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Abstract

We describe a new attack against web authentication, which we call dynamic pharming. Dynamic pharming works by

hijacking DNS and infecting the victim’s browser with malicious Javascript, which then exploits the name-based same-origin

policy to hijack a legitimate session after authentication has taken place. As a result, the attack works regardless of the authen-

tication scheme used. Dynamic pharming enables the adversary to eavesdrop on sensitive content, forge transactions, key log

secondary passwords, etc. To counter dynamic pharming attacks, we propose two locked same-origin policies for web browsers.

In contrast to the legacy same-origin policy, which regulates cross-object access control in browsers using domain names, the

locked same-origin policy enforces access using servers’ X.509 certificates and public keys. We show how our policies help

two existing web authentication mechanisms, client-side SSL and SSL-only cookies, resist both pharming and stronger active

attacks. Also, we present a deployability analysis of our policies based on a study of 14651 SSL domains. Our results suggest

one of our policies can be deployed today and interoperate seamlessly with the vast majority of legacy web servers. For our

other policy, we present a simple incrementally deployable “opt in” mechanism for legacy servers using policy files, and show

how web sites can use policy files to support self-signed and untrusted certificates, shared subdomain objects, and key updates.

1 Introduction

Phishing is a social engineering attack in which an adversary lures an unsuspecting Internet user to a web site posing as a

trustworthy business with which the user has a relationship [2]. The broad goal is identity theft; phishers try to fool web visitors

into revealing their login credentials, sensitive personal information, or credit card numbers with the intent of impersonating

their victims for financial gain. In a more advanced phishing attack known as pharming [46], the adversary subverts the domain-

name lookup system (DNS), which is used to resolve domain names to IP addresses. In this attack, the DNS infrastructure is

compromised so that DNS queries for the victim site’s domain (say, google.com) return an attacker-controlled IP address.

This can be accomplished via several techniques, including DNS cache poisoning and DNS response forgery. Pharming attacks

are particularly devious because the browser’s URL bar will display the domain name of the legitimate site, potentially fooling

even the most meticulous users.

Although pharming attacks have been relatively rare in practice, evidence suggests they may become a more serious threat

in the near future. Recent research has exposed complex and subtle dependencies between names and name servers [52],

suggesting the DNS infrastructure is more vulnerable to DNS poisoning attacks than previously thought. The ubiquity of

public wireless access points and wireless home routers introduces new pharming threats. Users are becoming accustomed

to accessing wireless routers in airports, restaurants, conferences, libraries, and other public spaces. Adversaries can set up

malicious wireless routers in these areas that offer free Internet access but redirect users to spoofed web sites. Also, many

users leave the default password and security settings on their home wireless home routers unchanged [58]. This enables

warkitting attacks [63, 64], a combination of wardriving and rootkitting, where an adversary maliciously alters wireless a

router’s configuration over a wireless connection. A related attack is drive-by pharming [61], where a malicious web site serves
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Strongest threat model protected against for:

Policy Information used to enforce access Locked web objects Shared locked web objects Untrusted certs

Legacy SOP (protocol,domain) phishers phishers phishers

Weak locked SOP (protocol,domain,validity of cert chain) active attackers phishers phishers

Strong locked SOP (protocol,domain,server public key) active attackers active attackers active attackers

(w/ policy files)

Table 1: Comparison of our locked same-origin policies with the legacy same-origin policy. This table shows the strongest

threat model under which each policy can isolate a legitimate server’s web objects (e.g., cookies, HTML documents, etc.) from

adversaries. Locked web objects refer to objects retrieved over SSL. Shared locked web objects refer to objects retrieved over

SSL which are intended to be shared among subdomains of a higher-level domain (e.g., domain cookies). Untrusted certs refer

to a legitimate server using a self-signed certificate or a certificate issued by a root CA untrusted by browsers.

content which scans a visitor’s internal network and compromises home routers with default passwords. After the adversary has

compromised the victim’s router, she can change the DNS settings or overwrite the firmware to redirect the victim’s requests.

We describe a new type of DNS attack against web authentication we call dynamic pharming. In a dynamic pharming attack,

the adversary initially delivers a web document containing malicious Javascript code to the victim, and then forces the victim’s

browser to connect to the legitimate server in a separate window or frame. The adversary waits for the victim to authenticate

herself to the legitimate server, and then uses the malicious Javascript to hijack the victim’s authenticated session.

Dynamic pharming takes advantage of how browsers currently implement the same-origin policy. The same-origin policy

prohibits a web object from one origin from accessing web objects from a different origin. Browsers currently enforce the

same-origin policy based on domain name and protocol. However, when an adversary controls the domain name mapping, the

legacy same-origin policy does not provide strong isolation between web objects co-executing in a user’s browser. In a dynamic

pharming attack, malicious Javascript from the pharmer and content from the legitimate server both appear to have the same

“origin” (i.e., same domain and protocol), and the browser allows the Javascript to access to the user’s authenticated session. As

a result, the attacker can gain complete control of the session, enabling her to eavesdrop on sensitive content, forge transactions,

key log secondary passwords, etc. Since dynamic pharming hijacks users’ sessions after authentication completes, irrespective

of the authentication mechanism, it can be used to compromise even the strongest web authentication schemes currently known,

including passwords, authentication cookies, and client-side SSL. We present dynamic pharming in more detail in Section 3.

1.1 The locked same-origin policies

Since dynamic pharming hijacks a user’s session after initial authentication completes, it is unlikely any future web authenti-

cation protocol developed for currently deployed browsers will resist dynamic pharming either. To resist dynamic pharming,

we must address the root of the problem: we must upgrade browsers’ same-origin policy. We propose two locked same-origin

policies as a solution to dynamic pharming. Instead of comparing domain names to enforce access control, our polices enforce

access control for web objects retrieved over SSL by using servers’ public keys and X.509 certificates. We refer to web ob-

jects retrieved over SSL as locked web objects because the browser can clearly associate the public key and X.509 certificate of

server hosting the object with the object. Our first proposal, the weak locked same-origin policy, isolates a domain’s locked web

objects with valid certificate chains from objects with invalid chains. This enables browsers to distinguish a legitimate server

using a valid certificate from pharmers using invalid certificates, such as self-signed certificates or certificates with CN/domain

mismatches. Our second proposal, the strong locked same-origin policy, enforces access control using cryptographic identity,

namely web sites’ public SSL keys. In the strong locked same-origin policy, the browser compares the public keys it associates

with locked web objects; access in granted only if they match. We present our locked same-origin policies in more detail in

Section 4 and show a comparison with the legacy same-origin policy in Table 1.

We show how our policies substantially increase browsers’ resistance to pharming attacks and provide both a solid and

necessary foundation for developing pharming resistant authentication. We show how our policies help two existing web

authentication mechanisms, client-side SSL and SSL-only cookies, resist pharming and stronger attacks. In addition, we

evaluate our policies in terms of deployability, meaning how well they interoperate with existing web servers. Based on the

results of a study of 14651 SSL domains, we found strong evidence that the weak locked same-origin policy can replace the

legacy same-origin policy today with minimal risk of breaking existing web sites (Section 4.4).

Although we did not find similar evidence for the strong locked same-origin policy, we propose a simple, incrementally

deployable and backwards compatible mechanism for web sites to “opt in” using policy files (Section 4.5). To “opt in”, we

propose a web site posts a policy file at a static well-known file name, say pk.txt, which enables a web site to specify how it
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would like the browser to enforce the strong locked same-origin policy. Policy files also support flexible server configurations

and key updates. In contrast to the weak locked same-origin policy, the strong locked same-origin policy has better security

properties, is compatible with sites using self-signed or untrusted certificates, and supports subdomain object sharing.

The locked same-origin policies are similar to work done independently and concurrently by Masone et al. on Web Server

Key Enabled Cookies, a new browser policy for protecting authentication cookies against pharming attacks [35]. However,

their proposal falls short of protecting cookies against dynamic pharming attacks. Also, they do not address pharming attacks

against other web objects or other web authentication mechanisms, e.g., client-side SSL, nor do they address subdomain object

sharing or key updates.

2 Preliminaries

2.1 Threat models

We consider three broad classes of adversaries, classified according to their capabilities.

Phishers. We assume a phisher has the following capabilities:

• Complete control of a web server with a public IP address. We assume a phisher uses a different domain name from the

target domain.

• The ability to send communications such as emails and instant messages to potential victims.

• Mount application-layer man-in-the-middle attacks, representing a legitimate server to the victim and proxying input

from the victim to the real server as needed.

There have been relatively few documented cases of application-layer man-in-the-middle attacks [19, 49, 50], most likely

because of the extra effort required to implement the attack. However, researchers have recently discovered a “Universal Man-

in-the-Middle Phishing Kit” [34], a hacker toolkit which enables a phisher to easily set up a MITM proxy attack against any

site she wishes.

Pharmers. An attacker with pharming capability has all the abilities of a phisher, plus

• The ability to change DNS records for the target site, such that the victim will resolve the target site’s name to the

attacker’s IP address.

In practice, such an attack might work through DNS poisoning, spoofed DNS responses, modifying a user’s /etc/hosts

file, tricking a user to modify her DNS settings, or by social engineering attacks against a domain name registry. We assume

the server under the pharmer’s control does not have the same IP address as the victim and cannot receive packets destined to

the victim’s IP address.

Active attackers. An active attacker has all the abilities of a pharmer, plus

• The ability to control the Internet routing infrastructure and re-route traffic destined to particular IP addresses.

• Eavesdrop on all traffic.

• Mount active, network-layer, man-in-the-middle attacks.

To date, phishers have been by far the most prevalent class of attacker; however, looking to the future, pharmers and active

attackers are a growing threat [52, 61, 63, 64], and it seems prudent to defend against these more powerful attackers as well, to

the extent possible.

2.2 The legacy same-origin policy

The same-origin policy (SOP) in web browsers governs access control among different web objects and prohibits a web object

from one origin from accessing web objects from a different origin [44]. By web objects, we mean HTTP cookies, HTML

documents, images, Javascript, CSS files, XML files, etc. A common example of “access” is Javascript referencing another

object. There are a few objects used by web pages our work does not address, and we discuss these in Section 4.8. In the

remainder of this paper, we will use “SOP” as an abbreviation for “same-origin policy”.
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Browsers currently consider two objects to have the same origin if the host and the protocol are the same for both

web objects. For example, Javascript executing on http://www.foo.com/index.html is allowed to access http:

//www.foo.com/other.html, but is not allowed to access https://www.foo.com/secure.html (different pro-

tocol) or http://www.xyz.com/index.html (different host). Other examples of “web object accesses” subject to the

SOP include determining which cookies to append to an HTTP request, Javascript document.cookie references, and XML-

HTTPRequest.

Note is there is a distinction between “access” and “causing to load”. A document can cause the browser to fetch and

load a web object from an different domain, e.g., by inlining an image from another site. The document can read certain

metaproperties of the object (e.g., height, width), but the SOP prevents the document from reading or modifying the content of

the loaded object.

2.3 Secure Sockets Layer (SSL) and X.509 certificates

The Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS), are cryptographic protocols for establishing

end-to-end secure channels for Internet traffic [11, 62]. HTTP over SSL is also known as HTTPS.

SSL uses X.509 certificates [24] to identify the server participating in the SSL connection. An X.509 certificate contains

the server’s public key, the domain name of the web site (specified in the CN subfield of the certificate), the public key of the

issuer of the certificate, the time period for which the certificate is valid, and the issuer’s signature over these fields. The private

key corresponding to a X.509 certificate can be used to sign another certificate, and so on, creating a chain of trust. The root of

this trust chain is typically a certificate authority (CA); web browsers ship with the certificates of some CAs which are deemed

to be trusted.

When the client’s web browser makes a connection to an SSL enabled web server over HTTPS, the browser must verify the

server’s certificate is valid. This involves numerous checks, but at a high level the browser must:

• Verify that every certificate in the chain has a valid signature from its predecessor, using the public key of the predecessor,

and that the last certificate in the chain is from a trusted CA.

• Verify that the CN field of the first certificate in the chain matches the domain name of the web site the browser intended

to visit.

• Verify every certificate has not expired.

If any of these checks fail, the browser warns the user and asks the user if it is safe to continue. If the user chooses, the

user may permit the SSL connection to continue even though any or all of these checks have failed. The reason is to ensure

compatibility with misconfigured certificates and SSL servers; a periodic survey by Security Space shows that approximately

63% of SSL certificates have such problems [57]. Also, this behavior by browsers allows web sites to use self-signed certificates

if they choose, instead of paying a CA for a certificate. Unfortunately, asking users whether to continue anyway in such cases

is a serious security vulnerability. Researchers have shown that users routinely ignore such security warnings and just click

“OK” [4, 8, 68]. In fact, users have become so ambivalent to security warnings, one vendor has developed “mouse auto-clicker”

software to automatically click through dialogs like these – aptly titled “Press the Freakin Button” [51]. Instead of a dialog

box, IE 7.0 uses a full page warning within the browser window offering similar options (i.e., ignore and continue, or cancel

connection). Unfortunately, studies suggest that users will ignore a full page warning as well [56]. We consider a certificate

that does not generate any warnings as valid. Otherwise, we consider it invalid.

After the browser validates the server’s certificate, it participates in a cryptographic protocol with the server where: 1) the

server proves knowledge of the private key corresponding to the public key in the certificate, and 2) they negotiate a session

key to encrypt and authenticate subsequent traffic between them. Unlike the certificate validation step, if there are any errors in

this protocol, the browser closes the connection with no chance of user override.

Client-side SSL. The most common usage of SSL is for server authentication, but in the SSL specification, a server can also

request client-side authentication, where the client also presents an X.509 certificate and proves knowledge of the corresponding

private key. Using client-side SSL, servers can identify a user with her SSL public key and authenticate her using the SSL

protocol.

2.4 Assumptions

We assume that attackers do not have access to the target site’s server machines or any secrets, such as private keys, contained

thereon. We also assume that many users will ignore certificate warnings, as researchers have shown that users routinely ignore
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Figure 1: An example of a dynamic pharming attack against www.vanguard.com. (1) Initially, the pharmer arranges for

the victim’s DNS queries for www.vanguard.com to resolve to the pharmer’s IP address, 6.6.6.6. (2) Then, when the victim

visits www.vanguard.com, the pharmer returns a trojan document containing malicious Javascript and a iframe referencing

Vanguard’s home page. (3) The pharmer then updates the DNS entry for www.vanguard.com to the IP address of Vanguard’s

legitimate server and denies subsequent connections from the victim. (4) This causes the victim’s browser to renew its DNS

entry for www.vanguard.com, and (5) load Vanguard’s legitimate home page in the iframe. (6) After the user authenticates

herself, the malicious Javascript in the trojan document hijacks her session with the legitimate server.

and dismiss such warnings [4, 8, 56, 68]. Finally, our solutions have limitations – we discuss them further in Section 4.8.

3 Dynamic pharming attacks

In this section, we show a new attack against web authentication we call dynamic pharming. In a simple, static pharming

attack, the adversary arranges for the victim’s DNS queries for the target domain to always return the adversary’s IP address. In

contrast, in a dynamic pharming attack, the adversary causes DNS queries to return either the legitimate server’s IP or its own

IP, depending on the situation.

We show how an adversary can use dynamic pharming to infect the victim’s browser with malicious Javascript and use this

Javascript to hijack the victim’s session with the target domain’s legitimate server. Dynamic pharming enables an adversary to

compromise all known authentication schemes for existing browsers, including passwords, authentication cookies, and client-

side SSL. In addition, the adversary can eavesdrop on sensitive content, forge transactions, key log secondary passwords, and

so on.

We now describe how our dynamic pharming works. Suppose the pharmer can control the results of DNS queries for www.

vanguard.com, and users authenticate themselves to www.vanguard.com using a strong authentication mechanism, say

client-side SSL. We assume users’ machines have been initialized with client-side SSL certificates, and www.vanguard.com

knows the public keys of its users’ certificates.

First, the pharmer initializes the DNS entry for www.vanguard.com to the pharmer’s IP address, say 6.6.6.6. The

pharmer also indicates in the DNS record that requesters should not cache this result, i.e., it sets the TTL=0. Now suppose a

user Alice visits https://www.vanguard.com/index.html with the intention of authenticating herself. The user’s

browser will attempt to establish an SSL connection, requiring the pharmer to present an X.509 certificate. If the server

certificate is not signed by one of the trusted CAs in the browser or the certificate’s CN does not match the server’s domain (i.e.,

www.vanguard.com), the browser will warn the user and ask her if it is safe to proceed. If the user heeds the warning and
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answers “no”, the browser will cancel the connection and the attack fails. If the user accepts the pharmer’s certificate, Alice

browser will establish an SSL connection to the pharmer at 6.6.6.6 and request index.html.

In response, the pharmer returns a “trojan” index.html document. The purpose of this trojan document is to monitor and

influence Alice’s subsequent interactions with the legitimate www.vanguard.com. The trojan document has the following

general structure:

<html>

<body>

<script>

---MALICIOUS JAVASCRIPT CODE---

</script>

<iframe

src="https://www.vanguard.com/index.html">

</iframe>

</body>

</html>

After the pharmer returns the trojan document to Alice, it updates the DNS entry for www.vanguard.com to the IP

address of the legitimate server for www.vanguard.com, say 1.2.3.4. This forces the browser to load the legitimate https:

//www.vanguard.com/index.html document into the <iframe> and display it to the user. 1 Since this request is over

SSL, the legitimate server for www.vanguard.comwill request client authentication, and the user’s browser will authenticate

her using her private key and certificate.2

After authentication completes, the malicious Javascript in the outer document takes control and monitors the user’s inter-

actions in the <iframe> with the legitimate server for www.vanguard.com. Since the outer document and the <iframe>

both have the same domain (www.vanguard.com) and same protocol (https), the SOP will allow the malicious Javascript

running in the outer document to access the content in the <iframe>. The trojan effectively hijacks control of Alice’s session

– it can eavesdrop on sensitive content, forge transactions, key log secondary passwords, etc. We show an example of a dynamic

pharming attack in Figure 1.

3.1 Defeating DNS pinning

One complication to mounting this attack is web browsers’ use of DNS pinning. With DNS pinning, a web browser caches the

result of a DNS query for a fixed period of time, regardless of the DNS entry’s specified lifetime. Browsers implement DNS

pinning to defend against variants of the “Princeton attack” [20]. In the “Princeton attack”, a malicious web server first lures a

victim who resides within a firewalled network containing privileged web servers. We assume these servers are accessible only

to machines behind the firewall. After the victim connects to the malicious server, the adversary changes its DNS entry to the

IP address of a sensitive web server located on the victim’s internal network. The SOP restricts malicious code from accessing

other domains, but since the adversary’s domain now resolves to an internal IP address, this attack enables Javascript served by

the adversary to access internal web servers.

DNS pinning poses a problem for dynamic pharming attacks because once a browser resolves a domain name using DNS, it

will continue to use the IP address and ignore any subsequent changes the pharmer makes in the DNS system. However, since

DNS pinning “breaks the web” in certain scenarios, e.g., dual homed IPv6/IPv4 servers, dynamic DNS, and automatic failover,

browsers implementors have recently relaxed their DNS pinning policies.

As a result, Martin Johns discovered a technique for circumventing DNS pinning [28]. Johns discovered that a pharmer

can force a victim to renew its DNS entry for a given domain on demand by rejecting connections from the victim, e.g., by

sending an ICMP “host not reachable” message in response to subsequent attempts to connect to the server. The browser reacts

by refreshing its DNS entry for the domain.

In the basic dynamic pharming attack, we exploit Johns’s observation. After the pharmer delivers the trojan document to

the user, it rejects subsequent requests from user’s machine and updates the DNS entry for www.vanguard.com to the IP

1Iframes are HTML elements which enable embedded documents. To prevent infinite recursion, most browsers disallow nesting where the URL of the

framed document is the same as an ancestor. To address this issue, the attack could redirect the victim’s first request to https://www.vanguard.com/

index2.html or arrange so that the legitimate home page from www.vanguard.com loads in a separate window.
2The authentication process could be more complicated, say with a supplementary password or explicit login button, but the presence of any additional

login mechanisms does not affect our attack.
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address of the legitimate server. Now, when the user’s browser loads the <iframe>, it will first attempt to contact the pharmer,

fail, refresh its DNS entry, receive the IP address of the legitimate server, and load the legitimate index.html document into

the <iframe>. The attack continues as before.

3.2 Using round robin DNS

To parallelize this attack against multiple concurrent users, it is inefficient to repeatedly update the DNS entry for www.

vanguard.com. If the adversary has compromised a local, root, or authoritative DNS server, or changed the authoritative

server of record for www.vanguard.com, the adversary can selectively respond with the pharmers IP or the legitimate

server’s IP depending on the stage of attack. However, if the adversary only has the ability to change DNS entries for www.

vanguard.com on a DNS server (e.g., by cache poisoning) this attack is unscalable because the pharmer must update the

DNS entry for each instance of the attack and reset it after the attack completes.

The pharmer can use round robin DNS entries to make this attack scalable. A round robin DNS entry consists of multiple

IP addresses for a single domain name. The DNS server returns an ordered list of the IP addresses in response to a query, but

rotates the order for each response. Web sites typically use round robin DNS to implement load balancing or automatic failover.

Browsers usually connect to the first IP address in the list, and this achieves some degree of load balancing among clients.

When the connection fails, the browser tries the next IP address on the list, until it successfully makes a connection.

To leverage round robin DNS entries in a dynamic pharming attack, the pharmers creates a round robin DNS entry con-

taining two IP address: the pharmer’s IP and the legitimate server’s IP. Roughly half the DNS responses will be in the order:

pharmer’s IP, server’s IP. In this case, the user will connect to the pharmer first, and the pharmer will deliver the trojan doc-

ument. The pharmer rejects subsequent connections from the user, and the user’s browser will automatically failover to the

legitimate server, after which the attack proceeds as before. For the other half of responses, the user will be delivered directly

to the legitimate server and the pharming attack will silently fail. This shows how an attacker with the ability to replace a single

record, once, (e.g., by cache poisoning) can still attack thousands or millions of users.

3.3 Discussion

Dynamic pharming attacks do not leverage vulnerabilities in any particular authentication mechanism; rather, they exploit how

browsers currently enforce the SOP. Since dynamic pharming hijacks the victim’s session after she authenticates herself to the

legitimate server, this attack most likely affects all known authentication mechanisms for current browsers, and probably all

future ones as well.

In some cases, pharming attacks can also steal users’ authentication credentials, e.g., passwords and authentication cookies.

Since the users’ URL bar will show the correct domain name, even the most meticulous user might be fooled into revealing

her password. Also, since browsers enforce the SOP based on domain names, pharmers can steal user’s authentication cookies

for the target site. Although dynamic pharming attacks against client-side SSL authentication do not enable pharmers to steal

users’ authentication credentials (i.e., their private keys), as we have seen, they can compromise users’ sessions in real time.

Some web sites use Javascript to detect and prevent framing, e.g.,

if (parent.frames.length > 0)

top.location.replace(document.location);

However, Javascript anti-framing techniques are not sufficient to resist dynamic pharming. Our attack does not depend on the

use of iframes to be successful. For instance, the attacker could load the legitimate index.html in another tab or window.

The SOP still allows malicious Javascript access to the second window, and this situation is much harder for legitimate site to

detect.

3.4 Proof of concept implementation

We implemented a proof of concept dynamic pharming attack using a pair of Apache SSL web servers (i.e, a pharmer and a

target) and round robin DNS. We tested the attack against two browsers: Firefox 2.0 running on Debian GNU/Linux 3.1 and

Microsoft Internet Explorer 7.0 running on Windows Server 2003 SP2. After the adversary delivers the trojan document, she

refuses further connections from the client. This causes the browser to renew its DNS entry for the target domain and connect

to the legitimate server, after which the adversary hijacks the session with the malicious Javascript in the trojan document. We

found both browsers to be vulnerable to this dynamic pharming attack.

7



4 The locked same-origin policy

Since dynamic pharming hijacks a user’s session after initial authentication completes, this attack is independent of the au-

thentication mechanism and affects all known authentication schemes for current browsers, including passwords, authentica-

tion cookies, and client-side SSL. It is therefore unlikely that any future web authentication protocol developed for existing

browsers will resist dynamic pharming either. Although dynamic pharming attacks leverage the implementation details of DNS

pinning, “fixing” DNS pinning is difficult. DNS pinning has a lengthy and controversial history in Firefox and Mozilla [40],

and the current implementation is an explicit compromise to support dynamic DNS and round robin DNS for failover [39, 41].

From the browser’s point of view, a dynamic pharming attack is indistinguishable from a failure of a site and DNS round robin

recovery. Lastly, it is unlikely web sites can resist dynamic pharming attacks effectively. The adversary has the advantage of

loading her document first; she can read and modify all of the legitimate server’s documents in the victim’s browser, as well as

control their execution environment.

To resist dynamic pharming, we must address the root of the problem: we must upgrade browsers’ SOP. A SOP based

on domain names will fail because pharmers control the mapping from domain name to subject. For web objects retrieved

over insecure HTTP, it is unclear how the browser can distinguish a pharmer from the legitimate server. However, for objects

retrieved over SSL, we argue browsers should enforce the SOP using cryptographic identity. We refer to web objects retrieved

over SSL as locked web objects, and we propose two locked same-origin policies to resist dynamic pharming attacks against

them.

We first present the weak locked same-origin policy, which isolates a domain’s locked web objects with valid certificate

chains from objects with invalid chains. We then present the strong locked same-origin policy, which is based on cryptographic

identity, namely web sites’ SSL public keys.

Both policies only apply new restrictions to locked web objects. For non-SSL web objects, the legacy SOP (namely, using

domain names) still applies. Like the legacy SOP, both locked SOPs deny unlocked web objects (that is, objects not retrieved

over SSL) access to locked web objects. We summarize our policies in comparison to the legacy SOP in Table 1.

4.1 The weak locked same-origin policy

The legacy SOP currently allows access to locked web objects only from other locked web objects originating from the same

domain.3 However, the legacy SOP does not distinguish between locked web objects retrieved from a legitimate server and

those from a pharmer spoofing the server’s domain name, and will allow access if the user ignores any certificate warnings. To

resist pharming attacks, the weak locked SOP augments the legacy SOP by tagging each locked web object with a validity bit

indicating whether the certificate chain corresponding to the SSL connection over which the object was retrieved contained any

errors (e.g., self-signed certificate, CN/domain mismatch), irrespective of how the user responded to any certificate warnings.

Then, the browser enforces access control between locked web objects using the tuple (domain name, validity bit), and allows

access if the tuples for the two objects match.

4.2 The strong locked same-origin policy

With the strong locked SOP, we propose browsers augment the legacy SOP by tagging each locked web object with the public

key of the other endpoint of the SSL connection (i.e., the web server). Then, the browser allows a locked web object to access

another locked web object only if their tuples of (domain name, public key) match. The strong locked SOP was inspired by

Key Continuity Management [17, 21, 53, 74], a technique for associating public keys with subjects and taking defensive action

when a subject’s public key unexpectedly changes in a future interaction.

4.3 Security analysis

Weak locked same-origin policy. If a web server hosting domain D (i.e., the target domain) uses a valid X.509 certificate

signed by a trusted root CA, the weak locked SOP resists phishing, pharming, and active attacks against D’s locked web

objects (i.e., illegitimate access by the adversary’s web objects) as long as the adversary is unable to obtain a valid certificate

for D. The weak locked SOP resists phishing attacks because a phisher has a different domain name. For pharming and active

attacks, the adversary can arrange for her web objects to have the same name as the target domain, but if she does not have a

3Exception: if a web site sets a non SSL-only cookie (i.e., without the secure attribute) over an SSL connection, then this policy allows the same domain

to access the cookie over non-SSL connections as well. Essentially, a non SSL-only cookie set over an SSL connection gets downgraded to an unlocked web

object.
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valid certificate for the target domain, the validity bit will be false, while the validity bit of the web server’s locked objects

will be true. Thus, the adversary is denied access.

If the target domain uses an invalid X.509 certificate (e.g., expired, CN/domain mismatch, or self-signed), the weak locked

SOP provides no additional protection over the legacy SOP. It resists phishing attacks, but does not protect against pharmers or

active attackers.

In contrast to the legacy SOP, the weak locked SOP does not depend on users correctly answering prompts in response to

certificate errors (e.g., if an adversary presents a self-signed certificate with a spoofed domain name). The browser tags locked

web objects according to the validity of the server’s certificate and its domain name, and nothing else. However, the weak

locked SOP does assume that the trusted root CAs do not issue valid certificates for D to unauthorized parties. Although CAs

take measures to prevent this, mistakes have been made in the past [38].

Strong locked same-origin policy. If a web server hosting domain D uses an X.509 certificate with public key PK, the

strong locked SOP resists phishing, pharming, and active attacks against D’s locked web objects as long as the adversary does

not know the corresponding private key to PK. As with the weak locked SOP, the strong locked SOP resists phishing attacks

because a phisher has a different domain name. In order to access D’s locked web objects, the adversary must pharm D and also

arrange for its own objects to be tagged with PK. However, the browser will only do this if 1) the adversary presents a X.509

certificate with PK, and 2) the browser and adversary can successfully establish an SSL connection. If the adversary tries to

present a certificate for PK and she does not know the private key corresponding to PK, she will not be able to successfully

complete the SSL handshake; the browser will automatically cancel the connection with no option of user override. Thus, since

the browser will only tag the adversary’s locked web objects with a public key different from PK, the browser will deny the

adversary access to D’s locked web objects. For the same reason, the strong locked SOP protects D’s locked web objects

against active attackers as well.

As with the weak locked SOP, the strong locked SOP does not depend on users correctly answering prompts in response to

certificate errors. Furthermore, in contrast to the weak locked SOP, the strong locked SOP does not require a web site to trust

root CAs not to issue certificates to unauthorized parties for its domain. Enforcement relies only on servers’ public keys.

4.4 Deployability analysis

If our locked same-origin policies are to be successful, they need to be easy to deploy and backwards compatible; they should

not “break the web” because of problems with deployment or interoperability with existing web servers. Since no browser

developer is likely to embrace a policy that makes her browser incompatible with existing web sites, legacy web servers had

better continue to work even when visited with locked SOP enabled browsers.

Our policies are more restrictive than the legacy SOP, but we only want to deny access to an attacker – never the legitimate

server. We will “break” a web site if there is a situation where our policy would deny a legitimate server access to one of its

locked web objects, but the legacy SOP would allow access.

There are a few situations where our policies could potentially break a web site. For example, suppose server A for

xyz.com has an valid certificate, but server B for xyz.com has an invalid certificate (or vice versa). Then the weak locked

SOP would deny Javascript from server A from accessing an HTML document from server B, but the legacy SOP would allow

access. This situation might arise if xyz.com uses round robin DNS for load balancing and a browser request objects from

both servers during a session. Note that the weak locked SOP will not break a domain which uses invalid certificates on all its

servers (e.g., it uses self-signed certificates) since objects from these servers have equivalent validity: they are all invalid.

If server A and server B use different public keys, then the strong locked SOP would also deny access. However, the strong

locked SOP does not necessarily require the domain to use certificates issued by a root CA trusted by browsers. As long as

all servers use the same public key, the web site can use certificates issued by a root CA untrusted by browsers or self-signed

certificates.

4.4.1 An SSL server survey

To evaluate the deployability of our policies, we must determine how many sites we could potentially break; in other words,

how often the above configurations actually arise in practice. To measure this, we surveyed SSL servers in the real world to

determine how many servers may not currently interoperate with our policies. We constructed a sample of SSL servers by first

crawling the web, starting from a list of major news, portal, and financial sites. Whenever we found an HTTPS link, we added

the domain in the link to our sample. For the sake of simplicity, we restricted our study to the following top-level domains:

com, org, net, gov, edu, biz, info, and name. We excluded international top-level domains. We found 14651 fully
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Session caching Persistent caching

Browser of CA certs of CA certs Uses AIA

IE X X X

Firefox X

Table 2: Summary of browser mechanisms used to address missing and expired intermediate CA certificates. AIA refers

to the optional Authority Information Access X.509 extension.

qualified SSL domains from 6192 second-level domains.4 This corresponds to roughly 6.5% of the number of SSL domains

found by the more extensive monthly SSL survey conducted by E-Soft and securityspace.com [57].

We are primarily interested in finding domains hosted by multiple servers, since it is these domains that our policies could

potentially break. We can discover some servers by looking for use of round robin DNS; if a server uses round robin DNS, a

DNS query returns a list of IP address. However, Akamai-style load balancing often considers the physical location of the DNS

querier and may only return the IP address of most appropriate server. To take Akamai-style load balancing into account, we

constructed a list of servers for each domain by requesting recursive DNS queries to 15 geographically distributed public DNS

servers [67].5 Of the 14651 domain names, we found 1464 that resolved to multiple IP addresses. For each of these domains,

we established an SSL connection to each of the domain’s servers and recorded each server’s certificate chain and public key.

4.4.2 Certificate chain validation: Firefox and IE

The next step was to validate the certificates we collected. To maximize the practical relevance of our study, we simulated

the validation procedures of Firefox 2.0 and Internet Explorer 7.0. The validation procedures of Firefox and IE are close to

the process we described in Section 2.3, but there are some differences in how each browser handles missing and expired

intermediate CA certificates. Intermediate CA certificates are certificates issued by a CA’s root certificate which it uses to

directly issue certificates to web servers. This results in certificate chains of length 3 or more. Since most browsers only ship

with root CA certificates, to guarantee a client can verify its chain, a server must also send any intermediate CA certificates in

addition to its own.

Unfortunately, many servers are not configured to send intermediate CA certificates. Also, there are several widely used

intermediate CA certificates which have expired, and although the CA has reissued a replacement with the same name (and

often, the same public key), many servers have not updated them and are still sending the expired version. We found that

Firefox and Internet Explorer handle these situations slightly differently. We determined each browser’s validation procedure

through source code analysis, empirical testing, and various public sources [18, 42, 43].

First, both Firefox and Internet Explorer cache the intermediate CA certificates they encounter during a user’s browsing

session and use this cache to help verify certificate chains. This means if the user visits a site with a missing intermediate CA

certificate, and previously in the session, the user visited a different site using the same intermediate certificate, the browser

uses the cached copy to verify the chain. In addition, if the user visits a site which sends an expired intermediate CA certificate,

both Firefox and Internet Explorer will automatically replace it with the more recent version if they have seen it previously in

the session.

Internet Explorer takes some additional measures to address missing intermediate CA certificates that Firefox does not.

First, in addition to caching intermediate CA certificates within a session, Internet Explorer caches these certificates persistently,

across sessions. Second, Internet Explorer takes advantage of the Authority Information Access (AIA) extension included in

some X.509 certificates. The AIA extension “indicates how to access CA information for the issuer of the certificate in which

the extension appears” [55]. We found for many server certificates issued by an intermediate CA certificate, they include the

AIA extension with a URL for the intermediate CA certificate, and Internet Explorer automatically downloads and uses it to

verify the chain. Firefox does not use the AIA extension. It is unclear exactly why not, but discussions on Mozilla Bugzilla

suggest it might be because some of the Mozilla developers believe the AIA standard is not well specified [42]. As a result of

these additional mechanisms in Internet Explorer, Firefox generates more certificate warnings on average for sites with missing

or expired intermediate CA certificates. We summarize these differences in Table 2.

4For our study, a second-level domain means the last two components of a non-international fully qualified domain name, e.g., yahoo.com.
5A limitation of this approach is that we cannot discover multiple servers behind a front-end load balancer with a single IP address.
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4.4.3 Evaluation results

Weak-locked same-origin policy. To evaluate the deployability of the weak locked SOP, we validated the servers’ certificate

chains in our survey using two procedures: Pessimistic Validation and Optimistic Validation. Pessimistic Validation models

the worse case scenario: a Firefox user visits a web site with a missing or expired intermediate CA certificate at the start of a

session, or a user freshly installs IE and visits the same site, and the server certificate does not support AIA. Through empirical

analysis we identified 18 widely used intermediate CA certificates, and for Optimistic Validation, we assume the user’s browser

has cached valid versions of these certificates. We intend Optimistic Validation to model a long Firefox session or a “broken

in” Internet Explorer installation with a substantial intermediate CA certificate cache.

Then, for the 1464 fully qualified SSL domains which use multiple servers, we counted the number of domains which had

servers with both valid and invalid certificate chains, since it is these domains that the weak locked SOP may break. Using

Pessimistic Validation, we found 8 such domains, and for Optimistic Validation we found 4 domains. For each of the other

1456 domains, its servers either had all valid certificates or all invalid certificates.

The difference between the Optimistic and Pessimistic Validation results means we found 4 domains that contained a mix

of servers with missing or expired intermediate certificates and correctly configured servers. Of the 4 remaining domains which

still cause problems with Optimistic Validation, 3 are probably the result of virtual hosting issues. For example, of the 3 servers

we found for signin.half.ebay.com, one had a valid certificate, and the other two had CN/domain name mismatch

problems. These two servers presented certificates for signin.ebay.com. The remaining problem domain was the result

of an expired certificate on one of its servers. When the domain’s administrators updated their certificates, they probably

overlooked this server.

This means the weak locked SOP would potentially break at most 0.0005% of the SSL domains we found in our survey.

These results are strong evidence that browsers could enforce the weak locked SOP today and still interoperate with the vast

majority of web sites while providing increased protection against pharming attacks. Furthermore, since the number of problem

domains is relatively small, browser developers can conceivably work with these domains’ administrators to make their servers

consistent. In conclusion, we can safely deploy the weak locked SOP in a way which requires minor browser changes, but does

not require changes to the HTTP specification, SSL, or web servers.

Strong locked same-origin policy. To evaluate the deployability of strong locked SOP, we counted the number of fully

qualified SSL domains with multiple servers that do not use the same public key on all of the servers. We found 83 such

domains, representing 0.006% of the total number of SSL domains in our survey. This is problematic for two reasons. First, it

represents an order of magnitude more servers that are affected by the weak locked SOP. Second, unlike before, these servers

are not necessarily misconfigured, so browser developers cannot work with the domain’s administrators to “fix” the problem.

Using a different key on each server is good security practice, since it limits the scope of key compromise. In fact, VeriSign

explicitly recommends customers use different public keys on each server [66].

Another problem concerns certificate expiration. The business model of many CAs is to issue certificates that are valid

only for a relatively modest period of time, e.g., one or two years, and require customers to renew their certificates when they

expire. When web sites renew their certificates they often follow good security practice and generate a new public key. Since

the strong locked SOP applies to all locked web objects, if a web site uses persistent SSL-only cookies to authenticate users

(see Section 5), every user’s cookie will simultaneously “expire” (i.e., become inaccessible by the server) when the site starts

using the new public key, regardless of the value of the cookie’s expires attribute.

Based on this evidence, we conclude browsers cannot currently enforce the strong locked SOP without potentially breaking

a significant number of web sites. However, this does not mean that deploying the strong locked SOP is hopeless; it only means

a browser must first get the site’s explicit cooperation and approval to enforce it. In the next section, we describe a simple

incrementally deployable solution using policy files for the strong locked SOP which supports multiple public keys and key

updates.

4.5 Policy files for supporting multiple keys and key updates

We propose an incrementally deployable solution where a web site can “opt in” to the strong locked SOP; then, browsers

which support the policy can safely enforce it without the risk of unintentionally breaking the site. To “opt in”, we propose a

site’s servers post a policy file with a static well-known file name, say pk.txt, which would be periodically retrieved by web

clients (over SSL), similar to robots.txt or favicon.ico. If a browser finds a pk.txt file, it parses the file and starts

enforcing the strong locked SOP for that domain. If all the domain’s servers use the same public key and persistent objects are

not an issue, a site can simply post an empty pk.txt, since it will already work with the strong locked SOP.
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If the site uses multiple servers, labeled i = 1 . . . n, with different public keys, then pk.txt on server k contains a list of

the form:

(pk1, {pkk}sk1
), (pk2, {pkk}sk2

), . . . , (pkn, {pkk}skn
)

where pkk is the public key of the server hosting this pk.txt file and {pkk}ski
represents a signature of pkk by the secret key

corresponding to pki. The browser then verifies each of the signatures, and for i = 1 . . . n, if the ith signature is valid, then it

considers pkk to “speak for” pki. We then extend the strong locked SOP with the following rule: a browser allows a locked web

object tagged with (D, pkj) to access another locked web object tagged with (D, pkl) if a policy file attests that pkj speaks for

pkl.

Note that pk.txt cannot simply list the public keys (pk1, pk2, . . . , pkn); otherwise a pharmer can serve the same file

to a victim, and the victim’s browser will infer that the pharmer’s public key speaks for each of the keys of the legitimate

servers. However, since the pharmer does not know the legitimate servers’ private keys, it will not be able to generate any valid

signatures required for the victim’s browser to infer the “speaks for” relation.

Policy files also address the problem of public key updates discussed in Section 4.4.3. For example, suppose a web site

wants to renew its certificate with a new public key pknew. Then, several months before the certificate expires, the site can

include (pki, {pknew}ski
) in its pk.txt files for each server i, i = 1 . . . n. Then, users that retrieve pk.txt during this

transition period will not “lose” persistent objects tagged with an old public key.

In conclusion, policy files address the deployability problems with the strong locked SOP we identified in Section 4.4.3.

They enable us to enforce the strong locked SOP in current browsers in a way which is incrementally deployable and backwards

compatible with legacy servers. The strong locked SOP in conjunction with policy files requires browser changes and server

configuration changes for sites wishing to take advantage of the policy, but does not require changes to the HTTP specification

or SSL.

4.6 Support for subdomain object sharing

Up until now we have implicitly assumed a web site consists of a single fully qualified domain name, e.g., www.xyz.

com. More generally, a web site might be composed of several domain names, e.g., mail.xyz.com, www.xyz.com,

login.xyz.com, and the legacy SOP supports some exceptions which enable these sites to share information among sub-

domains through certain web objects. For example, a user might authenticate herself to the server for login.xyz.com,

and this server will set a domain cookie with domain=xyz.com for authenticating the user to the other subdomain servers.

The user’s browser will allow any subdomain of xyz.com to access this cookie. Another way subdomains can share in-

formation is by setting the DOM property document.domain. For example, if a document from www.xyz.com sets

document.domain=xyz.com, the browser permits any object from a subdomain of xyz.com to access the document.

However, these domain sharing mechanisms are vulnerable to pharming attacks. For example, if an adversary pharms any

host name in xyz.com, she can steal users’ domain cookies for xyz.com. Ideally, we would like to enforce our locked

same-origin policies in these situations as well. Fortunately, extending the strong locked SOP to support subdomain sharing is

straightforward with policy files. The site simply adds the servers’ public keys to its policy files and we extend the strong locked

SOP with the following rule: if S is locked web object hosted by server l and is designated to be shared among subdomains of

a higher-level domain TD (e.g., xyz.com), a browser allows a locked web object tagged with (D, pkj) to access S if D is a

subdomain of TD and a policy file attests that pkj speaks for pkl.

Unfortunately, it is not clear how to extend the weak locked SOP to support shared domain objects without any server

cooperation. An natural candidate extension would be to allow access if both subdomain servers have valid certificates or

invalid certificates. However, we must have confidence this policy will not “break the web” and not deny access to a legitimate

server when the legacy SOP would allow access. Roughly, this would require for each higher-level domain, either all its

subdomain servers have valid certificates or all its subdomain servers have invalid certificates. Unfortunately, our survey survey

shows this is far from the case. Of the 6192 second-level SSL domains we found, over 1000 did not satisfy this property. This

means for browsers enforcing the weak locked SOP, they must default back to the legacy SOP for shared domain objects, which

provides no protection against pharming.

4.7 Support for key revocation

To address key compromise, our locked same-origin policies and policy files can be extended to support expiration times,

certificate revocation lists (CRLs), and the Online Certificate Status Protocol (OCSP), but for space reasons, we do not go into

the details here.
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4.8 Limitations

Our locked same-origin policies do not address attacks where the adversary tricks a victim into installing malicious software

such as executable malware, an ActiveX plugin, or a browser extension. These objects usually execute with elevated privilege

and are not governed by the SOP. Also, we do not consider dynamic pharming vulnerabilities in third-party browser plugins

such as Flash, Java, or Adobe Reader. Our policies can protect these products from dynamic pharming as well, but they

must be implemented by the respective vendors. Likewise, the locked same-origin policies do not address problems in the

Javascript language or implementation (e.g., Javascript Prototype Hijacking) [47], cross-side scripting (XSS) vulnerabilities in

servers, and cross-site request forgery (XSRF) attacks. Other research efforts address XSS vulnerabilities [25, 33, 37, 69, 70]

and XSRF attacks [27, 29, 30], and these techniques complement our work. We also do not address browser-side cross-site

scripting vulnerabilities, such as Universal XSS [47].

5 Applications to web authentication

In this section, we discuss how the locked same-origin policies can help protect two existing browser authentication mecha-

nisms, client side-SSL and SSL-only cookies, against pharmers and active attackers. However, the web authentication problem

is actually two distinct subproblems: the initialization of users’ authentication credentials and the use of those credentials to

authenticate users to web sites. Our discussion in this section focuses primarily on the latter, but we discuss initialization briefly.

Client-side SSL. Intuitively, since client-side SSL authenticates users with end-to-end cryptography, one might expect it would

protect sensitive web sessions against pharming and active attacks, but unfortunately, the presence of dynamic pharming vul-

nerabilities proves this is not the case. However, using one of our locked same-origin policies in conjunction with client-side

SSL results in an authentication scheme with strong security properties. The user is not required to memorize her private key.

After the user imports her private key, her browser uses it automatically. Although an adversary may be able to trick a user into

participating in mutual authentication using SSL, the adversary cannot use this interaction to impersonate the user at another

web site. Authentication requires knowledge of the private key, which the user’s browser always keeps secret. As a result, the

browser authenticates the user’s requests cryptographically and the locked SOP isolates the user’s authenticated sessions from

malicious subjects – even if the adversary is a pharmer or active attacker.

SSL-only cookies. Many web sites use cookies for authentication [14]. For example, some web sites offer a “remember me”

option, which sets a persistent cookie on a user’s machine. The browser will present this cookie during subsequent visits to

the web site, enabling the user to bypass the initial login process. Some existing anti-phishing solutions also use authentica-

tion cookies to complement regular password authentication. Examples include Bank of America’s SiteKey [3] and similar

approaches by ING Direct [26], Vanguard [65], and Yahoo [71]. Before a user is permitted to login from a particular computer,

she must “register” it. The registration process sets a SSL-only persistent authentication cookie on the user’s computer, and

only computers with authentication cookies are permitted to access the user’s account. In current browsers, cookie authentica-

tion resists phishing attacks but is vulnerable to pharming attacks. Our locked same-origin policies protect SSL-only cookies

against pharmers and active attackers. Thus, in conjunction with browsers enforcing the locked SOP, web sites can use SSL-

only persistent cookies to authenticate users and resist phishing, pharming, and active attacks.

Other authentication mechanisms. The locked same-origin policies nicely complement other authentication mechanisms

designed to resist pharming, such as Phoolproof phishing prevention [48] and Passpet [73]. Our policies help these schemes

resist dynamic pharming attacks.

The registration problem. The initialization of a user’s authentication credentials is commonly known as the registration

problem. The registration problem is critical element of any web authentication scheme, and a challenging problem on its own

right. For space reasons, we do not attempt to explore potential solutions here. One key challenge in the registration problem

is resisting registration attacks. Bank of America’s SiteKey and similar anti-phishing mechanisms have registration attack

vulnerabilities [59, 75]. When a SiteKey user initially registers, she gives answers to several “personal entropy” questions [10],

questions to which a phisher is unlikely to be able to guess the answers, e.g., “What is the name of your high school mascot?”.

Users who need to register another computer must correctly answer these questions before receiving an authentication cookie.

However, phishers and pharmers can use a man-in-the-middle registration attack to solicit the correct answers from unsuspecting

victims and obtain valid authentication cookies, making SiteKey insecure against registration attacks. The problem is that “in-

band” (HTTP-based) registration procedures are normally vulnerable to the same attacks we are trying to prevent. We are
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exploring registration protocols utilizing “out of band” channels to distribute authentication credentials.

6 Related work

Several anti-phishing mechanisms help provide information to users regarding the trustworthiness of web sites. Since studies

have shown that users can be fooled by misleading domain names and do not understand browser security indicators [8, 12, 13,

16], several researchers and security vendors have developed browser extensions to make it easier for users to interpret relevant

security information [6, 60, 23, 36], use a blacklist to help identify known phishing sites [9, 45], or establish trusted paths with

sites users have a relationship with [7, 72]. Recent versions Firefox and Internet Explorer have adopted similar mechanisms.

However, these approaches still expect some degree of diligence from users to reliably observe security warnings and indicators

to operate securely, and studies have shown that users still have troubling interpreting improved security indicators and warn-

ings [56, 68]. In addition, studies have also shown that many browser extensions which try to automatically detect phishing

sites are often wrong and inconsistent [76].

Another approach to resisting phishing attacks is better password management. Passwords are still the dominant method

of web authentication. Password databases included with most modern web webs automatically fill in passwords for users.

However, users might still manually disclose their passwords to phishing sites or use the same password for multiple sites.

Password hashing addresses these problems by hashing the user’s secret password together with a variable, non-secret string

(e.g., each site’s domain name) to produce per-site passwords [1, 15, 22, 31, 32, 54, 73]. Recent work in this area has made

usability one of the primary goals [22, 54, 73], but studies have shown some users still have trouble using them correctly and

securely [5]. Also, if password hashing scheme generates passwords based on the site’s domain [22, 54], it is vulnerable to

pharming attacks. Passpet [73] provides some resistance to pharming attacks, but is still vulnerable to dynamic pharming.

The Phoolproof phishing prevention system uses cell phones to manage client-side SSL certificates for authentication on

behalf of users [48]. Phoolproof’s designers also noted the importance of disclosure resistant authentication credentials. In

Phoolproof, a user logs in using a secure bookmark on her cell phone. The cell phone then 1) initiates an SSL connection to the

web site via a Bluetooth connection with a web browser on the user’s computer; 2) checks the site’s X.509 certificate against the

one stored in the bookmark; and 3) authenticates the user via client-side SSL. Although Phoolproof verifies the site’s certificate

in step 2, this protocol is still vulnerable to a dynamic pharming attack if the adversary is able to pharm the user (i.e., serve the

user a web page which appears to come from the target domain) before she activates the login process.

The locked same-origin policies are similar to work done independently and concurrently by Masone et al. on Web Server

Key Enabled Cookies, a new cookie policy which tags SSL-only cookies with the server’s public key and allows access only

to a server which can authenticate itself to the same key [35]. However, their proposal falls short of protecting cookies against

dynamic pharming attacks. Also, they do not address pharming attacks against other web objects or other web authentication

mechanisms, e.g., client-side SSL, nor do they address subdomain object sharing or key updates.

The locked SOP was inspired by the concept of Key Continuity Management (KCM), a model for key management first

proven successful by SSH [53, 74] and made more explicit by Gutmann [21]. KCM associates public keys with subjects and

takes defensive action when a subject’s public key unexpectedly changes. Garfinkel expands on KCM further, and applies it to

S/MIME [17].

7 Conclusion

We demonstrated how adversaries can use dynamic pharming attacks to hijack users’ authenticated web sessions, irrespective of

the authentication mechanism. Dynamic pharming enables an adversary to eavesdrop on sensitive content, forge transactions,

key log secondary passwords, etc. To address dynamic pharming attacks, we introduced two locked same-origin policies, which

regulate cross-object access control using servers’ X.509 certificates and public keys, rather than domain names. We evaluated

the security and deployability of our approaches and showed how browsers can deploy these policies today to substantially in-

crease their resistance to pharming attacks and provide both a solid and necessary foundation for developing pharming resistant

authentication.
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