Soliciting User Feedback in a Dataspace System

Shawn Jeffery
Michael Franklin
Alon Halevy

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-38
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-38.html

March 27, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Soliciting User Feedback in a Dataspace System

Shawn R. Jeffery
UC Berkeley

jeffery@cs.berkeley.edu

ABSTRACT

A primary challenge to large-scale data integration is creat-
ing semantic equivalences between elements from different
data sources that correspond to the same real-world entity
or concept. Dataspaces propose a pay-as-you-go approach:
automated mechanisms such as schema matching and refer-
ence reconciliation provide a initial correspondences, termed
candidate matches, and then user feedback is used to incre-
mentally confirm these matches. The key to this approach
is to determine in what order to solicit user feedback for
confirming candidate matches.

In this paper, we develop a decision-theoretic framework
for ordering candidate matches for user confirmation using
the concept of the value of perfect information (VPI). At
the core of this concept is a utility function that quantifies
the desirability of a given state; thus, we devise a utility
function for dataspaces based on query result quality. We
show in practice how to efficiently apply VPI in concert
with this utility function to order user confirmations. A
detailed experimental evaluation shows that the ordering of
user feedback produced by this VPI-based approach yields
a dataspace with a significantly higher utility than a wide
range of other ordering strategies. Finally, we outline the
design of Roomba, a system that incorporates this decision-
theoretic framework to guide a dataspace in soliciting user
feedback in a pay-as-you-go manner.

1. INTRODUCTION

As the amount and complexity of structured data in-
creases in a variety of applications, such as enterprise data
management, large-scale scientific collaborations [25], sensor
deployments [26], and an increasingly structured Web [15],
there is a growing need to provide unified access to these het-
erogeneous data sources. Dataspaces [10] provide a power-
ful abstraction for accessing, understanding, managing, and
querying this wealth of data by encompassing multiple data
sources and organizing their data over time in an incremen-
tal, “pay-as-you-go” fashion.

One of the primary challenges facing dataspace systems
is large-scale semantic data integration [8]. Heterogeneous
data originating from disparate sources may use different
representations of the same real-world entity or concept. For
example, two employee records in two different enterprise
databases may refer to the same person. Similarly, on the
Web there are multiple ways of referring to the same prod-
uct or person, for instance. Typically, a DataSpace Support
Platform (DSSP) employs a set of mechanisms for semantic
integration, such as schema matching [20] and entity reso-

Michael J. Franklin
UC Berkeley

franklin@cs.berkeley.edu

Alon Y. Halevy

Google Inc.
halevy@google.com

lution [6], to determine semantic equivalences between ele-
ments in the dataspace. The output of these mechanisms
are a set of candidate matches that state with some confi-
dence that two elements in the dataspace refer to the same
real-world entity or concept.

To provide more accurate query results in a dataspace
system, candidate matches should be confirmed by solicit-
ing user feedback. Since there are far too many candidate
matches that could benefit from user feedback, a system
cannot possibly involve the user in all of them. Here is
where the pay-as-you-go principle applies: the system incre-
mentally understands and integrates the data over time by
asking users to confirm matches as the system runs. One
of the main challenges for soliciting user feedback in such a
system is to determine in what order to confirm candidate
matches. In fact, this is a common challenge in a set of
recent scenarios where the goal is to leverage mass collab-
oration, or the so-called wisdom of crowds [24], in order to
better understand sets of data [28, 17, 9].

In this paper, we consider the problem of determining the
order in which to confirm candidate matches to provide the
most benefit to a dataspace. To this end, we apply decision
theory to the context of data integration to reason about
data integration tasks in a principled manner.

We begin by developing a method for ordering candidate
matches for user confirmation using the decision-theoretic
concept of the value of perfect information (VPI) [21]. VPI
provides a means of estimating the benefit to the datas-
pace of determining the correctness of a candidate match
through soliciting user feedback. One of the key advan-
tages of our method is that it considers candidate matches
produced from multiple mechanisms in a uniform fashion.
Hence, the system can weigh, for example, the benefit of
asking to confirm a schema match versus confirming the
identity of references to two objects in the domain. In this
regard, our work is distinguished from previous research in
soliciting user feedback for data integration tasks [22, 29,
7] that are tightly integrated with an individual mechanism
(i.e., schema matching or object matching).

At the core of VPI is a wtility function that quantifies the
desirability of a given state of a dataspace; thus, we devise a
utility function for dataspaces based on query result quality.
Since the exact utility of a dataspace is impossible to know
as the DSSP does not know the correctness of the candidate
matches, we develop a set of approximations that allow the
DSSP to efficiently estimate the utility of a dataspace.

We describe a detailed experimental evaluation showing
that the ordering of user feedback produced by our VPI-

User }
questions Query

NConfirmed Workload
Jms \
Next
match Element —(:‘1 Query
Find Most equivalences A
Beneficial Match I Answering

Matchesﬁ} /

Data

integration &
mechanisms

Heterogeneous data sources

Figure 1: Overall setup

based approach yields a dataspace with a significantly higher
utility than a variety of other ordering strategies. Moreover,
in the experiments the utility produced by our approach is
shown to be within 5% of that produced by an oracle strat-
egy that knows all correct matches and query results. We
also illustrate experimentally the benefit of considering mul-
tiple schema integration mechanisms uniformly: we show
that an ordering approach that treats each class of mecha-
nism separately for user-feedback purposes yields poor over-
all utility. Furthermore, our experiments explore various
characteristics of data integration environments to provide
insights as to the effect of environmental properties on the
efficacy of user feedback.

Finally, we outline the design of Roomba, a system that
incorporates this decision-theoretic framework to guide a
dataspace in soliciting user feedback in a pay-as-you-go man-
ner.

This paper is organized as follows. Section 2 describes
our terminology and problem setting. Section 3 discusses
our decision-theoretic framework for ordering match confir-
mations. Section 4 presents a detailed empirical evaluation
of our match ordering strategy. In Section 5 we show how
to relax the query answering model to consider unconfirmed
matches. We describe Roomba in Section 6. Section 7
presents related work. Section 8 presents our conclusions.

2. PRELIMINARIES

We begin by describing our problem setting and defining
the terms we use throughout the paper. Our overall setup
is shown in Figure 1

Dataspace Triples

We model a dataspace D as a collection of triples of the form
(object, attribute, value) (see Table 1 for an example).

Objects and attributes are represented as strings. Val-
ues can be strings or can come from several other domains
(e.g., numbers or dates). Intuitively, an object refers to
some real-world entity and a triple describes the value of
some attribute of that entity. Triples can also be thought of
as representing rows in binary relations, where the attribute
is the table name, the first column is the object, and the
second column is the value. Of course, in a dataspace, we
do not know the set of relations in advance.

We do not assume that the data in the dataspace is stored
as triples. Instead, the triples may be a logical view over

multiple sets of data residing in independent systems.

We use the term element to refer to anything that is either
an object, attribute, or value in the dataspace. Note that
the sets of strings used for objects, attributes, and values
are not necessarily disjoint.

(object, attribute, value)

to =(Wisconsin, SchoolColor, Cardinal)
t1 =(Cal, SchoolColor, Blue)

to =(Washington, SchoolColor, Purple)
ts =(Berkeley, Color, Navy)

t4 =(UW-Madison, Color, Red)

ts =(Stanford, Color, Cardinal)

Table 1: An example dataspace
EXAMPLE 2.1. The example in Table 1 shows a dataspace
with siz triples, describing properties of universities. a

Dataspace Heterogeneity and Candidate Matches

Since the data in a dataspace come from multiple
autonomous sources, they display a high degree of hetero-
geneity. For example, the triples in the dataspace could be
collected from a set of databases in an enterprise or from a
large collection of tables on the Web. As a result, different
strings in a dataspace do not necessarily denote different
objects or attributes in the real world. In our example,
the objects “Wisconsin” and “UW-Madison” refer to the
same university, the attributes “Color” and “SchoolColor”
describe the same property of universities, and the values
“cardinal” and “red” are the same in reality.

We assume that there is a set of mechanisms that try
to identify such equivalences between elements. In partic-
ular, there are techniques for schema matching that pre-
dict whether two attributes are the same [20], and there are
techniques for entity resolution (also referred to as object de-
duplication) that will predict whether two object or value
references are about the same real-world entity [6].

We model the output of these mechanisms as a set of
candidate matches, each of the form (e, ez, c), where e; and
eo are elements in the dataspace and c is a number between
0 and 1 denoting the confidence the mechanism has in its
prediction. In this paper, we are agnostic to the details of
the mechanisms.

While in some cases the mechanisms can predict equiv-
alence between elements with complete confidence, most of
the time they cannot. Since query processing in a dataspace
system depends on the quality of these matches, query re-
sults will be better when the matches are certain. Thus,
our goal is to solicit feedback from users to confirm the
matches produced by the mechanisms. Confirming a can-
didate match involves posing a question about the match to
the user that can be answered with a “yes” or a “no”. We
assume there exists a separate component that can translate
a given candidate match into a such a question.

Ideally, the system should to ask user to confirm most or
even all uncertain matches. This approach, however, is not
feasible given the scale and nature of large-scale data in-
tegration. The number of candidate matches is potentially
large and users may find it inconvenient to be inundated
with confirmation requests. Hence, our approach is to con-
firm matches in a pay-as-you-go manner [10], where confir-
mations are requested incrementally. This approach takes

advantage of the fact that some matches provide more ben-
efit to the dataspace when confirmed than others: they are
involved in more queries with greater importance or are as-
sociated with more data. Similarly, some matches may never
be of interest, and therefore spending any human effort on
them is unnecessary.

Since only a fraction of the candidate matches can be con-
firmed, the challenge is to determine which matches provide
the most benefit when confirmed. Hence, the problem we
consider in this paper is ordering candidate matches for con-
firmation to provide the most benefit to the dataspace.

Clearly, the means by which the system asks for confirma-
tion is important. There needs to be some way to formulate
a natural language question given a candidate match. Also,
the system will likely have to ask multiple users the same
question in order to form a consensus in the spirit of the
ESP Game [28]. Furthermore, there may be subjective cases
where two elements may be the same to some users, but not
the same to others (e.g., red and cardinal are the same color
to most people, but are different to artist or graphic design-
ers). These issues are outside the scope of this paper.

Perfect and Known Dataspace States

To model the benefit of confirming individual candidate
matches, we define the perfect dataspace DT correspond-
ing to D. In DT, all the correct matches have been rec-
onciled and two different strings necessarily represent dis-
tinct objects, attributes, or values in the real world. Once
the equivalence between strings in D is known, D can be
produced by replacing all the strings belonging to the same
equivalence class by one representative element of that class.
Of course, keep in mind that we do not actually know DF.

The known dataspace for D, on the other hand, consists
of the triples in D and the set of equivalences between el-
ements determined by confirmed matches. Whenever the
system receives a confirmation of a candidate match, it ap-
plies the match to the dataspace, updating the known datas-
pace state. That is, if a match (e1, e2, ¢) is confirmed, then
we replace all occurrences of e; with e1 (or vice versa). In
practice, considering that this replacement operation may
be expensive to apply very often, or that the triples are
only a logical view of the data, we may want to model the
confirmed matches as a separate concordance table.

At any given point, query processing is performed on
the current known dataspace state. A confirmed match
(e1,e2,c) causes the system to treat the elements e; and
e2 as equivalent for query processing purposes. Initially,
we assume that only confirmed matches are used in query
processing; we relax this requirement in Section 5 to accom-
modate other query answering models.

Queries and Workloads

Our discussion considers atomic queries, keyword queries
and conjunctive queries.

An atomic query is of the form (object = d), (attribute =
d), or (value = d) where d is some constant. The answer to
an atomic query @ over a dataspace D, denoted by Q(D),
is the set of triples that satisfy the equality.

A keyword query is of the form k, where k is a string.
A keyword query is shorthand for the following: ((object =
k)V (attribute = k)V (value = k)); i.e., a query that requests
all the triples that contain k& anywhere in the triple.

Finally, a conjunctive query, a conjunction of atomic and

keyword queries, is of the form (a1 A ... A an) where a; is
either an atomic query or a keyword query. The answer
returned by a conjunctive query is the intersection of the
triples returned by each of its conjuncts.

Recall that when querying the known dataspace D, the
query processor utilizes all the confirmed candidate matches,
treating the elements in each match equivalently. On the
other hand, the query Q over DT, the perfect dataspace
corresponding to D, takes into consideration all matches
that are correct in reality. We denote the result set of @
over D¥ by Q(DF).

When determining which candidate match to confirm,
the DSSP takes into consideration how such a confirmation
would affect the quality of query answering on a query
workload. A query workload is a set of pairs of the form
(Q,w), where Q is a query and w is a weight attributed to
the query denoting its relative importance. Typically, the
weight assigned to a query is proportional to its frequency
in the workload, but it can also be proportional to other
measures of importance, such as the monetary value
associated with answering it, or in relation to a particular
set of queries for which the system is to be optimized.

Dataspace Statistics

We assume the DSSP contains basic statistics on occurrences
of elements in triples in the dataspace. In particular, we as-
sume the DSSP maintains statistics on the cardinality of the
result set of any atomic query over the dataspace D. For
example, for the atomic query Q : (object = d) we assume
the DSSP stores the number of triples in D that have d in
their first position, denoted \D}i|. For conjunctive queries,
the DSSP may either maintain multi-column statistics to
determine the result sizes of conjunctive queries or use stan-
dard techniques in the literature [12, 3] to estimate such
cardinalities.

3. ORDERING MATCH CONFIRMATIONS

This section introduces a decision-theoretic approach to
ordering candidate matches for user confirmation in a datas-
pace. The key concept from decision theory we use is the
value of perfect information (VPI) [21]. The value of perfect
information is a means of quantifying the potential benefit
of determining the true value for some unknown. In what
follows, we explain how the concept of VPI can be applied to
the context of obtaining information about the correctness
of a given candidate match, denoted by m;.

Suppose we are given a dataspace D and a set of candi-
date matches M = {my,...,m;}. Let us assume that there
is some means of measuring the wutility of the dataspace w.r.t.
the candidate matches, denoted by U(D, M), which we ex-
plain shortly. Given a candidate match mj, if the system
asks the user to confirm m;, there are two possible outcomes,
each with their respective dataspace: either m; is confirmed
as correct or it is disconfirmed as false. We denote the two
possible resulting dataspaces by D;Zj and D,, ..

Furthermore, let us assume that the probability of m;
being correct is p;, and therefore the expected utility of
confirming m; can be expressed as the weighted sum of the
two possible outcomes: U(D,J{@j s MA\{m;}) pj+U(Dy,, M\
{m;})-(1—pj;). Note that in these terms we do not include
m; in the set of candidate matches because it has either
been confirmed or disconfirmed.

Hence, the benefit of confirming m; can be expressed as
the following difference:

Benefit(m;) :U(Djnj s M\ A{m;}) - pi+

U(Dys M\ {m;}) - (1 = pj)—
U(D,M). (1)

Broadly speaking, the utility of a dataspace D is mea-
sured by the quality of the results obtained for the queries
in the workload W on D compared to what the DSSP would
have obtained if it knew the perfect dataspace DF. To
define U(D, M), we first need to define the result quality
of the query @ over a dataspace D, which we denote by
r(Q, D, M).

Recall that @ is evaluated over the dataspace D with the
current known set of confirmed matches. Since our queries
do not involve negation, all the results the DSSP returns
will be correct w.r.t. D¥, but there may be missing results
because some correct matches are not confirmed. Hence, we
define

_ je)
r@PAD = for)

and the utility of the dataspace is defined as the weighted
sum of the qualities for each the queries in the workload:

UD,M)= >

(Qi wi) EW

Our goal is to order matches to confirm by the benefit out-
lined in Equation 1: the matches that potentially produce
the most benefit when confirmed are presented to the user
first. However, in order to put this formula to use, we still
face two challenges. First, we do not know the probability p;
of the candidate match m; being correct. Second, since we
do not know the perfect dataspace DT, we cannot actually
compute the utility of a dataspace as defined in Equation 2.

We address the first challenge by approximating the prob-
ability p; by c;, the confidence measure associated with can-
didate match m;. In practice, the confidence numbers as-
sociated with the candidate matches are not probabilities,
but for our purposes it is a reasonable approximation to in-
terpret them as such. The second challenge is the topic of
the next subsection.

3.1 Estimated Utility of a Dataspace

In what follows, we show how to estimate the utility of a
dataspace using expected utility. Note that the set M repre-
sents the uncertainty about how D differs from the perfect
dataspace DT; any subset of the candidate matches in M
may be correct. We denote the expected utility of D w.r.t.
the matches M by EU(D, M) and the expected quality for
a query Q w.r.t. D and M as Er(Q, D, M).

Once we have EU (D, M), the value of perfect information
w.r.t. a particular match m; is expressed by the following
equation, obtained by reformulating Equation 1 to use c¢;
instead of p; and to refer to expected utility rather than
utility:

VPI(m;) =EU(D;, , M\ {m;}) - ¢;+
EU(Dpy, M\ {m;}) - (1= ¢;)—
EU(D, M). 3)

The key to computing EU(D, M) is to estimate the size
of the result of a query Q over the perfect dataspace DT .
We illustrate our method for computing Er(Q, D, M) for
atomic queries of the form @ : (object = d), where d is some
constant. The reasoning for other atomic, keyword, and con-
junctive queries is similar. Once we have Er(Q, D, M), the
formula for EU(D, M) can be obtained by applying Equa-
tion 2.

Let us assume that the confidences of the matches in M
being correct are independent of each other and that M is a
complete set of candidates; i.e., if e; and ez are two elements
in D and are the same in DY, then there will be a candi-
date match (e1,ez2,c) in M for some value of ¢. Given the
dataspace D, there are multiple possible perfect dataspaces
that are consistent with D and M. Each such dataspace is
obtained by selecting a subset M1 C M as correct matches,
and M \ M, as incorrect matches. We denote the perfect
dataspace obtained from D and M; by D1,

We compute Er(Q, D, M) by the weighted result quality
of @ on each of these candidate perfect dataspaces. Since we
assume that the confidences of matches in M are indepen-
dent of each other, we can compute Er(Q, D, M) as follows:

Er(Q,D,M) = MXC:M %PT(DNH) (4)

where

Pr(DM) = H ci- H (1-c).

m; €My m; €My

Finally, to compute Equation 4 we need to show how to
evaluate |Q(D™M1)|, the estimated size of @ on one of the
possible candidate perfect dataspaces.

Recall that the size of @ over D, |Q(D)|, is the number
of triples in D where d occurs in the first position of the
triple. Hence, |Q(D)| = |D§|, which can be found using the
statistics available on the dataspace. In D1 the constant d
is deemed equal to a set of other constants in its equivalence
class, di,...,dm. Hence, the result of Q over D' also
includes the triples with di,...,d, in their first position
and therefore |Q(D*?)| = |D}| + |Dj, | +...+|Dj, |, which
can also be computed using the dataspace statistics.

3.2 Approximating Expected Utility

In practice, we do not want to compute Equation 4
exactly as written because it requires iterating over all
possible candidate perfect dataspaces, the number of which
is exponential in |M|, the size of the set of candidate
matches. Hence, in this subsection we show how we
approximate EU(D, M) with several simplifying assump-
tions. Our experimental evaluation shows that despite our
approximations, our approach produces a good ordering of
candidate matches.

Two approximations are already built into our develop-
ment of Equation 4. First, the confidences of the matches
in M are not necessarily independent of each other. Second,

the set M may not include all possible correct matches,
though we can always assume there is a candidate match
for every pair of elements in D.

The main approximation we make when we compute the
VPI w.r.t. a candidate match m; of the form (eq, ez, ¢;) is to
assume that M = {m;}. That is, we assume that M includes
only the candidate match for which we are computing the
VPI. The effect of this assumption is that we consider only
two candidate perfect dataspaces, one in which m; holds
and the other in which m; does not hold. We denote these
two perfect dataspaces by Df,}j:e"‘ and Df,%f”, respectively.

Given this approximation, we can rewrite Equation 4
where {m;} is substituted for M:

B (QuD. {my}) =5 B et
)]

m(l —¢j) (5)

and therefore the expected utility of D w.r.t. M = {m;} can
be written as

|Qi (D)
EU(D,{m;}) = wi - (5 rerzeay Gt

(Qi,wZ;)EW |Qi(Dri;)|
o),
|Qi(D$r}j¢ez)|(1]))
|Qi (D)

= Wi+ T er=esy Gt

(Qigew |Qi(Dri;)|

S w9 o)

(Qi,w;)EW |Qi(Dfr}j¢ez)|

3.3 The Value Of Perfect Information

Now let us return to Equation 3. By substituting {m;}
for M, we obtain the following:

VPI(m;) =EU (D, {}) - c;+

EU(Dp 5 {}) - (1= ¢)—
EU(D,{m;}). (7

Now note that once we employ the assumption that
M = {m;}, Er'(Q, Dy, {}) and Er'(Q, Dy, ,{}) are both
1 because they evaluate the utility of a dataspace that is
the same as its corresponding perfect dataspace. Thus,
using these values with Equation 6, EU(D;, ,{}) - ¢
and EU(D;,;,{}) - (1 — ¢;) become 374 o ew Wi - ¢
and >7 g, yew Wi - (1 — ¢;), respectively. Furthermore,
note that the last term at the end of Equation 6 also
evaluates the utility of a dataspace that is the same as
its corresponding perfect dataspace and thus simplifies to
2 (@i wnew Wi+ (1 —¢;). Therefore, this term cancels with
the second term of Equation 7. Hence we are left with the
following;:

VPI(mj)z Z Wi+ Cj—

(Qi,wi)eW
oo, lQuD)
(pei=e2
Qs ew |Qi(Drm; %)

- X wea(1- i)

(Qi,wi)eEW T

Finally, we observe that only queries in W that refer to
either e; or ez can contribute to the above sum; otherwise,
the numerator and denominator are the same. Hence, if
we denote by W, ; the set of queries that refer to either e;
or ez, then we can restrict the above formula to yield the
following, which is the one we use in our VPI-based user
feedback ordering approach:

wi.cj(l_%) (3)

By calculating the VPI value for each candidate match
using this equation, we can produce a list of matches ordered
by the potential benefit of confirming the match.

VPI(m;)= Y

(Qiywi) €W

ExXAMPLE 3.1. Consider an example unconfirmed candi-
date match m; = (“red”, “cardinal”,0.8) in the dataspace
from Example 2.1. We compute the value of perfect infor-
mation for m; as follows.

Assume that the dataspace workload W contains two
queries relevant to mj, Q1 (value = “red”) with a
weight w1 = 0.9 and Q2 : (value = “cardinal”) with a
weight w1 = 0.5, and thus Wn, = {(Q1,0.9),(Q2,0.5)}.
In our example dataspace D, the cardinalities of the two
relevant values in the third position is | D% | = 1 and
| D rgina» | = 2. Therefore, the query cardinalities in
the known dataspace D are |Q1(D)| = |D3qr| = 1
and ‘QZ(D)‘ = |D3“cardinal” = 2 In the perfect
dataspace where the wvalues “cardinal” and “red” refer
to the same color, the cardinality for both queries is
|Q(D7“nf;d,: “c(u'dmul”)| - |D3“red” | + ‘DS“cardinal” | =3.

Applying Equation 8 to compute the VPI for m;, we have:

@i (D)]
>|> "

|Q1 (D’r‘;{jd”: “cardinal”

|Q2(D)]
w2 ¢ | 1— ol FeardinaT
2 7 < |Q2(Dn{]ed = “cardinal)l

=0.9-0.8 (1 — %) +0.5-0.8 (1 - %) = 0.61.

This value represents the expected increase in utility of the
dataspace after confirming candidate match m;. a

VPI(m]) =w1 - €4 <1

4. EVALUATION

In this section we present a detailed experimental evalua-
tion of the VPI-based approach for choosing the most bene-
ficial candidate match to confirm presented in the previous
section.

4.1 Experimental Setup

In order to validate our VPI-based strategy in a wide
range of large-scale data integration environments, we built

Parameter Description

Default]

NumFElements

The number of elements in the dataspace.

100000

TriplesPer ElementDistribution | The number of triples in which each element appears.

Pareto with a shape parameter of 1.5

MatchesPer ElementDistribution] The number of matches in which an element participates.

Pareto, constrained to [1,50]

AccuracyDistribution

The accuracy of the mechanisms.

Normal(0.8,0.1), constrained to [0,1]

CorrectPercentage

The percentage of the matches that are correct in reality. | 0.5

NumQueries

The number of representative queries. 25000

QueryW eight Distribution The query weight w.

Pareto, constrained to [0,1]

Table 2: Dataspace generator parameters. Unless otherwise specified, our experiments use the default values.

a dataspace generator capable of recreating a variety of such
scenarios.

Dataspace Generator: The dataspace generator is seeded
with a set of parameters that govern the size and character-
istics of the dataspace and workload as listed in Table 2.

First, the generator produces some number of elements,
governed by the parameter NumFElements. For each
element, the generator determines the number of triples
in which it appears based on a distribution specified
in TriplesPerElementDistribution. Unless otherwise
specified, we use the long-tailed Pareto distribution [1] with
a shape parameter of 1.5 to represent the scenario where
a few elements appear in many triples, but most elements
appear in a small number of triples.

Each element participates in some number of matches,
governed by MatchesPerElementDistribution. Elements
are assumed to participate in at least one candidate match;
elements that do not participate in matches can be disre-
garded for user feedback purposes. For this distribution, we
use a Pareto distribution modified to return values between
1 and 50. This distribution represents a scenario where most
elements are matched with one or a small number of other
elements while a small number of elements match with many
other elements.

Fach candidate match is assigned to be either correct
or incorrect in reality, as dictated by the parameter
CorrectPercentage. Unless otherwise specified, we
create equal numbers of correct and incorrect matches
(CorrectPercentage = 0.5). Given the correctness of a
candidate match, its confidence ¢ is determined by the
accuracy of the mechanism from which it was produced:
the better the accuracy for a mechanism, the closer the
confidence values are to 1 for correct matches. Thus, a
match’s confidence is set based on a value a drawn from the
distribution AccuracyDistribution as follows: if the match
is correct, then c is set to a, otherwise it is set to 1 — a. For
our experiments, we selected values for a from a Normal
distribution, constrained between 0 and 1, with a mean
of 0.8 and a standard deviation of 0.1 (Normal(0.8,0.1)),
similar to the accuracy of data integration mechanisms in
the literature [22, 29, 7].

The generator then creates a set of queries as specified by
NumQueries. Each query refers to a single element and is
representative of the set of queries that refer that element.
For simplicity, the generator only produces keyword queries.
The generator assigns to the query a weight w using a dis-
tribution QueryW eight Distribution to represent the query
frequency for queries on this element. Since the distribution
of query term frequencies on Web search engines typically
follows a long-tailed distribution [23], for w in our experi-
ments we use values selected from a Pareto distribution.

The output of the dataspace generator is a query workload

W and the set of candidate matches M. Additionally, the
generator outputs the number of triples associated with each
element (|De|) and the correctness of each match.

Match Ordering Strategies: We compare a variety of
candidate match ordering strategies. Each strategy imple-
ments a score(m;) function, which returns a numerical score
for a given candidate match m; = (e1,e2,¢;). A higher
score indicates that a candidate match should be confirmed
sooner.

e VPI: score(mj) = VPI(m;). Each candidate match is
scored with the value of perfect information as defined in
Equation 8.

® QueryWeight: score(m;) =3 o, wiyew,, Wi- Each can-
didate match is scored with the sum of qu]ery weights for
that match’s relevant queries.

o NumTriples: score(mj) = |De,| + |Dey|. This strategy
scores each candidate match by number of triples in which
the two elements in the match appear.

e Combined: score(m;) = (|De,|+|De,|) Z(Qi,wi)eij w.

This strategy combines the above two strategies.
e GreedyOracle: This strategy measures the actual increase
in utility using the correctness for each candidate match
to simulate running the workload W with each candidate
match confirmed. The match with the highest resulting util-
ity is chosen for confirmation next. Note that this strategy
is not a realistic ordering approach as it relies on know-
ing the correctness of all candidate matches and running
the entire workload for each confirmation. It represents an
upper-bound on any myopic strategy.
e Random: Finally, the naive strategy for ordering confirma-
tions is to treat each candidate match as equally important.
Thus, the next match to confirm in this strategy is chosen
randomly. This strategy provides a baseline to which the
above strategies can be compared

We score all candidate matches m; in M using each of
the above strategies and choose the match with the highest
score to confirm next.

Confirming candidate matches: Given the next candi-
date match to confirm, we confirm it using the correct an-
swer as dictated by the dataspace generator. After each con-
firmed match, the we update the set of equivalence classes
and recompute the next best match for each strategy.

Measurement: After confirming some percentage of can-
didate matches using each of the orderings produced by
each strategy, we run the workload W over the dataspace
and measure the utility using the utility function defined in
Equation 2.

4.2 Basic Tests

To study the basic efficacy of our VPI-based approach
under realistic conditions, the first experiment we present

3500 T
% 5 o
L% o~
3000 = KT e g%
r - * o L 4
ol o R o o
LK o o
,(s o o I
2500 - /4 X o7 g i
- o - e
o & JEVI
oo g SR
2000 458 |
2
£
1500 4
1000 4
GreedyOracle —+—
500 - NumberOfTriples ---x--- |
QueryWeight ------
Random &
VPl --m-
Combined ---o---
0 L | 1

|
0 0.2 0.4 0.6 0.8 1
Percent Of Confirmed Matches

Figure 2: Basic tests comparing a VPI-based ap-
proach for ordering user feedback to other ap-
proaches in a large-scale data integration scenario.

investigates the performance of different ordering strategies
using the default values for the parameters to the dataspace
generator as stated in Table 2. We explore a range of other
parameter values in subsequent experiments.

The resulting utility produced by confirming matches or-
dered by each strategy is shown in Figure 2. The results
in this graph can be interpreted as follows. Since only a
small fraction of candidate matches can be confirmed in a
large-scale dataspace, the goal is to provide the highest util-
ity with as few confirmations as possible. Thus, the slope
of the curve at lower percentages of confirmations is the key
component to the curve: the steeper the slope, the better
the ordering.

First observe the curve for the GreedyOracle strategy.
This approach selects the most beneficial candidate matches
to confirm first and thus the curve is very steep at low per-
centages of confirmations. As it confirms more matches, the
curve flattens out as these matches provide less benefit to
the dataspace. Finally, it converges to the perfect dataspace,
the dataspace where all element equivalences are known.

As can be seen, the V PI strategy performs very well; it
tracks the GreedyOracle curve closely. Thus, despite the
approximations employed to efficiently calculate the VPI,
this strategy is close to the best a greedy strategy can do.

In contrast, the slopes of the curves for the other strate-
gies are much shallower; it takes many more confirmations to
produce a dataspace with a high utility. The NumTriples
strategy does particularly poorly. These results emphasize
the importance of considering the query workload in when
selecting candidate matches for confirmation: NumTriples
performs poorly because it fails to consider the workload.
The utility produced by Combined, as expected, is between
NumTriples and QueryWeight. The utility of the datas-
pace increases roughly linearly as the percent of confirma-
tions increase for the Random curve since it treats each
candidate match as equally important.

While this graph provides a holistic view of how each
strategy performs, we present in Table 3 two alternative
views of this data to better illustrate the effect of match
ordering strategy on dataspace utility. First, since the goal
of user feedback is to move the known dataspace state to-
wards the perfect dataspace, we report how many confir-

A B C D
Strategy 90% 95% 10% 25%
VPI 15 20 0.88 0.97
QueryWeight 35 50 0.76 0.86
NumTriples 100 100 0.62 0.65
Combined 60 50 0.69 0.76
Random 80 100 0.62 0.68
GreedyOracle 10 20 0.90 0.97

Table 3: Two measures of candidate match ordering
effectiveness. Columns A and B show the percent
of confirmed matches required to reach a dataspace
whose utility is 90% or 95% of the utility of the per-
fect dataspace. Columns C and D show the result-
ing fraction of the perfect dataspace after confirming
10% or 25% percent of the matches.

mations are required from each strategy until the utility of
the dataspace reaches some percentage of the utility of the
perfect dataspace. Second, since a DSSP can only request
feedback for a small number of candidate matches, we re-
port how close the utility of the resulting dataspace is to the
perfect dataspace after a fraction of confirmed matches.

These measures are reported in Table 3. The first two
columns show the percentage of confirmed matches at which
the utility of the dataspace is at 90% and 95% of the utility of
the perfect dataspace. The last two columns give the utility
relative to the perfect dataspace after confirming 10% and
25% of the matches from each strategy.

These numbers further emphasize the effectiveness of a
VPI-based ordering approach. With only a small percentage
of confirmations in using the V PI strategy, the utility of
the dataspace closely approaches the utility of the perfect
dataspace. For instance, if it is desired that a dataspace be
within 95% of the perfect dataspace, then using the VPI-
based match ordering approach needs to confirm only 20%
of the candidate matches, equivalent to the oracle strategy
and over twice as fast as the next best approach.

4.3 Partitioned Ordering

To study the need for a single unifying means of rea-
soning about user feedback in a dataspace, we compare
our approach to a ordering algorithm that treats candidate
matches produced by different mechanisms separately. We
term this ordering strategy Partitioned, where score(m;) is
calculated as follows. The algorithm partitions its matches
into two categories, entity resolution and schema matching.
To represent entity resolution matches, we create candidate
matches that refer to elements that each have one associated
triple. Schema matching, on the other hand, is represented
by candidate matches whose elements have multiple asso-
ciated triples. The intuition behind this strategy is that
when comparing entity resolution to schema matching, the
output of a schema matcher should be confirmed first as its
matches usually affect more data than entity resolution. To
provide a fair comparison, within each partition the matches
are ordered by their VPI score.

For this experiment, we compare the Partitioned strategy
to the VPI and Random strategy using the experimental
setup as in the basic tests, but instead of generating a
single class of matches, we set half of the matches to
be entity resolution (I'riplesPerElementDistribution =
Constant(1)) and the other half to be schema matching
(T'riplesPerElementDistribution = Normal(1000,10)).

3500 T T

3000
2500

2000 4L

Utility

1500

T
!

1000

T
!

Partitioned —+—

| |
0 0.2 0.4 0.6 0.8 1
Percent Of Confirmed Matches

Figure 3: Partitioned ordering compared to a VPI-
based approach.

The results are shown in Figure 3.

Here we can clearly see the two phases of match confirma-
tions in the Partitioned curve: from 0 to 50% confirmations,
the algorithm confirms matches from schema matching, af-
ter which it confirms entity resolution matches.

Of note in this figure is the tail end of the schema match-
ing phase and the start of the entity resolution phase. The
highly-ranked entity resolution confirmations provide more
benefit than the lower-ranked schema matching confirma-
tions, but since the two types of candidate matches are
treated separately, these non-beneficial schema matchings
are confirmed first and thus the overall utility of the datas-
pace suffers: the utility of the dataspace does not reach
90% of the perfect dataspace until confirming 60% of the
matches, four times more confirmations than required by
the V PI strategy.

This problem is not just a result of our particular setup
or due to the details of the Partitioned strategy. Rather,
any strategy that treats the output from different mech-
anisms separately will suffer from the same issues we see
here. The problem is a result of multiple independent mech-
anisms using different, incomparable means of scoring can-
didate matches and thus there is no way to balance between
the output of multiple mechanisms.

The key to solving this problem is that candidate matches
from different mechanisms need to be ordered based on
the overall benefit to the dataspace and not based on their
ranking within each mechanism. The V PI strategy scores
matches from different mechanisms in a uniform manner
based on the expected increase in utility of the dataspace
on confirmation; thus it is able to interleave match confir-
mations from multiple mechanisms in a principled manner
to produce a dataspace with a higher utility using less user
feedback.

4.4 Environmental Effects on VPI Ordering

Having demonstrated the basic advantage of our VPI-
based ordering strategy in a realistic scenario, we now vary
the parameters to the dataspace generator to produce dif-
ferent scenarios and measure the effect on the V PI strategy.
We show that this approach is effective across a range of dif-
ferent environments. Additionally, these experiments yield
insights as to which environmental factors matter when de-

3500 T

3000
2500

2000 e -

Utility

1500

T
!

1000

T
!

500 | VPl with accuracy 0.75 —— |
VPI with accuracy 0.5 ---x---
VPl with accuracy 0.25 ---*---
GreedyOracle &
 Random —-m=—

| |
0 0.2 0.4 0.6 0.8 1
Percent Of Confirmed Decisions

Figure 4: The effect of different accuracy of accuracy
for mechanisms used to produce candidate matches.

signing an ordering strategy for user feedback.

Robustness to Inaccurate Mechanisms and Statistics

In the above tests, we assumed that the mechanisms produc-
ing candidate matches were reasonably accurate (i.e., 80%
accuracy): if a candidate match is correct, the mechanism
assigns it a high confidence. Here, we test how the VPI
strategy is affected by inaccurate mechanisms.

For these tests, we use the same parameters as in the basic
tests and then vary the accuracy of the mechanisms using
different constant values. For each value of accuracy, we
generate a set of candidate matches, order them using the
V PI strategy, and then measure the results.

The results are shown in Figure 4. Each curve represents
the V PI strategy at a given accuracy level. We also plot
the curves for the GreedyOracle and Random strategies for
comparison. Note that these strategies do not consider the
accuracy of the mechanisms. As expected, the case where
the accuracy is reasonably high (0.75), the V PI strategy
produces a dataspace with high utility.

A more interesting case is when the accuracy level is set
to 0.5, producing a dataspace where all candidate matches
are given a confidence of 0.5. This curve is representative
of a data integration environment without intelligent mech-
anisms: all pairs of elements can be considered candidate
matches with arbitrary confidences. Even in this environ-
ment, the V PI strategy approach is still capable of produc-
ing a dataspace with a utility within 90% of the utility of a
perfect dataspace with 30% of the matches confirmed, bet-
ter than any other non-oracle strategy. Thus, the VPI-based
approach is beneficial in helping guide user feedback when
the DSSP does not employ any data integration mechanisms
to assist in integration.

Finally, note that even when the mechanisms provide
malicious confidence numbers (accuracy = 0.25), the VPI
strategy still performs better than the Random approach.
The V PI strategy orders candidate matches based on
multiple measures including associated query weights and
the number of triples in which each element appear and
thus it is robust to a single inaccurate measure.

We also tested the effect of inaccurate element cardinality
statistics on the performance of the V PI strategy. Similar
to inaccurate mechanisms, the V PI strategy is robust to

0.3 |

02f / >]

015 | ra T |

Utility Relative To Random
*
*
*

o1/ R

005 o/ 5

a7 8
fat =}
s =]
0 | | | |
0 0.2 0.4 0.6 0.8 1
Percent of Confirmed Matches
Normal —+— Uniform[0,1] ------
Pareto ---x--- Uniform[0.5,1] &

Figure 5: V P[utility relative to the baseline Random
for different values of QueryWeightDistribution.

poor statistics due to its multiple-measure scoring. We omit
the details of this experiment due to their similarity to the
accuracy tests.

Different Query Weight Distributions

Next, we explore the effect of different workloads on the
V PI strategy. We generated workloads containing query
weights using different types of distributions: Pareto (mod-
ified to produce values between 0 and 1), Normal(0.5,0.25),
Uniform(0,1), and Uniform(0.5,1). Similar to the accu-
racy test above, we generate a curve for each query weight
distribution using the V PI ordering strategy. Since chang-
ing the query weights used to generate the workload affects
the overall utility of the dataspace, in order to present all
curves on the same graph we report the utility relative the
baseline strategy that treats all candidate matches equally
(Random). The results are shown in Figure 5.

From this graph we can see two factors that affect the
relative benefit of the V PI approach. First is the skew of
the weights. As can be seen, the distribution that causes the
most increase in relative utility is the highly-skewed Pareto
distribution. This is expected as there are a small number of
candidate matches that are involved in the queries that have
a very high weight. The V PI strategy successfully selects
these matches to confirm first causing the resulting utility
of the dataspace to increase rapidly.

The second factor effecting the relative utility is the range
of the weights. The smaller the range of query weights,
the less distinguishing there is between the candidate
matches and the less it matters to choose wisely. This can
be seen in the difference between the Uniform(0,1) and
Uniform(0.5,1) curve. The Normal curve falls between
these two as it has a larger range than Uniform(0.5,1),
but it produces many queries with similar weights.

We note that this experiment illustrates the potential ben-
efit from employing an intelligent ordering strategy in envi-
ronments such as web search where some queries are valued
much more than others. On the other hand, in environ-
ments with homogeneous queries, the selection method is
less important.

0.16
0.14 [e g
e
¥ s
012 | N g
*
g T\x
2 otp % NS E
& A
o o
° Y
2 008 R
2
- ¢
© ¢
o i
> 006f p
5 / hN
004 | /* X]
/ N
/
002 |/ N A4
/ \
0 L L L L R
0 02 0.4 06 08 1

Percent of Confirmed Matches

Normal(1000,100) —+— Pareto ---x--- Uniform(1,1000) ------

Figure 6: V P[utility relative to the baseline Random
for different values of TriplesPerElementDistribution.

Different Triples Per Element Distributions

Finally, we test the effect on our approach of the num-
ber of triples associated with each element: we use three
different distributions for TriplesPer ElementDistribution:
Normal(1000, 100), Pareto, and Uniform(1,1000). Simi-
lar to the query weight experiment, we plot a curve for each
distribution using the V PI ordering strategy and compare
the resulting utility to the Random strategy. The results
are shown in Figure 6.

Similar to query weight, there are two factors that affect
the relative benefit of the V PI strategy: the skew of the
values and range. In a Pareto distribution, the skew of val-
ues is high and thus there are some elements that appear
in a large number of candidate matches. In this environ-
ment, the V PI strategy confirms matches containing these
elements early to prevent large numbers of missing results
in queries over these elements. Similarly, the range of the
values in the Uniform distribution is wide, causing a large
differentiation in the benefit of confirming some candidate
matches over others. On the other hand, the V PI strategy
in the Normal environment shows only a small benefit over
Random as many of the elements are similar in this environ-
ment; there is little to distinguish the benefit of confirming
one candidate match over another.

4.5 Experimental Summary

Here we briefly summarize the experimental results pre-
sented in this section.
e Under realistic conditions, selecting candidate matches for
user confirmation based on the value of perfect information
yields a dataspace with a utility substantially higher than a
wide range of other strategies. Moreover, the utility of the
dataspace produced by this approach is within 5% of that
produced by an oracle strategy.
e A single framework for handling user feedback for the out-
put of multiple mechanisms is necessary for good ordering;
approaches that consider the output of each mechanism sep-
arately fails to interleave user feedback from different mech-
anisms and thus the overall utility of the dataspace suffers.
e Our approach is robust to the accuracy of the mechanisms
themselves: in an environment without intelligent data inte-
gration mechanisms, a VPI-based strategy produces a datas-
pace with a higher utility than any other strategy.

e In environments where the query or data skew or range is
large, our approach is especially beneficial as it identifies the
very important candidate matches and confirms them first.

5. QUERY ANSWERING USING THRESH-
OLDING

Until this point, our query answering model considered
only confirmed matches. Since the goal of a dataspace sys-
tem is to to provide query access to its underlying data
sources even when they have not been fully integrated, it is
likely that the system will want to also provide results that
are based on matches that are not confirmed, but whose
confidence is above some threshold. In this approach, the
elements e; and ez in match m = (e1, e2, ¢) are considered
equivalent if the confidence c is greater than a threshold T

Here, we analyze the impact of such a query answering
model on our match scoring mechanism and show that our
decision-theoretic framework can be applied with only minor
changes to the utility function. We follow a similar process
as in Section 3 to derive an equation for the value of per-
fect information for confirming match m; when the query
answering module uses thresholding.

We first need to redefine result quality when thresholding
is used for query answering. Here, the query answering mod-
ule may use an incorrect match if its confidence is above the
threshold; thus, some answers in Q(D) may not be correct
w.r.t. Q(DT). To account for these incorrect results as well
as the missed results due to correct but unused matches as
before, we alter the equation for result quality to consider
both precision and recall using F-measure [27]', defined as

2 - preciston - recall
precision + recall *

Precision and recall are defined in our context as follows:

rectsion — M
p (Q,D, M) oD)|
_ QD) ne(n?)]
recall(Q, D, M) = QO])

We redefine the result quality of query @) using F-measure
as follows:

\Q(D)WQ()DP)I L RD)NQDY)]

- [Q(D)] QD7)
@D, M) =15 namm] | 1Q(D)nQ(DP))
QD) [Q(DP)]

_2(QD) n QD))
|Q(D)| + |Q(DF)]
Substituting this formula into Equation 4, we can ex-
press the expected result quality, Er(Q, D, M), when using
thresholding:

2(1Q(D) N QD))
QD) +1Q(DM1)]

Er(@Q,D,M)= Y Pr(D) (9)

M1CM

From Section 3.1, we already know how to compute
|Q(D)| and |Q(D™*)| in this equation. To compute

'Here, we use F-measure with precision and recall as equally
important, sometimes referred to as F'1-measure.

|Q(D) N Q(DM1)|, first recall that in DM the constant
d is deemed equal by the matches in M; to a set of other
constants in its equivalence class, {d1,...,dmn}, which we
denote here as Eé\/ll. Similarly, the matches in M that are
above the threshold 7' determine a set of constants in D
that are assumed to be equal to d when computing Q(D),
denoted as E}’. The set Q(D) N Q(D™1) includes the
triples that have an element from the intersection of these
two equivalence classes in the first position. Therefore,
QD) N QDY) = DY+ 5, s gty 1D

Since computing Equation 9 is prohibitively expensive, we
approximate Er(Q, D, M) by employing the same assump-
tion made in Section 3.2 where M = {m;}. Thus, we rewrite
Equation 9 with {m;} substituted for M:

, _2(Q(D) N QD)
Er@ D) =10y 1 i)
2(Q(D) N QDL7))
Q)|+ QDI)

Finally, following the same logic used to derive Equation §,
we have:

)
ci+

(1—-1¢;). (10)

VPI(mJ) =

2(1Q:(D) N Qi(D5 ™))
icwi [1— .
<Qi,w;wm, v < |Qi(D)] + 1Qi(Dm ;)| >

(11)

We implemented this VPI scoring method and experimen-
tally evaluated the ordering it produced when the query
answering module uses thresholding. These experiments
yielded results very similar to those presented in the pre-
vious section, verifying the fact that our framework can be
applied to query answering using thresholding. We omit
the details due to their similarity with the previous sections
results and space considerations.

6. ROOMBA

In this section, we outline the architecture of Roomba?,
a component of a DSSP that incorporates the decision-
theoretic framework presented in the previous sections to
provide efficient, pay-as-you-go match ordering using VPI.
The overall architecture of Roomba is shown in Figure 7.

To facilitate a pay-as-you-go mode of interaction, the
DSSP contains a user interaction module that determines
the appropriate time to interrupt the user with confirmation
request, such as in [11]. At such a time, this module calls
the method getNextMatch() exposed by Roomba that
returns the next best match to confirm. The naive approach
to supporting such a method call is to order all matches
once and then return the next best match from the list on
each call to get NextMatch().

In a pay-as-you-go DSSP, however, getNextMatch() is
called over time as the system runs; thus, a particular or-
dering of matches derived at one point of time using one

2The name “Roomba” alludes to the vacuuming robot of
the same name [13]. Just as the robot discovers what needs
to be cleaned your room, the Roomba system aids a DSSP
in determining what needs to be cleaned in the dataspace.

[Question Asker |

getNextMatchi)
Roomba
| Ordered Matches [«— VP
Calculator
‘ R:ec:alc:uléti@n .Li".,'t F/‘;h:ardlnallﬂes
Affected relevant queries ¢
] matches
l ChangeMonitor | Storage
— T — —
D Waorkload
Extract Candidate ?
elements Matches
Mechanisms I Queries

Figure 7: Roomba architecture

state of the dataspace may become invalid as the character-
istics of the dataspace change. A match’s VPI score depends
on the queries for which it is relevant, the cardinalities of the
elements involved in the match, and the confidence of the
match. Furthermore, over time confirmed matches may be
fed back to the data integration mechanisms which, as a
result, may alter some match predictions.

The key to efficiently supporting get NextMatch() under
changing conditions is to limit the number of VPI scores that
need to be recomputed when some aspect of the dataspace
changes. Here we briefly outline the techniques employed by
Roomba to efficiently compute the next best match as the
characteristics of the dataspace change.

Roomba operates in three phases: initialization, update
monitoring, and getNextMatch().

Initialization: The initialization phase creates all the data
structures used by Roomba and produces an initial order-
ing of matches. At this point, Roomba also calculates the
element cardinality statistics over the dataspace. In order
to facilitate efficient VPI recomputation, Roomba builds in-
dexes that map from each aspect of the data that factors
into the VPI calculation to matches that would be affected
by a change in that data. Finally Roomba calculates the
initial VPI score for each match as defined in Equation 3
and stores them in an ordered list. Note that these VPI
computations can be done in parallel.

Update Monitoring: While the system runs, the datas-
pace’s conditions will continuously change, potentially caus-
ing an invalidation of the ordering derived during initializa-
tion. When such a change occurs, a ChangeM onitor notes
the type of change (i.e., element cardinality, query workload,
or match confidence) and utilizes the indexes built during
the initialization phase to find the matches that are affected
by the particular change. Only these matches are flagged
for recomputation in a recalculation list to be processed on
the next call to get NextMatch().

getNextMatch(): On a call to getNextMatch(), Roomba
sends the recalculation list to the VPI calculator to recom-
pute and reorder any matches whose VPI score may have
changed. Note that here, too, the VPI calculations can be
done in parallel. Roomba then returns the top match off the

list for user confirmation.

7. RELATED WORK

While we have based our decision-theoretic framework on
formalisms used in the AT community [21], decision theory
and the value of perfect information are well-known concepts
in many fields such as economics [18, 16] and health care [2].
Within the data management community, there has been
work on applying expected utility to query optimization [4].

Previous work on soliciting user feedback in data integra-
tion systems has focused on the output of a single mech-
anism. The work in [7] and [29] addresses incorporating
user feedback into schema matching tasks. Similarly, [22]
introduces an active-learning based approach to entity res-
olution that requests user feedback to help train classifiers.
These approaches are closely tied to a single type of data
integration task and select candidate matches for feedback
based closely on the type of classifier it is using. Further-
more, their overall goal is to reduce the uncertainty in the
produced matches without regard to how important those
matches are to queries in the dataspace. Rather than rea-
soning about user feedback for each mechanism separately,
a primary benefit of our framework is that it treats multi-
ple mechanisms uniformly and judiciously balances between
them with the goal of providing better query results for the
dataspace.

The MOBS [17] approach to building data integration sys-
tems outlines a framework for learning the correctness of
matches by soliciting feedback from many users and combin-
ing the responses to converge to the correct answer. While
MOBS does unify multiple mechanisms in one framework, it
do not address how to select which question to ask the user.
Our approach naturally fits within this framework: when
the MOBS system decides to solicit user feedback, Roomba
can provide the best match to confirm, the results of which
can be fed back into the MOBS system for learning.

8. CONCLUSIONS AND FUTURE WORK

This paper proposed a decision-theoretic approach to or-
dering user feedback in a dataspace. As part of this frame-
work, we developed a utility function that captures the use-
fulness of a given dataspace state in terms of query re-
sult quality. Importantly, our framework enables reason-
ing about the benefit of confirming matches from multiple
data integration mechanisms in a uniform fashion. While
we mostly considered entity resolution and schema match-
ing, other data integration mechanisms to which we can ap-
ply these techniques are information extraction, relation-
ship and entity extraction, and schema clustering. We then
presented a means of select matches for confirmation based
on their value of perfect information: the expected increase
in dataspace utility upon requesting user feedback for the
match. We described a set of experiments that validated
the benefits of our framework.

This decision-theoretic framework provides a rich basis for
future work. Here, we outline some of the avenues we are
exploring.

The first direction is to extend our techniques beyond
the myopic value of perfect information. Currently, our ap-
proach computes the expected benefit of confirming the next
match and greedily selects the best one for which to request
user feedback. There may, however, be a series of multiple

matches that, when confirmed, would produce a dataspace
with higher utility than with the myopic approach. Con-
ceptually, we can apply non-myopic decision making to our
setting to look ahead to multiple possible confirmations to
find such sets of matches. The challenge is to balance the
distance of the look-ahead with its cost and with the fact
that as the dataspace changes, some of the characteristics
on which the VPI calculations were based may change.

A second direction is to explore other kinds of user feed-
back. In this paper, we explored how to efficiently involve
users in resolving uncertainty through explicit user feedback.
The DSSP can also leverage the wealth of research on im-
plicit feedback (e.g., [14, 5, 19]) to improve the certainty
of candidate matches. For instance, the click-through rate
of query results supply an indicator of the correctness of
the matches employed during query answering: a click on a
particular result may indicate that the matches used to com-
pute that result are correct, causing the DSSP to increase
the confidence of those matches. A DSSP can also use in-
formation from subsequent queries, or query chains [19], to
reason about the correctness of matches not employed dur-
ing query processing. If, for instance, a user searches for
“red” and then subsequently searches for “cardinal”, then
the DSSP can increase the confidence of the candidate match
(“red”, “cardinal”, c).

Another promising area of future work is exploring the in-
teraction of decision theory and query answering using un-
confirmed matches. Rather than use a static threshold for
query answering, a DSSP can utilize our decision-theoretic
framework to determine what uncertain matches to use for
a query based on the principle of mazimum expected utility
(MEU) [21]. Intuitively, employing MEU for the decision to
utilize or disregard a match for a particular query involves
choosing the action with the highest the expected utility.

Finally, we intend on building and deploying Roomba
within a large-scale, real-world dataspace to apply the prin-
ciples presented in this paper to large-scale data integration
environment.

9. REFERENCES

[1] G. Casella and R. Berger. Statistical Inference.
Duxbury, 2002.

[2] G. B. E. Chapman and F. A. E. Sonnenberg. Decision
Making in Health Care: Theory, Psychology, and
Applications. Cambridge University Press; New Ed
edition (September 1, 2003), 2003.

[3] S. Chaudhuri, G. Das, and U. Srivastava. Effective use
of block-level sampling in statistics estimation. In
SIGMOD °04, 2004.

[4] F. Chu, J. Y. Halpern, and P. Seshadri. Least
expected cost query optimization: an exercise in
utility. In PODS ’99, 1999.

[5] M. Claypool, P. Le, M. Wased, and D. Brown.
Implicit interest indicators. In Intelligent User
Interfaces, pages 33—40, 2001.

[6] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for
name-matching tasks, 2003.

[7] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. In SIGMOD 01, 2001.

[8] A. Doan and A. Y. Halevy. Semantic-integration

27]

(28]

29]

research in the database community. AI Mag.,
26(1):83-94, 2005.

Flickr. http://www.flickr.com.

M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: A new abstraction for information
management. Sigmod Record, 34(4):27-33, 2005.

E. Horvitz, C. Kadie, T. Paek, and D. Hovel. Models
of attention in computing and communication: from
principles to applications. Commun. ACM,
46(3):52-59, 2003.

Y. E. Ioannidis. The history of histograms (abridged).
In VLDB, pages 19-30, 2003.

iRobot Roomba.
http://www.irobot.com/sp.cfm?pageid=122.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In SIGIR ’05, 2005.

J. Madhavan, A. Y. Halevy, S. Cohen, X. L. Dong,

S. R. Jeffery, D. Ko, and C. Yu. Structured data
meets the web: A few observations. IEEE Data Eng.
Bull., 29(4):19-26, 2006.

A. Mas-Colell, M. D. Whinston, and J. R. Green.
Microeconomic Theory. Oxford, 1995.

R. McCann, A. Doan, V. Varadaran, A. Kramnik, and
C. Zhai. Building data integration systems: A mass
collaboration approach. In WebDB, 2003.

O. Morgenstern and J. Von Neumann. Theory of
Games and Economic Behavior. Princeton University
Press, 1944.

F. Radlinski and T. Joachims. Query chains: Learning
to rank from implicit feedback, 2005.

E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. 10(4):334-350, 2001.
S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition edition, 2003.

S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In KDD 02, 2002.
C. Silverstein, M. Henzinger, H. Marais, and

M. Moricz. Analysis of a very large altavista query
log. Technical Report 1998-014, Digital SRC, 1998.
http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-1998-014.html.

J. Surowiecki. The wisdom of crowds. Doubleday, 2004.
The Large Hadron Collider.
http://lhc.web.cern.ch/lhc/.

G. Tolle, J. Polastre, R. Szewczyk, D. E. Culler,

N. Turner, K. Tu, S. Burgess, T. Dawson,

P. Buonadonna, D. Gay, and W. Hong. A Macroscope
in the Redwoods. In SenSys, pages 51-63, 2005.

C. J. Van Rijsbergen. Information Retrieval, 2nd
edition. Dept. of Computer Science, University of
Glasgow, 1979.

L. von Ahn and L. Dabbish. Labeling Images with a
Computer Game. In ACM CHI, 2004.

W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD 04, 2004.

