
LATEST : Lazy Dynamic Test Input Generation

Rupak Majumdar
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-36

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-36.html

March 20, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

LATEST: Lazy Dynamic Test Input Generation
Rupak Majumdar

UCLA
rupak@cs.ucla.edu

Koushik Sen
UC Berkeley

ksen@cs.berkeley.edu

Abstract
We presentlazy expansion, a new algorithm for scalable test in-
put generation using directed concolic execution. Lazy expansion is
an instantiation of the counterexample-guided refinement paradigm
from static software verification in the context of testing. Our algo-
rithm works in two phases. It first explores, using concolic exe-
cution, an abstraction of the function under test by replacing each
called function with an unconstrained input. Second, for each (pos-
sibly spurious) trace generated by this abstraction, it attempts to
expand the trace to a concretely realizable execution by recursively
expanding the called functions and finding concrete executions in
the called functions that can be stitched together with the original
trace to form a complete program execution. Thus, it reduces the
burden of symbolic reasoning about interprocedural paths to rea-
soning about intraprocedural paths (in the exploration phase), to-
gether with a localized and constrained search through functions
(in the concretization phase).

Lazy expansion is particularly effective in testing functions that
make more-or-less independent calls to lower level library func-
tions (that have already been unit tested), by only exploring rel-
evant paths in the function under test. We have implemented our
algorithm on top of the CUTE concolic execution tool for C and
applied it to testing parser code in small compilers. In preliminary
experiments, our tool, called LATEST, outperformed CUTE by an
order of magnitude in terms of the time taken to generate inputs,
and in contrast to CUTE, produced many syntactically valid in-
put strings which exercised interesting paths through the compiler
(rather than only the parser error handling code).

1. Introduction
Automatic, complete, andscalabletest input generation has been
an important research problem in software engineering for a long
time. Over the years, several different test generation techniques
have been suggested that satisfy a subset of the above properties.
For example,random testingchooses the values over the domain of
potential inputs randomly [3, 8, 7, 20, 21]. The problem with ran-
dom testing is twofold: first, many sets of values may lead to the
same observable behavior and are thusredundant, and second, the
probability of selecting particular inputs that cause buggy behavior
may be astronomically small [19]. Thus, while automatic and scal-
able, random testing is rarely complete. In contrast, specification-
guided manual test generation can pick the right set of tests and
achieve high coverage (completeness), but it is neither automatic,
nor scalable. The search for techniques that achieve all three prop-
erties is important, not only academically but also economically,
as the major cost of software development today is in testing and
validation.

Testing is a dynamic analysis technique. By running the
program on concrete inputs, testing is constructing an under-
approximation of the set of reachable program states.Static analy-
sis provides a dual view: instead of running the program on con-
crete inputs, one algorithmically simulates running the program
over some abstract space of constraints, so that the abstractly reach-

able states are guaranteed to contain the concretely reachable states.
Static analysis is automatic and complete, and many recent imple-
mentations show it is scalable (for many abstractions of practical
interest) to millions of lines of code. Unfortunately, it isimpre-
cise: unlike testing, which only exercises feasible executions, static
analysis can return errors or warnings even if the code is error free,
because it has lost too much information in abstraction.

Clearly, testing and static analysis have complementary
strengths. Is it then possible to combine the two in hybrid algo-
rithms that can amplify the advantages of both, while alleviating
their individual disadvantages?

This is also a well-studied question. One instantiation, symbolic
execution [14, 6, 26, 27], has been applied to test generation since
the 70’s. In pure symbolic execution, a program is executed using
symbolic variables in place of concrete values for inputs. Each
branch statement in the program generates a symbolic constraint
that determines anexecution path. The goal is to generate concrete
values for inputs which would result in different paths being taken.
Completeness is achieved by depth first exploration of the paths
using backtracking [13]. While in theory automatic and complete,
for large or complex programs, symbolic execution is expensive,
and worse, imprecise as complex program behaviors cannot always
be predicted statically, and these techniques have been limited in
their application.

To address the limitations of pure symbolic execution, we have
recently proposed concolic testing [10, 23, 16] based on dynamic
methods for test input generation [15, 25]. Concolic testing iter-
atively generates test inputs by combining concrete and symbolic
execution, observing that the complexity and imprecision of purely
symbolic techniques can be alleviated by using concrete values
from random executions. During a concrete execution, a conjunc-
tion of symbolic constraints placed on the symbolic input vari-
ables along the path of the execution is generated. These con-
straints are modified and then solved, if feasible, to generate addi-
tional test inputs which would direct the program along alternative
paths. Specifically, conjuncts in the path constraint are systemati-
cally negated to generate a set of inputs that provides a depth first
exploration of all paths. If it is not feasible to solve the modified
constraints, then simply substitute random concrete values.

Concolic testing shows how static and dynamic program analy-
ses can be combined to automatically and completely generate test
inputs. Unfortunately, concolic testing does not scale to large pro-
grams, because the number of feasible execution paths of a program
increases exponentially with the increase in the length of an execu-
tion path. The problem is exacerbated in the presence of function
calls. A sequence ofn calls to a function withk paths already leads
to kn distinct paths to be explored. We call this thepath explosion
problem.

Static analysis techniques deal with the path explosion problem
using several techniques. There are a couple of key insights in these
techniques that can be used. First, performinterprocedural anal-
ysis by memoizingsummaries(input-output behaviors) for func-
tions, so that subsequent calls to the function can simply look up
the summary rather than explore all paths of the function [24, 22].

Second, always explore the most abstract version of the program,
refining the abstraction on demand based on particular executions
(“counterexample-guided refinement”) [5, 1, 12]. These techniques
are orthogonal, and complementary. Concolic execution with sum-
marization was studied recently [9], and found to have a dramatic
increase in scalability. In this paper, we propose a novel technique
similar to counterexample-guided refinement to address the path
explosion problem in concolic testing.

In counterexample-guided refinement (CEGAR) [5, 12], one
starts with a coarse abstraction of the program. The algorithm then
uses counterexample paths (i.e., abstract paths to an error state)
to either find concrete executions (if the abstract path is realizable
concretely) or to find refinements of the abstraction (if the abstract
path is not feasible). This process is repeated until either there is a
test case that reaches an error state, or there is a proof that the error
states are not reachable.

Counterexample-guided refinement has been used for test gen-
eration before [2]. However, the previous technique had several
shortcomings. First, abstract exploration is still orders of magnitude
slower than program execution. Second, good abstract domains are
currently known only for control-dominated programs. For applica-
tions with complicated data flow, abstract exploration fails to pro-
duce test cases leading to interesting program points. Third, the re-
finement phase was performed purely symbolically [12], inheriting
all the imprecisions of symbolic execution. (A recent implemen-
tation of CEGAR uses concolic execution for refinement [11].) In
this paper, we instead explore afully dynamic implementationof
the CEGAR loop, where both abstract path exploration and refine-
ment are driven by concolic execution.

We assume that we are interested in complete exploration of a
function-under-test, which makes calls into a library that has al-
ready been unit tested. Thus, we are interested in complete cover-
age of the top level function, and want to explore only the paths
in the library that lead to observably different behaviors in the top
level. We assume we also have the code for the library.

Our algorithm, calledlazy expansion, works as follows. We ex-
plore the function under test using concolic testing, but replace the
return value of each library call, whose behavior depends on a pro-
gram input, with an unconstrained input. This creates an abstraction
of the program: by ignoring data correlations in the library calls,
we can generate paths that are not concretely realizable. However,
the abstraction reduces the complexity of interprocedural path ex-
ploration to intraproceduralpath exploration. Given such a path
π in the abstraction, we performpath refinement, that is, expand
the called functions along the path to get a concretely realizable
path whose projection on the function under test isπ. Path refine-
ment performs a backtracking search over the pathπ, trying to find
concrete paths through each called function that can be stitched
together. The expansion of functions recursively invokes the lazy
expansion algorithm,lazily expanding functions along the path. By
expanding the paths inside the nested functions on demand, and un-
der the constraints of the overall path in the top level function, we
only explore relevant parts of the program path space. This signifi-
cantly prunes our search while retaining the relative soundness and
completeness of concolic testing.

We have implemented the lazy expansion algorithm in a tool
called LATEST, built on top of CUTE, a concolic unit testing engine
for C [23]. We applied LATEST to generate test inputs for programs,
most of which are parsers. Parser programs are especially suited for
our technique. The parser makes many almost independent calls to
the lexer. The lexer has many different paths through it. However,
lazy expansion ensures that a minimal number of paths through
the lexer gets explored. In our experiments, we find that LATEST
outperforms CUTE by several orders of magnitude. For example,
on a parser for PL/0, CUTE never managed to generate valid PL/0

int strcmp(char *str1, char *str2) {
while (*str1 != ’\0’

&& *str2 != ’\0’
&& *str1 == *str2) {

str1++; str2++;
}
return *str1 - *str2;

}

void testme() {
1: int tmp1, tmp2;
2: char *s1, * s2;

3: char *const1 = "Hello World";
4: char *const2 = "Hello ESEC/FSE";

5: s1 = input();
6: s2 = input();

7: tmp1 = strcmp(s1,const1);
8: tmp2 = strcmp(s2,const2);
9: if (tmp1 == 0) {
10: if (tmp2 == 0) {
11: printf("Success");

}
}

}

Figure 1. Example

programs after running for one day; however, LATEST generated
all 99 PL/0 programs having 8 tokens within 5 hours. We believe
that through the novel interpretation of static analysis technique in
a dynamic context, the LATEST algorithm takes an important step
towards automatic, scalable, and complete test generation for large
software systems.

2. Motivating Example and Overview
We motivate our lazy expansion test generation algorithm using a
small example.

The Problem. Consider the example in Figure 1. We want to unit
test the functiontestme. The function has two inputss1 ands2,
which can get any null-terminated string from an external envi-
ronment. We use the statementv = input(); to indicate that the
variablev is assigned an external input. The functiontestme com-
paress1 with the constant stringconst1="Hello World" (line 7)
ands2 with the constant stringconst2="Hello ESEC/FSE" (line
8). If both checks return 0 (indicating that the stringss1 ands2
are respectively equal to the strings"Hello World" and"Hello
ESEC/FSE", the statement at line number 11 is reached.

The functionstrcmp performs the string comparison opera-
tions. It takes two null-terminated stringsstr1 andstr2 as input,
and walks down the string buffers, comparing character by char-
acter until it reaches the first character at which either the strings
differ or one or both of them reach the last null character ‘\0’. At
this point, the difference between the current characters is returned.
A difference of 0 indicates that the strings are the same.

We assume that we have already performed unit testing of the
function strcmp and the function has no bug.1 Our goal is to
perform unit testing of the functiontestme. In particular, we
want to getpath coverageof testme. We focus on test input
generation fortestme that will cover all feasible execution paths of

1 Note that the functionstrcmp is not bug-free: it crashes ifstr1 or str2
are NULL; however, to keep the function simple we ignore these cases
and assume that the arguments to the functionstrcmp are always null-
terminated.

testme. A feasible execution path oftestme is a path (sequence
of assignments, conditionals, and function call statements) in its
control flow graph that can be executed for some setting of the
inputss1 ands2.

The functiontestme has 720 distinct execution paths and these
paths can be executed by setting the values of the inputss1 and
s2 suitably. The number 720 is derived as follows. The function
strcmp with an input string and a constant string (i.e., where the
argumentstr1 is an input and the argumentstr2 is a constant
string) has2(n + 1) distinct execution paths, wheren is the length
of the constant string. Therefore, the first invocation ofstrcmp
(line 7) can result in 24 distinct execution paths and the second
invocation ofstrcmp (line 8) can result in 30 distinct execution
paths. However, the return values from the two calls tostrcmp
determine the path exercised intestme. We can combine each
execution path through the first invocation of thestrcmp function
with each execution path through the second invocation of the
function strcmp to get a distinct path in the functiontestme.
Therefore, there are30 ∗ 24 = 720 execution paths in the function
testme. A dynamic test input generation tool based on concolic
testing, such as DART, CUTE, or EXE [10, 23, 4], will generate 720
distinct inputs to perform unit testing of this function. We verified
this fact by invoking CUTE on this code.

However, if we overlook the paths inside thestrcmp function,
then the functiontestme has only 3 paths. Therefore, to success-
fully unit test the functiontestme, assuming thatstrcmp has been
separately tested, rather than generating 720 test inputs, we should
ideally generate 3 sets of values for the inputss1 ands2 on which
the function will execute each of these 3 paths exactly once. This
would be possible if the functionstrcmp could return any possible
value (i.e., acted as an input). In general, though, one would have
to search through the possible executions ofstrcmp to find paths
that return appropriate return values for the 3 paths to be executed
in testme. This search can often be performed independently for
each call tostrcmp.

Our lazy dynamic test input generationalgorithm, called LAT-
EST, is based on this observation. In particular, we observe that a
number of paths of the functionstrcmp have the same effect on
the outcome of the conditional statements at line 9 and line 10 of
the functiontestme. In fact, for the purpose of testing the function
testme, all the paths through the functionstrcmp can be parti-
tioned into two sets: one set of paths that returns a non-zero value
and the other set of paths that returns a zero value. Therefore, to
efficiently test the functiontestme, we need to consider only one
execution path from each partition (or equivalence class). This key
insight motivates our LATEST algorithm.

The LATEST Algorithm. The LATEST algorithm lazily expands
called functions when testing a unit. Conceptually, the algorithm
has two phases: an initialabstract explorationphase, followed by
a concretizationphase. Here, we describe the algorithm under the
assumption that there are no globals and functions do not have side
effects. We shall lift this restriction in Section 4.

The abstract exploration phase systematically explores paths of
the function under test, but assumes that every called function can
return any possible value, that is, abstracts all called functions into
unconstrained external inputs.

In our example, when expandingtestme, the nested function
calls tostrcmp are abstracted to return any value. The pseudo-code
for the abstraction is given in Figure 2. We have removed the calls
to the functionstrcmp, and assigninputs to tmp1 andtmp2. This
creates anabstractionof the functiontestme: the set of paths ex-
plored in this abstraction is a superset of the concretely executable
paths, however, some paths can arise because of the imprecision in
modeling the called function and may not be concretely feasible.

We generate abstract execution paths of the abstracted function
usingconcolic execution[10, 23, 4]. In this technique, the function
is run simultaneously with concrete inputs as well as with symbolic
inputs. Along the execution, the symbolic part gathers constraints
on the program inputs that cause execution to follow the current
path. The symbolic constraints are simplified using the concrete
values that are available during execution. As a result of concolic
execution, each point of the executed path is annotated with (1)
the concrete store at that point, (2) the symbolic store that maps
addresses to symbolic expressions, and (3) a path constraint that
tracks symbolic constraints for the conditionals executed along the
path to reach the point. At any branch point, the path constraint
can be modified so that any input satisfying the modified con-
straints will cause the corresponding program execution to follow
the branch of the conditional opposite to the one followed in the
current execution. In this way, all paths of the abstract function can
be explored.

In the abstraction oftestme from Figure 2, concolic execution
explores the three execution paths by generating the following
sets of values fortmp1 andtmp2: {tmp1=1, tmp2=5}, {tmp1=0,
tmp2=5}, and{tmp1=0, tmp2=0}.

The explored paths are abstract because they are obtained by
concolic testing of the abstraction oftestme. These paths may not
be feasible in practice: one has to “stitch together” paths from the
called functionstrcmp in order to get a feasible execution with
the same branching behavior intestme. This is the responsibility
of theconcretizationphase, which expands the called functions to
find concrete paths through them.

In order to do this, theconcretize function uses the symbolic
stores generated by the concolic execution while exploring the path
as well as the path constraint for the (abstract) path. For each
function callg() along the path,concretize performs systematic
path exploration through the called functiong starting from the
symbolic store at that point in the path. The concolic execution
is used to find a pathπ throughg such that the path constraint
of the top level function is consistent with the path constraint
of π. This ensures that this path can be stitched together with
the abstract path in the top level function. Notice that the same
abstract exploration followed by concretization can be recursively
applied while exploringg, thus, transitively called functions are
lazily expanded in the search for paths.

If several functions are called in sequence along the path,
concretize implements a backtracking search through the paths of
the functions until it finds concrete paths in each of the functions
that can be feasibly stitched together. Of course, this may not al-
ways be possible, in which case it returns that the abstract path
cannot be concretized.

The LATEST algorithm calls the abstract exploration and con-
cretization routines in a loop until there are no more abstract ex-
ecution paths to explore. Each concretizable path gives a test in-
put. The concretized paths are used to update coverage goals in the
function under test.
Application to testme. In testme, we lazily expand the function
calls tostrcmp for each of the three paths as follows. Consider the
abstract path

(5; 6; 7; 8; 9; 10; 11)
that we obtain by executingtestme in Figure 2 on the input
{tmp1=0, tmp2=0}. The constraint on the variablestmp1 andtmp2
for this path is

(tmp1 = 0) ∧ (tmp2 = 0) (1)
Given this abstract path constraint, we try to find concrete paths in
the two invocations ofstrcmp (on lines7 and8) so that the values
returned by these invocations satisfy the abstract path constraint.

In order to concretize the abstract path, we start concolic ex-
ploration of the paths inside the first invocation ofstrcmp under

void testme() {
...

3: char *const1 = "Hello World’’;
4: char *const2 = "Hello ESEC/FSE’’;
5: s1 = input();
6: s2 = input();

7: tmp1 = input();

8: tmp2 = input();

9: if (tmp1 == 0) {
10: if (tmp2 == 0) {
11: printf("Success");

}
}

}

Figure 2. Abstraction oftestme

the actual context (in the actual context the argumentstr1 denotes
the inputs1 and the argumentstr2 is set to the string"Hello
World"). After generating 24 input values fors1, we find a path
inside the first invocation ofstrcmp that satisfies the abstract path
constraint(tmp1 = 0)∧(tmp2 = 0). This path is obtained whens1
= "Hello World". At this point, the path is partially expanded:
the first call tostrcmp has been concretized, but now we have to
find a path through the second call. We update the path constraint to
be the conjunction of the path constraint from (1) with the path con-
straint generated by the path insidestrcmp (which iss1[0]=’H’
∧ s1[1]=’e’ ∧ . . .∧ s1[12]=’\0’).

Next, we try to find a path inside the second invocation of
strcmp that satisfies this updated abstract path constraint. Such a
path is obtained by the concolic exploration of thestrcmp in the
actual context. The path is obtained after generating 30 inputs. For
this path concolic exploration generatess2="Hello ESEC/FSE".
Finally, we generate the actual inputss1 = "Hello World" and
s2="Hello ESEC/FSE" for which the functiontestme takes the
desired path. This path is generated after 55 iterations (i.e., after
exploring 55 paths.)

In a similar way, for the other two abstract paths, we generate
values fors1 ands2 by expanding the invocations of the function
strcmp. These inputs are generated after 26 and 32 iterations re-
spectively. In total, we perform 113 iterations to obtain complete
path coverage in thetestme function only. This number is signifi-
cantly less than 720.

Notice that each concolic execution is only intraprocedural:
nested function calls are expanded only in the concretization phase.
This novel way of exploring the nested functions on demand en-
ables LATEST to avoid unnecessary exploration of the nested func-
tions, which we have already unit tested.

Our technique is similar to inter-procedural exploration with
summarization [22], recently suggested as an improvement to con-
colic execution [9]. However, our requirements are weaker (only
test the top level function, assuming the callees have been unit
tested), and so we can optimize the exploration further by only con-
structing summaries for relevant paths in the top level functions.
Without this assumption, the technique of [9] has to comprehen-
sively explore all paths in the callees as well. Of course, these tech-
niques are complementary: in the exploration of called functions,
we can summarize states and use the summaries in subsequent ex-
plorations. However, we leave out this optimization in our descrip-
tion and experimentation as it is orthogonal to the technique of the
paper, and also confounds the benefits of our approach with the
benefits of summarization in the experimental results.

Motivation from a Real-World Test Generation Problem. The
technique behind LATEST was primarily motivated due to the in-

Token lex() {

istream = input();
...
if (strcmp(istream,"while")==0) {

// return WHILE token
}
...
if (strcmp(istream,"else")==0) {

// return ELSE token
}
...

}

parse() {
Token token;

while (token = lex()) {
// do something with token

}
}

Figure 3. Example

ability of DART or CUTE to generate valid inputs for parsers. A
parser usually invokes a lexer function, saylex, several times along
a path. Thelex function in turn may callstrcmp function or sim-
ilar regular expression matching functions several times. A simple
skeleton of such a parser is shown in Figure 3. In practice, a sim-
plelex() functions can have many paths (for example> 10000.)
Therefore, DART or CUTE requires to generate100005 inputs to
even generate valid programs with 5 tokens for the parser. In sum-
mary, the problem of test input generation for parsers and similar
programs becomes intractable due to thepath-space explosion. A
recently developed technique called SMART, tries to address this
path explosion problem, by summarizing functions. However, a
summary for complex function such aslex() can result in a huge
disjunctive formula. Our experience shows that a conjunction of
such huge summaries usually makes the constraint solving prob-
lem intractable.

LATEST tries to address this problem by employing a demand-
driven and sound strategy for exploring paths. For a parser, LATEST
delays the expansion of the functionslex andstrcmp. LATEST
abstracts those functions using unconstrained inputs. The abstract
parser function is then explored using concolic execution. Suppose,
LATEST gets 100 abstract paths in the parser function with say 5 to-
kens. Then for each such abstract path, LATEST tries to expand the
5 invocations of thelex function. Assuming that thelex function
has at most10000 execution paths, LATEST usually ends up ex-
panding the 5 invocations oflex in less than5 ∗ 10000 iterations.
Finally, LATEST completes the complete path exploration of the
parser function with 5 tokens in5 ∗ 10000 ∗ 100 iterations which is
exponentially less than100005 iterations. Note that during the ex-
ploration of the paths insidelex, LATEST abstracts the invocation
of the functionsstrcmp. This way LATEST reduces the number of
iterations recursively.

3. Abstract Concolic Exploration
Our LATEST algorithm has two phases: anabstract exploration
phase, followed by aconcretizationphase. The abstract exploration
phase uses concolic testing to explore all paths of a function in
which all function calls has been abstracted. We call thisabstract
concolic exploration. We next describe the abstract concolic explo-
ration algorithm in terms of the functionabstract next path. The
abstract next path function is almost similar to concolic execu-
tion [23, 10], except the fact that in concolic execution we do not

abstract function calls. To keep the paper complete and to clarify
the differences we give the definition ofabstract next path.

3.1 Programs and Concrete Semantics

We fix an imperative programming language to illustrate our ab-
stract concolic exploration algorithm as well as our LATEST al-
gorithm. The operations of the programming language consist of
labeled statements̀ : s, where labels correspond to the program
counter. A statement is either (1) aninput statement̀ : m :=
input() that reads an external input into the lvaluem, (2) anassign-
mentstatement of the formm := e, wherem is an lvalue ande is a
side-effect free expression, (3) aconditionalstatement of the form
if(e)goto `, wheree is a side-effect free expression and` is a pro-
gram label, (4) afunction callof the formm := f(m1, . . . , mn),
for lvaluesm, m1, . . . , mn, or (5) a return statement of the form
return ret for a specialreturn variableret used to pass back re-
turn values.

Execution begins at the program counter`0. For a labeled as-
signment statement` : m := e or input statement̀ : m := input()
we assumè + 1 is a valid program counter, for a labeled condi-
tional` : if(e)goto `′ we assume both̀′ and`+1 are valid program
counters, and for a function callm := f(. . .), we assume that the
functionf is defined and starts at a valid program counter`f , and
additionally,` + 1 is a valid program counter.

The set ofdata valuesconsists of program memory addresses
and integer values. The semantics of the program is given using
a memoryM consisting of a mapping from program addresses
to values. Execution starts from the initial memoryM0 which
maps all addresses to some default value in their domain. Given
a memoryM, we writeM[m 7→ v] for the memory that maps
the addressm to the valuev and maps all other addressesm′ to
M(m′). We assume that the concrete semantics of the program
is implemented as a functioneval concrete that takes a memory
and an expression, and evaluates the expression in the memory
M. Additionally, we assume that a functionstmt at(`) returns the
statement with program counter`.

Statements update the memory. The concrete semantics of the
program is given in the usual way as a relation from program
counter and memory to an updated program location (correspond-
ing to the next instruction to be executed) and updated mem-
ory [17]. For an assignment statement` : m := e, this relation cal-
culates, possibly involving address arithmetic, the addressm of the
left-hand side, where the result is to be stored. The expressione is
evaluated to a concrete valuev in the context of the current memory
M, the memory is updated toM[m 7→ v], and the new program
location is`+1. For an input statement` : m := input(), the tran-
sition relation updates the memoryM to the memoryM[m 7→ v]
where v is a nondeterministically chosen value from the range
of data values, and the new location is` + 1. For a conditional
` : if(e)goto `′, the expressione is evaluated in the current mem-
oryM, and if the evaluated value is zero, the new program location
is `′ while if the value is non-zero, the new location is` + 1. In ei-
ther case, the new memory is identical to the old one. For a function
call ` : m := f(m1, . . . , mn), the values of the actual arguments
M(m1), . . . ,M(mn) are copied to the formal parameters off ,
and the return address̀+ 1 and the return lvaluem are pushed
onto a stack. The new location is`f , the start location for function
f . At a return statementreturn ret for a functionf when the top
of the program stack is〈`, m〉, the new location is̀ (function re-
turn to caller), and the memory is updated toM[m 7→ M(ret)],
reflecting the copy-back of the return value. If the program stack is
empty, the execution terminates.

Let LA be the set of labels of assignment and input statements,
LC be the set of labels of the conditional statements, andLF

the set of labels of function call and return statements ofP . An

execution pathw of P is a finite2 sequence inExecs := L∗, where
L = LA ∪ LC ∪ LF is the set of statement labels ofP .

The concrete semantics ofP at the RAM machine level allows
us to define for each input mapIMap an execution path: the result of
executingP on IMap. Let Execs(P) be the set of such execution
paths generated by all possibleIMap. Note that the execution of
P on several input maps may result in the same execution path.
The setExecs(P) defines acomputation tree, which is a rooted
directed tree with nodes corresponding to program labels with root
`0. A node` corresponding to an assignment statement, a function
call statement, or a return statement has one successor` + 1; a
node corresponding to a conditional statement has two successors
for the then and the else branches. The leaves of the computation
tree correspond toreturn statements.

3.2 Abstract Concolic Execution

The pseudo-code of theabstract next path function is given in
Figure 4. This function takes the following as inputs: a function
f whose abstract paths we want to explore, an initial symbolic
storeS0, and an initial symbolic path constraintφ. The initial
symbolic store and the initial path constraint gives the symbolic
context in which we want to exploref . This is essential for LATEST
because in LATEST we will use abstract next path to explore
paths in nested functions under different contexts. If we want to
exploref in an empty context thenS0 should be an empty map
and φ should betrue. The functionabstract next path returns
an abstract path in the functionf and the path constraint along
that abstract path.abstract next path behaves like aniterator,
which on every invocation returns a new abstract path inf that was
not returned before. Any input, sayIMap′, that satisfiesφ gives
a valid path inf . For an inputIMap′, the initial concrete state is
obtained by replacing all symbolic variables inS0 using the input
mapIMap′.

Like an iterator,abstract next path has to maintain some per-
sistent state across calls to it. This persistent state comprises of
the next input mapIMap, a concise historypath of the paths that
we have so far explored, and a flagcompleted indicating whether
our exploration is over. We make these variablesstatic in the func-
tion abstract next path. (Actually, abstract next path needs to
maintain one set of static variables for each functionf and each
contextS andφ. We show only one set of static variables for read-
ability.)

The functionabstract next path initializes a number of local
data structures as follows: the symbolic storeS is initialized to
S0; a mapIMap′ from the symbolic values to concrete values is
obtained by solvingφ and the map is used to obtain the initial
concrete memoryM from S; the program counterpc is initialized
to the label`f of the first statement off ; the variablesi and k
denoting the number of inputs and the number of conditionals,
respectively, encountered so far in the execution are initialized to 0;
a sequencepath c of symbolic constraints generated so far along
the execution is initialized to the empty sequence; a sequenceπ
recording the annotated trace is initialized to the empty sequence.
The annotated trace, which is a sequence of pairs of symbolic stores
and statements, is returned by the functionabstract next path.
The LATEST algorithm uses this annotated trace for concretization
as described in Section 4.

The functionsabstract next path returns NoMorePath if
completed is true, i.e., we have explored all the abstract paths in
the functionf . Otherwise, the functionsabstract next path ex-
ecutes the statements off in a loops as follows. It computes the
next statements to be executed by callingstmt at(pc) and appends

2 We thus assume that all program executions terminate; in practice, this can
be enforced by limiting the number of execution steps.

(where^ is the append operator) the pair(S, s) of the current sym-
bolic store and the current statement to the annotated traceπ. If s

is an assignment statement, then the right hand side expression is
evaluated both concretely and symbolically and the results are used
to update the left hand side memory location in both the concrete
state and symbolic store, respectively. The program counterpc is
incremented by 1 to point at the next instruction. As an optimiza-
tion, if the symbolic expression is a concrete value, then we drop
m from the domain of the symbolic store. Thus, we maintain that
all addresses in the domain ofS are not concrete values.

If s is a conditional statement, then the predicate inside the
conditional is evaluated both concretely and symbolically to get
b and c, respectively. Ifb is true, thenc is appended to the path
constraintpath c; otherwise,¬c is appended topath c. If k, the
number of conditionals executed so far, is equal to the size ofpath,
then0 is appended topath to record that the current branch needs
to be negated in future to generate a new input that would force
the program along a new unexplored execution path. Finally,k is
incremented since we have executed a conditional.

If s a function call statement of the formm := g(m1, . . . , mn),
then we abstract the return value of the functiong by an input. We
check if we have a value of the input available in theIMap (by
checking ifIMap[i] is defined). If not, we initializeIMap[i] with a
random number as in DART and CUTE. We use the valueIMap[i]
to update the mapping ofm in the concrete memory. We also create
a fresh symbolic valuesi and use it to update the mapping ofm
in the symbolic store. We perform the same steps ifs is an input
statement. Finally, we increment thepc and thei.

Once we have reached the return statement off , we terminate
the execution and invokesolve constraint to generate a new input
that would force execution off along a different path at the next
call of abstract next path. To do so, we find the last branch that
has not been negated before, saypath c[j], and generate a new
IMap by solving φ ∧ path c[0] ∧ . . . ∧ ¬path c[j]). The entry
path[j] is update to 1 to indicate that the same branch should not
be negated in a future execution.

If we do not manage to generate a new input thencompleted
is set to true. At the end, we return the pair(π, path c[0] ∧
. . . ∧ path c[k − 1]) containing the current annotated trace and
the current path constraint inside the functionf .

We use the functionevaluatesymbolicto evaluate an expression
symbolically in the symbolic store. Due to space constraints, we do
not define this function here; however, interested readers can refer
to [10, 23] for further details. An important feature of our sym-
bolic evaluator is the following. Since the concrete values stored in
all memory addresses are available at the time of symbolic evalu-
ation, the symbolic evaluator can “fall back” on concrete values if
either the expressions get too big, or the constraints go beyond the
purview of the underlying constraint solver. For example, the tools
described in [10] implement a solver for the theory of integer linear
constraints. When an expression falls outside the theory, as in the
multiplication of two non-constant sub-expressions, the symbolic
evaluator simply falls back on the concrete value of the expression,
which is used as the result. In such cases, we set a flag tofalse to
indicate that our search algorithm can no longer be complete, i.e.,
we cannot explore all feasible abstract paths inf .

4. Lazy Expansion
We now describe the LATEST algorithm using the
abstract next path function as a building block. We give a
recursive formulation of the algorithm. The key point is that
we always use abstract concolic execution implemented in
abstract next path to enumerate over intra-procedural abstract
executions (i.e., executions where called functions are not followed
but assumed to return any value), and use a specialconcretize

abstractnextpathf S0 φ
pc := `f
S := S0

let IMap′ satisfiesφ in
obtainM from S usingIMap′

i := k := 0
path c := π := empty sequence
static IMap := empty map
static path := empty sequence
static completed := false
if completed then

return (NoMorePath, ·)
s := stmt at(pc)
π := π ^ (S,s)
while (s 6= return ret)

match (s)
case (m := e):

S := S[m 7→ evaluatesymbolic(e,M,S)]
M := M[m 7→ evaluateconcrete(e,M)]
pc := pc + 1

case (if (e)goto `′):
b := evaluateconcrete(e,M)
c := evaluatesymbolic(e,M,S)
if b then

path c := path c ^ c
pc := `′

else
path c := path c ^ (¬c)
pc := pc + 1

if |path| = k then
path := path ^ 0

k := k + 1
case (m := input()):
case (m := g(m1, . . . ,mn)):

// abstract the function. will be expanded byconcretize

if IMap[i] not definedthen
IMap[i] := random()

M := M[m 7→ IMap[i]]
S := S[m 7→ si]
i := i+ 1
pc := pc + 1

s := stmt at(pc)
π := π ^ (S,s)

(IMap, path, completed) := solve constraint φ path c path k
return (π, path c[0] ∧ . . . ∧ path c[k − 1])

solve constraint φ path c path k
j := k − 1
while (j ≥ 0)

if (path[j] = 0) then
if (∃IMap′ that satisfiesφ ∧ path c[0] ∧ . . . ∧ ¬path c[j]) then

path[j] := 1
return (IMap′, path[0..j],false)

else j := j − 1;
else j := j − 1;

return (·, ·, false) // complete search is over

Figure 4. Abstract Concolic Exploration

method to stitch together the intra-procedural paths to form an
inter-procedural path.

4.1 Lazy Expansion: Conceptual Algorithm

We first illustrate the algorithm assuming that functions have no
side-effects and always return a single value of primitive type. We
shall lift this restriction in the next subsection.

Figure 5 shows the organization of the code. The main LAT-
EST algorithm takes as input a function under testf and system-
atically tests it by generating abstract execution paths inf us-
ing abstract next path (with the argumentsf , an initial empty

LATEST f =
while (true)

let (π, φ) = abstract next path f S0 true in
if π = NoMorePath then break
let (π′, ·) = concretize π φ in
if π′ 6= NoMorePath then

update coverage information usingπ′

concretize π φ =
Input: pathπ, path constraintφ
Output: concretized pathπ′ and path constraintφ′ for π′

or NoMorePath if (π, φ) cannot be concretized
match π with

case ε:
return (ε, φ)

case (S, ` : op) :: rest:
match op with

case m := g(x1, . . . , xn):
let S′ = copy args(S, op) in
let (π′, φ′) = next path g S′ φ in
if π′ = NoMorePath then return (NoMorePath, ·)
else

let ψ = copy ret m S φ′ in
if φ ∧ ψ is unsatisfiablethen

return (concretize π φ)
else

let (π′′, φ′′) =
concretize rest (φ ∧ ψ) in

if π′′ = NoMorePath then
return (concretize π φ)

else return ((`, op) :: (append π′ π′′), φ′′)
otherwise :

let (π′, ·) = concretize rest φ in
if π′ = NoMorePath then return NoMorePath
else return ((` : op)::π′, ·)

next path g S φ =
Input: Functiong, symbolic storeS, path constraintφ
Output: EitherNoMorePath or
a concrete pathπ and a path constraintφ′ for π

let (π, φ) = abstract next path g S φ in
match π with

case NoMorePath: return (NoMorePath, ·)
otherwise : return concretize π φ

Figure 5. The algorithms LATEST, concretize, andnext path for
Lazy Expansion

symbolic storeS0, and an initial path constrainttrue). The ab-
stract path is concretized using a functionconcretize (described
below). If the path can be concretized, then the concrete path is
used to update coverage information (e.g., the branches visited).
However, if the path cannot be concretized (concretize returns
NoMorePath), the loop runs again to generate the next abstract
path inf . The loop continues until there are no new abstract paths
(i.e.,abstract next path returnsNoMorePath).

Given an abstract (intra-procedural) path throughf , the
concretize function is used to find a concretely realizable execu-
tion of the program by expanding out the called functions (and
by recursively finding and concretizing abstract paths in the tran-
sitively called functions.) The input toconcretize is an abstract
pathπ that is annotated with the symbolic store at each point, and
the path constraintφ of runningπ concolically. The function out-
puts a concrete (inter-procedural) execution whose projection onf
is the pathπ together with the path constraint for the entire path,
or returnsNoMorePath indicating that the current path cannot be
concretely realized.

The concretize function walks over the annotated pathπ and
tries to justify each step by a concrete execution. An empty path is
trivially justified. Otherwise, it looks at the first annotated operation
(S, ` : op) of the path, wherè is the program counter,S is the
symbolic store used by the concolic execution at` along this path,
andop is the program operation. The concretize function considers
the following two cases ofop.

If op is a function callm := g(x1, . . . , xn), thenconcretize
has to expand the current call tog to find a concretely realizable
path ing that can be stitched to the path inf . In order to do this,
the current symbolic storeS ′, where symbolic expressions for the
actual arguments tog in S are copied to the formal arguments of
g (performed by functioncopy args) is computed. A concretely
realizable path ing, starting fromS ′ and also satisfying the path
constraintφ, is obtained by the functionnext path as follows.
next path finds a concrete path (if one exists) by recursively invok-
ing the abstract concolic exploration functionabstract next path
on g, S ′, and φ, and then concretizing this abstract path using
concretize. If there are no more concrete paths ofg starting from
S ′ and satisfyingφ, thenconcretize returnsNoMorePath. How-
ever, if the current path throughg is such that it cannot be stitched
together (i.e., there is no way to find inputs that simultaneously sat-
isfy the constraintφ as well as the path constraint on the return
value ofg that constrains the value ofm), then the next path ing
is searched. If, on the other hand, one can find a concrete execution
throughg that can extend the current path, concretize recursively
justifies the rest of the trace, and returns a stitched concrete inter-
procedural path.

In this way,concretize performs a backtracking search through
concrete executions of the called functions in order to find an inter-
procedural valid execution.

If on the other hand,op is some other program operation (an
assignment, conditional, or a return), thenconcretize recursively
concretizes the rest of the path, and returns the inter-procedural
path obtained by prepending the current operation(` : op) to
the recursively constructed path. If the rest of the path cannot be
concretized, thenconcretize returnsNoMorePath in the recursive
call, and this is returned by the current call as well.

The algorithm uses the helper functionscopy args and
copy ret that perform symbolic copying of actual parameters to
formal parameters and symbolic copy back of the return parame-
ter to the caller, respectively. The descriptions of these functions
are omitted. In particular, the functioncopy ret is used to add a
constraintαm = αret to the path constraint, whereαm was the
free input corresponding to the return value fromg assumed by
abstract next path. This new constraint ensures that the return
value is now constrained by the constraints imposed by the path
throughg.

The soundness and the completeness property of the LATEST
algorithm is given with respect to the CUTE search algorithm.

THEOREM 1. [Relative Soundness and Completeness] Given a
programf having a finite computation tree and given any state-
ments in f , CUTE executess if and only if LATEST executess.

4.2 Implementation of Lazy Expansion

In the presence of side effects, the algorithm in the previous section
can be unsound. This is because the updated path constraints may
not reflect concrete updates to global state by the called function,
as the following example illustrates.

EXAMPLE 1: The code in Figure 6 demonstrates that simply con-
joining additional constraints on the path may lead to unsound re-
sults. In the example, the labelL is unreachable, since the func-
tion foo sets theglobal bit to 1, thus invalidating the conditional
guardingL. The first phase of concolic execution generates the path

int global;
int foo(int u) {

global = 1;
if (u == 0) return 0; else return 1;

}

int main() {
global = 0;
y = input();
x = foo(y);
if (global == 0 && x == 0) {

L: ;
}

}

Figure 6. Unsoundness of the algorithm from Figure 5 in the
presence of side effects

constraintαx = 0 and the store maps the address of the lvaluex to
αx. When the function callfoo is expanded, we get the additional
constraintret(foo) = 0. There are no other symbolic constraints
(from the store or the path) sincefoo is purely concrete. This leads
us to mistakenly conclude that the path toL can be executed, and
that the path taking theelse branch cannot be executed. 2

In order to provide sound results in the presence of side effects,
we have to ensure that the implementation of LATEST is oblivious
to side effects in function calls. We ensure this by modifying the
algorithm so that it is stateless. Intuitively, instead of working with
explicit symbolic stores and path constraints, we work with the
bitvector of conditionals that are executed along a certain path.
Recall that this bitvector is constructed in theabstract next path
function (variablepath). We informally describe the main changes
in the algorithm, which is implemented in our tool.

First, we modify theabstract next path function to take as
inputs a functionf , and two bit sequencesb1 and b2. The bit
sequenceb1 denotes the sequence of conditionals that have been
executed to reach the call to functionf . The bit sequenceb2 gives
the sequence of conditionals executed along the entire abstract
execution path. We maintain the invariant thatb1 is a prefix ofb2.
Givenb1 andb2, we can reconstruct the symbolic storeS0 and the
path constraintφ, by performing concolic execution along the path
determined byb2.

Next, we changeconcretize to make it side-effect oblivious
and stateless. Similar toabstract next path, instead of propa-
gating path constraints, we shall propagate bitvectors. The func-
tion concretize will take a bitvector representing the condition-
als executed along an abstract execution path and attempt to find a
concrete execution through the program. When the next statement
along the abstract path is a function call,concretize executes the
bitvector sequence concolically to generate a symbolic store at the
function call and starts finding a concrete path in the function. How-
ever, when the function returns, we do not simply conjoin its path
constraint to the path constraint of the original function. We try
to concolically execute the partially expanded path to find inputs
that can force the execution down the partially expanded path. Pre-
cisely, suppose thatconcretize is called with a bitvector sequence
〈b0 : b1〉, where the bitvectorb0 represents a partially expanded
path up to the function call tog, andb1 is the rest of the abstract
path after the return fromg. Then,concretize will perform con-
colic execution to generate the symbolic store afterb0, then recur-
sively expand the function call tog. When the expansion ofg hits
the return statement ofg, instead of returning from the recursive
call, it will check if the current store (at the return point ofg) can
be extended to executeb1. This process is similar to the counterex-
ample refinement algorithm using concolic execution from [11]. If

// locate index of first character c in s
int locate(char *s, int c) {

int i = 0;
while (s[i] != c) {

if (s[i] == 0) return -1;
i++;

}
return i;

}

void top(char *input) {
int z;
z = locate(input, ’a’);
if (z == -1) return -1;
if (input[z+1] != ’:’) return 1;
return 0;

}

Figure 7. Comparison with summarization (from [9])

the path can be extended,concretize will return the partially ex-
panded path〈b′0 : b1〉, where the concrete path throughg (and its
transitively called functions) have been appended tob0 to getb′0,
and then find a concrete realization of the rest of the pathb1. Since
the concolic execution explicitly executes the program along the
path, we ensure that the algorithm is oblivious to side effects.

4.3 Comparison with Summarization

For ease of exposition, we have presented the algorithm without
memoization. However, we can apply summarization at function
boundaries (similar to [22, 9]) inconcretize, that first checks if
a concrete path in the current function with the current symbolic
constraints has been seen before (and if so, returns it), and only
performs the exploration if a summary has not been seen before.
The result is an algorithm that is similar to [9], but which can
explore many fewer paths in testing the function-under-test. Unlike
[9], where all possible execution summaries for a called function
g are constructed as soon asg is called, we only construct enough
summaries in the called functions to explore all the paths in the
top level function. Since we work under a stronger, but realistic,
assumption that all the library calls have already been (separately)
tested, we can afford this optimization.

Figure 7 shows an example from [9]. For a strings of length less
than or equal ton, the functionlocate has2n distinct executions
for any non-zero characterc (and at mostn if c is zero). There are
n possible return values:−1 if c does not occur ins, and any index
i in 0 to n − 1 if c occurs in theith place ins.

The functiontop calls locate, and itself has three different
paths: eitherlocate returns a−1 (i.e., ‘a’ is not present in the
input), or ‘a’ is present in the input and is either followed by a ‘:’
or not.

Usual concolic execution without lazy expansion or summariza-
tion searches3n − 1 paths in the code. Of these,n paths terminate
after the then branch on line 1,n paths terminate after the then
branch on line 2, andn − 1 terminate on line 3. The summary-
based concolic execution of [9] computes a summary oflocate by
executing the2n executions inlocate, creating a summary with
2n terms, and uses this summary subsequently when analyzing the
three paths intop. In all, it performs2n + 3 iterations:2n for
locate and3 for top.

In comparison, lazy expansion searches10 paths (which is inde-
pendent ofn) in the code. This is because LATEST does not attempt
to explore all possible paths through the entire program, but to se-
lectively find paths throughlocate that ensure full coverage of
the function under testtop. The first abstract path intop returns
1. This path gets concretized in 2 more iterations. The second ab-

Tool Program Running # of % Branch
Name Name Time Iterations Coverage
CUTE program1.c 30s 676 100.00
LATEST program1.c 2s 59 100.00
CUTE program2.c 21s 651 100.00
LATEST program2.c 1.5s 63 100.00
CUTE program3.c 20s 841 100.00
LATEST program3.c 1.5s 68 100.00

Table 1. Testing 3 Simple Programs

stract path intop returns 0. This abstract path gets concretized in 4
iterations. The third abstract path returns -1 and this path gets con-
cretized in 1 iteration (because the elements ofinput array gets
initialized randomly and it is very unlikely that an element in this
array is’a’ or ’:’.)

Notice though that summarization and lazy expansion arecom-
plementarytechniques. In the example above, every time we ex-
pand functionlocate, we can construct a path summary, and in
subsequent expansions, we can first check if one of the already-
constructed summaries provide a witness path.

4.4 Avoiding Abstraction of Input Independent Functions

In the abstract concolic exploration algorithm (Section 3), we ab-
stract all functions that we encounter along an execution path. Ob-
serve that a number of such function’s behavior may not depend
on the program input. Such function calls will have a single path
through them. Therefore, abstracting their return values with in-
puts will give rise to infeasible redundant abstract execution paths.
In the implementation of LATEST, we dynamically identify if the
input (or any memory read) by a function call has a mapping in
the symbolic state. If not, then we execute the function without ab-
stracting it. Otherwise, we abstract the function. This optimization
prunes a lot of infeasible abstract execution paths.

5. Implementation and Evaluation
We have implemented LATEST on top of CUTE, a concolic unit
testing engine for C [23]. Currently, LATEST requires us to identify
the functions that we want to abstract. For example, in the parser
case study we identify thelex, thestrcmp, and theregex func-
tions as abstract. LATEST has a switch: if the switch is off, then
LATEST abstracts no function and falls back to concolic testing;
if the switch is on, then LATEST invokes the lazy algorithm. The
front-end of LATEST that instruments C code is written on top of
CIL [18] and back-end that performs the actual symbolic execution
is written in SmartEiffel. In this section, we report the results of
our experiments with several programs, including simple calcula-
tor implementation and a parser of a simple imperative language
called PL/0.

For each program, we describe the experimental setup and the
results of comparing LATEST to concolic testing. We conducted the
experiments on a Core 2 Duo Linux Desktop with 1 GB RAM.

5.1 Miscellaneous Small C Programs

We considered three small C programs:program1.c and
program2.c are similar to the code in Figure 7, except that we
make 2 calls to thelocate function in program1.c on differ-
ent input buffers and we make 2 calls to thelocate function in
program2.c on the same input buffer.program3.c is a variant
of the code in Figure 1. Table 1 gives the results of running both
CUTE and LATEST on these programs. In all cases, we got com-
plete branch coverage. The table shows that number of iterations
and the running time using LATEST is significantly smaller than
that in CUTE.

Tool # of Running # of # of valid % Branch
Name Ops Time Iterations Inputs Coverage
CUTE 1 20m26s 19435 6 97.62
LATEST 1 3s 206 6 97.62
CUTE 2 > 26hr > 106 0 97.62
LATEST 2 47s 1671 26 97.62
CUTE 3 - - - -
LATEST 3 6m8s 10000 104 97.62
CUTE 4 - - - -
LATEST 4 431m11s 485256 3126 97.62

Table 2. Testing A Simple Calculator

5.2 A Simple Calculator

We considered a C implementation of a simple calculator that can
perform basic operations such addition, subtraction, multiplication,
and division. The implementation has around 120 lines of C code.
Like any other calculator, this calculator takes numbers and oper-
ators as inputs. When we restrict the number of operations of the
calculator along an execution path to one, the number of feasible
execution paths of the calculator becomes less than 20000. This en-
ables CUTE to explore all the paths in the calculator in a reasonable
amount of time. We picked this example because we can run both
LATEST and CUTE to completion and get an accurate comparison
of the two techniques.

Table 2 shows the result of running both CUTE and LATEST
on the simple calculator. The second column in the table gives
the number of calculator operations that we performed along an
execution path. We say an input isvalid if the calculator produces
no syntax error on the input. CUTE failed to terminate with merely
two operations along an execution path. Moreover, after running
for 26 hours, CUTE produced no valid input sequence for the
calculator. On the other hand, LATEST completed testing in 47
seconds after generating 26 valid inputs. With one operation along
a path, we attained a branch coverage of 97.62% with both tools.
This provides evidence to our main theorem in Section 4. LATEST
also managed to terminate when we had 4 operations along a path.
For this case, we estimated that the number feasible execution
paths is more than1010 and CUTE will run for several days before
completion. This simple case study shows that LATEST can quickly
generate test inputs for complex programs, where CUTE fails to
terminate.

5.3 PL/0 Parser

We next report our experience with a recursive descent parser im-
plementation of PL/0 written in C. PL/0 is a simplified version of
the general-purpose programming language Pascal. The language
usually serves as an example of how to construct a compiler. It was
originally introduced in the book, Algorithms + Data Structures =
Programs, by Niklaus Wirth in 1975. It features quite limited lan-
guage constructs: basic arithmetic operations on integers and no
control-flow constructs other than “if” and “while” blocks. While
these limitations makes writing real applications in this language
impractical, it helps the compiler remain compact and simple. We
picked an implementation of this language because the implemen-
tation is written completely in C without any use of the compiler
tools such as yacc or lex. This helped us to annotate the functions
that can be abstracted easily.

Table 3 shows the result of running both CUTE and LATEST
on the parser. The parser has infinite number of executions paths,
because a program in PL/0 can have unbounded size. In order to
make the test input generation experiment tractable, we bounded
the size of a program in PL/0 to a finite number from the set{7, 8}.
We started with 7 tokens, because there in no valid program in PL/0
with less than 7 tokens. The second column gives the number of

Tool # of Running # of # of valid % Branch
Name Tokens Time Iterations Inputs Coverage
CUTE 7 > 24hr > 106 0 -
LATEST 7 56m13s 98485 99 74.26
CUTE 8 - - - -
LATEST 8 4hr37m 448046 399 74.26

Table 3. Testing a Parser of PL/0

tokens that we considered in an input. We say an input is valid
if the PL/0 parser can parse the input without syntax error. The
table shows that CUTE never managed to generate valid inputs
when the number of tokens was restricted to 7 or 8. We estimated
that CUTE will take many days to generate all valid inputs with
7 tokens. LATEST generated valid inputs in reasonable amount of
time even when the number of tokens was 8 (we estimated LATEST
can also generate inputs with 9 or 10 tokens if we allow LATEST to
run for a couple of days.) We obtained a branch coverage of 74.26%
with LATEST. We found by manual code inspection that the branch
coverage cannot be increased beyond 74.26% due to the presence
of dead code. This case study shows that LATEST can be effective
in generating significantly large number of test inputs for parsers.
6. Conclusion
In the recent years, there has been a renewed interest in automated
testing techniques due to the increasing affordability of power-
ful program analysis, model-checking, and theorem proving tech-
niques. Several recent tools for automated testing such as DART,
CUTE, and EXE have taken the first step in adapting ideas from
program analysis and model-checking. These tools have shown the
potential to automatically test real-world programs having exten-
sive pointer and data structure usage. Unfortunately, these new gen-
eration tools suffer from the notorious path explosion problem. This
scenario is quite comparable with the state explosion problem that
haunted the model checking community few years ago. The state
explosion problem in model checking has been tackled partly by
developing sophisticated techniques for abstraction, automated the-
orem proving, and reduction. Now we need to develop similar tech-
niques in the domain of automated test generation.

In this paper, we develop a new technique to tackle the path
explosion problem by adapting a well-known idea from static pro-
gram analysis. In the context of dynamic test generation, we show
that counterexample-guided refinement can be effective in quickly
generating inputs for complex programs. Our experimental results
validate this fact.

The results in this paper show that there is a great opportunity
for improving systematic automated testing by bringing in ideas
from program analysis and model checking. The challenge that
remains is to figure out right ways of adapting various program
analysis techniques in testing.
References
[1] T. Ball and S. Rajamani. The SLAM project: debugging system

software via static analysis. InPOPL 02: Principles of Programming
Languages, pages 1–3. ACM, 2002.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R.Majumdar.
Generating Test from Counterexamples. InProc. of the 26th ICSE,
pages 326–335, 2004.

[3] D. Bird and C. Munoz. Automatic Generation of Random Self-
Checking Test Cases.IBM Systems Journal, 22(3):229–245, 1983.

[4] C. Cadar and D. Engler. Execution generated test cases: How to make
systems code crash itself. InProc. of SPIN Workshop, 2005.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. InCAV 00:
Computer-Aided Verification, LNCS 1855, pages 154–169. Springer,
2000.

[6] L. Clarke. A system to generate test data and symbolicallyexecute
programs.IEEE Trans. Software Eng., 2:215–222, 1976.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness
tester for Java.Software: Practice and Experience, 34:1025–1050,
2004.

[8] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. InProceedings
of the 4th USENIX Windows System Symposium, 2000.

[9] P. Godefroid. Compositional dynamic test generation. InPOPL 07:
Principles of Programming Languages. ACM, 2007.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. InPLDI 05: Programming Language Design and
Implementation, 2005.

[11] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori, and S. Rajamani.
SYNERGY: a new algorithm for property checking. InSIGSOFT FSE
06, pages 117–127. ACM, 2006.

[12] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In POPL 02: Principles of Programming Languages, pages 58–70.
ACM, 2002.

[13] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic
execution for model checking and testing. InProc. TACAS, pages
553–568, 2003.

[14] J. C. King. Symbolic Execution and Program Testing.Communica-
tions of the ACM, 19(7):385–394, 1976.

[15] B. Korel. A dynamic Approach of Test Data Generation. InIEEE
Conference on Software Maintenance, pages 311–317, November
1990.

[16] R. Majumdar and K. Sen. Hybrid concolic testing. InICSE 07:
International Conference on Software Engineering. ACM, 2007.

[17] J. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[18] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation of
C programs. InCC 02: Compiler Construction, Lecture Notes in
Computer Science 2304, pages 213–228. Springer, 2002.

[19] J. Offut and J. Hayes. A Semantic Model of Program Faults.In Proc.
of ISSTA’96, pages 195–200, 1996.

[20] C. Pacheco and M. Ernst. Eclat: Automatic generation and
classification of test inputs. InECOOP, 2005.

[21] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball. Feedback-directed
random test generation. InICSE’07: International Conference on
Software Engineering, 2007.

[22] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. InPOPL 95: Principles
of Programming Languages, pages 49–61. ACM, 1995.

[23] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. InFSE 05: Foundations of Software Engineering. ACM,
2005.

[24] M. Sharir and A. Pnueli. Two approaches to interprocedural data
dalow analysis. InProgram Flow Analysis: Theory and Applications,
pages 189–233. Prentice-Hall, 1981.

[25] M. Soffa, A. Mathur, and N. Gupta. Generating test data for branch
coverage. InASE ’00: Automated software engineering, page 219.
IEEE Computer Society, 2000.

[26] W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with
Java PathFinder. InISSTA 04, pages 97–107. ACM, 2004.

[27] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution. In
Procs. of TACAS, 2005.

