
Computing Foundations and Practice for Cyber-
Physical Systems: A Preliminary Report

Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-72

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html

May 21, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This ongoing study is supported by the National Science Foundation (CNS-
0647591).

Computing Foundations and Practice for

Cyber-Physical Systems: A Preliminary Report

Edward A. Lee ∗

Department of EECS, UC Berkeley, eal@eecs.berkeley.edu

May 21, 2007

Abstract

Cyber-Physical Systems (CPS) are integrations of computation and
physical processes. Embedded computers and networks monitor and
control the physical processes, usually with feedback loops where phys-
ical processes affect computations and vice versa. The economic and
societal potential of such systems is vastly greater than what has been
realized, and major investments are being made worldwide to develop
the technology. There are considerable challenges, particularly because
the physical components of such systems introduce safety and reliabil-
ity requirements qualitatively different from those in general-purpose
computing. This report examines the potential technical obstacles
impeding progress, and in particular raises the question of whether
today’s computing and networking technologies provide an adequate
foundation for CPS. It concludes that it will not be sufficient to im-
prove design processes, raise the level of abstraction, or verify (formally
or otherwise) designs that are built on today’s abstractions. To realize
the full potential of CPS, we will have to rebuild computing and net-
working abstractions. These abstractions will have to embrace physical
dynamics and computation in a unified way.

1 Introduction

Cyber-Physical Systems (CPS) are integrations of computation with physi-
cal processes. Embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes af-
fect computations and vice versa. In the physical world, the passage of

∗This ongoing study is supported by the National Science Foundation (CNS-0647591).

1

2 Computing Foundations and Practice for CPS

time is inexorable and concurrency is intrinsic. Neither of these properties
is present in today’s computing and networking abstractions. This report
examines this mismatch of abstractions.

Applications of CPS arguably have the potential to dwarf the 20-th
century IT revolution. They include high confidence medical devices and
systems, assisted living, traffic control and safety, advanced automotive sys-
tems, process control, energy conservation, environmental control, avion-
ics, instrumentation, critical infrastructure control (electric power, water
resources, and communications systems for example), distributed robotics
(telepresence, telemedicine), defense systems, manufacturing, and smart
structures. It is easy to envision new capabilities, such as distributed micro
power generation coupled into the power grid, where timing precision and
security issues loom large. Transportation systems could benefit consider-
ably from better embedded intelligence in automobiles, which could improve
safety and efficiency. Networked autonomous vehicles could dramatically
enhance the effectiveness of our military and could offer substantially more
effective disaster recovery techniques. Networked building control systems
(such as HVAC and lighting) could significantly improve energy efficiency
and demand variability, reducing our dependence on fossil fuels and our
greenhouse gas emissions. In communications, cognitive radio could benefit
enormously from distributed consensus about available bandwidth and from
distributed control technologies. Financial networks could be dramatically
changed by precision timing. Large scale services systems leveraging RFID
and other technologies for tracking of goods and services could acquire the
nature of distributed real-time control systems. Distributed real-time games
that integrate sensors and actuators could change the (relatively passive) na-
ture of on-line social interactions. Tight integration of physical devices and
distributed computing could make “programmable matter” a reality.

The positive economic impact of any one of these applications areas
would be enormous. Today’s computing and networking technologies, how-
ever, may have properties that unnecessarily impede progress towards these
applications. For example, the lack of temporal semantics and adequate con-
currency models in computing, and today’s “best effort” networking tech-
nologies make predictable and reliable real-time performance difficult, at
best. Many of these applications may not be achievable without substantial
changes in the core abstractions.

If the US fails to lead the development of these applications, we would
almost certainly find our economic and military leadership position com-
promised. To prevent that from happening, this report will identify the
potential disruptive technologies and recommend research investments to

Edward A. Lee, UC Berkeley 3

ensure that if such technologies are successfully developed, that they are
developed in the US.

2 Requirements for CPS

Embedded systems have always been held to a higher reliability and pre-
dictability standard than general-purpose computing. Consumers do not
expect their TV to crash and reboot. They have come to count on highly
reliable cars, where in fact the use of computer controller has dramatically
improved both the reliability and efficiency of the cars. In the transition
to CPS, this expectation of reliability will only increase. In fact, without
improved reliability and predictability, CPS will not be deployed into such
applications as traffic control, automotive safety, and health care.

The physical world, however, is not entirely predictable. Cyber physical
systems will not be operating in a controlled environment, and must be
robust to unexpected conditions and adaptable to subsystem failures.

An engineer faces an intrinsic tension; designing predictable and reliable
components makes it easier to assemble these components into predictable
and reliable systems. But no component is perfectly reliable, and the physi-
cal environment will manage to foil predictability by presenting unexpected
conditions. Given components that are predictable and reliable, how much
can a designer depend on that predictability and reliability when designing
the system? How does she avoid brittle designs, where small deviations from
expected operating conditions cause catastrophic failures?

This is not a new problem in engineering. Digital circuit designers have
come to rely on astonishingly predictable and reliable circuits. Circuit de-
signers have learned to harness intrinsically stochastic processes (the motions
of electrons) to deliver a precision and reliability that is unprecedented in
the history of human innovation. They can deliver circuits that will perform
a logical function essentially perfectly, on time, billions of times per second,
for years. All this is built on a highly random substrate. Should system
designers rely on this predictability and reliability?

In fact, every digital system we use today relies on this to some degree.
There is considerable debate in the circuit design community about whether
this reliance is in fact impeding progress in circuit technology. Circuits
with extremely small feature sizes are more vulnerable to the randomness
of the underlying substrate, and if system designers would rely less on the
predictability and reliability of digital circuits, then we could progress more
rapidly to smaller feature sizes.

4 Computing Foundations and Practice for CPS

No major semiconductor foundry has yet taken the plunge and designed
a circuit fabrication process that delivers logic gates that work as specified
80% of the time. Such gates are deemed to have failed completely, and a
process that delivers such gates routinely has a rather poor yield.

But system designers do, sometimes, design systems that are robust to
such failures. The purpose is to improve yield, not to improve reliability of
the end product. A gate that fails 20% of the time is a failed gate, and a
successful system has to route around it, using gates that have not failed to
replace its functionality. The gates that have not failed will work essentially
100% of the time. The question, therefore, becomes not whether to design
robust systems, but rather at what level to build in robustness. Should we
design systems that work with gates that perform as specified 80% of the
time? Or should we design systems that reconfigure around gates that fail
20% of the time, and then assume that gates that don’t fail in yield testing
will work essentially 100% of the time?

I believe that the value of being able to count on gates that have passed
the yield test to work essentially 100% of the time is enormous. Such solidity
at any level of abstraction in system design is enormously valuable. But it
does not eliminate the need for robustness at the higher levels of abstraction.
Designers of memory systems, despite the high reliability and predictability
of the components, still put in checksums and error-correcting codes. If
you have a billion components (one gigabit RAM, for example) operating
a billion times per second, then even nearly perfect reliability will deliver
errors upon occasion.

The principle that we need to follow is simple. Components at any level
of abstraction should be made predictable and reliable if this is technolog-
ically feasible. If it is not technologically feasible, then the next level of
abstraction above these components must compensate with robust design.

Successful designs today follow this principle. It is (still) technically
feasible to make predictable and reliable gates. So we design systems that
count on this. It is not technically feasible to make wireless links predictable
and reliable. So we compensate one level up, using robust coding schemes
and adaptive protocols.

The obvious question, therefore, is whether it is technically feasible to
make software systems predictable and reliable. At the foundations of com-
puter architecture and programming languages, software is essentially per-
fectly predictable and reliable, if we limit the term “software” to refer to
what is expressed in simple programming languages. Given an imperative
programming language with no concurrency, like C, designers can count on
a computer to perform exactly what is specified in the program with nearly

Edward A. Lee, UC Berkeley 5

100% reliability.
The problem arises when we scale up from simple programs to soft-

ware systems, and particularly to cyber-physical systems. The fact is that
even the simplest C program is not predictable and reliable in the context
of CPS because the program does not express aspects of the behavior that
are essential to the system. It may execute perfectly, exactly matching its
semantics, and still fail to deliver the behavior needed by the system. For
example, it could miss timing deadlines. Since timing is not in the semantics
of C, whether a program misses deadlines is in fact irrelevant to determin-
ing whether it has executed correctly. But it is very relevant to determining
whether the system has performed correctly. A component that is perfectly
predictable and reliable turns out not to be predictable and reliable in the
dimensions that matter. This is a failure of abstraction.

The problem gets worse as software systems get more complex. If we
step outside C and use operating system primitives to perform I/O or to
set up concurrent threads, we immediately move from essentially perfect
predictability and reliability to wildly nondeterministic behavior that must
be carefully reigned in by the software designer [31]. Semaphores, mutual
exclusion locks, transactions, and priorities are some of the tools that soft-
ware designers have developed to attempt to compensate for this loss of
predictability and reliability.

But the question we must ask is whether this loss of predictability and
reliability is really necessary. I believe it is not. If we find a way to deliver
predictable and reliable software (that is predictable and reliable with re-
spect to properties that matter, such as timing), then we do not eliminate
the need to design robust systems, but we dramatically change the nature of
the challenge. We must follow the principle of making systems predictable
and reliable if this is technically feasible, and give up only when there is con-
vincing evidence that this is not possible or cost effective. There is no such
evidence for software. Moreover, we have an enormous asset: the substrate
on which we build software systems (digital circuits) is essentially perfectly
predictable and reliable with respect to properties we care about (timing
and functionality).

Let us examine further the failure of abstraction. Figure 1 illustrates
schematically some of the abstraction layers on which we depend when de-
signing embedded systems. In this three-dimensional Venn diagram, each
box represents a set. E.g., at the bottom, we have the set of all micropro-
cessors. An element of this set, e.g., the Intel P4-M 1.6GHz, is a particular
microprocessor. Above that is the set of all x86 programs, each of which can
run on that processor. This set is defined precisely (unlike the previous set,

6 Computing Foundations and Practice for CPS

which is difficult to define) by the x86 instruction set architecture (ISA).
Any program coded in that instruction set is a member of the set, such
as a particular implementation of a Java virtual machine. Associated with
that member is another set, the set of all JVM bytecode programs. Each
of these programs is (typically) synthesized by a compiler from a Java pro-
gram, which is a member of the set of all syntactically valid Java programs.
Again, this set is defined precisely by Java syntax.

silicon chips

microprocessors

ASICchips

FPGAs

programs
VHDL programs

synthesizable
VHDL programs

C++ programs

SystemC
 programs

Java programs

Java byte code programs

FPGA configurations

standard
 cell
 designs

x86 programs
JVM

executables

P4-M 1.6GHz

executes

ja
va

c

C programs

performance
 models Linux processesPosix

 threads

actor-oriented
 models

task-level models

Figure 1: Abstraction layers in computing

Each of these sets provides
an abstraction layer that is in-
tended to isolate a designer (the
person or program that selects
elements of the set) from the de-
tails below. Many of the best
innovations in computing have
come from careful and innova-
tive construction and definition
of these sets.

However, in the current
state of embedded software,
nearly every abstraction has
failed. The instruction-set
architecture, meant to hide
hardware implementation de-
tails from the software, has
failed because the user of the
ISA cares about timing proper-
ties the ISA does not guarantee. The programming language, which hides
details of the ISA from the program logic, has failed because no widely used
programming language expresses timing properties. Timing is merely an
accident of the implementation. A real-time operating system hides details
of the program from their concurrent orchestration, yet this fails because
the timing may affect the result. The RTOS provides no guarantees. The
network hides details of electrical or optical signaling from systems, but
many standard networks provide no timing guarantees and fail to provide
an appropriate abstraction. A system designer is stuck with a system design
(not just implementation) in silicon and wires.

All embedded systems designers face versions of this problem. Aircraft
manufacturers have to stockpile the electronic parts needed for the entire
production line of an aircraft model to avoid having to recertify the software
if the hardware changes. “Upgrading” a microprocessor in an engine control

Edward A. Lee, UC Berkeley 7

unit for a car requires thorough re-testing of the system. Even “bug fixes”
in the software or hardware can be extremely risky, since they can change
timing behavior.

The design of an abstraction layer involves many choices, and computer
scientists have chosen to hide timing properties from all higher abstractions.
Wirth [46] says “It is prudent to extend the conceptual framework of se-
quential programming as little as possible and, in particular, to avoid the
notion of execution time.” In an embedded system, however, computations
interact directly with the physical world, where time cannot be abstracted
away. Even general-purpose computing suffers from these choices. Since
timing is neither specified in programs nor enforced by execution platforms,
a program’s timing properties are not repeatable. Concurrent software often
has timing-dependent behavior in which small changes in timing have big
consequences.

Designers have traditionally covered these failures by finding worst case
execution time (WCET) bounds and using real-time operating systems
(RTOS’s) with predictable scheduling policies. But these require substantial
margins for reliability, and ultimately reliability is (weakly) determined by
bench testing of the complete implementation. Moreover, WCET has be-
come an increasingly problematic fiction as processor architectures develop
ever more elaborate techniques for dealing stochastically with deep pipelines,
memory hierarchy, and parallelism. Modern processor architectures render
WCET virtually unknowable; even simple problems demand heroic efforts.
In practice, reliable WCET numbers come with many caveats that are in-
creasingly rare in software. The processor ISA has failed to provide an
adequate abstraction.

Timing behavior in RTOSs is coarse and becomes increasingly uncon-
trollable as the complexity of the system increases, e.g., by adding inter-
process communication. Locks, priority inversion, interrupts and similar is-
sues break the formalisms, forcing designers to rely on bench testing, which
rarely identifies subtle timing bugs. Worse, these techniques produce brittle
systems in which small changes can cause big failures. As a telling exam-
ple, Patrick Lardieri of Lockheed Martin Advanced Technology Laboratories
discussed some experiences with the JSF Program, saying1 “Changing the
instruction memory layout of the Flight Control Systems Control Law pro-
cess to optimize Built in Test processing led to an unexpected performance
change - [the] System went from meeting real-time requirements to missing

1in a plenary talk at the National Workshop on High-Confidence Software Platforms
for Cyber-Physical Systems (HCSP-CPS), Arlington, VA November 30 December 1, 2006.

8 Computing Foundations and Practice for CPS

most deadlines due to a change that was expected to have no impact on
system performance.”

While there are no true guarantees in life, we should not blithely dis-
card predictability that is achievable. Synchronous digital hardware—the
technology on which computers are built— delivers astonishingly precise
timing behavior with reliability that is unprecedented in any other human-
engineered mechanism. Software abstractions, however, discard several or-
ders of magnitude of precision. Compare the nanosecond-scale precision
with which hardware can raise an interrupt request to the millisecond-level
precision with which software threads respond. We don’t have to do it this
way.

3 Background

Integration of physical processes and computing, of course, is not new. The
term “embedded systems” has been used for some time to describe engi-
neered systems that combine physical processes with computing. Successful
applications include communication systems, aircraft control systems, auto-
motive electronics, home appliances, weapons systems, games and toys, for
example. However, most such embedded systems are closed “boxes” that do
not expose the computing capability to the outside. The radical transforma-
tion that we envision comes from networking these devices. Such networking
poses considerable technical challenges.

For example, prevailing practice in embedded software relies on bench
testing for concurrency and timing properties. This has worked reasonably
well, because programs are small, and because software gets encased in a
box with no outside connectivity that can alter the behavior. However,
the applications we envision demand that embedded systems be feature-rich
and networked, so bench testing and encasing become inadequate. In a
networked environment, it becomes impossible to test the software under all
possible conditions. Moreover, general-purpose networking techniques them-
selves make program behavior much more unpredictable. A major technical
challenge is to achieve predictable timing in the face of such openness.

Before DARPA began investing in embedded systems in the mid-1990s
(principally through the MoBIES, SEC, and NEST programs), the research
community devoted to this problem was small. Embedded systems were
largely an industrial problem, one of using small computers to enhance the
performance or functionality of a product. In this earlier context, embed-
ded software differed from other software only in its resource limitations

Edward A. Lee, UC Berkeley 9

(small memory, small data word sizes, and relatively slow clocks). In this
view, the “embedded software problem” is an optimization problem. Solu-
tions emphasize efficiency; engineers write software at a very low level (in
assembly code or C), avoid operating systems with a rich suite of services,
and use specialized computer architectures such as programmable DSPs and
network processors that provide hardware support for common operations.
These solutions have defined the practice of embedded software design and
development for the last 30 years or so. In an analysis that remains as valid
today as 19 years ago, Stankovic [41] laments the resulting misconceptions
that real-time computing “is equivalent to fast computing” or “is perfor-
mance engineering” (most embedded computing is real-time computing).

But the resource limitations of 30 years ago are surely not resource lim-
itations today. Indeed, the technical challenges have centered more on pre-
dictability and robustness than on efficiency. Safety-critical embedded sys-
tems, such as avionics control systems for passenger aircraft, are forced into
an extreme form of the “encased box” mentality. For example, in order
to assure a 50 year production cycle for a fly-by-wire aircraft, an aircraft
manufacturer is forced to purchase, all at once, a 50 year supply of the mi-
croprocessors that will run the embedded software. To ensure that validated
real-time performance is maintained, these microprocessors must all be man-
ufactured on the same production line from the same masks. The systems
will be unable to benefit from the next 50 years of technology improvements
without redoing the (extremely expensive) validation and certification of the
software. Evidently, efficiency is nearly irrelevant compared to predictabil-
ity, and predictability is difficult to achieve without freezing the design at the
physical level. Clearly, something is wrong with the software abstractions
being used.

A notable culprit is the lack of timing in computing abstractions. Indeed,
this lack has been exploited heavily in such computer science disciplines as
architecture, programming languages, operating systems, and networking.
In architecture, for example, although synchronous digital logic delivers pre-
cise timing determinacy, advances have made it difficult or impossible to
estimate or predict the execution time of software. Modern processor archi-
tectures use memory hierarchy (caches), dynamic dispatch, and speculative
execution to improve average case performance of software, at the expense
of predictability. These techniques make it nearly impossible to tell how
long it will take to execute a particular piece of code.2 To deal with these

2A glib response is that execution time in a Turing-complete language is undecidable
anyway, so it’s not worth even trying to predict execution time. This is nonsense. No

10 Computing Foundations and Practice for CPS

architectural problems, embedded software designers may choose alternative
processor architectures such as programmable DSPs not only for efficiency
reasons, but also for predictability of timing.

Even less timing-sensitive applications have been affected. Anecdotal
information from computer-based instrumentation, for example, indicates
that the real-time performance delivered by today’s PCs is about the same
as was delivered by PCs in the mid-1980’s. Twenty years of Moore’s law
have not improved things in this dimension. This is not entirely due to hard-
ware architecture techniques, of course. Operating systems, programming
languages, user interfaces, and networking technologies have become more
elaborate. All have been built on an abstraction of software where time is
irrelevant. No widely used programming language includes temporal prop-
erties in its semantics, and “correct” execution of a program has nothing to
do with time. Benchmarks emphasize average-case performance, and timing
predictability is irrelevant.

The prevailing view of real-time appears to have been established well
before embedded computing was common [46]. “Computation” is accom-
plished by a terminating sequence of state transformations. This core ab-
straction underlies the design of nearly all computers, programming lan-
guages, and operating systems in use today. But unfortunately, this core
abstraction may not fit CPS very well.

The most interesting and revolutionary cyber-physical systems will be
networked. The most widely used networking techniques today introduce a
great deal of timing variability and stochastic behavior. Today, embedded
systems are often forced to use less widely accepted networking technologies
(such as CAN busses in manufacturing systems and FlexRay in automo-
tive applications), and typically must limit the geographic extent of these
networks to a confined local area. What aspects of those networking tech-
nologies should or could be important in larger scale networks? Which are
compatible with global networking techniques?

To be specific, recent advances in time synchronization across networks
promise networked platforms that share a common notion of time to a known
precision [27]. How would that change how distributed cyber-physical ap-
plications are developed? What are the implications for security? Can we
mitigate security risks created by the possibility of disrupting the shared
notion of time? Can security techniques effectively exploit a shared notion

cyber-physical system that depends on timeliness can be deployed without timing assur-
ances. If Turing completeness interferes with this, then Turing completeness must be
sacrificed.

Edward A. Lee, UC Berkeley 11

of time to improve robustness? In particular, although distributed denial
of service attacks have proved surprisingly difficult to contend with in gen-
eral purpose IT networks, could they be controlled in time synchronized
networks?

Operating systems technology is also groaning under the weight of the
requirements of embedded systems. RTOS’s are still essentially best-effort
technologies. To specify real-time properties of a program, the designer
has to step outside the programming abstractions, making operating system
calls to set priorities or to set up timer interrupts. Are RTOS’s merely
a temporary patch for inadequate computing foundations? What would
replace them? Is the conceptual boundary between the operating system
and the programming language (a boundary established in the 1960’s) still
the right one? It would be truly amazing if it were.

Cyber-physical systems by nature will be concurrent. Physical processes
are intrinsically concurrent, and their coupling with computing requires, at
a minimum, concurrent composition of the computing processes with the
physical ones. Even today, embedded systems must react to multiple real-
time streams of sensor stimuli and control multiple actuators concurrently.
Regrettably, the mechanisms of interaction with sensor and actuator hard-
ware, built for example on the concept of interrupts, are not well represented
in programming languages. They have been deemed to be the domain of
operating systems, not of software design. Instead, the concurrent interac-
tions with hardware are exposed to programmers through the abstraction
of threads.

Threads, however, are a notoriously problematic [31, 47]. This fact is
often blamed on humans rather than on the abstraction. Sutter and Larus
[42] observe that “humans are quickly overwhelmed by concurrency and
find it much more difficult to reason about concurrent than sequential code.
Even careful people miss possible interleavings among even simple collec-
tions of partially ordered operations.” The problem will get far worse with
extensively networked cyber-physical systems.

Yet humans are actually quite adept at reasoning about concurrent sys-
tems. The physical world is highly concurrent, and our very survival depends
on our ability to reason about concurrent physical dynamics. The problem
is that we have chosen concurrent abstractions for software that do not even
vaguely resemble the concurrency of the physical world. We have become so
used to these computational abstractions that we have lost track of the fact
that they are not immutable. Could it be that the difficulty of concurrent
programming is a consequence of the abstractions, and that if we were are
willing to let go of those abstractions, then the problem would be fixable?

12 Computing Foundations and Practice for CPS

Embedded computing also exploits concurrency models other than
threads. Programmable DSP architectures are often VLIW machines. Video
signal processors often combine SIMD with VLIW and stream processing.
Network processors provide explicit hardware support for streaming data.
However, despite considerable innovative research, in practice, programming
models for these domains remain primitive. Designers write low-level assem-
bly code that exploits specific hardware features, and combine this assembly
code with C code only where performance is not so critical.

For the next generation of cyber-physical systems, it is arguable that we
must build concurrent models of computation that are far more determinis-
tic, predictable, and understandable. Threads take the opposite approach.
They make programs absurdly nondeterministic, and rely on programming
style to constrain that nondeterminism to achieve deterministic aims. Can
a more deterministic approach be reconciled with the intrinsic need for non-
determinism in many embedded applications? How should cyber-physical
systems contend with the inherent unpredictability of the (networked) phys-
ical world?

It is essential that the US invest aggressively and immediately. As men-
tioned above, the DARPA projects of the late 1990s and early 2000s (Mo-
BIES, SEC, and NEST), created a vibrant research community focused on
embedded systems. However, DARPA has walked away from this problem
area, and the research community is at risk of dissipating. Existing rel-
atively small NSF programs (none of which is squarely centered on CPS)
cannot pick up the slack alone.

Meanwhile, enormous competitive pressures are building. The European
Union expects to spend more than 1 billion Euro in 2007, increasing to 1.5
billion Euro in 2010, on embedded systems research, with a specific aim to-
wards fostering entrepreneurship and enhancing the competitive positioning
of European companies (see the ARTEMIS project, Advanced Research and
Technology for Embedded Intelligence and Systems, http://www.artemis-
office.org/). Korea, Japan, Singapore, and China are also investing consid-
erable amounts in embedded systems, shoring up the competitive positions
of companies such as LG Electronics and Samsung. In Korea, for example, a
large new government funded research lab called DGIST is under construc-
tion with embedded systems forming approximately one third of its mission
(the other two thirds are in nanotechnologies and biosystems).

In the meantime, key industries in the US that stand to benefit most from
CPS technology, such as the automotive and telecommunications industry,
are barely surviving. They do not have the luxury of investing in long term
research.

Edward A. Lee, UC Berkeley 13

4 Families of Solutions

In this section, I give a preliminary assessment of various possible solutions
to the CPS problem. The conclusion is that none of these solutions is suffi-
ciently complete to dodge the bullet. Reexamination of the core abstractions
is going to be necessary. The consequences are enormous, requiring major
rework in many branches of computer science.

4.1 Validation and Verification

In practice, a great deal of embedded software today is developed through
a process of prototyping and testing on the bench. Since timing proper-
ties are not expressed in any programming language, they emerge from an
implementation, and can be measured by examining traces of execution.
Given that this practice has delivered many successful embedded systems,
a reasonable approach is to improve the practice. For example, automated
regression tests are difficult in this context, since hardware is very specific,
and emulating the physical environment of the embedded software is chal-
lenging. Perhaps a reasonable improvement is to facilitate better testing.
The Berkeley BEE2 project [12], for one, confronts this challenge by using a
sophisticated FPGA-based system to emulate systems contexts for wireless
components.

Another alternative is better simulation techniques. Joint simulation of
hardware and software at adequate accuracy remains elusive, despite con-
siderable investment. The Cadence product VCC, for example, aimed to
support architectural evaluation of hardware/software designs, but failed in
the marketplace.

One of the challenges is the high cost of cycle-accurate simulation of
software executing on modern processors. As a data point, in a ple-
nary talk at EMSOFT/CASES-ISSS/CODES (Embedded Week, 10/23/06,
Seoul, Korea), Namsung Woo (Executive VP of Samsung) described Sam-
sung’s ViP, or Virtual Platform, which provides “function accurate and
cycle-approximate” hardware and software co-simulation. Woo stated that
it is simply too computationally expensive to provide cycle-accurate simula-
tion. And even if the accuracy is sufficiently improved, simulations will still
only represent specific software executing on specific hardware in a specific
physical context. Changes to any of these variables (the software, hardware,
or environment) invalidate the results of the simulation.

A third alternative is formal verification. This field has improved consid-
erably in recent years, and has become far more effective for certain tasks.

14 Computing Foundations and Practice for CPS

Identifying potential deadlock conditions, for example, is easier than it used
to be, despite fundamental challenges of decidability and computational
complexity. However, properties that are not formally specified cannot be
verified. Thus, for example, timing behavior of software, which is not ex-
pressed in the software, must be separately specified, and the connection
between specifications and between specification and implementations be-
comes tenuous at best. This problem is even more fundamental than the
widely cited skepticism about scalability and usability of formal verification
techniques. These too remain considerable challenges. Formal verification
is still carried out by verification experts, not by system designers. And de-
spite considerable progress in automated abstraction (see for example [22]),
scalability to realistic systems remains a major issue.

4.2 Certification

Another possible approach is to focus on certification, particularly com-
posable certification, where certified components may be combined to
yield certifiable systems [26]. The DO-178B Level A standard, for ex-
ample, allows software to be used in critical avionics applications (see
http://www.rtca.org). However, achieving compliance with this standard
is challenging, and to the author’s knowledge, few software design method-
ologies have any assurances of yielding compliant software. A singular suc-
cess is SCADE [8] (Safety Critical Application Development Environment),
a commercial product of Esterel Technologies, which builds on the syn-
chronous language Lustre [18]. SCADE provides a graphical programming
framework with the semantics of Lustre, one of the simples of the so-called
“synchronous languages” [7]. These languages have strong formal properties
that yield quite effectively to formal verification techniques, but the simplic-
ity of Lustre in large part accounts for SCADE being able to produce C or
ADA code that is compliant with DO-178B Level A.

Although they are promising, synchronous languages are not (yet) widely
used in embedded systems development. The jury is out. In the meantime,
certification is an extremely expensive proposition, and what is certified is
not software but systems. This results in inflexible designs, where nothing
can change without redoing the certification process.

There are other promising efforts. For example, the Open License So-
ciety (http://www.OpenLicenseSociety.org) is after certifiable real-time op-
erating systems. I believe that certification must be part of the solution,
particular for safety critical software, but by itself, it cannot compensate for
inadequacies in the technology.

Edward A. Lee, UC Berkeley 15

4.3 Software Engineering

Software engineering is an art supported by the scientific method and tech-
nical tools. As with any art, it is better applied by people skilled in the art
and facile with the tools. Understanding the art and improving the tools
will almost certainly improve the product.

The first technique is better software engineering processes. These are,
in fact, essential to get reliable CPS systems. However, they are not suffi-
cient. An anecdote from the Ptolemy Project3 is telling (and alarming). In
the early part of the year 2000, my group began developing the kernel of
Ptolemy II [17], a modeling environment supporting concurrent models of
computation. An early objective was to permit modification of concurrent
programs via a graphical user interface while those concurrent programs
were executing. The challenge was to ensure that no thread could ever see
an inconsistent view of the program structure. The strategy was to use
Java threads with monitors. This problem represents a common pattern in
embedded systems, particularly ones that must be adaptive.

A part of the Ptolemy Project experiment was to see whether effective
software engineering practices could be developed for an academic research
setting. We developed a process that included a code maturity rating system
(with four levels, red, yellow, green, and blue), design reviews, code reviews,
nightly builds, regression tests, and automated code coverage metrics [38].
Although admittedly naive compared to industrial best practices (this was,
after all, an academic setting), the practices dramatically improved the qual-
ity of the software produced. But not enough to eliminate critical flaws. The
portion of the kernel that ensured a consistent view of the program structure
was written in early 2000, design reviewed to yellow, and code reviewed to
green. The reviewers included concurrency experts, not just inexperienced
graduate students. We wrote regression tests that achieved 100% code cov-
erage. The nightly build and regression tests ran on a two processor SMP
machine, which exhibited different thread behavior than the development
machines, which all had a single processor. The Ptolemy II system itself
began to be widely used, and every use of the system exercised this code.
No problems were observed until the code deadlocked on April 26, 2004,
four years later.

It is certainly true that our relatively rigorous software engineering prac-
tice identified and fixed many concurrency bugs. But the fact that a problem
as serious as a deadlock that locked up the system could go undetected for
four years despite this practice is alarming. How many more such problems

3See http://ptolemy.eecs.berkeley.edu

16 Computing Foundations and Practice for CPS

remain? How long do we need test before we can be sure to have discovered
all such problems? Regrettably, I have to conclude that a rigorous process
alone may never reveal all the problems in nontrivial code.

Of course, there are tantalizingly simple rules for avoiding deadlock.
For example, always acquire locks in the same order [29]. However, this
rule is very difficult to apply in practice because no method signature in
any widely used programming language indicates what locks the method
acquires. You need to examine the source code of all methods that you
call, and all methods that those methods call, in order to confidently invoke
a method. Even if we fix this language problem by making locks part of
the method signature, this rule makes it extremely difficult to implement
symmetric accesses (where interactions can originate from either end). And
no such fix gets around the problem that reasoning about mutual exclusion
locks is extremely difficult. If programmers cannot understand their code,
then the code will not be reliable.

One might conclude that the problem is in the way Java realizes threads.
Perhaps the synchronized keyword is not the best way of pruning the wild
nondeterminism intrinsic in threads. Indeed, version 5.0 of Java, introduced
in 2005, added a number of other mechanisms for synchronizing threads.
These do in fact enrich the toolkit for the programmer to prune nondeter-
minacy. But the mechanisms (such as semaphores) still require considerable
sophistication to use, and very likely will still result in incomprehensible
programs with subtle lurking bugs. It is hard to imagine how a rigorous
process will avoid these pitfalls.

Software engineering process improvements alone will not do the job.
Another approach that can help is the use of vetted design patterns for con-
current computation, as in [29] and [39]. Indeed, these are an enormous help
when the programmer’s task identifiably matches one of the patterns. How-
ever, there are two difficulties. One is that implementation of the patterns,
even with careful instructions, is still subtle and tricky. Programmers will
make errors, and there are no scalable techniques for automatically checking
compliance of implementations to patterns. More importantly, the patterns
can be difficult to combine. Their properties are not typically composable,
and hence nontrivial programs that require use of more than one pattern
are unlikely to be understandable.

A very common use of patterns in concurrent computation is found in
databases, particularly with the notion of transactions. Transactions sup-
port speculative unsynchronized computation on a copy of the data followed
by a commit or abort. A commit occurs when it can be shown that no con-
flicts have occurred. Transactions can be supported on distributed hardware

Edward A. Lee, UC Berkeley 17

(as is common for databases), or in software on shared-memory machines
[40], or, most interestingly, in hardware on shared-memory machines [24]. In
the latter case, the technique meshes well with cache consistency protocols
that are required anyway on these machines. Transactions eliminate unin-
tended deadlocks, but despite recent extensions for composability [19], re-
main a highly nondeterministic interaction mechanism. They are well-suited
to intrinsically nondeterminate situations, where for example multiple actors
compete nondeterministically for resources. But they are not well-suited for
building determinate concurrent interactions.

A particularly interesting use of patterns is MapReduce, as reported
by Dean and Ghemawat [15]. This pattern has been used for large scale
distributed processing of huge data sets by Google. Whereas most patterns
provide fine-grain shared data structures with synchronization, MapReduce
provides a framework for the construction of large distributed programs.
The pattern is inspired by the higher-order functions found in Lisp and
other functional languages. The parameters to the pattern are pieces of
functionality represented as code rather than pieces of data.

Patterns may be encapsulated into libraries by experts, as has been done
with MapReduce, the concurrent data structures in Java 5.0, and STAPL
in C++ [2]. This greatly improves the reliability of implementations, but
requires some programmer discipline to constrain all concurrent interactions
to occur via these libraries. Folding the capabilities of these libraries into
languages where syntax and semantics enforce these constraints may even-
tually lead to much more easily constructed concurrent programs. But no
libraries have yet emerged that address timing of software.

Higher-order patterns such as MapReduce offer some particularly inter-
esting challenges and opportunities for language designers. These patterns
function at the level of coordination languages [36] rather than more tradi-
tional programming languages. New coordination languages that are com-
patible with established programming languages (such as Java and C++)
are much more likely to gain acceptance than new programming languages
that replace the established languages.

4.4 New Technologies

Although the improvements described above can help, we believe that to
realize its full potential, CPS systems will require fundamentally new tech-
nologies. It is possible that these will emerge as incremental improvements
on existing technologies, but given the lack of timing in the core abstractions
of computing, this seems improbable. Any complete solution will need to

18 Computing Foundations and Practice for CPS

fix this lack.
Nonetheless, incremental improvements can have a considerable impact.

For example, concurrent programming can be done in much better ways
than threads. For example, Split-C [13] and Cilk [10] are C-like languages
supporting multithreading with constructs that are easier to understand
and control than raw threads. A related approach combines language ex-
tensions with constraints that limit expressiveness of established languages
in order to get more consistent and predictable behavior. For example, the
Guava language [6] constrains Java so that unsynchronized objects cannot
be accessed from multiple threads. It further makes explicit the distinction
between locks that ensure the integrity of read data (read locks) and locks
that enable safe modification of the data (write locks). SHIM also provides
more controllable thread interactions [44]. These language changes prune
away considerable nondeterminacy without sacrificing much performance,
but they still have deadlock risk, and again, none of them confronts the lack
of temporal semantics.

Another approach that puts more emphasis on the avoidance of deadlock
is promises, as realized for example by Mark Miller in the E programming
language4. These are also called futures, and are originally attributable to
Baker and Hewitt [20]. Here, instead of blocking to access shared data,
programs proceed with a proxy of the data that they expect to eventually
get, using the proxy as if it were the data itself. Although a fascinating
approach for general purpose computing, this approach does not seem well
suited for CPS, since if anything it exacerbates timing unpredictability.

As stated above, I believe that the best approach has to be predictable
where it is technically feasible. Predictable concurrent computation is possi-
ble, but it requires approaching the problem differently. Instead of starting
with a highly nondeterministic mechanism like threads, and relying on the
programmer to prune that nondeterminacy, we should start with determin-
istic, composable mechanisms, and introduce nondeterminism only where
needed.

One approach that is very much a bottom-up approach is to modify com-
puter architectures to deliver precision timing [16]. This can allow for deter-
ministic orchestration of concurrent actions. But it leaves open the question
of how the software will be designed, given that programming languages
and methodologies have so thoroughly banished time from the domain of
discourse.

Achieving timing precision is easy if we are willing to forgo perfor-

4See http://www.erights.org/

Edward A. Lee, UC Berkeley 19

mance; the engineering challenge is to deliver both precision and perfor-
mance. While we cannot abandon structures such as caches and pipelines
and 40 years of progress in programming languages, compilers, operating
systems, and networking, many will have to be re-thought. Fortunately,
throughout the abstraction stack, there is much work on which to build.
ISAs can be extended with instructions that deliver precise timing with
low overhead [25]. Scratchpad memories can be used in place of caches [4].
Deep interleaved pipelines can be efficient and deliver predictable timing [32].
Memory management pause times can be bounded [5]. Programming lan-
guages can be extended with timed semantics [21]. Appropriately chosen
concurrency models can be tamed with static analysis [8]. Software com-
ponents can be made intrinsically concurrent and timed [33]. Networks can
provide high-precision time synchronization [27]. Schedulability analysis can
provide admission control, delivering run-time adaptability without timing
imprecision [9].

Complementing bottom-up approaches are top-down solutions that cen-
ter on the concept of model-based design [43]. In this approach, “programs”
are replaced by “models” that represent system behaviors of interest. Soft-
ware is synthesized from the models. This approach opens a rich semantic
space that can easily embrace temporal dynamics (see for example [48]),
including even the continuous temporal dynamics of the physical world.

But many challenges and opportunities remain in developing this rela-
tively immature technology. Naive abstractions of time, such as the discrete-
time models commonly used to analyze control and signal processing sys-
tems, do not reflect the true behavior of software and networks [35]. The
concept of “logical execution time” [21] offers a more promising abstraction,
but ultimately still relies on being able to get worst-case execution times for
software components. This top-down solution depends on a corresponding
bottom-up solution.

Some of the most intriguing aspects of model-based design center on
explorations of rich possibilities for interface specifications and composition.
Reflecting behavioral properties in interfaces, of course, has also proved
useful in general-purpose computing (see for example [34]). But where we
are concerned with properties that have not traditionally been expressed at
all in computing, the ability to develop and compose specialized “interface
theories” [14] is extremely promising. These theories can reflect causality
properties [49], which abstract temporal behavior, real-time resource usage
[45], timing constraints [23], protocols [28], depletable resources [11], and
many others [1].

A particularly attractive approach that may allow for leveraging the

20 Computing Foundations and Practice for CPS

considerable investment in software technology is to develop coordination
languages [36], which introduce new semantics at the component interaction
level rather than at the programming language level. Manifold [37] and Reo
[3] are two examples, as are a number of other “actor oriented” approaches
[30].

5 Conclusion

To fully realize the potential of CPS, the core abstractions of computing
need to be rethought. Incremental improvements will, of course, continue to
help. But effective orchestration of software and physical processes requires
semantic models that reflect properties of interest in both.

References

[1] L. d. Alfaro and T. A. Henzinger. Interface-based design. In M. Broy,
J. Gruenbauer, D. Harel, and C. Hoare, editors, Engineering Theories of
Software-intensive Systems, volume NATO Science Series: Mathemat-
ics, Physics, and Chemistry, Vol. 195, pages 83–104. Springer, 2005.

[2] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas,
N. Amato, and L. Rauchwerger. STAPL: An adaptive, generic parallel
C++ library. In Wkshp. on Lang. and Comp. for Par. Comp. (LCPC),
pages 193–208, Cumberland Falls, Kentucky, 2001.

[3] F. Arbab. Reo: A channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[4] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation
scheme for scratch-pad-based embedded systems. Trans. on Embedded
Computing Sys., 1(1):6–26, 2002.

[5] D. F. Bacon, P. Cheng, and V. Rajan. The Metronome: A simpler ap-
proach to garbage collection in real-time systems. In Workshop on Java
Technologies for Real-Time and Embedded Systems, Catania, Sicily,
2003.

[6] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java
without data races. In ACM SIGPLAN conference on Object-oriented

Edward A. Lee, UC Berkeley 21

programming, systems, languages, and applications, volume 35 of ACM
SIGPLAN Notices, pages 382–400, 2000.

[7] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

[8] G. Berry. The effectiveness of synchronous languages for the devel-
opment of safety-critical systems. White paper, Esterel Technologies,
2003.

[9] E. Bini and G. C. Buttazzo. Schedulability analysis of periodic fixed
priority systems. IEEE Transactions on Computers, 53(11):1462–1473,
2004.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime sys-
tem. In ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPoPP), ACM SIGPLAN Notices, pages 207 –
216, Santa Barbara, California, 1995.

[11] A. Chakrabarti, L. de Alfaro, and T. A. Henzinger. Resource interfaces.
In R. Alur and I. Lee, editors, EMSOFT, volume LNCS 2855, pages
117–133, Philadelphia, PA, 2003. Springer.

[12] C. Chang, J. Wawrzynek, and R. W. Brodersen. Bee2: A high-end
reconfigurable computing system. IEEE Design and Test of Computers,
22(2):114–125, 2005.

[13] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. v. Eicken, and K. Yelick. Parallel programming in
Split-C. In ACM/IEEE Conference on Supercomputing, pages 262 –
273, Portland, OR, 1993. ACM Press.

[14] L. deAlfaro and T. A. Henzinger. Interface theories for component-
based design. In First International Workshop on Embedded Software
(EMSOFT), volume LNCS 2211, pages 148–165, Lake Tahoe, CA, 2001.
Springer-Verlag.

[15] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In Sixth Symposium on Operating System Design
and Implementation (OSDI), page 137150, San Francisco, CA, 2004.
USENIX Association.

22 Computing Foundations and Practice for CPS

[16] S. A. Edwards and E. A. Lee. The case for the precision timed (pret)
machine. In Design Automation Conference (DAC), San Diego, CA,
2007.

[17] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy
approach. Proceedings of the IEEE, 91(2):127–144, 2003.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1319, 1991.

[19] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable memory
transactions. In ACM Conference on Principles and Practice of Parallel
Programming (PPoPP), pages 48–60, Chicago, IL, 2005. ACM Press.

[20] J. Henry G. Baker and C. Hewitt. The incremental garbage collection
of processes. In Proceedings of the Symposium on AI and Programming
Languages, volume 12 of ACM SIGPLAN Notices, pages 55–59, 1977.

[21] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. In EMSOFT 2001,
volume LNCS 2211, Tahoe City, CA, 2001. Springer-Verlag.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-
modular abstraction refinement. In 15th International Conference on
Computer-Aided Verification (CAV), volume 2725 of Lecture Notes in
Computer Science, pages 262–274. Springer-Verlag, 2003.

[23] T. A. Henzinger and S. Matic. An interface algebra for real-time com-
ponents. In 12th Annual Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). IEEE Computer Society Press, 2006.

[24] M. Herlihy and J. E. B. Moss. Transactional memory: architectural
support for lock-free data structures. In Proceedings of the 20th annual
international symposium on Computer architecture, pages 289–300, San
Diego, California, United States, 1993. ACM Press.

[25] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-accurate
real-time software. In IFIP International Conference on Embedded
and Ubiquitous Computing (EUC), volume LNCS 4096, pages 449–458,
Seoul, Korea, 2006. Springer.

Edward A. Lee, UC Berkeley 23

[26] D. Jackson, M. Thomas, L. I. Millett, and C. on Certifiably Depend-
able Software Systems. Software for dependable systems: Sufficient
evidence? software for dependable systems: Sufficient evidence? daniel
jackson, martyn thomas, and lynette i. millett, editors may 9, 2007.
Technical report, National Academies Press, May 9 2007.

[27] S. Johannessen. Time synchronization in a local area network. IEEE
Control Systems Magazine, pages 61–69, 2004.

[28] H. Kopetz and N. Suri. Compositional design of RT systems: A con-
ceptual basis for specification of linking interfaces. In 6th IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC 2003), pages 51–60, Hakodate, Hokkaido, Japan, 2003.
IEEE Computer Society.

[29] D. Lea. Concurrent Programming in Java: Design Principles and Pat-
terns. Addison-Wesley, Reading MA, 1997.

[30] E. A. Lee. Model-driven development - from object-oriented design
to actor-oriented design. In Workshop on Software Engineering for
Embedded Systems: From Requirements to Implementation (a.k.a. The
Monterey Workshop), Chicago, 2003.

[31] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[32] E. A. Lee and D. G. Messerschmitt. Pipeline interleaved programmable
dsps: Architecture. IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing, ASSP-35(9), 1987.

[33] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented de-
sign of embedded hardware and software systems. Journal of Circuits,
Systems, and Computers, 12(3):231–260, 2003.

[34] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–
1841, 1994.

[35] T. Nghiem, G. J. Pappas, A. Girard, and R. Alur. Time-triggered im-
plementations of dynamic controllers. In EMSOFT, pages 2–11, Seoul,
Korea, 2006. ACM Press.

[36] G. Papadopoulos and F. Arbab. Coordination models and languages.
In M. Zelkowitz, editor, Advances in Computers - The Engineering of
Large Systems, volume 46, pages 329–400. Academic Press, 1998.

24 Computing Foundations and Practice for CPS

[37] G. A. Papadopoulos, A. Stavrou, and O. Papapetrou. An implemen-
tation framework for software architectures based on the coordination
paradigm. Science of Computer Programming, 60(1):27–67, 2006.

[38] H. J. Reekie, S. Neuendorffer, C. Hylands, and E. A. Lee. Software
practice in the Ptolemy project. Technical Report Series GSRC-TR-
1999-01, Gigascale Semiconductor Research Center, University of Cal-
ifornia, Berkeley, April 1999.

[39] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-
Oriented Software Architecture - Patterns for Concurrent and Net-
worked Objects. Wiley, 2000.

[40] N. Shavit and D. Touitou. Software transactional memory. In ACM
symposium on Principles of Distributed Computing, pages 204–213, Ot-
towa, Ontario, Canada, 1995. ACM Press.

[41] J. A. Stankovic. Misconceptions about real-time computing: a serious
problem for next-generation systems. Computer, 21(10):10–19, 1988.

[42] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7):54–62, 2005.

[43] J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE
Computer, page 110112, 1997.

[44] O. Tardieu and S. A. Edwards. SHIM: Scheduling-independent threads
and exceptions in SHIM. In EMSOFT, Seoul, Korea, 2006. ACM Press.

[45] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for
composing real-time systems. In EMSOFT, Seoul, Korea, 2006. ACM
Press.

[46] N. Wirth. Toward a discipline of real-time programming. Communica-
tions of the ACM, 20(8):577–583, 1977.

[47] N. Zeldovich, A. Yip, F. Dabek, R. T. Morris, D. Mazieres, and
F. Kaashoek. Multiprocessor support for event-driven programs. In
USENIX Annual Technical Conference, San Antonio, Texas, USA,
2003.

[48] Y. Zhao, E. A. Lee, and J. Liu. A programming model for time-
synchronized distributed real-time systems. In Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), Bellevue, WA,
USA, 2007. IEEE.

Edward A. Lee, UC Berkeley 25

[49] Y. Zhou and E. A. Lee. A causality interface for deadlock analysis in
dataflow. In ACM & IEEE Conference on Embedded Software (EM-
SOFT), Seoul, South Korea, 2006. ACM.

