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Abstract

I describe an approach to modeling the dynamics of human category learning using

a tool from nonparametric Bayesian statistics called the Dirichlet process mixture

model (DPMM). The DPMM has a number of advantages over traditional models

of categorization: it is interpretable as the optimal solution to the category learn-

ing problem, given certain assumptions about learners’ biases; it automatically ad-

justs the complexity of its category representations depending on the available data;

and computationally efficient algorithms exist for sampling from the DPMM, despite

its apparent intractability. When applied to the data produced by previous experi-

ments in human category learning, the DPMM usually does a better job of explaining

subjects’ performance than traditional models of categorization due to its increased

flexibility, despite having the same number of free parameters.



1 Introduction

Despite years of progress in machine learning, the general problem of categorization

remains unsolved. Fortunately, many tasks in the field of cognitive science can be

phrased in terms of categorization, so there is a wealth of data available about the

dynamics of categorizers who perform quite well. Hopefully, these areas of study can

complement each other, with data collected from human subjects informing more

intelligent machine learning algorithms, which in turn inspire new theories about the

workings of the human mind.

The problem of category learning is typically posed as follows: given a sequence

of N − 1 stimuli with features xN−1 = (x1, . . . , xN−1) and category labels cN−1 =

(c1, . . . , cN−1) and an unlabeled stimulus N with features xN , we would like an al-

gorithm for assigning stimulus N to a category that produces results as similar as

possible to that of a human categorizer. Note that this is a separate problem from

learning the best-performing categorizing algorithm in an objective sense. Because

human performance on this task depends on several factors, including differences

between individual subjects and the particular experimental methodology, it seems

that adequately explaining human behavior in general is beyond our reach. However,

exploring the advantages and disadvantages of particular models in isolated contexts

will hopefully shed some light on the underlying processes of the human mind.

Many algorithms have been proposed to solve the categorization problem, such

as learning a decision boundary [5] and searching for deterministic rule-based cat-

egory descriptions [12]. Most approaches have featured some combination of two

very prominent ideas: (i) new stimuli are compared to the previously-seen stimuli

(the exemplars) from each category, and (ii) new stimuli are compared to a central

stimulus (the prototype) of each category, which need not be explicitly encountered

during training. These two general approaches were introduced by Medin and Schaffer

[8], and Posner and Keele [13], respectively. For example, the ALCOVE algorithm [7]
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combines the exemplar approach with a neural network to tune the parameter weights

automatically. The Varying Abstraction Model (VAM, [21]) attempts to bridge these

two approaches, taking the form of an exemplar model, a prototype model, or some-

thing in-between, depending on the value of a free parameter.

The marriage of these psychological models with Bayesian statistics has given rise

to a new generation of rational models of categorization, which attempt to cast human

cognitive behavior as the optimal solutions to appropriate computational problems

posed by the environment. In this framework, categorization can be solved by per-

forming Bayesian inference with reasonable prior distributions on category structures.

This idea was first introduced by Anderson in creating the Rational Model of Catego-

rization (RMC, [2, 3]). Following Anderson’s methodology, we introduce the Dirichlet

process mixture model of categorization, which inherits the flexibility of the RMC and

improves upon its weaknesses.

The remainder of the paper is organized as follows: in Section 2, I detail three

previous psychological models: the exemplar, prototype, and VAM. In Section 3,

I describe how traditional models of categorization can be interpreted as density

estimation schemes, I introduce three rational models of categorization – including

the Dirichlet process mixture model (DPMM) – and I mention an efficient scheme for

sampling from the DPMM. In Section 4, I present the results of applying the DPMM

to data from various prior experiments, and I conclude in Section 5.
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2 Psychological models of categorization

Psychological models based on exemplars and prototypes can be described as a spe-

cial case of the following framework: given N − 1 stimuli with features xN−1 =

(x1, . . . , xN−1) and their associated category labels cN−1 = (c1, . . . , cN−1), the prob-

ability that a new stimulus N with features xN belongs to some category j is given

by

P (cN = j|xN ,xN−1, cN−1) =
ηN,jβj∑
j ηN,jβj

(1)

where ηN,j is the similarity of the stimulus N to the category j and βj is the response

bias for category j. The key difference between the models is the way they calculate

the ηN,j quantities.

2.1 Exemplar models

In an exemplar model, a category is represented by all of its stored instances (ex-

emplars). The similarity of stimulus N to category j is calculated by summing the

similarity of the stimulus to all stored instances of the category. That is,

ηN,j =
∑
i|ci=j

σN,i

where σN,i is a symmetric measure of the similarity between the two stimuli with

features xN and xi. It can take any form that is convenient for a particular task, but

it is usually defined as a decaying exponential function of the distance between the

two stimuli as per [17], that is,

σN,i = exp(−δα
N,i)
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When α = 1, the similarity decays exponentially with the distance. When α = 2,

the similarity decays according to a Gaussian bell curve with the distance. Finally,

the distance δN,i between two stimuli is typically a weighted sum of the difference on

each dimension of the psychological space:

δN,i = c

(∑
d

wd |xN,d − xi,d|r
)1/r

where c is a scaling parameter, and r specifies which distance measure to use (r = 1

corresponds to city-block distance, r = 2 corresponds to Euclidean distance, etc.).

Note that as c → 0, the exemplar model tends to assign a new stimulus to the largest

category, and as c →∞, a new stimulus is assigned to the category of its single closest

neighbor.

As an example, consider the situation depicted in Figure 1, where the unknown

stimulus (denoted by a gray circle) is compared to every instance of a category (de-

noted by ‘X’s) to determine its similarity to the category. The computational com-

plexity and memory demands of this model can become a problem as categories grow

larger. Modifications to this standard approach must be made in situations where

previous data is extremely abundant and decisions need to be made very quickly.

However, it has been shown to explain human performance very well in many exper-

iments, especially when memory demands are minimal and ample time is allowed for

decisions to be made.

2.2 Prototype models

In a prototype model, a category j is represented by a single prototypical instance.

In this formulation, the similarity of a stimulus N to category j is defined to be

ηN,J = σN,pj
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Figure 1: Determining category similarity with an exemplar model involves comparing
the new stimulus to every stored instance of the category.

where ηN,pj
is a measure of the similarity between stimulus N and the prototype pj

of category j, defined as in the exemplar model. The category prototype is typically

defined to be the center of all the instances of the category:

pj =
1

Nj

∑
i|ci=j

xj

with Nj being the number of stimuli assigned to category j.

As an example, consider the situation depicted in Figure 2, where the unknown

stimulus (denoted by a gray circle) is compared only to the category prototype (de-

noted by a white square) to determine its similarity to the category. The prototype

is the centroid of all instances of the category.
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Figure 2: Determining category similarity with the prototype model involves com-
paring the new stimulus to the category prototype.

2.3 Comparison of exemplar and prototype models

Exemplar and prototype models both have strengths and weaknesses. Prototype

models are more cognitively plausible, since it is usually difficult for a person to re-

member the exact composition of every stimulus ever encountered, but it is reasonable

to assume that a prototypical instance near the category average can be inferred and

stored.

Furthermore, exemplar models can potentially overfit the training data. If either

of the parameters c or α is too large, the local surroundings of a new stimulus will be

given too much importance in comparison to the global trends of the data. Further-

more, exemplar models are more sensitive to mislabeled data points that happen to

be nearby the test stimulus.

However, exemplar models have the advantage of allowing for more expressive

category boundaries. Prototype models are typically restricted to convex, unimodal

distributions, while exemplar models can naturally create arbitrarily complicated dis-
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Figure 3: The two categories have the same prototype, so a basic prototype model
would not be able to distinguish between them.

tributions as the data warrants.

As an example, consider the situation depicted in Figure 3, where a prototype

model wouldn’t be able to differentiate between the two categories, whose prototypes

would be nearly identical, making differentiation very difficult. An exemplar model,

however, would correctly classify the test stimulus.

On the other hand, consider the situation depicted in Figure 4. Assuming the true

category boundary is linear, a prototype model would correctly classify the unknown

stimulus, while an exemplar model might incorrectly classify it because of the nearby

instances of the white category.

2.4 The Varying Abstraction Model

Realizing that these two models are at opposite ends of a spectrum, Vanpaemel et

al. [21] showed that we can formalize a set of interpolating models by allowing the

instances of each category to be partitioned into clusters, where the number of clusters

Kj in category j ranges from 1 to Nj, the number of instances of the category. Then
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Figure 4: An exemplar model might place too much importance on the nearby in-
stances of the white category, overshadowing the global trend of the data.

each cluster is represented by a prototype, which is defined to be the centroid of all

the instances of the cluster, and the similarity of stimulus N to category j is defined

to be

ηN,j =

Kj∑
k=1

ηN,pj,k
(2)

where pj,k is the prototype of cluster k in category j. When Kj = 1 for all categories

j, this is equivalent to the prototype model, and when Kj = Nj for all categories j,

this is equivalent to the exemplar model. Thus, this generalized model, the Varying

Abstraction Model (VAM), is more flexible than both the prototype and exemplar

models, so it will be able to outperform each one in both objective performance and

matching human performance. The drawback to the VAM is that the parameter

space is exponentially large, since we must choose a partition for each category. Any

cognitively plausible model of categorization must have an acceptable computational

complexity.

While the VAM provides a model with which we can interpolate between the pro-
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totype and exemplar models, it provides no cognitively plausible method for choosing

a partition of the category instances into clusters. Unfortunately, simply searching

over all possible partitions carries an exponential computational cost and is intractable

for even modestly-sized data sets. Moreover, this strategy ignores any possible biases

that human learners may have towards particular types of partitions.
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3 Rational models of categorization

The psychological models discussed in Section 2 attempt to explain human catego-

rization in terms of the cognitive processes being used. They make use of similar-

ity functions defined on pairs of stimuli that are justified in terms of psychological

plausibility. In contrast to this method, we now consider rational models of catego-

rization, following the example of Anderson [2]. Rational models describe the task of

categorization as the optimal solution to a computational problem posed by the envi-

ronment, rather than attempting to describe the underlying cognitive process being

used. The models are described using ideas from Bayesian statistics, which allows us

to use insights from statistical machine learning to create efficient algorithms to solve

them.

As in Section 2, assume we are given a set of N − 1 stimuli with features xN−1 =

(x1, . . . , xN−1) and their associated category labels cN−1 = (c1, . . . cN−1). Then we

can find the probability that a new stimulus N with features xN belongs to some

category j by applying Bayes’ rule as follows:

P (cN = j|xN ,xN−1, cN−1) =
P (xN |cN = j,xN−1, cN−1)P (cN = j|xN−1, cN−1)∑
j P (xN |cN = j,xN−1, cN−1)P (cN = j|xN−1, cN−1)

(3)

This yields an equation of the same form as Equation (1). We can compare the

similarity measure ηN,j to the likelihood of stimulus N being generated by category

j, P (xN |cN = j,xN−1, cN−1), and the category bias βj can be thought of as the prior

probability of category j, P (cN = j|xN−1, cN−1). In fact, if we constrain the variables

without any loss of generality so that
∫

xN
ηN,j = 1 and

∑
j βj = 1, then they become

probability functions and the correspondence works out exactly.

Ashby and Alfonso-Reese [4] showed that the three models described in Section 2

correspond to particular solutions of the density estimation problem in statistics. In

particular, the definition of ηN,pj
in the prototype model corresponds to estimating the

10



category likelihood distribution P (xN |cN = j,xN−1, cN−1) by assuming it comes from

a known family of distributions and determining the most likely parameter values,

which are characterized by the prototype pj. This is an instance of a well-known

technique in the statistics community called parametric density estimation.

Likewise, the definition of ηN,j in the exemplar model corresponds to approximat-

ing the distribution P (xN |cN = j,xN−1, cN−1) as the average of Nj distributions, one

centered on each exemplar. Thus, we have

P (xN |cN = j,xN−1, cN−1) =
1

Nj

∑
i|ci=j

Pi(xN)

where Pi(xN) is a distribution centered on xi and decreasing as the distance from xi

increases. The distributions are assumed to be symmetric, so Pi(xN) can be written

simply as f(xi, xN). In the statistics literature, f(·, ·) is known as a kernel function,

and this process is known as nonparametric kernel density estimation.

3.1 The Mixture Model of Categorization

Just as the VAM interpolates between traditional exemplar and prototype models,

the Mixture Model of Categorization (MMC) introduced by Rosseel [14] interpolates

between parametric and nonparametric density estimation. In this model, the proba-

bility P (xN |cN = j,xN−1, cN−1) is represented as a mixture of Kj distributions. Just

as in the VAM, the category instances are partitioned into clusters z, with each clus-

ter distribution being drawn from a known family of distributions parameterized by

the cluster prototype. So we have

P (xN |cN = j,xn−1, cN−1) =

Kj∑
k=1

P (xN |zN = k,xN−1, zN−1)P (zN = k|zN−1, cN = j, cN−1)
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When each category is represented by a single cluster, this model reduces to para-

metric density estimation (corresponding to the prototype model), and when each

stimulus has its own cluster, it reduces to nonparametric kernel density estimation

(corresponding to the exemplar model). Ashby and Alfonso-Reese [4] showed that

the MMC corresponds to the VAM, with the appropriate definition of ηN,pj,k
in Equa-

tion (2).

Like the VAM, the MMC lacks a method for choosing a clustering of the category

stimuli. This issue is addressed by the RMC and DPMM, which provide efficient

methods for choosing category partitions that are rationally justifiable.

3.2 The Rational Model of Categorization

Anderson’s Raional Model of Categorization (RMC, [2, 3]) specifies that the stimuli

are partitioned into clusters, as in the VAM. Instead of choosing among all possible

clusterings, though, each stimulus is assigned to a cluster in turn, according to a

greedy maximum a-posteriori rule. The probability that stimulus N is assigned to

cluster k is, according to Bayes’ Rule,

P (zN = k|xN ,xN−1, zN−1) =
P (xN |zN = k,xN−1, zN−1)P (zN = k|xN−1, zN−1)∑
k P (xN |zN = k,xN−1, zN−1)P (zN = k|xN−1, zN−1)

where P (xN |zN = k,xN−1, zN−1) is the likelihood of generating the stimulus from

cluster k, and P (zN = k|xN−1, zN−1) is the prior probability that the stimulus orig-

inated from cluster k. Since stimuli are assigned to clusters in turn, k ranges over

the values of the already-existing clusters, and a new, empty cluster. The cluster

likelihood P (xN |zN = k,xN−1, zN−1) can take any useful form, and is defined in [3]

such that the values on the individual dimensions of xN are independent. The prior
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distribution over zN is defined as follows:

P (zN = k|xN−1, zN−1) =


cMk

(1−c)+c(N−1)
if Mk > 0 (i.e., k is old)

(1−c)
(1−c)+c(N−1)

if Mk = 0 (i.e., k is new)

where Mk is the number of stimuli previously assigned to cluster k and the parameter

c is called the coupling probability.

While the RMC is computationally efficient, its clustering algorithm is locally

greedy, and there is no guarantee of the quality of the resulting partition, since it

produces different cluster assignments depending on the order in which stimuli are

encountered.

3.3 Dirichlet process mixture model

The Dirichlet process mixture model (DPMM) as presented in [10, 15] is akin to

the RMC in that it provides a rational account for partitioning stimuli into clusters.

However, its roots in Bayesian statistics provide an efficient way for sampling from it

that is asymptotically exact, as opposed to the locally greedy maximum a-posteriori

algorithm given for the RMC.

We assume that the stimuli xN−1 = (x1, . . . xN−1) belong to a particular category j

and are generated from a cluster such that the features of the stimulus are dependent

only on cluster membership. That is, the distribution over stimuli features, given a

particular cluster with parameters θi, is

xi | θi ∼ F (θi)

where F is some parameterized distribution. The distribution over the θi parameters,

i.e., the distribution over clusters, is equal to some distribution G drawn from the

Dirichlet process DP (G0, α), where G0 is the base distribution of the Dirichlet process
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and α is the concentration parameter for the base distribution.

θi |G ∼ G

G ∼ DP (G0, α)

With probability 1, the realization of a Dirichlet process is a discrete distribution,

so the DPMM can be thought of as a countably infinite mixture model of category j,

where the θi parameters select among the component distributions [10]. Accordingly,

we can think of the values of θi as determining a partition of the stimuli. In practice,

the values of θi themselves can be integrated out, with the parameters to the cluster

distributions being determined solely by their constituent members.

Once G0 and α are specified, we have a complete model for the probability of

generating stimulus N from category j. Summing over all possible partitions of the

category instances into clusters, we find that

P (xN |xN−1) =
∑
zN

P (xN |xN−1, zN)P (zN |xN−1)

where zi is the cluster to which stimulus i is assigned. We can use Bayes’ rule to write

P (zN |xN−1) =
P (xN−1|zN)P (zN)∑
zN

P (xN−1|zN)P (zN)
(4)

In the DPMM, the prior probability P (zN) on a partition is defined as

P (zN) =
αK∏N−1

i=0 (α + i)

K∏
k=1

(Mk − 1)!

where α is the concentration parameter for the DPMM, K is the number of clus-

ters, and Mk is the number of stimuli assigned to cluster k. This prior distribution

arises when cluster assignments are chosen incrementally using the Chinese Restau-
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rant Process (CRP, [1]). Consider a Chinese restaurant with an infinite number of

infinitely-large tables. The first customer sits at the first table, and each incoming

customer afterwards sits at a given table with probability proportional to the number

of people already at that table, and starts a new table with probability proportional

to α. The tables represent clusters within the partition, and the customers represent

the individual stimuli. So

P (zN = k|zN−1) =


Mk

N−1+α
, if Mk > 0 (i.e., k is old)

α
N−1+α

, if Mk = 0 (i.e., k is new)

Neal [10] pointed out that Anderson’s rational model of categorization is equivalent

to a DPMM where α, the strength of the base distribution, is equal to (1− c)/c, and

the latent variables assign stimuli to discrete clusters. This insight allows us to solve a

rational model of cognition using statistical inference algorithms designed for use with

DPMMs, rather than using Anderson’s locally greedy algorithm. For example, Gibbs

sampling and particle filtering allow us to perform approximate Bayesian inference

on this model without incurring the exponential computational cost.

3.4 Gibbs sampling

Markov chain Monte Carlo is a scheme whereby a Markov chain is constructed so

that the asymptotic distribution over its states x is equal to some desired distribution

f(x). After iterating through the Markov chain many times, samples of the desired

distribution can be approximated by sampling the states of the Markov chain.

Using Gibbs sampling, a form of Markov chain Monte Carlo, we can approximately

sample from the posterior distribution P (zN |xN−1) without having to consider all

exponentially many possible partitions. The Markov chain is constructed to have

the set of all possible partitions as its state space, and from any initial state, we
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repeatedly cycle through each stimulus and reassign it to a cluster sampled from

the distribution given below. The chain should eventually converge to the desired

posterior distribution. For each stimulus xi, we reassign it to a cluster by sampling

from

P (zi|zN\zi,xN) ∝ P (xi|zN ,xN\xi)P (zi|zN\zi)

where zN\zi is the cluster assignments for stimuli 1, . . . , i−1, i+1, . . . , N and xN\xi is

the features of stimuli 1, . . . , i−1, i+1, . . . , N . Due to the exchangeability property of

the DPMM, the probability P (zi|zN\zi) can be computed by assuming that stimulus

i is the last one to be chosen, and all the other cluster assignments have been made.

So by the Chinese Restaurant Process, we can assign zi by sampling from

P (zi = k|zN\zi) =


Mk

N−1+α
, if Mk > 0 (i.e., k is old)

α
N−1+α

, if Mk = 0 (i.e., k is new)
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4 Experimental results

In order to test the DPMM’s ability to model category learning, it was fit to hu-

man data from several experiments conducted by Smith and Minda in 1998 [18] and

Nosofsky et al. in 1994 [11].

4.1 Smith and Minda 1998

Smith and Minda ran several experiments with human subjects in order to capture

the dynamics of humans learning to differentiate between two small categories. Their

key result was that the prototype model had a better fit to human performance than

the exemplar model during the early stages of learning, but a worse fit during the

later stages. Thus, their experiments provide a good opportunity to test the DPMM’s

ability to automatically find the best interpolating point between the exemplar and

prototype models.

4.1.1 Experiment 1

The first experiment was set up as follows: subjects were presented with a series of

stimuli, each in the form of a six-letter nonsense word. The words can be represented

as bit-strings, where each bit determines which of two possible letters occurs at that

position within the word. There were 14 distinct stimuli, 7 of which were designated

as Category A, with the other 7 designated as Category B. Two different category

structures were used in separate parts of the experiment, denoted LS (linearly sepa-

rable) and NLS (not linearly separable). The stimuli used for Experiments 1:LS are

listed in Table 1. The categories in Experiment 1:LS are linearly separable, meaning

that each stimulus can be correctly categorized by taking a linear combination of the

values on its feature dimensions. Members of a category differ from its prototype

(000000 and 111111, for Category A and Category B, respectively) on at most 2
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Category A Category B
000000 banuly 111111 kepiro
010000 benuly 111101 kepilo
100000 kanuly 110111 keniro
000101 banilo 101110 kapiry
100001 kanulo 011110 bepiry
001010 bapury 101011 kapuro
011000 bepuly 010111 beniro

Table 1: Categories A and B from Smith & Minda 1998, Experiments 1:LS and 2:LS

Category A Category B
000000 gafuzi 111111 wysero
100000 wafuzi 011111 gysero
010000 gyfuzi 101111 wasero
001000 gasuzi 110111 wyfero
000010 gafuri 111011 wysuro
000001 gafuzo 111110 wyseri
111101 wysezo 000100 gafezi

Table 2: Categories A and B from Smith & Minda 1998, Experiments 1:NLS and
2:NLS

dimensions.

The stimuli used for Experiments 1:NLS are listed in Table 2. Each category

contains one prototypical stimulus (000000 or 111111), five stimuli each having five

features in common with the prototype, and one stimulus with only one feature in

common with the prototype. Note that there is no linear function of the individual

features that can correctly classify every stimulus.

In each experiment, the subjects were presented with a random permutation of the

14 stimuli and asked to identify each as belonging to either Category A or Category

B, receiving feedback after each stimulus. This block of 14 stimuli was repeated 28

times for each subject, and the response data was aggregated into 7 segments of 4

blocks each. The averaged responses are presented in Figures 5 (a) and 7 (a) for

Experiments 1:LS and 1:NLS, respectively.
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Modeling procedure

In order to compare the DPMM to the prototype and exemplar models, all three

were implemented in Matlab, exposed to the same training stimuli as the human

subjects, and used to categorize each stimulus after each segment of 4 blocks. All

three models were implemented with a cluster probability function that treats the

dimensions (individual letters) as independent features of the stimuli, so

P (xN |zN = k,xN−1, zN−1) =
∏

d

P (xN,d|zN = k,xN−1, zN−1) (5)

where xN,d is the value of the dth dimension of xN . The individual dimensions are

assumed to have Bernoulli probability distributions, where the parameter is integrated

out with a Beta(β0, β1) prior to obtain

P (xN,d = v|zN = k,xN−1, zN−1) =
Mk,v + βv

Mk + β0 + β1

(6)

where v is either 0 or 1, and Mk,v is the number of stimuli with value v on the dth

dimension and belonging to cluster k according to zN .

The prototype and exemplar models are simple enough to allow direct imple-

mentation, but since the DPMM allows the stimuli of each category to be arbitrarily

clustered, it becomes computationally infeasible to calculate its response probabilities

with even modest numbers of stimuli. To alleviate this problem, we used the Markov

chain Monte Carlo (MCMC) algorithm described in [20] and implemented by Y. Teh

[19] to approximate the DPMM’s true distribution over stimuli clusterings. For each

DPMM data point, we ran the MCMC algorithm with a burn-in of 1000 steps, fol-

lowed by 100 samples separated by 10 steps each. The α parameter of the Dirichlet

process was sampled at each step of the MCMC algorithm, using a Gamma(1,1) prior

distribution.
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Once the probability of stimulus N belonging to category j is determined for each

model, the response rule governing a subject’s behavior is given by

Presp(j|xN ,xN−1, cN−1) =
Γ

|{c1, . . . , cN−1}|
+ (1− Γ)

P (cN = j|xN ,xN−1, cN−1)
γ∑

j′ P (cN = j′|xN ,xN−1, cN−1)γ

(7)

where |{c1, . . . , cN−1}| is the number of categories under consideration, 0 ≤ Γ ≤ 1 is a

guessing-rate parameter, and γ ≥ 1 specifies the degree to which the subject responds

deterministically or probabilistically. Larger or smaller values of Γ make the response

distribution more or less uniform, respectively. When γ = 1, the subject matches the

probability of his responses to the probability of category membership. When γ = ∞,

the subject always responds with the most probable category. This response-scaling

parameter seems to be necessary to match human performance in different contexts.

In particular, it seems that there are individual differences between γ values between

different subjects in the same experiments [11]. Despite its apparent importance, it

is missing from a number of prominent models, such as Anderson’s RMC [2, 3]. The

guessing-rate parameter Γ also seems to be helpful in fitting the non-optimality of

human data for some experiments. Large values of Γ could possibly be explained by

fatigue, misunderstanding, memory constraints, or just a failure to cooperate.

As in Smith and Minda’s original modeling of this data, the guessing parameter

Γ was incorporated in each model. The guessing parameter was allowed to vary

between 0 and 1 across individual subjects, but was fixed per subject across every

instance of every stimulus. Furthermore, the values of β0 and β1 in Equation (5)

were fit to each subject, with the restriction that β0 = β1. Intuitively, this captures

the variation in the subjects’ tendencies to represent categories by either a few large

clusters or many small clusters. The γ parameter in Equation (7) was left out, so the

free parameters for each model are the guessing parameter Γ from Equation (7) and

the value of β0 = β1, which were all fit individually per subject as to maximize the
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total log likelihood of all the subjects’ responses over all training segments.

Results

The response rates of the prototype, exemplar, and DPMM models are shown in

Figures 5 (b), (c), and (d), respectively, for Experiment 1:LS. Figure 6 shows the log-

likelihood of the human data (interpreted as independent Bernoulli trials) under each

model across time. I was able to reproduce the early advantage for the prototype

model in fitting the human data, but unlike Smith and Minda, I did not see the

exemplar model beginning to take a lead in the later stages of learning. Instead, the

prototype model explained the human data better throughout the experiment. It is

not surprising that the complexity of the exemplar model is unnecessary to explain

human performance, since the categories are perfectly described by a simple prototype

representation. The DPMM performed almost identically to the prototype model in

all segments.

The response rates for Experiment 1:NLS are shown in Figure 7, and the log-

likelihood scores are presented in Figure 8. There is a very noticeable cross-over

effect in this experiment, where the distractor stimuli start off in the wrong categories

but are eventually learned to be more correctly classified. The prototype model

clearly fails to display this effect, while the exemplar model immediately classifies the

distractors correctly. Only the DPMM comes close to capturing this behavior. The

explanation given by Smith and Minda is that subjects tend to use a more prototype-

based model during the early stages of learning, switching to an exemplar-based model

later on. In fact, this is exactly what the DPMM does: it assigns all the stimuli in a

category to a single cluster at first, but with repeated exposure, the distractor stimuli

split off into a separate cluster. Thus, the DPMM resembles the prototype model at

first, and moves more towards the exemplar model as time progresses.
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Figure 5: Human data and model predictions for Smith & Minda 1998, Experiment
1:LS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B.
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Figure 6: Log likelihood of human data for Smith & Minda 1998, Experiment 1:LS,
with respect to each of the three models.
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Figure 7: Human data and model predictions for Smith & Minda 1998, Experiment
1:NLS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the exceptions to the prototype
structure (111101 and 000100, respectively).
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Figure 8: Log likelihood of human data for Smith & Minda 1998, Experiment 1:NLS,
with respect to each of the three models.
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4.1.2 Experiment 2

Smith and Minda decided to recreate Experiment 1, allowing subjects to continue

learning for more trials. Their original analysis showed that the prototype model

better explained human performance than the exemplar model until the very end of

the experiment, and they were curious whether the exemplar model would signifi-

cantly overtake the prototype model in later learning.

The data and procedure for Experiment 2 are identical to that of Experiment 1,

with the exception that subjects were shown 40 blocks of the 14 stimuli rather than 28

blocks. These trials were aggregated into 10 segments of 4 blocks each. The averaged

responses are shown in Figures 9 (a), and 11 (a) for Experiments 2:LS and 2:NLS,

respectively.

Modeling procedure

The same modeling procedure was followed for Experiment 2 as for Experiment 1.

Results

The response rates of the prototype, exemplar, and DPMM models are shown in

Figures 9 (b), (c), and (d), respectively, for Experiment 2:LS. Figure 10 shows the

log-likelihood of the human data under each model across time. There are no surprises

here beyond Experiment 1:LS. I was unable to reproduce the advantage in later stages

of training for the exemplar model found by Smith and Minda; the prototype model

maintains a steady lead throughout the experiment. Again, the DPMM explains the

human data equally well as the prototype model.

The response rates for Experiment 2:NLS are shown in Figure 11, and the log-

likelihood scores are presented in Figure 12. As in Experiment 1:NLS, there is a

noticeable crossing-over behavior for the two distractor stimuli. Once again, the

DPMM is the only model able to capture this effect, so it better fits the human data.
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Figure 9: Human data and model predictions for Smith & Minda 1998, Experiment
2:LS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B.
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Figure 10: Log likelihood of human data for Smith & Minda 1998, Experiment 2:LS,
with respect to each of the three models.
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Figure 11: Human data and model predictions for Smith & Minda 1998, Experiment
2:NLS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the exceptions to the prototype
structure (111101 and 000100, respectively).
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Figure 12: Log likelihood of human data for Smith & Minda 1998, Experiment 2:NLS,
with respect to each of the three models.
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Category A Category B
1010 kupo 1110 kypo
0110 bypo 1011 kupa
0001 buna 1101 kyna
1100 kyno 0111 bypa

Table 3: Categories A and B from Smith & Minda 1998, Experiment 3:LS

Category A Category B
0001 buna 1000 kuno
0100 byno 1010 kupo
1011 kupa 1111 kypa
0000 buno 0111 bypa

Table 4: Categories A and B from Smith & Minda 1998, Experiment 3:NLS

4.1.3 Experiment 3

The purpose of Smith and Minda’s Experiment 3 was to determine if human perfor-

mance in learning smaller, less-differentiated categories would be better explained by

an exemplar model. They hypothesized that in this situation, exemplar-based strate-

gies would emerge sooner and be more pronounced than in the previous experiments.

As before, subjects were presented with stimuli in the form of nonsense words.

However, the words were only four letters long, and categories consisted of only

four members each. Again, two different categories structures were used (identical

to those used by Medin and Schwanenflugel [9] in their Experiment 2), one being

linearly separable and the other being not linearly separable. The stimuli used for

Experiment 3:LS are listed in Table 3. Here, category membership can be determined

by counting the number of 1s in the stimulus (a linear function of the dimensional

values).

The stimuli used in Experiment 3:NLS are listed in Table 4. Here, category mem-

bership cannot be determined by any linear combination of the individual dimensional

values.
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The procedure used in Experiment 3 is identical to that of Experiments 1 and 2,

with subjects being exposed to 70 blocks of the 8 stimuli. The trials were aggregated

into 10 segments of 7 blocks each, and the average responses are shown in Figures 13

(a) and 15 (a) for Experiments 3:LS and 3:NLS, respectively.

Modeling procedure

The same modeling procedure was followed for Experiment 3 as for Experiments 1

and 2.

Results

The response rates of the prototype, exemplar, and DPMM models are shown in

Figures 13 (b), (c), and (d), respectively, for Experiment 3:LS. Figure 14 shows the

log-likelihood of the human data under each model across time. As opposed to the

findings of Smith and Minda, the prototype model dominates the exemplar model in

explaining human responses throughout the experiment. Also, since the categories

are less distinguished than in Experiments 1 and 2, the increased flexibility of the

DPMM allows it to better capture the dynamics of human learning, so it has the

strongest fit, especially in the later stages of learning.

The response rates for Experiment 3:NLS are shown in Figure 15, and the log-

likelihood scores are presented in Figure 16. Here, the exemplar model does out-

perform the prototype model in explaining the human data from the first segment

onward, as found by Smith and Minda. However, this advantage is shadowed by the

even better fit provided by the DPMM. As in the previous NLS category structure,

there seems to be a crossover effect (depicted by the triangular markers in Figure 15),

which is captured very well by the DPMM.
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Figure 13: Human data and model predictions for Smith & Minda 1998, Experiment
3:LS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B.
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Figure 14: Log likelihood of human data for Smith & Minda 1998, Experiment 3:LS,
with respect to each of the three models.
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Figure 15: Human data and model predictions for Smith & Minda 1998, Experiment
3:NLS. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the distractor stimuli (1011 and
1000, respectively).

1 2 3 4 5 6 7 8 9 10
!650

!600

!550

!500

!450

!400

!350

!300

Segment

Lo
g 

lik
el

ih
oo

d 
of

 h
um

an
 d

at
a

 

 

prototype
exemplar
DPMM

Figure 16: Log likelihood of human data for Smith & Minda 1998, Experiment 3:NLS,
with respect to each of the three models.
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4.1.4 Experiment 4

Smith and Minda decided to replicate some of their previous experiments using dif-

ferent stimuli. While Experiments 1, 2, and 3 exposed subjects to nonsense words,

Experiment 4 instead used line drawings of bug-like creatures.

There were two sets of category structures: 4-dimensional not linearly separable

(identical to those in Experiment 3:NLS), and 6-dimensional not linearly separable

(identical to those in Experiments 1:NLS and 2:NLS). The graphical depiction of the

stimuli is shown in Figures 17 and 18 for Experiment 4:4D, and in Figures 19 and 20

for Experiment 4:6D. Here, each binary-valued dimension of a stimulus corresponds

to one of two values for a feature of the line drawing, e.g., eye type, body size, and

antenna shape.

Subjects were exposed to 70 blocks of the 8 stimuli in Experiment 4:4D and 40

blocks of the 14 stimuli in Experiment 4:6D. The responses were aggregated into 10

segments of 7 blocks each for Experiment 4:4D and 10 segments of 4 blocks each for

Experiment 4:6D. The average responses are shown in Figure 21 (a) and 23 (a) for

Experiment 4:4D and Experiment 4:6D, respectively.

Modeling procedure

The same modeling procedure was followed for Experiment 4 as for Experiments 1-3.

Results

The response rates of the prototype, exemplar, and DPMM models are shown in

Figures 21 (b), (c), and (d), respectively, for Experiment 4:4D. Figure 22 shows the

log-likelihood of the human data under each model across time. In this experiment,

Smith and Minda found a significant advantage for the exemplar model throughout

all stages of learning. My results partially recreate this, showing a slight advantage

for the exemplar model through most stages of learning. The DPMM fit the human
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Figure 17: The Category A stimuli for Experiment 4:4D.
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Figure 18: The Category B stimuli for Experiment 4:4D.
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Figure 19: The Category A stimuli for Experiment 4:6D.
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Figure 20: The Category B stimuli for Experiment 4:6D.
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Figure 21: Human data and model predictions for Smith & Minda 1998, Experiment
4:4D. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the distractor stimuli (1011 and
1000, respectively).
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Figure 22: Log likelihood of human data for Smith & Minda 1998, Experiment 4:4D,
with respect to each of the three models.
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Figure 23: Human data and model predictions for Smith & Minda 1998, Experiment
4:6D. (a) Human performance. (b) Prototype model. (c) Exemplar model. (d)
DPMM. For all panels, white plot markers are stimuli in Category A, and black are
in Category B. Triangular markers correspond to the exceptions to the prototype
structure (111101 and 000100, respectively).
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Figure 24: Log likelihood of human data for Smith & Minda 1998, Experiment 4:6D,
with respect to each of the three models.
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to the third learner, and so forth. Through simulations,
Kirby and his colleagues have shown that languages
with properties similar to those of human languages can
emerge from iterated learning with simple learning algo-
rithms (Kirby, 2001; Smith, Kirby, & Brighton, 2003).

Griffiths and Kalish (2005) provided a formal analy-
sis of the consequences of iterated learning for the case
where learners are Bayesian agents. Assume that a
learner has a set of hypotheses, H, and that their biases
are encoded through a prior probability distribution,
P (h), specifying the probability a learner assigns to the
truth of each hypothesis h ∈ H before seeing some data
d. Bayesian agents evaluate hypotheses using a principle
of probability theory called Bayes’ rule. This principle
states that the posterior probability P (h|d) that should
be assigned to each hypothesis h after seeing d is

P (h|d) =
P (d|h)P (h)

∑

h′∈H
P (d|h′)P (h′)

(1)

where P (d|h), the likelihood, indicates the probability of
the data d under hypothesis h.

We can now formally analyze the consequences of iter-
ated learning with Bayesian learners. Each learner uses
Bayes’ rule to compute a posterior distribution over the
hypothesis of the previous learner, samples a hypothesis
from this distribution, and generates the data provided
to the next learner using this hypothesis. The probabil-
ity that the nth learner chooses hypothesis hn given that
the previous learner chose hypothesis hn−1 is

P (hn|hn−1) =
∑

d

P (hn|d)P (d|hn−1) (2)

where P (hn|d) is the posterior probability obtained from
Equation 1. This specifies the transition matrix of
a Markov chain, since the hypothesis chosen by each
learner depends only on that chosen by the previous
learner. Griffiths and Kalish (2005) showed that when
the learners share a common prior, P (h), the stationary
distribution of this Markov chain is simply the prior as-
sumed by the learners. The Markov chain will converge
to this distribution under fairly general conditions (e.g.,
Norris, 1997). This means that the probability that the
last in a long line of learners chooses a particular hypoth-
esis is equal to the prior probability of that hypothesis,
regardless of the data provided to the first learner.

Testing convergence to the prior
The theoretical results summarized in the previous sec-
tion raise a tantalizing possibility: if iterated learning
converges to the prior, perhaps we can reproduce it in the
laboratory as a means of determining people’s inductive
biases. However, these results are based on the assump-
tion that the learners are Bayesian agents. Whether the
predictions of this account will be borne out with human
learners is an empirical question.

To test whether iterated learning with human learners
will converge to an equilibrium reflecting people’s induc-
tive biases, we need to use a set of stimuli for which
these biases are well understood. One such set of stimuli
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Figure 1: (a) Types of category structures for stimuli
defined on three binary dimensions. Vertices are objects,
with color indicating category membership. (b) Design
of iterated category learning experiments (see Method).

comes from the literature on category learning. Shep-
ard et al. (1961) conducted an experiment exploring the
relative difficulty of learning different kinds of category
structures defined on objects that vary along three bi-
nary dimensions, such as shape, color, and size. Cate-
gories are defined in terms of which subsets of the eight
possible objects they contain. In principle, there are 256
different category structures, but if we restrict ourselves
to categories with four members, this number is reduced
to 70. If we collapse together structures that are identi-
cal up to rotation and negation, this number is reduced
still further, giving us a total of six different types of
category structures. Examples of categories belonging
to these six types are shown in Figure 1(a).

Shepard et al. (1961) found that there is great varia-
tion in the ease with which people learn different types
of category structures. Type I, in which membership
is defined along a single dimension, is easiest to learn,
followed by Type II, in which two dimensions are suffi-
cient to identify members. Next come Types III, IV, and
V, which all correspond to a one-dimensional rule plus
an exception, and are about equally difficult to learn.
Type VI, in which no two members share a value along
more than one dimension, is hardest to learn. Similar
results have been obtained by Nosofsky, Gluck, Palmeri,
McKinley, and Glauthier (1994) and Feldman (2000).

Figure 25: The six types of category structures used in Nosofsky et al. 1994.

data significantly better overall, however. As in Experiments 1-3, this is presumably

due to the crossover effect of the Category A distractor stimulus.

The response rates for Experiment 4:6D are shown in Figure 23, and the log-

likelihood scores are presented in Figure 24. The comparison of the prototype and

exemplar models’ performance in this experiment is comparable to the findings of

Smith and Minda. The DPMM again explains human performance significantly better

overall.

4.2 Nosofsky et al. 1994

The Nosofsky et al. 1994 experiment is a replication and extension of Shepard,

Hovland, and Jenkins (1961). The goal of the experiment was to determine the

relative performance of three existing categorization models (ALCOVE [7], RMC

[2, 3], and the configural-cue model [6]) on the well-known task of learning category

structures defined on stimuli with three binary-valued features. Modulo reflection,

rotation, and inversion, it is possible to define six different 2-category structures,

shown in Figure 25. It has been shown previously [16] and confirmed by Nosofsky et
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al. that people are able to learn categories of Type I most easily, followed by Type

II, then Types III, IV, and V, with Type VI structures being the most difficult to

learn. The key result of this experiment is that models excel at explaining human

performance when they include a way for certain dimensions of the stimuli to receive

preference when calculating psychological distances.

Although the basic cluster density function given by Equation (5) doesn’t include

weighting coefficients for the different dimensions, it allows stimuli to be clustered

together which share many common features. So we would expect that the DPMM

should tend to create a separate cluster for each contiguous group of stimuli and more

quickly learn category structures with fewer clusters. This intuition is in congruence

with the difficulty displayed by human learners.

For each of the six category structure types, the subjects were presented with a

series of stimuli in the form of a simple drawing that assumed three binary-valued

features: shape, color, and size. Each stimulus was either a square or a triangle, black

or white, and large or small. Each of the six types of category structures in Figure 25

were tested. The subjects were presented with a random permutation of the 8 stimuli

and asked to identify each as belonging to either Category A or Category B, receiving

feedback after each stimulus. This block of 8 stimuli was repeated 50 times for each

subject, and the average training error for each category structure type and segment

of 2 blocks was recorded. The authors found that most training errors had dropped

to zero after 16 segments of 2 blocks, so only these segments were used to compare

model fits. The average training errors are presented in Figure 26 (a).

Modeling procedure

The three models were exposed to the same data as the human subjects and used

to categorize each stimulus after each segment of 2 blocks. The cluster probability

distributions were identical to those used in the Smith and Minda experiments (see
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Figure 26: Average number of errors per segment of human data and model predic-
tions for Nosofsky et al. 1994. (a) Human performance. (b) Prototype model. (c)
Exemplar model. (d) DPMM.

Equations (5) and (6)). Again, a guessing-rate parameter Γ was used, but not a

response-scaling parameter γ (see Equation (7)).

Rather than fitting the parameters β0 = β1 and Γ to each subject individually,

the procedure used by Nosofsky et al. in [11] was followed, where the parameters of

each model were fixed across all subjects and category types.

Results

The response rates of the prototype, exemplar, and DPMM models are shown in

Figures 26 (b), (c), and (d), respectively. Table 5 shows the total sum-squared-error

between the human error rates and the model error rates for all category structure

types.

This experiment highlights the main weakness of a prototype-based model: in type

II and type VI category structures, the two categories have identical prototypes, and

so the model is unable to do any better than random guessing in these situations.

Only type I and type IV category structures are sufficiently differentiated for the

prototype model to perform well. The exemplar model, on the other hand, can

perform as objectively well as necessary. Unfortunately, it is unable to learn from
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Model SSE
Prototype 7.721
Exemplar 1.328
DPMM 0.347

Table 5: The sum-squared-error (SSE) of the best-fitting model of each type. SSE
is computed across all six category structure types and all 16 training segments.

repeated exposure and is constrained to a flat error curve. The DPMM interpolates

between a prototype-style representation and an exemplar-style representation and

explains human performance much better than the other two models.

Nosofsky et al. report SSE values below 0.25 for all the models they implemented,

with the RMC achieving 0.182 in particular. The SSE value of the DPMM comes

impressively close to this, considering it has only 2 free parameters, while the RMC,

as implemented by Nosofsky et al., has 4.
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5 Conclusion

There is a long history of various algorithms attempting to model the dynamics of hu-

man categorization. Most can be described as some adaptation of the basic exemplar

and prototype models. Since these two models have unique strengths and weaknesses

and can be interpreted as opposite ends of a spectrum, much attention has been given

to finding new models that interpolate between them. In particular, the Varying Ab-

straction Model [21] and Mixture Model of Categorization [14] allow categories to

be represented as a combination of discrete clusters. The Rational Model of Catego-

rization (RMC) [2, 3] provides an efficient algorithm for automatically determining

cluster memberships, but it suffers from a number of problems. With Neal’s realiza-

tion that the RMC’s underlying model is equivalent to that of the Dirichlet process

mixture model (DPMM), we are able to implement an algorithm for sampling from

this model that is both efficient and asymptotically optimal. The DPMM’s ability to

automatically interpolate between prototype and exemplar-style models as the data

warrants is the key feature that allows it to explain human performance so well.
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Saint-Flour, XIII—1983, pages 1–198. Springer, Berlin, 1985.

[2] John R. Anderson. The adaptive character of thought. Erlbaum, Hillsdale, NJ,

1990.

[3] John R. Anderson. The adaptive nature of human categorization. Psycholgical

Review, 98(3):409–429, 1991.

[4] F. Gregory Ashby and Leola A. Alfonso-Reese. Categorization as probability

density estimation. Journal of Mathematical Psychology, 39:216–233, 1995.

[5] F. Gregory Ashby and Ralph E. Gott. Decision rules in the perception and

categorization of multidimensional stimuli. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 14(1):33–53, January 1988.

[6] Mark A. Gluck and Gordon H. Bower. Evaluating an adaptive network model of

human learning. Journal of Memory and Language, 27(2):166–195, April 1988.

[7] John K. Kruschke. Alcove: An exemplar-based connectionist model of category

learning. Psycholgical Review, 99(1):22–44, January 1992.

[8] Douglas L. Medin and Marguerite M. Schaffer. Context theory of classification

learning. Psychological Review, 85(3):207–238, 1978.

[9] Douglas L. Medin and Paula J. Schwanenflugel. Linear separability in classi-

fication learning. Journal of Experimental Psychology: Human Learning and

Memory, 7(5):355–368, 1981.

[10] Radford M. Neal. Markov chain sampling methods for dirichlet proces mixture

models. Technical Report 9815, Department of Statistics, University of Toronto,

September 1998.

[11] Robert M. Nosofsky, Mark A. Gluck, Thomas J. Palmeri, Stephen C. McKinley,

and Paul Glauthier. Comparing models of rule-based classification learning: A

replication and extension of shepard, hovland, and jenkins (1961). Memory and

Cognition, 22(3):352–369, 1994.

40



[12] Robert M. Nosofsky, Thomas J. Palmeri, and Stephen C. McKinley. Rule-plus-

exception model of classification learning. Psycholgical Review, 101(1):53–79,

1994.

[13] M. I. Posner and S. W. Keele. On the genesis of abstract ideas. Journal of

Experimental Psychology, 77:353–363, 1968.

[14] Yves Rosseel. Mixture models of categorization. Journal of Mathematical Psy-

chology, 46:178–210, 2002.

[15] Adam N. Sanborn, Thomas L. Griffiths, and Daniel J. Navarro. A more rational

model of categorization. In Proceedings of the 28th Annual Conference of the

Cognitive Science Society, 2006.

[16] R. N. Shepard, C. I. Hovland, and H. M. Jenkins. Learning and memorization

of classifications. Psychological Monographs, 75, 1961. 13, Whole No. 517.

[17] Roger N. Shepard. Towards a universal law of generalization for psychological

science. Science, 237(4820):1317–1323, September 1987.

[18] J. David Smith and John Paul Minda. Prototypes in the mist: The early epochs

of category learning. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 24(6):1411–1436, 1998.

[19] Yee Whye Teh. Nonparametric bayesian mixture models - release 1. http:

//www.gatsby.ucl.ac.uk/∼ywteh/research/software.html.

[20] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierar-

chical Dirichlet processes. In Advances in Neural Information Processing Systems

17. MIT Press, Cambridge, MA, 2004.

[21] W. Vanpaemel, G. Storms, and B. Ons. A varying abstraction model for cate-

gorization. In B. Bara, L. Barsalou, and M. Bucciarelli, editors, Proceedings of

the 27th annual conference of the Cognitive Science Society, pages 2277–2282,

Mahwah, NJ, 2005. Lawrence Erlbaum.

41


