approaches to interprocatidata

[1] T. Ball and S. Rajamani. The SLAM project: debugging sgste
software via static analysis. POPL 02: Principles of Programming
Languagespages 1-3. ACM, 2002.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, andi@jumdar.
Generating Test from Counterexamples.Pioc. of the 26th ICSE
pages 326-335, 2004.

[3] D. Bird and C. Munoz. Automatic Generation of Random Self-
Checking Test CasetBM Systems Journap2(3):229-245, 1983.

[4] C. Cadar and D. Engler. Execution generated test cases:tblmake
systems code crash itself. Rroc. of SPIN Workshqp2005.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. ChV 00:
Computer-Aided Verificatig.NCS 1855, pages 154-169. Springer,
2000.

dalow analysis. IfiProgram Flow Analysis: Theory and Applicatigns
pages 189-233. Prentice-Hall, 1981.

[25] M. Soffa, A. Mathur, and N. Gupta. Generating test databiranch
coverage. IPASE '00: Automated software engineerimgge 219.
IEEE Computer Society, 2000.

[26] W. Visser, C. Pasareanu, and S. Khurshid. Test inpuéiggion with
Java PathFinder. IISSTA 04pages 97-107. ACM, 2004.

[27] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: rafnework
for generating object-oriented unit tests using symbol&ceton. In
Procs. of TACAS2005.

