
Dependent Types for Assembly Code Safety

Matthew Thomas Harren

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-65

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-65.html

May 18, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Dependent Types for Assembly Code Safety

by

Matthew Thomas Harren

B.S. (Cornell University) 2001
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor George C. Necula, Chair

Professor Rastislav Bod́ık
Professor Leo Harrington

Spring 2007

The dissertation of Matthew Thomas Harren is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2007

Dependent Types for Assembly Code Safety

Copyright 2007

by

Matthew Thomas Harren

1

Abstract

Dependent Types for Assembly Code Safety

by

Matthew Thomas Harren

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor George C. Necula, Chair

When proving that programs adhere to various safety and security properties, it is often

useful to work with binary code instead of the high-level source code from which it was

compiled. Proving safety for binary code means that we need not trust the compiler and

that end users can check the safety property without access to the source code. But most of

today’s safety tools operate only on source code, where analysis and program transformation

are easier. We need a way to take safety results that have been established for source code

and propagate them to the binary level. This dissertation proposes such a system for

certified assembly code, and shows how it can be used with three source-code safety tools

that operate on existing C programs: CCured, Deputy, and Cqual.

A key feature of this system is a novel dependent type system suitable for assembly

code. It is difficult to use dependent types safely in languages where heap values can be

modified, because modifying a value can change the type of some other memory location.

2

We address this problem by limiting in-memory dependent types so that they only refer to

other fields of the same object. We show that it is possible to safely update such an object

by allowing memory to temporarily be in a “bad” state until enough fields have been written

so that the object is again internally consistent. And we show examples from CCured and

Deputy where such a type system is necessary.

The second key contribution of this dissertation is a type inference system for

assembly code that has been generated by a “black box” compiler. This algorithm discovers

the (possibly dependent) types of registers at each program point, and therefore reconstructs

the invariants that were shown to hold during source-code verification. We use abstract

interpretation of symbolic expressions for this inference, and discuss how to deal with pointer

arithmetic.

Finally, we have an implementation of our verifier for CCured and Cqual. This

verifier parses x86 assembly code generated by GCC and ensures that the program was

correctly analyzed and instrumented by CCured or Cqual prior to being compiled, and that

the object code has not been tampered with in a way that would affect type safety. We

present experimental results for our verifier which show that verification can be done in an

efficient manner, but certain C constructs such as complicated array index expressions are

difficult to analyze.

Professor George C. Necula
Dissertation Committee Chair

i

Contents

List of Figures iii

1 Introduction 1

2 Dependent Types for Assembly Code 6
2.1 Type Policies . 7
2.2 Flow-insensitive types . 9
2.3 Symbolic evaluation of assembly language 11

2.3.1 Typechecking symbolic expressions 15
2.3.2 Memory reads . 17

2.4 Memory consistency . 18
2.5 Typechecking basic blocks . 21
2.6 Soundness . 27

2.6.1 Soundness of state ordering . 32
2.7 Related type systems . 34

3 Type Inference 36
3.1 Widening . 39

3.1.1 Testing for Fixpoint . 45
3.1.2 Adding extra facts . 45

3.2 Arithmetic . 48
3.2.1 Complicated indexing expressions . 49
3.2.2 Completeness . 55
3.2.3 Multidimensional array example . 62

3.3 Performance of abstract interpretation . 63
3.3.1 Worklist optimizations . 65

3.4 Related work . 67

4 CCured 71
4.1 Implementing the analysis . 72

4.1.1 Parsing assembly code . 72
4.1.2 Dependently-typed function calls . 76

ii

4.1.3 Stack-allocated objects . 79
4.1.4 Subroutines . 80

4.2 The CCured type policy . 81
4.2.1 Sequence pointers . 83
4.2.2 Run-time type information . 87
4.2.3 Bugs found . 92

4.3 Experiments . 93
4.3.1 CCured features supported . 94

5 Deputy 96
5.1 Bounded pointers . 98

5.1.1 Implementing Deputy’s checks . 102
5.1.2 Sketch of soundness proof . 103

5.2 Null-terminated arrays . 104
5.2.1 Type rules for null-terminated arrays 108
5.2.2 Type rules for read-only pointers . 110
5.2.3 Sketch of soundness proof for null-terminated pointers 111

6 Cqual 113
6.1 The $tainted type qualifier . 115
6.2 Leaf polymorphism . 117
6.3 Experiments . 119

Bibliography 120

iii

List of Figures

1.1 Existing CCured usage model. 2
1.2 CCured usage model with machine-code verification. 2
1.3 A dependently-typed array. 4

2.1 The types that are assigned to registers and memory locations. 9
2.2 A record containing an array. 11
2.3 The target assembly language. 12
2.4 The states of our symbolic execution algorithm for typechecking. 13
2.5 Symbolic evaluation rules for instructions. 14
2.6 The standard axioms for interpreting sel and upd. 19
2.7 Symbolic evaluation rules for jumps. 22
2.8 Precondition example: A loop that walks backwards through an array. . . . 23
2.9 Definition of the concretization functions . 29

3.1 The join function. 43
3.2 Single-dimensional array example. 48
3.3 The object layouts supported by our pointer arithmetic canonicalization. . . 50
3.4 The expression canonicalization function. 53
3.5 The source-code offsets α and how they are compiled. 56
3.6 Multidimensional array example. 61
3.7 The start of a sample function’s control-flow graph. 65

4.1 Typing/evaluation rules for function calls. 78
4.2 Two “fat” pointer kinds used by CCured . 82
4.3 The meanings of the Seq type constructors used by CCured. 83
4.4 Dereference and arithmetic rules for Sequence pointers. 84
4.5 An example of two C object types. 88
4.6 The Rtti type constructors used by CCured. 91

5.1 Example of a simple Deputy annotation. 97
5.2 Sample Deputy code that mutates the fields from the figure above. 98
5.3 A bounded pointer in Deputy. 99
5.4 The meanings of the Bndσ type constructors used by Deputy. 99

iv

5.5 Dereference and arithmetic rules for Deputy’s bounded pointers. 100
5.6 A null-terminated pointer in Deputy. 105
5.7 The invariant for the NTBnd type constructors. 106
5.8 The type rules for the NTBnd type constructors. 107
5.9 A loop that walks over a null-terminated array. 110

6.1 Subtyping and arithmetic rules for tainted pointers. 116

v

Acknowledgments

Thank you first and foremost to my advisor George Necula for his continuous help

and advice over the last six years. In addition to making considerable contributions to this

dissertation, George has taught me an enormous amount about computer science, research,

and careers. I greatly value our conversations and sailing trips.

Both the theory and implementation of this project rely on work done on the Open

Verifier by Bor-Yuh Evan Chang, Adam Chlipala, Kun Gao, George Necula, and Robert

Schneck. Their framework shielded me from much of the pain of assembly code, and their

advice was invaluable. I thank Sumit Gulwani for his assistance with abstract interpretation

and for other useful conversations. Jeremy Condit, Scott McPeak, and Wes Weimer were a

pleasure to work with on CCured and many other projects, and Wes’s dinners fueled many

enjoyable evenings.

Dan Wilkerson provided a great deal of help for the Cqual verifier, by changing his

implementation of Cqual to emit the annotations that I needed. His feature implementations

always came faster and worked better than I could have hoped. Discussions with Dan, Rob

Johnson, and the other Cqual developers helped me understand Cqual’s algorithm and how

it was applied.

I had a fantastic experience at Berkeley thanks to the people in this department.

This includes work and play, and the members of the Open Source Quality group helped

with both. Ras Bodik, Leo Harrington, and David Wagner asked insightful questions about

this project during my Qualifying Exam.

Last but certainly not least, thank you to my family. My parents made me who I

am today, and I’ll always be grateful. And I thank Ann for her encouragement, for spending

many hours sitting in airports, and for the future.

1

Chapter 1

Introduction

There are many ongoing efforts to design static analyses or instrumentation tools

to ensure various safety and security properties of software. However, there is usually no

independent way to ensure that the analysis or instrumentation tool was actually run on a

given program. Since most of today’s software security tools operate only on source code,

a concerned user must obtain the source for the program in question, must run the tool

himself, and is forced to trust that the tool and the compiler are working as advertised. In

this dissertation, we describe our efforts to develop an independent verification strategy for

static analyses and instrumentation tools.

A well-known example of the strategy that we advocate is the verification of type

safety in Java and .NET bytecode. A compiler verifies that the original source code is type-

safe, and uses this typing information to generate typed bytecode. The bytecode can then

be checked for safety independently from the source code. We want to push this strategy

to lower-level languages, such as assembly, and to allow more language-based enforcement

2

Figure 1.1: Existing CCured usage model. The dashed box shows the components that
must be trusted.

tools to make use of it. Working at the assembly-language level makes our technique fit well

with the common practice of distributing object code. Furthermore, it does not require the

program source code, is applicable to more source languages, and eliminates the compiler

from the trusted computing base.

Consider CCured, a source-to-source translator that guarantees type safety in

legacy C code by inserting runtime checks before potentially unsafe operations [NCH+05].

Where necessary, it modifies data structures to accommodate metadata such as array

bounds information. The resulting code is type safe and won’t “go wrong” at run time.

Figure 1.2: CCured usage model with machine-code verification. The dashed box shows
the components that must be trusted.

3

But this code is then compiled with an off-the-shelf compiler that discards all of the typing

information (Figure 1.1), so there is no way to tell if the resulting machine code is safe. We

present in this dissertation a verifier (Figure 1.2) that can check that assembly code is safe

without access to the source code. The two key contributions of this verifier are a dependent

type system for assembly code that can encode the invariants of systems like CCured, and

a type inference system for assembly code that can infer these invariants for code that has

been instrumented by CCured.

Dependent types

A dependent type is a type that depends on a runtime value. A common example

is an array whose length is stored separately (Figure 1.3): the type of the array pointer

depends on the value of the length variable. CCured uses dependent types to relate the data

in the original program (such as arrays) to the metadata it adds (such as array lengths).

Traditional Typed Assembly Languages don’t include dependent types [MWCG99], or don’t

allow dependently-typed data to be modified [XH01]. Chapter 2 discusses a type framework

that includes dependent record types, allows dependent memory locations to be overwritten,

and is suitable for use with assembly code, where we don’t have the convenience of being

able to add new operations to the language.

Type inference

In order to verify object code, we need some way to understand its behavior and

relate its low-level instructions with the high-level safety policy we are trying to enforce.

One way to do this is with a certifying, type-preserving compiler that emits annotations

4

Figure 1.3: The variable buffer has the dependent type “array of len integers.”

with the object code to partially explain the program’s behavior. This approach is used

by other typed assembly languages and proof-carrying code systems [MWCG99, NL98] as

well as bytecode languages like Java and MSIL [LY97, GS01]. However, a special compiler

may be too great a change to existing toolchains. Many safety tools for legacy code, such

as CCured and Cqual [FFA99], operate on source code and use an off-the-shelf compiler to

generate object code. It would take a significant amount of work to write a custom compiler

that is aware of various source-level safety policies, would preserve this information during

code generation, and contains all of the features and optimizations of existing compilers. In

Chapter 3, we propose an assembly code analysis that can infer the types of Chapter 2 for

code that was generated by a “black box” compiler.

Another alternative to our verification proposal would be to not check the source

code at all. Waiting until the code is in object form before checking a safety property

eliminates the redundant analysis step. But it is hard to analyze object code, and it is hard

to report object code errors in ways that are helpful to the developer. The fact that the

code has already been made safe at the source level means that verification should always

succeed (unless there are bugs in the toolchain or the programs have been tampered with), so

5

error reporting is less important. Source code tools are also essential if you want to modify

code, since binary-code instrumentation tools such as Purify and Valgrind [HJ91, NS07]

have a significant performance cost. We let source code tools handle the hard parts —

error reporting, instrumentation, whole-program analysis — so that object code analysis

becomes a local verification problem.

There are a few issues that this thesis does not address. Our implementation works

on assembly code, not binary. Disassembling binary code poses its own set of challenges

that are orthogonal to the ones we tackle here. Our work on type safety also ignores

allocation and deallocation. CCured uses the Boehm-Demers-Weiser conservative garbage

collector [BW88] for deallocation, and we trust the garbage collector here as well. Finally,

we do not address shared-memory multithreading. CCured is unsound for multithreaded

code (unless all pointer values are guarded by locks, as in [Gro03]) and our type system is

unsound for the same reasons.

We present our system of dependent types in Chapter 2, and explain how the type

framework is parameterized on the source-code policy being checked. The main contribu-

tions of this chapter are a novel system for dependent record types in a low-level imperative

language, and the outline of a soundness proof for the system. Chapter 3 presents a type

inference system and discusses challenges related to pointer-indexing expressions and ab-

stract interpretation of dependent types. We show how this type framework can be used

with three source-code tools (CCured, Deputy, and Cqual) in Chapters 4, 5, and 6, and

discuss the verifiers that we have implemented for CCured and Cqual.

6

Chapter 2

Dependent Types for Assembly

Code

The first step in the assembly code verification is to design a type system that can

encode invariants such as CCured’s. This chapter describes a novel dependent type system

suitable for assembly code. In addition to providing dependent types, our system addresses

several difficulties that assembly code presents:

• Our type system is flow-sensitive, since registers and stack locations will be reused by

the compiler.

• We support writes to dependent memory locations. Most dependent type systems

forbid such writes, but they are needed by CCured. Working with assembly code

makes this challenge harder since only one word can be written at a time.

• We support intraprocedural dependent type inference for optimized code.

7

Our type system is parameterized by a type policy that describes the invariants

enforced by the safety tool you wish to use (CCured, for example). Factoring our type

system in this way provides modularity and allows us to extend the system to different

safety tools. It also allows us to focus our initial discussion on dependent types, without

worrying about the specific safety policies we enforce. This chapter and the one following

it describe the typechecking framework, while Chapters 4, 5, and 6 show type policies for

three source-code tools: CCured, Deputy, and Cqual.

We begin the chapter by describing the operations that a type policy must support.

We then present in Section 2.2 a flow-insensitive type system that supports dependencies

among adjacent memory words. Our type system uses these flow-insensitive types for global

variables and the heap. Sections 2.3–2.5 show how to use symbolic evaluation of each basic

block to infer flow-sensitive types and dependencies for registers. We outline a proof of

soundness for this framework in Section 2.6, and discuss related type systems in Section 2.7.

2.1 Type Policies

We assume that each type policy is described as a set of type constructors and

associated operations such as subtyping. An n-ary type constructor applied to n expression

arguments describes the type of a machine word, as described in the following sections.

A type policy consists of the following:

• A finite set T of type constructors C. These constructors are used to build policy-

specific types for word-sized values. If a constructor has nonzero arity, it defines

dependent types.

8

• A finite set F of fact constructors F . These are used to encode flow-sensitive infor-

mation needed by the policy, such as “LessThan(x,y)” or “NotAliased(x,y)”. Our

typing context will include a set of facts that are known to be true at a given program

point. This information could be encoded in the type constructors, but it’s often more

natural to store it separately.

• A subtyping relation IsSubtype for the types generated by the type constructors, and

the associated upper bound function TJoin that returns a supertype of its arguments.

• Typing rules for constants and binary arithmetic operations.

• A Constrain operation that refines a typing context after a certain boolean expression

has been tested to be true.

For example, a type policy could define the nullary type constructors “Int” for

integers that will fit in a machine word and “MaybeNullPtrσ” for possibly-NULL pointers

to records with type σ. We’ll see below that the framework defines the type “Ptrσ” for

pointers to σ. Then the policy will likely define both IsSubtype(p, Ptrσ, MaybeNullPtrσ())

and IsSubtype(p, MaybeNullPtrσ(), Int()) to be true for all values p. The definition of

Constrain for this policy may promote one or more values of type MaybeNullPtrσ() to

Ptrσ following an appropriate NULL check. We defer the more detailed discussion of the

IsSubtype, TJoin, and Constrain operators until the presentation of our typechecking

algorithm in Section 2.3.

We do not verify the soundness of the type policy, although the soundness of our

typechecking relies on the type policy being sound. Section 2.6 states the properties that

must hold for a type policy in order for our framework to be sound.

9

field types t ::= C(d1, . . . dn) | Ptrσ

dependencies d ::= c | s.i
record types σ ::= Σs.〈0 : t0; . . . ; n− 1 : tn−1〉

constants c

type constructors C ∈ T

Figure 2.1: The types that are assigned to registers and memory locations.

2.2 Flow-insensitive types

Figure 2.1 shows the language of memory types in our framework. Field types

t describe the contents of a word in memory whereas σ types describe a mutable record

consisting of a sequence of related fields.

The type of a word-sized location is either the instantiation of a type constructor

C given by the type policy or a pointer to a mutable record. We saw above a few examples

of nullary constructors for non-dependent types; constructors for dependent types are pa-

rameterized on one or more values. When used for field types t, we instantiate dependent

constructors with references to nearby memory locations; later we will introduce register

types τ by instantiating the constructors with symbolic expressions instead.

Our type system also includes a built-in type “Ptrσ” for each σ in the type policy

so that we can refer to pointers in our judgments for memory access. These pointer types

encode a fundamental property of a heap-based programming language: that the given

value points to a memory location of a certain type.

The notation Σs.〈0 : t0; . . . ; n−1 : tn−1〉 denotes a very-dependent [Hic96] record

type with n mutable fields, each of whose types may depend on the runtime values of other

fields. For simplicity, fields are labeled with their index in the record. The dependent

10

type constructor “Σs” binds a variable s that can be thought of as the “self pointer” for

the record. We use s to encode dependencies among the fields of the record: the special

expression s.i refers to the value stored in the ith word of the current record, where i is a

constant. We say that a field type C(d1, . . . dn) refers to field i iff at least one expression dj

is “s.i”. A record type σ = Σs.〈0 : t0; . . . ; n− 1 : tn−1〉 is well-formed if for all terms s.j

appearing in σ, we have 0 ≤ j < n. In other words, dependencies must refer to fields that

actually exist. We require that all types used in this framework be well-formed.

For example, a type policy may define the singleton type constructor Single(e),

and then can define a dependent record containing two identical integers as

Σs.〈 0 : Int(); 1 : Single(s.0) 〉

If we define the type constructor “Array(len)” to be the type of a pointer to an

array of Ints with length len, then a record containing an array pointer and the length of

that array has the type

Σs.〈 0 : Array(s.1); 1 : Int() 〉

as seen in Figure 2.2. Circular dependencies are also allowed, so

Σs.〈 0 : Single(s.1); 1 : Single(s.0) 〉

is another valid definition for our record containing two identical integers.

We therefore have two kinds of memory locations in the language. Dependent fields

have types that refer to the self pointer or other fields, or are referred to by the types of

sibling fields. Non-dependent fields have types of the form C() (or C(c1, . . . cn), where each

ci is a constant) that do not refer to, and are not referred to by, any other field. We must be

11

Figure 2.2: A record of type Σs.〈 0 : Array(s.1); 1 : Int() 〉, which contains a pointer to an
integer array, and the length of the array.

careful when a dependent field is updated, to ensure that the dependencies are respected.

However, we can modify non-dependent fields in place without additional checking.

2.3 Symbolic evaluation of assembly language

We describe here the process of typechecking assembly code when the start of each

basic block has been annotated with an invariant, as is done in TAL [MCG+99]. Chapter 3

will describe how such invariants can be inferred.

Figure 2.3 shows the simple MIPS-like assembly language that we will be type-

checking. A basic block is a sequence of instructions whose entry is denoted by some label,

and whose exit is a branch or a jump. “bnz r, Ltrue, Lfalse” jumps to Ltrue when r 6= 0 and

to Lfalse otherwise. We assume that all jumps are to labels in the same function, and that

the machine has a finite set of registers r1, . . . rk. Section 4.1.1 will discuss how we handle

function calls and stack usage. Throughout this dissertation, we use ⊕, 	, and ⊗ to denote

addition, subtraction, and multiplication performed modulo the word size of the target ma-

chine. Arithmetic overflow is one of the greatest challenges to soundness in many analyses;

12

instructions I ::= mov rdest, c | mov rdest, rs1 op rs2

| load rdest ← [ra] | store rsrc → [ra]

binary operations op ::= ⊕| 	 | ⊗ | xor | < | . . .
labels L

constants c ::= L | numeric value

jumps J ::= bnz r, Ltrue, Lfalse | jump L

basic blocks B ::= I, B | J
functions func ::= 〈L1 : B1, . . . , Lm : Bm〉

Figure 2.3: The target assembly language.

in our discussions of overflow it will be necessary to distinguish the machine operations ⊕,

	, and ⊗ from the integer operations +, −, and ·. Finally, we will assume that memory

locations are addressed as words rather than bytes.

We must track the memory state explicitly in order to reason about writes to

dependent fields. “upd(m, e1, e2)” denotes the memory state that results from modifying

memory state m by writing value e2 at address e1, while “sel(m, e)” is the result of reading

address e in memory state m. We define “ValidMem” to be the type of a memory heap that

is in a consistent state: one where all allocated locations contain a value that adheres to the

type that the location was assigned when it was allocated. Consistency may be temporarily

broken when we write a dependent field, since in general we will have to write to all of the

fields in a dependent group before we can conclude that the group is consistent.

Our typechecker performs symbolic evaluation on one basic block at a time, using

abstract values v for any unknown word-sized values and vmem for unknown memory states.

As seen in Figure 2.4, a state in our checker is 〈∆,Φ,m, Γ〉, where ∆ is a mapping from

registers to symbolic expressions, Φ is a set of facts relevant to the type policy, m is the

13

states S ::= 〈∆,Φ,m, Γ〉
register states ∆ ::= r1 = e1, . . . , rk = ek

fact states Φ ::= F (e1, . . . , en),Φ | ·
memory states m ::= upd(m, e1, e2) | vmem

type states Γ ::= Γr,Γm

register type states Γr ::= v 7→ τ,Γr | ·
memory type states Γm ::= vmem 7→ ValidMem,Γm | ·

abstract values v

abstract memory states vmem

fact constructors F ∈ F

symbolic expressions e ::= c | v | e1 op e2 | sel(m, e)

register types τ ::= C(e1, . . . en) | Ptrσ

Figure 2.4: The states of our symbolic execution algorithm for typechecking.

current memory state, and Γ is a mapping from abstract values to types. We use Γr for

the portion of Γ containing word-sized abstract values, and Γm for the set of valid abstract

memory states. While the previous section used field types t to represent the flow-insensitive

types of memory locations, for abstract values in registers we use types τ that can depend

on symbolic expressions, including other abstract values and the results of memory reads.

If the type policy contains the Array constructor mentioned earlier, we could represent a

checker state in which memory is valid, r2 is known to equal r1 ⊕ 1, and r3 points to an

array of length r1 as 〈∆0,Φ0, vmem0,Γ0〉, where:

∆0 = {r1 = v1; r2 = v1 ⊕ 1; r3 = v2}

Φ0 = ∅

Γ0 = {v1 7→ Int(); v2 7→ Array(v1); vmem0 7→ ValidMem}

Informally, this state can be considered syntactic sugar for the following logical formula.

14

〈∆,Φ,m, Γ〉 ` mov rdest, c 〈∆[rdest 7→ c], Φ, m, Γ〉

〈∆,Φ,m, Γ〉 ` mov rdest, rs1 op rs2 〈∆[rdest 7→ ∆(rs1) op ∆(rs2)], Φ, m, Γ〉

〈∆,Φ,m, Γ〉 ` load rdest ← [raddr] 〈∆[rdest 7→ sel(m, ∆(raddr))], Φ, m, Γ〉

〈∆,Φ,m, Γ〉 ` store rsrc → [raddr] 〈∆, Φ, upd(m,∆(raddr),∆(rsrc)), Γ〉

Figure 2.5: Symbolic evaluation rules for instructions.

(Section 2.6 describes the relationship between states and logic formulas more precisely.)

∃v1∃v2∃vmem0 . v1 ∈ Int() ∧ v1 ∈ Array(v1) ∧ vmem0 ∈ ValidMem

∧ (r1 = v1) ∧ (r2 = v1 ⊕ 1) ∧ (r3 = v2)

All symbolic expressions are relative to a particular type state Γ that defines types

for the abstract values that appear in the expression. Therefore, any abstract value in an

expression should have a mapping in the associated type state:

Definition 2.1 (Well-formed expressions and states) An expression e is well-formed

in Γ if every abstract value appearing in e (including abstract memory states) is included

in dom(Γ). A type state Γ is well-formed if for all C(e1, . . . , en) in the range of Γ, each

ei is well-formed in Γ. A memory state m is well-formed in Γ if every abstract memory

value in m is in dom(Γ), and every expression appearing in an upd term is well-formed

in Γ. Finally, a state 〈∆,Φ,m, Γ〉 is well-formed if Γ and m are well-formed and every

expression appearing in ∆ and Φ is well-formed in Γ.

�

States in our type system must always be well-formed.

15

Figure 2.5 shows how basic blocks are symbolically evaluated. The judgment

〈∆,Φ,m, Γ〉 ` I 〈∆1,Φ1,m1,Γ1〉 means that in checker state 〈∆,Φ,m, Γ〉, symbolically

evaluating I yields the new checker state 〈∆1,Φ1,m1,Γ1〉. Note that Γ = Γ1 and Φ = Φ1

in each of these rules, meaning that the types of abstract variables and the set of known

facts are constant in a given basic block.

2.3.1 Typechecking symbolic expressions

We assign types to symbolic expressions with help from the typing rules provided

by the type policy. The judgment Γ,Φ ` e : τ means that expression e has type τ in type

context Γ using assumptions Φ. Abstract values can be typechecked simply by looking

them up in the context:
(abstract value)

Γ,Φ ` v : Γ(v)

The typing rules for constants and binary operations come from the type policy.

Many of these rules will be straightforward: a label constant that refers to a Foo object

in the data segment would be given type Ptr Foo, and the sum of two Ints is an Int. But

other operations may have preconditions that must be verified. For these rules, we rely on

the set of facts Φ, which remembers information from branch instructions and any function

preconditions.

For example, suppose a safety policy includes the Array type constructor and

allows pointer arithmetic on arrays, but only if the result is within bounds. We can add to

the type policy a fact constructor LessOrEq(a, b) meaning that a ≤ b (unsigned). Now the

rule for pointer arithmetic is as follows:

16

(array arithmetic)

Γ,Φ ` e1 : Array(elen) Γ,Φ ` e2 : Int LessOrEq(e2, elen) ∈ Φ

Γ,Φ ` e1 ⊕ e2 : Array(elen 	 e2)

This rule requires that the program establish e2 ≤ elen before performing the

pointer arithmetic. For example, if the code includes a branch on e2 ≤ elen, the type policy’s

Constrain operation can add this fact to Φ. This requirement would make it difficult to

verify arbitrary assembly code, but remember that that is not a goal of the project. Instead,

we consider only statically verifiable programs and type policies. If a policy can’t be verified

statically, such as type safety in legacy C code, you must use CCured or another tool to

insert runtime checks so that the code is verifiable.

For now, we won’t be overly concerned with the implementation of Φ. Clearly,

maintaining a list of every known fact is impractical: for example, if LessOrEq(10, x) ∈ Φ,

then we’d need LessOrEq(9, x) ∈ Φ, LessOrEq(8, x) ∈ Φ, and so on. Rather than maintain

a closed set of facts, our implementation has achieved good results by using a few axioms

when looking up information in Φ: LessOrEq(a, b) holds if LessOrEq(a, b) ∈ Φ, or a and b

are constants where a ≤ b, or there exists c such that LessOrEq(a, c) ∧ LessOrEq(c, b). If

needed, we could add more power to the static analysis by feeding Φ and the goal to an

automated decision procedure such as Simplify [DNS03]. The only two requirements about

Φ’s implementation are that it is possible to look up information in it, and that it is possible

to enumerate Φ as a finite set of facts, so that we can check that basic block preconditions

hold.

We allow type policies to use the facts in Φ in the definition of IsSubtype where

17

necessary. When typechecking expressions we use this subsumption rule:

(subsumption)

Γ,Φ ` e : τ ′ Γ,Φ ` IsSubtype(e, τ ′, τ)

Γ,Φ ` e : τ

The judgment Γ,Φ ` IsSubtype(e, τ ′, τ) is defined by the type policy and means that, if

e has type τ ′, then it also has type τ . In the CCured type policy, we will see a case where

the IsSubtype judgment uses the value e to look up information in Φ, but in many other

cases the judgment will not depend on e, only on τ ′.

For example, a type policy might allow long arrays to be used where shorter arrays

are expected:
(array subtype)

LessOrEq(e′len, elen) ∈ Φ

Γ,Φ ` IsSubtype(e, Array(elen), Array(e′len))

And since Array s are lists of integers, a nonempty array can be dereferenced as an Int()

pointer:
(array dereference)

LessOrEq(1, elen) ∈ Φ

Γ,Φ ` IsSubtype(e, Array(elen), PtrΣs.〈 0:Int() 〉)

2.3.2 Memory reads

The final form of expression is a read from memory. When reading a dependent

field with type C(s.j), we must replace dependency s.j with a symbolic expression that

explicitly encodes the current value of the jth field. Consider a record that contains an

array pointer and its length, and suppose we read the array field into r1 and the length field

18

into r2:

∆ = {r1 = sel(m0, v); r2 = sel(m0, v ⊕ 1)}

Γ(v) = PtrΣs.〈 0:Array(s.1); 1:Int() 〉

The value in r1 will have type “Array(sel(m0, v ⊕ 1)),” to reflect the fact that the length

of the array is located at address v ⊕ 1 in memory state m0. We can now use r2 as the

length of array r1. Even if memory is later changed, for example by updating this record

with a new array and different length, we will still be able to use r2 as the length of r1 since

we remember that they were read from the same memory state m0.

We generalize the above intuition into the following rule:

(memory read)
Γ,Φ ` e : PtrΣs.〈0:t0; ... ; n−1:tn−1〉

τ = ti

[
sel(m, e⊕ 0)�s.0

]
· · ·

[
sel(m, e⊕ (n−1))�s.(n− 1)

]
Γ,Φ ` m : ValidMem

Γ,Φ ` sel(m, e⊕ i) : τ

The binding step τ = ti[sel(m, e⊕ 0)�s.0] · · · [sel(m, e⊕ n−1)�s.(n− 1)] will,

for example, convert the field type Array(s.1) in the previous example to the register type

Array(sel(m, v⊕1)). The requirement Γ,Φ ` m : ValidMem ensures that we are not in the

middle of a dependent update. Note that because e points to a valid object with n fields,

we can assume the arithmetic will not overflow: for all i between 0 and n−1, e⊕ i = e + i.

2.4 Memory consistency

After writing a value to memory, we must see whether Γ,Φ ` m : ValidMem for

the resulting memory state m. If the store wrote to a dependent field, then other fields in

the record may have to be updated as well in order for the record to be internally consistent

19

` sel(upd(m, ea, ev), ea) = ev

ea 6= e′a

` sel(upd(m, e′a, ev), ea) = sel(m, ea)

Figure 2.6: The standard axioms for interpreting sel and upd.

once again. For simplicity, our framework requires that all the relevant dependent fields of

a record be mutated in the same basic block, with no other intervening writes to the heap.

However, it would not be hard to extend the type system to allow invalid memory states

that span basic block boundaries.

The rule for stores is below. Starting from a consistent state m, a basic block

can perform a series of writes to some object that starts at address ea. The notation

upd(m, ea ⊕ ci, ei) represents the result of storing ei into this object’s ci
th field; we check

that each ci is in bounds in the type rule below. Regardless of which fields have been

overwritten, we can reestablish consistency for this object by checking whether every field

ea ⊕ i of the object has the type it should in the new memory state. First, we define a

function that computes a canonical form for the result of a memory read using standard

axioms for memory, which are shown in Figure 2.6:

Read(m, ea ⊕ i) =


e if m = upd(m′, ea ⊕ i, e)

Read(m′, ea ⊕ i) if m = upd(m′, ea ⊕ j, e) and i 6= j

sel(m, ea ⊕ i) otherwise

With this function we can write the typing judgment that validates a sequence of

20

j writes to the same record:

(memory update)

m′ = upd((. . . upd(m, ea ⊕ c1, e1) . . .), ea ⊕ cj , ej)

Γ,Φ ` ea : PtrΣs.〈0:t0; ... ; n−1:tn−1〉

∀0 ≤ i < j . 0 ≤ ci < n

∀0 ≤ i < n . Γ,Φ ` Read(m′, ea ⊕ i) : τi

where τi = ti

[
Read(m′, ea ⊕ 0)�s.0

]
· · ·

[
Read(m′, ea ⊕ n−1)�s.(n− 1)

]
Γ,Φ ` m : ValidMem

Γ,Φ ` m′ : ValidMem

For example, consider a record that contains an array reference, its length, and

one other field of type Foo(). Suppose r1 points to such a record, r2 contains some array

pointer, and r3 contains the length of r2:

∆ = { r1 = vptr; r2 = v2; r3 = v3}

Γ = { vptr 7→ PtrΣs.〈 0:Array(s.1); 1:Int(); 2:Foo() 〉;

v2 7→ Array(v3);

v3 7→ Int();

vmem0 7→ ValidMem}

store r2 → [r1];
mov rtmp, r1 ⊕ 1;
store r3 → [rtmp];

Now we update the memory state vmem0 writing v2 at address r1 and

v3 at address r1+1, therefore mutating both the array and length fields

of the record. These two store instructions produce the memory state

m′ = upd(upd(vmem0, vptr, v2), vptr ⊕ 1, v3)

The intermediate memory state upd(vmem0, vptr, v2) is not consistent, and in gen-

eral it must not be used for load instructions. But m′ is consistent. Observe that we

21

get

Read(m′, vptr ⊕ 0) = v2

Read(m′, vptr ⊕ 1) = v3

Read(m′, vptr ⊕ 2) = sel(vmem0, vptr ⊕ 2)

Each of these three fields has the correct type. v2 has type

Array(s.1)
[
Read(m′, vptr ⊕ 1)�s.1

]
= Array(Read(m′, vptr ⊕ 1))

= Array(v3)

while v3 has type Int(). Location vptr ⊕ 2 was not modified, so we rely on the fact that

“Γ,Φ ` vmem0 : ValidMem” holds to ensure that sel(vmem0, vptr ⊕ 2) has a value of type

Foo().

For simplicity, we have presented a version of the (memory update) rule in which

all relevant writes to a dependent group are done consecutively. Our implementation uses a

more general rule that takes advantage of simple type-based nonaliasing facts (a value with

type Ptrσ1 cannot alias a value with type Ptrσ2 if σ1 6= σ2). With alias information, we can

allow writes to distinct objects to be interleaved. We can also allow reads from inconsistent

memory, so long as the object being read from is consistent.

2.5 Typechecking basic blocks

As mentioned above, we assume for now that each basic block is annotated with

a well-formed symbolic state that serves as a precondition. Let Pre(L) be this annotation

for label L. Given the initial symbolic state for a label, we apply the instruction rules of

22

Jump instruction: Requirement:

jump L 〈∆,Φ,m, Γ〉 ≺: Pre(L)

bnz r, Ltrue, Lfalse (Constrain(〈∆,Φ,m, Γ〉,∆(r) 6= 0) ≺: Pre(Ltrue)) ∧

(Constrain(〈∆,Φ,m, Γ〉,∆(r) = 0) ≺: Pre(Lfalse))

Figure 2.7: Symbolic evaluation rules for jumps, where 〈∆,Φ,m, Γ〉 is the symbolic state
before the jump is executed.

Figure 2.5 repeatedly to find the state at the end of the basic block. We then ensure that

the resulting state implies the preconditions of successor blocks, as shown by the jump rules

in Figure 2.7. These rules use the notation S1 ≺: S2 to mean that state S1 is at least as

strong as state S2. In this section, we show how this ordering can be defined.

The branch instruction in Figure 2.7 also shows where the type policy’s Constrain

operation is used: Constrain(S, b) is the state that results from refining S with the infor-

mation that b is true. Usually, this involves adding a representation of b to the fact set

Φ, or doing nothing at all if the branch is not relevant. Constrain could also modify the

expressions or types in the state directly. For example, Constrain(〈∆,Φ,m, Γ〉, v = 0)

would be the state where every occurrence of v in ∆, Φ, or m is replaced by 0.

Example Figure 2.8 shows a loop that walks backwards through an array while maintain-

ing the invariant that rb points to the rx
th element of array ra. Pre(L1), the precondition

23

//Preconditions: 0 ≤ rx ≤ 100, and
//ra points to an Array of length 100.
rb = ra + rx;
while(rx != 0) {

rx--;
rb--;
...

}

mov rb, ra ⊕ rx

L1 : bnz rx, L2, L3

L2 : mov rx, rx 	 1
mov rb, rb 	 1
. . .
jump L1

L3 :

Figure 2.8: Example: A loop that walks backwards through an array, maintaining the
invariant that rb points to the rx

th element of array ra. The C code for this loop is on the
left; the assembly version on the right.

at the beginning of the loop, is 〈∆1,Φ1, vmem,Γ1〉 where

∆1 = { ra = va;

rx = vx;

rb = va ⊕ vx}
Φ1 = {LessOrEq(vx, 100)}
Γ1 = { va 7→ Array(100); vb 7→ Int; vmem 7→ ValidMem}

Remember that we defined LessOrEq as an unsigned comparison, so

LessOrEq(0, vx) is implied. The branch command jumps to L2 when rx 6= 0, so the state at

L2 is the same as L1 except that the Constrain operator can add the fact LessOrEq(1, vx)

to Φ. As shown in Figure 2.5, evaluating the two decrement operations produces the sym-

bolic state 〈∆new,Φnew, vmem,Γnew〉, where

∆new = { ra = va;

rx = vx 	 1;

rb = va ⊕ vx 	 1}
Φnew = {LessOrEq(1, vx); LessOrEq(vx, 100)}
Γnew = { va 7→ Array(100); vb 7→ Int; vmem 7→ ValidMem}

The last line of the loop jumps back to L1, so we have to show that this new state

implies Pre(L1). The relevant facts are that rb = ra⊕ rb and 0 ≤ rx ≤ 100. Recall that each

24

symbolic state is an existential statement: there exist values va, vx, and vmem such that the

registers have the given values and the predicates in Φ hold. We can therefore show that a

state implies Pre(L1) by constructing values for the abstract variables in Γ1. Using primes

on the new abstract values for clarity, we get:

v′a = va

v′x = vx 	 1

v′mem = vmem

By substituting these values for the abstract variables of Pre(L1), it’s easy to see that

〈∆new,Φnew, vmem,Γnew〉 satisfies all of the requirements of Pre(L1), namely:

• v′a, v′x, and v′mem have the correct types.

• ra = v′a = va; rx = v′x = vx 	 1; and rb = v′a ⊕ v′x = va ⊕ vx 	 1. 1

• LessOrEq(vx 	 1, 100), since the fact LessOrEq(1, vx) ∈ Φnew means that vx 	 1 does

not underflow.

�

To formalize the procedure of checking that a state S1 = 〈∆1,Φ1,m1,Γ1〉 implies

S2 = 〈∆2,Φ2,m2,Γ2〉, let M be a mapping from abstract values in Γ2 to expressions and

memory states that are well-formed in Γ1. Specifically, for each word-sized abstract value

v ∈ dom(Γr
2), M(v) is a well-formed expression in Γ1; and for each abstract memory state

vmem ∈ dom(Γm
2), M(vmem) is a well-formed memory state in Γ1. Let M [[e]] be the result of

replacing each abstract value v in e with M(v). Observe that if e is well-formed in Γ2, then
1For the most part, we treat arithmetic operators as uninterpreted functions when checking preconditions.

Note that that’s not quite enough here, since we need to know that (va⊕vx)	1 in the new state is equivalent
to va ⊕ (vx 	 1) in the precondition. Section 3.2 will describe how we handle such issues.

25

M [[e]] is well-formed in Γ1. If such a mapping exists that satisfies all of the requirements of

S2, then S1 implies S2:

Definition 2.2 (State ordering) State 〈∆1,Φ1,m1,Γ1〉 is at least as strong as state

〈∆2,Φ2, vmem2,Γ2〉, written 〈∆1,Φ1,m1,Γ1〉 ≺: 〈∆2,Φ2, vmem2,Γ2〉, if each of the following

hold:

• dom(∆1) = dom(∆2)

• Γ2(vmem2) = ValidMem.

• There exists a mapping M from the values of dom(Γ2) to expressions and memory

states that are well-formed in Γ1 such that

1. M(vmem2) = m1.

2. For all r ∈ dom(∆2), M [[∆2(r)]] = ∆1(r).

3. For all F (e1, . . . , en) ∈ Φ2, F (M [[e1]], . . . ,M [[en]]) ∈ Φ1.

4. For each “v 7→ C(e1, . . . , en)” ∈ Γr
2, let τ1 be the type of M(v) in state 1 (i.e.

Γ1,Φ1 ` M(v) : τ1) and let τ2 = C(M [[e1]], . . . ,M [[en]]). It must be true that

Γ1,Φ1 ` IsSubtype(M(v), τ1, τ2).

Likewise, for each “v 7→ Ptrσ” ∈ Γr
2, Γ1,Φ1 ` IsSubtype(M(v), τ1,Ptrσ) must

be true.

5. For each “vmem 7→ ValidMem” ∈ Γm
2 , it must be that Γ1,Φ1 ` M(vmem) :

ValidMem.

�

26

Note that we define this relation only when the weaker state’s memory state is an

abstract value. Our preconditions at basic block boundaries will require only that memory

is in a valid state. We could relax this requirement by generalizing Algorithm 2.1, but that

has not been necessary in practice.

The following algorithm constructs a map M that satisfies requirements 1 and 2

in Definition 2.2, if possible. It works by recursively comparing symbolic expressions in the

two states to determine which symbolic expression in state 1 corresponds to each abstract

value in Γ2. At the end of the algorithm, if dom(M) 6= dom(Γ2) then there is some abstract

value in Γ2 that does not appear in any of the expressions in ∆2. We fail in this case, since

there is no reason for a precondition to contain dead values. If dom(M) = dom(Γ2), then

M is a complete map and we can easily check that the other requirements of Definition 2.2

hold.

Algorithm 2.1 (Construction of the abstract value map M)

When deciding whether 〈∆1,Φ1,m1,Γ1〉 ≺: 〈∆2,Φ2, vmem2,Γ2〉:

Let M be a map from abstract values of dom(Γ2) to expressions and memory states that are

well-formed in Γ1. M is initially empty except that M(vmem2) = m1.

Call (compare ∆1(ri) ∆2(ri)) for each ri ∈ dom(∆1). If each call to compare

returns Success, then M will be a map satisfying M [[∆2(ri)]] = ∆1(ri) for all i. If any call

to compare returns Fail, or dom(M) 6= dom(Γ2) at the end of the algorithm, then conclude

〈∆1,Φ1,m1,Γ1〉 ⊀: 〈∆2,Φ2, vmem2,Γ2〉.

27

compare e1 e2 =

match e1, e2 with

| e1, v → if v ∈ dom(M) then

if M(v) = e1 then return Success

else return Fail

else

Add (v 7→ e1) to M; return Success.

| e1
′ op e1

′′, e2
′ op e2

′′ → if (compare e1
′ e2

′ = Success)

and (compare e1
′′ e2

′′ = Success)

then return Success

else return Fail

| sel(m, e1
′), sel(vmem2, e2

′) → if m = m1

and (compare e1
′ e2

′ = Success)

then return Success

else return Fail

| c, c → return Success

| otherwise → return Fail

�

2.6 Soundness

This section outlines soundness proofs for the typing judgments, memory consis-

tency judgment, and the state order ≺:. For the portions of these rules that are handled

by the type policy, such as arithmetic operators and IsSubtype, we state lemmas that will

need to be proved for each type policy.

Since the soundness of the type system is with respect to a concrete execution

environment, we begin by introducing some notation for concrete machines. Let Word be

the set of machine words. An allocation state ρA is a partial function from Word values

to record types σ that gives the type of each location in memory. These records may not

28

overlap: if ρA(a) = σ where σ has n fields, then a + 1, . . . a + n − 1 may not have any

mapping in ρA. Furthermore the records must all fit in the address space, so that a+(n−1)

does not overflow, and NULL must not be used as a pointer: 0 /∈ dom(ρA). A memory

store ρS : Word → Word represents the contents of memory at a particular time. For

a given type state Γ, Vars is a map from the abstract values dom(Γ) to concrete values.

Vars(v) ∈ Word when v ∈ dom(Γr), and Vars(v) is a memory store when v ∈ dom(Γm).

The concretization functions [[e]]Vars, [[m]]Vars and [[τ]]Vars shown in Figure 2.9 convert our

symbolic representations into concrete values using the map Vars.

For a register type τ that depends only on concrete values, [[τ]]ρA ∈ 2Word is

the set of values corresponding to τ under allocation state ρA. [[Ptrσ]]ρA is defined as

{a ∈ Word | ρA(a) = σ}, while [[C(i1, . . . , in)]]ρA is defined by the type policy for each C.

For example, [[Array(n)]]ρA = {a ∈Word | ∀ i . 0 ≤ i < n =⇒ ρA(a + i) = Σs.〈0 : Int()〉},

and [[Int()]]ρA = Word. For register types depending on symbolic values, we first use the

[[·]]Vars operator, as in [[[[τ]]Vars]]ρA . Finally, we define a notion of a well-typed memory store

ρS :

[[ValidMem]]ρA =

{ρS ∈Word →Word | ∀a ∈ dom(ρA) :

∀ i < n, ρS(a + i) ∈
[[
ti [ρS(a + 0)/s.0] · · · [ρS(a + n−1)/s.(n− 1)]

]]
ρA

where ρA(a) = Σs.〈0 : t0; . . . ; n− 1 : tn−1〉. }

An allocation state ρA is well-formed (written |=ρA) if it is a map from (Word−{0})

to record types and it has the nonoverlapping and nonoverflowing properties specified earlier:

for all a, σ, n, i such that ρA(a) = σ, σ has n fields, and 0 < i < n, then (a + i) /∈ dom(ρA)

and a + i < |Word|. A typing context Γ,Φ is well-formed under a particular concretization

29

Expressions: [[e]]Vars ∈Word

[[v]]Vars = Vars(v)

[[c]]Vars = c

[[e1 op e2]]Vars = [[op]] ([[e1]]Vars, [[e2]]Vars)

[[sel(m, e)]]Vars = [[m]]Vars ([[e]]Vars)

Memory states: [[m]]Vars ∈ Word→Word

[[vmem]]Vars = Vars(vmem)

[[upd(m, e1, e2)]]Vars = [[m]]Vars

[
[[e1]]Vars 7→ [[e2]]Vars

]

Concretize the expressions in register types: [[τ]]Vars

[[Ptrσ]]Vars = Ptrσ

[[C(e1, . . . en)]]Vars = C([[e1]]Vars, . . . [[en]]Vars)

Concretize machine arithmetic operators: [[op]] ∈ (Word×Word)→Word

[[⊕]](x, y) = x + y mod |Word|
[[⊗]](x, y) = x · y mod |Word|

. . .

Figure 2.9: Definition of the concretization functions [[e]]Vars for symbolic expressions e,
[[m]]Vars for symbolic memory states m, and [[τ]]Vars for register types τ .
We use [[op]] ∈ (Word×Word)→Word for the concrete arithmetic operation corresponding
to the symbolic expression op.

30

(Vars, ρA) (written Vars, ρA |= Γ,Φ) if the following hold: |= ρA; dom(Γ) = dom(Vars);

Vars(v) ∈ [[[[Γ(v)]]Vars]]ρA for all v ∈ dom(Vars); and ρA |= F ([[e1]]Vars, . . . , [[en]]Vars) for all

F (e1, . . . , en) ∈ Φ. The meaning of ρA |= F (i1, . . . , in) must be defined by the type policy

for each fact constructor F . With these notions of well-formedness, we can state a soundness

theorem for the judgment Γ,Φ ` e : τ .

Theorem 1 (Soundness of expression typing) If Vars, ρA |= Γ,Φ and Γ,Φ ` e : τ ,

then [[e]]Vars ∈ [[[[τ]]Vars]]ρA.

Proof: The proof is by induction on e. There are several cases according to the different

rules for deriving Γ,Φ ` e : τ . The case e = v follows from Vars, ρA |= Γ,Φ and the

(abstract value) rule. The (subsumption) rule relies on the correctness of the type

policy’s IsSubtype rule:

Required Lemma 1 (IsSubtype) If Vars, ρA |= Γ,Φ, [[e]]Vars ∈ [[[[τ ′]]Vars]]ρA, and

Γ,Φ ` IsSubtype(e, τ ′, τ), then [[e]]Vars ∈ [[[[τ]]Vars]]ρA.

Likewise the constant and arithmetic cases must be handled by the type policy,

since it defines the typing rules for those cases:

Required Lemma 2 (Expression cases) The constant (e = c) and arithmetic (e =

e1 op e2) cases of Theorem 1 hold.

The final case, memory reads, follows directly from the (memory read) rule, the

definitions of [[Ptrσ]]ρA and [[ValidMem]]ρA , and the correctness of the judgment Γ,Φ ` m :

ValidMem, shown below.
�

31

Theorem 2 (Soundness of memory updates) If Vars, ρA |= Γ,Φ and

Γ,Φ ` m′ : ValidMem, then [[m′]]Vars ∈ [[ValidMem]]ρA.

This theorem is proved by induction on the symbolic state m′ using the (memory update)

rule. Therefore we assume that there exists a state m and expression ea such that [[m]]Vars ∈

[[ValidMem]]ρA and m′ is the result of writing to m at one or more offsets of address ea, as

stated in (memory update). Further, we can assume ρA([[ea]]Vars) = Σs.〈0 : t0; . . . ; n−1 :

tn−1〉 and all of the write offsets are less than n.

First, note that for all i ∈ [0, n), [[Read(m′, ea ⊕ i)]]Vars = [[m′]]Vars([[ea ⊕ i]]Vars).

There are three cases to the proof of this fact, corresponding the three rules in the definition

of Read on page 19. The first and third hold by definition of [[upd(m, ea ⊕ i, e)]]Vars and

[[sel(m, ea ⊕ i)]]Vars, respectively. The second case:

Read(upd(m′′, ea ⊕ j, e), ea ⊕ i) = Read(m′′, ea ⊕ i) when i 6= j

holds because the offsets i and j are less than n, so ⊕ does not overflow. Therefore,

i 6= j =⇒ [[ea ⊕ i]]Vars 6= [[ea ⊕ j]]Vars.

To show that [[m′]]Vars ∈ [[ValidMem]]ρA , we must consider all a ∈ dom(ρA) and

prove

∀ i < n′, [[m′]]Vars(a + i) ∈
[[
ti

[
[[m′]]Vars(a + 0)/s.0

]
· · ·

[
[[m′]]Vars(a + n′−1)/s.(n′ − 1)

]]]
ρA

where ρA(a) = Σs.〈0 : t0; . . . ; n′ − 1 : tn′−1〉. When a = [[ea]]Vars, this is true by

the premise of the (memory update) rule using the fact that [[Read(m′, ea ⊕ i)]]Vars =

[[m′]]Vars([[ea ⊕ i]]Vars).

32

The important case of this proof is the one where a 6= [[ea]]Vars. We must show that

our memory rules are sufficient to ensure that writing to memory won’t change the (depen-

dent) type of any value outside of the current object. For this, we use the nonoverlapping

property of well-formed allocation states ρA, and observe that the statement above is true

for [[m′]]Vars because it is true for the original memory state [[m]]Vars, and no intervening

writes to the object at [[ea]]Vars have changed anything relevant to a. Whenever j′ < n′ and

c < n, the nonoverlapping property implies that (a + j′) 6= ([[ea]]Vars + c). Therefore, a + i

points to the same value, and depends on the same values, in m′ as it does in m.

�

2.6.1 Soundness of state ordering

Finally, we discuss the correctness of the state ordering test 〈∆1,Φ1,m1,Γ1〉 ≺:

〈∆2,Φ2,m2,Γ2〉. A concrete execution state is a triple (ρA, ρS , ρR) where ρA : Word → σ

is an allocation state, ρS : Word → Word represents the contents of memory, and ρR

represents the contents of the machine registers. Let γ(〈∆,Φ,m, Γ〉) be the set of concrete

machine states corresponding to abstraction 〈∆,Φ,m, Γ〉:

γ(〈∆,Φ,m, Γ〉) = {(ρA, ρS , ρR) | There exists a concretization map Vars such that

Vars, ρA |= Γ,Φ; ρS = [[m]]Vars; and for each

machine register r, ρR(r) = [[∆(r)]]Vars}

Theorem 3 (Soundness of state ordering) If 〈∆1,Φ1,m1,Γ1〉 ≺: 〈∆2,Φ2,m2,Γ2〉,

then γ(〈∆1,Φ1,m1,Γ1〉) ⊆ γ(〈∆2,Φ2,m2,Γ2〉).

33

Proof: Assume 〈∆1,Φ1,m1,Γ1〉 ≺: 〈∆2,Φ2,m2,Γ2〉, and (ρA, ρS , ρR) ∈ γ(〈∆1,Φ1,m1,Γ1〉).

We will show (ρA, ρS , ρR) ∈ γ(〈∆2,Φ2,m2,Γ2〉) by finding a map Vars2 that satisfies the

requirements above.

Let M be the map of abstract values in Γ2 satisfying

〈∆1,Φ1,m1,Γ1〉 ≺: 〈∆2,Φ2,m2,Γ2〉, and let Vars1 be the concretization satisfying

(ρA, ρS , ρR) ∈ γ(〈∆1,Φ1,m1,Γ1〉). Define Vars2(v) = [[M(v)]]Vars1
for all v ∈ Γ2. It is then

easy to prove the following lemma about the substitution M [[·]]:

Lemma 3 (Substitution lemma) If e is well-formed in Γ2, then [[e]]Vars2
= [[M [[e]]]]Vars1

.

(Proof omitted.)

Now, we prove Vars2, ρA |= Γ2,Φ2:

• |=ρA, because Vars1, ρA |= Γ1,Φ1.

• dom(Γ2) = dom(Vars2) by definition of Vars2.

• For each v ∈ dom(Vars2), we want Vars2(v) ∈ [[[[Γ2(v)]]Vars]]ρA :

Assume Γ2(v) = C(e1, . . . , en); the case where Γ2(v) = Ptrσ is similar. Let τ1 be

such that Γ1,Φ1 ` M(v) : τ1, as in Requirement 4 of Definition 2.2. By Theo-

rem 1, Vars2(v) = [[M(v)]]Vars1
∈ [[[[τ1]]Vars1

]]ρA . From Requirement 4 and Required

Lemma 1, we know [[[[τ1]]Vars1
]]ρA ⊆ [[[[C(M [[e1]], . . . ,M [[en]])]]Vars1

]]ρA . And by the Sub-

stitution Lemma, [[[[C(M [[e1]], . . . ,M [[en]])]]Vars1
]]ρA = [[C([[e1]]Vars2

, . . . , [[en]]Vars2
)]]ρA .

So Vars2(v) ∈ [[[[C(e1, . . . , en)]]Vars2
]]ρA .

• For all F (e1, . . . , en) ∈ Φ2, F (M [[e1]], . . . ,M [[en]]) ∈ Φ1 by Requirement 3. ρA |=

F ([[M [[e1]]]]Vars1
, . . . , [[M [[en]]]]Vars1

) because Vars1, ρA |= Γ1,Φ1. Using the Substitution

34

Lemma, we conclude ρA |= F ([[e1]]Vars2
, . . . , [[en]]Vars2

).

ρS = [[m1]]Vars1
= [[m2]]Vars2

by the Substitution Lemma, since m2 is the abstract value

vmem2. Finally, for any register r, ∆1(r) = M [[∆2(r)]] by Requirement 2 of Definition 2.2.

With one last application of the Substitution Lemma, we get ρS(r) = [[∆1(r)]]Vars1
=

[[M [[∆2(r)]]]]Vars1
= [[∆2(r)]]Vars2

.

�

2.7 Related type systems

There are many dependent type systems that are more expressive than the one

presented here. The Xanadu language, for example, provides dependent types for an im-

perative, source-level language [Xi00]. Xanadu supports dependencies between different

objects, which lets the language express more interesting properties about heap structures

than ours can. The cost of such expressiveness is that dependently-typed locations cannot

be modified, because the type system cannot keep track of which other types might refer

to the location being modified.

Xanadu can be compiled to DTAL, a dependently-typed assembly language [XH01].

DTAL focuses largely on array types and array-bound check elimination. Basic blocks are

annotated with invariants to reduce the need for type inference, and a type-preserving

compiler is used. Like Xanadu, and for the same reasons, DTAL does not support the

modification of dependently-typed locations in the heap.

Our dependent record types are related to Hickey’s very dependent function types

[Hic96]. Hickey encodes immutable records as functions from labels to values. By using very

35

dependent types for these functions, one can impose dependencies among the object’s fields.

Hickey uses these types to formalize a theory of objects, including methods and inheritance.

Our type system has a similar focus on dependencies among fields and function arguments,

but in the context of a low-level imperative language with mutable structures.

Grossman [Gro02] discusses the difficulty in supporting existential types in imper-

ative languages: you can allow mutation of existentially-typed objects, or you can allow

objects to be aliased after unpacking the existential, but not both. This is similar to the

difficulty that our system addresses for dependent types. The dependent-type analog to the

unpack operation is the type rule for memory reads, so we fix the problem by remembering

in the sel expression from which memory state the value was read, and we don’t assume

that values read from two different memory states have any correlation.

Deputy [CHA+07] is a recently-developed, source-level dependent type system for

C code that imposes similar restrictions as ours: types can depend only on other values in

the same structure, variable scope, or formal parameter list. We discuss Deputy further in

Chapter 5.

36

Chapter 3

Type Inference

So far, we have described how to check that assembly code adheres to a safety

policy when each label in the assembly code is annotated with an invariant describing

the abstract state that should hold at that label. There are two ways to generate such

annotations: 1) Use a certifying compiler that emits the invariants during code generation,

or 2) Rediscover these invariants after code generation by analyzing the assembly code. As

you will see in this chapter, our system rediscovers the basic block invariants given a small

amount of information by the code generator, such as the types of global variables and

function signatures.

It would be very difficult to write a sound, whole-program type inference system

for assembly code without any high-level information about the code. All of the difficulties

of source code static analysis are magnified by the low-level instructions and lack of typing

information in assembly code. CodeSurfer/x86 [BR04] is one tool that will analyze binary

code with the goal of helping a human understand it, and will do so without annotations

37

or debugging information. (This is especially useful when studying viruses and other code

for which the author has no interest in helping you decompile it.) But soundness is not a

goal of decompilation tools like CodeSurfer/x86; instead they aim to give the best possi-

ble decompilation while warning about certain suspect operations such as potential buffer

overflows. We assume that the authors of the program are more helpful, and will provide

us with certain annotations just as they have already agreed to run a specific safety tool on

their source code. In exchange for these annotations, we get soundness, greater precision,

and faster verification than we could otherwise achieve.

To make our assembly code analysis tractable we analyze one function at a time,

using the source code tool to annotate function boundaries for us. The following annotations

are required:

• The type of each global variable.

• For each function: the type of each formal parameter, the type of the return value,

and the stack address and type of any local variable that has its address taken.

• For each heap allocation, the type that will be applied to the resulting pointer (e.g.

“T*” if the corresponding source instruction is “T* x = (T*)malloc(n)”).

• Any extra information needed by the type policy. For example, CCured supports a

form of dynamic typing in which Run-Time Type Information (RTTI) is attached to

pointers and used in checked downcasts. To support assembly analysis, CCured emits

an annotation describing which type tag is used with each type.

These annotations are untrusted, so any erroneous annotation results in a verifi-

38

cation failure rather than unsoundness. We implement the annotations by inserting inline

assembly instructions into the source code, which are then preserved by the compiler. Other

methods of preserving this data would also work. With the exception of allocation sites,

none of these annotations are inserted into function bodies, so they do not hinder the opti-

mizer. It would also have been possible to also use inline assembly or a similar mechanism

to insert annotations for loop invariants, the types of local variables, and so forth. We de-

cided against adding such annotations because they would pin variables to certain locations

and constrain the opportunities for optimization. Of course, no inference algorithm can be

complete for all valid optimizations. As seen in Section 4.3, ours is robust enough to handle

most code, but some complex pieces of code such as multidimensional array indices will

need a stronger analysis or additional annotations.

Abstract interpretation

Given this global information, we use abstract interpretation [CC79] on each

function to determine a symbolic state describing each basic block. The abstract state

〈∆,Φ,m, Γ〉 for this analysis is the same as the typechecking state described in the previ-

ous chapter. At the start of each function, we use the information about formal parameters

that is given by the annotations to create an initial state. We then perform symbolic ex-

ecution over the body of the function. The hard part is dealing with join points, which

are labels with two or more predecessors. Here, we must use a widening operator to deter-

mine a suitable upper bound for the symbolic states of each predecessor. This operation

must preserve any information that will be needed in the future to check the type policy,

while assuring that the abstract interpretation does not enter an infinite loop. In general

39

a widening operator must be defined for each type policy, but the problems and solutions

discussed here should apply to most policies for C and related languages.

We begin by adapting Algorithm 2.1 to be widening operator that generates an

upper bound of its input states. As is common in abstract interpretation, the widening

operator also determines whether the upper bound is at least as strong as the previous

state at this label; if so we are at fixed point and do not need to check state ordering

separately. We also eagerly add information to the state Φ that would otherwise be lost

during widening.

The next challenge we discuss is arithmetic. The compare algorithm in the previous

chapter treats arithmetic operators as uninterpreted functions, and makes no assumptions

about their behavior. This would not be sufficient during widening, as we will demonstrate.

Support for pointer arithmetic requires more careful treatment of arithmetic operators.

Finally, we discuss the performance of the system. By careful design of the widen-

ing operator, we ensure the abstract interpretation terminates. By using a liveness analysis

for registers and optimizing the worklist algorithm, we ensure that it does so quickly.

3.1 Widening

We perform abstract interpretation in the standard manner. At each label (the

start of a basic block) we remember the current symbolic state. When we reach a label

that has already been explored, we compare the current state S1 = 〈∆1,Φ1,m1,Γ1〉 to the

saved state S2 = 〈∆2,Φ2,m2,Γ2〉. If S1 ≺: S2, then we are done exploring this path since

we have already typechecked this basic block using a precondition S2 that is weaker than

40

the current one. Otherwise, we must find a new state S3 that is weaker than both S1 or

S2, and use this state to symbolically execute the basic block. This section describes how

to find such an S3.

We start by combining the symbolic expressions for each register in ∆1 and ∆2

in such a way as to preserve as much of the symbolic structure as possible. For example,

suppose S1 and S2 each contain a pointer to the second field of a two-Int record.

∆1(r1) = v1 ⊕ 1

Γ1,Φ1 ` v1 : PtrΣs.〈 0:Int(); 1:Int() 〉

∆2(r1) = sel(m2, e2)⊕ 1

Γ2,Φ1 ` sel(m2, e2) : PtrΣs.〈 0:Int(); 1:Int() 〉

Since ∆1(r1) and ∆2(r1) each point to an Int, it would be sound to assign to

∆3(r1) a fresh abstract value of type pointer to Int. This would satisfy the requirement

that S1 ≺: S3 and S2 ≺: S3. However, such a value for ∆3(r1) loses useful information: that

r1 	 1 also points to an Int. If S3 is too weak, we may not be able to typecheck the code

that follows. Instead, we can create a fresh abstract value of type PtrΣs.〈 0:Int(); 1:Int() 〉 and

keep the symbolic structure that’s common to S1 and S2.

∆3(r1) = v3 ⊕ 1

Γ3(v3) = PtrΣs.〈 0:Int(); 1:Int() 〉

Section 3.2.3 will give an example where this preservation of information is important.

To preserve expression structure, we will change the compare function from Algo-

rithm 2.1 into a new function join that returns an expression weaker than its two argument

expressions, while creating abstract values only when necessary. This function is based on

existing join algorithms for the theory of uninterpreted functions [GTN04, CL05]; in Sec-

tion 3.2 we discuss how to handle arithmetic in the common case where treating arithmetic

operators as uninterpreted is too imprecise.

41

In the new algorithm, M is a map from abstract values in the new state to pairs

(e1, e2), where e1 is well-formed in Γ1 and e2 is well-formed in Γ2. In the vocabulary of Single

Static Assignment (SSA) form [CFR+91], M represents Phi nodes. Each M(v) = (e1, e2)

can be thought of as the assignment v ← φ(e1, e2), meaning that v takes the value e1

when the S1 path is used, or e2 when the S2 path is used. We define ML and MR to

be maps containing the left and right projections, respectively, of each of these pairs, so

ML(v) = e1 and MR(v) = e2 when M(v) = (e1, e2). We will construct M such that ML

is a map demonstrating S1 ≺: S3 and MR is a map demonstrating S2 ≺: S3 according to

Definition 2.2.

Figure 3.1 shows the procedure for joining expressions. The join function ab-

stracts incompatible parts of the symbolic expressions and remembers the abstractions

using M . We memoize the construction of M so that we preserve as many equivalences as

possible. For example, suppose we are combining two states in which ra equals rb:

∆1(ra) = v1 ⊕ 1

∆1(rb) = v1 ⊕ 1

∆2(ra) = sel(m2, v2)

∆2(rb) = sel(m2, v2)

Here, we will create a new v such that M(v) = (v1 ⊕ 1, sel(m2, v2)) and set

∆3(ra) = ∆3(rb) = v to preserve the only fact that these states have in common: ra = rb.

Finally, we need a way to construct types for the new abstract values in S3 =

〈∆3,Φ3,m3,Γ3〉. For this, the type system must provide an operation TJoin such that

TJoin(τ1, τ2) is a supertype of both τ1 in S1 and τ2 in S2. Specifically, when the following

hold

• TJoin(τ1, τ2) = τ ,

42

• Vars1, Vars2, Vars3, and ρA are such that Vars1, ρA |= Γ1,Φ1 and Vars2, ρA |= Γ2,Φ2,

and Vars3, ρA |= Γ3,Φ3, and

then it must be true that ([[[[τ1]]Vars1
]]ρA ∪ [[[[τ2]]Vars2

]]ρA) ⊆ [[[[τ]]Vars3
]]ρA . The TJoin operation

depends on S1 and S2, and it can call join as needed. When M(v) = (e1, e2) we will set

Γ3(v) to a supertype of e1 and e2, so v can be used as a conservative approximation of these

expressions.

Algorithm 3.1 (Widening) To find a state S3 = 〈∆3,Φ3,m3,Γ3〉 that is weaker than

both S1 = 〈∆1,Φ1,m1,Γ1〉 and S2 = 〈∆2,Φ2,m2,Γ2〉:

• Let M , Γ3, and Φ3 be initially empty.

• Construct m3: Require Γ1,Φ1 ` m1 : ValidMem and Γ2,Φ2 ` m2 : ValidMem. Let

m3 = vmem3, Γ3(vmem3) = ValidMem, and M(vmem3) = (m1,m2).

• Construct ∆3 and M : Require dom(∆1) = dom(∆2). For each ri ∈ dom(∆1) let

∆3(ri) = (join ∆1(ri) ∆2(ri)). join will build M in a memoized fashion.

• Construct Γ3: For each (v 7→ (e1, e2)) ∈ M (aside from vmem3), let Γ3(v) =

TJoin(τ1, τ2) where Γ1,Φ1 ` e1 : τ1 and Γ2,Φ2 ` e2 : τ2.

• Construct Φ3: Add true facts to Φ1 and Φ2 as necessary (see Section 3.1.2). For

all pairs
(
F1(e1, . . . , en), F2(e′1, . . . , e

′
n)

)
∈ (Φ1 × Φ2) where F1 = F2, try to compute

e′′i = (optionalJoin ei e′i) for each i ≤ n, as explained below. If none of these calls

to optionalJoin raises the Failure exception, add F1(e′′1, . . . , e
′′
n) to Φ3.

�

43

join e1 e2 =

match e1, e2 with

| e1
′ op e1

′′, e2
′ op e2

′′ →

return (join e1
′ e2

′) op (join e1
′′ e2

′′).

| sel(m′
1, e1

′), sel(m′
2, e2

′) when m′
1 = m1 and m′

2 = m2 →

return sel(vmem3, (join e1
′ e2

′)).

| c, c → return c.

| otherwise → if there exists v such that M(v) = (e1, e2) then

return v.

else

Create a fresh v.

Add (v 7→ (e1, e2)) to M

return v.

Figure 3.1: The join function used by Algorithm 3.1.

44

The final step of this algorithm tries to find as many valid facts as possible by

doing a comparison of each fact in Φ1 with each fact in Φ2. If there is some way to

combine the expressions in each fact using M , we add an appropriate fact to Φ3. One way

to compare ei and e′i would be to use join, but join would create new abstract values

for any pair of incompatible expressions that isn’t in M . Facts about abstract values are

almost always useless unless that abstract value also appears in the register or memory

state. For example, LessOrEq(vx, 100) is useful when some register’s value involves vx, but

it means nothing if vx is fresh.1 To keep Φ3 from being cluttered with useless facts, we

use a function optionalJoin. This function is identical to join except that it does not

create fresh abstract values. Given two incompatible expressions that are not already in M ,

optionalJoin raises the exception Failure. While a quadratic increase in the size of Φ

is theoretically possible at each join point, in our experiments with CCured optionalJoin

prevents this problem. The number of facts in Φ3 is generally comparable to the number of

facts in Φ1 and Φ2, whichever is smaller.

If any part of Algorithm 3.1 other than optionalJoin fails, we consider it a

typechecking error and refuse to certify the program. Such failures include m1 or m2 not

being in a valid state, or a sel expression not being typeable because the address expression

is not a valid pointer. If Algorithm 3.1 succeeds, then we are guaranteed that S1 ≺: S3 and

S2 ≺: S3.
1While it would be possible for a type policy to use F (v) when v is fresh to remember a piece of useful

information, it is easier to just use a 0-ary constructor.

45

3.1.1 Testing for Fixpoint

To determine if we are at a fixed point, we must test whether S1 ≺: S2, where S1 is

the current state of the abstract interpreter and S2 is the saved state at this label. (Testing

S3 ≺: S2 would also be sufficient, since S1 ≺: S3.) We can speed up this test, however,

by using the information gathered by the widening algorithm. Recall that for a map M ,

ML(v) is the expression in S1 corresponding to v, and MR(v) is the expression in S2. If

any expression in the range of MR is an arithmetic operator, sel expression, or constant,

then we are not at fixed point. In this case, there is some M(v) = (e1, e2) such that e2 is a

complex expression that’s incompatible with e1. So S1 is weaker than (or incomparable to)

S2.

On the other hand, suppose MR is 1–1, the range of MR contains only abstract

values, and range(MR) = dom(Γ2). Then M is a collection of pairs (e1, v2) where each v2 ∈

Γ2 corresponds to a single expression in S1. We can build a map M ′ = ML ◦ MR
−1 from

dom(Γ2) to expressions that are well-formed in Γ1. Now M ′ can be used in Definition 2.2

to test whether S1 ≺: S2. Moreover, the construction of M insures that M ′[[∆2(r)]] = ∆1(r)

for each register, so we only need to check that the facts and subtyping requirements hold.

These steps too can be integrated into Algorithm 3.1.

3.1.2 Adding extra facts

The disadvantage of the pairwise comparison of facts from Algorithm 3.1 is that

a simple enumeration of “facts” may not include all true information. Tautologies such as

LessOrEq(1, 2) will usually not appear explicitly in Φ, nor will facts that are implied by

46

the transitivity or reflexivity of various relations. Ideally, Φ would be closed under logical

consequence, but to support enumeration we must choose a sparser representation.

As an example of this problem, consider this code:

// Precondition: rx is an Int(), and
// ra points to an Array of length 100.
if (rx ≥ 100) {

rx = 50;
} else {

// Do nothing
}
ry = ra[rx]

We need to ensure the array access on the last line is within bounds. At the end of the if

statement we perform a join of these two states:

Then branch:

∆then(rx) = 50

∆then(ra) = va

Φthen = {LessOrEq(100, vx) }

Else branch:

∆else(rx) = vx

∆else(ra) = va

Φelse = {LessOrEq(vx, 99) }

where vx is the initial value of rx and va points to the array. The if condition generates

the fact LessOrEq(vx, 99) in the else branch, but Φthen contains no useful facts since vx is

dead. The join of these two states yields

∆3(rx) = vx
′

∆3(ra) = va
′

Φ3 = ∅

where M(vx
′) = (50, vx) and M(va

′) = (va, va). Unfortunately, this state is not strong

enough to typecheck the array access. We’ve lost the information rx ≤ 99, even though it’s

true in both branches.

47

To solve this problem, we allow type policies to add true facts to the represen-

tations of Φ1 and Φ2 before they are joined. In this example, the type policy must add

LessOrEq(50, 99) to Φthen. This fact, when paired with LessOrEq(vx, 99) in Φelse, yields

LessOrEq(vx
′, 99) in the joined state since M(vx

′) = (50, vx). Depending on what in-

formation is needed across basic blocks, type policies might need add information about

dependencies among values, as in this case, or close each set of facts under transitivity or

other algorithms. We give examples of one useful heuristic for facts about constants. This

heuristic is the only one needed by the type policies we have implemented.

Constants. One way to determine true facts that should be added to Φ1 (the Φ2 case

is symmetric) is to consider all of the pairings (c, e), (c′, e′), . . . in the range of M where

the left expression is a constant. Here, constants in S1 have been paired with incompatible

expressions from S2 (which might themselves be constants). Since we will soon be abstract-

ing the constants into abstract values in the new state, we should make note of any useful

information about them.

For each φ ∈ Φ2, let φ′ = φ
[c�e

][c′�e′
]
. . . be the result of inserting these constants

into φ in place of the expressions from S2 that they are paired with. If φ′ is a constant fact

(it does not refer to any abstract values) and it is true in S1, then add φ′ to Φ1. When

performing the join, φ′ ∈ Φ1 will match φ ∈ Φ2, and a corresponding fact will be added to

the new state. In the example above, (50, vx) ∈ range(M) and LessOrEq(vx, 99) ∈ Φelse, so

we consider φ′ = LessOrEq(50, 99). This is a true statement, so we add it to Φ1. Note that

if φ′ contains an abstract value then it makes no sense to ask whether it is true in S1, since

the abstract values from Γ2 have no meaning in S1.

48

struct Foo {
char* name;
int info;

};

struct Foo data[100];

int* foo(unsigned int x) {
int* p;
if (x < 100) {

pp = &data[x].info;
} else {

pp = &data[0].info;
}
return pp;

}

Figure 3.2: Pointer arithmetic example: A function that creates a pointer to the second
field of one of the elements of the data array.

3.2 Arithmetic

One of the most important issues in abstract interpretation of assembly code is

how to deal with arithmetic in memory addresses. Because the compiler generates low-level,

optimized code for memory access operations, it is important that the abstract interpreter

understand the same arithmetic identities that the compiler does. The join and compare

functions presented so far treat arithmetic operators as uninterpreted, but by itself this is

not precise enough for many memory operations. As with the addition of extra facts in

Section 3.1.2, our solution will take the form of a preprocessing step that allows the join of

interpreted facts to preserve the necessary information.

Consider the program in Figure 3.2. Function foo returns a pointer to the second

field of either the xth or 0th element of the data array, depending on whether x is within

bounds. If data is the assembly label corresponding to the start of the global array, the

assembly code in the then branch will assign to pp the symbolic value data⊕ (2⊗vx)⊕ 1.

The coefficient of 2 for x reflects the fact each element of data is two words in size, and the

“+1” reflects the fact that pp points to the second word in one of those elements. (Recall

49

that for simplicity our examples assume that memory is accessed by words, not by bytes.

Assembly labels such as data can appear in symbolic expressions like any other constant.)

The else branch, meanwhile, yields the symbolic expression data ⊕ 1. At the join point

before the return statement, how do we merge the two expressions?

Invoking join on data⊕ (2⊗vx)⊕ 1 and data⊕ 1 will result in either v′ ⊕ 1 or

data⊕v′, depending on whether the first expression is represented as (data⊕(2⊗vx))⊕1 or

data⊕((2⊗vx)⊕1). Neither of these represents the information that they should: pp points

to an info field in the data array. The best way to fix this while still using the efficient join

procedure of Algorithm 3.1 is to rewrite the second expression as data⊕ (2⊗0)⊕ 1 before

widening. The join of uninterpreted functions on these two expressions is now data⊕ (2⊗

v′) ⊕ 1 where M(v′) = (vx, 0), which is exactly what we’d like. The machine arithmetic

operators ⊕ and ⊗ form a commutative ring, so we can rewrite symbolic expressions using

the familiar associative, commutative, and distributive identities.

3.2.1 Complicated indexing expressions

We use this approach for all expressions involving pointer arithmetic. If a value

points to an array, we canonicalize the symbolic expression to make each array index explicit,

as in data ⊕ (2⊗0) ⊕ 1 above. Given a term that is the sum of one or more expressions,

we ask the type policy to determine which addend is the pointer term. This term (data

in the above example) is an expression not involving arithmetic that points to an object in

memory. All of the other addends are assumed to represent offsets within this object. By

looking at the type of a pointer term p, the type policy can identify any arrays that occur

within it and know what kind of indexing to expect. In code compiled from C, we might

50

object layout κ ::= σ :: κ
∣∣ (κ× n) :: κ

∣∣ nil

constant n, where n > 1

object size: |σ :: κ2| = |σ| + |κ2|

|(κ1 × n) :: κ2| = n·|κ1| + |κ2|

|nil| = 0

|σ| = the number of fields in σ

Figure 3.3: The object layouts κ supported by our pointer arithmetic canonicalization, and
the size |κ| in words of an object κ.

find single-dimensional arrays such as the one in Figure 3.2, multidimensional arrays, or

arrays of structs that themselves contain arrays.

When dealing with the common case of single-dimensional arrays, it is relatively

easy to rewrite symbolic expressions to make the array indices explicit, as in the above

example. We consider here how this canonicalization step works in the general case, when

we have nesting of arrays and C structures.

Figure 3.3 shows the memory objects we consider. An object is a nil-terminated

sequence of possibly-dependent records σ from Chapter 2 and/or arrays. An array (κ×n) is

a sequence of n objects that each have layout κ. While the fields of a heterogeneous object

σ1 ::σ2 :: . . . ::nil can only be accessed via a constant offset, elements of an array subobject

can be indexed by a runtime value.

For example, consider the C declaration

51

struct element{
int * f0;
int f1[10];

};
struct element bar[7];
struct element bar2[5];

The arrays bar and bar2 consist of consecutive κelement objects, where κelement =

PtrInt() ::
(
(Σs.〈 0 : Int() 〉 ::nil)× 10

)
:: nil.2 We use fi to refer to the ith field of an object,

whose type is specified by the ith element in the layout list. The C address bar[x].f1[y]

would be compiled as

bar[x].f1[y] = bar ⊕ (|κelement|⊗x) ⊕ offset(f1, κelement) ⊕ (|Σs.〈 0 : Int() 〉|⊗y)

= bar ⊕ (11⊗x) ⊕ 1 ⊕ (1⊗y)

where |κ| is the size of an object as defined in Figure 3.3 and offset(fi, κ) is the distance

between the start of a κ object and the start of the ith field in the object. In this case,

|κelement| = 11 and offset(f1, κelement) = 1.

The arrays embedded within structures or other arrays, such as f1 in struct

element, must generally have a fixed size or else the compiler would not know how to

generate indexing expression |κelement|⊗x. However, “top-level” arrays can be dynami-

cally allocated and have a size that’s determined at runtime. The fact that bar contains 7

elements is not used anywhere when generating index expressions for bar[x].f1[y]. There-

fore we identify bar simply as “a pointer to consecutive κelement objects” rather than as a

pointer to a (κelement × 7) :: nil object. The length of bar is useful only to the type pol-

icy, for checking that the array indices of a memory access are within bounds. The Array
2For the sake of readability, we abbreviate the types of pointers to one-word records, using as “Ptrt”

instead of PtrΣs.〈 0:t 〉.

52

constructor from Chapter 2 is an example of a variable-length, top-level array that cannot,

and need not, be expressed as (κ× n) :: nil for constant n.

Suppose during a widening operation we needed to join the expression bar⊕ (11⊗

x)⊕ 1⊕ (1⊗y) with a pointer to bar2[5].f1[2], a constant offset into a different array of

the same type that compiles to bar2⊕ 58. To preserve the index structure, we first rewrite

bar2 ⊕ 58 as bar2 ⊕ (11⊗5) ⊕ 1 ⊕ (1⊗2) and then join the corresponding parts of the

expressions, yielding

join(bar, bar2) ⊕ (11⊗join(x, 5)) ⊕ 1 ⊕ (1⊗join(y, 2)).

Notice that after the rewriting step, this is still just a join of uninterpreted func-

tions. We use the ternary (in this case) function “[·] ⊕ (11⊗ [·]) ⊕ 1 ⊕ (1⊗ [·])” instead of

the binary functions ⊕, ⊗, etc. When joining two expressions, if the coefficients in the

canonical expressions are identical then we join the subexpressions; otherwise we abstract

everything to a fresh value. If the pointer terms in the two expressions being joined have

the same type, then the canonical expressions will have the same form. When the pointer

terms have different types it may be possible to do better than complete abstraction, but

this occurs rarely in practice and we leave it for future work.

Figure 3.4 shows how to canonicalize expressions. Given a symbolic expression e,

the type policy first identifies the pointer term p and offset e′ such that e = p⊕e′, using type

policy-specific knowledge about which abstract values represent pointers into the heap. The

type policy also provides the object layout κ corresponding to the type of p (i.e. p points

to one or more consecutive κ objects). We rewrite e as p⊕ canon(e′, κ), where canon(e′, κ)

is an expression equivalent to e′ that has been canonicalized according to layout κ.

53

//"canon (e, κ)" takes an expression that indexes into an array of

// κ objects, and returns an expression equivalent to e in canonical form.

canon(e, κ) =

let eq, er = divide(e, |κ|) in

//e is an offset into element eq of this array.

return (|κ| ⊗ eq) ⊕ canonField(er, κ).

//"canonField (e, κ)" takes an expression representing an offset

// into a single κ object, and returns an expression equivalent to e

// in canonical form.

canonField(e, κ) =

let (c1⊗e1)⊕ (c2⊗e2)⊕ . . .⊕ c be the flattened form of e in

match κ with

| σ :: κ2 → if c ≥ |σ| then
return |σ| ⊕ canonField(e− |σ|, κ2).

else

//e is an offset into σ, so it must be constant.

if e = c then return c.

else Error.

| (κ1 × n) :: κ2 → if c ≥ n · |κ1| then
return (n⊗|κ1|) ⊕ canonField(e− n⊗|κ1|, κ2).

else

return canon(e, κ1).
| nil → Error.

//"divide(e, n)" (where n is a constant) returns symbolic expressions

// (eq, er) such that e is equivalent to eq ⊗ n⊕ er and every coefficient

// in the flattened form of er is within the range [0, n).
divide(e, n) =

let (c1⊗e1)⊕ (c2⊗e2)⊕ . . .⊕ c be the flattened form of e in

let eq =
⌊c1�n

⌋
⊗ e1 ⊕

⌊c2�n
⌋
⊗ e2 ⊕ . . . ⊕

⌊c�n
⌋

in

let er =
(
c1 − n·

⌊c1�n
⌋)
⊗ e1 ⊕

(
c2 − n·

⌊c2�n
⌋)
⊗ e2 ⊕ . . . ⊕

(
c− n·

⌊c�n
⌋)

in

return (eq, er).

Figure 3.4: The expression canonicalization function.

54

canon rewrites expressions as suggested by the examples above. The key step is

the division, where we break an array offset e into an expression n ⊗ eq ⊕ er where eq is

an index into the array and er is an offset within the eq
th element of the array. The helper

function canonField(er, κ) handles the case where er is an offset into a single object with

layout κ, rather than an array of such objects. canon always terminates because each

successive call to canonField uses a smaller type layout κ. For example, the expression

bar2⊕ 58 would be canonicalized as follows:

bar2⊕ 58 = bar2 ⊕ canon(58, κelement)

= bar2 ⊕ (11⊗ 5) ⊕ canonField(3, κelement)

= bar2 ⊕ (11⊗ 5) ⊕ 1 ⊕ canonField(2,
(
(Σs.〈 0 : Int() 〉 ::nil)× 10

)
:: nil)

= bar2 ⊕ (11⊗ 5) ⊕ 1 ⊕ canon(2, (Σs.〈 0 : Int() 〉 ::nil))

= bar2 ⊕ (11⊗ 5) ⊕ 1 ⊕ (1⊗ 2) ⊕ canonField(0, (Σs.〈 0 : Int() 〉 ::nil))

= bar2 ⊕ (11⊗ 5) ⊕ 1 ⊕ (1⊗ 2) ⊕ 0

The ⊕0 term in the last line can be omitted from the final result.

Figure 3.4 also shows how we do division of symbolic expressions. The first step

is to convert the expression to flattened form. A symbolic expression in flattened form is

written as (c1⊗e1) ⊕ (c2⊗e2) ⊕ . . . ⊕ (ck⊗ek) ⊕ c where each ci is a constant, each ei is

not an addition, a subtraction, or a constant, and for all i < j, ei ≺ ej according to some

strict order ≺.3 The ei expressions represent (parts of) array indices, so we leave them

untouched during canonicalization; we care only about constant terms and coefficients. A

few arithmetic operators are dealt with in a preprocessing step: a left bitshift by a constant

is changed to multiplication by a power of two, and the xor of a value and itself equals

zero (this last idiom is common in x86 code). After preprocessing all arithmetic operations
3The choice of an order ≺ is arbitrary. We use it to guarantee that each ei is unique, and that there is a

unique flattened form for each expression.

55

other than ⊕, 	, and ⊗ are treated as uninterpreted. Complicated operators may appear

in array index expressions in the original program, but they are unlikely to be generated by

the compiler during optimization.

3.2.2 Completeness

The soundness of the arithmetic canonicalization is easy to verify by inspecting

Figure 3.4. Since canon(e, κ) is equivalent to e, we can replace e with canon(e, κ) at any

time without changing the meaning of a symbolic state. A more interesting question is

whether this approach is complete: can canon correctly decompose all arithmetic expres-

sions? Unfortunately, the answer is no. Consider the C struct

struct twoArrays {
int f0[10];

int* f1[20];

};

The expression p⊕x⊕ 10, where p points to a twoArrays object, could mean either p.f1[x]

or p.f0[10⊕ x] depending on whether x is negative. canon implicitly assumes that abstract

values are nonnegative, so it will canonicalize this expression as an access to f1. But

p.f0[10 ⊕ x] is perfectly legal C code when −10 ≤ x < 0. In this section, we give a set of

sufficient conditions for canon to correctly identify the fields being accessed.

Since our object layouts model the nested arrays and structs of C, we introduce C-

like notation to discuss how these objects are accessed in source code. As seen in Figure 3.5,

a source code offset α is an alternating sequence of array accesses [e] and field accesses .fi.

The field access at the end of the list denotes a field in an atomic record σ. Given an offset

α into an array of κ objects, we define the standard compilation of α as the expression e

56

offset α ::= [e]β

offset within an array element β ::= .fiα | .fi

κ `F β : e′

κ ` [e]β : |κ| ⊗ e ⊕ e′

κ ` α : e

(κ× n) :: κ′ `F .f0α : e

0 ≤ i < |σ|

σ :: κ′ `F .fi : i

κ′ `F .fiα : e

σ :: κ′ `F .fi+1α : |σ| ⊕ e

κ′ `F .fiα : e

(κ× n) :: κ′ `F .fi+1α : n⊗|κ| ⊕ e

Figure 3.5: The source-code offsets α and how they are compiled. When α is an offset into
an array of κ objects, its standard compilation is given by κ ` α : e. When β is an offset
into a single κ object, its standard compilation is given by κ `F β : e.

57

given by the judgment κ ` α : e. The mutual definitions of α and β parallel the mutual

definitions of canon and canonField, and for good reason: we will show that the output of

canonicalization matches the standard compilation for that offset.

We assume that compilers will generate code for any offset α in the source code

by taking the standard compilation of α and simplifying or optimizing the result using

arithmetic identities. If the original offset is simple, as defined below, we will be able to

correctly decompose the optimized version.

Definition 3.1 (Simple offsets) An offset α is simple if each array index expression in

α is either a constant that is within the array bounds, or an uninterpreted expression such

as an abstract value or sel expression.

We assume compilers do not do any optimizations within uninterpreted expressions. By

forbidding arithmetic in indices, we rule out the p.f0[10⊕x] example from earlier. Simplicity

of offsets is not necessary for correct decomposition, but it is a sufficient condition for the

theorem stated here. We now present the completeness result and the lemmas that are

needed for its proof. We formalized Lemmas 4 and 5 and proved them correct using the

Coq prove assistant [Coq06].

Lemma 4 (Uniqueness of the flattened form) Let e1 and e2 be symbolic expressions

involving only addition, subtraction, and multiplication of constants and uninterpreted ex-

pressions. Then e1 and e2 are equivalent (they have the same value for any possible assign-

ment to the uninterpreted terms) iff they have the same flattened form.

�

58

Lemma 5 (Limitation on the constants in a simple offset) Let β be a simple offset

within an array element, and suppose κ and e are such that κ `F β : e.

Let (c1⊗e1) ⊕ . . . ⊕ (cn⊗en) ⊕ c0 be the flattened form of e. Then for all 0 ≤ i ≤ n,

0 ≤ ci < |κ|.

This lemma states that if e is an offset within a single object with layout κ, then any

constants appearing in e are less than |κ|. Intuitively, this should hold because e is an offset

into an κ object, so the value of e itself is less than |κ| whenever all array accesses are within

bounds.

This lemma is proved by induction on the length of offset β. The corresponding

invariant for array offsets α is that when α is a simple offset into an array of n objects of

type κ, n > 1, and κ ` α : e, then 0 ≤ c < n⊗|κ| for all constants c in the flattened form

of e. When the array index is a symbolic value, there exists e′ such that e = (|κ| ⊗ v)⊕ e′.

|κ| < n⊗|κ| because n > 1 by definition of object layouts κ, and κ cannot be empty.

Furthermore, the constants in e′ are strictly less than |κ| by induction. When the array

index is a constant, we take advantage of the requirement that constant array indices in

simple offsets are within bounds.
�

Theorem 4 (Canonicalization of optimized expressions) Let α be a simple offset,

and suppose κ and e are such that κ ` α : e. Let e′ be equivalent to e. Then canon(e′, κ) is

syntactically equal to e.

Similarly, if β is a simple offset into a single object, κ `F β : e, and e′ is equivalent to e,

then canonField(e′, κ) is syntactically equal to e.

59

This theorem states that even in the presence of arithmetic optimizations, canon recovers

all of the structure in e, which itself directly reflects the structure in α.

Theorem 4 is proved by induction on the lengths of object layouts. First, note

that canon(e′, κ) = canon(e, κ) and canonField(e′, κ) = canonField(e, κ). The first step

in both procedures is to convert the symbolic expressions to flattened form, and e′ and e

have the same flattened form by Lemma 4. Therefore, we can ignore the difference between

e and e′.

The cases of β follow directly from the definition of canonField and Lemma 4.

Consider then the two cases of α: α = [v]β and α = [i]β for constant i. For the variable-

index case, e = (|κ| ⊗ v) ⊕ erest, where κ `F β : erest. Let e′rest be the flattened form of

erest. If v does not occur in erest, then the flattened form of e is (|κ| ⊗ v) ⊕ e′rest, or some

permutation thereof. Therefore divide(e, |κ|) = (v, e′rest) thanks to Lemma 5.4 By the

inductive hypothesis, canonField(e′rest, κ) = erest, and we have verified that canon(e, κ) =

(|κ|⊗v)⊕erest. If v does occur in e′rest (because some nested array also uses v as an index),

then the flattened form of e is (|κ| + c) ⊗ v ⊕ . . . for some constant c. By Lemma 5,

0 ≤ c < |κ| because erest is an offset into a β object, so the result of the division is the

same: divide(e, |κ|) = (v, e′rest) and canon(e, κ) = (|κ| ⊗ v)⊕ erest.

In the constant-index case α = [i]β, e = (|κ| ⊗ i)⊕ erest. Let e′rest be the flattened

form of erest. The flattened form of e will have a constant term (|κ|·i + c) where c is the

constant term of e′rest. By Lemma 5, 0 ≤ c < |κ| because erest is an offset into a β object,

so as before we get divide(e, |κ|) = (i, e′rest) and canon(e, κ) = |κ| ⊗ i⊕ erest.
�

4divide as presented in Figure 3.4 would return (1 ⊗ v, e′rest). To get exact syntactic equality between
canon and the standard compilation, we simplify the result of divide to drop the unnecessary “1⊗”.

60

Now that we have a theorem that canon can account for compiler transformations,

we can discuss the completeness of widening. Recall that our widening operation involves

first canonicalizing each expression and then using the join of uninterpreted functions. Let

α1 and α2 be simple offsets for the same object layout κ that differ only in the values of

array indices, and define join(α1, α2) as the offset with the same structure as α1 and α2

where each array index is the join of the corresponding array indices in α1 and α2. Since

canon recovers all of the structure in an offset, we know that the structure is present in the

joined expression as well:

Corollary 1 (Join of canonicalized expressions) Let α1 and α2 be simple offsets for

the same object layout κ that differ only in the values of array indices. For i ∈ {1, 2}, let

κ ` αi : ei and let ei
′ be equivalent to ei.

Then κ ` join(α1, α2) : join(canon(e1
′, κ), canon(e2

′, κ)).

Proof is by induction on the structure of α1 and α2. By Theorem 4, canon(ei
′, κ) = ei.

It’s easy to see in Figure 3.5 the one-to-one correspondence between an offset α and the

standard compilation e. Since α1 and α2 differ only in array indices, the same is true for

e1 and e2.
�

In addition to the sufficient condition given by the definition of simple offsets,

Theorem 4 and Corollary 1 should also hold if the array indices are a sum or product of

nonnegative terms, although we have not proved this formally. The common case of objects

containing only one array (and no nested arrays) can also be handled in a complete fashion.

61

struct Foo {
char* name;
int info;

};
struct Foo grid[7][5];

//Precondition: col < 5
int verticalSum(int col) {

int i = 0;
int sum = 0;
while(i < 7) {

sum += grid[i][col].info;
i++;

}
return sum;

}

int verticalSum(int col) {
int i = 0;
int sum = 0;
// let p = &grid[0][col].info:
int * p = (int*)grid + 2*col + 1;
while(i < 7) {

sum += *p;
p += 10;
i++;

}
return sum;

}

Figure 3.6: Multidimensional array example: verticalSum is a function that computes the
sum of the info fields for a given column. On the right, a version of the code as it might
appear after optimization by the compiler.

Here, there is no ambiguity about which array is accessed by which variable term, so the

problem described at the beginning of this chapter does not arise.

Also note, however, that the completeness results in this section apply only if the

pointer terms in the two expressions have the same type (i.e. the same object layout). Given

pointer terms of different types — say, a pointer to the f1 field of a struct twoArrays and

a pointer to an array of int pointers — the join function will fail because the canonical

expressions have different lengths. To handle this case, we would need to replace our naive

join of uninterpreted functions with a join function that looks for a common suffix shared

by the two terms.

62

3.2.3 Multidimensional array example

We give an example of a program using a two-dimensional array to show how the

canonicalization helps during joins. This program will also demonstrate how our abstract

interpreter helps recover information that is obscured by compiler optimizations. Figure 3.6

shows two versions of a function that computes the sum of the info fields of a given column

in the global array grid. The version on the left is how a programmer might implement this

function. The instruction “sum += grid[i][col].info” reads from memory at address

grid⊕ (10⊗i)⊕ (2⊗col)⊕ 1, but computing this address during each iteration of the loop

would be unnecessarily expensive. To fix this, a compiler might perform a loop induction

variable optimization [CK77] as shown on the right in Figure 3.6. Here, p is a pointer to

the next info field to be read, and we advance p by an entire row in each iteration of the

loop. (The next step in the optimization might be to eliminate the variable i completely,

but this isn’t always possible if i is used elsewhere in the loop.)

When the abstract interpreter first enters the loop, the p register will have symbolic

value grid ⊕ (2⊗vcol) ⊕ 1. After symbolically executing the body of the loop, we return

to the top with rp = grid⊕ (2⊗vcol)⊕ 1⊕ 10, and must join this with the initial state for

the loop. Since the pointer term grid in each of these expressions has element sizes {10,

2}, we canonicalize the expressions as grid⊕ (10⊗1)⊕ (2⊗vcol)⊕ 1 and

grid⊕ (10⊗0)⊕ (2⊗vcol)⊕ 1. The join of these expressions is

rp = grid ⊕ (10⊗vi) ⊕ (2⊗vcol
′) ⊕ 1

where M(vi) = (1, 0) and M(vcol′) = (vcol, vcol). This result preserves all of the common-

ality between the two expressions. A second iteration through the loop using this value for

63

rp will determine that this state is a fixed point for the abstract interpretation.

This example also illustrates why the memoization of M in join is necessary.

The register holding the value of i is 0 initially, and 1 after the first iteration through the

loop. When joining these expressions, the result is the same vi that appears in rp, since M

already has the binding vi 7→ (1, 0). On the second iteration the loop guard generates the

fact LessEq(vi, 6); together with the function precondition LessEq(vcol, 4) it is easy for

the type policy to verify that the array indices in rp are within bounds. If we had compared

10 with 0 instead of comparing 10⊗1 with 10⊗0 when joining rp, the abstract interpreter

would not have discovered the relationship between rp and ri.

3.3 Performance of abstract interpretation

To show that our abstract interpretation terminates, we must show that you can

only widen an abstract state a finite number of times without reaching a fixpoint. We

impose an additional constraint on the type policy’s TJoin function: that the new types

generated by TJoin be monotonically increasing in the τ2 parameter, and that repeated

calls to TJoin must reach a fixed point.

Required Lemma 6 (Widening of TJoin) There exists a function rank(τ) from register

types in the type policy to N such that for all S1, S2, τ1, and τ2, if TJoin(τ1, τ2) = τ3 then

τ3 = τ2 or rank(τ3) < rank(τ2)

Intuitively, the rank is the distance in the TJoin lattice between a type and Int(),

or whatever the greatest possible supertype is in the policy. Using this requirement, we

can state that repeated calls to Algorithm 3.1 must eventually reach a fixed point when

64

results of a previous iteration are used as state S2 in the next widening. Define |∆| to

be the total number of symbolic nodes other than abstract values among the expressions

in ∆. For any widening S3 = 〈∆3,Φ3,m3,Γ3〉 of input states S1 = 〈∆1,Φ1,m1,Γ1〉 and

S2 = 〈∆2,Φ2,m2,Γ2〉, either we are at a fixed point (S3 ≺: S2) or one of the following holds:

• The map M produced by Algorithm 3.1 does not satisfy the requirement “for all

r ∈ dom(∆2), M [[∆2(r)]] = ∆3(r)” from Definition 2.2. Therefore, some expression

node in ∆2 has been abstracted away, and |∆3| < |∆2|.

• M does satisfy the requirement above, but there is some “v 7→ τ3” ∈ Γr
3 where τ3 is

different from the type of MR(v) in Γr
2. By the TJoin requirement above, this can

only happen a finite number of times for each type in the range of Γr
3.

• There is some fact F (e1, . . . , en) ∈ Φ2 that is not present in Φ3.

Since each successive call to widen must weaken the state in at least one of these

ways, we can construct a (very) conservative upper bound for the number of iterations

needed to reach fixed point from an initial state 〈∆0,Φ0,m0,Γ0〉:

|∆0| · n · (|∆0|+ |dom(∆0)|) + |Φ0|

where n is the smallest value such that for any Γ1,Φ1, τ1,Γ2,Φ2, x0, TJoin terminates in at

most n steps; (|∆0| + |dom(∆0)|) is a conservative approximation of the size of Γ at each

step, and |Φ0| is the number of facts in the enumeration of Φ0.

While this guarantees eventual termination, we also want a widening operation

that terminates quickly in practice. One way to do this is to limit the height of the TJoin

lattice. In the CCured policy without physical subtyping, this lattice has height 3: arrays

65

(rank 2), pointers to single objects (rank 1), and integers (rank 0). We have also greatly

improved the performance of our abstract interpretation through the use of liveness analysis

and worklist optimizations.

3.3.1 Worklist optimizations

Figure 3.7: The start of a sample
function’s control-flow graph.

When doing abstract interpretation, it is

important to implement the worklist carefully. Ex-

ploring basic blocks in the wrong order can mean

that much unnecessary work will be done before

fixed point is reached. Consider the control-flow

graph in Figure 3.7. The function is acyclic, so

each basic block only needs to be evaluated once,

e.g. by processing them in the order they are la-

beled in the figure. However, a näıve depth-first

traversal of the graph (i.e. a stack-based worklist)

would likely take exponential time. The abstract

interpretation would first evaluate the entire DAG

rooted at dusing the state that results from evaluating a,b. After evaluating c, the engine

would redo the DAG rooted at d using the join of b’s poststate and c’s poststate, making

the first evaluation of d a waste of time. A breadth-first traversal (i.e. a queue-based work-

list) is better, but still worst-case exponential even for acyclic code, because some paths in

the DAG are longer than others, as in deh vs. dfgh.

A good way to organize the worklist would be to first perform an interval analy-

66

Depth-first Sorted by PC
Depth-first with Liveness with Liveness
joins time joins time joins time Total

Program per BB (sec) per BB (sec) per BB (sec) Speedup
unoptimized go 4.81 646 4.30 379 2.09 113 82%
optimized go 4.38 168 4.16 131 3.46 96 43%

Table 3.1: Performance improvement in the CCured verifier due to abstract interpretation
optimizations on the Spec95 go program. “Joins per BB” is the number of times each basic
block was explored until reaching a fixed point, averaged over all of the basic blocks in the
program.

sis [Muc97], which will break the control-flow graph into various loops and acyclic regions.

However, we have had good luck in our implementation with a much simpler heuristic that

requires no control-flow analysis: sort the worklist such that blocks that appear first in the

object file are explored first. Here, we rely on the fact that our target compiler emits basic

blocks in a sensible order corresponding the source-level control-flow structures such that

the only backwards jumps are the backedges of proper loops. This ordering is optimal for

acyclic code, and works well for loops.

Our original implementation used a depth-first ordering of the worklist, because

it is often easier to debug the abstract interpretation by considering an entire path through

the function. As seen in Table 3.1, however, the performance of the system improved signif-

icantly when we began sorting the worklist in the order described above. The “Depth-first”

column in this table shows the performance of our original algorithm, while the “Depth-

first with Liveness” column shows the performance when using a liveness analysis. (By

determining which registers are live at the start of each basic block, we can avoid joining

symbolic expressions that will not be used. Besides the computational cost of the join,

joining mismatched, dead expressions could cause us to believe that the abstract interpre-

67

tation is not at a fixed point even though the register in question is irrelevant.) The final

results show the performance with both a liveness analysis and worklist sorting. Note that

unoptimized code takes longer to verify than optimized code, due to increased code size.

3.4 Related work

Type Inference

Our type inference system uses many ideas from Chang et al.’s Coolaid veri-

fier [CCNS05]. Coolaid was designed to help students in undergraduate compiler courses

check whether their compilers are generating type-safe assembly code. Therefore Coolaid,

like our system, has no control over the compiler and must infer register types at each

program point. Checking that certain safety properties hold, as we and Coolaid do, is

a simpler version of translation validation [PSS98, Nec00], which seeks to prove that the

compiled code has the same semantics as the source code.

As is usually the case with abstract interpretation, the hardest part of the al-

gorithm is the join of two states. Much of the information we need to maintain across

join points can be represented as expressions of uninterpreted functions [GTN04, RKS99].

However, Section 3.2 shows that our join algorithm also needs to have some understanding

of linear arithmetic to support pointer indexing expressions. For this we chose a domain-

specific operation that canonicalizes pointer expressions rather than more general logics

such as [GN04] that would be harder to incorporate into our domain.

68

Other methods of certifying object code

There has been much work done to certify that binary code adheres to various

safety properties. Colby et al. [CCH+03] survey several approaches, such as TAL and PCC,

and describe the general problem of certifying safety in mobile code, including issues of how

such certifications can be communicated to the end user.

Typed Assembly Language [MCG+99, MWCG99] is used as a compilation target

for Popcorn, a subset of C. TAL includes many useful features, including flow-sensitive

types for registers so that register types can change from one instruction to the next;

typechecking that is done one basic block at a time; existential types; and support for

stack-based compilation schemes [MCGW98]. But TAL does not support the dependent

types that we need for CCured, and it assumes that assembly code is generated by a

specially-written, type-preserving compiler that can emit the invariant for each basic block.

Proof-Carrying Code [Nec97, CLN+00] packages object code with a checkable proof

of safety. The original implementations of PCC targeted specific type policies, such as

Java’s type system [CLN+00]. Recent projects such as LTT [CV02] and work by Shao

et al. [SSTP02] seek a general type system for certified code that is not tied to any one

source language. A low-level type system permits use of a wide variety of proofs and proof

techniques, and it allows code from multiple source languages to be combined safely. But

these two systems do not yet target imperative languages, making them impractical for

the applications we are considering. An advantage of proof-carrying code is that machine-

checked proofs provide a greater assurance of soundness than you get with our system; our

soundness proofs exist only on paper and so are disconnected from the implementation.

69

Walker [Wal00] proposes an extensible certification system for safety properties

that can be expressed as security automata [ES00]. A single, global automaton maintains

the state of a program, and this state is explicitly represented during execution. Static

analysis ensures that the run-time representation of the state is correctly maintained, and

that no actions are taken that would be illegal in the current state. For example, they

encode the requirement that an applet not leak information contained on a user’s computer

by maintaining a state variable that records whether the applet has read from the hard

drive. If so, no further network communication is allowed.

Our goal of certifying customizable security properties is the same as Walker’s,

but the notion of a global automaton that transitions on operations such as system calls

is too coarse for our applications. We need a more expressive framework to handle issues

such as type safety, which require knowing about each variable in the program. Instead

of assembly code, Walker targets an intermediate language where control flow is expressed

with continuation-passing style.

Decompilation

The beginning of this chapter compared our work to existing decompilation tools,

and explained that we are willing to impose more requirements on the object code than

other decompilers. When working with unannotated binary code, Balakrishnan and Reps’s

algorithm for analyzing memory accesses [BR04] is probably the most advanced in the

literature. It uses a value set analysis to determine the possible values at each abstract

location, and thus reconstruct a model of the heap.

Mycroft [Myc99] gives a unification-based algorithm for reconstructing recursive

70

C datatypes from object code, but without annotation it is difficult to recover array types

faithfully. Other decompilers, such as work by Cifuentes et al. [CSF98] and Propan [KW02],

focus primarily on control-flow and local variables. Because we can get type information

for function pointers – and because we don’t deal with deliberately-obfuscated object code

– control-flow analysis is the easiest part of our verification.

71

Chapter 4

CCured

Most of our experiments with this analysis framework were done using CCured’s

type invariants as the safety policy being enforced. CCured [NCH+05] is a source-level

tool that enforces type safety in legacy C code by adding additional metadata and runtime

checks. It includes a whole-program static analysis to determine which operations can be

proved safe statically and which need runtime checks. In this chapter, we present a type

policy that allows the framework of Chapters 2 and 3 to verify that CCured’s invariants are

correctly maintained in the assembly code, and hence that the result is typesafe. We also

discuss our implementation of the framework and CCured policy.

We begin by discussing the implementation, which analyzes x86 assembly code.

This section includes discussion of various issues that were omitted from earlier chapters for

simplicity, such as stack handling and function calls. We then discuss in detail CCured’s

type system, with its support for dependent array types and dynamic typing, and show how

to encode it as a type policy. We conclude with experiments to evaluate the performance

72

and completeness of our analysis.

4.1 Implementing the analysis

4.1.1 Parsing assembly code

Our implementation is based on the assembly code parser from the Open Verifier

project [CCNS05]. This tool converts both x86 and MIPS assembly into SAL, a simplified

assembly language. SAL is very similar to the language presented in Figure 2.3 except

that basic blocks can fall through to the following block; jump instructions can jump to

computed addresses and not just constant labels; and SAL permits expressions of arbitrary

complexity, unlike the mov operation of Figure 2.3 that allows only one arithmetic operation

per instruction. SAL’s limited set of opcodes makes it easy to do symbolic evaluation, since

all side effects are made explicit. For example, the x86 call instruction pushes the next

PC value onto the stack, to be used as a return pointer, and then jumps to its target. SAL

compiles “call f” into three instructions and a label:

mov resp, resp 	 4

store Lretaddr → [resp]

jump f

Lretaddr :

In SAL, each bit of the x86 EFLAGS status register is treated as a separate one-bit

register. So the x86 “compare” instruction also becomes multiple SAL instructions:

“mov rZF , (r1 = r2); mov rBF , (r1 < r2); . . .”. All arithmetic operations and comparisons

in SAL are done on 32-bit integers. 8- and 16- bit operations are encoded in SAL using the

73

appropriate bitmasking.

Our parser does not yet accept any floating point operations, since floating-point

numbers are not interesting for the safety policies we have worked with.

Decompiling stack usage

The Open Verifier project also provides support for function calls and stack us-

age, as described in [Sch04]. The Stack and Function modules decompile their respective

assembly idioms into code that is at a slightly higher level and is therefore easier to analyze.

Many of the values that are stored in stack memory are placed there due to register

spilling: these are local variables and temporary values that would have been stored in

physical registers had there been enough registers. This is especially common in x86 code,

which has only 6 or 7 general purpose registers available, depending on whether %ebp is

used as a frame pointer. Other stack locations are used to remember register values during

a function call. We’d like to treat reads and writes to the stack differently from reads and

writes to the heap: the stack is only accessed locally, so we can do a precise analysis of

it without worrying about aliasing. (Section 4.1.3 describes how we handle stack-allocated

objects whose addresses are taken.)

By tracking changes to the stack pointer, as well as the frame pointer and any other

register that is used to access the stack, the Stack module can determine which load and

store instructions are accessing the stack, and which offsets within the stack (a.k.a. stack

slots) they are accessing. For each stack slot, the Stack module creates a pseudoregister to

represent it, and replaces any load/store instructions referencing that stack slot with a

mov instruction referencing the pseudoregister. Now our abstract interpreter can treat these

74

pseudoregisters the same as physical registers and achieve a precise handling of the stack

with no additional analysis. Of course, this is only sound if every load and store referencing

the stack is correctly decompiled — mixing load/store access with pseudoregister access

would change the semantics of the program. Therefore, we rely on the type policy to ensure

that any memory operation that is not handled by the Stack module refers to an address

in the heap. Since the stack and heap are disjoint, this is sufficient for soundness.

[CHN06] elaborates on this strategy of decompiling assembly code into higher-level

languages one step at a time.

Decompiling function calls

As with stack spilling, it is also useful to verify function calling conventions sepa-

rately from the main type system. Since we do an intraprocedural analysis, we want to treat

function calls as opaque instructions, subject only to any pre- and post-conditions anno-

tated by the safety tool. The Function module decompiles SAL into a slightly higher-level

language that includes a new instruction and a new jump:

I ::= . . . | rret ← callcc ef (rarg1, . . . , rargN); clobber(rc1, . . . , rcK)

J ::= . . . | return rret

The instruction “rret ← callcc ef (rarg1, . . . , rargN); clobber(rc1, . . . , rcK)” means

that the code is using calling convention CC to call the function pointed to by ef with

arguments rarg1, . . . , rargN , and on return the values of caller-save registers rc1, . . . , rcK are

undefined. During symbolic evaluation, the callcc instruction will require the type policy to

show that ef is a pointer to a valid function with N parameters that uses calling convention

CC, and each argument can be coerced to the appropriate type for that parameter. Also,

75

∆(rret) is assigned a fresh abstract value whose type is determined by the annotated return

type of the function, and for all i ≤ K, ∆(rci) is assigned a fresh abstract value of type

Int(). The type policy may make other changes to the symbolic state if the target function

has any special postconditions.

For example, consider the following SAL code:

mov resp, resp 	 12

store e2 → [resp ⊕ 8]

store e2 → [resp ⊕ 4]

store Lretaddr → [resp]

jump Lf

Lretaddr :

The Stack module replaces the stack writes with writes to pseudoregisters, and the Function

module replaces the jump with a call, resulting in

mov resp, resp 	 12

mov rpseudo2, e2

mov rpseudo1, e1

reax ← callgcc std Lf (rpseudo1, rpseudo2); clobber(rpseudo1, rpseudo2, recx, redx, . . .)

mov resp, resp ⊕ 4

The new code is written at a higher level than the original, and can be understood more

easily. This translation deals with several details of the x86 calling convention so that later

analyses won’t have to: arguments are pushed onto the stack in reverse order; recx and

redx are caller-save; the function being called can overwrite the parts of the stack where

its parameters are stored; the return value is usually stored in reax; and after returning

the stack pointer is 4 bytes higher than it was on function entry. The Function module

determines whether a jump is a function call (yes, in this case), the number of arguments

of the function (two), and the calling convention being used (gcc std), by querying the type

policy about the expression Lf .

76

When returning from a function, the Function module again ensures that the x86

calling convention is correctly used: callee-save registers contain the same value they did at

the start of the function, the stack pointer has been incremented by 4, etc. The type policy,

meanwhile, will check when it sees a return rret instruction that ∆(rret) can be coerced to

the declared return type for the function.

We have extended the Functions module from the Open Verifier project with new

features that are needed for C programs. We support functions with multi-word return

types, where the return values are stored on the stack. And we support tail calls, where a

function jumps to another function (or to itself) and reuses the same stack frame. This is

decompiled into a call followed by a return, so the type policy needs no special handling

of tail calls. The remainder of this section discusses other new features that we added to

the Open Verifier project to support our CCured tests: dependently-typed function calls,

stack-allocated objects, and polymorphic subroutines.

4.1.2 Dependently-typed function calls

Now that our target language includes function call instructions, we must extend

the typing rules of Chapter 2 to deal with them. We handle dependent function arguments

the same way we do dependent records: parameter types can refer to the values of other pa-

rameters, but not to any other values. We present here the typechecking rules for functions

that return a single word-sized value with a nondependent type (although it is also possible

to have multiple-word return values or return types that depend on the parameters). Our

functions therefore have types of the form Σs.〈0 : t0; . . . ; n− 1 : tn−1〉 →cc Σs.〈 0 : tret 〉,

using the same σ notation that was used earlier for dependent memory types.

77

Initial function state. First we define the initial state of the abstract interpretation for a

dependently-typed function. Suppose the function has type Σs.〈0 : t0; . . . ;n−1 : tn−1〉 →cc

Σs.〈0 : tret〉 and that the parameters are passed in registers rarg 0 through rarg n−1 in calling

convention CC. Then the initial state of the symbolic evaluation will be 〈∆0,Φ0, vmem0,Γ0〉,

where:

∆0 = {rarg 0 = v0; . . . ; rarg n−1 = vn−1}

Φ0 = ∅

Γ0 = {v0 7→ τ0; . . . ; vn−1 7→ τn−1; vmem0 7→ ValidMem}

and for all i, τi = ti

[
v0�s.0

]
· · ·

[
vn−1�s.(n− 1)

]
.

Function call and return. Figure 4.1 shows the symbolic evaluation rules for function

calls and returns. For simplicity we evaluate the call and clobber instructions separately,

although they will always appear together. We extend field and register types with type

σargs →cc σret denoting a pointer to a function with calling convention CC, and give the

appropriate type to the assembly labels of each function. As in Chapter 2, the judgment

〈∆,Φ,m, Γ〉 ` I 〈∆1,Φ1,m1,Γ1〉 means that in checker state 〈∆,Φ,m, Γ〉, symbolically

evaluating I yields the new checker state 〈∆1,Φ1,m1,Γ1〉. Unlike earlier evaluation rules,

however, these rules have preconditions that must be satisfied. Note how the (function

call) rule resembles the rule for memory writes, just as the initial function state above

resembles the rule for reading dependent memory.

78

field types t ::= . . . | σargs →cc σret

register types τ ::= . . . | σargs →cc σret

(function call)

Γ,Φ ` ef : Σs.〈0 : t0; . . . ; n− 1 : tn−1〉 →cc Σs.〈 0 : tret 〉
tret has no dependencies

∀0 ≤ i < n . Γ,Φ ` ∆(rarg i) : τi

where τi = ti

[
∆(rarg 0)�s.0

]
· · ·

[
∆(rarg n−1)�s.(n− 1)

]
Γ,Φ ` m : ValidMem

vmem
′, vret fresh in Γ

〈∆,Φ,m, Γ〉 ` rret ← callcc ef (rarg 0, . . . , rarg n−1)

 〈∆[rret 7→ vret], Φ, vmem
′, Γ[vret 7→ tret][vmem

′ 7→ ValidMem] 〉

(clobber registers)

v1, . . . , vK fresh in Γ

〈∆,Φ,m, Γ〉 ` clobber(rc1, . . . , rcK)

 〈 ∆[rc1 7→ v1] . . . [rcK 7→ vK], Φ, m, Γ[v1 7→ Int()] . . . [vK 7→ Int()] 〉

(return)

The current function has type σargs →cc Σs.〈 0 : tret 〉 Γ,Φ ` ∆(rret) : tret

〈∆,Φ,m, Γ〉 ` return rret Halt

Figure 4.1: Typing/evaluation rules for function calls.

79

4.1.3 Stack-allocated objects

In C, it is possible to allocate an array or other object on the stack, then take the

address of the object using C’s & operator, and then treat the address the same way that

heap pointers are treated. This is commonly used to implement call-by-reference semantics

in C: for example, if a function bar takes a pointer to a Foo object as an argument, one

could invoke it by declaring a (stack-allocated) local variable with type Foo, and passing the

address of this variable to bar. Allocating an object on the stack is semantically equivalent

to allocating the object on the heap and freeing it at the end of the current scope, but stack

allocation is much faster than calling malloc and free. Unfortunately, stack allocation

poses a challenge for program analysis because any read or write to memory could actually

be accessing a stack location whose address was taken, so such locations cannot be treated

as pseudoregisters by our Stack decompilation. The good news is that compilers must

also treat such local variables conservatively (and perform fewer optimizations), so type

policies can usually analyze these variables even without the convenience of coverting them

to pseudoregisters.

To support stack allocation, we modify the Stack decompilation described earlier

to treat stack-allocated objects as if they are part of the heap. CCured emits an annotation

for each function describing which parts of the stack frame are used for objects whose

address is taken, and what the types of those arguments are. The Stack module and the

type policy both read this annotation so that they agree on which parts of the stack are

managed by the type policy and which are only accessed by the current function and can

be decompiled by the Stack module. For any particular stack state, we therefore have two

80

logical memory regions: the “heap” region consists of the heap, stack-allocated objects,

and global variables; the “stack” region consists of all stack slots that were not annotated

as stack-allocated objects by CCured. The Stack module does not rewrite any accesses to

stack-allocated objects, so the type policy sees these as normal memory accesses.

In order for stack allocation of objects to be safe, we must ensure that pointers

to the stack are not dereferenced after that stack frame is deallocated. Objects created by

malloc use garbage collection for safe deallocation, but that’s not an option on the stack.

CCured addresses this issue by requiring that pointers to stack-allocated objects never be

stored in memory (aside from pseudoregisters) or returned from a function.1 Instead, these

pointers can be used locally or passed as arguments to a function, as is commonly done in

C to implement call-by-reference. CCured performs a whole-program analysis to determine

which formal parameters might point to stack objects, and labels these pointers as part

of its annotation of parameter types. The assembly analyzer can then check that pointers

with this “stack-allocated” qualifier are not stored into memory.

4.1.4 Subroutines

CCured allows a function to be declared as “context-sensitive” if there is no way

to infer a single type that works for all locations where the function is invoked. Examples

include functions that wrap allocator calls, or the identity function from void* to void*.

Context sensitive functions are analyzed separately for each call site, but CCured generally

only emits one copy of the code for each function.
1Actually, CCured offers dynamic checks that can safely permit other uses of stack pointers, such as

storing a pointer to a stack-allocated object inside another stack-allocated object which is in a lower frame.
However, these checks do not work well in the presence of function inlining and are not needed very often
in practice.

81

In assembly code, we analyze such functions separately at each call site, just as

CCured does. When reaching a call to such a function, we continue the abstract inter-

pretation within the body of the function as if the code had been inlined. However, if a

context sensitive function is called twice within a function, we must take care to keep the

two analyses separate rather than conflate the analysis state at join points, as we normally

would for performance.

In terms of control-flow, context sensitive functions resemble the subroutines that

are used to implement try/finally in Java bytecode [SA99]. In both cases, polymorphic

function types are used as an alternative to code duplication. However, they are analyzed

differently. Java subroutine types are polymorphic only over the types of local variables

that they do not access; any accessed variable must have the same type in any call to

the subroutine. Therefore, the subroutine only needs to be typechecked once. CCured’s

context-sensitive functions can manipulate polymorphic values in certain ways. Since these

functions are usually short, it is easier to analyze them separately at each call site than to

attempt to infer a polymorphic type signature for them.

4.2 The CCured type policy

CCured enforces type safety for legacy C code by classifying pointers according

to their usage. Depending on a pointer’s classification, or kind, CCured may change the

pointer to a “fat” pointer structure that stores metadata such as array bounds and run-

time type information. Figure 4.2 shows two fat pointer kinds that we support in our

implementation: Sequence pointers (“seq”), which are used for arrays; and “rtti” pointers,

82

Figure 4.2: Two “fat” pointer kinds used by CCured: (a) a sequence pointer (array), and
(b) a pointer with run-time type information. The current targets of the pointers are shown
with stripes, and the metadata added by the CCured code transformation is in grey.

which hold Run-Time Type Information specifying the dynamic type of the object being

pointed to. The metadata is used to support run-time checks that CCured inserts when

the pointer is dereferenced (for seq) or cast (for rtti pointers). These fat pointers are

dependent types: the pointer field’s type depends on the value of the metadata fields.

When a program modifies a fat pointer, it may have to update all of the fields in the fat

pointer using the (memory update) rule of the type policy that allows memory to be

temporarily inconsistent.

CCured has several other kinds beyond seq and rtti. If a pointer needs neither

form of metadata (because no future operation will perform arithmetic on it or downcast it),

we give it kind “safe”. safe pointers have the same representation they did in the original

program (one word wide, with no metadata) and need only a NULL check before being

dereferenced. In the published CCured experiments, 65–100% of the pointer declarations

are classified as safe. The “seqr” kind is a four-word fat pointer containing both bounds

metadata and RTTI information. And the “fseq” kind is an optimization of Sequence

pointers for the common case where pointers are incremented but not decremented: here,

we need to carry an upper bound but not a lower bound. In this dissertation, we focus on

83

seq pointer to σ = Σs.〈 0 : Seqσ(s.1, s.2); 1 : Int(); 2 : Int() 〉

where

[[Seqσ(b, e)]]ρA , {p ∈Word | (b ≤ e)

∧ (e− b) mod |σ| = 0

∧ (p− b) mod |σ| = 0

∧ ∀i.(b ≤ (p + i·|σ|) < e) =⇒ ρA(p + i·|σ|) = σ}

Figure 4.3: The meanings of the Seq type constructors used by CCured. The < and ≤
operators used here are unsigned comparisons.

the seq and rtti kinds.

4.2.1 Sequence pointers

CCured uses Sequence pointers to support arrays and pointer arithmetic in C. A

Sequence pointer is a three-word fat pointer, as shown in Figure 4.2(a), consisting of the

actual pointer and pointers to the two ends of the array.

To encode Sequence pointers in a type policy for our framework, we define a type

constructor Seqσ(base, end) for each base type σ used by the program, just as we defined

the family of constructors Ptrσ. The assembly-level encoding of the fat pointers pointers

is shown in Figure 4.3. As in Section 2.6 we use the set comprehension notation {p| . . .}

to show the meaning of the type constructor, and ρA(e) = σ means that e points to a σ

object in the current allocation state. The definition of Seqσ directly follows the invariants

that CCured maintains for its seq pointers: both the end pointer and the actual pointer

are aligned on multiples of the element size with respect to the base pointer, although the

84

(seq dereference)

LessOrEq(eb, ep) ∈ Φ LessThan(ep, ee) ∈ Φ

Γ,Φ ` IsSubtype(ep, Seqσ(eb, ee), Ptrσ)

(seq arithmetic)

Γ,Φ ` e1 : Seqσ(eb, ee) Γ,Φ ` e2 : Int

DividesDiff(|σ|, (e1 ⊕ e2), eb) ∈ Φ

Γ,Φ ` e1 ⊕ e2 : Seqσ(eb, ee)

(seq arithmetic special case)

Γ,Φ ` e1 : Seqσ(eb, ee) Γ,Φ ` e′2 : Int

|σ| is a power of two

Γ,Φ ` e1 ⊕ (|σ|⊗e′2) : Seqσ(eb, ee)

Figure 4.4: Dereference and arithmetic rules for Sequence pointers.

pointer p itself may sometimes be out of bounds. We can dereference a Seqσ(b, e) pointer p

if it is within its bounds b and e. Moreover, we can apply pointer arithmetic to this value,

so long as the quantity being added is a multiple of the element size. NULL pointers are

represented as the triple 〈0, 0, 0〉.

Before dereferencing a sequence pointer, CCured will insert a check that the

pointer is within bounds. When the abstract interpretation sees this conditional jump,

the Constrain operation will add the facts LessOrEq(eb, ep) and LessThan(ep, ee) to Φ.

Figure 4.4 shows the subsumption judgment (seq dereference) that allows a Sequence

pointer to be coerced to a Ptr, and hence be used in the (memory read) and (memory

update) rules.

Figure 4.4 also shows the rules for pointer arithmetic. The definition of [[Seqσ(b, e)]]ρA

in Figure 4.3 implies that if p has type Seqσ(b, e), then we can add any multiple of |σ| to p

and the result will also have type Seqσ(b, e). In C pointer arithmetic is done with respect to

85

the element size, so “p + x” in the source code is compiled “p⊕ (|σ|⊗x)” in the assembly

version. While designing this type policy, however, we realized that |σ|⊗x will not always

be a multiple of |σ|. (Recall that ⊕, ⊗, . . . refer to machine arithmetic instructions that are

subject to overflow.) Consider for example a pointer p with type Seqσ(b, e), where |σ| = 12.

The expression “p⊕ (|σ|⊗x)” might not have type Seqσ(b, e) because on a 32-bit machine

with x = 357, 913, 943, 12⊗x equals 20 and p⊕ 20 would not be properly aligned.

The rules in Figure 4.4 support two methods of dealing with overflow. The more

general rule, (seq arithmetic), requires an explicit alignment check be performed, and uses

a new fact DividesDiff ∈ F to encode this check. We define ρA |= DividesDiff(k1, k2, k3) to be

true when k1, k2, k3 ∈Word, and k1 divides (k2−k3). The requirement DividesDiff(|σ|, e1⊕

e2, b) ensures the alignment invariants of [[Seqσ(b, e)]]ρA are maintained even if there is

overflow in the addition e1 ⊕ e2 or in the multiplication within e2. (In practice, e2 will

always have the from |σ|⊗e′2 because of C’s pointer arithmetic.) The runtime check that

detects overflow and generate the DividesDiff fact is relatively expensive, since it requires

a division. However, the (seq arithmetic special case) rule removes the need for a

runtime check in the common case where |σ| is a power of two. In that case, if e1 has

type Seqσ(b, e) then DividesDiff(|σ|, e1 ⊕ (|σ|⊗e′2), b) will always hold, as explained in the

soundness discussion below.

Allocation of heap-based objects, including arrays, is handled by a trusted allo-

cator such as malloc. Each call to malloc in a program is annotated by CCured with a

representation of the object type σ being allocated and a flag saying whether this is an array

allocation or a single object. For array allocations, we ensure that the size of the requested

86

allocation area is a multiple of σ. Shortly after each call to malloc, CCured will insert a

conditional testing whether the result is NULL. If so, we give it type Seqσ(0, 0). If not, the

result has type Seqσ(vp, vp⊕ len) where vp is the fresh abstract value created to hold the

result, and len is the argument to malloc.

Soundness of Sequence pointers

To show that the rules in Figure 4.4 are sound, we must prove that Required

Lemma 1 and Required Lemma 2 from Section 2.6 hold for all cases relating to the Seqσ

constructors. The IsSubtype judgment in (seq dereference) is easy: this follows directly

from the definition of [[Seqσ(eb, ee)]]ρA in Figure 4.3, using i = 0.

For (seq arithmetic), we must show that if Vars, ρA |= Γ,Φ,

Γ,Φ ` e1⊕e2 : Seqσ(eb, ee), and the premises of (seq arithmetic) hold, then [[e1 ⊕ e2]]Vars ∈

[[[[Seqσ(eb, ee)]]Vars]]ρA . By assumption, Γ,Φ ` e1 : Seqσ(eb, ee) holds, so we know that

[[eb]]Vars is less than or equal to [[ee]]Vars and (([[ee]]Vars − [[eb]]Vars) mod |σ|) equals 0.

([[e1 ⊕ e2]]Vars−[[eb]]Vars) mod |σ| is also 0 because ρA |= DividesDiff(|σ|, [[e1 ⊕ e2]]Vars, [[eb]]Vars).

Finally, because |σ| divides both ([[e1]]Vars − [[eb]]Vars) and [[e1 ⊕ e2]]Vars − [[eb]]Vars, it can be

shown that there exists k such that [[e1 ⊕ e2]]Vars = [[e1]]Vars + |σ| · k. For all i, if eb ≤

([[e1 ⊕ e2]]Vars+i·|σ| < ee, then eb ≤ [[e1]]Vars+(k+i)·|σ| < ee and ρA([[e1 ⊕ e2]]Vars+i·|σ|) = σ.

Finally, we consider the (seq arithmetic special case) rule. From the premises,

we know that |σ| is a power of two and |σ| divides ([[e1]]Vars − [[eb]]Vars). Let k be such that

[[e1]]Vars − [[eb]]Vars = |σ| · k. On a 32-bit machine,

[[e1 ⊕ (|σ|⊗e′2)]]Vars − [[eb]]Vars ≡ ([[e1]]Vars − [[eb]]Vars + |σ| · [[e′2]]Vars) mod 232

87

so there exists k′ such that

[[e1 ⊕ (|σ|⊗e′2)]]Vars − [[eb]]Vars = [[e1]]Vars − [[eb]]Vars + |σ| · [[e′2]]Vars + 232 · k′

= |σ| · k + |σ| · [[e′2]]Vars + 232 · k′

Therefore, |σ| divides [[e1 ⊕ (|σ|⊗e′2)]]Vars− [[eb]]Vars if |σ| is a power of two less than 232 (or,

more generally, if |σ| is a factor of the size of the ring in which arithmetic is performed). We

ensure that |σ| never exceeds the size of the address space, so we conclude that |σ| divides

[[e1 ⊕ (|σ|⊗e′2)]]Vars − [[eb]]Vars. The rest of this case is identical to the (seq arithmetic)

case.

4.2.2 Run-time type information

CCured also supports casts between pointers to different base types. If the base

types do not contain pointers or other special types, the cast is always safe. For example,

it is legal to coerce a pointer to an array of characters into a pointer to an array of integers

provided that an alignment check is performed on the upper bound. For casts where the

base type does involve pointers, additional steps are needed to ensure type safety.

Upcasts

Because C has no native support for subtyping, programmers are forced to give

each object type its own struct definition, and cast between them using C’s unsafe cast

operator. Consider a program that uses the two objects shown in Figure 4.5. A Manager is

a special type of Employee that includes a list of the employees that he or she supervises.

The program can use Manager pointers in places where Employee pointers are expected,

88

struct Employee { struct Manager {
int employeeNumber; int employeeNumber;
struct Date * SAFE hireDate; struct Date * SAFE hireDate;

}; struct Employee * SAFE * SEQ reports;
};

Figure 4.5: An example of two C object types where Manager is a logical subtype of
Employee. The pointer kinds safe and seq were inferred by CCured. A reference to an
Employee is denoted “struct Employee * SAFE”, so “struct Employee * SAFE * SEQ”
is an array of pointers to employees. This toy example omits other useful fields, such as the
number of reports that a Manager has.

such as in the reports field of a second-level manager. Therefore, it should be possible to

cast a Manager pointer to an Employee pointer.

In our type policy, we can represent an Employee as

Employee , Σs.〈 0 : Int(); 1 : SafeDate() 〉

where Date is the layout of struct Date and Safeσ() is similar to Ptrσ except that it allows

NULL pointers.2 Similarly, we could represent a Manager as

Manager , Σs.〈 0 : Int(); 1 : SafeDate(); 2 : SeqEmployeeP (s.3, s.4); 3 : Int(); 4 : Int() 〉

where EmployeeP is a record containing only a SafeEmployee() pointer. (Note that CCured

has added two fields to the struct to hold the metadata for the Sequence pointer.) However,

this definition would not allow a cast from a PtrManager to a PtrEmployee, since each part

of the address space must have a unique type in the allocation state ρA. Instead, we can

define

ManagerSuffix , Σs.〈 0 : SeqEmployeeP (s.1, s.2); 1 : Int(); 2 : Int() 〉
2Therefore, [[Safeσ()]]ρA = {0} ∪ [[Ptrσ]]ρA for all σ and ρA.

89

and treat a Manager object as an Employee record followed by a ManagerSuffix record.

To support this, we define new families of constructors Ptr~σ, Safe~σ(), and Seq~σ(b, e)

where the base type is not a single record but a list of records. The record lists ~σ are flattened

versions of the object layouts κ from Figure 3.3. Ptr~σ is recursively defined as:

[[Ptrσ1::~σ]]ρA = { a ∈Word | ρA(a) = σ1 ∧ (a+|σ1|) ∈ [[Ptr~σ]]ρA }

[[Ptrnil]]ρA = Word

Γ,Φ ` IsSubtype(e,Ptr~σ1
,Ptr~σ2

) and Γ,Φ ` IsSubtype(e,Safe~σ1
(),Safe~σ2

()) hold

for all Γ, Φ, and e iff ~σ2 is a prefix of ~σ1, so a value with type

SafeEmployee::ManagerSuffix::nil() can be cast to SafeEmployee::nil(). In this example, it is

sufficient to break the Manager type into two records, but in general we split an object into

as many records as possible to allow the greatest flexibility in subtyping. Note, however,

that dependent fields such as those in ManagerSuffix cannot be separated or the resulting

types would be ill-formed: the type system cannot allow the metadata fields to be mutated

independently of the pointer that depends on them. We use σ records for the smallest,

indivisible units of the allocation state.

Downcasts

Occasionally, the example program might need to cast an Employee pointer to a

Manager pointer rather than the other way around. This downcast from a supertype to

a subtype is safe only if the Employee record is followed by a ManagerSuffix record.

To support downcasts in a safe manner CCured uses rtti fat pointers, which combine a

safe pointer with a one-word tag (Run-Time Type Information) representing the true base

90

type of the pointer. In this example, an Employee pointer would be packaged with a flag

indicating whether the Employee object being pointed to is actually a Manager object.

Before each downcast, we compare the tag to the desired type and abort the program if

there is a mismatch. A common use of these checked downcasts is casts from void* —

a.k.a. a pointer whose base type is nil — to a specific type.

During compilation, CCured will associate a unique tag with each type that is

involved in a downcast, and use these tags consistently throughout the program. The tags

are actually pointers into a static tree-shaped data structure where each node points to its

immediate parent in the subtype hierarchy. To do a tag check, CCured calls the trusted

function CHECK RTTICAST in its runtime library that traverses the RTTI data structure. We

write typeof(t) for the record list corresponding to tag t, and typeof’s inverse tagof(~σ) for

the tag corresponding to record list ~σ. For example, suppose a program attempts to casts

a “void * rtti” to a “struct Employee *”. If the actual base type is Manager, then the

original pointer’s tag is tagof(Employee :: ManagerSuffix :: nil). CHECK RTTICAST will

notice that while this tag is different from the desired tag, the tag’s parent in the hierarchy

(tagof(Employee :: nil)) does match the desired tag, so the check succeeds.

Figure 4.6 shows the definition of the Rtti~σ type constructors. As seen in Fig-

ure 4.2, an rtti fat pointer is a two-word record containing a pointer and a tag. When a

pointer is stored in a register, we can add or drop the rtti information at any time:

(rtti create)

Γ,Φ ` IsSubtype(e, Safe~σ(), Rtti~σ(tagof(~σ)))

91

rtti pointer to ~σ = Σs.〈 0 : Rtti~σ(s.1); 1 : RttiTag() 〉

where

[[Rtti~σ]]ρA(t) , {p | p = 0 ∨ ((p ∈ [[Ptr~σ]]ρA) ∧ (p ∈ [[Ptr typeof(t)]]ρA))}

Figure 4.6: The Rtti type constructors used by CCured.

(rtti destroy)

Γ,Φ ` IsSubtype(e, Rtti~σ(t), Safe~σ())

Since Rtti~σ(t) is at least as informative a type as Safe~σ()), we eagerly convert all Safe~σ())

pointers to Rtti~σ(tagof(~σ)) before widening as part of the “adding extra facts” step of

Section 3.1.2.

When we encounter a call to CHECK RTTICAST(tagof(~σ1), t) it means that CCured

is casting a pointer with runtime tag t to a new layout ~σ. The first argument to

CHECK RTTICAST is always a constant, since CCured always knows what type it is casting to.

We trust that CHECK RTTICAST(tagof(~σ1), tagof(~σ2)) will abort the program unless ~σ1 is a

prefix of ~σ2. Therefore if CHECK RTTICAST(tagof(~σ1), t) returns, any pointer with run-time

tag t points to an object whose layout has prefix ~σ1. So for each subexpression occurring in

∆ which has type Rtti~σ′(t), we replace it with a fresh variable with type Rtti~σ1
(t), unless

~σ′ is already stronger than ~σ1.

92

4.2.3 Bugs found

One of the main advantages of accompanying a source-level safety tool with a sep-

arate assembly-level checker is that duplicate verification gives protection against mistakes

in the first tool that break soundness. We discovered three bugs in CCured while attempt-

ing to verify the safety of assembly code. Each of them could be exploited to subvert type

safety in the program.

• When initializing the buffer returned by malloc call, CCured forgot to check that the

pointer was nonnull.

• CCured’s optimizer incorrectly removed bounds checks on the faulty assumption that

two pointers could not alias.

• CCured originally omitted the alignment checks for Sequence pointer arithmetic de-

scribed in Section 4.2.1. Cyclone [JMG+02], the typesafe C variant that CCured is

closest too, has this same vulnerability. Accessing a misaligned pointer breaks type

safety, since the code might access the wrong field of a structure. Unlike the previous

two bugs, which were discovered while running experiments, this bug was caught while

designing the type policy. Reasoning about the low-level semantics of assembly code

forces one to pay attention to issues such as overflow that may be easier to overlook at

the source level. Balakrishnan et al. similarly observe that many bugs can appear in

low-level code that are not easily spotted in the source code or detected by source-code

tools [BRMT05].

93

number of functions time joins
Program LOC functions verified (sec) per BB

unoptimized go 29,321 372 327 113 2.09
optimized go 29,321 372 300 96 3.46

Table 4.1: Experience using our verifier with go.

4.3 Experiments

As an initial test, we used our prototype on the go program in the Spec95 bench-

mark suite [SPE95]. Of the Spec95 programs, we chose go because it makes extensive use of

arrays while avoiding floating-point instructions, which our x86 parser does not yet handle.

The tests were run using the latest version of CCured and the assembly code was generated

using GCC 3.4.4, using optimization level -O3.

Of the 378 functions in the 29,321 LOC program, we can successfully verify 300 of

them(79%), while the others report false positives. The most common reason for failure was

array indexing expressions that don’t meet the completeness criteria described in Section 3.2.

For such functions, additional annotations may need to be added to the function despite

our goal to do without. Verifying the program takes 96 seconds on a 2 GHz Xeon with

2 GB of RAM, and each basic block was explored an average of 3.45 times before a fixed

point was reached, with basic blocks in nested loops accounting for most of the cases where

more than 2 iterations were needed. When not using compiler optimizations, our verifier is

slightly better (88% of the functions can be verified), but some array indices are still too

complicated.

94

4.3.1 CCured features supported

Our implementation handles the CCured features discussed in this chapter, as

well as tagged unions and special handling for the initialization of newly-allocated objects.

Tagged unions are similar to RTTI pointers in that the runtime value of a “tag” field

describes the type of the data in the union. Unlike RTTI pointers, however, union tags are

controlled by the programmer, who provides annotations describing the relation between

tag values and union fields. As with all of our dependent types, we rely on the fact that

the tag and the union must be located in the same C struct in order to ensure that one is

not modified without the other.

However, there are several other CCured features that we do not support. Variable-

argument functions are forbidden, and our implementation does not allow casting between

arrays of different base types when those base types contain pointers. To simplify our

implementation, we told GCC not to inline the runtime functions that perform most array

bounds and alignment checking functions.

We do not support CCured’s Compatible Metadata Representation, which allows

metadata to be stored separately from the pointers it describes so that heap-based data

structures will have the same representations they would without CCured. By maintaining

a one-to-one correspondence between the pointer and metadata, CCured can ensure that

the metadata is kept in sync with any changes the pointer, provided that the pointer is not

modified by any external code. To support this, we would have to modify our type system

with a more general notion of which memory locations can depend on each other. Since

this feature of CCured was used only rarely, supporting it was not a priority. However,

95

in recent work with dependently-typed source code [CHA+07], we have encountered other

cases where it would be useful to relax the requirement that dependent values be located

in the same object, and we are considering solutions to the problem.

CCured’s wild pointers, which have no (useful) static typing information, are also

unsupported because they too are little-used in later CCured experiments. As features such

as rtti pointers were added to CCured, it became possible to deal with “bad casts” in ways

that didn’t cause the performance and compatibility problems that wild pointers did. If

desired, supporting wild pointers in our implementation would be relatively straightforward

if the supporting runtime functions were trusted and not inlined.

96

Chapter 5

Deputy

In this chapter we show how our system can be used with Deputy [CHA+07],

a successor to CCured. Like CCured, Deputy guarantees type safety for C programs.

Unlike CCured, however, Deputy does not use fat pointers or make any other changes

to a program’s data structures. Instead, it allows the programmer to annotate code at

module boundaries to express dependencies. Figure 5.1 shows a simple dependent type

annotation in the usb interface structure of the Linux kernel. Deputy also incorporates

a novel mechanism for supporting C’s null-terminated strings. Because it does not change

data structures, Deputy can be applied incrementally to a program, while CCured requires

a whole-program transformation.

Deputy uses the same approach to mutation of dependent data that our framework

did: metadata and the values that depend on it are stored in the same context, i.e. heap

object, parameter list, or local variable scope. As in our framework, Deputy can permit

mutations of values stored in the heap because it knows that the only values that could

97

struct usb_interface {
/* array of alternate settings for this interface */
struct usb_host_interface * COUNT(num_altsetting) altsetting;
struct usb_host_interface * cur_altsetting;
unsigned num_altsetting; /* number of alternate settings */
...

}

Figure 5.1: Part of the definition of struct usb interface from include/linux/usb.h in the
Linux kernel. The Deputy “COUNT(. . .)” annotation is similar to the Array constructor from
Chapter 2, and indicates here that altsetting is a pointer to an array of num altsetting
objects.

depend on the modified location are other fields of the same heap object.

Deputy also encounters the same difficulty that our framework does with nonatomic

updates of dependent values, but uses a different solution. In CCured, fat pointer updates

are considered atomic at the source level, but in Deputy programmers update one mem-

ory word at a time using ordinary C instructions. For example, consider lines 5 and 6 in

Figure 5.2. After the assignment on line 5, the programmer might break the invariant that

ptr->num altsetting is the length of array ptr->altsetting. Deputy’s solution to this

problem is that any metadata is considered valid for a NULL pointer. Therefore, the assign-

ment of NULL to ptr->altsetting on line 4 ensures that line 5 is legal, and the assignment

on line 6 is legal because ptr->num altsetting == n. At the assembly level, however, this

solution may not be enough. A compiler that is optimizing single-threaded code (or that

knows *ptr is local to the thread) could reorder the memory writes or drop the write on

line 4. Therefore, memory may be temporarily inconsistent even using Deputy’s relaxed no-

tion of consistency, and we must continue to use the approach to temporary inconsistencies

described in Section 2.4.

We have not implemented an assembly-code checker for Deputy, but we show here

98

1 void changeSettings(struct usb interface * ptr, int n) {
2 struct usb host interface * COUNT(n) newSetting = malloc(...);
3 // ... initialize the members of newSetting ...
4 ptr->altsetting = NULL;
5 ptr->num altsetting = n;
6 ptr->altsetting = newSetting;
7 }

Figure 5.2: Sample Deputy code that mutates the altsetting and num altsetting fields
from Figure 5.1.

how it can be done by presenting a type policy. We give the constructor definitions and

type rules for Deputy’s pointers, and we outline the soundness proofs. The first half of this

chapter discusses regular pointers; the second half discusses null-terminated arrays.

5.1 Bounded pointers

Because Deputy does not use fat pointers, it does not make CCured’s distinction

between safe and seq pointers. Instead, it has a single form of bounded pointer, where

the declaration “T * BND(b,e) x;” means that either x is NULL, or b ≤ x ≤ e and the

memory range between b and e contains consecutive T objects. The pointer must be aligned

on a object boundary, but unlike in CCured b and e need not be (Figure 5.3). As seen

in Figure 5.1, Deputy uses “T * COUNT(n) x;” as syntactic sugar for “T * BND(x, x+n)

x;”, where the ‘+’ is C-style pointer arithmetic. Pointers with no annotation are assumed to

point to a single object (like CCured’s safe pointers), and they have the implicit annotation

“COUNT(1)”.

In our framework, we can define a family of type constructors Bndσ(b, e) for a

bounded pointer to σ objects. As seen in Figure 5.4, Bndσ is similar to Seqσ except that a

99

Figure 5.3: A bounded pointer in Deputy. The pointer itself must be aligned on an object
boundary, but the bounds b and e need not be.

[[Bndσ(b, e)]]ρA ,

{0} ∪ {p ∈Word | (b ≤ p ≤ e)

∧ (e− b) < (|Word|/2− 1)

∧ ∀i.(b ≤ (p + i·|σ|) < e)) =⇒ ρA(p + i·|σ|) = σ}

Figure 5.4: The meanings of the Bndσ type constructors used by Deputy.

pointer must be either in-bounds or equal to its upper bound (CCured’s pointers need only

be in bounds when they are dereferenced), and if a pointer is NULL then its bounds need

not denote a valid memory range. This second difference is needed to support updates in

Deputy, as discussed earlier. The first difference was a design decision that makes it easier

to guard against overflow, since Deputy will be able to incorporate the alignment check

into the bounds check. As a result, Deputy won’t need the bounds b, e to be aligned. The

condition (e − b) < (|Word|/2 − 1) requires that no single object or array takes up half of

the address space; we explain later why this is necessary.

Figure 5.5 shows the IsSubtype and arithmetic type-checking rules for Bnd types.

The (bnd dereference) rule, which lets us use a Bnd pointer in memory operations,

requires that a pointer be strictly less than its upper bound by using a new fact constructor

100

(bnd dereference)

NotEq(e, ee) ∈ Φ NotEq(e, 0) ∈ Φ

Γ,Φ ` IsSubtype(e, Bndσ(eb, ee), Ptrσ)

(bnd null coerce)

Γ,Φ ` IsSubtype(0, τ, Bndσ(eb2, ee2))

(bnd coerce)

LessOrEq(eb1, eb2) ∈ Φ LessOrEq(eb2, e) ∈ Φ

LessOrEq(e, ee2) ∈ Φ LessOrEq(ee2, ee1) ∈ Φ

Γ,Φ ` IsSubtype(e, Bndσ(eb1, ee1), Bndσ(eb2, ee2))

(bnd arithmetic)

Γ,Φ ` e1 : Bndσ(eb, ee) Γ,Φ ` e2 : Int() NotEq(e1, 0)

SignedLessOrEq(−1⊗e2, (e1 	 eb)� |σ|) ∈ Φ

SignedLessOrEq(e2, (ee 	 e1)� |σ|) ∈ Φ

Γ,Φ ` e1 ⊕ (|σ|⊗e2) : Bndσ(eb, ee)

(pointers are non-null after arithmetic)

Γ,Φ ` e1 ⊕ e2 : Bndσ(eb, ee)

ρA |= NotEq([[e1 ⊕ e2]]Vars, 0)

Figure 5.5: Dereference and arithmetic rules for Deputy’s bounded pointers.

101

NotEq. (bnd null coerce) says that NULL can be used as a pointer of any type. The

(bnd coerce) rule allows casting from a type Bndσ(eb1, ee1) to a type Bndσ(eb2, ee2) only

if

1. The base type σ is the same in the two types.

2. The new type has a smaller range than the original type: eb1 ≤ eb2 ∧ ee2 ≤ ee1.

3. The pointer e is within the new bounds: eb2 ≤ e ≤ ee2.

To reduce the computational cost of the (bnd coerce) rule, Deputy does not

check that the new bounds be aligned with respect to the pointer or the old bounds. Such

an alignment requirement would correspond to adding the constraints (e− b) mod |σ| = 0

and (p − b) mod |σ| = 0 to the definition of ρA(Bndσ(b, e)). This would imply, among

other things, that if b 6= e then b is a valid pointer to a σ object. However Deputy does not

actually need the bounds to be valid pointers, as they exist only for arithmetic comparisons.

Therefore we don’t need any alignment checks in (bnd coerce).

The final rules support pointer arithmetic in Deputy. Because the new pointer

must be within bounds, we must ensure eb ≤ (e1 ⊕ (|σ|⊗e2)) ≤ ee. To guard against

overflow in the multiplication step, we rewrite this as ((eb 	 e1) � |σ|) ≤ e2 ≤ ((ee 	

e1) � |σ|). The version shown in the (bnd arithmetic) rule, which is the check used by

the current Deputy implementation, takes into account the fact that the bounds are not

necessarily aligned, so (eb 	 e1)/|σ| might not be a whole number. The “�” operator is

machine integer division, where values are rounded towards zero. For the actual inequality

comparisons, we introduce a new fact constructor SignedLessOrEq(e1, e2) corresponding to

a signed integer comparison, assuming two’s complement representation. Note that this

102

rule would be unsound if ((e1 − eb)/|σ|) or ((ee − e1)/|σ|) were too big to fit in a signed

integer. This is why we require when buffers are allocated that they contain fewer than

231 − 1 bytes.

5.1.1 Implementing Deputy’s checks

Deputy relies on an optimization phase to determine which required facts can be

verified statically and which require runtime checks. Assembly code verification will need

to have static analysis that is at least as powerful as Deputy uses in order to verify that the

code is safe. Some of these optimizations are easy – the (bnd coerce) rule entails many

requirements of the form LessOrEq(e, e), which are clearly true – while others are more

sophisticated. Recently, Deputy has started using Miné’s implementation of the octagon

domain [Min01] to eliminate array checks, so any assembly code verification would also

need to incorporate an analysis at least as strong as the octagon domain, or use additional

annotations from the source tool.

Deputy also uses optimizations that are specific to its type rules. The last rule in

Figure 5.5 shows that if e1 ⊕ e2 typechecks, then the sum is nonnull and we can safely add

NotEq(e1⊕ e2, 0) to Φ. This is true because Deputy prevents e1⊕ e2 from overflowing to 0.

Finally, we note that if we implemented a Deputy policy in our framework we

would relax the syntactic restrictions for dependent types on the heap to allow arithmetic.

Chapter 2 says that the arguments to type constructors may only be field names and

constants:

d ::= c | s.i

103

But we can extend that to

d ::= c | s.i | d1 op d2

so that, for example,

struct {
T * COUNT(2*x) ptr;
int x;

};

can be expressed as Σs.〈 0 : BndT(s.0, s.0 ⊕ (2 ⊗ s.1)); 1 : Int() 〉. This is simply a

convenience (we could achieve a similar effect by defining new constructors for each COUNT

annotation) that does not affect the soundness of the rules in Chapter 2.

5.1.2 Sketch of soundness proof

Lemma 7 (Soundness of the Bnd constructors) Required Lemma 1 and

Required Lemma 2 from Section 2.6 hold for all cases relating to the Bndσ constructors.

The correctness of the (bnd dereference) rule follows directly from the defini-

tion of [[Bndσ(b, e)]]ρA with i = 0. Similarly, the correctness of (bnd null coerce) and

(bnd coerce) follows directly from the definition of [[Bndσ(b, e)]]ρA . The interesting case is

(bnd arithmetic), for which we must show that if Vars, ρA |= Γ,Φ; Γ,Φ ` e1⊕ (|σ|⊗e2) :

Bndσ(eb, ee); and the premises of (bnd arithmetic) hold, then [[e1 ⊕ (|σ|⊗e2)]]Vars ∈

[[[[Bndσ(eb, ee)]]Vars]]ρA . Specifically, we will need to show that the premises of this rule

are enough to prevent overflow.

Let MAX INT be the largest value in Word when interpreting integers as signed

numbers using two’s complement notation (i.e. |Word|/2 − 1). In our allocation rule (not

shown), we ensure that the size of every object and array is less than MAX INT words. By

104

assumption, Γ,Φ ` e1 : Bndσ(eb, ee) holds, so we know that [[eb]]Vars ≤ [[e1]]Vars ≤ [[ee]]Vars

and ([[ee]]Vars − [[eb]]Vars) < MAX INT. Therefore [[e1]]Vars − [[eb]]Vars and [[ee]]Vars − [[e1]]Vars

are also nonnegative and less than MAX INT, so the SignedLessOrEq comparisons imply⌈
eb	e1

|σ|

⌉
≤ e2 ≤

⌊
ee	e1
|σ|

⌋
and we are assured that |σ|⊗e2 does not overflow. Therefore,

[[eb]]Vars ≤ [[e1 ⊕ (|σ|⊗e2)]]Vars ≤ [[ee]]Vars. Finally, we prove that the last requirement of

Bndσ holds where p = [[e1 ⊕ (|σ|⊗e2)]]Vars:

∀i.([[eb]]Vars ≤ (p + i·|σ|) < [[ee]]Vars)) =⇒ ρA(p + i·|σ|) = σ

Because there is no overflow in e1 ⊕ (|σ|⊗e2), we get

p + i·|σ| = [[e1 + |σ|⊗e2]]Vars + i·|σ|

= [[e1]]Vars + |σ|·[[e2]]Vars + i·|σ|

= [[e1]]Vars + |σ|·([[e2]]Vars + i)

If [[eb]]Vars ≤ (p + i·|σ|) < [[ee]]Vars, then [[eb]]Vars ≤ ([[e1]]Vars + ([[e2]]Vars + i)·|σ|) <

[[ee]]Vars, and ρA(p + i·|σ|) = σ because [[e1]]Vars ∈ [[[[Bndσ(eb, ee)]]Vars]]ρA .

�

5.2 Null-terminated arrays

One novel feature of Deputy is its typesafe method of supporting null-terminated

arrays. Because C does not provide a way to determine at runtime the length of an array,

programmers commonly denote the extent of an array by filling the last element of an array

with zero (null). The most common example is the C convention that strings are represented

105

Figure 5.6: A null-terminated pointer in Deputy. The pointer and upper bound are aligned
on object boundaries, and there is a terminating null somewhere after the upper bound.

as null-terminated arrays of characters, but this programming pattern is also used on arrays

of pointers, structures, etc. Deputy includes a qualifier “NT” that indicates that a pointer

is pointing to a null-terminated array. In this section, we explain the semantics of null-

terminated pointers and how they are checked in assembly code.

When working with a null-terminated array, we must ensure that the program

does not access any element beyond the terminating null, and that it does not overwrite

the null with a non-zero value. However, there are situations where programs can safely

overwrite a null: for example, reusing a buffer of known size with strings of varying lengths.

Therefore, Deputy lets programs combine the NT and BND annotations to indicate that an

array has both a known bound and a terminating null value. A variable declaration “char

* NT BND(b,e) ptr;” means that ptr points to an array that includes the range [b,e] and

that there is a terminating null value at address e or higher, as in Figure 5.6. Values in

the range [b,e) can be safely overridden even if they are null, since the terminating null

is somewhere after e. Most C strings have the annotated type “char * NT COUNT(0)”

indicating that any null should be treated as a terminating null, but a few pointers will

have known bounds that allow more flexibility in how the array is used.

For example, the entrypoint to a C program has the signature “int main(int

106

[[NTBndσ(b, e)]]ρA ,

{0} ∪ {p ∈Word | (b ≤ p ≤ e)

∧ (e− p) mod |σ| = 0

∧ ∃j ≥ 0.(ρA(e + j ·|σ|) = ~0|σ|
∧ ∀i.(b ≤ (p + i·|σ|) ≤ e + j ·|σ|) =⇒ ρA(p + i·|σ|) = σ)}

Figure 5.7: The invariant for the NTBndσ type constructors.

argc, char* * argv)” where argv points to an array of arguments to the program. The

parameter argc holds the number of arguments in the array, and the last element of the

array (i.e. argv[argc]) is always a NULL pointer. Therefore, programmers have two ways

to safely traverse this array:

int main(int argc, char* * argv) { int main(int argc, char* * argv) {
int i = 1; char** p = argv+1;
while (i < argc) { while(*p != NULL) {

//process argument argv[i] //process argument *p
i++; p++;

} }
... ...

Since this array both has a known length and is null-terminated, we can give it the Deputy

annotation “NT COUNT(argc)”, or equivalently “NT BND(argv, argv+argc)”. With these

two pieces of information, Deputy is able to optimize away its checks no matter which

method the program uses. Since the elements of the array are themselves null-terminated

strings, main functions have this signature in Deputy:

int main(int argc, char* NT COUNT(0) * NT COUNT(argc) argv)

107

(ntbnd dereference)

LessThan(e, ee) ∈ Φ NotEq(e, 0)

Γ,Φ ` IsSubtype(e, NTBndσ(eb, ee), Ptrσ)

(ntbnd endptr dereference)

NotEq(e, 0)

Γ,Φ ` IsSubtype(e, NTBndσ(eb, e), ReadPtrσ)

(drop nt)

Γ,Φ ` IsSubtype(e, NTBndσ(eb, ee), Bndσ(eb, ee))

(ntbnd shrink)

LessOrEq(eb1, eb2) ∈ Φ LessOrEq(eb2, e) ∈ Φ

LessOrEq(e, ee2) ∈ Φ LessOrEq(ee2, ee1) ∈ Φ (ee1 	 ee2) mod |σ| = 0

Γ,Φ ` IsSubtype(e, NTBndσ(eb1, ee1), NTBndσ(eb2, ee2))

(ntbnd expand)

LessOrEq(eb1, eb2) ∈ Φ LessOrEq(eb2, e) ∈ Φ

LessOrEq(e, ee2) ∈ Φ NoNull|σ|(ee1, ee2) ∈ Φ

Γ,Φ ` IsSubtype(e, NTBndσ(eb1, ee1), NTBndσ(eb2, ee2))

(ntbnd null coerce)

Γ,Φ ` IsSubtype(0, τ, NTBndσ(eb2, ee2))

(definition of NoNullk)

a ≤ b (b− a) mod k = 0 ∀i ≥ 0.((a + i·k) < b) =⇒ ρA(a + i·k) 6= ~0k

ρA |= NoNullk(a, b)

Figure 5.8: The type rules for the NTBndσ type constructors. The arithmetic rule is the
same as for the Bnd constructors in Figure 5.5.

108

5.2.1 Type rules for null-terminated arrays

To encode a pointer to a null-terminated array of σ objects, we use the NTBndσ

constructor defined in Figure 5.7. NTBndσ is a subtype of Bndσ; the difference is that

NTBndσ imposes more constraints on the upper bound and what lies beyond it. Let ~0k

be the record type denoting a memory area k words long containing only zeros. A null-

terminated array is therefore a sequence of σ objects followed by a ~0|σ| object, as seen in

the definition of [[NTBndσ(b, e)]]ρA .

The key type rule here is (ntbnd expand), which lets us increase the upper bound

of a null-terminated array. If at runtime we determine that the value pointed to by the

upper bound is not null, we can safely increase the upper bound by one element, or |σ|

words. This knowledge that there is no null termination in a certain range is encoded in

our framework with the fact constructor NoNullk, where k is the size of array elements. As

seen in Figure 5.8, NoNullk(e1, e2) is true if e1 ≤ e2, the addresses e1 and e2 are aligned

with respect to k, and none of the objects in the range [e1, e2) are null. We can increase the

upper bound of a pointer from ee1 to ee2 if NoNull|σ|(ee1, ee2) is true. Typically, programs

will read the upper bound ee of an NT pointer and branch on whether its first field is null.

If so, it is assumed to be a terminating null and the loop halts. If not, then the current

object can’t have allocation type ~0, so we add the fact NoNull|σ|(ee, ee⊕|σ|) to Φ. However,

Deputy also uses a special runtime function that can scan a larger region for zero and test

whether NoNull|σ|(ee1, ee2) holds even if ee1 and ee2 differ by more than |σ|.

Unlike the bounds of a Bnd pointer, the the upper bound of an NTBnd pointer

must be aligned on an object boundary. If the upper bound were misaligned, then the

109

Deputy runtime function that tests NoNull facts would read misaligned values, since it starts

scanning memory at the upper bound. Therefore, (ntbnd shrink) has an extra alignment

check (ee1 	 ee2) mod |σ| = 0 that is not present in the corresponding (bnd coerce) rule

for Bnd pointers. The initial release of the Deputy compiler omits the alignment checks;

just as with the missing alignment requirement in CCured, this bug was discovered while

attempting to write soundness proofs for the type policies in this dissertation.

Also unlike with Bnd pointers, it is legal to read the memory referred to by the

upper bound of an NTBnd pointer, as seen in the (ntbnd endptr dereference) rule. If

the object read contains only zero, it is assumed to be the terminating null. If it contains

some nonzero field, however, the program knows that this location is not the terminating

null, and will be able to increase the upper bound by one using the (ntbnd expand) rule.

Therefore the (ntbnd endptr dereference) rule allows read but not write access to

the upper bound, since it would not be safe to overwrite a terminating null with a nonnull

value. (We implement this rule by defining a read-only pointer type ReadPtrσ in the next

section.) In order to write to the element at the end of the array, the program must first

verify that it is not the terminating null, then expand the bounds and use the (ntbnd

expand) rule to get a writable pointer. Finally, Deputy requires for NTBndσ pointers that

an object containing only zeros be a valid σ object, so that the terminating null is also a σ

object and the (ntbnd endptr dereference) rule is safe.

For example, consider the loop shown in Figure 5.9. This is the canonical method

of accessing a null-terminated array: a loop that is executed as long as the terminating null

has not been reached. The inferred loop invariant is that p has type NTBndInt()(p, p) and

110

1 // Precondition: p is a nonnull pointer
2 // with type int* NT COUNT(0)
3 while(*p != 0) {
4 ...
5 p++;
6 }
7

L1 : load rtmp ← [rp]
bnz rtmp, L2, L3

L2 : . . .
mov rp, rp + 1
jump L1

L3 :

Figure 5.9: A loop that walks over a null-terminated array an array. The Deputy code for
this loop is on the left; the assembly version on the right.

NotEq(p, 0) ∈ Φ where p is the value in rp. Line 2 reads from p, using the rule that p’s upper

bound (which is p) can be read through a read-only pointer. The branch on line 3 lets us

add the fact NoNull1(p, p + 1) to the state at L2
1. The arithmetic on line 5 is legal because

we can coerce the type of p to NTBndInt()(p, p+1) with the (ntbnd expand) rule. Finally,

during the join at L1 rp will be given a fresh abstract value p′ with type NTBndInt()(p, p′),

which is a fixed point.

5.2.2 Type rules for read-only pointers

In order to define a read-only pointer — needed for (ntbnd endptr derefer-

ence) — we introduce a notion of subtyping of object types. When we read at address e

using this rule, we may be reading either a σ object or a ~0|σ| object. For simplicity, Deputy

requires that for any base type σ used in a null-terminated array, an object containing only

zeros is a valid σ object. So we’ll define a new type ReadPtrσ to mean an address whose
1The branch also adds the fact NotEq(sel(m, p), 0), but this fact is not used

111

allocation state is either σ or some subtype of σ:

[[ReadPtrσ]]ρA = { p | ρA(p) = σ′ where for all tuples (i1, . . . , i|σ|),

if (i1, . . . , i|σ|) is a valid σ′ object, then it is a valid σ object. }

We extend our type framework to allow ReadPtrσ pointers to be used in the

(memory read) rule in place of Ptrσ. It is therefore safe to give the upper bound of an

NTBndσ array the type ReadPtrσ because we will either read a σ or a ~0|σ|.

5.2.3 Sketch of soundness proof for null-terminated pointers

Lemma 8 (Soundness of the NTBnd constructors) Required Lemma 1 and Required

Lemma 2 from Section 2.6 hold for all cases relating to the NTBndσ constructors.

First, note that NTBndσ is a subtype of Bndσ as stated in rule (drop nt) because

for any j ≥ 0, ∀i.(b ≤ (p + i · |σ|) < e + j · |σ|) implies ∀i.(b ≤ (p + i · |σ|) < e). Therefore

the (ntbnd dereference) rule is correct since IsSubtype is transitive. The NTBnd

arithmetic rule(not shown) and the (ntbnd shrink) and (ntbnd null coerce) rules are

similar to the arithmetic and coercion rules for Bnd pointers, and are correct for analogous

reasons.

The interesting case here is (ntbnd expand). We assume Vars, ρA |= Γ,Φ, e ∈

[[NTBndσ([[eb1]]Vars, [[ee1]]Vars)]]ρA , and the premises of (ntbnd expand) hold, and show

e ∈ [[NTBndσ([[eb2]]Vars, [[ee2]]Vars)]]ρA . If e = 0, this is trivial. Otherwise, note that because

NoNull|σ|(ee1, ee2) ∈ Φ, we know that there exists j′ ≥ 0 such that ee2 = ee1 + j′ ·|σ| and

∀0 ≤ i < j′. ρA(ee1 + i·|σ|) 6= ~0|σ|. By the assumption e ∈ [[NTBndσ([[eb1]]Vars, [[ee1]]Vars)]]ρA ,

112

we know there exists j ≥ 0 such that

ρA(e + j) = ~0|σ| ∧ ∀i.(eb1 ≤ (e + i·|σ|) < ee1 + j ·|σ|) =⇒ ρA(e + i·|σ|) = σ

Therefore, j ≥ j′. If we substitute ee2 − j′ ·|σ| for ee1 in the formula above, we get

ρA(e + j) = ~0|σ| ∧ ∀i.(eb1 ≤ (e + i·|σ|) < ee2 + (j − j′)·|σ|) =⇒ ρA(e + i·|σ|) = σ

(j − j′) satisfies the existential as it is nonnegative. Finally, because [[eb1]]Vars ≤ [[eb2]]Vars ≤

[[e]]Vars ≤ [[ee2]]Vars, we have satisfied all of the requirements of

e ∈ [[NTBndσ([[eb2]]Vars, [[ee2]]Vars)]]ρA .

�

113

Chapter 6

Cqual

To test our framework on a policy other than type safety, we used Cqual, a whole-

program static analysis tool for C [FFA99]. Cqual infers type qualifiers that can represent

various properties. Given an initial set of annotations, Cqual will propagate the qualifiers

throughout the program and report erroneous usage of qualified types. For example, Cqual

has been used with the following qualifiers:

• Format-string vulnerabilities. For security reasons, strings that are under the

control of an adversary should not be used as format strings for printf and related

functions [New00]. Therefore, strings that are read from files, program arguments,

network connections and the like are annotated as $tainted. Cqual will infer to which

other program locations tainted data could flow; it is an error for tainted values to be

used as format strings [STFW01].

• User-space/kernel-space pointers. In protected-mode operating systems, point-

ers under the control of user-level programs must not be dereferenced inside the kernel,

114

except by special routines that perform the correct security checks. Cqual has been

used to find errors in the Linux kernel by annotating inputs from user-level programs

(such is the argument to ioctl and any pointer read from user-space memory) as

$user; it is an error to dereference a pointer that is inferred as $user [JW04].

We implemented a type policy that encodes Cqual’s $tainted/$untainted quali-

fiers in assembly code. These qualifiers can be used to prevent format-string vulnerabilities

and similar security problems like SQL injection attacks, and they are representative of

other qualifier lattices in Cqual. As with CCured, we use Cqual on the source code to

do the interprocedural analysis, and then have Cqual emit annotated function signatures

so that we need only an intraprocedural analysis on assembly code. It would be possible

to do a whole-program analysis of assembly code, but doing the interprocedural analysis

on source code is more efficient and is consistent with our objective merely to verify that

assembly code has been compiled from a program that was checked by a source code tool.

Cqual does not use dependent types, but we can still make use of our inference system.

Like nearly all static analyses for C code, Cqual relies on the type safety of the

program and is unsound if the program violates type safety in any way, including out-of-

bounds array accesses and unusual casting.1 Our type policy makes the same assumptions

that Cqual does: pointer arithmetic is assumed to always be within bounds, and casts,

unions, etc. are not used to break type safety. This lets us replicate Cqual’s analysis at the

assembly level, but the type policy is not sound.
1Cqual’s algorithm would be sound if you also use CCured or a similar tool to guarantee type safety.

115

6.1 The $tainted type qualifier

Cqual’s type qualifiers are different from the types used by our framework and

by most other type systems. Instead of representing a set of values, qualifiers denote a

higher-level notion of where the value came from or how it will be used. For example, a

variable with type “T $tainted” may hold the same set of possible values as a variable

with type “T $untainted”, but the former variable holds a value that was obtained from

an untrustworthy source, so that value should not be used in any critical piece of program

logic. Similarly, a pointer with Cqual’s $const qualifier represents the same set of possible

heap addresses as a pointer with the $nonconst qualifier, but the program promises not to

use the former pointer to perform memory writes.

Cqual does not guarantee that $tainted values will have no effect on $untainted

values. Although all data dependencies are handled, control dependencies – such as branch-

ing on a tainted condition and using the result to modify an $untainted value – are not.

Ignoring control flow allows Cqual to be used with programs for which full-fledged secure

information flow [SM03] systems would be too restrictive. However, this makes it harder to

formally describe the guarantees that Cqual provides.

It’s safe to use $untainted values where $tainted are expected, so $untainted

types are subtypes of the corresponding $tainted types. Therefore, we use the existing type

constructors Int and Ptrσ to represent the tainted versions of these types, and introduce new

constructors UInt and UPtrσ to represent the untainted versions. As seen in Figure 6.1 we

define the untainted types to be subtypes of tainted types but not vice versa, even though

[[Int()]]ρA = [[UInt()]]ρA and [[Ptrσ]]ρA = [[UPtrσ()]]ρA . We also allow untainted pointers to

116

(int subtyping)

Γ,Φ ` IsSubtype(e, UInt(), Int())

(ptr subtyping)

Γ,Φ ` IsSubtype(e, UPtrσ(), Ptrσ)

(cast to int)

Γ,Φ ` IsSubtype(e, UPtrσ(), UInt())

(unsound arithmetic)

Γ,Φ ` e1 : UPtrσ() Γ,Φ ` e2 : Int()

Γ,Φ ` e1 ⊕ |σ|⊗e2 : UPtrσ()

(unsound tainted arithmetic)

Γ,Φ ` e1 : Ptrσ Γ,Φ ` e2 : Int()

Γ,Φ ` e1 ⊕ |σ|⊗e2 : Ptrσ

(unsound cast)

Γ,Φ ` IsSubtype(e, UInt(), UPtrσ())

(unsound tainted cast)

Γ,Φ ` IsSubtype(e, Int(), Ptrσ)

Figure 6.1: Subtyping and arithmetic rules for $tainted pointers.

be cast to untainted integers, mirroring our rule from Section 2.1 that Ptrσ is a subtype

of Int. In their work on semantic type qualifiers, Chin, Markstrum and Millstein [CMM05]

use the same approach for the semantics of tainted types: tainted types correspond to the

same set of values as untainted types, and only the subtyping rule distinguishes them.

Figure 6.1 also shows four rules that are not type safe but are necessary to replicate

Cqual. The (unsound arithmetic) and (unsound tainted arithmetic) rules say that

pointer arithmetic is assumed to be legal, and the result of the arithmetic as the same taint

117

status as the original pointer. The (unsound cast) and (unsound tainted cast) rules

say that we can cast any value to a pointer of our choosing. (By composing these rules with

the rules that state UPtrσ′ and Ptrσ′ are subtypes of UInt() and Int(), programs can cast

pointers from one base type to another.) These cast rules also preserve the taint status of

the original value. Programs that use these rules are not statically type safe, and a mali-

cious program could easily disguise a $tainted value as an $untainted value using them.

However, these rules are usually sufficient for bug detection. If used in combination with a

type-safe policy, we could drop the four unsound rules and instead introduce untainted and

tainted versions of the constructors in the type-safe policy.

In Cqual, programmers can explicitly cast $tainted values to $untainted to

indicate that the value has been validated and is safe to use. We require Cqual to annotate

in the assembly code where these casts occur so that we can mark the values as untainted in

our analysis. Source code casts that are not related to type qualifiers can present problems

as well, because the assembly code may suddenly start using a value in a different way than

its type suggests. (In CCured, such casts are represented in the assembly code as checks of

RTTI metadata.) Here, our implementation does its best to continue using the old typing

information, and preserves the taint qualifier as much as possible.

6.2 Leaf polymorphism

Cqual provides a mechanism for parametric polymorphism in the signatures of

external (library) functions, and our implementation supports this polymorphism. Function

prototypes can be annotated with qualifier variables that are implicitly quantified over the

118

current prototype. These annotations are useful for library functions that can be used

on either $tainted or $untainted data. For example, the identity function would be

annotated as:

q1 int identity(q1 int arg)

indicating that the return type has the same taint status as the argument. The user can

also state the subtype relationship between quantifier variables. In this declaration,

q2 char * strcpy(q2 char* dest, q1 char * src) where q1 <: q2

q1 is declared as a subtype of q2 to indicate that information flows from src to dest but

not vice versa. There are three valid ways to instantiate this declaration:

dest and src both point to tainted data.
dest and src both point to untainted data.
dest points to tainted data, and src to untainted.

When typechecking the call to a polymorphic function, our implementation does

two things:

• Ensures that there exists an instantiation of qualifier variables to {$tainted,

$untainted} such that the “where” constraints hold and each actual argument to the

function is a subtype of the corresponding formal argument. It is an error if no such

instantiation is possible.

• Constructs a type for the return value of the function, by substituting $tainted/

$untainted for quantifier variables according to the instantiation. If any quantifier

variable in the return type is unconstrained, it is treated as $untainted.

119

6.3 Experiments

We implemented the type policy for tainted/untainted data described in this chap-

ter. Oink [WCM05], which contains an implementation of Cqual, generated the qualifiers

that we used to annotate function boundaries for the sake of intraprocedural analysis. We

ran the tool on bftpd, a 6160-line FTP server. An earlier version of bftpd had a format

string bug detectable by Cqual [STFW01].

Our verifier correctly checks the tainted-ness of strings, but it has difficulty with

casts, as mentioned earlier. Several instructions in bftpd cast from void* to a specific

type, but there is no way for the assembly code analyzer to know which type is being cast

to, and therefore no way of knowing if the base type is tainted. Of the 119 functions in

bftpd, 102 were verified correctly and 17 could not be verified. Four unverifiable functions

take a variable-length argument list, which we do not support, and the others had tricky

casts. As with CCured, adding additional annotations (for casts, this time) would fix these

false positives. However, such annotations would be unsound because Cqual cannot handle

certain bad casts safely.

120

Bibliography

[BR04] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86

executables. In Proceedings of the International Conference on Compiler Con-

struction (CC), April 2004.

[BRMT05] Gogul Balakrishnan, Thomas Reps, Dave Melski, and Tim Teitelbaum. WYS-

INWYX: What You See Is Not What You eXecute. In Proceedings of the

IFIP Working Conference on Verified Software: Theories, Tools, Experiments,

October 2005.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative

environment. Software—Practice and Experience, 18(9):807–820, September

1988.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis

frameworks. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 269–282, 1979.

[CCH+03] Christopher Colby, Karl Crary, Robert Harper, Peter Lee, and Frank Pfenning.

121

Automated techniques for provably safe mobile code. Theor. Comput. Sci.,

290(2):1175–1199, 2003.

[CCNS05] Bor-Yuh Evan Chang, Adam Chlipala, George Necula, and Robert Schneck.

Type-based verification of assembly language for compiler debugging. In The

2nd ACM SIGPLAN Workshop on Types in Language Design and Implemen-

tation, January 2005.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the con-

trol dependence graph. ACM Transactions on Programming Languages and

Systems, 13(4):451–490, 1991.

[CHA+07] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George

Necula. Dependent types for low-level programming. In European Symposium

on Programming, March 2007.

[CHN06] Bor-Yuh Evan Chang, Matthew Harren, and George C. Necula. Analysis of

low-level code using cooperating decompilers. In Thirteenth International Static

Analysis Symposium (SAS’06), LNCS, August 2006.

[CK77] John Cocke and Ken Kennedy. An algorithm for reduction of operator strength.

Communications of the ACM, 20(11):850–856, 1977.

[CL05] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with

alien expressions and heap structures. In Sixth International Conference on

122

Verification, Model Checking, and Abstract Interpretation (VMCAI’05), LNCS,

January 2005.

[CLN+00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and

Kenneth Cline. A certifying compiler for java. In Proceedings of the ACM SIG-

PLAN 2000 conference on Programming language design and implementation,

pages 95–107. ACM Press, 2000.

[CMM05] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In

Proceedings of the 2005 ACM SIGPLAN conference on Programming Language

Design and Implementation (PLDI 05), pages 85–95, New York, NY, USA,

2005. ACM Press.

[Coq06] Coq Development Team. The Coq proof assistant reference manual, version

8.0. http://coq.inria.fr/doc/main.html, 2006.

[CSF98] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to high-

level language translation. In Proceedings of the International Conference on

Software Maintenance (ICSM 98), page 228, Washington, DC, USA, 1998.

IEEE Computer Society.

[CV02] Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory

for certified code. In Proceedings of the seventh ACM SIGPLAN international

conference on Functional programming, pages 191–205. ACM Press, 2002.

[DNS03] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover

http://coq.inria.fr/doc/main.html

123

for program checking. Technical Report HPL-2003-148, HP Laboratories, July

2003.

[ES00] Úlfar Erlingsson and Fred B. Schneider. Sasi enforcement of security policies: a

retrospective. In Proceedings of the 1999 workshop on New security paradigms,

pages 87–95. ACM Press, 2000.

[FFA99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type

qualifiers. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference

on Programming Language Design and Implementation, pages 192–203, New

York, NY, USA, 1999. ACM Press.

[GN04] Sumit Gulwani and George C. Necula. Path-sensitive analysis for linear arith-

metic and uninterpreted functions. In 11th Static Analysis Symposium, volume

3148 of LNCS, pages 328–343. Springer-Verlag, August 2004.

[Gro02] Dan Grossman. Existential types for imperative languages. In Proceedings of

the 11th European Symposium on Programming Languages and Systems, pages

21–35. Springer-Verlag, 2002.

[Gro03] Dan Grossman. Type-safe multithreading in cyclone. In Proceedings of the

2003 ACM SIGPLAN international workshop on Types in languages design

and implementation, pages 13–25. ACM Press, 2003.

[GS01] Andrew D. Gordon and Don Syme. Typing a multi-language intermediate code.

In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles

124

of Programming Languages (POPL), pages 248–260, London, United Kingdom,

January 2001.

[GTN04] Sumit Gulwani, Ashish Tiwari, and George C. Necula. Join algorithms for

the theory of uninterpreted functions. In 24th Conference on Foundations of

Software Technology and Theoretical Computer Science, volume 3328 of LNCS.

Springer-Verlag, December 2004.

[Hic96] Jason Hickey. Formal objects in type theory using very dependent types. In Pro-

ceedings of the 3rd International Workshop on Foundations of Object-Oriented

Languages, 1996.

[HJ91] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and

access errors. In Proceedings of the Usenix Winter 1992 Technical Conference,

pages 125–138, Berkeley, CA, USA, January 1991. Usenix Association.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical

Conference, June 2002.

[JW04] Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type

inference. In Proceedings of the 13th USENIX Security Symposium, August

2004.

[KW02] Daniel Kästner and Stephan Wilhelm. Generic control flow reconstruction from

assembly code. In Proceedings of the joint conference on Languages, compilers

125

and tools for embedded systems (LCTES/SCOPES 02), pages 46–55, New York,

NY, USA, 2002. ACM Press.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The

Java Series. Addison-Wesley, Reading, MA, USA, January 1997.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-

erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86:

A realistic typed assembly language. In Proceedings of the 1999 ACM SIG-

PLAN Workshop on Compiler Support for System Software, pages 25–35, 1999.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed

assembly language. In Proceedings of the Second International Workshop on

Types in Compilation, pages 28–52. Springer-Verlag, 1998.

[Min01] Antoine Miné. The Octagon abstract domain. In Analysis, Slicing and Trans-

formation (part of the Working Conference on Reverse Engineering), pages

310–319. IEEE CS Press, October 2001. http://www.di.ens.fr/~mine/

publi/article-mine-ast01.pdf.

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to

typed assembly language. ACM Transactions on Programming Languages and

Systems, 21(3):527–568, 1999.

http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf

126

[Myc99] Alan Mycroft. Type-based decompilation (or program reconstruction via type

reconstruction). In Proceedings of the 8th European Symposium on Program-

ming Languages and Systems (ESOP 99), pages 208–223, London, UK, 1999.

Springer-Verlag LNCS.

[NCH+05] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-

ley Weimer. CCured: Type-safe retrofitting of legacy software. ACM Transac-

tions on Programming Languages and Systems. To Appear, 2005.

[Nec97] George C. Necula. Proof-carrying code. In The 24th Annual ACM Symposium

on Principles of Programming Languages, pages 106–119. ACM, January 1997.

[Nec00] George C. Necula. Translation validation for an optimizing compiler. In Pro-

ceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, pages 83–94. ACM Press, 2000.

[New00] Tim Newsham. Format string attacks, September 2000.

http://www.thenewsh.com/˜newsham/format-string-attacks.pdf.

[NL98] George C. Necula and Peter Lee. The design and implementation of a certifying

compiler. In ACM SIGPLAN’98 Conference on Programming Language Design

and Implementation, pages 333–344, June 1998.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-

weight dynamic binary instrumentation. In Proceedings of the ACM SIG-

PLAN 2007 conference on Programming Language Design and Implementation

(PLDI), June 2007.

127

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In

Proceedings of the 4th International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 151–166. Springer-Verlag, 1998.

[RKS99] Oliver Rüthing, Jens Knoop, and Bernhard Steffen. Detecting equalities of

variables: Combining efficiency with precision. In Proceedings of the 6th Inter-

national Symposium on Static Analysis, volume 1694 of LNCS, pages 232–247.

Springer-Verlag, 1999.

[SA99] Raymie Stata and Martin Abadi. A type system for java bytecode subrou-

tines. ACM Transactions on Programming Languages and Systems, 21(1):90–

137, 1999.

[Sch04] Robert R. Schneck. Extensible Untrusted Code Verification. PhD thesis, Uni-

versity of California, Berkeley, May 2004.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-

rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, January

2003.

[SPE95] SPEC95. Standard Performance Evaluation Corporation Benchmarks, July

1995.

[SSTP02] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type

system for certified binaries. In Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 217–232.

ACM Press, 2002.

128

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting

Format String Vulnerabilities with Type Qualifiers. In Proceedings of the 10th

Usenix Security Symposium, Washington, D.C., August 2001.

[Wal00] David Walker. A type system for expressive security policies. In Proceedings of

the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 254–267. ACM Press, 2000.

[WCM05] Daniel S. Wilkerson, Karl Chen, and Scott McPeak. Oink: a collaboration of

C++ static analysis tools. http://www.cubewano.org/oink, 2005.

[XH01] Hongwei Xi and Robert Harper. Dependently Typed Assembly Language. In

Proceedings of the Sixth ACM SIGPLAN International Conference on Func-

tional Programming, pages 169–180, Florence, Italy, September 2001.

[Xi00] Hongwei Xi. Imperative programming with dependent types. In Proceedings

of 15th IEEE Symposium on Logic in Computer Science, pages 375–387, Santa

Barbara, June 2000.

http://www.cubewano.org/oink

	List of Figures
	Introduction
	Dependent Types for Assembly Code
	Type Policies
	Flow-insensitive types
	Symbolic evaluation of assembly language
	Typechecking symbolic expressions
	Memory reads

	Memory consistency
	Typechecking basic blocks
	Soundness
	Soundness of state ordering

	Related type systems

	Type Inference
	Widening
	Testing for Fixpoint
	Adding extra facts

	Arithmetic
	Complicated indexing expressions
	Completeness
	Multidimensional array example

	Performance of abstract interpretation
	Worklist optimizations

	Related work

	CCured
	Implementing the analysis
	Parsing assembly code
	Dependently-typed function calls
	Stack-allocated objects
	Subroutines

	The CCured type policy
	Sequence pointers
	Run-time type information
	Bugs found

	Experiments
	CCured features supported

	Deputy
	Bounded pointers
	Implementing Deputy's checks
	Sketch of soundness proof

	Null-terminated arrays
	Type rules for null-terminated arrays
	Type rules for read-only pointers
	Sketch of soundness proof for null-terminated pointers

	Cqual
	The $tainted type qualifier
	Leaf polymorphism
	Experiments

	Bibliography

