
Securing User-controlled Routing Infrastructures

Karthik Kalambur Lakshminarayanan
Daniel Giannico Adkins
Adrian Perrig
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-37

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-37.html

March 22, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

Securing User-controlled Routing Infrastructures

Karthik Lakshminarayanan Daniel Adkins Adrian Perrig Ion Stoica
UC Berkeley UC Berkeley CMU UC Berkeley

Abstract— Designing infrastructures that give untrusted third-
parties (such as end-hosts) control over routing is a promising
research direction for achieving flexible and efficient communi-
cation. However, serious concerns remain over the deployment
of such infrastructures, none less than the new security vul-
nerabilities they introduce. The flexible control plane of these
infrastructures can be exploited to launch many types of powerful
attacks with little effort.

In this paper, we make several contributions towards studying
security issues in forwarding infrastructures. We present a
general model for a forwarding infrastructure, analyze potential
security vulnerabilities, and present techniques to address these
vulnerabilities. The main technique that we introduce in this
paper is the use of simple, light-weight, cryptographic constraints
on forwarding entries. We show that it is possible to prevent
a large class of attacks on end-hosts, and bound the flooding
attacks that can be launched on the infrastructure nodes to a
small constant value. Our mechanisms are general and apply to
a variety of earlier proposals such asi3, DataRouter and Network
Pointers.

I. I NTRODUCTION

Several recent proposals have argued for giving third-parties
and end-users control over routing in the network infrastruc-
ture. Some examples of such routing architectures include
TRIAD [6], i3 [30], NIRA [39], DataRouter [33], and Network
Pointers [34]. While exposing control over routing to third-
parties departs from conventional network architecture, these
proposals have shown that such control significantly increases
the flexibility and extensibility of these networks. Using such
control, hosts can achieve many functions that are difficultto
achieve in the Internet today, such as support for mobility,
multicast, content routing, and service composition. Another
somewhat surprising application is that such control can be
used by hosts to protect themselves from packet-level denial-
of-service (DoS) attacks [18], since, at the extreme, thesehosts
can remove the forwarding state that malicious hosts use to
forward packets to them. While each of these specific functions
can be achieved using a specific mechanism—for example,
mobile IP allows host mobility—we believe that these FIs
provide architectural simplicity and uniformity in providing
several functions that makes them worth exploring.

Forwarding infrastructures typically provide user control
by either allowing source-routing (such as [6], [30], [39])or
allowing users to insert forwarding state in the infrastructure
(such as [30], [33], [34]). Allowing forwarding entries enables
functions like mobility and multicast that are hard to achieve
using source-routing alone.

While there seems to be a general agreement over the
potential benefits of user-controlled routing architectures, the
security vulnerabilities that they introduce has been one of
the important concerns that has been not addressed fully.
The flexibility that the FIs provide allows malicious entities
to attack both the FI as well as hosts connected to the FI.
For instance, consideri3 [30], an indirection-based FI which
allows hosts to insert forwarding entries of the form(id, R),
so that all packets addressed toid are forwarded toR. An
attackerA can eavesdrop or subvert the traffic directed to
a victim V by inserting a forwarding entry(idV , A); the
attacker can eavesdrop even when it does not have access to
the physical links carrying the victim’s traffic. Alternatively,
consider an FI that provides multicast; an attacker can use
such an FI to amplify a flooding attack by replicating a packet
several times and directing all the replicas to a victim. These
vulnerabilities should come as no surprise; in general, the
greater the flexibility of the infrastructure, the harder itis to
make it secure [1], [36].

In this paper, we aim to push the envelope of the security
that truly flexible communication infrastructures, that provide
a diverse set of operations including packet replication, allow.
Our main goal in this paper is to show that FIs are no more
vulnerable than traditional communication networks such as
IP, which do not export control on forwarding. To this end,
we present several mechanisms that make these FIs achieve
certain specific security properties, yet retain the essential
features and efficiency of the original design. Our main de-
fense technique, which is based on light-weight cryptographic
constraints on forwarding entries, prevents several attacks in-
cluding eavesdropping, loops, and traffic amplification attacks.
From earlier work, we leverage some techniques, such as
challenge-responses and erasure coding techniques, to thwart
other attacks.

The organization of the rest of the paper is as follows:

• To abstract away the details of the several forwarding
infrastructures, we propose a simple model for FIs in
Section II.

• We present the desirable security properties of a FI that
can be roughly summarized as follows (Section IV): (a)
an attacker should not be able to eavesdrop on the traffic
to an arbitrary host, (b) an attacker should not be able
to amplify its attack on end-hosts using the FI, (c) an
attacker can only cause a small bounded attack on the
FI, and (d) an attacker that has compromised an FI node

2

can only affect traffic that it forwards. For each of these
properties, we also present examples of attacks that show
why a naive FI design violates these properties.

• We describe a set of security mechanisms that achieve
these properties (Section V). The most important con-
tribution, light-weight cryptographic constraints on for-
warding entries, allows the construction of only acyclic
topologies, thus preventing malicious hosts from using
packet replication of the infrastructure to multiply flood-
ing attacks. For example, to prevent loops, we leverage
the difficulty in finding short loops in the mapping defined
by cryptographic hash functions [22]. To the best of
our knowledge, this is the first system that exploits the
difficulty in finding short loops in cryptographic hash
functions for designing a secure routing system.

II. FORWARDING INFRASTRUCTUREMODEL

Since the designs of various FIs proposals vary greatly,
we present a simplified model that abstracts the forwarding
operations of these proposals. The following FI model we
present is similar to MPLS [27]; in summary, the model tries
to abstract the forwarding operation performed at an FI node
to an update of the identifier that is contained in the packet
header.

A. Identifiers and Forwarding Entries

Each packet header contains an identifierid, that contains
both the next-hop that the packet is addressed to (id.node),
and a flat label used to match the routing table at the next-hop
(id.key). The structure ofid.nodedepends on the underlying
routing used by the particular FI; for example, it could
represent the IP address of the node (e.g. DataRouter [33]),or
the DHT identifier of the node (e.g.i3 [30]). When a hostA
wishes to communicate with hostB using the FI, the hostA
sends a packet containing an identifierid that would eventually
be routed to hostB.

Each FI node maintains a table offorwarding entries. A
forwarding entry is a pair(id, finfo), where id has the same
structure and semantics as the packet identifier, andfinfo
(shorthand forforwarding information) is additional informa-
tion that is used to modify the header before forwarding the
packet.

In the simplest case, thefinfo is just the identifier to which
the packet is next forwarded to, but it could also represent
other types of forwarding information such as a source route
or a stack of identifiers. The notion offinfo is introduced here
just to show how we can accommodate several FIs; in the
update function we specify later, we abstract out thefinfo and
only worry about the final identifier that the packet header is
updated to.

The scope of thekeyof an identifier is local an FI node, and
there may be several entries with the same key at a node to
allow multicast. While precluding replication would eliminate

……

finfo4key4

finfo3key3

finfo2key2

finfo1key1

Forwarding Table (F)

Node (id.node)

id.key
(id1, finfo1, data)

(id4, finfo4 data)

p_update&
forwarding

e1 ,e4

(id, finfo, data)

e1

e2

e3

e4

match

Fig. 1. The operations performed by an FI node upon the arrival of
a packet with identifierid.

several of the attacks that we discuss in this paper, we believe
that multicast is a key functionality that future FIs will provide.
These forwarding entries are maintained in the FI as soft-state
that must be refreshed periodically.

B. Packet Routing Functions

The three steps in routing a packet are: (1) matching the
packet header with forwarding entries at a node, (2) modifying
the packet header based on the forwarding entry it matches,
and (3) forwarding the packet to the next hop. Figure 1
illustrates the packet processing at an FI node.

Packet Matching. When a packet arrives at node, the packet
identifier is matched against the the forwarding table by a
matching function:

match(id, F) → {e1, e2, . . . , ek}, (1)

which takes as input a packet’sid and a forwarding table
F (stored at nodeid.node), and outputs a set of entries. For
achieving our security properties, we’ll later require that the
matching operation matches a certain number of bits in the
identifier exactly.

Packet Header Update.The header and destination of a
packet are based only on the incoming packet’s header and
the matching entry. If multiple entries are matched, the packet
is replicated. The update function:

update(p, e) → p′ (2)

takes a packet headerp and an entrye, and produces a
modified packet headerp′.

The security techniques will impose constraints between the
input identifierid and the outputid’ , hence the semantics of the
update function (e.g. how exactly the finfo is used) is irrelevant
to our discussion. In the rest of the paper, we denote an entry
that changes the ID of a packet fromid1 to id2 by [id1→id2].

update(id1, [id1→id2]) → id2,

wherep.id=id1 andp′.id=id2.

3

……

FWD(B , sel2)sel1

……

((A, sel1), data)

Node A

((B, sel2), data)

(b) Network Pointers

……

b1,b2,b3a1

……

((a1,a2,a3),data) ((b1,b2,b3,a2,a3), data)

(a) i3

……

D2l1

……

(D1,(D0,l1,l2,l3), data)

(c) Data Router

(D2, (D0,D1,l2), data)

Node D1

id.node id.key id.node id.key

id.node id.keyid

Fig. 2. The forwarding operation for three forwarding infrastructure proposals: (a)i3, (b) Network Pointers, and (c) DataRouter.

C. Examples of FIs

For concreteness, we give some examples of FIs to illustrate
how an existing FIs can be instantiated in our model.

1) Internet Indirection Infrastructure:i3 is an indirection
overlay that allows hosts to specify which packets they want
to receive by inserting forwarding entries with the appropriate
identifiers [30]. In the simplest case, at ani3 node, the
incoming packetp contains the identifierida (i.e., p.id =
ida). The identifier,ida determines the matching entry in the
forwarding table, as well as the next hop of the packet. Let us
say thatida matches an entryida → (idb, idc); here(idb, idc)
denotes a stack of IDs. Then, the IDida is replaced by the
ID idb, idc is added top.finfo, and the packet is forwarded to
idb.

Both p.id.nodeand p.id.keyare encoded in thei3 ID of
the packet. Thematch operation is longest prefix matching.
The p update operation swaps the identifier at the top of the
stack with the stack in the matching entrye.finfo. Note that
host addresses can be encoded ine.finfo for packets sent to
end-hosts.

2) Network Pointers: Network Pointers is a link layer
mechanism that gives end-hosts fine-grained control over
forwarding in the network by insertingpointers [34] (see
example in Figure 2(b)). The incoming packet contains the
address of the next hopA as well as a selectorsel1 which
is used to index the forwarding table at nodeA. The packet
is forwarded to the next hop after its selector is updated to
(B, sel2). The p.id.nodefield is the next-hop address, and
p.id.keyis the selector. Thematch operation is exact matching.
The p update operation is specified in thee.finfo field. The
packet can be either forwarded to a next hop by updating its
p.id or delivered to a local application.

3) DataRouter:DataRouter is a forwarding engine that pro-
vides generic string matching and rewriting capabilities at the
IP layer based on application-specific needs [33]. DataRouter
is a high performance generic alternative to application-layer
overlays. In addition to the IP header, a packet carries a
generalized source route. The source route can contain ar-
bitrary strings, which is used to index the forwarding table.

Figure 2(c) shows an example in which the packet with
destination addressD1 arrives at the next hop. The source
route carried by the packet consists of the IP path traversed
by the packet so far (D0), and a list of string labels, [l1, l2, l3],
used to index the forwarding tables of the hops along the path.
In this example, when the packet arrives at nodeD1, the node
swaps the first string labell1 with its address, and forwards the
packet to the next hop, as indicated by the forwarding entry,
D2.

In general,p.id.nodeis the destination address of the packet,
and p.id.keyconsists of aclass that identifies a forwarding
table at the next hop (not shown in the example), and astring
used to search in that forwarding table. Thep update oper-
ation, in general, updates the destination IP address and the
forward informationp.finfo in the packet. The only constraint
is that the node cannot update the prefix of the source route
(i.e., p.info) that shows the path followed by the packet so far.

D. User Control over Forwarding Entries

We assume that FI nodes allow end-hosts to insert and
remove of entries into and from the forwarding tables at the
FI nodes.

insert(n, e); // insert entry e into n’s forwarding table
remove(n, e); // remove entry e from n’s forwarding table

Following i3 terminology [30], we assume that there are two
types of IDs:public andprivate. These IDs differ in their level
of “visibility” to end-users: a public ID is publicly known,
while a private ID is known only to a trusted set of users. Sim-
ilarly, we call a forwarding entry whose ID is public/private,
a public/private forwarding entry. Public forwarding entries
might be used by servers that arbitrary users can contact—
all packets delivered to such servers will be relayed through
their public forwarding entries. We introduce this distinction
now since public and private entries require different security
properties, and we exploit that fact to provide slightly different
security mechanisms for these types of entries.

4

III. T HREAT MODEL

We describe our assumptions and the attacker threat model,
and then derive the attacks that can be launched.

A. Security Assumptions

Our main goal in this paper is to show that the FIs are
no more vulnerable than traditional communication networks
such as IP, which do not export control on forwarding. To
achieve this goal, we rely on several assumptions about the
underlying routing layer. We assume that the virtual links
between FI nodes as well as the link between the end-hosts and
the FI node it is connected to1 provide secrecy, authenticity,
and replay protection—i.e., we do not consider link-level
adversaries that can eavesdrop on arbitrary network links.
These virtual links represent ISP-ISP relationships, which can
be readily secured through standard security protocols (e.g.,
IPsec [16]), and do not need a public-key infrastructure. The
security requirement for the virtual link from hosts to FI nodes
stems from the fact that we want to protect against link-level
adversaries eavesdropping on the messages that hosts send,
and the security requirement for that between FI nodes stems
from the fact that we wish to show that attackers that control
FI nodes are no worse than attackers that control IP routers
today. However, we note that such a requirement might limit
the scalability of the system to a few thousand nodes which
we believe is in the same ballpark of how much the overlay
deployments of such FIs target.

FI proposals rely on an underlying routing protocol that
routes packets between FI nodes. For example, DataRouter
uses IP routing, andi3 uses the Chord lookup protocol [31].
Addressing security issues of these underlying protocols is
outside the scope of this paper. We note that there are several
ongoing research efforts to address security issues both inthe
context of IP routing [11], [14], [17], [28], [32], [38] and
DHT-routing [5], [29]. Finally, we do not consider processing
or state-based attacks (such as insertion of many forwarding
entries at an FI node) since these attacks are well-studied in the
literature and can be solved using cryptographic puzzles [8],
[9], [23].

B. Attacker Threat Model

We consider two attacker types: internal and external attack-
ers. Anexternal attackerdoes not control any compromised FI
node but misuses the flexibility given by the FI. An external
attacker can perform only the operations that a legitimate host
can: insert a forwarding entry and send a packet. Aninternal
attacker is an adversary who controls some compromised FI
nodes. Ideally, we want to ensure that an external attacker
cannot misuse an FI network to amplify the magnitude of a

1We assume that in real deployments, end-hosts are connectedto
one or a few FI nodes that act as the entry point of all packets of the
hosts; hence, assuming that a host shares a key with a couple of FI
nodes is reasonable.

flooding attack2. In the case of an internal attack, we want
to ensure that an attacker who compromises an FI node
cannot affect other traffic that is not forwarded through that
compromised FI node.

IV. PROPERTIES OF ASECUREFI

In this section, we precisely state the properties of a secure
FI that we seek to achieve, and present some simple examples
of how these properties are violated in the naive FI designs.

A. Preventing Eavesdropping and Impersonation

Property 1: Let [id → X] be a public forwarding entry
inserted by a host. Then, an external attacker cannot inserta
forwarding entry with the same identifierid.

This property prevents eavesdropping and impersonation by
preventing an external attacker from inserting a forwarding
entry with the same ID as that of the victim. The property
also covers the case in which the victim has no entry in the
FI at the time the attacker inserts its entry. Hence, even if
the attacker causes the removal of the victim’s entry (e.g.,by
flooding the victim), it cannot impersonate the victim.

To demonstrate that the basic FI design does not guarantee
this property, we list an example each of an eavesdropping
attack and an impersonation attack.

Eavesdropping.Consider an end-hostR that inserts a pub-
lic forwarding entry3 [id→R] (see Figure 3(d)). An attackerX
can eavesdrop on packets sent toR by inserting a forwarding
entry [id→X]. All packets that are forwarded via[id→R] will
be replicated and forwarded via[id→X] to X as well.

Impersonation. A variant of eavesdropping involves an
attackerX making an end-hostR drop its public entry by
flooding it.4 Then, if attackerX inserts[id→X], X can not
only eavesdrop onR’s traffic but also actively respond to it,
thus impersonatingR.

B. Preventing Flooding Attacks on End-Hosts

The following property prevents an external attacker from
using the FI to: (a) amplify the traffic it sends to a victim host,
and (b) redirect traffic meant for other hosts to the victim host.

Property 2: An external attacker cannot make a single
victim end-host receive more packets than the attacker itself
sends or receives.

2By flooding attack, we refer to a DoS attack in which the attacker
floods the victim’s network link by sending data at a large rate.

3To improve readability, we simplify the notation: we write
[id→R] to mean[id→idR], whereidR.node = R.

4We assume thatR maintains its entry using soft state (since
forwarding tables are usually managed using soft-state). We also
assume that a host under flooding attack cannot refresh its entries.

5

Sender
Receiver (R)

send(id,data) send(R, data)

Attacker

send(id,data)

Victim
(V)

(a) (b)

(c) (d)

Eavesdropper (E)

Attacker Attacker

[id�R]

[id�E]

[id1�id2] [id1�id2]
[id2�id3]

[id3�id4]

[id1�id2] [id2�id3]

[id3�id4]
[id4�id1]

[id3�id6]

[id4�id6]

[id5�id6]

[id2�id3]

[id2�id5]

[id2�id4] [id6�V]

Fig. 3. Attack examples: (a) eavesdropping, (b) cycle, (c) end-host
confluence, and (d) dead-end.

In essense, the property bounds the worst-case flooding
attack that an external attacker can perform to what the
attacker can do in today’s Internet: send packets directly to
the victim. However, the basic design of FIs do not guarantee
the property; we illustrate this using some intuitive examples.

Malicious linking. Consider a forwarding entry[id1→X]
that receives a large number of packets. An attacker can sign
up an end-hostR, with an existing public forwarding entry
[id→R], to the high bandwidth traffic stream of the popular
entry by inserting the entry[id1→id].

Cycles involving end-hosts.Consider two benign hostsR1

andR2 inserting entries[id1→R1] and[id2→R2] respectively.
An attacker can create a cycle by inserting entries[id1→id2]
and [id2→id1]. Packets sent toid1 and id2 would be indefi-
nitely replicated, thus overwhelmingR1 andR2.

End-host confluence.This is a variant of the confluence
attack where the target is an end-host rather than an FI node.
By making the leaves of the tree point to the public entry of
an end-host (see Figure 3(c)), an attacker can overwhelm the
host.

C. Limiting Attacks on FI

While the previous two propertiespreventattacks on end-
hosts, the next property only alleviates external attacks on
the FI. We state the property after introducing a new metric:
forwarding cost.

Definition 1: Consider a packetm that traversesl links (i.e.,
the packet is forwardedl times) in the FI and that is received
by k receivers. The forwarding cost ofm is then

FC(m) =
l

k + 1
(3)

The forwarding cost measures the amount of work the FI
does for every unit of work performed by end-hosts involved
in the communication, where a unit of work is either sending,
receiving or forwarding a packet. (The increment by one in
the denominator of Eq. (3) accounts for the sender sending a

(a)

[id2�R2]

[id1�id2] [id1�id3] [id1�id4]

Sender

[id3�R3] [id4�R4]

R2 R3 R4

(b)

[id2�R1]

[id1�id2] [id1�id3] [id1�id4]

Sender

[id3�R1]
[id4�R1]

R1

Fig. 4. Example where a seemingly legitimate topology can be
exploited for attack.

packet.) For example, the forwarding cost of a unicast packet
traversingh hops ish/2 if it is delivered to the receiver, andh
otherwise. A cycle has infinite forwarding cost; by imposing
a TTL of l, the cost of a cycle would be bounded byl.

To reduce the ability of an external attacker to use the FI
to amplify its attack, we should make the forwarding cost
as small as possible. The following property captures this
requirement in rather vague terms, which we shall make more
precise in Section V-C.2.

Property 3: The forwarding cost is bounded and small.

Before we give simple examples of why the basic FI design
doesn’t guarantee this property, we first reason why we only
bound the attack on the FI and not prevent it completely.

Consider the subtle class of attacks calledover-subscription
attacks, where an attacker builds a seemingly benign topology;
what we mean is that by just looking at the topology, one
cannot determine if the topology is used maliciously or not.
But an attacker can use this topology to make the FI do
extra work by sending packets at a much higher rate than
the (colluding) receivers can handle. Consider the legitimate
multicast topology in Figure 4(a). An attacker can exploit this
topology to mount an attack on an FI node, by having all
leaves terminate at a colluding receiver (see Figure 4(b), which
is identical to Figure 4(a) whereR1 = R2 = R3) which
has limited receiving capability, and make all the IDs in the
penultimate level reside on the same FI node. This will cause
all the replicated traffic to be directed to that FI node.

From the above example, it is clear that a defense mecha-
nism can detect such attacks only after the attacks are started
since one cannot decide whether it is an attack just looking
at the topology. Thus, we can only alleviate such attacks, not
prevent them completely. Property 3 achieves this by linking
the damage caused by an attacker to how much communication
resources the attacker has,i.e., it bounds the ratio between how
many packets an FI forwards on the behalf of the attacker and
how much traffic the attacker can send/receive directly to/from
the FI.

6

In the basic FI design, an attacker can insert forwarding
entries to unboundedly amplify a flooding attack on the FI.
We present examples of such undesirable topologies.

Cycles. An attacker can form a loop by inserting for-
warding entries[id1→id2], . . ., [idn−1→idn], [idn→id1] (see
Figure 3(a)). A packet with identifieridi (1 ≤ i ≤ n) would
indefinitely cycle around the loop and consume FI resources.

Dead-ends.An attacker can construct a chain of forwarding
entries, or even a multicast tree, which do not point to a
valid end-host (see Figure 3(b)). Data packets sent on such
a topology would be forwarded and replicated only to be
dropped at the dead ends.

Confluence.An attacker can refine a dead-ends attack by
constructing a multicast tree withm leaves, all pointing to
a victim FI node. For every packet sent by the attacker, the
destination will receivem duplicates.

D. Limiting Internal Attacks

Property 4: An internal attacker should be able to mount
only two forms of attacks: (a) drop the packets directed to
forwarding entries it is responsible for, (b) arandomflooding
attack, i.e., attacking a host through its forwarding entry
without knowing the identity of the host.

The above property essentially makes an internal FI attacker
no worse than an attacker compromising a router in the
Internet today. In fact, in some cases an FI internal attacker
is less powerful than an internal attacker in IP today since an
FI internal attacker cannot mount an “off-path” attack,i.e., it
cannot affect other FI nodes or end-hosts whose packets are
not normally forwarded through the compromised node.

V. DEFENSEMECHANISMS

We present defense mechanisms that achieve the properties
of a secure FI that we enumerated in the previous section.
The first technique,constrained IDs, is our main technique.
We also use two other well-known techniques—challenge-
responses and erasure coding. The constrained IDs technique
enforces property 1, and together with the challenge response
technique, they enforce property 2. By using all three tech-
niques, we can provide property 3. Finally, we discuss the
case of internal attackers.

Before we present our main security mechanisms, we briefly
note that attackers cannot update or remove entries inserted by
other hosts. To remove or update an entry, users need to specify
both fields of the entry: thekey and thefinfo fields. Hence, an
attacker can modify an entry only by guessing the fields. By
allowing the owner of an entry to include a sufficiently long
random nonce (80 bits long suffice [19]) in thefinfo field, we
can ensure that guessing thefinfo field is highly improbable.
We also assume that it is infeasible for an attacker to guess
the ID of a private forwarding entry. As before, we enforce
this by including a nonce in the ID of a private entry.

FI node(id, finfo, data) (id’ , finfo, data)

id = (node, key.c, key.u) id’ = (node’, key’.c, key’.u)

hr ()

id = (node, key.c, key.u) id’ = (node’, key’.c, key’.u)

hl ()

(a)

(b)

Fig. 5. An FI node can update the ID of a packet fromid to id
′ iff

id and id
′ are either (a) right constrained (orr-constrained), or (b)

left constrained (orl-constrained).

A. Technique 1: Constrained IDs

Constrained IDs is our core technique, which prevents
eavesdropping, impersonation, and the construction of topolo-
gies that are not trees. Consider an FI node that updates the
packet ID from id to id′. We enforce a constraint on the
structure of IDs such that the choice ofid cryptographically
constrains the choice ofid′ or vice-versa.

To implement the constraints, we divideid.key into two
sub-fields: a constrained part (id.key.c) and an unconstrained
part (id.key.u). When a packet is matched at an FI node, the
constrained partmustmatch. Theconstrained IDsrule can be
stated as follows (see Figure 5):

Constrained IDs Rule: A packet ID, id, can be updated
to id′, if and only if either id’.key.c=hr(id.node, id.key.c)or
id.key.c=hl(id’.node, id’.key.c)hold.5

Functionshl andhr are cryptographic hash functions map-
ping N -bit strings ton-bit strings, whereN is the size of
an ID excluding the unconstrained part of the key, andn is
the size of the constrained part of the key. The properties
we require of the cryptographic hash functions (hl and hr)
are: (a) strong collision resistance, and (b) computationally
infeasibility of finding short cycles. Secure one-way hash
functions, such as SHA-256 [24], provide these two proper-
ties [22].6 If it is clear from the context, we useid′=hr(id) and
id=hl(id

′) as a shorthand forid’.key.c=hr(id.node, id.key.c)
and id.key.c=hl(id.node, id.key.c), respectively. (Recall that
an identifier has the form(id.node, id.key.c, id.key.u), where
id.key.c is constrained by the cryptographic function, and
id.key.uis unconstrained and can be freely chosen.)

Intuitively, a cryptographic hash function makes it hard
for an adversary to construct malicious topologies such as
loops. Sincehl and hr are publicly known hash functions,
any FI node or host can check and enforce the constraints. If

5We allow bothl andr constraints because, as we will show later,
l-constraints provide better security properties, whereasr-constraints
allow greater functionality.

6Given the recent attacks against SHA-1 [35] which reduces the
complexity to find a collision to263, SHA-256 is required for high
security.

7

packet’s ID,id, is updated toid′ and id′ = hr(id), we say
that packet ID isright-constrained (r-constrained); otherwise,
we say that it isleft-constrained (l-constrained). Note that
we choose different hash functionshl andhr to avoid trivial
cycles of length two.

Next, we show that constraining packet IDs allows only
topologies that are trees. Note however that since we allow
flexibility of choosingid.node, one can still construct conflu-
ences on end-hosts and FI nodes. We deal with these problems
in Sections V-B and V-C.2 respectively.

Theorem 1:With constrained IDs, it is infeasible for a
computationally-bounded adversary to create topologies other
than trees.

Proof: Refer to Appendix I

The rule that we use to constrain IDs results directly from
the dual goal of achieving the desirable security properties and
at the same time preserving the FI functionality. To illustrate
this point, we enumerate several alternatives to constrainIDs
we considered. (In Section VII, we show that our constrained
IDs rule indeed preserves the functionality of the FIs.)

(a) Constraining the entire IDid′ using id (or vice-versa)
would imply that id’.node would depend onid. This would
limit the flexibility of an end-user or third-party in choosing
the nodes along a path.

(b) Constraining the entireid.key using some part ofid’
would be restrictive, as some FIs require control on the value
of id.key. For example,i3 uses theid.key’s suffix to implement
anycast [30].

(c) Constrainingid’.key using only id.key would allow an
attacker to create confluences on FI nodes by mapping all
the leaf IDs to the victim node; e.g., by inserting the entries
[id1→id2], [id1→id3], [id2→id4], [id3→id5] where all IDs
are constrained andid4.node = id5.node.

Providing Property 1:Constrained IDs (l-constrained IDs in
particular) help achieve property 1 (preventing eavesdropping
and impersonation) if we enforce all public IDs to bel-
constrained,i.e., if a packet matches a public IDid and
is replaced byid′, then id=hl(id

′). If a host constrains
its public ID id using a secret IDid′, then, to eavesdrop,
an attacker should insert an entry[id→id′′] pointing to the
attacker. Hence, an attacker needs to find an IDid′′ such
that hl(id

′′) = hl(id
′) = id which amounts to finding hash

collisions.

A simple technique to ensurel-constraints on public IDs
would be to separate the key space for public and private IDs.
For instance, the first bit ofid.keycould denote whether the
entry is l-constrained orr-constrained. Since the key space of
l- and r-constrained entries are separate, an attacker cannot
insert anr-constrained entry for eavesdropping.

B. Technique 2: Challenge-Response

To ensure that an attacker cannot insert entries pointing
to other benign end-hosts, we use the well-known challenge-
response technique. FI nodes challenge the insertion of every
forwarding entry using a simple three-way handshake. This
mechanism is well-known in the literature and is similar to
TCP SYN cookies; we describe it here for completeness.

Consider end-hostA inserting an entry[id→B] at an FI
nodeIa. The FI nodeIa sends a noncen to hostB, since
B is the host contained in the entry[id→B]. Host A, which
attempted the insertion, can respond toIa with the noncen
only if it receives the the traffic sent toB—this condition is
trivially true if a node is inserting an entry pointing to itself
(i.e., A = B in this case). However, an attacker that is not in
the physical path toB cannot respond to the challenge, and
hence the insertion does not succeed. To avoid maintaining
state in FI nodes for every insertion, the challenge is computed
using a message authentication functionhk on the valuesid
and B, wherek is a secret key only known to the FI node.
To prevent replay of challenges, the FI node can periodically
update the keyk.

Providing Property 2:The challenge-response protocol out-
lined above helps achieve property 2 (preventing amplification
attacks on end-hosts) since an attacker cannot insert an entry
pointing to an arbitrary end-host it does not control. Hence,
to replicate its traffic and direct it towards a particular host E,
the attacker must itself create a malicious ID-level topology,
and link all leaves with an existing entry already inserted by
E. But since we already achieve property 1, such an ID-level
topology is not possible.

C. Technique 3: Defense against Over-subscription

As mentioned in Section IV-C, benign topologies can be
used by an attacker to launch a flooding attack on a victim FI
node. For example, an attacker, by controlling both the sender
and the receiver, can construct a tree such that all entries at the
last level (i.e., entries of the form[idv∗→R], whereR is the
receiver) reside at the victim FI node,V . Each packet sent by
the sender will be replicated, and all replicas will be sent to the
victim FI node. In general, an attacker can amplify its attack
N -fold by insertingO(N) forwarding entries. Unfortunately,
it is very hard to prevent such an attack since the resulting
topology is legitimate,i.e., it is a tree in which each leaf points
to an end-host. What enables this attack is the ability of the
attacker to insert forwarding entries at an arbitrary FI node.
Since this control is critical to the flexibility of many FIs,
we choose to use a reactive technique to alleviate this attack
(rather than place restrictions on where the entries are stored).

The main observation we make is that such an attack can
be alleviated if the attacker cannot make the FI generate more
traffic than the attacker can send or receive. In other words,
an attacker should not be able to generate more traffic than
the receiverR can handle, in which case the attack on node
V would be bounded byR’s link capacity. The attacker then

8

would not be able to benefit from replicating its traffic, and
hence it cannot do better than attacking the victim directly.
A simple way to achieve this property is to ensure that the
packet loss alongeach edge (link)in the topology is bounded.
Consider a forwarding entry(id, ∗) located at FI nodeA that
forwards packets to FI node or end-hostB. If A detects that
B receives less than a fractionf of the packets sent byA,
thenA raises a pushback signal. Now, there are two questions
that we need to answer: how is the loss rate measured, and
how does the sender react when the loss rate exceedsf .

To detect high losses, we borrow the mechanism based on
erasure codes proposed in [12]. FI nodeA associates a noncea
with everyn consecutive packets forwarded via entry(id, ∗)
to next hopB. In particular, nodeA uses a(k, n) erasure
code to encode noncea, and then piggybacks the erasures
into the n consecutive packets forwarded toB. As long as
B receives at leastk packets, it can reconstruct the noncea
and send it back toA. If node A doesn’t receive the nonce,
then it implies thatB received less than a fractionα=k/n
of the packets,i.e., the loss is at least7 1−α. The additional
traffic generated by this mechanism is very low, since only
one small-sized packet is sent everyn packets. For example,
choosingα=3/4 would help tolerate a loss rate as high as
25% (a loss rate at which TCP would not be able to sustain
any reasonable throughput), while worsening a possible attack
only by a factor of1.33. The other important parameter in
our design is the block sizen. A large value ofn makes the
test more robust, but increases the vulnerability period during
which the attacker can exploit the mechanism. To account for
the possible loss of nonce reply messages sent by nodeB
to previous hopA, we require that a loss rate greater than
f be observed overc consecutive epochs of encoding before
initiating the pushback. In practice we choosec = 3.

When an FI node detects that the receivers cannot receive
the data packets (since it does not receive a correct nonce),
it takes action in the form of apushbackto ensure that the
topology of forwarding entries is pruned all the way to the
source. The pushback can be implemented by simply rate-
limiting the traffic, or more aggressively, by removing the
forwarding entry. In the latter case, even if there are false
positives (i.e., an entry is incorrectly removed), soft-state
refreshing of entries would ensure that the topology is restored.
In the former case, to ensure that pushback signals propagate
up the topology, an FI node should reconstruct the nonce (that
it uses to prove to the upstream node that it received at least
α packets) based on the packets it successfully sent to its
downstream nodes. Instead, if a node reconstructs the nonce
based on the packets it receives from its upstream node, then
pushback from a bottleneck at its downstream node will not
propagate upwards.

1) Providing Property 3: An attacker can exploit the re-
active nature of the above mechanism to carry out attacks
for short intervals of time. Indeed, the mechanism allows a

7A dead-end is a special case in which the pushback can be initiated
when no forwarding entry matches the packet.

window of vulnerability from the time the attacker constructs
a graph till the time the FI prunes it down. In this section,
we bound the damage even when the attacker exploits this
window of vulnerability.

Consider an attacker that constructs a tree violating the
constraint that the leaves are either dead-ends or end-hosts
that receive less than anα fraction of the traffic sent by the FI
nodes.8 Let the maximum height of the tree behmax. This can
be enforced using a TTL field. Let[id→id′] be a forwarding
entry of this tree stored at nodeA where id′ is a leaf. After
receiving the first packet with IDid, A will take tr time units
to remove this entry. Ifid is a dead-end,tr is equal to the RTT
(τ), since that is how long the pushback mechanism takes to
detect a dead-end and propagate a message back one hop. If
the leaf is an oversubscribing end-host,tr is the time it takes
the FI node to sendnc = n×c packets of maximum size
plus the time it needs to wait for the end-host to send back
the nonce:tr = nclmax/r + τ , wherelmax is the maximum
packet size.

The only way the attacker can maintain this tree is to
replace the leaf edges as soon as they are removed by the
pushback mechanism. This attacker strategy would prevent
pushback from pruning the rest of the tree. Letλ be the rate
at which the attacker can insert new forwarding entries. The
maximum number of leaves that an adversary can maintain is
thenl = trλ. The next result gives a bound on the forwarding
cost for this attack scenario.

Theorem 2:For an attacker that can send packets at an
aggregate rate ofr, and can insert forwarding entries at a rate
λ, the average packet forwarding cost is upper-bounded by:

hmax nc lmax λ

r + λ o
+ hmaxτλ, (4)

where o is the overhead incurred by a host (in bits) when
inserting a forwarding entry.

We note that mounting an attack that achieves this bound
is not trivial. To utilize the resources optimally, an attacker
needs to anticipate when an entry is removed, which is hard
due to the fact that the attacker does not know the round-trip
time between the FI nodes, and the round-trip times can vary
significantly.

2) Limiting Forwarding Cost:By inspecting Formula 4, we
see that the forwarding cost can be reduced by increasing
the overhead of the insertion operationo and limiting the
insertion rateλ. We can increase the insertion overhead by
either increasing the size of the response packets so that
o ≃ lmax, or use multiple challenge-response rounds before
inserting an entry. In the latter case, at each round the FI
node sends a new challenge containing a nonce based on the
nonce sent in the previous round (e.g.,by hashing the previous

8Note that the attacker cannot violate the constraints enforced by
the “constrained ID” technique.

9

nonce). A host will be able to insert an entry only if it answers
all challenges sent by the FI node.

Since many systems maintain forwarding entries by soft-
state, there is no difference between inserting and refreshing
the entries. The refreshing rate can be policed by the first-hop
FI node. The rate can be specific to end-hosts, negotiated when
hosts sign up for the FI service. However, designing efficient
mechanisms for restrictingλ for a malicious FI node is a hard
problem; initial insights are presented in [15].

Consider an attacker that sends traffic at5 Mbps. If maxi-
mum tree depth of10, lmax = o = 1400 bytes,nc = 48×3 =
144, τ = 100ms, andλ = 1 entries/s9, we get a forwarding
cost of about2. From the first term in the expression, we also
observe that with a higher attack rate, the forwarding cost
would only go down.

3) Discussion:The defense against over-subscriptions we
presented here is a data plane mechanism as opposed to the
control plans mechanisms we presented earlier, and is hence
arguably more expensive. While there may be some other
control plane approaches that might approximate this solution,
we do not explore them further in the scope of this paper for
the following reasons. Firstly, any control plane mechanism
that needs a complex protocol spanning several FI nodes,
because the forwarding entries that comprise the topology
can be spread across several FI nodes. In our mechanisms,
we perform only local check between pairs of nodes which
we show is very efficient to perform. Secondly, and more
fundamentally, the problem arises only in the data plane and
can be solved “cleanly” only at the data plane (as we explained
in Section IV-C).

D. Addressing Internal Attacks

In this section, we considerinternal attackers. We assume
that such an attacker can compromise FI nodes and have
complete control over their local state, and over packets
received or sent by these FI nodes.

While internal attackers have complete control on the traffic
forwarded by the FI nodes they compromise, we show that
they have very little power on the traffic forwarded by other
FI nodes. In particular, the only attack an internal attacker can
mount that an external attacker cannot is arandomattack,i.e.,
attacking a host through its private forwarding entrywithout
knowing the identity of the host. Unlike routing protocols
in today’s Internet (such as BGP [32]), an internal attacker
cannot mount an “off-path” attack,i.e., it cannot affect other FI
nodes or end-hosts whose packets are not normally forwarded
through the compromised node.

We assume that an attacker cannot eavesdrop the payload
of the packets it forwards, including the control packets that
manipulate the forwarding entries. In other words, the attacker
can read only the information in the control packets regarding
forwarding entries that are stored locally. This assumption can

9A web server may negotiate a much higher rate of inserting entries
if needed.

be enforced by encrypting the payload of both control and data
packets. To authenticate the FI nodes, we can use self-certified
node IDs like HIP [25], where a node’s ID is computed using
an one-way hash function on the node’s public key. This is
equivalent with using public keys to identify FI nodes, instead
of IDs.

Even if the attacker is not able to eavesdrop the payload
of the packets it forwards, the attacker can still learn the IDs
of forwarding entries stored at other FI nodes by inspecting
the finfo field in packets that are matched locally, or the
finfo field in the FI entry stored at the compromised node.
Hence the advantage of an internal attacker is that it can learn
about private IDs of other end-hosts while an external attacker
cannot. However, the attacker has no direct way to associate
that ID with an end-host, since it cannot learn who inserted the
forwarding entries at other nodes. Hence, mounting attackson
a private ID is equivalent to mounting an attack on a random
end-host.

Finally, a compromised FI node could also violate the l-
and r-trigger constraints. However, the key observation is
that all replicated traffic will continue to flow through the
compromised FI node,i.e., it cannot create a loop not going
through itself or an amplification topology not including itself.

The crucial insight behind the argument that no other forms
of attacks are possible is that FIs merely forward packets as
the forwarding entries dictate; they donot run any routing
protocol10. All the operations that are performed at an FI node
use local state and simple packet update rules. Hence, the
operations that a compromised FI node can perform—insert or
remove forwarding entries and send packets—is fundamentally
no different from the ones performed by end-hosts; the only
difference is that FI nodes typically have more resources than
the end-hosts.

E. Summary of Defense Techniques

The modifications can be classified based on where they are
implemented:dataandcontrol plane changes. We first list the
data plane modifications.

• Packet IDs should be eitherl- or r-constrained;i.e.,
when the packet ID is updated fromid to id′,
then eitherid.key.c=hl(id’.node, id’.key.c) or hr(id.node,
id.key.c)=id’.key.c. The sub-fieldid.key.c should be long
enough (e.g., 128 bit, as discussed in Section V-A) so
that it is infeasible for an attacker to guess it. Public IDs
should bel-constrained.

• Private IDs should be long enough that it is hard for an
external attacker to guess; hence, mounting an attack or
eavesdropping on a private entry is hard. Theid.key.c
field can be re-used for this purpose; it is computed by a
cryptographic hash function (which guarantees a pseudo-

10We mean that they do not run any protocol at the forwarding
layer; of course, they use underlying routing protocols like Internet
routing or DHT routing to forward packets to other nodes.

10

random string) whenid is the target of a constraint and
randomly chosen otherwise.

• To limit the forwarding cost, packet headers need to
include a TTL field that is decremented at every hop.
In practice, a TTL of8 bits should suffice.

• Packet headers need to include an erasure (about1-byte)
to prevent over-subscription attacks.

• Replicated packets can be delivered to the destination
only through a forwarding entry inserted by that destina-
tion. This restriction prevents confluences on end-hosts.

Thus, in addition to the fieldsid andfinfo, a packet header
needs to include two other one-byte fields (one for TTL and
one for the erasure). Now, we list the control plane changes.

• The finfo field of an entry should include a nonce that
is hard to guess. This prevents an attacker from updating
and removing such entries. As discussed in Section III-A,
this nonce should be at least80-bits long.

• The insertion of a public entry requires a challenge-
response mechanism as described in Section V-B. This
mechanism prevents malicious linking, but adds one RTT
to the entry insertion operation.

• The FI needs to implement the pushback mechanism
described in Section V-C which involves appending an
erasure to each packet that is forwarded.

Until now we have implicitly assumed that ID constraints
are checked at run-time,i.e., when the ID of a packet is
updated. However, in many cases, how the IDs would be
updated is known when the forwarding entry is inserted. For
example, ini3 and Network Pointers, a forwarding entry of
the form [id1→id2] will update the ID of a packet fromid1

to id2. In such cases, we can check for constraints when the
entry is inserted, rather than when the packet is forwarded.As
a result, the overhead due to checking constraints on the data
path can be eliminated completely.

VI. I MPLEMENTATION AND EVALUATION

We have implemented the three main mechanisms—
constraints of forwarding entries, response to over-subscription
and challenges to forwarding entry insertion—overi3 [30],
one of the FIs proposed earlier. We used inverted hash tables
to implement pushback (needed for implementing response
to over-subscription) and used a one-way hash function for
generating the constraints as well as the challenges.

For efficiency, our one-way hash function is based on the
Advanced Encryption Standard (AES) [7], using the Matyas,
Meyer, and Oseas construction [21]. The key is encrypted by
the AES cipher and then the output is XORed with the input.
We get two different one-way functions,hl andhr, by keying
the cipher with two different publicly known keys (different
from the keys we hash).

We evaluate the three mechanisms in terms of their over-
head and effectiveness. Since cryptographic constraints and

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

F
or

w
ar

di
ng

 c
os

t

K, where RTT = AVG_RTT * U(1-K, 1+K)

4000kbps, d=4, bf=4, r=50ms
4000kbps, d=4, bf=4, r=100ms
4000kbps, d=4, bf=4, r=200ms
1000kbps, d=4, bf=4, r=100ms

Fig. 6. Effectiveness of pushback as a function of variability of
RTTs of links.

challenges completely prevent the attacks that they are de-
signed for, we only evaluate the additional overhead that they
introduce. To illustrate the effectiveness of the pushback, we
use simulations.

A. Cryptographic Constraints and Challenges: Computational
Overhead

The two security mechanisms, cryptographic constraints as
well as challenge mechanism, require operations on the control
path. We show by experiments that the cost of both these
operations is minimal.

As mentioned in Section V, checking both cryptographic
constraints and challenges involve computation of a one-way
hash function. If the challenge checking or constraint checking
fails, the forwarding entry is not inserted (or in the case of
run-time checking, the packet is not forwarded).

To measure the additional overhead, we ran tests on ani3
node on a 866 MHz Pentium III running Linux 2.4.8. The
results are averaged over half a million operations. The running
time for a hash-computation is less than3 µs, which implies
that constraints can be checked even on the data path while
supporting forwarding rates of a few hundred thousand packets
per second. Overall, the computational overhead for checking
the challenge and the constraints is only about28%.

B. Defense against Over-subscription

To evaluate the sensitivity of the pushback mechanism, we
first performed a set of simple experiments using a5-node
chain topology over Planetlab with an RTT of about200 ms.
In the first experiment, we run a TCP flow across the chain
topology; in the subsequent experiments, we run UDP flows
of increasing rates. In each experiment, we transferred3 MB
and recorded if the pushback was triggered. We repeat each
experiment25 times.

The TCP transfers experienced an average throughput of1.6
Mbps and never triggered pushback. Table I shows the fraction

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

P
er

-p
ac

ke
t c

om
pu

ta
tio

n
co

st
 (

us
)

Size of block (bits)

(n,k) = (40,32)
(n,k) = (40,20)
(n,k) = (20,16)
(n,k) = (20,10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

P
er

-p
ac

ke
t c

om
pu

ta
tio

n
co

st
 (

us
)

k (min packets needed to reconstruct)

n = 40
n = 32
n = 16

Fig. 7. Overhead of verification mechanisms for preventing over-subscription

of UDP transfers that did not trigger a pushback. As expected,
as the rate of the UDP flow increases, the probability that
pushback is triggered also increases. When the rate reaches4
Mbps, pushback is always triggered immediately. We infer that
the probability of false positives of the pushback mechanism
when the sending rate is close to the TCP sending rate is
negligible. A comprehensive evaluation of the interactionbe-
tween the over-subscription mechanism and congestion control
mechanisms is outside the scope of this paper.

Rate (Mbps) 2 2.5 3 3.5 4
Fraction of Successful Transfers1 0.8 0.6 0.5 0

TABLE I
FRACTION OF SUCCESSFULUDP TRANSFERS FOR DIFFERENT

SENDING RATES.

The analysis of the technique to defend against over-
subscription in Section V-C presents an upper bound assuming
that all hops have the same RTT. We now present the effect
of variation in RTTs on the mechanism using a simple event-
driven simulator. We use simulations rather than experiments
as it allows the attacker to precisely control the timing of
(re)inserting triggers. This precise timing is very hard to
achieve in practice due to the RTT variations, thus we expect
the simulation results we present here to be an upper bound
for the experimental results.

At the beginning of the simulation, we construct a complete
tree given a particular depth,d and branching factorb. We let
the adversary refresh the forwarding entries at a particular rate
r. The adversary also is assumed to have global knowledge
so that it can refresh the forwarding entry that would cause
maximumdamage (i.e., the deepest entry).

In the main experiment that we report, we set the branching
factor to be 4. Figure 6 shows how the forwarding cost
varies depending on how the RTT of the links is chosen
in the simulation—randomization of zero corresponds to all
links having same RTT (ofMAX RTT/2) and randomization
of 1 corresponds to RTTs being chosen uniformly between
[0, MAX RTT]. The refresh periods are chosen as50, 100
and 200 ms. The main inference from the graph is that the
variation in RTTs does not affect pushback by much and
almost closely mirrors our analysis. Secondly, even when

receivers are allowed to refresh every50 ms, the forwarding
cost is only about2. Finally, varying attacker sending rate had
little effect on the forwarding cost.

C. Cost of Erasure Computation

We present the cost of computing the erasures (introduced
in Section V-C) for preventing over-subscription attacks.We
used the FEC software developed by Rizzoet al. [26] for
benchmarking the erasure computation. Figure 7(a) shows the
cost of per-packet erasure computation by varying the size of
the block used for different(n, k) combinations. The increase
in cost with the increase in block size is marginal—even for
32-bit blocks, and(n, k) = (40, 32), the cost is under2.5µs.
Figure 7(b) shows the variation in overhead asn/k is varied
for three values ofn for 8-bit blocks. The increase is almost
linear—it is not precisely linear because the implementation
is based on Vandermonde matrices and at certain values, low-
level issues such as cache hits/misses would cause deviations
from the expected trends.

VII. REALIZATION OVER SPECIFICPROPOSALS

The generic FI model helped us abstract away the details of
FIs, and concentrate on fundamental problems. We presented
a range of techniques that can be used in specific FI designs.
However, we do not advocate a “one-size-fits-all” approach;
particular FIs present tradeoffs that need to be considered
before making decisions on which techniques are relevant.
Here, we present a few examples to illustrate this point.

The FI model, for generality, assumed that FI nodes perform
packet replication. Consistent with this assumption, we con-
strained forwarding entries such that malicious topologies that
allow misuse of packet replication—such as confluences—are
impossible to construct. However, certain legitimate applica-
tions constructcontrol plane topologiesthat are identical to
confluences but thedata plane topologiesformed by the IDs
that the packets take are benign due to additional operations
performed during packet forwarding. Examples of such appli-
cations include multipath routing and load balancing; packets
can be forwarded either along path(ids, id1, id2, . . . , ide),
or path (ids, id

′

1
, id′

2
, . . . , ide)—the union of the two paths

12

is indeed a confluence. If the FI does not allow packet
replication, then we can allow load balancing by constraining
the IDs based on the keys alone (i.e., id.key.c=hl(id’.key.c) or
hr(id.key.c)=id’.key.c). In practice, an FI that performs both
packet replication as well as load balancing can have separate
ID spaces and allow packet replication on one ID space and
load balancing on the other.

A. Internet Indirection Infrastructure

We divide the 256-bit identifier ini3 into three fields:
a 64-bit prefix (roughly corresponds toid.node), a 128-bit
constrained key (corresponds toid.key.c), and a 64-bit suffix
(corresponds toid.key.u). IDs id and id′ are matched based
on the longest prefix matching rule, given the constraint that
both their keys and prefixes match exactly. If anl-constrained
trigger (x, y) points to an end-host, we use onlyy.key.cto
constrainx.key.c. Ignoringy.nodeandy.key.uwhen computing
hl(y) allows us to preserve support for anycast and mobility.

Since the packet’s ID is always replaced with the first ID in
the matching trigger’s stack, constraints can be checked when
the trigger is inserted instead of at run-time, thus avoiding any
overhead on the data path. Next, we argue that constrained IDs
have limited impact on the functionality provided byi3.

Mobility. Since constraints are not computed over the IP
addresses of hosts (which is stored inid.node), there is no
impact on mobility.

Multicast. Applications can still build legitimate multicast
trees as ini3 by usingr-constrained triggers. The triggers that
are used to build multicast trees are private triggers and hence
havingr-constrained triggers would not expose the multicast
group to eavesdropping.

Anycast. Anycast functionality is not affected by trigger
constraints. However, in an anycast group withl-constrained
triggers, each end-host must have the sameid.key.c; this key
needs to be distributed out-of-band.

Service composition.Disallowing insertion of arbitrary triggers
still allows sender-driven service composition, but weakens the
flexibility of receiver-driven service composition. In particular,
it will not be possible for a receiver to redirect packets with
a given ID x to an intermediate node with agiven ID y since
this would require the receiver to insert a trigger of the form
(x, y), wherex and y are fixed. However, this situation can
be dealt with at the application level by negotiating a private
trigger out-of-band. We expect this restriction to be acceptable
to a majority of applications.

Apart from the above changes, the main logical change
to i3 was that hosts have to be explicitly aware of thel-
and r−constraints on the triggers, which makes thei3 client
slightly more complicated. In our implementation, we support
full-fledged packet replication, limited multi-path routing sup-
port where the host explicitly inserts forwarding entries for all
the paths to itself (thus removing loops at the ID-level), and
no load-balancing support.

B. Network Pointers

Since a node uses exact matching to match the selectors,
one can use the entire selector as the key to incorporate
ID constraints. However, the length of the selector should
be increased as it is only64 bits long in their design. For
supporting the forwarding operation described in [34], the
constraints can be checked at the time of inserting the entries.
For more complex forwarding operations, one might need
to check the constraints at run-time. All proposed uses of
Network Pointers involve only chain topologies [10], [34],
which will not be affected by constrained IDs.

C. DataRouter

To enforce ID constraints, the strings used to index into
the forwarding tables should have a sub-string of bits which
are matched exactly and which represent theid.key.c field.
Even when alternate matching algorithms are selected by the
application (such as range matching), exact matching must be
performed on the constrained part before the specific matching
algorithm can be invoked on the remainder of the tag. While
this does not undermine the specific matching algorithms, it
might require additional bits for the fieldid.key.c. Since a
packet’s ID can be updated based on the packet’sfinfo field,
checking the ID constraints needs to be done at run-time.
We are not aware of any application in the context of the
DataRouter [33] that requires cyclic topologies or confluences,
thus constrained IDs will not limit their functionality.

VIII. R ELATED WORK

Traditionally, new network architectures have suffered from
many security issues. With active networks, achieving security
is difficult and has often come at the expense of restricting
the flexibility (such as ESP [4]) or use of per-use policy
and authentication (such as SANE [1]). In fact, loose source
routing is disabled by many ISPs because of security issues [3].

Mechanisms for addressing seemingly simple problems
such as loop prevention [37] have involved operations on the
data path. Furthermore, loop prevention techniques in literature
have been reactive, and do not guarantee loop-free topologies.

Using a time-to-live field is a common technique to prevent
persistent routing cycles in networks, with IPv4 networks
being the prime example. We believe that TTLs alone aren’t
sufficient for preventing cycles and confluences in FIs. If we
use TTLs alone, then with a TTL ofl, an attacker can replicate
a packetl times by inserting just two entries(id1, id2) and
(id2, id1). However, the constrained IDs technique makes the
construction of short cycles infeasible. Hence an attackerhas
to insert several forwarding entries to replicate the traffic. By
bounding the rate of insertion of new entries, we have shown
that we can alleviate attacks effectively.

In the process of designing security mechanisms for FIs, we
have leveraged techniques that have been proposed earlier in
the literature. Challenge-response protocols have been used for
a long time in diverse areas. The idea of using erasure codes to

13

ensure that uncooperative hosts do not oversubscribe to high-
bandwidth streams was proposed recently in the context of
multicast [12]. Pushback has been proposed for rate-limiting
the traffic of IP aggregates by Mahajan et al [20].

Proposals that deal with DoS attacks based on packet
floods [2], [13], [18] are orthogonal to ours; we devise
mechanisms to prevent end-hosts fromusingthe infrastructure
to aggravate attacks.

We do not consider the issue of securing the underlying
routing layer, since the work in that space is largely orthog-
onal. We note that there are several ongoing research efforts
to address these issues both in the context of IP routing [14],
[17], [28], [32] and DHT-routing [5], [29].

IX. CONCLUSIONS

Giving hosts control over forwarding in the infrastructure
has become one of the promising approaches in designing
flexible network architectures. In this paper, we addressedthe
security concerns of these forwarding infrastructures.

We presented a general FI model, analyzed potential se-
curity vulnerabilities and presented several mechanisms to
alleviate attacks. Our key defense mechanism, based on light-
weight cryptographic constraints, provably prevents a large
set of attacks. In contrast to previous efforts that detect
and mitigate malicious activity, the cryptographic mechanism
prevents attacks altogether. Our mechanisms are applicable to
many earlier proposals such asi3 [30] and DataRouter [33]
while requiring only modest changes. In providing secure
forwarding, we make the deployment of these promising
architectures much more viable.

REFERENCES

[1] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M.
Smith, “A Secure Active Network Environment Architecture,”
IEEE Network, 1998.

[2] T. Anderson, T. Roscoe, and D. Wetherall, “Preventing Internet
Denial-of-Service with Capabilities,” inProc. of Hotnets, 2003.

[3] S. Bellovin, “Security Concerns for IPng,” RFC 1675, 1994.
[4] K. L. Calvert, J. Griffioen, and S. Wen, “Lightweight Network

Support for Scalable End-to-End Services,” inProc of SIG-
COMM, 2002.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach, “Secure Routing for Structured Peer-to-peer Overlay
Networks,” in Proc. OSDI, Dec. 2002.

[6] D. R. Cheriton and M. Gritter, “TRIAD: A New Next Genera-
tion Internet Architecture,” Mar. 2000, http://www-dsg.stanford.
edu/triad/triad.ps.gz.

[7] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” Mar. 1999.
[8] D. Dean and A. Stubblefield, “Using Client Puzzles to Protect

TLS,” in Proc. of the 10th USENIX Security Symposium, 2001.
[9] C. Dwork and M. Naor, “Pricing via Processing or Combatting

Junk Mail,” in Advances in Cryptology — CRYPTO ’92, ser.
LNCS, E. Brickell, Ed., vol. 740, International Association for
Cryptologic Research. Springer-Verlag, 1993, pp. 139–147.

[10] R. Gold, P. Gunningberg, and C. Tschudin, “A Virtualized Link
Layer with Support for Indirection,” inProc. of FDNA, 2004.

[11] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin, “Working around BGP: An Incremental Approach to
Improving Security and Accuracy in Interdomain Routing,” in
Proc. of NDSS, Feb. 2003.

[12] S. Gorinsky, S. Jain, H. Vin, and Y. Zhang, “Robustness to
Inflated Subscription in Multicast Congestion Control,” inProc
SIGCOMM, 2003.

[13] M. Handley and A. Greenhalgh, “Steps Towards a DoS-resistant
Internet Architecture,” inProc. of FDNA, 2004.

[14] Y.-C. Hu, A. Perrig, and M. Sirbu, “SPV: Secure Path Vector
Routing for Securing BGP,” inProc. of ACM SIGCOMM, 2004.

[15] A. Jain, J. Hellerstein, S. Ratnasamy, and D. Wetherall, “A
Wakeup Call for Internet Monitoring Systems: The Case for
Distributed Triggers,” inProc. of Hotnets, 2004.

[16] S. Kent and R. Atkinson, “Security Architecture for theInternet
Protocol,” IETF, Internet RFC 2401, Nov. 1998.

[17] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol
(S-BGP),” IEEE JSAC, vol. 18, no. 4, pp. 582–592, Apr. 2000.

[18] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica,
“Taming IP Packet Flooding Attacks,” inProc. ACM HotNets-II,
Cambridge, MA, Nov. 2003.

[19] A. K. Lenstra and E. R. Verheul, “Selecting Cryptographic Key
Sizes,”Journal of Cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[20] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker, “Controlling High Bandwidth Aggregates in the
Network,” CCR, vol. 32, no. 3, pp. 62–73, July 2002.

[21] S. Matyas, C. Meyer, and J. Oseas, “Generating Strong One-
way Functions with Cryptographic Algorithm,”IBM Technical
Disclosure Bulletin, vol. 27, pp. 5658–5659, 1985.

[22] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, ser. CRC Press series on
discrete mathematics and its applications. CRC Press, 1997,
iSBN 0-8493-8523-7.

[23] R. Merkle, “Secure Communication Over Insecure Channels,”
vol. 21, no. 4, pp. 294–299, Apr. 1978.

[24] National Institute of Standards and Technology (NIST), Com-
puter Systems Laboratory, “Secure Hash Standard,” Federal
Information Processing Standards Publication (FIPS PUB) 180-
2, Aug. 2002.

[25] G. O’Shea and M. Roe, “Child-proof authentication for MIPv6
(CAM),” Computer Communication Review, vol. Apr., no. 31,
p. 2, 2001.

[26] L. Rizzo, “http://info.iet.unipi.it/ luigi/fec.html.”
[27] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label

Switching Architecture,” RFC 3031, Jan. 2001.
[28] Secure Origin BGP (soBGP), ftp://ftp-eng.cisco.com/sobgp.
[29] E. Sit and R. Morris, “Security Considerations for Peer-to-peer

Distributed Hash Tables,” inProc. of IPTPS, 2002.
[30] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,

“Internet Indirection Infrastructure,” inProc. SIGCOMM, 2002.
[31] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H.Bal-

akrishnan, “Chord: A Scalable Peer-to-peer Lookup Protocol for
Internet Applications,” inProc. of SIGCOMM, Aug. 2001.

[32] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H.Katz,
“Listen and Whisper: Security Mechanisms for BGP,” inProc.
of NSDI, 2003.

[33] J. Touch and V. Pingali, “DataRouter: A Network-Layer Service
for Application-Layer Forwarding,” inProc. IWAN, 2003.

[34] C. Tschudin and R. Gold, “Network Pointers,” inProc. ACM
HotNets-I, 2002.

[35] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full
sha-1,” inProceedings of Crypto, Aug. 2005.

[36] D. Wetherall, “Active Network Vision and Reality: Lessons
from a Capsule-based System,” inProc. of SOSP, 1999.

[37] A. Whitaker and D. Wetherall, “Forwarding Without Loops in
Icarus,” in Proc. of IEEE OPENARCH, 2002.

[38] R. White, “Deployment Considerations for Secure Origin
BGP (soBGP), draft-white-sobgp-bgp-deployment-01.txt,IETF
Draft,” June 2003.

[39] X. Yang, “NIRA: A New Internet Routing Architecture,” in Proc
FDNA-03, 2003.

14

APPENDIX I
PROOFS OFTHEOREMS

Proof of Theorem 1. Proof: DefineGd as the directed
graph formed by assigning directions to the edges ofG (we
simplify the notation by dropping the argument ofG and
Gd). In particular, for each edge(x, y) in G we associate
the direction fromx to y if y = hr(x), and fromy to x if
x = hl(y). The proof is by contradiction. AssumeG has a
cycle. We consider two cases:

Case (i)Gd has at least one vertex with in-degree2. This
implies there are verticesx, y, z such that there are distinct
edges(x→z), (y→z) ∈ Gd. Thus,hi(x) = hj(y), for hi, hj ∈
{hl, hr}, such thatx 6= y or hi 6= hj (otherwise edges
(x,z), (y,z) will not be distinct). In both the cases, finding
x, y that satisfy these constraints is infeasible as it reduces to
finding hash collisions.

Case (ii) All vertices ofGd are of in-degree at most one. We
know that underlying graphG has a cycle, sayCu. Consider
the sub-graph ofGd induced on the vertices ofCu, call it
Cd. We know that∀v ∈ Cd, in degree(v) ≤ 1. But Cd is
a cycle. Hence∀v ∈ Cd, in degree(v) = 1. Thus, we have
x = {hl, hr}

∗(x). This is equivalent to finding a cycle in the
hash function and is hence computationally infeasible.

Proof of Theorem 2. Proof: The rate of sustained attack
is proportional to the number of edges in the tree. Since a tree
with l leaves has at mostlhmax edges, an adversary can exploit
the system to amplify its attack rate fromr to rhmaxtrλ. Now,
the total amount of traffic the attacker sends in the FI isr+λo,
and thus the damage ratio is(rhmaxtrλ)/(r + λo). Since the
maximum value oftr is achieved when the leaf is an end-
host, we taketr = nclmax/r + τ . After some simple algebra,
Formula 4 follows.

Karthik Lakshminarayanan received his
B.Tech. degree in Computer Science and En-
gineering from the Indian Institute of Technol-
ogy, Madras in 2001, where he was awarded
the President of India’s Gold Medal. He is
currently pursuing his Ph.D. degree at the
University of California at Berkeley. His re-
search interests include overlay and peer-to-
peer networks, Internet architecture and Inter-
net security.

Daniel Adkins received the B.S. degree in
computer science and mathematics from the
Massachusetts Institute of Technology, Cam-
bridge, in 2001. He is currently working to-
ward the Ph.D. degree at the University of
California, Berkeley. His research interests in-
clude combinatorial algorithms, computational
biology, and networking.

Adrian Perrig (M’96) is an Assistant Profes-
sor in Electrical and Computer Engineering,
Engineering and Public Policy, and Computer
Science at Carnegie Mellon University. He
earned the Ph.D. degree in Computer Science
in 2001 from Carnegie Mellon University, and
spent three years during his Ph.D. degree at the
University of California, Berkeley. He received
the M.S. degree in Computer Science in 1999
from Carnegie Mellon University and the B.Sc.

degree in Computer Engineering in 1997 from the Swiss Federal In-
stitute of Technology in Lausanne (EPFL). Professor Perrig’s research
interests revolve around building secure systems and include Internet
security, security for sensor networks and mobile applications.

Ion Stoica received his Ph.D. from the
Carnegie Mellon University in 2000. He is an
Assistant Professor in the EECS Department
at University of California at Berkeley, where
he does research on peer-to-peer network tech-
nologies in the Internet, resource management,
and network architectures. Stoica is the recipi-
ent of a Sloan Foundation Fellowship (2003), a
Presidential Early Career Award for Scientists
& Engineers (PECASE) (2002), and the ACM

doctoral dissertation award (2001). He is a member of the ACM.

