
Automated Design for Current-Mode Pass-Transistor
Logic Blocks

Matthew David Pierson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-70

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-70.html

May 19, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Automated Design for Current-Mode
Pass-Transistor Logic Blocks

Matthew David Pierson
University of California at Berkeley

Department of Electrical Engineering and Computer Sciences

May 18, 2007

Automated Design for Current-Mode Pass-Transistor Logic Blocks

by Matthew David Pierson

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of

California at Berkeley, in partial satisfaction of the requirements for the degree of Master of

Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Jan M. Rabaey

Research Advisor

Date

* * * * * *

Professor Kurt Keutzer

Second Reader

Date

Table of Contents

List of Figures iii

Acknowledgments v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Organization of Report . 2

2 Background 5
2.1 Current-Mode Pass-Transistor Logic 5
2.2 Self-Timed Logic . 7
2.3 Automated Design . 12

3 Synthesis 15
3.1 Introduction . 15
3.2 CLB Synthesis using FPGA Technology 16
3.3 Synthesis for Energy, Delay, and Area 17
3.4 Post Synthesis Verification . 20

4 Bridging Front End and Back End 21
4.1 Transforming LUTs to CLBs . 22

4.1.1 Changing sizes of CLBs . 22
4.1.2 Making Heterogeneous Mappings Homogenous 23

4.2 Simulation and Physical Design . 25

5 Physical Design 27
5.1 Creating the CLBs . 27

ii TABLE OF CONTENTS

5.1.1 Programming the CLBs . 27
5.1.2 Import CLBs . 28
5.1.3 Place and Route . 29

5.2 Final Verification . 29

6 Conclusion 33
6.1 Summary of Work Completed . 33
6.2 Future Work . 35

6.2.1 Automated Control Logic . 35
6.2.2 New Architectures . 35

A List of Software used in Design Flow 39

List of Figures

2.1 CLB Structure . 6
2.2 Four-Phase Handshaking with Muller C-elements 9
2.3 Four-Phase Handshaking for CLB Pipelines 9
2.4 Final Self-Timed CLB Pipeline . 10
2.5 Self-Timed CLB Block Diagram . 11
2.6 Typical Automated Design Flow . 12

3.1 Area, Delay, Energy, and Leakage of CLBs 18
3.2 Optimization Chart for Example Circuit 19
3.3 Synthesis Flow Diagram . 20

4.1 Graph of simple CLB design . 22
4.2 Transforming CLB Sizes . 24

5.1 Programming the Tree . 28
5.2 Physical Design Flow Diagram . 30
5.3 Final Placed and Routed Circuit . 31

6.1 Flowchart of Full Design Flow . 34

Acknowledgements

This work would not have been possible without the help and influence of many

people. First, I would like to thank professors Jan Rabaey and Kurt Keutzer. Both

have offered guidance to me during my tenure here at Berkeley as well as reading

this paper and offering helpful suggestions. Second, to all of the people I have met

and worked with at the BWRC. I have learned more here in the last two years than

I could’ve ever imagined, and a lot of it is due to my colleagues at BWRC: Nathan

Pletcher, Louis Alarcon, Simone Gambini, Cristian Marcu, Jesse Richmond, Michael

Mark, Tsung-Te Liu, David Chen, and Luca DeNardis. Whether it’s helping me with

work or just offering a friendly distraction, I could not have done it without all of

your help. Special thanks also go to all of the friends I made when I arrived who

made it so much easier to adapt to new surroundings in a new city. I hope to be at

all of your weddings, just like you all came to mine.

Next, to my friends and family, most of whom I left back in Texas. My parents

have always offered their everlasting support, and I am extremeley lucky and grateful

for all of it. To my friends back home, I can’t wait to make up for the time I’ve

missed with you all the last two years. Being able to talk to you all with 1800 miles

vi LIST OF FIGURES

between us has made this entire experience easier.

Finally, I owe the world to my wife Jennifer. You have been there for me since we

met, and I can’t imagine how my life would be now without you by my side through

all of it. To everyone here, once more, Thank You.

Chapter 1

Introduction

1.1 Motivation

The rapid advancement of technology constantly creates new avenues for electronics

application. This innovation, at the same time, leads to greater complexity and in-

creased design time. To keep up with this complexity, automated tools are needed in

the design process. Digital circuits are robust enough to make automatic implementa-

tion possible, and tools are widely used in industry and academia. New design styles,

however, do not usually fit directly into current tools, and until tools are available

their applicability is severely limited and research is slowed. Application in industry

is not possible until tools are available since Time To Market (TTM) is one of the

most important, if not the most important constraint.

While transistors are shrinking, integration levels and the size of silicon die are

growing. In traditional synchronous designs, clock distribution and synchroniza-

2 Introduction

tion become difficult tasks and lead to very conservative design margins or excessive

power/area budgets. For these reasons, self-timed logic is slowly emerging as a vi-

able alternative. This solution allows each block in a design to move at its natural

speed and does not require a large synchronized network to distribute a global clock.

Unfortunately, tool support for self-timed designs is not as widespread as traditional

synchronous designs.

1.2 Contribution

This research is meant to create an automated design flow to speed implementation

and take advantage of key characteristics of a new self-timed logic style. Presented

is a complete front to back design flow for flat1 datapath blocks. The tools not

only automate the implementation but also optimize in the energy, area, and delay

domains.

1.3 Organization of Report

This report focuses on the self-timed logic style, its characteristics, and the design

flow that allows designers to quickly create implementations that meet design re-

quirements. Chapter 2 presents background information on the new logic style,

asynchronous logic techniques and their application to the logic style, and current

automated design. Chapter 3 discusses the synthesis portion of the design flow which

1Designs without multiple levels of hierarchy

1.3 Organization of Report 3

creates a gate level implementation of RTL to meet design goals. Next, Chapter 4

focuses on filling the gap between synthesis and the physical implementation of the

circuit. Then Chapter 5 covers the automation of the physical implementation of the

circuit onto silicon for manufacturing. Finally, Chapter 6 summarizes the work as a

whole and looks at future directions for the design flow.

Chapter 2

Background

2.1 Current-Mode Pass-Transistor Logic

Over the past 15 years power consumption has gone from a non-factor to a major

design constraint, especially with the popularity of mobile devices that cannot afford

a heat sink or active heat dissipation. Since power is energy per unit time, reducing

power means decreasing the dissipated energy or spreading the same energy over a

longer time. Since performance requirements often quickly follow power requirements

making the computation time longer is not usually an option. Therefore, the energy

per operation must be reduced in order to keep the same performance and still reduce

the power consumption. This is the goal of the current-mode pass-transistor project.

This current-mode pass-transistor logic is made up of logic gates called CLBs.

A CLB can implement any logical function up to seven inputs. Figure 2.1 shows a

two-input CLB implementing an AND function. On the left, a current steering tree

6 Background

BInputs

Sense AmplifierCurrent-Mode Pass-Transistor Tree

A

BInputs

S Out

B

Root

A

B
Root

B

S O t

Programming

S Enable Out

Figure 2.1: CLB Structure

computes the output once the inputs are valid and the root drive is activated. The

logic function of the CLB depends on which terms of the tree are tied to S (on set) or

S (off set). Then a sense amplifier, right, is activated by a clock to latch the output

and bring it to full swing at Out and Out.

The stack effect in the tree and the limited number of power/ground connections

allow for very low threshold devices without major leakage penalties. Reducing the

threshold of these devices will allow for high speed with large trees. Using pass

transistors this way also eliminates the possibility of sneak paths (shorts from power

to ground) common to traditional pass-transistor design. The ability of the sense

amplifier to sense small voltage differences will allow for a minimum amount of energy

required to do the actual computation in the tree. However, these advantages come

2.2 Self-Timed Logic 7

at the price of timing complexity. The tree needs to be reset before each computation

to “erase” all of the information from the previous one, and the sense amp needs to

know when to latch the output. Originally, a pipeline of these CLBs was timed using

two out-of-phase clocks [1]. However, global clock distribution is a major issue in

large designs, and building control logic with feedback loops out of clocked CLBs is

not trivial. These reasons led to a new self-timed CLB implementation.

2.2 Self-Timed Logic

Self-timed logic presents many advantages over traditional synchronous logic. A

global clock distribution network is not required, freeing up design time, power, and

area. Local timing makes the circuit more robust to manufacturing variations and

allows for more aggressive timing strategies. Traditional synchronous designs have a

clock transitioning all of the time, even when the circuit is doing nothing useful. Self-

timed designs, however, remain in a stable quiescent state with no signal transitions

until a request is made; this can be a great help in passive energy dissipation. This is

very advantageous for applications running on batteries that are heavily duty cycled,

but these advantages come at a design difficulty cost, and industrial tool support for

asynchronous designs in still in its infancy.

Self-timed logic requires control signals to travel with data instead of a global

clock synchronizing everything. In each data transaction a sender transmits data

to a receiver [2]. The data transfer takes place on three lines connecting sender

and receiver: one data bus, a request (Req) control line, and an acknowledge (Ack)

8 Background

control line. The sender places data on the line and switches the value of the Req

line. The sender then waits for the receiver to acknowledge acceptance of the data

by changing the polarity of the Ack line; during this time the flow of data from

sender to receiver is stalled. This process repeats for each piece of data moving

through the pipeline. This protocol is referred to as two-phase handshaking and is

the simplest option. However, this scheme depends on circuitry sensing transitions

in both directions. Typical CMOS circuits are usually level triggered or sensitive to

one specific transition, not both transitions [3].

Another protocol for self timing is four-phase or return-to-zero signaling. In this

protocol, all control signals return to their initial value between each data transfer.

Just as before, the sender places data on the line and signals Req. The receiver signals

on Ack when the data is accepted. Then the sender returns the Req line to its initial

value followed by the receiver returning Ack to its initial value, signaling that it is

ready for the next cycle [3].

The CLB logic block operates in a four-phase mode, starting in a reset phase,

evaluating, passing on its data, and then returning to the reset phase before the next

evaluation. For this reason a four-phase protocol is a natural choice for self-timed

CLBs. Four phase signaling can be easily synthesized using Muller C-elements and is

shown in Figure 2.2 [4]. Below in the same figure is the C-element implementation

applied to a CLB pipeline.

There is one minor change needed to the four-phase implementation of Figure

2.2. The dotted connection will lead to incorrect operation because of the sense

amplifiers’ operation. When the enable input to the sense amp is a logic 0, the sense

2.2 Self-Timed Logic 9

C C ReqoutReqin

AckinAckout

SA

Starti Donei

Treei

Eni

SAi+1 Treei+1

Eni+1 Starti+1 Donei+1

SAi
Datai-1 Datai+1

C C

Starti

C C

DoneiEni Eni+1 Starti+1 Donei+1

Reqi-1 Reqi+1

Ack

Reqi

Acki AckAcki-1
i Acki+1

Figure 2.2: Four-Phase Handshaking with Muller C-elements

amplifier goes into a reset mode and brings both outputs high to precondition the

next evaluation tree. In the above implementation this will happen before the next

sense amp will latch the correct output, erasing the data value at the output of the

sense amp. To fix this, the C-element controlling the first sense amplifier must take

the acknowledge from the next C-element as shown in Figure 2.3.

This modification actually leads to further optimization of the handshaking pro-

SA

Starti Donei

Treei

Eni

SAi+1 Treei+1

Eni+1 Starti+1 Donei+1

SAi
Datai-1 Datai+1

C C

Starti

C C

DoneiEni Eni+1 Starti+1 Donei+1

Reqi-1 Reqi+1

Ack

Reqi

Acki AckAcki-1
i Acki+1

Figure 2.3: Four-Phase Handshaking for CLB Pipelines

10 Background

SAi SAi+1 T

Starti Donei

Treei

Eni

S i+1 Treei+1

Eni+1 Starti+1 Donei+1

R

Datai-1
Datai+1

C CReqi-1

Acki-1

Reqi

Acki

Reqi+1

Acki+1

Figure 2.4: Final Self-Timed CLB Pipeline

tocol. The C-element between the output of the sense amp and input of the tree now

acts as a delay and does no useful work. This C-element can be taken out entirely, but

this could lead to a race condition resulting in tree evaluation before the inputs are

completely valid. Instead of removing the C-element, a static NAND gate replaces it.

This NAND gate acts as a completion detector, sensing when the inputs of the tree

are valid. When the outputs of the sense amp are (1,1) the NAND gate keeps the

tree in reset mode. Once the outputs are (1,0) or (0,1), the NAND output is asserted,

signaling valid data. (0,0) is a disallowed combination and never occurs by design.

Figure 2.4 shows the final optimized pipeline for the CLB logic blocks.

To make the CLBs fit into the design flow each block will be standardized with

the necessary logic gates to make it completely self-timed. Then the blocks simply

need to be hooked up to create more complex circuits, just like standard library-based

design flows. To do this, fan-in and fan-out differences need to be considered. This

self-contained block is seen in Figure 2.5 with the dark, thick arrows representing

data and the thin, dotted lines control.

When all of the input valid signals are high, the AND gate turns on the root drive

2.2 Self-Timed Logic 11

Data
I D

Sense
AmpIn Data

OutTree
p

ClockDelay LineInputs

Acknowledge Out

Completion Out

CAND

OR

y
Valid

Data Acknowledge In

OR

Figure 2.5: Self-Timed CLB Block Diagram

for the tree and begins computation. Next, the tree must signal when its output is

evaluated enough that the sense amp can be triggered and latch the output. The

reduced swing of the tree’s output makes completion detection difficult, so a delay

line mimics the delay of the stack and signals when the output is evaluated. The OR

gate signals when all of the inputs have gone into reset and then allows the current

block to go into reset to keep all data signals in the same timing plane. All of the

gates in this block have known sizes depending on the number of inputs to the CLB

except for the C element, which has a number of inputs based on the fan-out of the

output signal. All that is left is to determine the functionality of each CLB and hook

the blocks up to create more complex circuits, just like hooking up gates in static

CMOS.

12 Background

RTL Circuit Description
and Design ConstraintsVerification

S d d Lib

and Design Constraints

h i

Verification

Standard LibrarySynthesis

Gate-Level Netlist
and Constraints

Physical
D iDesign

Layout of Design

Figure 2.6: Typical Automated Design Flow

2.3 Automated Design

As mentioned in Chapter 1, the reduction of transistor dimensions has led to the

growth in complexity and size of current designs. At current technology levels, tens

of millions of transistors can exist on one single chip. Even small designs easily contain

ten to one hundred thousand devices, still too many for hand design. Current tools

start from a high level programming language (normally Register Transfer Language)

and compile it down to physical layout in two major phases: synthesis and physical

design. The typical RTL tool flow is best conveyed with the flow chart in Figure 2.6.

The RTL specification, commonly in VHDL or Verilog, is compiled into gates

during the synthesis process. Usually, the gates are part of a standard library of

commonly used logic functions with each cell having logic function, timing, area,

2.3 Automated Design 13

power, and layout information. There are a few cycles of optimization during synthesis

to get as close to design constraints as possible. This phase produces a structural

netlist file containing gates and interconnection information. The physical compiler

receives this file along with design constraints on power, area, timing, and loading and

creates the physical layout of the interconnected devices ready to be manufactured.

There is often optimization during the physical design steps since each completed step

brings more specific information such as wire length and resistance. Also, between

each step verification is necessary to make sure the optimized design is the same as

the original [5]. It is a main goal of the new design flow to remain as close to the

current state of industry tools as possible.

Chapter 3

Synthesis

3.1 Introduction

During ASIC1 synthesis the design is mapped to a standard library of gates. Us-

ing this limited library allows extensive testing of each gate to give the software

enough information to choose the best combination of gates. This type of synthe-

sis is normally done in two steps, technology-independent optimization followed by

technology-dependent optimization. In the first step the Boolean function is opti-

mized using mathematical techniques such as transformations, division and others.

In the second step the library gates are optimally mapped onto the function using

tree covering [6].

The synthesis process for field programmable gate array (FPGA) designs is slightly

different. The first step of FPGA synthesis is still a technology-independent optimiza-

1A circuit created for a specific task, not a reprogrammable or general purpose circuit

16 Synthesis

tion of the Boolean function, but the second step is different because a lookup table

(LUT) can implement any logic function of N inputs. The mapping step takes the

logic function of each block into account directly instead of using a predetermined

library [6].

Just like LUTs in FPGAs, CLBs can be programmed with any logic function of a

set number of inputs. Using FPGA synthesis takes advantage of this and should be

the better choice for the synthesis step. This results in a hybrid FPGA/ASIC design

flow since the CLBs are not intended to be field programmable.

3.2 CLB Synthesis using FPGA Technology

The Logic Synthesis and Verification group at UC Berkeley provides state-of-the-art

variable-size-LUT FPGA synthesis in its software named ABC [7]. The synthesis is

based on DAOmap, a cut-based enumeration method that provides a depth-optimal

solution using heuristics to reduce the area [8]. ABC builds on this system with

optimizations to cut computation, delay optimum mapping, and heuristic area recov-

ery [9]. In short, ABC traverses the design and chooses the logic function and size

of all CLBs to provide a depth-optimal mapping. Unfortunately, the current version

of ABC only provides optimization for LUTs of six or less inputs. CLBs come in

sizes up to seven, and we use the RASP Technology Mapping tool from the UCLA

VLSI CAD lab to create the data points for CLB seven [10]. RASP implements

the same DAOmap algorithm integrated into the ABC environment, but without the

optimizations performed by the Logic Synthesis and Verification group at Berkeley.

3.3 Synthesis for Energy, Delay, and Area 17

To incorporate this into the flow, the design must be translated from behavioral

RTL into the Berkeley Logic Interchange Format (BLIF) [11]. This can be done

using any software capable of outputting netlists in BLIF format, but in this work

this is done using Altera Quartus II software. The Altera software will also perform

technology independent optimization, but using Synopsys’s DesignCompiler in this

research led to better results.

3.3 Synthesis for Energy, Delay, and Area

Once the design has been translated into BLIF format, it needs to be fed into ABC

along with the variable-LUT characteristic file. This is a text file which has the

area and delay characteristics for each LUT size. By design, all CLBs with the

same number of inputs have the same delay and area characteristics because the only

difference between same-size CLBs is the programming. The timing differences based

on fan out are not included in this research and exist as an avenue for further study.

After the design and LUT characteristic file have been input, the fpga command

performs the optimizations.

Figure 3.1 visually shows the optimization space with the available CLBs. All of

the data is normalized in relation to the three-input CLB. As seen in the figure the

area, delay, and active energy consumption grow quadratically as CLB inputs increase.

The leakage, however, increases only slightly as CLB inputs increase because the sense

amplifier dominates the leakage of the CLB. CLBs with three or four inputs use the

same sense amplifier, and CLBs with five or six inputs share a sense amplifier as well.

18 Synthesis

5.5

Normalized Area, Energy, Delay, and Leakage vs. CLB Size

4.5

5

3 5

4

ag
ni
tu
de

3

3.5

m
al
iz
ed

 M
a

Delay

Energy

Area

2

2.5

N
or
m

Leakage

1

1.5

1

3 4 5 6 7

Number of CLB Inputs

Figure 3.1: Relative Area, Delay, Energy, and Leakage Performance of CLBs

This causes the flat portions of the otherwise linear curve.

ABC only produces one implementation, but by limiting the CLB sizes available

to ABC different implementations can be made. For example, the information about

CLB six and seven can be eliminated from the text file, limiting ABC to using CLB

sizes three to five. Synthesis was initially performed with a maximum CLB size of

three. Then synthesis was repeated using three and four input CLBs, followed by

three, four, and five, and so on to a maximum size of seven. Figure 3.2 shows the

results of this process when applied to a reference design.

Figure 3.2 shows the delay reaching a lower bound as we increase the optimization

space for the synthesis tool. The delay does not change when the seven-input CLB is

added to the synthesis, meaning the tradeoff between functionality and delay for the

3.3 Synthesis for Energy, Delay, and Area 19

1.2

Design Characteristics vs. Max CLB Size

1.1

1

ag
ni
tu
de

0.9

m
al
iz
ed

 M
a

Energy

Area

Leakage

0 7

0.8

N
or
m g

Delay

0.6

0.7

0.6

3 4 5 6 7

Maximum CLB Size

Figure 3.2: Optimization Chart for Example Circuit

seven-input CLB did not provide a benefit. Performing synthesis with a maximum

CLB of six inputs resulted in a 25% delay reduction, a 22% leakage reduction, and an

8.5% area and energy reduction over the only three-input CLB implementation. This

process allows the designer to constrain the tool to obtain the best implementation

possible. Area and energy suffered in the last implementation. This interesting result

could be an artifact of the heuristic optimizations present in ABC, but not in RASP. If

this is the case, this shows the improvements in the heuristic area recovery. DAOmap

already offers a depth-optimal solution before the ABC improvements so the delay

shouldn’t change between the tools.

20 Synthesis

Verification RTL (VHDL/Verilog)

Technology
IndependentIndependent

Synthesis

BLIF NetlistBLIF2VHDL

ABC

Optimized LUT MappingBLIF2VHDL

Figure 3.3: Synthesis Flow Diagram

3.4 Post Synthesis Verification

The next step in the process is to make sure that the optimized design is functionally

equivalent to the original behavioral design. ABC has combinational and sequential

equivalence checking with the cec and sec commands respectively for verification.

Also, for verification with the original behavioral RTL, Synopsys’s Formality can be

used. For the second option the BLIF file must be converted to VHDL with blif2vhdl,

a netlist translator [12]. This ends the synthesis process, and the BLIF netlist now

contains a LUT implementation of the desired circuit. The next step is to transform

the BLIF file into a structural verilog format the physical design tools can accept.

Figure 3.3 shows the flow of the synthesis process including verification steps.

Chapter 4

Bridging Front End and Back End

Before handing off the netlist to the back end of the flow, a few issues need to be

cleaned up, and the netlist needs to be transformed to structural verilog. The first

step takes place in a Perl script named BlifFlow.pl which takes the optimized BLIF

file and expands all of the reduced terms and changes the binary terms into decimal

representation for the netlist translator. It also cleans up and conforms all of the net

names for the translator. Finally, BlifFlow flow prints two files, one BLIF for input

into the translator with conformed net names and decimal terms, and one BLIF for

verification with ABC to ensure no functionality changes occurred. This file is then

fed into a Python netlist translator which will create the verilog netlist of CLBs.

22 Bridging Front End and Back End

CLB0
CLB3

In
pu

ts

ut
pu

t

CLB1 CLB4

B
lo

ck
 I

B
lo

ck
 O

u

CLB2

Figure 4.1: Graph of simple CLB design

4.1 Transforming LUTs to CLBs

The CLBDesign Python script reads in the modified BLIF netlist and stores the

design as a directed acyclic graph (DAG), with CLBs representing the nodes of the

graph and wires representing the edges. Each CLB knows where its output is routed

as an input. This is important for routing the acknowledge signals which travel

backwards instead of the normal forward propagating signals. An example graph of

a simple circuit is shown in Figure 4.1. Solid lines represent forward traveling data

and control signals, and dotted lines represent the backwards traveling acknowledge

signals.

4.1.1 Changing sizes of CLBs

First, the script transforms CLBs with less than three inputs into three-input CLBs.

Anything smaller than a three-input CLB will have virtually the same performance

4.1 Transforming LUTs to CLBs 23

as a three-input CLB because the self-timed gates and sense amp overhead dominate

the area and power budget at that size. For this reason no CLBs smaller than three

inputs were made. However, the synthesis tools will instantiate CLBs with less than

three inputs so these must be transformed into three-input CLBs. This is done by

inverse Boolean elimination. The tree before and after transformation is shown in

Figure 4.2. The first input is set to Vdd, and then each minterm and maxterm has

2inputs added to it and added to the original list of terms. This way the Boolean

equation will still reduce back down to its original form. This process is repeated as

needed to make all CLBs have at least three inputs.

4.1.2 Making Heterogeneous Mappings Homogenous

This next transformation is an option to the designer instead of a required step.

Since this design will be auto-placed and auto-routed, layout regularity can be a very

important property.

The layouts for CLBs range in size greatly from three inputs to seven inputs, and

having a completely heterogeneous mapping can make it difficult for the auto place

and route tools with blocks of different sizes. If a more regular layout is desired then

the entire design can be transformed to only contain a single size of CLBs. This

is referred to as a homogenous mapping. In this case, every CLB is checked and if

it does not match, then the size transformation is done as many times as necessary.

This transformed BLIF can now be verified against the original in either ABC or with

Formality after blif2vhdl. This can be extremely costly in the design optimization

24 Bridging Front End and Back End

B

A
S

B

B

A

B

S
VDD

B

B A
B

B
A

B

A

B VDD
B

B

S
A

B

B

S

S = AB S = ABC + ABC’
S=AB

Figure 4.2: Left, a two-input AND tree. Right, a logically equivalent three-input tree.

4.2 Simulation and Physical Design 25

space. In the future, changing the layouts of the CLBs to make them easier to auto

place and route might be a good idea and would make this option obsolete.

4.2 Simulation and Physical Design

Once all of the necessary transformations have been completed the design can now be

printed in a verilog netlist. This design includes structural verilog for the higher level

design and the individual CLBs, along with Skill1 code to generate the programmed

layout for the CLBs. The structural verilog can be imported and simulated in spec-

tre or similar circuit simulator. This is where functionality, transient, and energy

performance can be checked and the circuit modified if necessary.

1Programming Language used in Cadence CAD tools

Chapter 5

Physical Design

The final step in the design process is to create the mask layout for design manufac-

turing. This can be the most tedious step in the process to do manually and with

current tools can be automated. Most of the physical design process is unchanged

from typical design flows with one step added to generate the layout of each CLB.

5.1 Creating the CLBs

5.1.1 Programming the CLBs

The Python script in the last step generated a Skill script to create the programmed

layouts of the CLBs. Since every un-programmed tree looks the same, this is a simple

process to automate. Shown below is an example layout of the tree along with the

locations of all terms. The S and S̄ lines are also highlighted. A via simply needs to

be applied connecting all terms to either S or S̄ and saved as the new programmed

28 Physical Design

Term 0

Term 1

Term 4

Term 5

Half of Tree
Term 2 Term 6

Half of Tree

Term 3 Term 7

S SS S

AND VIA Programming

Term 0

T 1

Term 4

T 5

Half of Tree
Term 1

Term 2

Term 5

Term 6
Half of Tree

Term 3 Term 7

S SS S

Figure 5.1: Programming the Tree

CLB layout. Figure 5.1 shows how this process works.

5.1.2 Import CLBs

Next, the CLBs need to be imported into the place and route tool as standard cells.

This simple process can be scripted to tailor to the specific design needs. The layouts

are created to allow for abutment of similar size CLBs, as well as flip and rotate

options.

5.2 Final Verification 29

5.1.3 Place and Route

The final step in the physical design process is the actual place and route of the

design. This is also a scriptable step and can be tailored to different designs. In the

current version, the tools do not have enough information to re-optimize the gate-level

netlist, but most other tool customizations are available to the designer.

5.2 Final Verification

After the design has been placed and routed, layout versus schematic (LVS) and

design rule checks (DRC) can be run. This serves as the final verification step and

ensures the implemented circuit matches the original design. Figures 5.2 and 5.3

show an overview of the physical design portion of the flow and a placed and routed

circuit produced from the flow.

30 Physical Design

Verification RTL (VHDL/Verilog)

F FPGA CLB T f S i t

Verilog Netlists,
BLIF Design File

BLIF2VHDL
Program Skill

From FPGA-CLB Transform Scripts

g

Program Trees

Physical DesignFinal Verification:
LVS, DRC

Library of
CLBs

Layout

Figure 5.2: Physical Design Flow Diagram

5.2 Final Verification 31

Figure 5.3: Final Placed and Routed Circuit

Chapter 6

Conclusion

6.1 Summary of Work Completed

This research provides a full automated design flow for the new self-timed current-

mode pass-transistor logic design style. It includes a full synthesis package for op-

timizing area, delay, and energy consumption. Scripts produced for this research

provide the FPGA to CLB transformations and produce the necessary files to feed

the design into industrial physical design software. Finally, a full back end is mainly

made up of current state of the art industry tools with slight modification to the

automated process. This flow greatly speeds up design efforts in both research and

application fields. This is a must for any new logic style to have a chance at ac-

ceptance and application in user environments. Figure 6.1 shows all steps of the

flow including verification points. Appendix A the end of this document has a table

including all of the software used in this new design flow.

34 Conclusion

Verification RTL (VHDL/Verilog)

Technology Ind. Synthesis

BLIF Netlist

ABC

BLIF2VHDL

ABC

Optimized LUT MappingBLIF2VHDL

FPGA CLB Program Skill

Verilog Netlists
BLIF Design File

BLIF2VHDL Program Trees

Physical DesignFinal Verification:
LVS, DRC

Library of
CLBs

Layout

Figure 6.1: Flowchart of Full Design Flow

6.2 Future Work 35

6.2 Future Work

As with any research, there are an infinite number of possible extensions to make the

automated flow even better.

6.2.1 Automated Control Logic

The current applications of the logic style have been limited to data path logic with

no feedback loops. For this reason, sequential optimization has been left out of the

automated flow. Once more research is completed in applying the logic style to control

logic, the flow can be extended to include sequential designs. All of the individual

tools used in the flow have some sequential optimization capability.

6.2.2 New Architectures

The design flow currently only works with the self-timed version of the logic style.

Other architectures for self-timing are being researched and can also be easily inte-

grated into this design flow. These architectures could lead to different timing and

energy behavior based on tree programming. A library-based approach might work

better in this case.

Bibliography

[1] L. Alarcon, “Ultra-low energy logic using pass transistor stacks,” to be published.

[2] I. Sutherland, “Micropipelines,” Communications of the ACM, pp. 720–738, June
1989.

[3] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A
Design Perspective, 2nd ed. Prentice Hall, 2002.

[4] T. H. Meng, Synchronization Design for Digital Systems. Kluwer Academic
Publishers, 1991.

[5] K. Keutzer, “EE244 Course Notes,” University of California, Berkeley, 2005.

[6] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis. McGraw-Hill, 1994.

[7] Berkeley Logic Synthesis and Verification Group, “ABC: A Sys-
tem for Sequential Synthesis and Verification, Release 61225,”
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[8] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization mapping
algorithm for FPGA designs,” Proc. ICCAD ’04, pp. 752–757, 2004.

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to Technology
Mapping for LUT-Based FPGAs,” FPGA ’06, 2006.

[10] RASP: FPGA/CPLD Technology Mapping and Synthesis Package. [Online].
Available: http://cadlab.cs.ucla.edu/software release/rasp/htdocs/

[11] Berkeley Logic Interchange Format (BLIF), University of California at Berkeley,
July 1992.

38 BIBLIOGRAPHY

[12] blif2vhdl. [Online]. Available: http://tams-www.informatik.uni-
hamburg.de/vhdl/index.php?content=07-tools

Appendix A

List of Software used in Design
Flow

Synthesis

Technology Independent Synthesis
Altera II Quartus Web Edition
Synopsys DesignCompiler

RTL to BLIF Translation Altera II Quartus Web Edition
BLIF to VHDL Translation blif2vhdl

FPGA Synthesis
ABC
RASP

Post-Synthesis

FPGA to CLB Mapping Scripts
BlifFlow.pl
CLBDesign.py

Physical Design
CLB Programming Cadence ICFB
Physical Design Software Synopsys Astro

Verification
Synopsys Formality
ABC

Signoff Verification Calibre LVS,DRC

