
Minimum-Time Reachability in Timed Games

Thomas Brihaye
Thomas A. Henzinger
Vinayak Prabhu
Jean-Francois Raskin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-47

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-47.html

April 24, 2007



Copyright © 2007, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This research was supported in part by
the NSF grant CCR-0225610 and by the Swiss National Science
Foundation.



Minimum-Time Reachability in Timed Games⋆

Thomas Brihaye1, Thomas A. Henzinger2, Vinayak S. Prabhu3, and Jean-François Raskin4

1 LSV-CNRS & ENS de Cachan; thomas.brihaye@lsv.ens-cachan.fr
2Department of Computer and Communication Sciences, EPFL; tah@epfl.ch

3Department of Electrical Engineering & Computer Sciences, UC Berkeley; vinayak@eecs.berkeley.edu
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Abstract. We consider the minimum-time reachability problem in concurrent two-player timed au-
tomaton game structures. We show how to compute the minimum time needed by a player to reach a
target location against all possible choices of the opponent. We do not put any syntactic restriction on
the game structure, nor do we require any player to guarantee time divergence. We only require players
to use receptive strategies which do not block time. The minimal time is computed in part using a
fixpoint expression, which we show can be evaluated on equivalence classes of a non-trivial extension
of the clock-region equivalence relation for timed automata.

1 Introduction

Timed automata [3], finite-state machines enriched with clocks and clock constraints, are a well-
established formalism for the modeling and analysis of timed systems. A large number of important
and interesting theoretical results have been obtained on problems in the timed automaton frame-
work. In parallel with these theoretical results, efficient verification tools have been implemented
and successfully applied to industrially relevant case studies.

Timed automata are models for closed systems, where every transition is controlled. If we want
to distinguish between actions of several agents (for instance, a controller and an environment), we
have to consider games on timed automata, also known as timed automaton games. In the sequel,
we will focus on two-player games. In this context, the reachability problem asks whether player-1
has a strategy to force the timed game to reach a target location, no matter how player-2 resolves
her choices. These games were first introduced and studied in [22, 19]. In this framework, it is
also natural to consider the minimum-time reachability problem, which asks for the minimal time
required by player-1 to reach a target location, no matter how player-2 resolves her choices. This
problem was first posed in [5], where it was shown to be decidable for a restricted class of timed
automaton games.

Any formalism involving timed systems has to face the problem of zeno runs, i.e, runs of the
model where time converges. Zeno runs are not physically meaningful. The avoidance of such runs
has often been achieved by putting syntactic constraints on the cycles of timed automaton games
[20, 5, 15, 6], or by semantic conditions that discretize time [16]. Other works on the existence of
controllers [19, 14, 7, 9] have required that time divergence be ensured by the controller —a one-
sided, unfair view in settings where the player modeling the environment can also block time.

Recently, a more equitable treatment of zeno runs has been proposed in [12]. This setting
formulates a symmetric set-up of the model, where both players are given equally powerful options
for updating the state of the game, advancing time, or blocking time. Both players may block time,
however, for a player to win for an objective, she must not be responsible for preventing time from
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x ≤ 100 → y := 0

¬p p

y ≥ 1 → x := 0
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y ≤ 2 → y := 0

b2

b1

Fig. 1. A timed automaton game.

diverging. It has been shown in [17] that this is equivalent to requiring that the players use only
receptive strategies [4, 21], which do not prevent time from diverging.

Example. Consider the game depicted in Figure 1. Let edge a be controlled by player-1; the others
being controlled by player-2. Suppose we want to know what is the earliest time that player-1 can
reach p starting from the state 〈¬p, x = 0, y = 0〉 (i.e., the initial values of both clocks x and y

are 0). Player-1 is not able to guarantee time divergence, as player-2 can keep on choosing the
edge b1. On the other hand, we do not want to put any restriction of the number of times that
player-2 chooses b1. Requiring that the players use only non-zeno strategies avoids such unnecessary
restrictions, and gives the correct minimum time for player-1 to reach p, namely, 101 time units.

Contribution. We consider the minimum-time reachability problem (for timed automaton games),
in the framework of [12, 17]. We present an EXPTIME algorithm to compute the minimum time
needed by player-1 to force the game into a target location, with both players restricted to using only
receptive strategies (note that reachability in timed automaton games is EXPTIME-complete [16]).
The proof technique builds on techniques from [12, 17]. We first show that the minimum time can be
obtained by solving a certain µ-calculus fixpoint equation. We then give a proof of termination for
the fixpoint evaluation. This requires an important new ingredient: an extension of the clock-region
equivalence [3] for timed automata. We show our extended region equivalence classes to be stable
with respect to the monotone functions used in the fixpoint equation. Using results from [17], we
manage to restrict the fixpoint computation to finitely many regions and thus guarantee termina-
tion.

We note that standard clock regions do not suffice for the solution. The minimum-time reach-
ability game has two components: a reachability part that can be handled by discrete arguments
based on the clock-region graph; and a minimum-time part that requires minimization within clock
regions (cf. [11]). Unfortunately, both arguments are intertwined and cannot be considered in isola-
tion. Our extended regions decouple the two parts in the proofs. We also note that region sequences
that correspond to time-minimal runs may in general be required to contain region cycles in which
time does not progress by an integer amount; thus a reduction to a loop-free region game, as in [1],
is not possible.

Related work. Only special cases of the minimum-time reachability problem have been solved
before: [5] restricts attention to the case where every cycle of the timed automaton ensures syntac-
tically that a positive amount of time passes (a.k.a. strong non-zenoness assumption); [2] considers
timed automaton games that are restricted to a bounded number of moves; [17] presents an ap-
proximate computation of the minimum time (computation of the exact minimum time being left
open). The general case for weighted timed automaton games (timed automaton games augmented
with costs on discrete transitions and cost rates on locations) is undecidable [8]. The recent work
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of [18] presents a strategy improvement algorithm that computes the minimum time in all timed
automaton games, but it does not require strategies to be receptive. Average-reward games in the
framework of [12] are considered in [1], but with the durations of time moves restricted to either 0
or 1. The non-game version of the minimum-time reachability problem is solved in [11].

Outline. In Section 2, we recall the definitions of the timed games framework from [12]. The
minimum-time reachability problem is defined in Section 3. Section 4 gives an algorithm that
computes the minimum time in timed automaton games. The algorithm runs in time exponential
in the number of clocks and the size of clock constraints.

2 Timed Games

2.1 Timed Game Structures

We use the formalism of [12]. A timed game structure is a tuple G = 〈S,Σ, σ,A1,A2, Γ1, Γ2, δ〉 with
the following components:

– S is a set of states.
– Σ is a finite set of propositions.
– σ : S 7→ 2Σ is the observation map, which assigns to every state the set of propositions that are

true in that state.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively. We assume that

⊥i 6∈ Ai, and write A⊥
i for Ai ∪{⊥i}. We also assume A⊥

1 and A⊥
2 to be disjoint. The set of

moves for player i is Mi = IR≥0 ×A⊥
i . Intuitively, a move 〈∆,ai〉 by player i indicates a waiting

period of ∆ time units followed by a discrete transition labeled with action ai.
– Γi : S 7→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s) contains the moves

that are available to player i. We require that 〈0,⊥i〉 ∈ Γi(s) for all states s ∈ S and i ∈ {1, 2}.
Intuitively, 〈0,⊥i〉 is a time-blocking stutter move.

– δ : S×(M1∪M2) 7→ S is the transition function. We require that for all time delays ∆,∆′ ∈ IR≥0

with ∆′ ≤ ∆, and all actions ai ∈ A⊥
i , we have (1) 〈∆,ai〉 ∈ Γi(s) iff both 〈∆′,⊥i〉 ∈ Γi(s) and

〈∆ − ∆′, ai〉 ∈ Γi(δ(s, 〈∆
′,⊥i〉)); and (2) if δ(s, 〈∆′,⊥i〉) = s′ and δ(s′, 〈∆ − ∆′, ai〉) = s′′, then

δ(s, 〈∆,ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both players simultaneously
propose moves 〈∆1, a1〉 ∈ Γ1(s) and 〈∆2, a2〉 ∈ Γ2(s). The move with the shorter duration “wins”
in determining the next state of the game. If both moves have the same duration, then one of
the two moves is chosen non-deterministically. Formally, we define the joint destination function
δjd : S × M1 × M2 7→ 2S by

δjd(s, 〈∆1, a1〉, 〈∆2, a2〉) =






{δ(s, 〈∆1, a1〉)} if ∆1 < ∆2;
{δ(s, 〈∆2, a2〉)} if ∆2 < ∆1;
{δ(s, 〈∆1, a1〉), δ(s, 〈∆2, a2〉)} if ∆1 = ∆2.

The time elapsed when the moves m1 = 〈∆1, a1〉 and m2 = 〈∆2, a2〉 are proposed is given
by delay(m1,m2) = min(∆1,∆2). The boolean predicate blamei(s,m1,m2, s

′) indicates whether
player i is “responsible” for the state change from s to s′ when the moves m1 and m2 are proposed.
Denoting the opponent of player i ∈ {1, 2} by ∼i = 3 − i, we define

blamei(s, 〈∆1, a1〉, 〈∆2, a2〉, s
′) =

(
∆i ≤ ∆∼i ∧ δ(s, 〈∆i, ai〉) = s′

)
.
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A run of the timed game structure G is an infinite sequence r = s0, 〈m
0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . .

such that sk ∈ S and mk
i ∈ Γi(sk) and sk+1 ∈ δjd(sk,m

k
1 ,m

k
2) for all k ≥ 0 and i ∈ 1, 2. For k ≥ 0,

let time(r, k) denote the “time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1,m

j
2)

(we let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run prefix r[0..k] is the
finite prefix of the run r that ends in the state sk; we write last(r[0..k]) for the ending state sk of
the run prefix. Let Runs be the set of all runs of G, and let FinRuns be the set of run prefixes.

A strategy πi for player i ∈ {1, 2} is a function πi : FinRuns 7→ Mi that assigns to every run
prefix r[0..k] a move to be proposed by player i at the state last(r[0..k]) if the history of the game
is r[0..k]. We require that πi(r[0..k]) ∈ Γi(last(r[0..k])) for every run prefix r[0..k], so that strategies
propose only available moves. The results of this paper are equally valid if strategies do not depend
on past moves chosen by the players, but only on the past sequence of states and time delays [12].
For i ∈ {1, 2}, let Πi be the set of player-i strategies. Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the
set of possible outcomes of the game starting from a state s ∈ S is denoted Outcomes(s, π1, π2): it
contains all runs r = s0, 〈m

0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . such that s0 = s and for all k ≥ 0 and i ∈ {1, 2},

we have πi(r[0..k]) = mk
i .

We distinguish between physical time and game time. We allow moves with zero time delay,
thus a physical time t ∈ IR≥0 may correspond to several linearly ordered states, to which we assign
the game times 〈t, 0〉, 〈t, 1〉, 〈t, 2〉, . . . For a run r ∈ Runs, we define the set of game times as

GameTimes(r) =
{〈t, k〉 ∈ IR≥0 × IN | 0 ≤ k < |{j ≥ 0 | time(r, j) = t}|} ∪
{〈t, 0〉 | time(r, j) ≥ t for some j ≥ 0}.

The state of the run r at a game time 〈t, k〉 ∈ GameTimes(r) is defined as

state(r, 〈t, k〉) =






r[j + k] if time(r, j) = t and for all j′ < j, time(r, j′) < t;
δ(r[j], 〈t − time(r, j),⊥i〉) if time(r, j) < t < time(r, j + 1) and

r[0..j + 1] = r[0..j], 〈mj
1,m

j
2〉, r[j + 1] and

blamei(r[j],m
j
1,m

j
2, r[j + 1])

Note that if r is a run of the timed game structure G, and time(r, j) < t < time(r, j + 1), then
δ(r[j], 〈t − time(r, j),⊥i〉) is a state in S, namely, the state that results from r[j] by letting time
t − time(r, j) pass. We say that the run r visits a set X ⊆ S at time t if there is a τ = 〈t, k〉 ∈
GameTimes(r) such that state(r, τ) ∈ X. A run r visits a proposition p ∈ Σ if it visits the set Sp

defined as {s | p ∈ σ(s)}.

2.2 Timed Automaton Games

Timed automata [3] suggest a finite syntax for specifying infinite-state timed game structures. A
timed automaton game is a tuple T = 〈L,Σ, σ,C,A1,A2, E, γ〉 with the following components:

– L is a finite set of locations.

– Σ is a finite set of propositions.

– σ : L 7→ 2Σ assigns to every location a set of propositions.

– C is a finite set of clocks. We assume that z ∈ C for the unresettable clock z, which is used to
measure the time elapsed since the start of the game.

– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
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– E ⊆ L × (A1 ∪A2) × Constr(C) × L × 2C\{z} is the edge relation, where the set Constr(C) of
clock constraints is generated by the grammar

θ ::= x ≤ d | d ≤ x | ¬θ | θ1 ∧ θ2

for clock variables x ∈ C and nonnegative integer constants d. For an edge e = 〈l, ai, θ, l′, λ〉,
the clock constraint θ acts as a guard on the clock values which specifies when the edge e can
be taken, and by taking the edge e, the clocks in the set λ ⊆ C\{z} are reset to 0. We require
that for all edges 〈l, ai, θ

′, l′, λ′〉, 〈l, ai, θ
′′, l′′, λ′′〉 ∈ E with l′ 6= l′′, the conjunction θ′ ∧ θ′′ is

unsatisfiable. This requirement ensures that a state and a move together uniquely determine a
successor state.

– γ : L 7→ Constr(C) is a function that assigns to every location an invariant for both players. All
clocks increase uniformly at the same rate. When at location l, each player i must propose a
move out of l before the invariant γ(l) expires. Thus, the game can stay at a location only as
long as the invariant is satisfied by the clock values.

A clock valuation is a function κ : C 7→ IR≥0 that maps every clock to a nonnegative real. The set
of all clock valuations for C is denoted by K(C). Given a clock valuation κ ∈ K(C) and a time
delay ∆ ∈ IR≥0, we write κ + ∆ for the clock valuation in K(C) defined by (κ + ∆)(x) = κ(x) + ∆

for all clocks x ∈ C. For a subset λ ⊆ C of the clocks, we write κ[λ := 0] for the clock valuation in
K(C) defined by (κ[λ := 0])(x) = 0 if x ∈ λ, and (κ[λ := 0])(x) = κ(x) if x 6∈ λ. A clock valuation
κ ∈ K(C) satisfies the clock constraint θ ∈ Constr(C), written κ |= θ, if the condition θ holds when
all clocks in C take on the values specified by κ.

A state s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together with a clock
valuation κ ∈ K(C) such that the invariant at the location is satisfied, that is, κ |= γ(l). Let S be
the set of all states of T. In a state, each player i proposes a time delay allowed by the invariant
map γ, together either with the action ⊥, or with an action ai ∈ Ai such that an edge labeled ai

is enabled after the proposed time delay. We require that for i ∈ {1, 2} and for all states s = 〈l, κ〉,
if κ |= γ(l), either κ + ∆ |= γ(l) for all ∆ ∈ IR≥0, or there exist a time delay ∆ ∈ IR≥0 and an
edge 〈l, ai, θ, l′, λ〉 ∈ E such that (1) ai ∈ Ai and (2) κ + ∆ |= θ and for all 0 ≤ ∆′ ≤ ∆, we have
κ + ∆′ |= γ(l), and (3) (κ + ∆)[λ := 0] |= γ(l′).

The timed automaton game T defines the following timed game structure [[T]] =
〈S,Σ, σ∗,A1,A2, Γ1, Γ2, δ〉:

– S is defined above.
– σ∗(〈l, κ〉) = σ(l).
– For i ∈ {1, 2}, the set Γi(〈l, κ〉) contains the following elements:

1. 〈∆,⊥i〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l).
2. 〈∆,ai〉 if for all 0 ≤ ∆′ ≤ ∆, we have κ + ∆′ |= γ(l), and ai ∈ Ai, and there exists an edge

〈l, ai, θ, l′, λ〉 ∈ E such that κ + ∆ |= θ.

– δ(〈l, κ〉, 〈∆,⊥i〉) = 〈l, κ + ∆〉, and δ(〈l, κ〉, 〈∆,ai〉) = 〈l′, (κ + ∆)[λ := 0]〉 for the unique edge
〈l, ai, θ, l′, λ〉 ∈ E with κ + ∆ |= θ.

2.3 Clock Regions

Timed automaton games can be solved using a region construction from the theory of timed au-
tomata [3]. For a real t ≥ 0, let frac(t) = t − ⌊t⌋ denote the fractional part of t. Given a timed
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automaton game T, for each clock x ∈ C, let cx denote the largest integer constant that appears in
any clock constraint involving x in T Two clock valuations κ1, κ2 ∈ K(C) are clock-region equivalent,
denoted κ1

∼= κ2, if the following three conditions hold:

1. For all x ∈ C, either ⌊κ1(x)⌋ = ⌊κ2(x)⌋, or both ⌊κ1(x)⌋ > cx, ⌊κ2(x)⌋ > cx.

2. For all x, y ∈ C with κ1(x) ≤ cx and κ1(y) ≤ cy, we have frac(κ1(x)) ≤ frac(κ1(y)) iff
frac(κ2(x)) ≤ frac(κ2(y)).

3. For all x ∈ C with κ1(x) ≤ cx, we have frac(κ1(x)) = 0 iff frac(κ2(x)) = 0.

Two states 〈l1, κ1〉, 〈l2, κ2〉 ∈ S are clock-region equivalent, denoted 〈l1, κ1〉 ∼= 〈l2, κ2〉, iff l1 = l2
and κ1

∼= κ2. It is not difficult to see that ∼= is an equivalence relation on S. A clock region is
an equivalence class with respect to ∼=. There are finitely many clock regions; more precisely, the
number of clock regions is bounded by |L| ·

∏
x∈C(cx + 1) · |C|! · 2|C|. For a state s ∈ S, we write

[s] ⊆ S for the clock region containing s. These clock regions induce a time-abstract bisimulation.

3 The Minimum-Time Reachability Problem

Given a state s and a target proposition p ∈ Σ in a timed game structure G, the reachability problem
is to determine whether starting from s, player-1 has a strategy for visiting the proposition p. We
must make sure that player-2 does not prevent player-1 from reaching a target state by blocking
time. We also require player-1 to not block time as it can lead to physically unmeaningful plays.
These requirements can be achieved by requiring strategies to be receptive [21, 4]. Formally, we first
define the following two sets of runs:

– Timediv ⊆ Runs is the set of all time-divergent runs. A run r is time-divergent if
limk→∞ time(r, k) = ∞.

– Blamelessi ⊆ Runs is the set of runs in which player i is responsible only for finitely many
transitions. A run s0, 〈m

0
1,m

0
2〉, s1, 〈m

1
1,m

1
2〉, . . . belongs to the set Blamelessi, for i = {1, 2}, if

there exists a k ≥ 0 such that for all j ≥ k, we have ¬ blamei(sj ,m
j
1,m

j
2, sj+1).

A strategy πi for player i ∈ {1, 2} is receptive if for all opposing strategies π∼i, and all states
s ∈ S, Outcomes(s, π1, π2) ⊆ Timediv∪Blamelessi. Thus, no what matter what the opponent does,
a receptive player-i strategy should not be responsible for blocking time. Strategies that are not
receptive are not physically meaningful (note that receptiveness is not sufficient for a strategy to
be physically meaningful, see [10]). For i ∈ {1, 2}, let ΠR

i be the set of player-i receptive strategies.
A timed game structure is well-formed if both players have receptive strategies. We restrict our
attention to well-formed timed game structures. Well-formedness of timed automaton games can
be checked for (see [17]).

We say player-1 wins for the reachability objective p at state s, denoted s ∈
〈
〈1〉

〉
3p, if he

has a receptive strategy π1 such that for all player-2 receptive strategies π2, we have that all runs
r ∈ Outcomes(s, π1, π2) visit p.

Equivalently [17], we can define player-1 to be winning for the reachability objective p at state
s if he has a strategy π1 such that for all player-2 strategies π2, for all runs r ∈ Outcomes(s, π1, π2):

– if r ∈ Timediv, then r visits the proposition p;

– if r 6∈ Timediv, then r ∈ Blameless1.
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The minimum-time reachability problem is to determine the minimal time in which a player can
force the game into a set of target states, using only receptive strategies. Formally, given a timed
game structure G, a target proposition p ∈ Σ, and a run r of G, let

Tvisit(G, r, p) =

{
∞ if r does not visit p;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

The minimal time for player-1 to force the game from a start state s ∈ S to a visit to p is then

Tmin(G, s, p) = inf
π1∈ΠR

1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

Tvisit(G, r, p)

We omit G when clear from the context.

4 Solving for Minimum-Time Reachability

We restrict our attention to well-formed timed automaton games. The definition of Tmin quantifies
strategies over the set of receptive strategies. Our algorithm will instead work over the set of all
strategies. Theorem 1 presents this reduction. We will then present a game structure for the timed
automaton game T in which Timediv and Blameless1 can be represented using B�uchi and co-B�uchi
constraints. This builds on the framework of [12] in which a run satisfies the reachability objective p

for player-1 iff it belongs in (Timediv∩Reach(p))∪(¬Timediv∩Blameless1), where Reach(p) denotes
the set of runs which visit p. In addition, our game structure will also have a backwards running
clock, which will be used in the computation of the minimum time, using a µ-calculus algorithm
on extended regions.

4.1 Allowing Players to Use All Strategies

To allow quantification over all strategies, we first modify the payoff function Tvisit, so that players
are maximally penalised on zeno runs:

TUR
visit(r, p) =






∞ if r 6∈ Timediv and r 6∈ Blamelessi;
∞ if r ∈ Timediv and r does not visit p;
0 if r 6∈ Timediv and r ∈ Blamelessi;
inf {t ∈ IR≥0 | p ∈ σ(state(r, 〈t, k〉)) for some k} otherwise.

It turns out that penalizing on zeno-runs is equivalent to penalising on non-receptive strategies:

Theorem 1. Let s be a state and p a proposition in a well-formed timed game structure G. Then:

Tmin(s, p) = inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

4.2 Reduction to Reachability with B�uchi and co-B�uchi Constraints

We now decouple reachability from optimizing for minimal time, and show how reachability with
time divergence can be solved for, using an appropriately chosen µ-calculus fixpoint.
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Lemma 1 ([17]). Given a state s, and a proposition p of a well-formed timed automaton game
T, 1)we can determine if Tmin(s, p) < ∞ , and 2) If Tmin(s, p) < ∞, then Tmin(s, p) < M =
8|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|. This upper bound is the same for all s′ ∼= s.

Let M be the upper bound on Tmin(s, p) as in Lemma 1 if Tmin(s, p) < ∞, and M = 1 otherwise.
For a number N , let IR[0,N ] and IR[0,N) denote IR ∩ [0,N ] and IR ∩ [0,N) respectively. We first

look at the enlarged game structure [̂[T]] with the state space Ŝ = S × IR[0,1) × (IR[0,M ] ∪ {⊥}) ×

{true, false}2, and an augmented transition relation δ̂ : Ŝ × (M1 ∪ M2) 7→ Ŝ. In an augmented
state 〈s, z, β, tick , bl1〉 ∈ Ŝ, the component s ∈ S is a state of the original game structure [[T]], z is
value of a fictitious clock z which gets reset every time it hits 1, β is the value of a fictitious clock
which is running backwards, tick is true iff the last transition resulted in the clock z hitting 1 (so
tick is true iff the last transition resulted in z = 0), and bl1 is true if player-1 is to blame for the
last transition.

Formally, 〈s′, z′, β′, tick ′, bl ′1〉 = δ̂(〈s, z, β, tick , bl1〉, 〈∆,ai〉) iff

1. s′ = δ(s, 〈∆,ai〉)
2. z

′ = (z + ∆) mod 1;
3. β′ = β ⊖ ∆, where we define β ⊖ ∆ as β − ∆ if β 6= ⊥ and β − ∆ ≥ 0, and ⊥ otherwise (⊥ is

an absorbing value for β).
4. tick′ = true if z + ∆ ≥ 1, and false otherwise
5. bl1 = true if ai ∈ A⊥

1 and false otherwise.

Each run r of [[T]], and values z ∈ IR≥0, β ≤ M can be mapped to a corresponding unique run

r̂z,β in [̂[T]], with r̂z,β[0] = 〈r[0], z, β, false, false〉. Similarly, each run r̂ of [̂[T]] can be projected to
a unique run r̂ ↓ T of [[T]]. It can be seen that the run r is in Timediv iff tick is true infinitely often
in r̂z,β, and that the set Blameless1 corresponds to runs along which bl1 is true only finitely often.

Lemma 2. Given a timed game structure [[T]], let X̂p = Sp × IR[0,1) × {0} × {true, false}2.

1. For a run r of the timed game structure [[T]], let Tvisit(r, p) < ∞. Then, Tvisit(r, p) = inf{β | β ∈
IR[0,M ] and r̂0,β visits the set X̂p}.

2. Let Tmin(s, p) < ∞. Then,

Tmin(s, p) = inf
{

β | β ∈ IR[0,M ] and 〈s, 0, β, false, false〉 ∈
〈
〈1〉

〉
3X̂p

}

3. If Tmin(s, p) = ∞, then for all β, we have 〈s, 0, β, false, false〉 6∈
〈
〈1〉

〉
3X̂p.

The rechability objective can be reduced to a parity game: each state in Ŝ is assigned an index
Ω : Ŝ 7→ {0, 1}, with Ω(ŝ) = 1 iff ŝ 6∈ X̂p; and tick ∨ bl1 = true. We also modify the game structure

so that the states in X̂p are absorbing.

Lemma 3. For the timed game [̂[T]] with the reachability objective X̂p, the state ŝ =

〈s, 0, β, false, false〉 ∈
〈
〈1〉

〉
3X̂p iff player-1 has a strategy π1 such that for all strategies π2 of

player-2, and all runs r̂0,β ∈ Outcomes(ŝ, π1, π2), the index 1 does not occur infinitely often in r̂0,β.

The fixpoint formula for solving the parity game in Lemma 3 is given by (as in [13]),

Y = µY νZ
[
(Ω−1(1) ∩ CPre1(Y )) ∪ (Ω−1(0) ∩ CPre1(Z))

]

The fixpoint expression uses the variables Y,Z ⊆ Ŝ and the controllable predecessor operator,

CPre1 : 2
bS 7→ 2

bS , defined formally by CPre1(X) ≡ {ŝ | ∃m1 ∈ Γ1(ŝ) ∀m2 ∈ Γ2(ŝ) (δ̂jd(ŝ,m1,m2) ⊆
X)}. Intuitively, ŝ ∈ CPre1(X) iff player 1 can force the augmented game from ŝ into X in one
move.
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4.3 Termination of the Fixpoint Iteration

We prove termination of the µ-calculus fixpoint iteration by demonstrating that we can work on a
finite partition of the state space. Let an equivalence relation ∼=e on the states in Ŝ be defined as:
〈〈l1, κ1〉, z1, β1, tick1, bl11〉

∼=e 〈〈l
2, κ2〉, z2, β2, tick2, bl21〉 iff

1. l1 = l2, tick1 = tick2, and bl1 = bl2.

2. κ̂1 ∼= κ̂2 where κ̂i : C ∪ {z} 7→ IR≥0 is a clock valuation such that κ̂i(c) = κi(c) for c ∈ C,

κ̂i(z) = z
i,and cz = 1 (cz is the maximum value of the clock z in the definition of ∼=) for

i ∈ {1, 2}.
3. β1 = ⊥ iff β2 = ⊥.
4. If β1 6= ⊥, β2 6= ⊥ then

– ⌊β1⌋ = ⌊β2⌋
– frac(β1) = 0 iff frac(β2) = 0.
– For each clock x ∈ C∪{z} with κ1(x) ≤ cx and κ2(x) ≤ cx, we have frac(κ1(x))+frac(β1) ∼ 1

iff frac(κ2(x)) + frac(β2) ∼ 1 with ∼ ∈ {<,=, >}.

The number of equivalence classes induced by ∼=e is again finite
(O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
). We call each equivalence class an extended region.

An extended region Y of [̂[T]] can be specified by the tuple 〈l, tick , bl1, h,P, βi, βf , C<, C=, C>〉
where for a state ŝ = 〈〈l, κ〉, z, β, tick , bl1〉,

– l, tick , bl1 correspond to l, tick , bl1 in ŝ.

– h is a function which specifies the integer values of clocks: h(x) = ⌊κ(x)⌋ if κ(x) < Cx + 1, and
h(x) = Cx + 1 otherwise.

– P ⊆ 2C∪{z} is a partition of the clocks {C0, . . . , Cn | ⊎Ci = C ∪ {z}, Ci 6= ∅ for i > 0}, such
that 1)for any pair of clocks x, y, we have frac(κ(x)) < frac(κ(y)) iff x ∈ Cj, y ∈ Ck for j < k;
and 2)x ∈ C0 iff frac(κ(x)) = 0.

– βi ∈ IN ∩ {0, . . . ,M} ∪ {⊥} indicates the integral value of β.
– βf ∈ {true, false} indicates whether the fractional value of β is greater than 0, βf = true iff

β 6= ⊥ and frac(β) > 0.
– For a clock x ∈ C∪{z} and β 6= ⊥, we have frac(κ(x))+frac(β) ∼ 1 iff x ∈ C∼ for ∼ ∈ {<,=, >}.

Pictorially, the relationship between κ̂ and β can be visualised as in Fig. 2. The figure depicts
an extended region for C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< = C ∪ {z}, C= = ∅, C> = ∅.
The vertical axis is used for the fractional value of β. The horizontal axis is used for the fractional
values of the clocks in Ci. Thus, given a disjoint partition {C0, . . . , Cn} of the clocks, we pick n + 1

points on a line parallel to the horizontal axis, {〈Cf
0 , frac(β)〉, . . . , 〈Cf

n , frac(β)〉}, with C
f
i being the

fractional value of the clocks in the set Ci at κ̂.

Lemma 4. Let X ⊆ Ŝ consist of a union of extended regions in a timed game structure [̂[T]] . Then
CPre1(X) is again a union of extended regions.

Lemma 4 demonstrates that the sets in the fixpoint computation of the µ-calculus algorithm
which computes winning states for player-1 for the reachability objective X̂p consist of unions of
extended regions. Since the number of extended regions is finite, the algorithm terminates.

Theorem 2. For a state s and a proposition p in a timed automaton game T,
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Fig. 2. An extended region with C< = C ∪ {z}, C= = ∅, C> = ∅

1. The minimum time for player-1 to visit p starting from s (denoted Tmin(s, p)) is computable in
time O

(
(|L| ·

∏
x∈C(cx + 1) · |C + 1|! · 2|C|)2 · |C|

)
.

2. For every region R of [[T]], either there is a constant dR ∈ IN ∪ {∞} such that for every state
s ∈ R, we have Tmin(s, p) = dR, or there is an integer constant dR and a clock x ∈ C such that
for every state s ∈ R, we have Tmin(s, p) = dR − frac(κ(x)), where κ(x) is the value of the clock
x in s.
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A Appendix

Proof of Theorem 1

We restrict our attention to strategies for plays starting from state s. The proof of the theorem
relies on Lemmas 5,6 and 7.

Lemma 5. Consider a timed game structure G and a state s ∈ S. Let π1 ∈ ΠR
1 and πR

2 ∈ ΠR
2

be player-1 and player-2 receptive strategies, and let π2 ∈ Π2 be any player-2 strategy such that
Outcomes(s, π1, π2) ∩ Timediv 6= ∅. Let r∗ ∈ Outcomes(s, π1, π2) ∩ Timediv. Consider a player-2
strategy π∗

2 be defined as, π∗
2(r[0..k]) = π2(r

∗[0..k]) for all run prefixes r[0..k] of r∗, and π∗
2(r[0..k]) =

πR
2 (r[k′..k]) otherwise, where k′ is the first position such that r[0..k′] is not a run prefix of r∗. Then,

π∗
2 is a receptive strategy.

Proof. Intuitively, the strategy π∗
2 acts like π2 on r∗ , and like πR

2 otherwise. Consider any player-1
strategy π′

1 ∈ Π1, and any run r ∈ Outcomes(s, π′
1, π

∗
2). If r = r∗, then r ∈ Timediv. Suppose

r 6= r∗. Let k′ ≥ 0 be the first step in the game (with player-2 strategy π∗
2) which witnesses the

fact that r 6= r∗, that is, 1) we have r[0..k′ − 1] to be a run prefix of r∗, and 2) r[0..k′] to not be
a run prefix of r∗ Consider the state sk′ = r[k′]. After this point (ie., from r[0..k′] onwards), the
strategy π∗

2 behaves like πR
2 when “started” from sk′. Since πR

2 is a receptive player-2 strategy, we
have Outcomes(sk′ , π′

1, π
∗
2) ⊆ Timediv∪Blameless2. Thus, r ∈ Timediv∪Blameless2 (finite prefixes

of runs do not change membership in these sets). Hence π∗
2 is a receptive player-2 strategy.

Lemma 6. Consider a timed game structure G and a state s ∈ S. We have,

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p) = inf

π1∈ΠR
1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

Proof. Consider any π1 ∈ Π1 \ ΠR
1 . There exists π2 ∈ Π2 such that Outcomes(s, π1, π2) 6⊆

Timediv∪Blameless1. Thus, infπ1∈Π1\ΠR
1

supπ2∈Π2
supr∈Outcomes(s,π1,π2) TUR

visit(r, p) = ∞.

Lemma 7. Consider a timed game structure G and a state s ∈ S. For every
player-1 receptive strategy π1 ∈ ΠR

1 , we have supπ2∈Π2
supr∈Outcomes(s,π1,π2) TUR

visit(r, p) =

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) TUR
visit(r, p).

11



Proof. Let π2 ∈ Π2.

Consider r ∈ Outcomes(s, π1, π2). Since π1 is receptive, we cannot have r 6∈ Timediv and r 6∈
Blameless1.
Suppose r 6∈ Timediv. Then r ∈ Blameless1. In this case, 0 = TUR

visit(r, p) ≤ TUR
visit(r

′, p) for any
r′ ∈ Outcomes(s, π1, π

R
2 ) and πR

2 any player-2 receptive strategy (as we have a well-formed time
game structure, there exists some receptive strategy πR

2 ).

Suppose r ∈ Timediv and r does not visit p. Consider the strategy π∗
2 which acts like π2

on r, and like πR
2 otherwise, as formally defined in Lemma 5. We have π∗

2 to be receptive.
Clearly r ∈ Outcomes(s, π1, π

∗
2) does not visit p, and hence supr∈Outcomes(s,π1,π2) TUR

visit(r, p) =

supr∈Outcomes(s,π1,π∗

2) TUR
visit(r, p) = ∞.

Finally, let r visit p and be in Timediv. Let π∗
2 be a player-2 receptive strategy as in

Lemma 5. We again have r ∈ Outcomes(s, π1, π
∗
2), and hence supr∈Outcomes(s,π1,π2) TUR

visit(r, p) ≤

supr∈Outcomes(s,π1,π∗

2) TUR
visit(r, p).

Thus, supπ2∈Π2
supr∈Outcomes(s,π1,π2) TUR

visit(r, p) = supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) TUR
visit(r, p).

Lemmas 6 and 7 together imply

inf
π1∈Π1

sup
π2∈Π2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p) = inf

π1∈ΠR
1

sup
π2∈ΠR

2

sup
r∈Outcomes(s,π1,π2)

TUR
visit(r, p)

Theorem 1 follows from the fact that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 and r ∈ Outcomes(s, π1, π2), we have
TUR

visit(r, p) = Tvisit(r, p).

Proof of Lemma 2
The first claim is a corollary of the following proposition:

Proposition 1. Consider the set Sp for a proposition p in a timed game structure [[T]].

1. If a run r of [[T]] visits Sp at time t ≤ M , then, the run r̂0,β visits Sp × IR[0,1) × {0} ×
{true, false}2, for β = t.

2. If for some β ∈ IR, a run r̂ of [̂[T]] with r̂[0] = 〈s, 0, β, false, false〉 visits Sp × IR[0,1) × {0} ×
{true, false}2, then the corresponding run r = r̂ ↓ T of [[T]] visits Sp at time t = β.

Proposition 1 is a straightforward result of the fact that β is kept decrementing at rate −1 till it
hits 0.

The second claim of Lemma 2 essentially follows from the fact that the additional components
in the states do not help the players in creating more powerful strategies.
Tmin(s, p)
= infπ1∈ΠR

1
supπ2∈ΠR

2
supr∈Outcomes(s,π1,π2) Tvisit([[T]], r, p)

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2)

{
∞ if r does not visit p;

inf{β | β ∈ IR[0,M ] and r̂0,β visits the set X̂p} o.w.

}

= infπ1∈ΠR
1

supπ2∈ΠR
2

supr∈Outcomes(s,π1,π2) infβ∈IR[0,M]{
g(r, β)

∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise
}

= infβ∈IR[0,M]
infπ1∈ΠR

1
supπ2∈ΠR

2
supr∈Outcomes(s,π1,π2){

g(r, β)
∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise

}
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Now, considering plays in [̂[T]] which start from state ŝ = 〈s, z, β, tick , bl1〉, every strategy π̂i ∈ Π̂i

is equivalent to a strategy πi ∈ Πi in which player-i “guesses” the values of z, β, tick , bl1. Once these
initial values have been guessed, each player can keep on deterministically updating the values at

each step. Hence observation of the additional components in states of [̂[T]] do not help the players
in their strategies. Therefore,
Tmin(s, p) = infβ∈IR[0,M]

inf
cπ1∈cΠ1

R sup
cπ2∈cΠ2

R supbr0,β∈Outcomes(s,cπ1,cπ2){
g(r, β)

∣∣∣ g(r, β) = ∞ if r̂0,β does not visit X̂p; β otherwise
}

Proof of Lemma 3
We first note that the states in X̂p can be absorbing as [̂[G]] is a well-formed time game structure,
and hence player-1 has a receptive strategy which does not block time when the game starts at
state ŝ for every state ŝ ∈ X̂p. Consider a run r̂ such that r̂ visits X̂p. We can assume without loss
of generality that either time diverges in r̂, or time converges but player-1 is not to blame (player-1
can play a receptive strategy upon reaching X̂p). Thus this run satisfies the winning condition for

player-1. And since X̂p is absorbing in our parity game, we see 1 only finitely often.

Consider a run r̂ such that r̂ does not visit X̂p. Let time diverge in this run. This run violates
the winning condition for player-1, and correspondingly we also see the index 1 infinitely often (due
to tick being true infinitely often). Now let time converge in this run (so tick is true only finitely
often). If player-1 is to blame for blocking time, then the index 1 will again be true infinitely often.
If player-1 is not to blame, then bl1 will only be true finitely often in this run, and hence we will
see the index 1 only finitely often.

Lemma 8. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Consider a state ŝ ∈ Y

and t ∈ IR>0. Suppose (0, t] = T Y ∪ T Y ′
, such that for all τ ∈ T Y we have ŝ + τ ∈ Y , and for

all τ ∈ T Y ′
we have ŝ + τ ∈ Y ′ (Y → Y ′ is the first extended region change due to the passage

of time). Then, for all states ŝ2 ∈ Y , there exists t2 ∈ IR>0 such that for some T Y
2 , T Y ′

2 with

(0, t2] = T Y
2 ∪T Y ′

2, for all τ2 ∈ T Y
2 we have ŝ2 + τ2 ∈ Y , and for all τ2 ∈ T Y ′

2 we have ŝ2 + τ2 ∈ Y ′.

Proof. We outline a sketch of the proof. For simplicity, consider the values of each clock x to
be less than Cx + 1. We look at the time successors of states ŝ in Y . The following cases for
Y = 〈l, tick , bl1, h,P = {C0, . . . , Cn}, βi, βf , C<, C=, C>〉 can arise:

Case 1 C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< = C ∪ {z}, C= = ∅, C> = ∅.

For any state in Y , the next extended region Y ′ can only be 〈l, tick , bl1, h,P, βi, β
′
f =

false, C<, C=, C>〉, which is hit after a time of frac(βf ) (note that C
f
n + frac(β) < 1 implies P

is going to be unchanged in the time successor extended region).

Case 2 C0 = ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true, C< 6= ∅, C= 6= ∅, C> 6= ∅.
Pictorially, this can be depicted as in Fig. 4.

Consider any state in Y . The extended region changes after a time of 1 − C
f
n . The new state

then lies in an extended region such that C ′
i = Ci for 0 < i < n, and C ′

0 = Cn. Also, C
f
i

′
=

C
f
i +(1−C

f
n) for 0 < i < n, and fracβ′ = frac(β)−(1−C

f
n). We also have that if C

f
i +frac(β) ∼ 1,

then C
f
i

′
+ fracβ′ = C

f
i + frac(β) ∼ 1 for ∼ ∈ {<,=, >}, 0 < i < n. Thus the new state lies
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Fig. 4. An extended region with C< 6= ∅, C= 6= ∅, C> 6= ∅ and its time successor.

in the region 〈l, tick ′, bl1, h
′,P ′ = {C ′

0, . . . C
′
n−1 | C ′

i = Ci for 0 < i < n,C ′
0 = Cn}, βi, βf , C ′

< =
C< ∪ Cn, C ′

= = C=, C ′
> = C> \ Cn〉, with tick ′ = true iff z ∈ Cn, and h′ is h with the integer

values for clocks in Cn \ {z} incremented by 1. This analysis holds for all the states in Y . Thus
the extended region Y ′ following Y is unique.

Case 3 C0 6= ∅, βi ∈ IN ∩ {0, . . . ,M}, βf = true

All the states in Y then move to 〈l, tick , bl1, h,P ′ = {C ′
0, . . . , C

′
n+1 | C ′

0 = ∅ and C ′
i+1 = Ci, 0 ≤

i ≤ n}, βi, βf , C<, C=, C>〉.

Case 4 C0 6= ∅, βi ∈ IN ∩ {1, . . . ,M}, βf = false

The time successor in this case is 〈l, tick , bl1,P
′ = {C ′

0, . . . , C
′
n+1 | C ′

0 = ∅ and C ′
i+1 = Ci, 0 ≤

i ≤ n}, β′
i = βi − 1, β′

f = true, C ′
<, C ′

=, C ′
>〉. We show C ′

<, C ′
=, C ′

> to be unique as follows: the

new state ŝ + t has the constraints 1)frac(β′) = 1 − t and 2)Cf
i+1

′
= C

f
i + t for i ≤ n. Thus,

frac(β′) + C
f
i+1

′
= (1 − t) + C

f
i + t = 1 + C

f
i . Hence, C ′

< = ∅ and C ′
= = C ′

1 = C0 (the other
clocks belong in C ′

>..

Case 5 βi = 0, βf = false

We get β′ = ⊥ in the next state (and hence C< = C= = ∅, βi = ⊥, βf = false). The rest of the
components of the extended region have a unique value as in the time successors of standard
regions.

Case 6 βi = ⊥
The value of P ′ gets updated as in the time successors of standard regions.

The analysis of the remaining cases proceeds in a similar vein to the above cases.
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Lemma 8 has the following corollary, which states that the equivalence relation ∼=e induces a
time-abstract bisimulation.

Corollary 1. Let Y, Y ′ be extended regions in a timed game structure [̂[T]]. Suppose player-i has a
move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, for any s2 ∈ Y , player-i has a move from s2 to
some s′2 ∈ Y ′.

Let Y, Y ′
1 , Y ′

2 be extended regions. We have that from a state in Y , for every move of player-2 to
the extended region Y ′

2 , either player-1 can force the game in one step so that the next state lies in
Y ′

1 , or player-2 can always foil player-1 from going to the extended region Y ′
1 . Thus moves to some

extended regions always “beat” moves to other extended regions.

Lemma 9. Let Y, Y ′
1 , Y

′
2 be extended regions in a timed game structure [̂[T]]. Suppose player-i has

a move from s1 ∈ Y to s′1 ∈ Y ′, for i ∈ {1, 2}. Then, one of the following cases must hold:

1. From all states ŝ ∈ Y , player-1 has some move mbs
1 with δ̂(ŝ,mbs

1) ∈ Y ′
1 such that for all

moves mbs
2 of player-2 with δ̂(ŝ,mbs

2) ∈ Y ′
2, we have blame1(ŝ,m

bs
1,m

bs
2, δ̂(ŝ,m

bs
1)) = true and

blame2(ŝ,m
bs
1,m

bs
2, δ̂(ŝ,m

bs
2)) = false.

2. From all states ŝ ∈ Y , for all moves mbs
1 of player-1 with δ̂(ŝ,mbs

1) ∈ Y ′
1 , player-2 has some move

mbs
2 with δ̂(ŝ,mbs

2) ∈ Y ′
2 such that blame2(ŝ,m

bs
1,m

bs
2, δ̂(ŝ,m

bs
2)) = true.

Proof of Lemma 4
The lemma is essentially a corollary of Lemma 9.

Proof of Theorem 2
We prove the second part of the claim.

Proof. Let M be the upper bound on Tmin(s, p) as in Lemma 1 if Tmin(s, p) < ∞, and M = 1
otherwise. From the comments after Lemma 4, the states in Ŝ from which player-1 has a winning
strategy for reaching X̂p are computable, and consist of a union of extended regions ∪n

k=1Yk. Suppose
this union is non-empty. Using Lemma 2, the minimum time for player-1 to reach p from s is then
mink

{
inf

{
β | β ∈ IR[0,M ] and 〈s, 0, β, false, false〉 ∈ Yk

}}
. Note that s = 〈l, κ〉 is fixed here, only

β can be varied. We also have that inf{β | β ∈ IR[0,M ] and 〈〈l, κ〉, 0, β, false, false〉 ∈ Yk} is equal
to (letting Yk = 〈l, false, false, h,P, βi, βf , C<, C=, C>〉):

1. An integer when C> = C= = ∅ or when βf = false. The infimum value for β is reached when
βf = false (for then the set of β’s is a singleton). Thus, player-1 has an optimal strategy when
βf = false.

2. dk − frac(κ(x)) when C= = Cj 6= ∅, and where x ∈ Cj. The infimum value is actually attained
by player-1 with some strategy π1 in this case.

3. dk − frac(κ(x)) when C= = ∅, C> 6= ∅, where x ∈ Cj for C> = {Cj , . . . , Cn}. The infimum value
is not attained by player-1 in this case – he can only get arbitrarily close to the optimum.

Note that z ∈ C0 in every Yk (for, κ̂(z) = 0). Finally, mink{ek | ek = dk or dk − xk} is again an
expression of the form dr or dr − x over a region.
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