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Abstract

In many sensing applications, like environmental monitoring,
we must continuously gather information in order to provide
a good estimate of the state of the environment at every point
in time. A robot may tour an environment, gathering informa-
tion every hour. In a wireless sensor network, these tours cor-
respond to packets being transmitted. In these settings, we are
often faced with resource restrictions, like energy constraints.
When users issue queries, they have certain expectations on
the answer quality. Thus, we must optimize the tours in or-
der to ensure the satisfaction of the user constraints, while at
the same time minimize the cost of the query plan. For a sin-
gle timestep, this optimization problem is NP-hard, but recent
approximation algorithms with theoretical guarantees provide
good solutions. In this paper, we present a new efficient algo-
rithm, exploiting dynamic programming and submodularity
of the information being collected, that efficiently plans data
collection tours for an entire (finite) horizon. Our algorithm
can use any single step procedure as a black box, and pro-
vides strong theoretical guarantees about the solution, based
on the properties of the single step approach. We also provide
an extensive empirical analysis demonstrating the benefits of
nonmyopic planning in two real world sensing applications.

Introduction
Many practical applications (e.g., building automation, en-
vironmental control, reconnaissance) require the monitor-
ing of various physical phenomena that change over time.
The sensing devices used in such applications can often be
hard to recharge, repair or replace, posing limitations to their
use. These resource constraints demand nuanced schemes
for collecting observations that tolerate bounded uncertainty
in exchange for reduced resource consumption. In wireless
sensor networks for example, sensors have limited battery
life. In order to conserve power, one can use data gathering
tours (Meliouet al. 2006) to acquire measurements at min-
imum cost. In robotic applications, there can be limits on
fuel. Hence one has to plan robot trajectories in order to ef-
ficiently acquire information (c.f.,Singhet al. 2007). Com-
mon to these problems is the need to findmaximally infor-
mative paths, while minimizing the traversal costincurred.

In the case of monitoring with sensor networks, the
requirements forinformativenessare usually determined by
a user, who often specifies desired confidence requirements
on the returned result. This problem is the focus of earlier
work (Deshpandeet al. 2004), where model-based querying
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is proposed as a new approach to approximate query answer-
ing. In order to assess the informativeness of observations
before acquiring the actual values, one can use probabilistic
models. When dealing with spatial phenomena, as in
the current common uses of sensor networks,Gaussian
Processes(c.f., Rasmussen & Williams 2006) have been
successfully used as such models. These models allow us
to quantify the informativeness of selected observations in
terms of the expected reduction in predictive variance.

Most existing work in the area of resource-bounded
observation selection has beenmyopic. At any point in time,
observations are planned as to satisfy the informativeness
constraints for this time step, without considering the cost of
making observations in the future. In this paper, we present
an efficientnonmyopicalgorithm for observation selection
in spatio-temporal models. Within its planning horizon,
our algorithm optimizes a collection of paths, one for each
time step, which minimizes the long-term observation cost.
More specifically, our contributions are:

• An efficient nonmyopic observation planning algorithm
with strong theoretical performance guarantees.

• A general technique, which can use any myopic planning
algorithm and convert it into a nonmyopic algorithm.

• Empirical analyses of the effectiveness of our algorithm
on several real world data sets.

The NSTIP Problem
Our goal is to monitor a spatio-temporal phenomenon at a
finite set of locationsV and timestepsT = {1, 2, . . . , T}.
With each locationi and timet, we associate a random
variableXi,t, and useVt andXVt to refer to all locations
and their variables at timet, respectively. Since it is costly
to observe all locations at every point in time, our approach
will select a set of locations to visit at each time step, and
use a statistical model to predict the missing values. To
make this prediction, we assume we have a joint distribution
P (X ) over all variables. This joint distribution encodes the
dependencies along both spatial and temporal dimensions.
In this paper, we use a class of nonparametric probabilistic
models called Gaussian Processes (GPs,c.f., Rasmussen
& Williams, 2006), which have found successful use in
modeling spatial phenomena such as temperature fields.
Our approach is however not limited to this class of models.

In order to select which observations to make, we need
to quantify the expected “informativeness” of these obser-
vations with respect to the missing ones. We quantify the in-
formativeness of any set of observationsA = A1 ∪ · · · ∪At

by some functionf(A), whereAt refers to the observations



made at timet. In the literature, there are different objective
functionsf which have been proposed to quantify informa-
tiveness, such as entropy (Shewry & Wynn 1987), mutual in-
formation (Caselton & Zidek 1984), or the reduction of pre-
dictive variance (Das & Kempe). In the case where no prob-
abilistic model is available, one can also associate a sensing
region observed by each sensor, and aim to maximize the to-
tal area covered (Baiet al. 2006). All these objective func-
tions have two properties in common.1 They are monotonic
(i.e.,f(A) ≤ f(B) wheneverA ⊆ B) and satisfy the follow-
ing diminishing returns property: Adding a sensor to a small
deployment helps more than adding it to a large deployment.
More formally,∀A ⊆ B ⊆ V ands ∈ V \ B, f(A ∪ {s})−
f(A) ≥ f(B∪{s})− f(B). A set functionf satisfying this
property is calledsubmodular(c.f., Nemhauser, Wolsey, &
Fisher, 1978). Hence, in this paper we focus on the case of
optimizing a monotonic submodular set functionf .

In our spatio-temporal setting, we are solving thefiltering
problem: at each time stept, we would like to predict the
values of all unobserved variables in the current time step
based on information collected up to this point in time,
A1:t = A1 ∪ · · · ∪ At. In particular, given a measure of
informativeness for each time step,ft, we would like to
ensure that the information collected up to that time step
passes some user-specified thresholdkt, i.e.,ft(A1:t) ≥ kt.
For example, a user may require that the average standard
deviation of estimates for each temperature reading at each
time step is smaller than1oC.

For real-world applications like routing wireless
packets or planning robot trajectories, chosen obser-
vations at each timet must be connected into a path
Pt = (v0 = s, v1, . . . , vm = t), of nodesvi ∈ Vt, with start
and end nodess andt. For all time steps, we assume we are
given a nonnegative, possibly asymmetric distance function
dt : Vt×Vt → R+. In the wireless sensor network example,
dt might reflect the expected transmission cost between any
pair of locations at timet. The costC(P) of a pathP can
then be measured with respect to this distance functiondt.

We can now define ournonmyopic spatiotemporal infor-
mative path planning problem (NSTIP). Given a collection
of submodular functionsft : 2V1∪···∪Vt → R+ defined on
the timesteps up tot, cost functionsdt, and a set of accuracy
constraintskt (e.g., on the desired variance reduction) we
desire a collection of pathsPt, one for each time step, with
P∗ = argminP

∑T
t=1 C(Pt) subject toft(P1:t) ≥ kt ∀t.

Hereby,P1:t = P1 ∪ · · · ∪ Pt, wherePt′ ⊆ Vt′ is the
path selected at timestept′. (A path is properly a sequence,
not a set, so the above is a minor abuse of notation.) We
will assume in discussion that the start and end nodes for
each path are a single specified base-station node, but our
algorithms extend easily to settings where we do not need
to return to a base station at each time step.

1Variance reduction is submodular under certain conditions
(Das & Kempe). Mutual information is only approximately
monotonic (Guestrin, Krause, & Singh 2005)

Nonmyopic Planning Algorithm
A naive approach for continuous querying is to treat each
timestep as an independent single-step query, and optimize
it independently. We will refer to this approach asmyopic,
as it does not look into the future. We are aiming for
a nonmyopic approach, that performs optimization by
adjusting the rewards of observations to account for the
effect that these can have for later timesteps.

In our approach to the NSTIP problem, we use the fol-
lowing strategy. We first convert the problem of optimizing
multiple paths, one for each timestep, into a problem of op-
timizing a single path on a new graph, thenonmyopic plan-
ning graph(NPG). We then show how one can use existing
algorithms for solving a related problem, thesubmodular
orienteering problem(SOP) (Chekuri & Pal 2005) as a sub-
routine to solve our nonmyopic planning problem. This pro-
cedure will retain the approximation guarantees which exist-
ing algorithms provide for the SOP for the myopic problem,
while only introducing a small loss in the approximation
guarantee due to the nonmyopic nature of our problem.

The Nonmyopic Planning Graph
Consider a candidate solution for the NSTIP problem
consisting of a series of cyclic paths, one for each time step,
each starting and ending at the base-station node. Imagine
these plans arranged on a timeline and connected through
their base-station nodes as in Fig. 1a.

t t t1 2 T

G NPG

Figure 1:(a) Ex. NSTIP path. (b) Nonmyopic planning graph.

Fig. 1a represents the query plan across time. The paths
connecting the basestation nodes are directed to demonstrate
the fact that the plan for the first timestep is executed first,
then it is followed by the plan for the second timestep, and
so on. This overall solution, augmented by the edges con-
necting the basestation nodes at subsequent timesteps can
now be considered a single path through adifferentgraph.
This nonmyopic planning graph(NPG) onall nodesV is
constructed by combining the graph of finite-distance (via
dt) pairs of nodes fromVt for each timestep, adding zero-
cost directed edges connecting them through the basestation
nodes. This transformation is illustrated in Fig. 1b.

Our goal is to recover a solution to the NSTIP problem
by optimizing a path in the NPG. Note that any pathP
through the NPG, starting at the basestation at time 1, and
ending there at timeT , uniquely corresponds to a collection
of pathsPt, one for each timestep. Moreover, the cost
of P is exactly the sum of the costs of allPt. We now
need to define an objective functionf and a constraintk
on the NPG, such that a solutionP on NPG is feasible
(i.e., f(P) ≥ k) iff the corresponding collection of paths
is feasible (i.e.,ft(P1:t) ≥ kt). In order to achieve this,
we setk =

∑
t kt, and, for each timestept, redefine a



function f ′t(P1:t) = min(ft(P1:t), kt). Hence, timestep
t is satisfied ifff ′t(P1:t) = kt. It can easily be verified
that f ′t is still submodular and nondecreasing. Now define
f(P) =

∑
t f ′t(P1:t). f is nondecreasing and submodular,

andP is a feasible solution ifff(P) = k. Moreover, the set
of optimal solutions coincides, having identical path costs.

Satisfying per-timestep constraints
Even after the transformation described in the previous sec-
tion, the problem of finding a minimum cost feasible path on
the NPG is still NP-hard.2 Nonetheless, since it is expensive
to collect observations, we would like to have an algorithm
with theoretical guarantees to solve our problem. Unfor-
tunately, we are unaware of the existence of any algorithm
providing nontrivial guarantees for this problem. On the
other hand, there are recent results by (Chekuri & Pal 2005)
on a basically dual problem – thesubmodular orienteering
problem(SOP). Instead of minimizing cost for a fixed in-
formation threshhold, SOP seeks a maximally-informative
pathP∗ given a fixed budgetB on path length. The cited
paper presents arecursive greedyalgorithm, which we call
CP, which is guaranteed to return a pathP̂ with cost at most
B, such thatf(P̂) ≥ 1

αf(P∗), whereα = log |P∗|. Hence
CP will return a solution where the reward is at most loga-
rithmically worse in the length (number of nodes visited) of
the optimal path. While the CP algorithm has the currently
best known theoretical properties for SOP, our approach
to NSTIP will accommodateany algorithm for SOP as a
“black box”. The approximation guaranteeα will directly
enter the approximation guarantees of our algorithm.

A naive approach to solve the NSTIP problem would be to
call an SOP solver with increasing budgets, until we satisfy
the reward constraints. Unfortunately, the algorithm for SOP
only gives us an approximation guarantee for the reward of a
particular budget; there is no guarantee offered on how much
morebudget is necessary to reach the desired reward.

Instead, we will stop our search as soon as we satisfy
someportion of the total achievable reward. To save time,
we increase the budget values by calling the algorithm for in-
creasing powers of 2. In our setting, suppose that an optimal
algorithm would fullfil the desired constraint (f(P ∗) = k)
with a pathP ∗ with cost bounded by2j < C(P ∗) ≤ 2j+1,
for some integerj. We then know that the approximate SOP
algorithm, given a budget of budgetB = 2j+1 we will get
a solutionP̂1 with the guaranteef(P̂1) ≥ k

α .
However, since we covered only anα-fraction of the

constraintk, we need to also cover the remaining dif-
ference. The key idea here is to look at theresidual
reward. For a set of “disqualified” nodesA (used in some
earlier iteration), we define a new submodular function,
fA(B) = f(A ∪ B) − f(A). This new functionfA is also
monotonic. Our goal is to cover the missing portion of the
constraint by optimizing this residual function. That is, if we
have found a patĥP1 in the first iteration, we will fulfill our
constraint if we find a pathP such thatf

bP1
(P) = k−f(P̂1).

2In fact, a simple reduction from set cover shows that it is un-
likely that any algorithm can achieve even a constant factor approx-
imation to the optimal solution (Feige 1998).

Since f is a monotonic function, we know that
f
bP1

(P∗) = k − f(P̂1). Hence, there must exist a path
(e.g.,P∗) of budget at mostB which covers the remaining
rewardk− f(P̂1) ≤ k− k

α when optimizingf
bP1

, i.e., when
planningconditionallyon the nodes we already observed.

By the above argument, we can again find an approximate
solution P̂2 which covers anα fraction of the remaining
difference. Hence, afterm iterations, the remaining differ-
ence isk− f(P̂1 ∪ · · · ∪ P̂m) ≤ (1− 1

α )mk, which shrinks
exponentially fast inm. This process is given in more detail
in Algorithm 1. Hereby,SOPA for a set of nodesA denotes
a call to the submodular orienteering blackbox, using the
residual rewardfA.

Algorithm 1 Cover(k)
Budget = 0; kcov = 0; P = ∅
while kcov ≤ k(1− ε) do

for j = 1 . . . jmax do
B = 2j ; bP ′ ← SOPP(B)

if f( bP ′) ≥ k−kcov
α

then
Budget = Budget + B; kcov = kcov + fP( bP)

P = P ∪ bP; break

Since the reward functionf is real valued, we need
to specify a thresholdε, such that we are satisfied with
a solution which covers a(1 − ε) fraction of the desired
accuracy constraintk. Theorem 1 bounds the number of
iterations required in terms of the accuracyε.

Theorem 1 Algorithm 1 returns a solution of budgetB ≤
2 log ε

log(1− 1
α )

BOPT which violates the constraint by at mostεk,

in timeO
(

log ε
log(1− 1

α )
Q(nT, 2BOPT )

)
.

Hereby, Q(n, B) is the running time of the sub-
modular orienteering black box executed on a graph
with n nodes and budgetB. For the CP algorithm,
Q(n, B) = O((nB)log(n)).

Efficient Nonmyopic Planning using Black Box
The approach presented in the previous section has running
time proportional toQ(nT,B), i.e., the running time of the
submodular orienteering blackbox executed on a graph with
nT nodes, and takes advantage of the algorithm’s guarantee.
Currently the best known guarantee is the one by Chekuri &
Pal. Unfortunately, the guarantee of their approach comes at
a price – albeit subexponential, the algorithm is superpoly-
nomial: For our setting, their running time is bounded by
O((nTB)log(nT )). Using a spatial decomposition approach
and branch and bound techniques, this running time can
empirically be significantly decreased (Singhet al. 2007).
However, the Nonmyopic Planning Graph gets very big
very quickly, even for small horizonsT , quickly rendering
the approach infeasible. Instead, we can exploit the special
structure of the Nonmyopic Planning Graph (NPG). This
structure allows us to use dynamic programming (DP) to
allocate the budget among the different timesteps, and then
optimize paths for each timestep individually.



Our DP fills aB×T tableJ(·, ·). The entry at index(b, t)
represents the best reward achieved up to and including
timestept for budget up tob. The DP function is then

J(b, t) = max
b′≤b

{J(b− b′, t− 1) + R(b′, t|P̂b−b′,1:t−1)} (1)

Hereby,R(b′, t|P̂b−b′,t−1) denotes the reward obtained after
running the SOP blackbox on the graph for thet-th timestep,
optimizing the residual rewardf

bPb−b′,1:t−1
, conditional on

the pathsP̂b−b′,1:t−1 selected in timesteps 1 throught − 1,
using a total budget ofb − b′. (PathP̂b−b′,1:t−1 is stored in
cell (b− b′, t− 1).) In addition to storing maximum reward
in Eq. 1 into the cell(b, t) of the DP, we also remember
the path that achieved this maximum. In particular, if the
maximum was achieved by a budget levelb′∗, we store the
path P̂b−b′∗,1:t−1 ∪ P̂b′∗,t in the same cell, wherêPb′∗,t is
the path returned by the SOP blackbox for budgetb′∗. Since
we store the selected path in each DP cell, we directly read
the final solution from the DP table for timeT .

Thus, our DP algorithm uses the SOP blackbox (e.g., the
CP algorithm (Chekuri & Pal 2005)) to obtain a solution at
each time step given each budget levelb′, conditioned on
the paths selected in previous time steps using a total budget
of b − b′. Note that this formulation of the DP isgreedy:
In order to fill the entries at timet, only observations made
up to timet are taken into account. Since any observation
can have effects on all future timesteps, this greedy choice
disregards the observation choices we will make in future
timesteps. We can compare two options: using the DP, with
CP as blackbox (CP/DP), or apply CP to the NPG directly
(CP/NPG). Perhaps surprisingly, the combination CP/DP is
guaranteed to recover a solution which is at least as good as
the solution obtained by CP/NPG, at orders of magnitude
less running time. The reson for that is that the NPG graph
has a special structure (is a chain of smaller graphs), forcing
the CP/NPG solution to be separated into smaller subtours
of specific budgets, allowing for a DP approach to work on
the subgraphs individually.

Matrix element(b, t) can be computed afterb calls to the
SOP function which costO(Q(n, B)) each, for all choices
of b′ which could be up toB, so filling the entire matrix
would require a runtime ofO(B2TQ(n, B)).

Theorem 2 In timeO( log ε
log(1− 1

α )
B2TQ(n, B)), the dynamic

programming algorithm returns a solution of budgetB ≤
2 log ε

log(1− 1
α )

BOPT , that violates the constraint by at mostεk.

Note that when using CP/DP algorithm to optimize the
paths for every timestep, for a fixed budget, the runtime of
the DP is linear inT , whereas the runtime of CP/NPG grows
superpolynomially withT . For example, in a network of 50
nodes, when called for a budget of 100, and an increase to
the number of timesteps from 5 to 10, CP/NPG leads to a
107 factor of increase in the run time, compared to only a
factor of 2 for CP/DP.

Adaptive Discretization
In order to compute an entryJ(b, t) of the DP table, we
must perform an expensive call to the SOP blackbox for

each value ofb′ ≤ b. This computational cost quickly
becomes prohibitive with increasing time-horizonT . To
improve on the running time, we perform anadaptive
discretization. Although the design choices are heuristic
in nature, we found them to perform well empirically; a
small number of budget levels (roughly on the order of the
number of timestepsT ) sufficed to achieve good solutions.

During a run of the algorithm, we dynamically decide
which entriesJ(b, t) to compute, as shown in Alg. 2. For
each timestept in order, we maintain a sorted list of budget
levelsB̃t. Initially, this list only contains only0 andB. We
also maintain the rewards of all budget levels. Now, we it-
eratively add a new budget level between levelsbi andbi+1,
such that(rew(i + 1)− rew(i)) · (bi+1 − bi) is maximized.
The reason for this choice is that we simultaneously want to
add discretization where the reward difference is large, but
also where the gap between budgets is large.

In order to compute the reward for a given budgetb at
time t (function compRew of Alg. 2) we iterate through all
budget levelsbi ∈ B̃t−1 from the previous timestep. For
each bi, we run the single-timestep optimization routine
(SOP) with a budget level ofb− bi, conditional on the path
associated with the previous cell. The maximum reward
achieved becomes the reward of budgetb at timet.

Algorithm 2 DynDP (k, B, T )
for t = 1 to T do
B̃t = {b0 = 0, b1 = B}}
rew[b0]=compRew(b0); rew[b1] = compRew(b1)
for j = 2 to MaxNumLevels do

i = arg maxi(rew[bi+1]− rew[bi]) · (bi+1 − bi)
b′ = (bi+1 + bi)/2
rew[b′] = compRew(b′) using SOP blackbox
insertb′ into B̃t; store reward of b’

Evaluation
We empirically analyze our proposed algorithm, comparing
the myopic and nonmyopic approaches for various settings
of our parameters. We also demonstrate how these parame-
ters affect the running time and the quality of the results.

Our experiments are based on two real data sets. Our
first experiments use data gathered from a deployment of
a 46 node sensor network at the Intel Berkeley Lab used
by Deshpandeet al.. Temperature and network connectiv-
ity measurements were gathered at one hour intervals, for a
period of seven days. Five days of measurements were used
for training and learning the transition model, and two were
used for testing. We further verify our results with experi-
ments on a different data set containing daily precipitation
data from the Pacific Northwest of the United States, gath-
ered from 37 stations over a period of 50 years (Widmann
& Bretherton 1999). For both data sets, we learned Kalman
Filter models, capturing the spatiotemporal correlations.

Implementation Details
In our experiments we wish to compare the myopic to the
non-myopic approach. The myopic approach calls Alg. 1
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Figure 2:(a-e) Myopic vs nonmyopic in terms of query plan cost and runtime. (f-g) Effects of adaptive discretization. (h) Rain data set.

once for every timestep, the objective function only con-
siders the current timestep, and the model is updated based
on the chosen observations, before proceeding to the next
timestep. The nonmyopic algorithm uses the DP approach
with adaptive discretization to produce an observation plan
for multiple timesteps. The objective function considers
the reward that an observation set has from the current
timestep through a fixed number of timesteps into the fu-
ture: f ′t(A1:t) =

∑min(t+LA,T )
t′=t ft′(A1:t). Here,T is the

planning horizon,LA is the lookahead.
Both algorithms use a fast heuristic by Chao, Golden, &

Wasil as blackbox for the SOP problem, which Singhet al.
experimentally showed to often provide relatively good re-
sults when compared to their efficient version of the recur-
sive greedy algorithm of Chekuri & Pal.

In many practical applications, one wants to control the
RMS error. Hence, in our implementation we chose the
mean total variance reduction as our objective function:
ft(A1:t) = 1

n

∑
i (V ar(Xi,t)− V ar(Xi,t | XA1:t)). This

function is monotonically nondecreasing, but not always
guaranteed to be submodular. There is both empirical and
theoretical evidence however that in many practical prob-
lems, it indeed is submodular (Das & Kempe). Correspond-
ingly, for our information constraints for every timestep, we
chose to use the Root Mean Variance (RMV), since this is
the criterion used in the myopic approach of Deshpandeet

al., requiring
√

1
n

∑
i V ar(Xi,t | XA1:t) ≤ k, wherek is the

maximum RMV allowed each timestep.

Experiments
In our first set of experiments, we test how the accuracy con-
straintk affects the path cost achieved by both algorithms.
Figures 2a and 2b display how the query path costs of the
two algorithms change as we vary the constraints on the
RMV. In both graphs, we used a lookahead of 3 steps in
the objective function. The first graph presents plans for a

horizon of 3 hours (or 3 timesteps), whereas the second uses
a horizon of 24 hours. As expected, the path costs decrease
as we loosen the constraints on the RMV. We observe that,
apart from one data point, our nonmyopic algorithm always
dominates the myopic one, providing better solutions. This
outlier is due to the adaptive discretization procedure. Espe-
cially for rather loose constraints, we observe that the non-
myopic algorithm drastically outperforms the myopic algo-
rithm, often providing a reduction in cost of up to 30%. We
further note that for very loose constraints, as well as for
very tight constraints, the performance of both algorithms
is very similar. In the “loose” case, very few observations
close to the basestation suffice, a solution found by both al-
gorithms. In the “tight” case, both algorithms need to choose
a large number of observations to satisfy the constraints, so
the nonmyopic benefit is decreased.

With the experiment of Fig. 2c we examine how the
lookahead parameter of the objective function affects the
quality of the result for the nonmyopic approach. The ex-
periment is performed for a planning horizon of 6 timesteps,
and for a RMV constraint of 1.3. We see that, as the looka-
head increases, the results get better, which is evidence
that nonmyopic planning is very important for continuous
queries. The biggest improvement however is achieved from
the myopic setting for the objective function (lookahead 0)
to a lookahead of 1.

In the final graph of this first set of experiments (Fig. 2d)
we observe how the overall path cost of the two algorithms
varies with the number of planning timesteps of the query.
The RMV constraint used for this experiment was 1.6 and
the lookahead of the non-myopic algorithm was set to 3.
We observe that our non-myopic approach is consistently
better. Also observe that the biggest improvement happens
between 0 and 6 timesteps, when the nonmyopic algorithm
drastically outperforms the myopic algorithm. This gain can
be explained by noting that the experiment starts around
midnight. In the first few hours, the model is very accu-



rate in predicting the temperatures from very few observa-
tions. During daytime hours, the path cost quickly increases
as more observations have to be made. In the late evening to
night time, again, few observations suffice for accurate pre-
dictions, and the nonmyopic algorithm again outperforms
the myopic approach. In Fig. 2e we see how the running
time of the DP is affected by the number of timesteps we
need to plan for. As expected from our analysis of the run-
ning times, they grow linearly in terms of the horizon.

In our second set of experiments, we examine how the
adaptive discretization in the DP affects the nonmyopic al-
gorithm. Figures 2f and 2g display the results of this exper-
iment for a horizon of six timesteps and a constraint on the
RMS of 1.14. The first figure displays how the cost of the
query plan produced by the non-myopic algorithm changes
with the number of discretization levels. For very coarse dis-
cretization (few budget levels), the non-myopic solution is
worse than the myopic result, because the coarse discretiza-
tion prunes too much of the DP’s search space, and good
solutions are lost. Increasing the number of budget levels
to roughly the order of timesteps, the solutions improve and
exceed the performance of the myopic algorithm. As ex-
pected, finer discretization is more desirable, but as Fig. 2g
shows, the running time quickly increases. This plot also
shows that the non-adaptive approach quickly becomes in-
tractable, as the running time of the DP is roughly propor-
tional toB2, which is of order(nT )2. Extrapolating the per-
formance observed in adaptive discretization, the runtime of
the non-adaptive algorithm would be on the order of 10 days,
compared to 20 minutes for the adaptive DP using 10 levels.

Finally, Fig. 2h displays results from the precipitation
data. The experiment displays the cost of a 7 day horizon
query, with a lookahead for the DP of 3 days, over varying
constraints. The results are very similar to the ones we got
from our previous dataset, and our non-myopic algorithm is
again shown to outperform the myopic one, especially for
intermediate tightness of the RMV constraint.

Related Work
The problem of data acquisition in sensing applications has
been studied in literature. Deshpandeet al. present the BBQ
system, which proposes a model-driven scheme to provide
approximate answers to queries posed in a sensor network,
satisfying some information guarantees. This work focuses
on the myopic setting, at each step the exact solution is
obtained by an exponential algorithm, and a greedy heuristic
is also provided, but with no approximation guarantees.

Liu, Petrovic, & Zhao consider the problem of nonmy-
opic collaborative target tracking in sensor networks. They
nonmyopically optimize the information obtained from a
sequence of observations. In order to optimize this criterion,
they perform a heuristic “min-hop” search without approx-
imation guarantees. Empirically their results shed more
evidence on the importance of nonmyopic sensor selection.

Our problem is also related to theTraveling Salesman
Problem with profits(TSPP; Feillet, Dejax, & Gendreau,
2005). In TSPP, each node has a fixed reward and the goal is
to find a path that maximizes the sum of the rewards, while
minimizing the cost of visited nodes. The orienteering prob-

lem is a special case of TSPP, maximizing rewards, subject
to constraints on the cost (Laporte & Martello 1990). There
are several important differences to this body of work. The
TSPP objective, the sum of rewards, is amodular function.
When selecting informative observations however, closeby
locations are correlated, and hence their information is sub-
additive (submodular), making the problem more complex.
Furthermore, our approach is nonmyopic, planning multiple
paths, satisfying constraints for each time step. Our algo-
rithm is efficient with respect to the planning horizonT , and
provides approximation guarantees.

In robotics, similar work was developed in the context of
simultaneous localization and mapping(SLAM). Stachniss,
Grisetti, & Burgard develop a greedy algorithm, without ap-
proximation guarantees, for selecting the next location to
visit to maximize information gain about the map. Sim &
Roy attempt to optimize the entire trajectory, not just the
next step, but their algorithm introduces some approxima-
tion steps without theoretical bounds. We also expect our
approach to be useful in the SLAM setting.

Conclusions
In this paper, we addressed the problem of nonmyopi-
cally optimizing observation tours in spatiotemporal models.
First, we provided a general technique, reducing the non-
myopic planning problem with accuracy constraints to be
met at each timestep to the submodular orienteering problem
(SOP) on a graph. Here, our approach allows us to use any
SOP algorithm to be used as a blackbox. The approximation
guarantees of the SOP blackbox are used by our algorithm
to provide strong theoretical bounds about the cost of the
paths obtained. We also develop an algorithm based on dy-
namic programming techniques that can reduce the cost of
the nonmyopic planning by orders of magnitude. In addi-
tion, our adaptive discretization technique allows us to trade
off solution quality and computational cost, empirically pro-
viding good solutions in a short amount of time. We demon-
strate the effectiveness of our approach on two real-world
data sets. Our results indicate that nonmyopic planning can
drastically reduce the observation cost.
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Proofs
Proof:[of Theorem 1] At every iteration of the while loop
we cover anα-portion of the yet uncovered constraint, and
the process will terminate when we have coveredk(1 − ε).
At every step we are guaranteed not to exceed the budget of
the previous step. This is because the optimal solution will
always exist in the set of possible solutions that the SOP al-
gorithm can pick. This optimal solution will have a reward
that covers the constraints. Thus, based on the guarantees of
the SOP algorithm, we know that for this budget the algo-
rithm will return some setA′ for which f(A′) ≥ f(AOP T )

α .
So, in every step, in order to cover anα-portion of the un-
covered space, we will never need a budget bigger than2j+1,
when the optimal budget is2j . This means that the SOP al-
gorithm will never need to be called for a budget bigger than
2BOPT if BOPT is the budget of the optimal solution.

Also, at every step we aim for covering anα-portion of
the uncovered constraint, so in iterationi the uncovered con-
straint would be(1 − 1

α )ik. Since the algorithm will termi-
nate when it has covered≥ k(1− ε), so the uncovered space
would be≤ kε (and thus the constraint cannot be violated
by more thankε), we get that

(1− 1
α

)i ≤ ε ⇒ i ≤ log ε

log(1− 1
α )

So, we have a bound on the number of times that the while
loop will be executed, which bounds the number of times
that the SOP algorithm needs be called with the maximum
budget (2BOPT ), in order to cover the reward constraints.
If Q(n, B) is the running time of the SOP blackbox for a
graph ofn nodes and for budgetB, we know that we will
call the SOP blackbox at most log ε

log(1− 1
α )

times on a graph of

nT nodes and for budget2BOPT .
Thus the running time of Algorithm 1 will be

O
(

log ε
log(1− 1

α )
Q(n, B)

)
This also gives a bound on the total budget of the solution,

since at every step we will never use more than2BOPT bud-
get. So, our algorithm will give a solution with a budget no
worse than2 log ε

log(1− 1
α )

BOPT .

Proof:[of Theorem 2] IfQ(n, B) represents the running
time of the SOP algorithm, for filling in a cell of the DP
matrix we need to make up toB such calls, one for each
possible division of the budget assignments between the cur-
rent and all the previous timesteps. Also we have a total of
BT cells in the matrix, so the DP has a running time of
O(B2TQ(n, B)).

The CP/DP algorithm will need to doi iterations to cover
the reward constraint, wherei can be bounded in the same
way as in the previous proof:

i ≤ log ε

log(1− 1
α )

This bounds the number of times that the DP will be
called. Therefore, the running time of CP/DP would be
O( log ε

log(1− 1
α )

B2TQ(n, B)).



The algorithm terminates when the covered constraint is
≥ k(1 − ε), so the constraint cannot be violated by more
thankε.


