
Policies in Routing

Cheng Tien Ee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-66

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-66.html

May 18, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Scott Shenker and Ion Stoica for their patience and
guidance, and also Ruzena Bajcsy who first took me under her wing.

I would also like to acknowledge the assistance of those who worked with
me at some point in time or another. Brent Chun, Sylvia Ratnasamy, Pavlin
Radoslavov, Lakshminarayanan Subramanian, Vijay Ramachandran,
Byung-Gon Chun. I appreciate all the effort put in to help me towards my
goal.

These five years have been made more bearable by a group of friends.
Due to space constraints I am unable to name them all.

Last but not least, I thank my family for their understanding and putting up
with my long periods of absence and lack of updates.

Policies in Routing

by

Cheng Tien Ee

B.Eng. (National University of Singapore) 2002
M.S. (University of California at Berkeley) 2005

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Scott Shenker, Chair

Professor Ion Stoica
Professor Rhonda Righter

Spring 2007

The dissertation of Cheng Tien Ee is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2007

Policies in Routing

Copyright 2007

by

Cheng Tien Ee

1

Abstract

Policies in Routing

by

Cheng Tien Ee

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

The Internet began as a network under the control of a single organization, ARPA.

The initial goals were to provide basic connectivity between end-hosts even in the event of

failures, and applications running over the network, such as email, could utilize any path

through the network as long as the destination could eventually be reached. The existence

of a single administrative entity for the entire network and the lack of a need to distinguish

between possible paths as well as packets in the network meant that a simple routing pro-

tocol is sufficient to provide connectivity. With its subsequent break up and distributed

management, the Internet today needs to distinguish between different kinds of data and

control information. For instance, service providers have to decide on which neighboring

provider to transit their traffic, or to filter certain packets due to certain accessibility con-

straints. The type of policies involved vary depending on whether they are applied on an

inter or intra-domain basis, and hence also the resulting problems that arise.

2

We address two issues in this dissertation. Firstly, the lack of visibility and inde-

pendent implementing of policies in inter-domain routing can result in policy disputes caus-

ing routing to oscillate forever. We propose the Precedence Solution that enforces shortest

path routing only when oscillations resulting from disputes arise. In scenarios where no

such disputes exist, all routers are able to select their most preferred paths. This solution

provides just enough visibility to obtain the location of routers having policy conflicts thus

easing troubleshooting, without revealing additional provider policies. We prove that the

Precedence Solution is able to stabilize the network, then show how it can be implemented

in practice.

Secondly, the high level of access control possible in intra-domain networks has

resulted in the proliferation of semantically rich policies, which are realized in the form

of packet filters and physical topology manipulations. The multitude of knobs to tune in

order to achieve the desired performance increases the configuration complexity of these

networks. We show that using the notion of classes embedded within routing, reachability

information can be automatically propagated and updated by the routing protocol, hence

easing configuration.

Professor Scott Shenker
Dissertation Committee Chair

i

To those searching for the light at the end of the tunnel.

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Contribution I: Precedence Solution . 3
1.2 Contribution II: Access Control Routing . 4
1.3 Discussion . 5
1.4 Organization . 5

2 Policies in Inter-Domain Routing 7
2.1 Brief Overview . 7
2.2 Dispute Wheels . 9
2.3 The Precedence Metric . 13

2.3.1 Dispute Wheel Elimination . 15
2.3.2 Autonomy Loss in Presence of Disputes 18
2.3.3 Accounting for Non-Strict Preferences 21

2.4 From Theory To Practice . 22
2.4.1 Detection & Short-Term Memory . 23
2.4.2 Storage & Long-Term Memory . 24
2.4.3 A Simple Example . 25
2.4.4 A Complex Example . 26
2.4.5 A MED Example . 28
2.4.6 Convergence Proof . 29
2.4.7 Achievement of Goals . 31

2.5 Router Changes . 33
2.5.1 History Table . 34
2.5.2 Cause Table . 34
2.5.3 Adaptive Convergence Window . 37

2.6 Evaluation . 38
2.6.1 Simulator . 38
2.6.2 Metholodgy . 39

iii

2.6.3 Metrics . 40
2.6.4 Results . 40

2.7 Discussion . 42
2.7.1 Constrained Policies . 43
2.7.2 Misbehavior . 43
2.7.3 Adaptive Filtering . 45
2.7.4 Misbehavior Detection . 46

2.8 Background . 48
2.9 Summary . 52

3 Policies in Intra-Domain Routing 53
3.1 Brief Overview . 53
3.2 Networks in Practice . 55

3.2.1 Aggregation of Hosts via VLANs . 56
3.2.2 The Core Model: A Commercial Network 56
3.2.3 The Edge Model: A Campus Network 58
3.2.4 Summary of Differences . 59

3.3 Configuration Using Classes . 59
3.3.1 ACR Configuration Interface . 60
3.3.2 How Does ACR Work? . 61
3.3.3 Why Classes? . 62

3.4 ACR Design . 64
3.4.1 Design Space and Assumptions . 64
3.4.2 The Control Plane . 65
3.4.3 Data Plane . 69
3.4.4 Using ACR in Practice . 70

3.5 Implementation . 72
3.5.1 Configuration setup and Network entities 73
3.5.2 Link-State ACR . 74

3.6 Evaluation . 75
3.6.1 Complexity Analysis . 77
3.6.2 Complexity: Evaluating ACR in Real-world Enterprises 80
3.6.3 Quantitative: Performance Overhead of ACR 84

3.7 Discussion . 86
3.7.1 Location-Independent Class Assignment 86
3.7.2 Class Optimization . 87

3.8 Related Work . 90
3.9 Summary . 92

4 Conclusions and Future Work 93
4.1 Contributions . 93
4.2 Future Work . 94

Bibliography 95

iv

List of Figures

2.1 Example of a dispute wheel: elements of the wheel include the spoke paths,
pivot nodes, and rim nodes. 11

2.2 A simple dispute wheel: node D is the destination. Shaded boxes show route
choices in order of preference. 12

2.3 Simple example of dispute wheel oscillation: The simple local policy enforced
at each node is the import filtering of routes with more than 2 hops. Routing
oscillates between (iii) and (iv). 12

2.4 (a) AS B’s local preference for route (P3A:0) to destination AS A is ranked
third. Selection and propagation of this route to AS C will result in the
increasing of its global precedence by 2. (b) AS B now considers the route
(P1A:0) to AS A to be the most locally preferred. Selection and propagation
of this route to AS C will not alter its global precedence value. 14

2.5 Dispute wheel illustration and notation used in our proof. 15
2.6 Multiple paths advertised by neighboring nodes can cause the global precedence

value of a route to increase by more than 1. 19
2.7 Region A is encompassed by nodes involved in a dispute wheel. Routes adver-

tised in the external region B have global precedence values one higher than
those in A. Similarly, if the nodes around the edges of B are in dispute, the
global values in C will be one higher than those in B. 20

2.8 Dispute wheel formation and elimination: the simple local policy enforced at
each node is the import filtering of routes with more than 2 hops. The history
table entries are ordered according to local preference. Since the network is
symmetrical, only the history and cause tables for node B are shown. In phase
1, detection of disputes takes place, with -.- in (iii) indicating an increase in
advertised route’s precedence due to an expiring, more preferred route (as
opposed to a feasible one). The route number B.1 represents route BD:1.
In phase 2, incoming feasible routes cause outgoing ones to have increased
values, and the cause tables are updated accordingly. 23

v

2.9 RA denotes a route with A being the last hop node. (i) A simple dispute
wheel is first resolved, with nodes A and X being the pivots, B and C the
rim nodes, and Z is the last node along the least preferred route. (ii) Node
X is involved in a second dispute, where pinned routes ensure that the first
dispute remains resolved. 27

2.10 The MED-EVIL example from [18]. 28
2.11 (a) Before and (b) after a history table is updated. 35
2.12 Pseudo-code for updating history table and determination of the selected

route for each destination. 36
2.13 Updating of cause table corresponding to history table update in Figure 2.11.

A change in selected route triggers the generation of a new sequence number,
and only most recent outgoing causes are updated. 36

2.14 Pseudo-code for updating cause table for each destination prefix. 37
2.15 Primary steps in router batch updates. 38
2.16 Simple graphs: 3-pivot network’s convergence time against rim-to-pivot ratio. 40
2.17 An increase in the maximum depth of constrained depth-first routing results

in more inflated routes. For constrained depth (c.d.) of 6, we obtain paths
with inflation close to that in practice [49]. 41

2.18 As path lengths deviate away from shortest, the exploration of more paths
before convergence results in more routes being stored for Precedence+. . . 42

2.19 Inflated paths result in an increase in convergence times. Precedence+ does
not delay convergence, even in the presence of misconfigurations. 43

2.20 Basic scenario used to describe misbehavior: node A receives two routes and
advertises one. Detection of misbehavior can be performed by observing
incoming and outgoing routes. 44

2.21 A misbehaving AS, represented by node M , can have differing effects on the
network. (a) For a dispute wheel with an odd number of nodes, M eventually
lacks a route if it initially filters the spoke one. (b) For a wheel with an even
number of nodes, M does not destabilize the network. 45

2.22 (i) With multiple routers within an AS, indicated by the shaded region,
external input and output routers can appear to indicate misbehavior even
if they are operating according to protocol. (ii) By tagging the route with
both ingress and egress precedence values, an AS’ behavior becomes similar
to that of a single router. 47

3.1 (a) General layout of the ComNet commercial network, where firewalls are
placed in the core of the network, and routing is constrained for traffic to
traverse these firewalls. (b) The UNet university campus network structure,
firewalls are usually placed at the edges, next to the departmental subnets,
and routing is unconstrained. 55

vi

3.2 T-boxes translate packets between classes. (a) Original access configuration:
servers S1 & S2 are in class A, client C1 in class B. (b) (from viewpoint of
C1) By re-advertising reachability of S1 and S2 into class B, the t-box puts
itself on the path for reaching S1 and S2. Packets from C1 to S1 cannot avoid
the t-box, even though alternate physical paths exist, because the only route
in Class B to S1 comes from the t-box. 67

3.3 Packet forwarding at the first-hop router. The packet is first classified based
on source IP, incoming interface port, etc., then the intersection set I of
assigned classes and classes permissible at destination is determined. The
packet is dropped if a null set results, otherwise it is tagged with any one
class in I and forwarded. 68

3.4 High-level view of configuration and automated network-level operations sup-
porting ACR. C is the client machine that intends to communicate with server
S. RC and RS are the first and last-hop routers respectively. 72

3.5 From the bipartite graph in (a), there exists two distinct complete bipartite
subgraphs (b), with common vertices 21 and 22 and common edge (21, 22). . 88

3.6 Pseudo-code for heuristically determining minimum number of classes required. 89

vii

List of Tables

2.1 History of Node b in Figure 2.6 . 19
2.2 MED Oscillation in Figure 2.10 . 29
2.3 MED Oscillation Elimination . 30

3.1 Access Policy Assignment . 60
3.2 Class Membership Assignment . 60
3.3 Complexity Comparison Between Existing Models and ACR 80
3.4 Number of classes of ACR in real-world enterprises 83
3.5 ACR forwarding delay as a function of routing table size 84
3.6 ACR forwarding delay as a function of number of classes per routing prefix 85

viii

Acknowledgments

I would like to thank Scott Shenker and Ion Stoica for their patience and guidance,

and also Ruzena Bajcsy who first took me under her wing.

I would also like to acknowledge the assistance of those who worked with me at

some point in time or another. Brent Chun’s words of wisdom, Sylvia Ratnasamy’s guidance,

Pavlin Radoslavov’s enlightening explanations on the inner workings of Xorp, Jinyang Li’s

knowledge of wireless testbeds, Lakshminarayanan Subramanian’s introduction to BGP and

its problems in all their glory, Vijay Ramachandran’s patience in explaining the difference

between a corollary and proposition, Byung-Gon Chun’s willingness to rush IDS through

the three weeks just before SIGCOMM. The technical support group of people here at

Berkeley and ICSI also deserve many thanks: the EECS security team for catching the silly

things I did, Mike Howard and Jon Kuroda for setting up the wireless testbed. I appreciate

all the effort put in to help me towards my goal.

These five years have been made more bearable by a group of friends. Yuen Hui

Chee, Siew Leng Teng, Ailee Ho, Engling Yeo, Kah Cheong Lai, Mong Hoo Lim, Anne

Chong and Von Bing Yap are the bunch of Singaporean friends with whom I celebrate

many festivals. Other equally notable friends at Berkeley include Linhai He, Wilson So,

Jayanth Kumar, Karthik and Kaushik Lakshminarayanan, Ling Huang, Sukun Kim, Jaein

Jeong, Fred Jiang, Boon Thau Loo, Matthew Kam, Weehong Tan, Li Zhuang, Feng Zhou,

Matthew Caesar, Stanley Bo-Ting Wang, Weilun Chao, Jie-Hong Roland Jiang, Karl Chen,

Dilip Joseph, Gautam Altekar, Rabin Patra, Sergiu Nedevschi, Sanjeev Kohli and many

more.

ix

Last but not least, I thank my family for their understanding and putting up with

my long periods of absence and lack of updates.

1

Chapter 1

Introduction

The Internet began as an amalgamation of smaller networks under the control of

a single organization, ARPA. As a military project, the primary goal of the Internet was to

provide basic connectivity between end-hosts in the event of failures. Applications such as

email could utilize any path through the network as long as the destination can eventually

be reached. Since it was a network that was administered by a single organization and did

not require the need to distinguish between packets and different paths to destination, basic

routing protocols, first distance-vector then link-state, were sufficient to meet the primary

goal of providing connectivity.

The subsequent break up of the Internet and distributed management by com-

mercial internet service providers (ISPs), or autonomous systems (ASes), shifted the focus

from providing basic connectivity to maximizing profits obtained from transiting customers’

or neighboring providers’ traffic. The selected routes to destinations are correspondingly

important for all ISPs; that is, there is henceforth a need to distinguish between differ-

2

ent routes. To provide route selection flexibility necessary for meeting service agreements,

the Border Gateway Protocol (BGP) [40], a path-vector protocol, replaced link-state rout-

ing between autonomous systems. The high degree of policy selection freedom granted by

path-vector routing allowed ASes to individually implement their policies. Unfortunately,

coupled with the lack of visibility into other networks (because of commercial reasons),

policy conflicts can exist between ASes, resulting in permanent route oscillations.

On the other hand, complete visibility and control over the intra-networks pro-

vided ISPs the freedom to deploy complex solutions that improve the performance of their

networks. With the surge of malicious activities such as worm and denial of service (DoS) at-

tacks and in general the lack of control over end-hosts (the customers of the ISPs), network-

level policies on handling of packets have risen in importance. Since the Internet was created

initially with the intelligence pushed to the end-hosts, implementation of the network-level

policies have been more of an afterthought, and distributed amongst various types of com-

ponents such as middle-boxes and even routing protocols. The problem of having varied

and large numbers of independent components to configure is compounded by the difficulty

in mapping high-level policies to low-level details such as IP addresses and port numbers.

This dissertation attempts to answer the following two questions:

1. Using some form of global constraint in a network administered in a decentralized

manner and utilizing path-vector routing, is it possible to minimize loss of autonomy

and impact on route selection without revealing ISPs’ policies and yet ensure network

convergence?

2. Is it possible to couple the functionalities of the various components used for enforce-

3

ment of access control, such that the number of knobs to tune is reduced and thus

also the space of possible configurations?

1.1 Contribution I: Precedence Solution

The first major contribution of this dissertation is a global constraint that ensures

routing convergence without revealing ISPs’ policies. We show that the Precedence Solu-

tion has an impact on route selection only when there exists policy disputes resulting in

oscillations; thus, all ISPs have complete freedom over the routes they choose when no such

oscillations exist. The correctness of the algorithm is a two-step process, and shown first

theoretically based on an assumption that is subsequently eliminated by the implementation

of the algorithm in practice.

Theory: By assuming that each router maintains only knowledge of routes encountered

during oscillations caused by disputes, routers indicate the possible presence of disputes by

incrementing a precedence metric, which is simply a numerical value carried with each route

advertisement. Using the notion of circular routing dependency present in policy disputes,

transmission and reception of such indications confirm the presence of such disputes.

Practice: To obtain knowledge of routes that are seen during oscillations caused by dis-

putes, we begin by testing whether recently available routes are contributing to disputes via

the precedence metric. Such infeasible routes eventually expire if they are not involved in

disputes. This constitutes the dispute detection phase. Next, routes confirmed to contribute

to disputes are stored, and again relying on the circular dependency nature of disputes to

remove stale state.

4

A minor contribution stems from usage of the precedence metric. Requiring only

local information, i.e. observing metrics associated with incoming advertisements, a router

is able to determine if local policies conflict. Using this knowledge, we can propagate trou-

bleshooting information, such as the AS and router identifier number, together with the

advertisements. This provides the right level of visibility across ISPs, easing troubleshoot-

ing.

1.2 Contribution II: Access Control Routing

The second major contribution is a method to implement network-level access

control, while replacing (1) current distributed firewalls, (2) sophisticated routing proto-

cols (e.g. BGP) and (3) methods such as physical topology manipulation for purposes of

channeling traffic through network choke points. Using the notion of class, which can refer

to a particular role (e.g. researchers), type of packet (e.g. HTML), or class of traffic (e.g.

Voice-over-IP), we couple routing together with access control, letting routing propagate

and update access information as well as the paths to be traversed by certain classes of

traffic. This coupling reduces the number of knobs to tune in order to achieve the desired

control, hence the effort required for configuration and therefore also the likelihood of errors.

As a minor contribution, we describe how access policies in a network can be mod-

eled using an Access Graph. Using this graph, we propose an algorithm that heuristically

determines the minimum number of classes required. Such an algorithm is important as

it reduces the amount of state stored in the routers, as well as computation time required

during routing updates.

5

1.3 Discussion

A commonly asked question is, “Does a common framework for routing policies

across and within ISPs exist?” Although we believe that the answer is positive, such a

framework is not likely to have much impact because (1) it is not likely to provide ser-

vice differentiation between ISPs and (2) decoupling inter and intra-domain routing will in

general lessen the impact of one on the other, thus improving overall system stability.

Firstly, although the general notion of traffic classes, be they assigned to control,

data or network links, is applicable to both inter and intra-domain networks, the need for

traffic differentiation across domains is in general absent. The primary reason is an eco-

nomical one: ISPs generate profits from differentiating themselves from their competitors,

not from collaboration with them. Thus, although a common framework is possible, there

is insufficient motivation.

Secondly, one of the main problems with the Internet today is the lack of routing

event isolation in one part of the network from another [48]. This results in churn that

does not scale with network size. To minimize churn, one might simplify the interface and

hence amount of control information sent across inter-domains. The general approach to

access control in intra-domains supports rich policies, requiring the dissemination of non-

trivial control information. Application of this approach (e.g. propagation of classes across

domains) to the inter-domain can possibly lead to greater coupling between ISPs, causing

the Internet to experience more churn.

6

1.4 Organization

The organization of this dissertation is as follows: Chapter 2 describes our Prece-

dence Solution, including the theoretical proofs as well as details in practice. We describe

the changes necessary in today’s routers, and evaluate the solution using AS-level graphs

generated from RouteViews [44]. Since ISPs’ misbehavior involving manipulation of the

precedence metric can cause routing to oscillate again, we end the chapter with a discussion

on the detection of misbehavior.

Chapter 3 begins with general models of access control implemented in networks

today. We next describe the general notion of classes and their motivation, followed by

the design of Access Control Routing (ACR). The implementation of ACR on Click [32] is

detailed, and we evaluate its performance, complexity and quantitative-wise. We end the

chapter with a discussion on dealing with mobile nodes, as well as an algorithm to minimize

the number of classes required in a network.

Finally, Chapter 4 concludes the dissertation, and ends with directions for future

work.

7

Chapter 2

Policies in Inter-Domain Routing

2.1 Brief Overview

The Border Gateway Protocol (BGP) [40] establishes connectivity between the

independent networks, called autonomous systems (ASes), that together form the Internet.

BGP computes routes by a series of local decisions based on each ASes’ individual routing

policies. These policies are semantically rich in order to accommodate the complex rules

that govern route choices in today’s commercial Internet, such as business relationships and

traffic engineering. However, this expressiveness in routing-policy configuration, coupled

with ASes’ freedom in implementing their policies autonomously, can cause instability in

interdomain routing manifesting in the form of persistent route oscillations [50].

The problem of understanding and preventing policy-induced routing anomalies

has been the subject of much recent study. While some work characterized these anomalies

using global models [19, 20, 46], other research proved that global and local constraints on

policies could guarantee routing stability. The good and bad news from this literature can

8

be summarized as follows:

Good news: If the AS graph has an underlying business hierarchy and local policies obey

sensible constraints arising from this hierarchy, then routing converges [16,23].

Bad news: If ASes have complete freedom to filter routes (that is, exclude routes from

consideration) then the only policies that are a priori guaranteed to converge are

generalizations of shortest-path routing [13].

Thus, there are two choices: we can hope that natural business arrangements

provide a stabilizing hierarchy, or we can remove all policy autonomy (but not filtering

autonomy) by imposing some generalized form of shortest-path routing.

This paper advocates a “third way”. Rather than rely on the vagaries of the

marketplace to define a suitable hierarchy, or eliminate policy autonomy because of its po-

tential to induce route oscillations, we propose a simple extension to BGP that constrains

policy choices only after an oscillation is detected. Oscillations can be characterized by the

presence of dispute wheels in the network [20], and our method provably finds and breaks

dispute wheels, including those involving non-strict preferences. We tag each route adver-

tisement with a precedence value, where a lower value corresponds to higher precedence.

This goes at the top of the BGP decision process: available routes are chosen first based on

their advertised precedence, with ties broken using the usual BGP decision process. The

precedence attribute changes only in the presence of a persistent oscillation; if there is no

oscillation, we effectively use only the normal BGP decision process. Since configuration

is not constrained unless absolutely necessary, ASes’ freedom to decide on local policies is

preserved.

9

2.2 Dispute Wheels

We begin by describing the notation used in this paper. The network is represented

as the AS graph G = (V,E), where each node v ∈ V corresponds to one AS, and each edge

{u, v} ∈ E corresponds to a BGP session between ASes u and v, meaning that these ASes

are physically connected and share route advertisements. We assume that links between

ASes are reliable FIFO message queues with arbitrary delays; this accounts for network

asynchrony. At most one link is assumed to exist between ASes, and all the internal and

border routers of an AS are condensed into one node (or one point of routing-policy control).

A path P is a sequence of nodes v1v2 · · · vk such that {vi, vi+1} ∈ E; we write

v ∈ P if path P traverses node v. Paths can be concatenated with other nodes or paths;

e.g., if P = u · · · v, Q = v · · ·w, and {w, d} ∈ E, we may write PQd to represent the path

starting at node u, following P to node v, then following Q to node w, and finally traversing

the edge (w, d). We assume that paths are directed from source to destination.

BGP, at a schematic level, computes routes using the following iterative process:

(1) Nodes receive route advertisements from their neighbors, indicating which destinations

are reachable and by what routes; (2) for each destination, a node chooses the best route

from those available, based on local policy; (3) if the current route to a given destination has

changed, an advertisement is sent to neighboring nodes. The content of advertisements, or

update messages, is also governed by routing policy; nodes are not required to share or con-

sider all available routes, i.e. routes may be filtered. The process begins when a destination

advertises itself to its neighboring ASes; routes to that destination then propagate through

the network as transit nodes choose routes and send updates. Because route choices are

10

computed independently for each destination, we will focus our attention on, without loss

of generality, on a single destination node d ∈ V .

We say the network has converged when each AS v ∈ V is assigned a path π(v)

to the destination, such that the assignment is stable, consistent and safe. By consistent,

we mean that the paths form a forwarding tree to the destination; if π(v) = vuP , then

π(u) = uP . By stable, we mean that π(v) is the “best” available route for each node v,

given the other nodes’ path assignments, where “best” is determined by node v’s routing

policy; that is, if π(v) = vπ(u), there is no other node w such that the path vπ(w) is more

preferred at v than π(v).

Safety is slightly more subtle. By unsafe, we meant that there is some sequence of

route updates that does not converge, in which every node gets a chance to update infinitely

often. Because there are only a finite set of route choices, such a sequence must be a route

oscillation. The sequence may or may not be dependent on particular delays in receiving

route updates. A configuration is safe if any sequence of route updates, in which no node

is shut out, converges.

Griffin, Shepherd, and Wilfong [20] showed that any such oscillation can be charac-

terized by a dispute wheel in the network, shown in Figure 2.1. The dispute wheel captures

the interaction amongst the routing policies of a set of nodes that are involved in a route

oscillation. Formally, we have the following.

Definition 2.2.1 A dispute wheel is a set of nodes p0, p1, . . . , pk−1 (assume all subscripts

are modulo k) called pivots, such that

1. at each pivot pi, there exists a spoke path Qi from pi to the destination;

11

spoke paths

destination
rim nodes

pivot nodes

direction of route preference

Figure 2.1: Example of a dispute wheel: elements of the wheel include the spoke paths, pivot
nodes, and rim nodes.

2. at each pivot pi, there exists a rim path Ri+1 to the next pivot pi+1;

3. each pivot prefers the path piRi+1pi+1Qi+1d over the path piQid.

Note that the rim and spoke paths are not necessarily disjoint. We refer to non-pivot nodes

along the rim paths Ri as rim nodes.

Since dispute wheels lie at the heart of BGP policy instabilities, we now walk

through an example of BGP dynamics in the presence of a dispute wheel. Consider the

four-node network shown in Figure 2.2. In the figure, paths considered by a node are listed

in the shaded box next to that node in decreasing order of preference. The oscillation is

shown in Figure 2.3. (i) Assume that the destination node D sends an initial advertisement

to nodes A, B, and C. (ii) Nodes A, B, and C then choose the direct paths to D and advertise

their choices to nodes C, A, and B, respectively.(iii) Upon receiving this advertisement, each

node prefers the route through its neighbor, rather than the direct path to D, and chooses

12

[BD]
[D]

[AD]
[D]

[CD]
[D] B C

D

A

Figure 2.2: A simple dispute wheel: node D is the destination. Shaded boxes show route
choices in order of preference.

(i) (ii)

(iii)(iv)

B C

A

D

A

B C

A

D

A

B C

A

D

A

B C

A

D

A

[D]

[D][D]

[AD]

[CD]

[BD][D]

[D][D]

[D]

[D][D]

[D]

[D][D]

[AD]

[CD]

[BD] [BCD] [ABD]

[CAD]

Figure 2.3: Simple example of dispute wheel oscillation: The simple local policy enforced
at each node is the import filtering of routes with more than 2 hops. Routing oscillates
between (iii) and (iv).

13

it. Doing so requires advertisement of these new paths; with the longer paths selected,

the direct paths to D are no longer advertised. (iv) When node A learns that node B

has selected BCD, its preferred choice of ABD is no longer available; so node A reverts to

choosing the direct path to D. By symmetry, this occurs at nodes B and C as well. This

state is identical to (ii); therefore, the sequence of route updates repeats, and nodes A, B,

and C oscillate forever between their two route choices.

Any policy-induced oscillation can be characterized by a dispute wheel; thus, the

absence of dispute wheels is sufficient to guarantee that BGP is always safe. However,

the presence of a dispute wheel does not necessarily guarantee an oscillation; even if there

are some initial conditions that will lead to an oscillation, BGP could non-deterministically

converge.1 Rather than exclude all potentially troublesome policy relationships a priori, the

method we describe in the next section triggers a mechanism to resolve the corresponding

dispute wheel whenever an oscillation is detected.

2.3 The Precedence Metric

We begin by augmenting BGP’s decision process, prepending it with an additional

step that utilizes a new metric which we call the precedence metric. We describe this metric

below, and show that it eliminates route oscillations due to dispute wheels.

Each route advertisement is tagged with a global2 precedence value that is non-

negative: a numerically greater value translates to a lower precedence. We denote the global

precedence value, say v, associated with path P by (P :v). Each AS maintains a history of
1For instance, a four node dispute wheel can converge into one of two stable configurations.
2Again, the term global only means that this precedence value has meaning across more than one AS,

not that all ASes share this precedence value.

14

P3A, t = 0, j = 2

C

P1A, t = 1, j = 0
P2A, t = 1, j = 1
P3A, t = 0, j = 2

(P1A:1)

(P2A:1)

(BP3A:2)

(P3A:0)

(P1A:0)

(P2A:1)

(BP1A:0)

(P3A:0)

(b)(a)

C

P1A, t = 0, j = 0
P2A, t = 1, j = 1

A BA B

Figure 2.4: (a) AS B’s local preference for route (P3A:0) to destination AS A is ranked
third. Selection and propagation of this route to AS C will result in the increasing of its
global precedence by 2. (b) AS B now considers the route (P1A:0) to AS A to be the most
locally preferred. Selection and propagation of this route to AS C will not alter its global
precedence value.

observed route advertisements from its immediate neighbors. In this history, we associate

every route with a local precedence value starting from 0. This local precedence value is

obtained from the route’s rank, and is determined via the usual BGP decision process. Thus

the route ranked ith has a local precedence of i-1 and is preferred over all routes with local

precedence greater than that. Strict ranking is performed, such that no two routes of equal

local precedence exist.

Suppose the selected route has an incoming global precedence of t, and a local

precedence value of j. Then, the outgoing route advertisement is tagged with t+j. Thus,

a route that is most preferred for all ASes along its path is tagged with 0 at all hops.

Figure 2.4 gives an example of this update process. Without loss of generality, we assume

for the rest of this paper that the destination AS advertises routes with global precedence

value of 0. We next show that this precedence metric prevents the formation of dispute

wheels.

15

(Q1 : β1)

d

p1

(R1 : α1)

pk−1

(Q0 : β0)

(Qi : βi)

pi

p0

(Ri : αi)

(Rk−1 : αk−1) (R0 : α0)

(Qk−1 : βk−1)

Figure 2.5: Dispute wheel illustration and notation used in our proof.

2.3.1 Dispute Wheel Elimination

Proposition 2.3.1 If routes encountered during previous policy-induced oscillations are

stored and the precedence metric is used, then no further policy-induced oscillations can

occur.

Proof: It is proven in [20] that the absence of dispute wheels is sufficient for safety, and

hence it suffices to show that the precedence mechanism precludes dispute wheels. Using

proof by contradiction, we begin by assuming that a dispute wheel exists.

Figure 2.5 is used to illustrate our proof, in which we consider a single destination

d. Nodes p0, p1, . . . , pk−1 are the subset of nodes that are in the dispute wheel and have

stable paths to the destination, that is, these are the pivot nodes. (Qi:βi) is the tuple

consisting of Qi, the spoke path from source pi to destination d, and βi, the precedence

16

value associated with path Qi. The tuple (Ri:αi) on the other hand consists of the rim path

Ri, which leads from pi+1 to pi, and αi, the change in precedence along Ri, including node

pi+1. In other words, if γ is the precedence value for path Ripi+1Qi+1d, then γ=βi+1+αi.

Suppose p0, p1, . . . , pk−1 each receive route advertisements from their immediate

next hops along Q0, Q1, . . . , Qk−1 with global precedence values β0, β1, . . . , βk−1, respec-

tively. Node pi then selects the route Qi, updates the value, and advertises that.

We next assume that the dispute occurs: node pi prefers path (Ripi+1Qi+1d:βi+1+αi),

over route (Qid:βi). In Figure 2.5, this corresponds to each node picking its immediate

neighbor, in the clockwise direction, as the next hop. In this proof, we assume that the

route advertisements received and stored as part of the history include those encountered

during oscillations.3 Note that we do not need all routes encountered during one oscillation

period to be stored, merely one that has higher local precedence than the stable spoke route.

Then, the dispute wheel implies

β1 + α0 ≤ β0

β2 + α1 ≤ β1

...

β0 + αk−1 ≤ βk−1

Summing, we obtain
3Other routes will at most merely increase the precedence value, and not affect the correctness of the

proof.

17

k−1∑
i=0

βi +
k−1∑
i=0

αi ≤
k−1∑
i=0

βi

or
k−1∑
i=0

αi ≤ 0

Since, by definition, α0, α1, . . . , αk−1 are non-negative, we have

αi = 0 ∀ i

which implies that all nodes p0, p1, . . . , pk−1 locally prefer routes through Q0, Q1, . . . , Qk−1

respectively. This means that if the dispute wheel exists and each Ripi+1Qi+1 is chosen

over Qi, it must be because of the global precedence values.

Thus, for the system to oscillate, we will require

βi + αi−1 < βi−1 ∀ i

or βk−1 < βk−2 < · · · < β0 < βk−1

which is not possible. Therefore, by contradiction, no oscillations due to dispute wheels can

exist.

Proposition 2.3.2 If there are non-zero precedence values advertised once the protocol

converges, this must mean that dispute wheels exist.

Proof: Assume that the destination node advertises routes with precedence value 0,

and that the network has converged. Thus, a non-zero value advertised somewhere means

that there exists some node v with an incoming set S of routes of precedence value 0, |S| > 0,

and an advertised route vP , P∈S, with positive precedence value. If this happens, then

18

P must not be the most locally preferred route; suppose that route is Q. The precedence

value of Q must be positive, otherwise v would have chosen it. This means there must be

some node w along Q that increases its precedence value; w is similar to v, in that it must

have some other path Q′ with positive global precedence, causing it to choose Q. Thus,

we can repeat this process at w and subsequent similar nodes. As the destination node is

never encountered, because it always advertises routes with precedence value 0, we must

ultimately encounter a node already traversed. The resulting cycle of nodes naturally form

a dispute wheel that has been resolved using the precedence mechanism.

Corollary 2.3.3 From Propositions 2.3.1 and 2.3.2, global precedence values greater than

that advertised by the destination exist when routing converges if and only if dispute wheels

that can cause oscillations exist.

Corollary 2.3.4 A route traversing resolved disputes cannot advertise the same global

precedence at all hops.

Proof: Assume that such a route exists. Since the precedence value advertised by all

hops are the same, this implies that the route selected by each node is its most preferred.

This in turn implies that the destination node must be part of the dispute wheel, which is

a contradiction.

2.3.2 Autonomy Loss in Presence of Disputes

Corollary 2.3.3 showed that only the presence of dispute wheels can cause positive

global precedence values to exist after routing converges. The increased value advertised

19

(Ra0 : αa0)

(Qa : βa) (Qb : βb)

(Ram : αam)

d

a b

Figure 2.6: Multiple paths advertised by neighboring nodes can cause the global precedence
value of a route to increase by more than 1.

Table 2.1: History of Node b in Figure 2.6

Route Global Precedence Local Precedence
Ra0aQad αa0 + βa 0
Ra1aQad αa1 + βa 1

· · · · · · · · ·
RamaQad αam + βa m

Qbd βb m + 1

by the pivot nodes depends on the number of paths advertised in parallel by immediate

neighboring pivot nodes.

We use Figure 2.6 to explain this. Here, node b has a spoke path Qb to destination

d. Assuming that b locally prefers routes advertised by neighboring pivot node a along

Ra0 , Ra1 , . . . , Ram compared to Qb, we have the history state shown in Table 2.1. Clearly,

if the spoke path is selected, it will be advertised as (bQbd:βb+m+1).

A non-uniform increase4 in global precedence values around the dispute wheel

causes the rest of the network, i.e. nodes not in dispute and not along spoke paths, to

lose autonomy. To correct this, instead of increasing the selected route’s value by its local

precedence, we bound the increase by 1. We call this the precedence+ metric.

Proposition 2.3.5 Usage of the precedence+ metric eliminates oscillations caused by dis-
4in the sense that some pivots increase outgoing routes’ global precedence by x, and others by y, where

x 6= y.

20

A
B

C

Figure 2.7: Region A is encompassed by nodes involved in a dispute wheel. Routes advertised
in the external region B have global precedence values one higher than those in A. Similarly,
if the nodes around the edges of B are in dispute, the global values in C will be one higher
than those in B.

pute wheels.

Proof: The following constraint is added to the proof of Proposition 2.3.1:

αi ≤ ri ∀ i

where ri is the total number of nodes along Ri, including pi+1 and excluding pi. The rest

of the proof follows.

Proposition 2.3.6 Usage of the precedence+ metric results in an increment in global prece-

dence value at steady state only in the presence of dispute wheels that result in route oscil-

lations.

Proof: Same as that for Proposition 2.3.2.

Corollary 2.3.7 From Propositions 2.3.5 and 2.3.6, the global precedence value increases

by one if and only if a dispute wheel exists and causes routes to oscillate.

Precedence values can take on multiple non-negative values as opposed to just

binary 0 or 1 values. With reference to Figure 2.7, the presence of a dispute wheel causes

routes beyond the nodes in and within the wheel, that is, nodes in region B and not A, to

21

be advertised with the same incremented value. Nodes in region B can still be in dispute,

in which case the global precedence will be incremented again.

Corollary 2.3.8 Only nodes that prefer routes through nodes in dispute may lose auton-

omy.

Proof: Trivial.

For the rest of this paper, we focus solely on the precedence+ metric.

2.3.3 Accounting for Non-Strict Preferences

The precedence+ metric is proven to eliminate dispute-based oscillations for strict

preferences; that is, routes can be ranked independent of others. In general, preferences are

non-strict, and are encountered for instance in BGP’s Multi-Exit Discriminators (MEDs)

[30]. In this subsection we propose a minor extension to account for this.

The primary effect of having non-strict preferences is that an incoming route Ri

causes route Rcs to be selected, where Ri 6=Rcs and Rcs is not the previous route selected

(Rps). This is an Independent Route Ranking (IRR) violation [24]. In terms of strict

preferences, it appears as though the existence of Ri results in the disappearance of Rps

from the most locally preferred rank. Thus, to capture this as part of the history of routes

encountered, we associate a logical route R′
ps with Ri, and comparison of R′

ps with any other

route should ignore the presence of Ri. This slight tweak is necessary for computing the

local preference of the selected route. Since the goal is to determine if the global precedence

should be incremented, we will be comparing R′
ps with Rcs, ignoring Ri. Since Ri 6=Rcs,

we will not encounter the scenario when the two will be compared. In the case where Rcs

22

becomes unavailable in the future and is replaced by Ri, we evict R′
ps.

2.4 From Theory To Practice

In §2.3, we showed that usage of the precedence+ metric, coupled with the knowl-

edge of routes encountered during oscillations, can cause the network to converge. The

primary difficulty in implementing the solution is knowing precisely the relevant set of

routes encountered during oscillations and not others. In this section we describe how this

is achieved in practice. We begin by defining our goals:

One: We distinguish between transient and permanent oscillations, where the former dis-

appear with the convergence of the network. The association of routes with disputes should

be removed if the latter is found to be transient. Further, changes in network topology

affecting resolved disputes should cause the removal of stored state associated with those

disputes.

Two: The solution should not reveal any ISP policies.

Three: Only local information associated with incoming advertised routes is necessary; no

global knowledge is required.

Four: Knowledge of potential pivot nodes should be provided as feedback by the protocol.

The presence of resolved disputes causes precedence values to increase, thereby possibly

restricting the choices of routes. In general we believe it is preferable to react by altering

the local preferences at a subset of the pivot nodes so that disputes do not arise in the

first place and route choices become unconstrained. Since access to the global view is not

assumed and is probably unattainable, we seek an alternative means of identifying the

23

potential pivots.

AS path

History table

Detection

Cause table

History table

History table

Pinned route

History table

Expiring route

(i)

Global precedence

(ii)

Active route

(iii)

Advertised route

(iv)

History table entries:
Route number list

Key

Storage

Cause table

D

B C

A

D

A

B C

AA

B C

A

D

A

B C

A

D

A

[CD:1:{C.1}]

CD:0:{}

[D:0:{}]

[AD:0:{}][BD:0:{}]

[D:0:{}][D:0:{}]
D:0:{}

[CD:1:{C.1}]

[BD:1:{B.1}] [AD:0:{A.1}]
[D:0:{}]

[D:0:{}] [D:0:{}]

[BD:1:{B.1}]

[AD:0:{A.1}]
[D:0:{}]

[D:0:{}]

[BD:1:{B.1}][BCD:0:{}]

[D:0:{}][D:0:{}] CD:0:{}

D:0:{}

CD:1:{C.1}

[D:0:{}] [ABD:0:{}]

[CAD:0:{}]

CD:0:{}

D:0:{}[CD:0:{}] {-.-}→{B.1} {C.1}→{B.1}

[D:0:{}]

D:0:{}

Figure 2.8: Dispute wheel formation and elimination: the simple local policy enforced at
each node is the import filtering of routes with more than 2 hops. The history table entries
are ordered according to local preference. Since the network is symmetrical, only the history
and cause tables for node B are shown. In phase 1, detection of disputes takes place, with
-.- in (iii) indicating an increase in advertised route’s precedence due to an expiring, more
preferred route (as opposed to a feasible one). The route number B.1 represents route BD:1.
In phase 2, incoming feasible routes cause outgoing ones to have increased values, and the
cause tables are updated accordingly.

Our complete Precedence Solution consists of two main phases: detection and

storage. We detect routes involved in oscillations, then store and maintain their associated

information so that previously encountered disputes remain resolved and corresponding

oscillations do not reoccur. As discussed later in §3.7, if AS policies are based solely on

next hop neighbors, then only the first phase, detection, is required, and the overall solution

is simplified.

2.4.1 Detection & Short-Term Memory

In the detection phase, short-term memory of more preferred routes that are in-

feasible, result in less preferred but more stable routes being advertised with larger global

precedence values. During this period of time, such routes are said to be expiring. This

24

mechanism determines if a possible dispute exists and operates locally, without requiring

information beyond the routes received. Short term memories need only exist until it can

be confirmed whether disputes resulting in permanent oscillations exist. This ensures that

transient oscillations do not cause unnecessary suppression of routes. In general this amount

of time is determined by the number of rim nodes between neighboring pivots, since rim

nodes can be thought of as delaying route advertisements. As the number of rim nodes is

difficult to obtain in practice, we can upper-bound it by using routes’ path lengths. We

store short term memory in a history table.

2.4.2 Storage & Long-Term Memory

Subsequently in the storage phase, incoming routes with larger global precedence

values result in more stable ones being advertised. In this phase, short-term memories of

the last unavailable routes are no longer required, but, as we shall show shortly, long-term

memories are needed instead. Thus, the main difference between the two phases is the

global precedence value of incoming routes: the first phase has incoming routes of the same

value, whereas the latter has less preferred routes having smaller values. The two different

types of memories together make up the required history mentioned earlier in §2.3.

An incoming, more preferred route causing a less preferred one to be advertised

with increased global precedence is stored in long term memory by being pinned. At the

time of pinning, these incoming routes must either be feasible, i.e. currently being advertised

by the neighbors, or their ignore list (containing the route demoting the current one’s local

rank in the presence of IRR violations) must be non-empty. Pinned routes are never evicted

automatically from long term memory, and may only be considered when selecting routes

25

if they are currently being advertised by neighbors. Also, pinned routes are unpinned only

when the causes of their increased value have been eliminated, or a more preferred route

is received and selected, or, in the case of IRR violations, a more preferred route (in the

absence of the ignored route) is received. Thus, this implies that only routes associated

with some number of causes can be pinned.

A cause of an increase in the selected route’s value refers to a more preferred route

that is currently advertised by a neighbor. It can be thought of as a pointer to a route,

thus using it in place of the referred route reduces storage and communication overhead.

We use a unique route number to represent a particular cause, obtaining a globally distinct

number by concatenating the router’s IP (say A) with a locally generated sequence number

(say 24) giving us A.24. Rather than propagate route numbers all around the wheel, we

instead maintain cause mappings in the cause table: when a new route is advertised with

increased global precedence, we assign it a new route number, and associate with that

the corresponding causes. Thus, an outgoing route number is no longer valid once all its

incoming causes are removed. Long term memory consists of pinned routes and the cause

mappings, which is stored in the cause table.

2.4.3 A Simple Example

We next use a simple example (Figure 2.8) to illustrate the resolution process.

We denote a route using the 3-tuple P:V:L, where P refers to the AS path, V the global

precedence value and L the list of route numbers. We assume strict preferences in this

example and disregard the ignore list for now. We also assume that routes longer than two

hops are filtered. Since the network and policies are symmetrical, we focus on a single node

26

B. We begin with dispute detection; in (iii), the expiring of route CD:0:{} causes the less

preferred route from D to be advertised with precedence value 1. Since route CD:0:{} is

expiring and there is an absence of more preferred, feasible routes, we denote the cause by

{-.-}, which we call the null route number. Note that the expiring route CD:0:{} is not

pinned since its route number list is empty. In (iv), incoming route CD:1:{C.1} causes route

BD to be advertised with precedence 1, and the cause table is updated accordingly. In this

case, CD:1:{C.1} is pinned.

The astute reader will notice that in this example, long term memory, in the form

of the cause table and pinned routes, is unnecessary to ensure convergence, since incoming

routes with value 1 are always feasible. As described later in §3.7, if AS policies are based

solely on next hops, the solution as described in this simple example would be sufficient.

We motivate the necessity of long term memory in the next example.

2.4.4 A Complex Example

Figure 2.9 shows a scenario where multiple dispute wheels intersect at node X,

where RA denotes a route to destination with A as the last hop node. Again we assume

strict preferences in this example. In (i), we assume that the first dispute, involving nodes A,

B, X and C, has been resolved, with X selecting the less preferred route via Z. Subsequently

in (ii), we have the converged network after the second dispute, involving nodes Y, X and

Z, has been resolved. We note that:

1. Pinned routes ensure that previously encountered disputes that should still be resolved

remain so. At pivot A, the absence of pinned route BXRZ :1:{X.1} will result in the

27

Key
Pinned route Active route

{E.1} → {X.1}{X.1} → {A.1}

(ii)

{E.1, V.1} → {X.2}

{E.1} → {X.1}

(i)

{X.1} → {A.1}

RD:0:{}
BXRZ :1:{X.1} RE :1:{E.1}

RW :0:{}
ZRV :1:{V.1}RD:0:{}

ZRV :0:{}
A

B

X

Z

CB

X

Z

C

Y
W

A

RE :1:{E.1}[RD:0:{}]

[RE :1:{E.1}]

[RV :0:{}]

[CRE :1:{E.1}]

[RD:0:{}]

[XRW :1:{X.1, X.2}]

[XRW :1:{X.1, X.2}]

[RW :0:{}]

[ZRV :1:{V.1}]

[XRZ :1:{X.1}]

[RV :1:{V.1}]

[ARD:1:{A.1}]
BXRZ :1:{X.1}

[BXRW :1:{X.1, X.2}]

[ZRV :0:{}]

[CRE :1:{E.1}]

[ARD:1:{A.1}]

[BXRW :1:{X.1, X.2}][BXRZ :1:{X.1}]
[RE :1:{E.1}]

Figure 2.9: RA denotes a route with A being the last hop node. (i) A simple dispute wheel
is first resolved, with nodes A and X being the pivots, B and C the rim nodes, and Z is the
last node along the least preferred route. (ii) Node X is involved in a second dispute, where
pinned routes ensure that the first dispute remains resolved.

selected route RD:0:{} being advertised with global precedence value of 0, which

eventually un-resolves the first dispute.

2. Route numbers associated with selected routes are propagated unchanged. For in-

stance, rim node B advertises numbers X.1 and X.2, ensuring that the next pivot (A)

keeps route BXRZ :1:{X.1} pinned.

3. The new route advertised by X is associated with a different route number X.2. In

this case, since the routes of E.1 and V.1 are more preferred than RW :0:{}, they are

deemed to be causes of the latter route’s increase in global precedence. Note that

the cause table entries for previous route numbers, for instance X.1, are no longer

updated.

4. At A, since received route BXRW :1:{X.1,X.2} is the least preferred, X.2 does not

become a cause of A.1.

28

1
AS 1

4

2

(0)

(1)
1

A

E

C

D

3

0

2

B

Figure 2.10: The MED-EVIL example from [18].

5. Changes in network topology is taken into account. For instance, breakage of link XC

will, at X, eliminate E.1, which in turn removes the corresponding entry in X’s cause

table and thus X.1, and thereafter unpin (and remove expired) route BXRZ :1:{X.1}

at A, and so forth. This corresponds to the elimination of the first dispute wheel.

2.4.5 A MED Example

A significant problem in BGP today is the occurrence of oscillations due to MED

[30]. MED selection rules are different from local preferences, AS path lengths etc. be-

cause they result in non-strict preferences. Figure 2.10 shows an example from [18]. Here,

link weights in brackets denote MED values assigned to links from external ASes, whereas

weights within AS 1 indicate the link’s iBGP cost. Table 2.2 shows the sequence of routes

advertised during an oscillation period.

We observe from Table 2.2 that the primary issue is the change in the most pre-

ferred route, from D30 to C20, with the reception of BE30. That is, the cause of D30

being demoted in rank is brought about by BE30. In order for the dispute detection to be

effective, we create a logically different, expiring route D30′ that is still the most preferred

(in the absence of BE30). BE30 is associated with D30′, the former is ignored when com-

29

Table 2.2: MED Oscillation in Figure 2.10

A B
Step Available Advertised Available Advertised

1 D30, C20 AD30 E30 BE30
2 BE30, D30, C20 AC20 E30, D30 BE30
3 BE30, D30, C20 AC20 E30, AC20 BAC20
4 D30, C20 AD30 E30, AC20 BAC20
5 D30, C20 AD30 E30, D30 BE30

Repeat from step 2.

paring the latter with other routes (for instance when determining whether other routes are

more preferred). Subsequently, the selected route AC20 will be advertised with increased

precedence. Pinning of the logical route D30′ at A (via incoming route BE30) and route

AC20 at B takes place (long term memory), and the dispute is resolved. For the logical

route D30′ to be unpinned, there must be an incoming route that is more preferred than it

in the absence of BE30. As before, we note that no additional policies are revealed.

Denoting a stored route by the 4-tuple P :V :L:I, where I refers to the list of incom-

ing routes to be ignored, or the ignore list, when computing this route’s local precedence,

the sequence of route updates is shown in Table 2.3. Note that the ignore list is not sent to

neighboring nodes.

2.4.6 Convergence Proof

We now show that the correct routes are pinned so that disputes are resolved and

remain so. The proof focuses on individual pivot nodes.

Proposition 2.4.1 With long term memory, the network eventually converges.

30

Table 2.3: MED Oscillation Elimination

Step A B

1

Available Available
D30:0:{}:{}

E30:0:{}:{}
C20:0:{}:{}
Advertised Advertised
AD30:0:{} BE30:0:{}

2

Available Available
D30’:0:{}:{BE30}

BE30:0:{}:{} AD30:0:{}:{}
C20:0:{}:{} E30:0:{}:{}
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:0:{}

3

Available Available
D30’:0:{}:{BE30} AD30:0:{}:{}

BE30:0:{}:{} E30:0:{}:{}
C20:0:{}:{} AC20:1:{A.1}:{} - pinned
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:1:{B.1}

4

Available Available
D30’:0:{}:{BE30} - pinned

BE30:1:{B.1}:{} E30:0:{}:{}
C20:0:{}:{} AC20:1:{A.1}:{} - pinned
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:1:{B.1}

31

Proof: Let the new available route be Rn, the previous selected route be Rw, and the

set of non-empty routes (including pinned routes) more preferred than Rw be Rp.

Suppose Rn is not selected. This implies that Rn’s global precedence is at least as

low as Rw’s. If Rn is less preferred than Rw, then there is no further effect. Otherwise Rn

becomes one of the causes of the increase in global of Rw. In either case, no oscillations are

introduced as the advertised route’s AS path and global precedence remains unchanged.

On the other hand suppose Rn is selected and advertised. Case 1: If Rn is

more preferred than Rw, then its precedence is at most as high as Rw’s, and we

unpin (and remove expired) pinned routes less preferred than Rn, as well as remove their

corresponding outgoing route numbers. Previous dispute-induced oscillations associated

with the unpinned routes cannot reappear due to the presence of Rn, that is, we will not

again encounter exactly the same routes advertised during previous oscillations. Since more

preferred, pinned routes are not unpinned, and the maximum number of these routes is

bounded, this scenario cannot occur indefinitely.

Case 2: If Rn is less preferred than Rw, then its precedence value must be

strictly lower than Rw’s. Since all pinned routes less preferred than Rw must have been

unpinned before, none less preferred than Rn will exist. In other words, disputes previously

resolved remain so.

2.4.7 Achievement of Goals

Based on the Precedence Solution proposed earlier, we next describe how our goals

are met.

32

Handling transient and permanent oscillations: An oscillation that is eliminated is

said to be permanent if the route numbers associated with outgoing, increased precedence

value routes at each pivot are always advertised. In the case of transient oscillations, the

expiration of more preferred routes eliminates the corresponding outgoing route numbers,

thereby unpinning upstream routes. Alternatively, more preferred routes can be encountered

later, in which case those less preferred and pinned will be unpinned and also removed if

expired.

If instead network topology changes, such as link breakage, occur, incoming route

numbers via that link is removed, the cause table is updated accordingly and its effect is

subsequently propagated around the wheel. Similarly, the cause and history tables can

be flushed whenever policy changes occur. Thus, the Precedence Solution allows for both

transient oscillations and changes in network topology, and does not permanently suppress

any routes.

Minimal revealing of policies: If the input routes of a router are known, the global

precedence of the advertised route indicates whether the chosen route is the most preferred:

if it is not, then its value increases. This is not much different from today’s network: given

the inputs, a route is not the most preferred if it is not advertised.

For routes stored in the history table, all have been previously advertised before

and have been intended to be used for routing, none have been explicitly propagated for

purposes of eliminating oscillations. Route numbers have been explicitly associated with

these routes, and do not contain any additional information. Thus, we do not expose any

additional AS policies.

33

No requirement for global knowledge: Both the detection and storage mechanisms

operate solely on route advertisements received from neighbors, and are fully decentralized.

No third party is required to gather and compute optimal routes for all ASes. The route

numbers are propagated upstream only for the purposes of ensuring that disputes remain

resolved, and do not affect nodes elsewhere, including other parts of the wheel.

Identification of potential pivot nodes: Although it is possible to use some other

unique number as the route number, we believe that inclusion of the router IP gives the

right amount of visibility to assist in network troubleshooting. If a node is forced to select

a less preferred route, the cause table maps incoming route numbers to an outgoing one,

appended to those already associated with the selected route. Otherwise the numbers

associated with a selected route is propagated unchanged. Thus, the set of nodes identified

by the list of numbers includes all potential pivots encountered downstream. Although not

all pivots along the wheel can be identified from a single viewpoint, adjustment of just one

such node’s preferences is sufficient to break the dispute, reducing global precedence values

and relaxing constraints on route selection.

2.5 Router Changes

In this section we describe extensions to a BGP router necessary to implement the

Precedence Solution. The two main additions are the history and cause tables.

34

2.5.1 History Table

The history table stores routes received from neighbors, as well as information

relevant to short and long term memories necessary for dispute detection and storage.

Memory used to store routes may be shared amongst the different data structures, and

is dependent on actual implementation. Thus, the history table can be thought of as an

extension to other structures.

A route that is currently being advertised is feasible. Infeasible routes that are not

pinned are removed, and only feasible routes can be considered for selection and pinning.

A route is unpinned if there exists a selected route that is more preferred (or if no route

is selected). Pinning of a route occurs when it has a non-empty route number list and it

causes a less preferred route to be advertised with increased global precedence value.

Figure 2.11 shows an example of a history table being updated, and Figure 2.12

provides the pseudo-code. Entries in the table are arranged in order of local precedence,

that is, the ordering is determined using the same rules as the decision process in use today.

This ordering provides the local precedence value: the most locally preferred has value 0,

the next 1, and so forth.

2.5.2 Cause Table

The cause table contains entries that map incoming causes’ route numbers to

outgoing ones. To recapitulate, the route number of a cause consists of a router interface’s

IP address and a locally unique sequence number. Figure 2.13 shows an example of a cause

table being updated corresponding to the update in Figure 2.11, with Figure 2.14 providing

35

Feasible

false

true

true

...

true

Pinned

false

...

true

false

false

false true

false

...

1

0

...

0

Pn−1

Pn−2

Precedence
Global

1

Incoming Routes P2:0:{} and P1:1:{D.4,E.2}

...

P3

P0

AS Path

{A.1, B.2}
Precedence

Local

0

1

n− 3

n− 2

...

Route
Numbers

{C.2}
{}

{}

Precedence
GlobalAS Path

Precedence
LocalRoute

Numbers

...

0

1

0

...

0

Pn−1

Pn−2

Outgoing Route P2:1:{X .2}

P2

...

P3

2

3

n− 2

n− 1

...

{}
{}

{C.2}
{}
...

1P1 1{D.4, E.2}
1P0 0{A.1, B.2}

(a)

(b)

Feasible

Pinned

false

...

false

false false

true

true true

true true

Figure 2.11: (a) Before and (b) after a history table is updated.

36

1: if local routing has converged (no routing changes) then
2: for each entry in history table do
3: if not feasible and not pinned then
4: remove entry
5: for each route R received do
6: if route from neighbor N is filtered then
7: set previous feasible route Rp from N infeasible
8: else if different route received from neighbor N then
9: set previous route Rp from N infeasible

10: compute R’s local precedence
11: insert R into history table, set feasible
12: else if same route received from neighbor then
13: if previous feasible route Rp 6= R then
14: set Rp infeasible
15: else
16: update R’s global precedence value and route numbers
17: set R feasible
18: else if first route R is received from neighbor then
19: compute R’s local precedence
20: insert R into history table, set feasible
21: select set S of eligible routes
22: select set S ′ with lowest global precedence, S ′ ⊂ S
23: select route R with lowest local precedence, R ∈ S ′

24: for each entry in history table do
25: if route Rmp more preferred than R, feasible, has non-null route number list then
26: pin Rmp

27: else if route Rlp less preferred than R and pinned then
28: unpin Rlp

29: return R

Figure 2.12: Pseudo-code for updating history table and determination of the selected route
for each destination.

A.1, B.2

Causes
Outgoing

Causes
OutgoingIncoming

Causes
Incoming
Causes

(a)

X.1A.1, B.2

(b)

A.1, B.2, D.4, E.2 X.2

X.1

Figure 2.13: Updating of cause table corresponding to history table update in Figure 2.11.
A change in selected route triggers the generation of a new sequence number, and only most
recent outgoing causes are updated.

37

1: create empty route number set Sr

2: let selected route be Rs

3: for each entry in history table do
4: if route R more preferred than Rs and feasible then
5: pin R
6: else if Rs more preferred than R then
7: unpin R
8: if route R is pinned then
9: add R’s route numbers to Sr

10: for each entry in history table do
11: if route R is pinned and none of R’s route numbers ∈ Sr then
12: unpin R
13: if Rs is different from previous then
14: create new route number
15: if Sr ≡ ∅ and Rs is not most preferred and feasible then
16: add null route number to Sr

17: set current outgoing cause’s incoming route numbers to Sr

18: for each entry in cause table do
19: if no incoming route numbers are present in Sr then
20: remove cause entry

Figure 2.14: Pseudo-code for updating cause table for each destination prefix.

the pseudo-code. An entry exists until all its incoming causes cease to be received. In the

figure, the cause entry for X.1 will be evicted if both A.1 and B.2 are no longer advertised

by the neighbors. A new route number X.2 is created with a change in the selected route.

Only current causes, that is, those using the most recent sequence numbers, are updated

based on received routes. Thus in Figure 2.13 new incoming causes will be added to the

entry for X.2, but not for X.1.

2.5.3 Adaptive Convergence Window

As elaborated in §2.4, we require the use of short term memory to detect disputes.

The convergence window is the period of time during which received routes are kept in

memory. Assuming that one-hop route propagation delay W is similar to the Minimum

Route Advertisement Interval (MRAI), the rim nodes (say there are r of them) can be

38

1: for each adj-RIB-in do
2: process incoming routes, update route table
3: update history table
4: update cause table
5: for each adj-RIB-out do
6: update new routes’ route number list
7: advertise route to peer

Figure 2.15: Primary steps in router batch updates.

thought of as delaying route advertisements from one pivot to another by rW , thus the

window size should be proportional to this number.

The convergence window begins with a short duration (one MRAI), so that net-

works not containing disputes can converge relatively quickly. We double its duration when

convergence does not occur after some time, so that disputes involving large numbers of

rim nodes can be resolved quickly. An upper bound can be determined using the maximum

observed path length during this period. Lastly, its duration is reset after the network

stabilizes to remove effects of transient convergence.

2.6 Evaluation

2.6.1 Simulator

We built an event-based, packet-level and asynchronous simulator. Route updates

are batched, and take place every Minimum Route Advertisement Interval (MRAI). Fig-

ure 2.15 shows the main steps of the batch update process, whereas Figures 2.12 and 2.14

describe maintenance of the history and cause tables respectively. We set MRAI to 30

seconds, processing delay jitter to 1 second, and link propagation delay to 10 milliseconds.

39

2.6.2 Metholodgy

To better understand the basic performance of our solution, we use simple graphs,

which consist only of rim, pivot and destination nodes. Figure 2.8 shows an example.

Whilst these graphs are not representative of a real network in general, they are still useful

in determining properties of a dispute wheel.

To evaluate the effectiveness of the Precedence Solution in practice, we use an AS-

level network topology constructed using routing table dumps from RouteViews [44]. Route

dumps from January 3rd 2007 were used to construct an AS-level network which consists

of 24307 ASes and 56914 inter-AS links. Since complete policy information is impossible to

obtain [14,47], we sought an alternative method of generating local preferences. Restricting

ourselves to next hop preferences, we note that a dispute-free configuration can be obtained

as long as the most preferred neighbor lies along a cycle-free path to the destination. Thus,

a shortest-path algorithm will generate local preferences that can guarantee convergence.

However, inter-domain routing typically does not result in shortest paths [49], and

as we show later, the network convergence time as well as the degree of route exploration

(and hence the number of routes encountered) are dependent on the ratio of actual versus

shortest path lengths (i.e. route inflation). Thus, we focus on routing algorithms that

provide approximately the same route inflation. We use a combination of depth-limited and

breadth-first searches to obtain routing trees: depth-limited search is used whilst within the

limit at each stage, otherwise BFS is used. In general, increasing the maximum depth at

each stage results in greater route path inflation. The remaining neighbors’ preferences are

set in a random fashion. Finally, we simulated misconfigurations by selecting a subset of

40

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6

C
on

ve
rg

en
ce

 ti
m

e
(m

in
ut

es
)

Number of rim nodes between consecutive pivots

Figure 2.16: Simple graphs: 3-pivot network’s convergence time against rim-to-pivot ratio.

routers and randomly assigning local preferences.

2.6.3 Metrics

We use convergence time and memory requirement as metrics. We say that a node

has converged at a certain time if its routing table no longer changes thereafter. As for

memory requirements, we look at the ratio of routes stored when using our solution against

normal BGP. This allows comparison across the entire network, taking into account routers

with varying numbers of neighbors.

2.6.4 Results

Simple graphs Using simple graphs, we determined that the convergence time is depen-

dent on the rim-to-pivot ratio and not the total size of the network. We show representative

results in Figure 2.16, where the number of pivot nodes is 3. Each data point in the figure

is obtained from 20 samples; we see that the mean convergence time increases with this

ratio, and there is little deviation in all cases. In all experiments the networks converged.

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
um

ul
at

iv
e

F
ra

ct
io

n

Route Length Inflation Ratio

C.d. 2
C.d. 4
C.d. 6

Figure 2.17: An increase in the maximum depth of constrained depth-first routing results
in more inflated routes. For constrained depth (c.d.) of 6, we obtain paths with inflation
close to that in practice [49].

RouteView graph We varied the maximum depth of each constrained depth-first iter-

ation, obtaining the mean route length inflation ratios shown in Figure 2.17. A maximum

depth of 6 results in route inflation that most closely match that in the Internet today [49].

Next, we investigated the impact of additional memory requirements for Prece-

dence+ by varying route inflation. In all cases, we verified that usage of Precedence+ in

networks with no disputes resulted in all nodes selecting their most preferred next hops:

Precedence+ does not unnecessarily suppress routes. For normal BGP, the amount of mem-

ory required at a router is proportional to the number of its neighbors. From Figure 2.18,

we observed that deviation from the shortest path results in more routes being explored

and hence more being stored before convergence in the case of Precedence+. On aver-

age, Precedence+ requires 50% more memory for each destination prefix, which can be

amortized across the network by jittering initial prefix advertisements. Furthermore, actual

route exploration in the Internet may be to a lesser extent since route advertisement will

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3

C
um

ul
at

iv
e

F
ra

ct
io

n

Memory Requirement Ratio

Shortest path
C.d. 2
C.d. 4
C.d. 6

C.d. 6, 10% Misconfig

Figure 2.18: As path lengths deviate away from shortest, the exploration of more paths
before convergence results in more routes being stored for Precedence+.

be constrained by economic policies.

To investigate policy disputes, we randomly assigned next hop preferences to 10%

of the nodes. We verified that dispute wheels do exist (normal BGP does not converge),

and that the networks converged when Precedence+ is used. As shown in Figure 2.18, we

required approximately the same amount of memory as before.

Finally, we looked at the network convergence times (Figure 2.19). As we expected,

local preferences assigned based on shortest-paths results in faster convergence. More im-

portantly, convergence time is not significantly affected by usage of Precedence+, nor by

the presence of misconfigurations (disputes) in the network.

2.7 Discussion

In this section we discuss two issues encountered in practice, namely constrained

policies and misbehavior.

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
um

ul
at

iv
e

F
ra

ct
io

n

Convergence Time (min)

Shortest path, BGP
C.d. 6, BGP

C.d. 6, Pred+
C.d. 6, Pred+, 10% Misconfig

Figure 2.19: Inflated paths result in an increase in convergence times. Precedence+ does
not delay convergence, even in the presence of misconfigurations.

2.7.1 Constrained Policies

If the local precedence value of a route is determined first by the last hop, that

is, if the first step of the BGP decision process selects routes based on next-hop ASes,

then the Precedence Solution can be significantly simplified. In Figure 2.9(ii) at node A,

if neighbor B’s routes are more preferred than D’s, then route BXRW :1:{X.1,X.2} will

be ranked higher than RD:0:{}, thus the eviction of BXRZ :1:{X.1} will not un-resolve

the first dispute. In other words, pinning of routes and long-term storage, including cause

tables and route numbers, are unnecessary. Communication overhead is reduced as well,

since only the global precedence value need to be carried with each route advertisement.

2.7.2 Misbehavior

Since the global precedence metric can in general restrict the autonomy of an AS,

there may be incentives for not adhering to the general rule. We discuss various ways

whereby ASes can misbehave, and detection methods that rely on the ability to observe

44

APx:v:{...}
P2:1:{...}

P1:0:{...}

A

Figure 2.20: Basic scenario used to describe misbehavior: node A receives two routes and
advertises one. Detection of misbehavior can be performed by observing incoming and
outgoing routes.

the incoming and outgoing routes. Clearly, one type of misbehavior is the selection of an

available route with the highest local precedence regardless of its global value. We describe

several scenarios using Figure 2.20, focusing on the routes advertised from A.

P2:0:{...} there is definite misconduct, since the outgoing route’s global precedence is less

than its incoming’s. This is true even if A filters P1:0:{...}.

P2:1:{...} there is no misconduct only if A permanently filters route P1:0:{...}. In this

case, route P2:1:{...} is the only incoming route and therefore also the most locally preferred.

Thus, the outgoing route’s global precedence is not incremented.

Px:v:{...} where v>2 for x=1 and x=2. In this case, node A is artificially increasing the

outgoing precedence value. This has the effect of not allowing upstream ASes to select a

route traversing this AS. While some may construe this as misbehavior, it may be used as

a means of indicating that certain links are used as backup. For instance, the destination

node can advertise a global precedence value of 1 on backup links, and 0 on normal links.

From this simple example, we can determine that an AS is misbehaving if one

of these two conditions are satisfied: (1) an outgoing route has a global precedence value

that is less than its corresponding incoming route, or (2) an outgoing route has a global

45

(b.i) (b.iii)

(a.iii)(a.ii)(a.i)

(b.ii)

D

M

AA

D

C

B

M

AA

D

C

B

M

AA

BM

D

AA AA

BM

D

AA

B

B

M

C

D

Figure 2.21: A misbehaving AS, represented by node M , can have differing effects on the
network. (a) For a dispute wheel with an odd number of nodes, M eventually lacks a route
if it initially filters the spoke one. (b) For a wheel with an even number of nodes, M does
not destabilize the network.

precedence value that is greater than its corresponding incoming route by more than one.

2.7.3 Adaptive Filtering

Misbehavior that is more difficult to detect involves adaptive filtering, which we

now describe. Let M be the node representing a misbehaving AS. Clearly, if M is always

filtering its spoke path, it will never become a pivot node, and thus cannot influence the

convergence process. However, M involved in a dispute can initially accept routes from

neighbors along the spoke and rim. When routing stabilizes and the precedence+ metric

forces selection of the spoke path, M can subsequently decide to effectively filter that in

order to select the locally preferred path along the rim.

In this case, two scenarios can occur as illustrated in Figure 2.21. In part (a), the

total number of pivot nodes in dispute is an odd number. The selection of a next hop that

is more locally preferred but having a higher global precedence value eventually results in

46

M not having a valid route. Subsequent removal of the filter causes the system to oscillate

again.

In part (b), an even number of pivot nodes can cause the system to settle in a

stable state even if M misbehaves. In this case, M is able to use the path it locally prefers.

In general it is difficult to determine the number of pivot nodes in dispute, and

therefore hard to know if the implementation of adaptive filtering in M can result in oscil-

lations (which ultimately does not benefit M). To provide better control of the situation,

we next propose a method to detect the various types of misbehaviors discussed above.

2.7.4 Misbehavior Detection

Most ASes are comprised of multiple routers, and are unlikely to provide access

to the internal network. Thus, the usual assumption that an AS can be modeled by a

single router does not hold. For instance, in Figure 2.22(i), router A selects, as it should,

the less preferred route R0:0:{...} and advertises AR0:1:{...} to B. B subsequently chooses

R2:1:{...}. If we logically collapse A and B into a single node and aggregate their inputs,

we see that even though the routers are behaving correctly, the output should have been

...R0:1:{...} instead.

We propose a slight tweak to the protocol only within an AS: when an ingress router

(i.e. A in the example) advertises a route to an internal peer, it appends the route’s global

precedence when received (the ingress value) and after updates (the egress value). Upon

reception of that route, B uses the ingress value to determine the selected route. The egress

value is then updated, and is lower-bounded by the previous egress value. Advertisements

to neighboring ASes carry only the egress value.

47

(ii)

B’s history table A’s history table(i)

B’s history table A’s history table

B

AB

A

[R2:1:{...}]

[R0:0:{...}]

[R1:1:{...}]

[R0:0:{...}][AR0:1:{...}]

[R1:1:{...}]

[R2:1:{...}]

[BR2:1:{...}]

[R1:1:{...}]

[R0:0:{...}]

[R1:1:{...}]

[R0:0:{...}][AR0:0,1:{...}][BAR0:1:{...}]

[R2:1:{...}]

[R2:1:{...}]

[AR0:0,1:{...}]

[AR0:1:{...}]

Figure 2.22: (i) With multiple routers within an AS, indicated by the shaded region, external
input and output routers can appear to indicate misbehavior even if they are operating
according to protocol. (ii) By tagging the route with both ingress and egress precedence
values, an AS’ behavior becomes similar to that of a single router.

48

Figure 2.22(ii) shows the same network with the tweaked protocol. Here, correct

behavior will cause A to advertise AR0:0,1:{...}, and B to advertise BAR0:1:{...}. On the

other hand, if A misbehaves and selects R1:1:{...}, the output will clearly be incorrect.

With the slightly modified protocol, the conditions described in §2.7.2 can be used

to detect the occurrence of adaptive filtering. For a dispute to occur, a less preferred

route (say Rlp) must have been advertised before the more preferred one is selected. Thus,

Rlp must have been observed before, but not thereafter. A monitoring mechanism can

be designed based on this as follows: we detect routes that should have been selected but

aren’t. These are then hashed and stored. Since the monitor is maintained by a third-party,

hashing of the inputs provide anonymity. Output of any of the stored routes in the future

signals reuse of those routes, and therefore adaptive filtering.

2.8 Background

Varadhan, Govindan, and Estrin [50] were the first to discuss the possibility of

persistent route oscillations in BGP. The cause was not the policy configuration of one AS

alone; they occurred because of interaction between the policies of several ASes. These

anomalies occurred without any misconfiguration and were difficult to diagnose and resolve

since ASes tend to keep routing policies private.

Griffin, Shepherd, and Wilfong [20] introduced the Stable Paths Problem (SPP) as

a formal model for BGP (and policy routing with path-vector protocols, in general). Using

their framework, they were able to give a sufficient condition for protocol convergence,

namely, the absence of dispute wheels. These structures characterize the conflicting policies

49

of the nodes involved in a route oscillation (see the formal definition in §2.3). Unfortunately,

the only known method to check for dispute wheels requires examining all the routing

policies in a network, which is presently an impractical task. In addition, Griffin et al.

showed that the problem of detecting whether stable routing exists, given all the policies in

the network, is NP-complete. Worse yet, they showed that the existence of a stable solution

does not automatically imply that a routing protocol can find it.

Gao and Rexford [16] showed that Internet economics could naturally guarantee

route stability. A hierarchical business structure underlying the AS graph, along with poli-

cies that matched the various business agreements between ASes, is sufficient for protocol

convergence. In this structure, it is assumed that relationships between ASes are either

customer-provider, i.e., one AS purchases connectivity from another, or peer-peer, i.e., two

ASes mutually agree to transit traffic. No customer-provider cycles are allowed (i.e., no AS,

through a chain of providers, is an indirect customer of itself), and additional rules exist

on how to set route preferences and when routes can be shared with other ASes. These

assumptions capture the structure and economics of today’s commercial Internet, although

violations of these assumptions due to complex agreements, business mergers, or miscon-

figurations can still induce route oscillation. These positive results were later confirmed

by Gao, Griffin, and Rexford in [15], in which the combination of an underlying business

structure and economically sensible policies was shown to prevent occurrences of dispute

wheels, even when backup routing is allowed. Jaggard and Ramachandran [23] generalized

this result but still required some assumption about the AS graph to prevent oscillations.

Dispute-wheel freeness and an AS business hierarchy are examples of global con-

50

straints, because they require that some condition is enforced involving the policies of many

ASes at once.5 However, policy autonomy is at the heart of the philosophy that led to

BGP, and ISPs will be loathe to relinquish it. Accordingly, later research attempted to

find local constraints—conditions that could be checked individually for each AS—that are

sufficient for route stability. Unfortunately, results here were mostly negative. Sobrinho [46]

and Griffin, Jaggard, and Ramachandran [19] proved that any dispute-wheel-free routing

configuration is equivalent to a generalization of lowest-cost routing. This means that many

seemingly sensible policies — in fact, all purely local policies not driven by some shared

metric — could lead to oscillations. For example, it was shown that ASes risk oscillations

if they use policies that always prefer routes through one neighbor over another—a type

of policy commonly used today. Feamster, Johari, and Balakrishnan [13] further strength-

ened this result by showing that only generalizations of lowest-cost routing can guarantee

stability while preserving the ability of ASes to filter routes (that is, to remove them from

consideration). Overall, the theme of these results is that the only way to a priori guarantee

stability is to essentially eliminate policy-configuration autonomy.

Most of these results exclude policies with any possibility of inducing routing

anomalies, whether or not they actually do in a particular network. (This is because de-

termining whether the network policies will result in oscillations is too difficult.) In this

paper, we present an extension to BGP that detects oscillations and responds by breaking

the corresponding dispute wheel. Griffin and Wilfong also presented such an algorithm,

called SPVP, in [21]. Our protocol differs in several ways. First, SPVP records the changes
5In this paper, as is standard for BGP discussions, the term global really means “not purely local”. A

global value, for instance, is not one that necessarily all ASes share, but that applies to more than one AS.

51

in route choices due to the propagation of a route; this reveals more private policy informa-

tion than necessary. Second, our protocol answers an open question left by [21], in that we

present a minimal-impact solution to resolving disputes: our resolution algorithm is engaged

only when an oscillation is detected, and BGP is allowed to function normally otherwise.

Third, SPVP’s update-message size grows with the number of nodes in an oscillation, while

additional fields used by our protocol scales with the number of resolved disputes encoun-

tered along a path. This is similar to that in [15,23]; however, those solutions still required

a global constraint and preemptively excluded some oscillation-free policy configurations

that our solution does not exclude.

Another class of runtime solution involves diffused computation [8], which uses the

observation that, as long as a change in path results in reception of another with a local

preference value at least as high as that of its current path, then stability is guaranteed.

In this case, an AS is required to ask any other AS whose path currently traverses it if a

change in path is acceptable. Such a solution would restrict a provider’s route choices based

on inputs from customers, which is typically not the case in practice.

Finally, we allow ASes to exercise full autonomy unless the particular set of policies

and topology results in an oscillation, and in that case, and only in that case, AS autonomy

is revoked. What distinguishes this from much of the previous literature is that it does not

place a priori restrictions on ASes, only post hoc restrictions. This enables a far greater

degree of freedom, and we believe that ASes might be willing to accept the limitations as

the price to pay for stability.

52

2.9 Summary

This paper tries to reconcile two desirable, but seemingly incompatible, goals. On

the one hand, it is a business reality that ASes would like to set policies according to

their own specialized needs — whether these arise out of business, or traffic engineering, or

other concerns — and they would like to keep these policies private. On the other hand,

every AS would like to have a stable Internet, where routes didn’t oscillate. Unfortunately,

recent theoretical results make clear that to ensure a priori, without knowing the policies

beforehand or relying on assumptions about the structure of business relationships, that

routing will be stable, ASes must be deprived of essentially all policy autonomy. In this

paper we no longer require an a priori guarantee, but instead seek to remove policy-induced

oscillations when they arise. This allows us to preserve policy freedom when possible, and

impose stability when required.

53

Chapter 3

Policies in Intra-Domain Routing

3.1 Brief Overview

Enterprise networks play a critical role in the security policies of the organizations

they serve by enforcing access control. Access control typically involves two components

(1) blocking packets between hosts that are not allowed to communicate at all, and (2)

ensuring that a host does not receive or send packets unless they are first passed through a

middle-box where they can be inspected, audited, or scrubbed.

Many techniques exist for implementing access control [2,6,22,36,37,51,52]. How-

ever, setting up and operating these systems requires maintaining the consistency of a

tremendous amount of state that is distributed across all the components of the network.

For example, the rules that define which hosts can communicate are typically written in

terms of hosts’ IP addresses, yet the middle-boxes or firewalls where these rules must be

installed can be located anywhere in the network, with no obvious or direct relationship to

the hosts. Any change to the IP address assigned to a host invalidates the rules, but the

54

burden of ensuring consistency falls to the network administrators. An example of main-

taining the consistency of state would be the BGP routing policies used in some enterprises

to enforce coarse-grained reachability policies, and the physical manipulation of links to

ensure packets traverse a particular middle-box. The tremendous amount of state that has

to be considered simultaneously makes the network brittle and configuration error-prone.

This paper proposes and evaluates Access Control Routing (ACR), a way of using

the routing protocols themselves to distribute the state needed for access control, thereby

automatically maintaining consistency and reducing configuration. Our approach to net-

work access is inspired by the model of file access control, where users belong to groups

and, in turn, groups are permitted or denied access to files.

In ACR, administrators define classes in their network. For any entity in the

network, administrators can specify the classes that entity can send packets to and the

classes it can receive packets from. We use the routing protocol to create logically separate

networks for each class, so that if a host is not allowed to send packets to a particular

class, none of the destinations in that class will even appear routable. Packets are explicitly

marked with the class they are part of, but middle-boxes are able to change the class

markings on packets and re-advertise destinations from one class to another. This primitive

creates an easy and flexible way to channel packets through middle-boxes.

ACR has four major benefits: (1) Configuration is simplified because the designer

needs only group the appropriate end-hosts based on their roles, and thereafter the routing

protocols themselves maintain the resulting reachability and path constraints. (2) ACR

provides a flexible framework for channeling packets through any number of “bump-in-the-

55

Router
OSPF

Key

ISP 2
ISP 3

Admin

ISP 1

(b)(a)

VLAN

Key

Firewall
BGP

Router

DMZ

Client 1

Client 2

Client 3

Client 4

Client 5

Internal External

EECS Stats Business

Router
Edge

Router
Core

MPLS Cloud

Firewall

R2

R4

R1

R1

R3

R01 R02 R12

R4

R11

R2

R3

Figure 3.1: (a) General layout of the ComNet commercial network, where firewalls are
placed in the core of the network, and routing is constrained for traffic to traverse these
firewalls. (b) The UNet university campus network structure, firewalls are usually placed
at the edges, next to the departmental subnets, and routing is unconstrained.

wire” firewalls [6,22] and deep-packet inspectors [35,36] in any order desired. (3) ACR frees

administrators to assign IP addresses based on network topology rather than what will ease

writing packet filters, since filters will no longer be written in terms of addresses but rather

classes. (4) ACR retains the advantages of network-level access control over pure host-based

access control in that Denial-of-Service attacks or worms that might overwhelm or subvert

a host can be discarded before they even reach the host.

3.2 Networks in Practice

To better understand the issues with current networks and to facilitate comparison

later, we gathered topology and configuration information from two large intra-domain

networks: a large commercial enterprise (ComNet) that interacts with a variety of client

entities and a university campus network (UNet). These networks follow two general models,

56

which we call core and edge. We begin by describing the similarity between these two models,

followed by an elaboration on the differences between them.

3.2.1 Aggregation of Hosts via VLANs

In both core and edge models, hosts that should have the same reachability policies

may be plugged into different switches. To ensure these hosts all receive IP addresses from

the same subnet so that IP routing policies and packet filters can be applied to them as a

group, designers are forced to drag VLANs through multiple switches to gather each set of

related hosts into a single virtual layer-2 LAN before connecting them to a layer-3 router.

Configuring these VLANs (which are essentially multi-point permanent virtual circuits) is a

painful and often manual process, requiring designers to carefully assign the order in which

switches will become the root bridge and explicitly prune links to ensure the spanning tree

protocols behave reasonably [7].

At layer-3, configuration methodologies between these two types of network begin

to diverge, in terms of routing and middle-box set up. We next elaborate on the two models,

focusing on the differences between them. We begin with the ComNet network.

3.2.2 The Core Model: A Commercial Network

As shown in Figure 3.1a, the commercial network is comprised of two main regions:

an external MPLS network that provides connectivity to various client organizations, and

an internal network that hosts various services. A demilitarized zone (DMZ) sits between

these two network partitions, filtering unwanted packets from the external network.

The internal network consists of VLAN subnets at the periphery, and these are

57

connected via OSPF [33]. At the center of the network, core routers running BGP [40]

restrict the flow of packets in a coarse-grain manner using import and export policies.

Firewalls are co-located with core routers, siphoning off packets for inspection and re-

injecting them via alternate ports.

ComNet epitomizes the Core Model (CM), which has the following characteristics:

Few, Heavy-Weight Middle-boxes: A relatively small number of middle-boxes are

placed at locations traversed by most traffic, such as within the network core region. Since

packets can be sent from any source and destined to any end-host (as opposed to edge

routers that see packets destined for or sent from its subnet), firewall rules tend to be

numerous resulting in an increase in state required and processing delays. Furthermore,

such rules are often difficult to debug, and rely to a large extent on the routing protocol,

which ultimately dictates which traffic flows traverse the middle-boxes. On the other hand,

having fewer middle-boxes may ease configuration time and complexity.

Controlled Routing: The second characteristic of CM is that routing, or more precisely

the actual paths taken, is explicitly configured. In the case of ComNet, the export and

import rules of BGP, which in ISPs are used to reflect economic policies, are enlisted here to

enforce this control. In addition to BGP, the physical configuration of the network has to be

restricted as well, as exemplified by the single link through the DMZ to ensure all packets

traverse the two firewalls there. In general, currently available means for implementing

security push designers towards static routing that is particularly prone to network link

failures, resulting in brittle networks that lack redundancy. Furthermore, addition of new

58

links can unintentionally result in the availability of alternate paths that bypass middle-

boxes [17].

3.2.3 The Edge Model: A Campus Network

Figure 3.1b gives the high-level view of the UNet campus network. Since this

is primarily a network that caters to learning and research purposes, the interior of the

network has no access restrictions. As such, a single intra-domain routing protocol, OSPF,

is sufficient without requiring BGP. The network itself serves multiple departments, which

may or may not utilize the firewalls placed at the edge close to the departmental networks.

The UNet network is representative of the Edge Model (EM), which has the following

features:

Multiple, Light-Weight Edge Middle-boxes: Middle-boxes are placed as close to the

client subnets as possible, allowing them to handle smaller destination and source sets

thus reducing the state and number of rules required. However, the total number of

middle-boxes to configure is therefore higher, increasing configuration complexity. On

the up side, unintentional bypassing of middle-boxes is less likely to occur since it is

easier to control the physical connections to the subnets.

Unrestricted Routing: The advantage of placing middle-boxes at network edges is that

fewer constraints are needed on routing, since the physical chokepoint makes it harder

to bypass the middle-boxes. Consequently, these networks allow additional links to

be added, with the routing protocol automatically adjusting paths to take the new

links into account.

59

3.2.4 Summary of Differences

In summary, current network designers either control routing to constrain traffic

paths, resulting in brittle networks, or push the complexity to edges of the network, thereby

necessitating the configuration of more middle-boxes. In some instances, BGP’s route im-

port and export ability has been enlisted to provide the necessary level of path control.

In others, alternate paths are eliminated to produce physical chokepoints that channel the

traffic. Unfortunately, both approaches decrease path diversity, making the network failure

prone and increasing recovery times.

Additionally, high-level access policies need to be translated manually into the

form of rules and installed at middle-boxes. The difficulty in translating between high-level

policies and low-level rules means that numerous firewall rules are difficult to make correct.

From anecdotal evidence, the lack of coupling between routing and access control at the

protocol level can be further compounded by the fact that they may not be under the

same administration. In the next section we describe our design, and show how the entire

configuration process can be simplified.

3.3 Configuration Using Classes

In this section, we describe how the basic notion of classes in ACR can be used to

simplify configuration in enterprise environments. We begin by describing the configuration

interface followed by a brief description of how ACR uses class information to achieve access

control. Finally, we summarize the benefits of class-based configuration.

60

3.3.1 ACR Configuration Interface

The fundamental idea behind ACR is to use the abstract notion of classes to

simplify enterprise configuration by establishing logically distinct networks corresponding

to each class. In ACR, sources and destinations specify access control policies using classes,

and traffic that flows through the network is categorized into different classes. A destination

host or service specifies an access policy that states the classes of incoming traffic it will

accept. Thus, configuration of a source’s access control policies is reduced to specifying the

class(es) of traffic allowed to originate from that source.

Table 3.1: Access Policy Assignment

Host Can Receive Packets of Class
Researcher R, A

Financial Department F, A
Database 1 D, A
Database 2 E, A

Administrator A

Table 3.2: Class Membership Assignment

Host Can Send Packets of Class
Researcher D,E

Financial Department D
Database 1 R, F, A
Database 2 R, A

Administrator A

We motivate this using a simple example. Consider a network where we have two

databases 1 and 2, and three entities who wish to access the databases: a researcher, end-

users in the finance department and the administrator. While the researcher needs access

to both databases, end-users in the finance department are given access to only database

1 and the administrator can access all the resources in the network. For this example,

61

Tables 3.1 and 3.2 specify the access policy configuration for each destination and the class

membership configuration for every source respectively.

We make several important observations. First, specifying access control config-

uration using classes is trivial both for traffic sources and sinks. From an administrator’s

standpoint, a class represents an abstract category of traffic on which the administrator

can set access and class membership policies. In practice, a class can refer to a particular

network service, an end-host, or the current state associated with the packet as it makes

its way across the network. Therefore, the translation from access control rules to class

assignments need not be unique.

Next, for any given class, it is easy for an administrator to visualize as well as

manually verify its configuration settings. Furthermore, all hosts that have similar access

control requirements can be grouped into a single class e.g. class F for the finance depart-

ment. This is critical to reduce the number of classes required in the network. Finally,

class assignment need not be symmetric; in the example above, packets from researcher to

database 1 are marked as class D, and those in the reverse direction are marked with R.

3.3.2 How Does ACR Work?

Considering the same example, we next describe how ACR translates class-based

policies to achieve access control. We have again the case of databases 1 and 2, which the

administrator determines are able to accept packets of class D and E respectively (Table 3.1).

This information is installed in the router(s) to which the databases are connected, and it is

propagated by the routing protocol. In the control plane, routers compute reachability on a

per-class granularity. For example, if the underlying routing protocol is link-state routing,

62

then the link to database 1 is labeled class D and this information is used in the route

computation process. Therefore, all routers within the network will establish class D and

class E routes to databases 1 and 2.

Next, suppose the researcher is to be given access to the databases. The class

membership configuration for a host is stored in its first-hop router. When the researcher’s

machine generates a packet destined for database 1, the first-hop router examines the class

membership list to determine if there exists any class in this list for which a class-based

route to database 1 exists. Upon finding a matching class (class D), the first-hop router

marks the packet as class D and forwards it along a class-D route. Every intermediary router

examines the class header and forwards it along the corresponding class route. At the last-

hop router, the label is removed, thus eliminating the need to alter either the researcher’s

or databases’ machines.

Hence, ACR explicitly binds access control with the routing protocol and estab-

lishes routes on a class granularity that is in sync with reachability constraints. The role of

the data plane is simplified to a straightforward verification of whether the class membership

list of the source matches with any of the available class-based routes to the destinations.

3.3.3 Why Classes?

Apart from simplifying access control configuration, distinguishing packets based

on logical classes, rather than physical connectivity, provides the following properties:

Network End-to-End Visibility: Since the destinations reachable by a packet are de-

termined by its tag and enforced by routers, a packet that does not have the necessary

63

permission to traverse the logical network in which the destination resides is dropped

immediately. Verification is performed as part of the forwarding process, and takes

place at all hops along the path.

Route Redundancy: The mechanism to check eligibility of access has shifted from traf-

fic channeling and packet header inspection at firewalls to classification at first-hop

routers and verification at all intermediate ones. The usage of classes as a mechanism

to enforce access has therefore become orthogonal to the routing process. As a re-

sult, it is no longer necessary to constrain path diversity in order to channel packets

through middle-boxes, and the network designer is free to add any number of links at

any place in the network.

Topology-Independent Middle-box Placement: One of the distinctive features of the

edge and core models discussed earlier in §3.2 is the placement of the middle-boxes.

The locations of these boxes must be carefully chosen to align with the routing pro-

tocols, routing design, and physical topology of the network so that the desired set of

packets traverse them. Otherwise, the middle-boxes have to be placed at every point

along the network edge.

Current networks are designed with the physical dimension in mind: for a source A

and destination B, the middle-box has to be placed along the path A B. In ACR,

we think in terms of the class dimension: for a source class A and destination class B,

the middle-box has to bridge the two domains. In other words, the middle-box forms

the “path” between the two points, and if it is the only path, then packets traversing

between the two class domains must go through it. Thus, the actual network links

64

traversed, as well as the physical location of the middle-box, no longer matter.

Ease of Understandability: Last but not least, since the network designer works with

high-level policies in place of low-level details, the required inputs to the system are

easier to understand. This eases the transition phase when another administrator

takes over, or when changes need to be made to the network, hence reducing the

likelihood of errors.

3.4 ACR Design

In this section, we describe how we realize this abstract notion of multiple logical

networks in ACR. Bearing in mind the conditions commonly encountered in networks today,

we begin by stating our design space that provides scope and allows us to focus on the most

relevant issues. Then, we describe the ACR control and data plane operations in detail.

3.4.1 Design Space and Assumptions

As mentioned earlier, fine-grain access control to individual objects is best imple-

mented on the hosts themselves in application-specific ways, such as through Kerberos [34],

TLS [9], or file Access Control Lists (ACLs). At the network-level, however, designers may

wish to have a class represent an entire organization, or a particular user, with the decision

dependent on the nature of the policies they are trying to implement. Our solution provides

that flexibility, and does not place any constraints on actual class assignment.

Next, we assume that routers can be trusted, that physical access to them is

restricted and that they are not compromised. These assumptions are all true in typical

65

enterprise networks, though security measures, such as the cryptographic authentication

option in OSPF2 [33], can be used to reduce further the probability of successful attacks.

In general, routers share fate and thus the bringing down of one is likely to significantly

and negatively impact the entire network.

We believe that any solution to network-level access control must not depend on

changes to hosts connected to the network, since these hosts may not be under the control of

the network administrators. Further, one of the benefits of network-level control is having

an independent line-of-defense even when hosts are compromised.

3.4.2 The Control Plane

We begin with the control plane, operations of which include (1) the assignment

of classes to hosts, (2) dissemination of access control information by the routing protocol,

and (3) installation of classification information at first-hop routers.

As a result of these operations, the control plane establishes the following state in

each router. (1) For each destination reachable from that router, the latter will also know

what classes the destination is willing to accept. (2) Each router with directly-connected

hosts knows the classes each of them are allowed to send. §3.4.3 explains how the first-hop

router uses this information to label the packets sent by a directly-connected host with the

correct class.

Assignment of Classes

Network designers can implement static policies that specify which entities on their

network should be allowed to communicate. A network entity be any of the following: an

66

end-host (defined by MAC or IP address), a group of hosts (defined by IP prefix), or a

well-known service (defined by port number). For each entity, the administrator defines the

classes the entity is allowed to use when sending packets (the entity’s class membership)

and the classes of the packets the entity is allowed to receive (the entity’s access policy).

Class Dissemination via Routing

Routing protocols, either link-state, distance-vector or path-vector, need only be

slightly modified to account for the use of classes (details in §3.5). Access policies associated

with end-hosts are installed at their corresponding first-hop routers and disseminated by

the routing protocol in use. For the example in Table 3.1, the subnet to which financial

department hosts belong will be advertised with classes F and A.

Next, the routing process is carried out for each class, with intermediate routers

storing corresponding forwarding information for each. One of the advantages of integrating

routing with access control is the ease with which traffic channeling can be performed. This

is important, as middle-boxes that perform deep-packet inspection for worms etc., firewall

filtering, or statistics gathering are not useful unless the target traffic is routed through

them.

While channelling traffic by physically manipulating network connections may

sound simple and straightforward, it is much more complex at the ground level, where

machine rooms are often filled with intertwined cables plugged into a multitude of switch-

ers. This complexity increases the likelihood of errors — for instance, the administrator

may inadvertently add a link and thus unintentionally allowing traffic to bypass the firewall.

ACR achieves traffic channeling through the concept of class transformation. The

67

Class B
NetworkClass A

t-box
Network
Class Bt-box

(a) (b)

Network

C1

S1

S2

R2

S2

R1C1R1

R2

S1

Figure 3.2: T-boxes translate packets between classes. (a) Original access configuration:
servers S1 & S2 are in class A, client C1 in class B. (b) (from viewpoint of C1) By re-
advertising reachability of S1 and S2 into class B, the t-box puts itself on the path for
reaching S1 and S2. Packets from C1 to S1 cannot avoid the t-box, even though alternate
physical paths exist, because the only route in Class B to S1 comes from the t-box.

middle-boxes, which we call class transformation boxes or t-boxes in short, alter the classes

associated with destinations as routes are propagated. Data packets’ class tags are also

altered accordingly as they are forwarded through these t-boxes. For example, servers that

should only receive packets that been through a scrubber t-box will accept packets of class

after-scrubber. T-boxes that offer the scrubbing service are the only devices allowed to

send packets of class after-scrubber. When the t-box receives a route to destination in class

after-scrubber, it reannounces the destination in class before-scrubber. Hosts wishing to

contact the server then send packets to class before-scrubber.

For link-state routing, t-boxes re-advertise reachability of destinations in the new

class(es). This is similar to area border routers in OSPF [33], and is illustrated in Fig-

ure 3.2, where in (a) one can view the classes as separate logical networks, and (b) from

the viewpoint of hosts in a particular network, those in the other are reachable only via

the t-box. Thus, there can be multiple t-boxes placed in the network, providing robustness

68

Source IP,

...

... ...
Assigned
Class(es)

D,E
...

...

...

...

Incoming
packet

D

Outgoing
packet

Allowed
Class(es)Destination

IP

Researcher

IPdatabase1 D

Classification Rules Packet Lookup

...
D,E

First-Hop Router

In-Port

Figure 3.3: Packet forwarding at the first-hop router. The packet is first classified based on
source IP, incoming interface port, etc., then the intersection set I of assigned classes and
classes permissible at destination is determined. The packet is dropped if a null set results,
otherwise it is tagged with any one class in I and forwarded.

without reconfiguration if any one fails.1 However, as before, if both directions of a flow

has to traverse a t-box, say for reasons of completeness necessary for flow analysis, then

introducing multiple t-boxes with the same functionality may cause the flows to become

asymmetrical.

Class Information Installation

Given the current practice in enterprise networks, we expect that most network

designers will choose to assign the classes a host can send and receive by configuring this

information into the interface/port on the first-hop router when the host is connected.

Alternatively, networks that already inventory their hosts’ MAC and/or IP addresses might

choose to configure classes based on this table.

69

3.4.3 Data Plane

In our framework, a host’s first-hop router (that is, the first router its outgoing

packets arrive at) is responsible for labeling the host’s packets with an appropriate class

marking. We choose this approach for three reasons: (1) thanks to the distribution of class

information through the control plane, routers have the required information to know which

classes a packet’s destination will accept, (2) marking packets at the routers eliminates the

need for changes at the hosts, and hosts typically outnumber routers by almost 100 to 1;

and (3) routers are assumed to be trusted.

The classification and forwarding of data packets at the first-hop router is shown

in Figure 3.3. We begin with classification based on source IP, the interface port the packet

arrived on, etc.. A packet may be tagged with multiple classes at this time, representing

permissions to access various resources. Next, we look up the next hop interface using the

destination IP address. If the destination is reachable, the routing table will contain both

the next-hop (as normal) and the set of classes the destination accepts (as established by

the control plane extensions described in §3.4.2).

If the intersection of the tagged and permissible classes results in a non-null set,

the packet is forwarded after inserting in its header one of the classes in the intersection

set. Otherwise the packet is deemed not to have permission to reach the destination, and

is dropped. For intermediate routers other than t-boxes, no additional classification needs

to be performed. Instead, we simply check that the destination is able to accept the traffic
1We expect many t-boxes will be stateless, such as packet loggers or inspectors. Even if t-boxes are

stateful, such that the failure of a t-box or rerouting means that connections through the t-box will need to
be restarted, our proposed system is still more reliable overall that today’s networks, where the failure of a
t-box typically partitions the network in a manner that end-hosts cannot recover from at all.

70

class carried by the packet. Finally, as noted before, packets traversing t-boxes may have

their class tags altered before being forwarded.

3.4.4 Using ACR in Practice

In the sections above we described the core framework and mechanisms of ACR.

This section illustrates how these mechanisms are sufficiently general to handle deployment

scenarios that arise in enterprise networks, both common and uncommon ones.

Connectivity to External Networks

ACR provides an easy mechanism to control reachability to external networks. The

designer configures the border routers to announce all external routes into the enterprise

network with a class external. Hosts can then be granted reachability to the outside world

simply by giving them permission to send and receive packets with class external. In general,

there is no longer a need for a rigidly structured DMZ as in the CM model. If designers

are concerned about DoS traffic entering their internal networks and congesting links, they

still have the option to place firewalls near their borders as described next.

Stateful Firewalls

A very common middle-box in today’s networks is a stateful firewall that allows

packets into a network only if they are associated with packets that have previously been

sent out of the network. The intuition is that the packets sent from inside the network

constitute an invitation for the response traffic, and only the response traffic, to enter the

network. In the most common incarnation, TCP packets are allowed from outside to inside

71

only if they belong to the same flow as a TCP SYN sent from inside to outside. Some such

middle-boxes are also network address translators, modifying the addresses of the packets

as they flow through, but this is orthogonal to the stateful firewalling.

Under ACR, the logic inside the middle-box remains exactly as it is today, and

they can NAT or not as they choose. The only difference is that under ACR the middle-

box will change the class of packets as they flow through. In a typical deployment, the

administrator will define classes internal and external, with the hosts to be protected by

the firewall sending and receiving packets of class internal and the border routers handling

external packets as described above. The middle-boxes can now be placed wherever desired

in the enterprise network, and the appropriate traffic will be routed through them. Even

though there is a single internal class, packets from the outside cannot go to an internal

host that does not expect them, as the existing logic will ensure that the packet is part of

an established and desired flow before mapping it from external to internal.

Eliminating VLANs

Networks using ACR should no longer need VLANs, as classes serve the same

function. Where a designer would have created a VLAN to separate traffic on their network,

they can now create a class. As explained in §3.5, ACR can run over link-state, distance

vector or path vector routing protocols, so the limitations of the spanning tree algorithms

currently used to control VLANs are avoided.

Using ACR to eliminate VLANs will not increase the amount of forwarding state

contained in the switches. Today, switches must store a forwarding entry for every MAC

address present in the network (otherwise frames are flooded, resulting in terrible perfor-

72

RS

5

1

Inputs
Administrator

2

4

6

3

Configuration
Engine

C

S

RC

5

Figure 3.4: High-level view of configuration and automated network-level operations sup-
porting ACR. C is the client machine that intends to communicate with server S. RC and
RS are the first and last-hop routers respectively.

mance). The worst possible case for ACR is if every host in a subnet belongs to a different

class. This prevents any route aggregation, and forces the routing protocol into flat-address

routing – each host needs its own route advertised with its own /32 prefix so that it can

list the classes it belongs to. Note, however, that this is no more state than the switches

are currently storing for forwarding based on MAC addresses.

We next discuss our implementation of ACR, and evaluate the general framework

as well as the implementation.

3.5 Implementation

We have implemented a version of ACR on top of the Click modular router code

base [32]. Figure 3.4 illustrates the three basic entities in our implementation and how

they interact: (a) Configuration engine; (b) First-hop router (which also acts the last-hop

router for the destination); and (c) Intermediary router. The configuration engine acts

73

as a centralized controller that takes in configuration inputs and sends out configuration

information to the individual routers and firewalls. We first describe the configuration

setup, network entities, then a version of ACR link-state routing.

3.5.1 Configuration setup and Network entities

The network administrator inputs access control policies at a single location: the

Configuration Engine (CE) (Figure 3.4 1©). Based on the topological configuration of real

world enterprises, a physically-separate control network exists such that the CE can directly

connect to all the other entities in the network (routers and firewalls) and specify configura-

tion information for each. Apart from the configuration inputs, the CE needs to be aware of

the end-hosts/prefixes that connect to each first-hop and last-hop router. Using the access

control rules provided, the CE determines the configuration that is to be distributed to

the boundary routers (first and last-hop routers). The current CE implementation assumes

that each prefix’s subnet connects to a single first-hop router but it can easily be extended

to the case where this assumption does not hold. At the first-hop router (Figure 3.4 2©), the

CE specifies the source classes and at the last-hop router (Figure 3.4 3©), classes associated

with the destination prefix(es) are modified. The only intermediary routers that are config-

ured by the CE are those that directly connect to a firewall. Any fine-grain access control

specification at the CE is installed at the firewall.

Next, we briefly elaborate on the remaining two entities. The code corresponding

to the Intermediary router implements the simple ACR route computation and forwarding

mechanism described earlier. The First-hop router uses the same code base as the Interme-

diary router with two additional functionalities: (a) identification and marking of the class

74

corresponding to each packet; (b) propagating of the set of prefixes that the first-hop router

connects to, and the set of classes associated with each prefix. The firewall in our case is

similar to a router except with an additional access filter list. In our current implemen-

tation, the access filter list supports fine-grain access control rules of the form <srcAddr,

dstAddr, dstPort, protocol, accept/deny> and does not support any deep-packet in-

spection rules. In our implementation, only rules that accept packets are used, and the

default action is to drop unmatched packets.

3.5.2 Link-State ACR

Next, we describe the propagation of access information by the routing proto-

col. We implemented a simple version of ACR-based link-state routing where every router

maintains the topology of the entire network. Every first-hop router announces a set of

prefixes that it connects to, as well as their associated classes (Figure 3.4 4©). Here, a prefix

represents the smallest granularity on which access control policy is applied. For example,

if control is applied on a per-host basis, the first hop router advertises /32 IP addresses.

Typical announcements can vary between /24 to /32 prefixes depending on the required

granularity within the enterprise. While one can extend the implementation to support

aggregation of classes across prefixes, our current implementation does not support it.

Route computation: We compute class-based routes on a per-prefix granularity (Fig-

ure 3.4 5©). The route computation process is a straightforward per-class shortest-path

computation with class information along the final edges for every path. Hence, the route

computation overhead is small.

75

For t-boxes re-advertising reachability, the intended class transformation (e.g.

from a prefix-class, say 1.2.3.0/24-C to another prefix-class combination, say 1.2.3.0/24-

D) is installed by the CE. Thereafter, the t-box first computes the shortest path cost to

1.2.3.0/24 using class C, and advertises reachability with the same cost, but with class D

instead.

Forwarding process: At the ingress, or first-hop router, the data packet is tagged with

the appropriate class (§3.4.3), or dropped if there is none (Figure 3.4 6©). In general, since

changes to end-hosts are not necessary, class information is inserted in the form of a shim

layer between the link and IP headers. To minimize the additional overhead of classification

at the first hop router, we implemented an efficient hash-based process to perform the set

intersection operation of classes. While we maintain forwarding entries on a per-class basis,

often the amount of state associated with the forwarding table is very small. For the

majority of routes not traversing t-boxes, the routing table can be simplified to maintaining

a simple prefix-based routing table and a list of allowed classes per prefix. If t-boxes are to

be traversed, this implies the possibility of differing next-hops depending on the class, and

hence additional routing table entries.

3.6 Evaluation

In this section, we use a combination of complexity and quantitative measure-

ments to demonstrate that ACR is practical and that it indeed simplifies access control

configuration in real-world enterprise networks.

76

Complexity analysis: To really argue that ACR simplifies access control configuration,

we need to show that ACR reduces the amount of configuration work that an administrator

needs to perform to achieve a certain objective. However, there exists no standard metric

to measure configuration complexity. Here, we introduce a simple metric: the configuration

complexity of an access control policy event equals the number of rules in different network

entities that an administrator needs to manipulate or check for that event. Based on

this metric, we consider a variety of basic but commonly occurring scenarios in enterprise

environments and measure the configuration complexity for each scenario across three types

of networks: ACR, Core Model and Edge Model (as defined earlier in Section 3.2). We show

that across all these scenarios, the configuration complexity for ACR is lower than that of

current configuration models (Core and Edge models).

Quantitative Analysis: From a quantitative perspective, we consider the access control

policies in four large real-world enterprise networks and demonstrate how these policies can

be easily translated to configuration using classes in ACR. The real-world enterprise net-

works that we consider in our analysis are currently operational large enterprise networks

with very tight fine-grain access control requirements. As part of the transformation from

access control policies to classes, we show that the resulting number of classes required by

ACR in each of the enterprise environments is not high. Finally, we perform simple perfor-

mance benchmarks on various operations of ACR to show that the performance overhead

incurred by ACR is not high.

77

3.6.1 Complexity Analysis

To perform a complexity comparison between ACR and the Edge and Core Models

for controlling reachabilty, we consider three basic and regularly occurring scenarios in

enterprise networks: (a) adding a new entity to the network; (b) communication cessation

between two entities previously allowed to communicate; and (c) addition of a new link. For

each scenario, we compare the configuration complexity of making the change for each of the

three models (Core, Edge, ACR). We define configuration complexity to be the number of

entities in the system whose configuration an administrator needs to manipulate or validate

when updating an access control policy.

We use the following parameters in our analysis. We assume that there are a

total of n entities for which the network is controlling the reachability, with each entity

being defined by source prefix, destination prefix, and/or transport-layer port numbers.

Therefore, the maximum number of rules is O(n2). With respect to the Core model, we use

rc to denote the total number of core routers in the network. Note that in the core model,

firewalls are co-located with core routers; hence, the number of firewalls is also assumed to

be rc. Similarly, we use re to denote the number of edge routers in the Edge model.

Addition of New Entity

Core: In the core model, adding a new entity (E) to a network like ComNet requires O(rc)

router checks to ensure packets to and from E traverse intended middle-boxes. On the other

hand, subnets that can access E will need to know its existence, thus also necessitating O(rc)

reconfiguration.

78

With regards to the middle-boxes, rules associated with E can be distributed

amongst the firewalls, the number of which is expected to be about O(rc). Even if the

network is one-connected, resulting in all complexity being pushed onto a single firewall,

there is still the need to verify O(n) rules.

Edge: A network structured like UNet with re edge routers would require O(re) middle-

boxes at the periphery. While there is no longer the need to configure routers to enforce

routes when adding a new entity, all middle-boxes, where re>rc with high probability, will

need to be checked to ensure their rules handle the new entity appropriately.

ACR: Addition of E requires knowledge of the classes E can access and receive packets

from. This information is obtained directly from the high-level access policies, and installed

just once at E’s first-hop router.

Communication Cessation

In this scenario, two entities previously allowed to communicate with each other

is now forbidden to do so.

Core: The simplest way of achieving this is to set the appropriate filter to drop packets

sent between the two entities. An alternative, or if firewalls are not in use, is to configure

the core routers such that reachability information is withdrawn. Therefore, the complexity

of the operations remain unchanged, O(rc) routers and middle-boxes, and O(n) for rules.

Edge: As before, the number of places at which rules have to be altered is O(re).

79

ACR: For ACR, either a source’s (S) permission to access a class (C) of destinations is

revoked, or a destination ceases to accept packets of class C. For the former, the change can

be effected once the first-hop router of the source is notified. Similarly, for the destination

that stops accepting class C packets, changes in the last-hop router is sufficient to ensure

that no packets tagged with that class is forwarded across the last hop. This is in spite of

the convergence time required, during which a packet may begin to be forwarded, but will

ultimately be dropped along the way.

Addition of Network Link

Core: Adding a new link in the core model may result in unintentional bypassing of

middle-boxes. Link weights in the case of OSPF, and route policies for BGP, have to be

carefully adjusted to ensure packets take the intended path. Additional middle-boxes may

be installed to monitor traffic traversing the new link. In this case, rules may be moved

from other boxes resulting in O(rc) complexity.

Edge: Inserting links in the network itself does not require additional configuration, since

the routing protocol automatically takes the new link into account. However, additional

links to edge subnets may require duplication of the associated middle-box.

ACR: Since the introduction of a new link triggers routing updates but does not result in

destinations being assigned new classes, this event cannot result in hosts’ packets reaching

unintended destinations. Thus, no additional configuration is required.

Table 3.3 summarizes the complexity of each operation for current configuration

models and ACR. We observe that across these three basic scenarios, the configuration

80

Table 3.3: Complexity Comparison Between Existing Models and ACR

C.M. E.M. ACR
Entity Addition O(rc) O(re) O(1)
Communication

O(rc)+O(n) O(re) O(1)
Cessation

Link Addition O(rc) O(1) O(1)

complexity of ACR is significantly better than current configuration methods. While this

notion of configuration complexity is not precise, it does provide a way of visualizing how

ACR simplifies configuration when compared to the number of additional checks that we

need to perform in current systems to achieve access control.

3.6.2 Complexity: Evaluating ACR in Real-world Enterprises

In this section, we evaluate the effectiveness of ACR in real-world enterprise net-

works. We consider real-world access control policies used in four large and varied enterprise

environments,2 all very closed networks with very tight access control requirements, and we

describe how these access control policies can be transformed to configuration using classes

in ACR. Our analysis is aimed at answering the following questions:

1. What do access control policies look like in enterprise networks?

2. How do we translate access control policies to class definitions?

3. How many classes would ACR need to achieve access control in these networks?

4. How would we aggregate hosts/services to define classes in ACR?
2for reasons of security the names of the networks are not revealed.

81

Description of Enterprise Networks

In our analysis, we consider four different enterprise networks all that belong to

the Core Model with tightly constrained access control policies (i.e. each source only has

access to a limited set of destinations/services):

ManageNW: The large commercial entity that we study is a huge amalgam of individ-

ual enterprises each dedicated to providing a specific functionality. ManageNW is a large

management network that forms the overall management backbone of the entity that inter-

connects management devices in different enterprises. Within ManageNW, there are several

access control policies that restrict administrators within a specific enterprise from access-

ing devices (routers, firewalls) within this backbone or in other enterprises. ManageNW is

a large network that serves nearly 65 individual subnets ranging from /16 to /24 prefixes.

Within ManageNW, there are tight restrictions on access control across subnets.

CorporateNW: CorporateNW is an internal network consisting of corporate resources

such as HR and email systems for various subnets throughout the enterprise. These various

subnets consist of multiple /16 prefixes. The access control policies dictate which of the

corporate resources can be utilized by groups within the enterprise.

PerimeterNW: PerimeterNW is a security infrastructure network that controls access

to internal servers from external networks through the use of proxy servers. Within Perime-

terNW there are access control policies that dictate the proxy servers that can communicate

with internal servers, this results in rules that are /32 based. PerimeterNW has over 250

individual hosts and almost all of the access control policies are specified at the host level.

82

AuthNW: AuthNW forms a large authorization network that entities outside of the

commercial enterprise use to access resources and services within the enterprise. Given the

large number of outside firms that require access to the enterprise, AuthNW is composed of

over 70 prefixes (many of which being /24) and nearly 2000 individual internal hosts (not

overlapping with the prefixes). Many of these internal hosts are servers, databases, proxies,

firewalls, routers that outside entities connect to. Finally, many of the access control policies

in AuthNW are at the level of a host or a group of hosts.

Translating Access Control Policies to Classes

There are several possible class assignments that can correspond to the same set

of access control policies. We present one such class assignment mechanism which we term

Greedy-aggregation. First, we identify the basic entities in the system which represents the

smallest granularity of prefix (could be a /32 address signifying a host) over which ACL

rules are specified in the network.

Once we identify these entities, we model the access control rules in the form of a

bipartite graph from source entities (host or prefix) to destination entities (host or prefixes).

We then identify aggregate groups of the form (src − grp, dst − grp) where src − grp and

dst − grp each represent a group of entities such that any entity within the src − grp can

access any in the dst − grp. We use a simple greedy algorithm to identify these aggregate

groups such that every access control rule is captured in at least one group. For a discussion

on an algorithm that reduces the number of classes required for a given access control matrix,

please refer to §3.7.2.

83

Applying ACR to Enterprises

Table 3.4: Number of classes of ACR in real-world enterprises

Enterprise Network Number of Entities Number of classes
ManageNW 373 105

CorporateNW 400 140
PerimeterNW 267 40

AuthNW 2110 640

Table 3.4 indicates the total number of classes required by ACR for each of the

four enterprise networks using the Greedy-Aggregation based class allocation mechanism.

We make three observations. First, as per the Greedy-aggregation approach, the number

of classes required by ACR is small. The number of classes should be considered relative

to the total number of entities; often, the total number of entities may be much smaller

than the number of end-hosts given that many entities may represent prefixes. Second,

the number of classes corresponding to a single host is very small. In all these networks,

this number ranged typically from 1 to 10. Hence, the class-based routing table at every

first hop router is small. Later in our performance benchmark study, we show that the

overhead of class-based lookup is minimal. Third, one common trend across all networks is

the structure of the aggregated classes. In many of the aggregated groups, the src−grp and

the dst−grp often referred to entities in the system which are physically not co-located. The

implication of this is that in real enterprise networks, the set of entities that have similar

access control policies are often dispersed. Hence, it appears that real world enterprises

will greatly benefit from the way ACR decouples the access policies of a host from its IP

address, allowing a class to represent directly a logical network of disparate hosts that are

not physically co-located and do not share a common IP prefix.

84

In summary, this analysis shows that ACR can easily be adopted in real-world

enterprise networks to provide access control, and that the corresponding number of classes

invoked within ACR is also small.

3.6.3 Quantitative: Performance Overhead of ACR

In this section, we describe micro-benchmarks that measure the per-packet pro-

cessing time in ACR in comparison to a normal routing protocol. These benchmarks are

performed using our implementation on a Intel Dual-core Pentium 3.40 Ghz processor ma-

chine running Click version 1.5.0.

Table 3.5: ACR forwarding delay as a function of routing table size

Routing Table Size ACR (µsec) non-ACR (µsec)
10 1.58 1.19
25 1.60 1.25
50 1.62 1.29
100 1.72 1.34
250 2.23 1.61
500 2.97 2.11
1500 5.46 4.56
3000 9.39 7.77

Table 3.5 shows the average time, in microseconds, for the class-based forwarding

engine to process a packet for varying routing table sizes for both ACR and normal routing

(non-ACR). For ACR, we analyze the performance from the stand-point of a first-hop

router which has to perform class-based lookup and forwarding for every packet. For non-

ACR, in comparison, we perform a simple routing table lookup operation. For this ACR

benchmark, we installed 20 classes for each source and destination prefix in the routing table.

A packet was created with a random destination address (within the specified prefixes) with

85

a randomly generated genuine class and passed to the class-based forwarding engine. Based

on these results we observe that the overhead of class-based lookup is relatively small but

not insignificant (roughly 20− 30%) and this fixed overhead (when computed as a fraction)

decreases as the routing table size increases. We view this additional overhead as the tradeoff

for having the class-based functionality at the routing layer.

Table 3.6: ACR forwarding delay as a function of number of classes per routing prefix

Number of Classes Routing Table Size Time (µsec)
10 1500 5.48
20 1500 5.59
30 1500 5.89
40 1500 6.09
50 1500 6.35

In the previous case, we fixed the number of classes per prefix to be 20 (which is a

relatively high number). Table 3.6 shows the average time, in microseconds, for the class-

based forwarding engine to process a packet for varying numbers of classes for each routing

table prefix while keeping the routing table size constant. We observe that the additional

computational overhead due to having more classes per routing table entry is small. The

implementation uses an efficient hash-based process to perform the set intersection operation

of classes.

To summarize, we showed that ACR scales well in terms of routing table size as

well as number of classes. Furthermore, we found that the number of classes and network

entities in large networks in practice can be considered small, and should be handled easily

by routers today.

86

3.7 Discussion

In this section we discuss various miscellaneous issues related to ACR. In particu-

lar, we focus on the dynamic installation of classes at first-hop routers, and the minimizing

of classes used in an enterprise network.

3.7.1 Location-Independent Class Assignment

In §3.4.2, we discussed how classification rules can be installed at first-hop routers

based on inputs to the Configuration Engine. In general, end-users may be mobile and

connect to the network at different locations, thus requiring the installation of rules to be

dynamic. The bootstrapping process involves obtaining IP addresses etc. for communica-

tion with other network elements, as well as classification rule(s) installation. We describe

these next.

We begin by permitting all hosts access to basic services in the network, such as

DHCP. We set a default classification rule, which says that all packets that do not match

any other rule will be assigned a minimal-service class Cms. The set of services in Cms

as usual can be determined by the network administrator, and the corresponding servers

must be configured to accept packets tagged Cms. Since end-hosts that have been granted

permission to send packets of certain classes may still require access to these basic services

later (say to renew DHCP leases), they must continue to have the ability to send class Cms

packets.

Next, a logically centralized entity in the network has to install the relevant classi-

fication rule. In cases where end-hosts are relatively immobile, this role can be taken on by

87

the Configuration Engine. To accommodate mobile users who authenticate themselves, say

via Kerberos [34], the two roles (authentication and configuration) can be co-located at a

single server. This co-location allows the end-host to contact a single network entity (Ker-

beros server) for the sole-purpose of authentication, with the latter installing rules at the

first-hop router after a successful authentication. Thus, we eliminate the need for changes

in the end-host.

In general, since access control at the network level should involve the administra-

tor as well and not solely the user, the end-host should not be able to directly configure the

first-hop router. Furthermore, since the end-host identity should be verified before being

granted permission to contact corresponding services, we expect both the authentication

and configuration entities to be present. Consequently, the authentication servers are the

only network entities that need to be extended to accommodate class-assignment that is

independent of the hosts’ locations.

3.7.2 Class Optimization

In general, having a smaller set of classes results in faster route computation

(and hence convergence) and state required. We now describe an algorithm to reduce the

number of necessary classes, and begin with the assumption that at least one physical path

exists between any two end-hosts. We model the problem using an Access Graph, which

is a bipartite graph where each network entity3 is represented by a unique vertex in each

partition. Each entity is represented by a node in partition 1 and a node in partition 2.

The former represents the entity’s ability to send packets and the latter the entity’s ability
3where an entity can be a particular user, group of users, traffic of the same port number, etc..

88

(a) (b)

2212 22

21 31

32 12

11 21

22 32

312111

Figure 3.5: From the bipartite graph in (a), there exists two distinct complete bipartite
subgraphs (b), with common vertices 21 and 22 and common edge (21, 22).

to receive packets. An undirected edge (u1, v2) exists if client u’s packets are allowed to

reach server v, that is, the vertex representing u in partition 1 has an edge to v in partition

2. Since an entity can always communicate with itself, the edge (u1, u2) always exists for

all vertices u.

One of our primary focuses is on determining distinct complete bipartite graphs

(CBG) in this Access Graph. Unlike convention, edges and vertices may belong in different

CBGs. Thus in Figure 3.5(a), there are two such distinct graphs (Figure 3.5(b)). Next, the

algorithm in Figure 3.6, where the Access Graph is denoted by Gxs=(Vxs, Exs), is used to

determine the minimum number of classes required, and returns that number as well as the

set of labeled edges.

The intuition behind the algorithm is as follows: as far as possible, we would want

to assign the same class to the set of entities that can communicate with one another, i.e.

those that form a complete bipartite graph. Thus, we begin by finding combinations of such

complete graphs (step 1), where we push as many edges into CBGs that are made as large

as possible. Next, for each CBG, we assign the same class, which is distinct from those

of other CBGs (steps 7-12), this is possible since every entity is allowed to communicate

with the rest in the same CBG. Edges that are present in different CBGs can be assigned

89

1: find set of combinations of sets of graphs Gcbg s.t. ∀ Gcbg ∈ Gcbg, where Gcbg consists of CBGs and
remaining edges, and

no of CBG graphs(Gcbg) + no of edges left is minimal
2: set Gwin ← (∅, ∅), least class←∞
3: for each set of graphs Gcbg ∈ Gcbg do
4: set Gtmp ← Gcbg

5: class counter ← 0
6: for each CBG gcbg ∈ Gtmp,

where no of incident vertices(gcbg) > 2 do
7: find unused class C
8: for each edge (u, v) ∈ gcbg and u 6= v do
9: set class(u, v)← C

10: class counter ← class counter + 1
11: for each vertex u, in descending order of degree (considering unlabeled edges) do
12: if degree(u) = 2 then
13: find unused class C
14: for each edge (u, v), u 6= v do
15: set class(u, v)← C
16: class counter ← class counter + 1
17: else
18: if in Gtmp,

∃ class C′ s.t. v1 = u ∀ class(v1, v2) = C′ then
19: ∀ (u, v2) ∈ gcbg, set class(u, v2)← C′

20: else
21: find unused class C
22: ∀ (u, v2) ∈ gcbg, set class(u, v2)← C
23: class counter ← class counter + 1
24: if least class > class counter then
25: least class← class counter
26: set Gwin ← Gtmp

27: return least class, Gwin

Figure 3.6: Pseudo-code for heuristically determining minimum number of classes required.

either class. For the remaining edges, we use a greedy algorithm and assign the same class

to edges incident on vertices (say one of which is v) with the highest degree (steps 13-

27). This means that v is allowed to send or receive packets tagged with the same class.

If the number of classes used is less than the previous combination of CBGs, we update

the winning combination accordingly (steps 28-30). Applying the algorithm to the access

graph in Figure 3.5, we will end up with three classes: one each for the CBG graphs in

Figure 3.5(b), and another for the edge (12, 31).

It is not difficult to see that this problem is NP-hard in the general case, so we

90

use a greedy heuristic in obtaining a near optimal assignment. Since the access graph is

unlikely to change frequently, we believe it is feasible to compute a near optimal assignment

for those networks where it is desirable to minimize the number of classes.

3.8 Related Work

The access control problem, like security, affects multiple layers of the network

stack. In VLANs, hosts can be grouped based on 802.1q [26], port, etc.. 802.1x has been

used in conjunction with EAP [1] and RADIUS [41] to provide port-level access based on

end-user authentication. After the user has successfully logged in, packets from the machine

are allowed through the first-hop switch. Other than having scalability issues at the link

layer, static assignment of tags to packets in VLANs (that is, the tag does not change

whilst in transit through the VLAN) unnecessarily constrain the type of state that can be

represented. For instance, it is currently impossible to distinguish between packets that

have yet to traverse a firewall and those that have, and as we show later it is beneficial to

capture this distinction. Also, VLAN membership does not overlap, in the sense that users

cannot simultaneously belong to different groups, thus restricting communication patterns

in the absence of routing. We believe that the most flexible and scalable solution therefore

resides at the routing layer.

SANE [5] and its latter implementation Ethane is an extreme design in the layer 2

space, where all traffic flows have to be vetted by a logically centralized entity (the Domain

Controller, or DC) before the path itself is set up by the DC and the flow allowed to

begin. Capabilities [2] granted by the DC are used to ensure that compromised routers

91

have minimal impact on the network.

In layer-2.5, MPLS [42] assigns labels to packet flows, and sets up corresponding

paths through the network. Thus, the primary use of MPLS is in traffic engineering. Since

ACR runs on layer-3, we believe that the two are complementary. Although we also believe

that the primary components of ACR, such as classification and destination reachability,

can be carried over onto MPLS and enable access control, we think that remaining at layer-3

is in general a more flexible solution.

Rather than work with individual routers, installing and manipulating filters man-

ually when the need arises, 4D [17] proposes a unified decision plane that allows the network

designer to describe, at the network level, access policies which are then installed in the

form of filters in routers. The availability of network-wide views, provided by a separate

discovery plane, reduces the likelihood of misconfigurations. Our approach is similar, in the

sense that we advocate configuration at the high-level, and disseminate state subsequently

used by routing protocols from a centralized location.

An important recent development is the proposal in IETF to have multi-topology

OSPF [39]. Briefly, the authors propose running different virtual topologies on a physical

network. The proposal covers primarily low-level implementation information, and is en-

couraging as it provides an important piece of the overall Access Control Routing solution.

Another network-level method of control is via usage of IPSec [25]. IPSec allows

encryption of the data packet, ensuring authenticity and confidentiality, and is primarily

used by communicating end-hosts. It can be used in tandem with Access Control Routing,

providing finer-granularity control enforced at the end-hosts.

92

Next, in between the transport and application layers reside SOCKS [28], which

facilitates tunneling of packets to a proxy before being forwarded to the original destina-

tion. SOCKS requires end-host software installation, end-user configuration using explicit

knowledge of the proxy settings, and is thus susceptible to errors. On the other hand, we

believe that the redirection of traffic can be simply and cleanly provided by ACR: the proxy

is co-located with a t-box, which advertises reachability for the intended destination with

the same class as that tagged onto users’ packets.

At the application layer, access to network resources can be granted by providing

certificates associated with end-users. This authentication process is automatically carried

out via a network authentication protocol such as Kerberos [34] whenever, say, the user logs

onto a particular Windows Domain.

3.9 Summary

This paper proposes Access Control Routing that uses classes to define virtual

networks, and allows clients and servers to separately decide on the networks they can access

or receive packets from. Virtual networks can also be defined to correspond to whether a

packet has traversed a middle-box, thus class transformation boxes, by bridging two virtual

networks, can force traversal of traffic through it. This separation of configuration, and

altering of classes rather than routing or topology, simplifies configuration, which we showed

qualitatively. Also, analysis of networks in practice showed that the number of classes and

routes required for full access control is sufficiently small, and can readily be handled by

our software-level router implementation.

93

Chapter 4

Conclusions and Future Work

In this chapter, we conclude by summarizing our contributions and proposing

directions for future work.

4.1 Contributions

The current Internet is managed separately by service providers, that focus pri-

marily on improving the quality of their intra-domain networks whilst maintaining basic

connectivity between providers. A fundamental problem with path-vector protocols, consid-

ering the lack of visibility into other ASes and global control, is that independent implemen-

tation of policies can result in conflicts and route oscillations. We proposed the Precedence

Solution, which can provably stabilize routing in the presence of policy disputes. The pri-

mary issue, that of storing the routes involved in dispute-based oscillations, can be resolved

using a combination of short and long term memories: short term for detection of disputes,

and long term in order for previously resolved disputes to remain so.

94

On the other hand, complete visibility and control within the intra-domain allowed

providers to implement more policy controls. However, such controls are added as more

of an afterthought to the original network, resulting in multiple types of middle-boxes and

even manipulation of the physical network to perform traffic channeling. We proposed a

clean slate design, where we showed that Access Control Routing, using the notion of class,

can replace the multiple elements that implement that control. By introducing coupling

between routing and access control using classes, we show that the amount of configuration

required is less, and hence reduces the likelihood of the operator making mistakes.

4.2 Future Work

The usage of classes as a way to aggregate either control or data traffic flows (or

perhaps even both) has been shown to be valuable when there is a need to distinguish

between different flows. Thus, interesting areas to explore will include applications such

as traffic engineering within an ISP, or path differentiation for, say VoIP and video traffic.

In general, the limitations of the class-based approach is the number of classes involved: if

there are too many ways to classify traffic, the overhead incurred in terms of state may be

prohibitively high. On the other hand, in the case of traffic engineering for instance, we

believe that having just a few classes may already provide sufficient benefits. Some formal

methodology to derive the suitability of using classes for a particular application would be

useful.

95

Bibliography

[1] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. RFC 3748: Extensible

Authentication Protocol (EAP), June 2004.

[2] Tom Anderson, Timothy Roscoe, and David Wetherall. Preventing internet denial-of-

service with capabilities. SIGCOMM Comput. Commun. Rev., 34(1):39–44, 2004.

[3] A.L. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science,

October 1999.

[4] Boston University Representative Internet Topology Generator (BRITE).

http://www.cs.bu.edu/brite.

[5] Martin Casado, Tal Garfinkle, Aditya Akella, Michael J. Freedman, Dan Boneh, Nick

McKeown, and Scott Shenker. SANE: A Protection Architecture for Enterprise Net-

works. In Proc. 15th USENIX Security Symposium, Vancouver, BC, August 2006.

[6] William Cheswick, Steven Bellovin, and Aviel Rubin. Firewalls and Internet Security:

Repelling the Wily Hacker. Addison-Wesley Professional Computing Series, 2003.

96

[7] Cisco Systems. Spanning tree protocol problems and related design considerations.

http://www.cisco.com/warp/public/473/16.html Document ID: 10556, Aug 2005.

[8] Jorge A. Cobb, Mohamed G. Gouda, and Ravi Musunuri. A Stabilizing Solution to

the Stable Paths Problem. In Symposium on Self-Stabilizing Systems, Springer-Verlag

LNCS, pages 169–183. ACM Press, 2003.

[9] T. Dierks and E. Rescorla. RFC 4346: The Transport Layer Security (TLS) Protocol,

April 2006.

[10] R. Droms. RFC 2131: Dynamic Host Configuration Protocol, March 1997.

[11] Cheng Tien Ee, Vijay Ramachandran, Byung-Gon Chun, and Scott Shenker. Resolving

BGP Disputes. Technical Report UCB/EECS-2006-39, EECS Department, University

of California, Berkeley, April 13 2006.

[12] K. Egevang and P. Francis. RFC 1631: The IP network address translator (NAT),

May 1994.

[13] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Implications of Autonomy

for the Expressiveness of Policy Routing. In SIGCOMM ’05: Proceedings of the 2005

Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, New York, NY, USA, 2005. ACM Press.

[14] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM

Trans. Netw., 9(6):733–745, 2001.

[15] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently Safe Backup Routing

97

with BGP. In Proceedings of IEEE INFOCOM 2001. IEEE Computer Society, IEEE

Press, April 2001.

[16] Lixin Gao and Jennifer Rexford. Stable Internet Routing Without Global Coordination.

IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

[17] Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford,

Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. A clean slate 4D approach to

network control and management. SIGCOMM Comput. Commun. Rev., 35(5):41–54,

2005.

[18] Timothy Griffin and Gordon T. Wilfong. Analysis of the MED Oscillation Problem in

BGP. In ICNP ’02: Proceedings of the 10th IEEE International Conference on Network

Protocols, pages 90–99, Washington, DC, USA, 2002. IEEE Computer Society.

[19] Timothy G. Griffin, Aaron D. Jaggard, and Vijay Ramachandran. Design Principles

of Policy Languages for Path Vector Protocols. In SIGCOMM ’03: Proceedings of

the 2003 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, pages 61–72, New York, NY, USA, 2003. ACM Press.

[20] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The Stable Paths Prob-

lem and Interdomain Routing. ACM/IEEE Transactions on Networking, 10(2):232–

243, April 2002.

[21] Timothy G. Griffin and Gordon Wilfong. A Safe Path Vector Protocol. In Proceedings

of IEEE INFOCOM 2000. IEEE Communications Society, IEEE Press, March 2000.

98

[22] Sotiris Ioannidis, Angelos D. Keromytis, Steve M. Bellovin, and Jonathan M. Smith.

Implementing a distributed firewall. In CCS ’00: Proceedings of the 7th ACM confer-

ence on Computer and communications security, pages 190–199, New York, NY, USA,

2000. ACM Press.

[23] Aaron D. Jaggard and Vijay Ramachandran. Robustness of Class-Based Path-Vector

Systems. In Proceedings of ICNP’04, pages 84–93. IEEE Computer Society, IEEE

Press, October 2004.

[24] Aaron D. Jaggard and Vijay Ramachandran. Robust Path-Vector Routing Despite

Inconsistent Route Preferences. In Proceedings of ICNP’06. IEEE Computer Society,

IEEE Press, November 2006.

[25] S. Kent and R. Atkinson. RFC 2401: Security architecture for the Internet Protocol,

November 1998.

[26] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for

Local and Metropolitan Area Networks - Virtual Bridged Local Area Networks, May

2003.

[27] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for

Local and Metropolitan Area Networks - Port-Based Network Access Control, Decem-

ber 2004.

[28] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC 1928: SOCKS

Protocol Version 5, March 1996.

[29] G. Malkin. RFC 2453: RIP version 2, November 1998.

99

[30] D. McPherson and editors V. Gill. BGP MULTI EXIT DISC (MED) Considerations.

RFC 4451, March 2006.

[31] Alper Tugay Mizrak. Fatih: Detecting and isolating malicious routers. In DSN ’05:

Proceedings of the 2005 International Conference on Dependable Systems and Networks

(DSN’05), pages 538–547, Washington, DC, USA, 2005. IEEE Computer Society.

[32] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The click modu-

lar router. In SOSP ’99: Proceedings of the seventeenth ACM symposium on Operating

systems principles, pages 217–231, New York, NY, USA, 1999. ACM Press.

[33] J. Moy. RFC 2328: OSPF version 2, April 1998.

[34] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. RFC 4120: The Kerberos Network

Authentication Service (V5), July 2005.

[35] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian Tier-

ney. A First Look at Modern Enterprise Traffic. In Proceedings of Internet Measurement

Conference, October 2005.

[36] Vern Paxson. Bro: a system for detecting network intruders in real-time. Comput.

Networks, 31(23-24):2435–2463, 1999.

[37] Payment Card Industry (PCI) Data Security Standard version 1.1. https://www.

pcisecuritystandards.org/, September 2006.

[38] J. Postel. RFC 791: Internet Protocol, September 1981.

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/

100

[39] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault. Multi-Topology

(MT) Routing in OSPF. http://tools.ietf.org/wg/ospf/draft-ietf-ospf-mt/,

November 2006.

[40] Yakov Rekhter, Tony Li, and editors Susan Hares. A Border Gateway Protocol 4

(BGP-4). RFC 4271, January 2006.

[41] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial In

User Service (RADIUS). http://www.ietf.org/rfc/rfc2865.txt, June 2000.

[42] E. Rosen, A. Viswanathan, and R. Callon. RFC 3031: Multiprotocol Label Switching

Architecture, January 2001.

[43] E. Rosen and Y.Rekhter. BGP/MPLS VPNs. RFC 2547, March 1999.

[44] University of Oregon RouteViews Project. http://www.routeviews.org.

[45] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.

ACM Trans. Comput. Syst., 2(4):277–288, 1984.

[46] João L. Sobrinho. An Algebraic Theory of Dynamic Network Routing. ACM/IEEE

Transactions on Networking, 13(5):1160–1173, October 2005.

[47] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and Randy H.

Katz. Characterizing the internet hierarchy from multiple vantage points. In Proc. of

IEEE INFOCOM 2002, New York, NY, Jun 2002.

[48] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark Handley,

Morley Mao, Scott Shenker, and Ion Stoica. HLP: a next generation inter-domain

http://tools.ietf.org/wg/ospf/draft-ietf-ospf-mt/
http://www.ietf.org/rfc/rfc2865.txt

101

routing protocol. In SIGCOMM ’05: Proceedings of the 2005 conference on Applica-

tions, technologies, architectures, and protocols for computer communications, pages

13–24, New York, NY, USA, 2005. ACM Press.

[49] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and Deborah Estrin.

The impact of routing policy on internet paths. In Proc. of IEEE INFOCOM 2001,

Anchorage, AK, Apr 2001.

[50] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent Route Oscilla-

tions in Inter-domain Routing. Computer Networks, 32(1):1–16, March 2000.

[51] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield:

vulnerability-driven network filters for preventing known vulnerability exploits. In

SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies, ar-

chitectures, and protocols for computer communications, pages 193–204, New York,

NY, USA, 2004. ACM Press.

[52] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern Paxson. Worms vs perimeters:

The case for hardLANs. In Hot Interconnects, August 2004.

[53] Geoffrey Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert Greenberg, and Gı́sli

Hjálmtýsson. Routing design in operational networks: a look from the inside. In

SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies, ar-

chitectures, and protocols for computer communications, pages 27–40, New York, NY,

USA, 2004. ACM Press.

	List of Figures
	List of Tables
	Introduction
	Contribution I: Precedence Solution
	Contribution II: Access Control Routing
	Discussion
	Organization

	Policies in Inter-Domain Routing
	Brief Overview
	Dispute Wheels
	The Precedence Metric
	Dispute Wheel Elimination
	Autonomy Loss in Presence of Disputes
	Accounting for Non-Strict Preferences

	From Theory To Practice
	Detection & Short-Term Memory
	Storage & Long-Term Memory
	A Simple Example
	A Complex Example
	A MED Example
	Convergence Proof
	Achievement of Goals

	Router Changes
	History Table
	Cause Table
	Adaptive Convergence Window

	Evaluation
	Simulator
	Metholodgy
	Metrics
	Results

	Discussion
	Constrained Policies
	Misbehavior
	Adaptive Filtering
	Misbehavior Detection

	Background
	Summary

	Policies in Intra-Domain Routing
	Brief Overview
	Networks in Practice
	Aggregation of Hosts via VLANs
	The Core Model: A Commercial Network
	The Edge Model: A Campus Network
	Summary of Differences

	Configuration Using Classes
	ACR Configuration Interface
	How Does ACR Work?
	Why Classes?

	ACR Design
	Design Space and Assumptions
	The Control Plane
	Data Plane
	Using ACR in Practice

	Implementation
	Configuration setup and Network entities
	Link-State ACR

	Evaluation
	Complexity Analysis
	Complexity: Evaluating ACR in Real-world Enterprises
	Quantitative: Performance Overhead of ACR

	Discussion
	Location-Independent Class Assignment
	Class Optimization

	Related Work
	Summary

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

