
Easily Adaptable Handwriting Recognition in
Historical Manuscripts

John Alexander Edwards

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-76

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-76.html

May 29, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Easily Adaptable Handwriting Recognition in Historical Manuscripts

by

John Alexander Edwards III

A.B. (Princeton University) 1997

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

and the Designated Emphasis in
Communication, Computation and Statistics

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor David Forsyth, Co-Chair
Professor Jitendra Malik, Co-Chair

Professor Dan Klein
Professor Peter Bickel

Spring 2007

The dissertation of John Alexander Edwards III is approved:

Professor David Forsyth, Co-Chair Date

Professor Jitendra Malik, Co-Chair Date

Professor Dan Klein Date

Professor Peter Bickel Date

University of California, Berkeley

Spring 2007

Easily Adaptable Handwriting Recognition in Historical Manuscripts

Copyright c© 2007

by

John Alexander Edwards III

Abstract

Easily Adaptable Handwriting Recognition in Historical Manuscripts

by

John Alexander Edwards III

Doctor of Philosophy in Computer Science and the

Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor David Forsyth, Co-Chair

Professor Jitendra Malik, Co-Chair

As libraries increasingly digitize their collections, there are growing numbers of

scanned manuscripts that current OCR and handwriting recognition techniques can-

not transcribe, because the systems are not trained for the scripts in which these

manuscripts are written. Documents in this category range from illuminated medieval

manuscripts to handwritten letters to early printed works. Without transcriptions,

these documents remain unsearchable. Unfortunately with existing methods, a user

must manually label large amounts of text in the target font to adapt the system to

a new script. Some systems require that a user manually segment and label instances

of each glyph. Others provide for less costly training, allowing a user to segment and

label entire lines of text instead of individual characters. Still, the collections we con-

sider are extremely diverse, to the extent that in some cases almost every document

may be in a different style. Because of this, the cost of manually transcribing dozens

of lines of text for each font is prohibitively high.

In this dissertation, we introduce methods that significantly reduce the manual

labor involved in training a character recognizer to new scripts. Rather than forcing

a user to transcribe portions of each target document, our system leverages general

1

language statistics to identify regions of the document from which it may automati-

cally extract new training exemplars. Unlike document specific transcriptions, these

language statistics may be generated in a largely unsupervised manner, allowing our

system to automate the process of building a model of scripts. We demonstrate the

effectiveness of the model thus generated by using it to build a search engine for a

Medieval illuminated manuscript.

Professor David Forsyth, Co-Chair Date

Professor Jitendra Malik, Co-Chair Date

2

Acknowledgements

First and foremost, I want to thank my advisor, David Forsyth, for seeing me

through every step of this journey. His passion for Computer Vision, and his boundless

curiosity have always inspired me, while his good nature and quick wit have made

these past years a pleasure. I count myself exceedingly lucky to have been able to

work with him. I also want to thank the rest of my dissertation committee, Jitendra

Malik, Dan Klein, and Peter Bickel for their time and insightful comments.

I want to thank all my collaborators over the years. A particular note of thanks

to Yee Whye Teh, who played such an integral role in getting this project off the

ground, also Roger Bock and Michael Maire, for all their help building the original

datasets. Thanks to Pinar Duygulu-Sahin and Kobus Barnard for helping me get

my feet under me right at the beginning. Thanks to Dave Blei for all his machine

learning insights. A special thanks to Tamara Berg, Deva Ramanan, Brian Milch,

Ryan White and Okan Arikan for being both my sounding boards and sanity checks

over the years.

Thanks to all the other current and former members of the vision/graphics corner

of Soda Hall who’ve made the past six years such a pleasure: Leslie Ikemoto, Greg

Mori, Alyoshoa Efros, Andrea Frome, Ashley Eden, Adam Kirk, Tony Lobay, Bryan

Feldman, Pushkar Joshi, Hayley Iben and many others.

A tremendous note of thanks to my parents, John and Kathy, for supporting me

in every possible way for as long as I can remember.

Above all, I want to thank my wife, Geraldine. She is everything to me, and

without her none of this would seem meaningful.

— Jaety

i

Dedicated to my wife, my greatest source of strength

ii

Contents

1 Introduction 1

1.1 An “Easily adaptable” OCR system? 5

1.2 Decomposing the OCR Function . 8

2 A Review of Adaptable Character Recognition 11

2.1 Single Character Recognition . 12

2.2 Holistic Word Recognition . 13

2.3 OCR as Sequence Alignment . 14

2.4 Real World Segmentation Approaches 21

2.5 HMM Based Methods . 25

2.6 Vocabulary and Language Models . 28

2.7 Moving Forward . 29

3 Searching Historical Documents with Generalized Hidden Markov

Models 31

3.1 The Dataset . 32

3.2 Introducing the gHMM . 34

3.3 Preprocessing . 34

3.4 The Generalized HMM Model . 39

3.5 Results . 44

iii

3.6 Search, Transcription and Language Models 54

4 Improving Visual Appearance Models 59

4.1 Extending the Segmentation Model 60

4.2 The Overlap gHMM . 64

4.3 Efficiency Considerations . 71

4.4 Extracting New Templates . 77

4.5 Results . 80

5 Toward Extensible Holistic Searches 85

5.1 A Review of Wordspotting . 86

5.2 Character Decomposable Features . 89

5.3 Equivalence Classes . 93

5.4 Word Pieces and Efficient Search . 94

6 In Conclusion 99

Bibliography 103

iv

Chapter 1

Introduction

Optical Character Recognition is one of the original problems of computer vision,

with the first examples dating back to the 1950s.1 In the past 15 years, OCR has

enjoyed a great deal of commercial success. For relatively high resolution scans of

printed works, the leading commercial systems report near 100% accuracy rates on

many modern fonts. A 1999 survey [Mello, 1999], for example, reported 99.6% rates

with the OmniPage package on documents scanned at 250dpi. These high quoted

rates mask the fact, however, that modern OCR is in one sense still very brittle.

Systems perform well on only a certain number of modern printed fonts. Outside

of this core competency, the performance of OCR systems rapidly degrades. The

same 1999 survey also noted that accuracy rates on selected printed works from the

late 19th century fell to between 85 and 90%. For handwritten manuscripts, word

accuracy rates of around 65% are considered state of the art. [Lavrenko et al., 2004]

Figure 1.1 provides extracts from a variety of historical manuscripts on which

current OCR methods will fail. Images of texts such as these are increasingly avail-

able in electronic databases, but most do not have electronic transcriptions. Be-

1See Mori et al [1995] for an extensive historical review.

1

Chapter 1. Introduction

Figure 1.1: Excerpts from various documents on which modern OCR will fail. Top Row:
A manuscript from the Bodleian Library of Terence’s Comedies in Latin; The Romance of
the Rose in French, also from the Bodleian. Middle Row: An excerpt from a letter by
George Washington and an early printed work, De Sensu Composito et Diviso by Heyte.
Bottom Row: A letter by Mark Twain; and an excerpt from a manuscript of Piers
Plowman, Corpus Christi College.

2

Chapter 1. Introduction

cause of this, their contents remain opaque to search. Examples of such manuscripts

here at Berkeley range from the complete works and correspondence of Mark Twain

to thousands of pages of zoological notes spanning two centuries. [Bancroft, 2006;

Wilensky, 1995] The University of Oxford provides a portal to online collections of

hundreds of Medieval manuscripts. [Oxford, 2007] Meanwhile, Google is pursuing

the goal of scanning every book in many libraries around the world. Relative to the

number of scanned pages printed in modern fonts, the number of historical and hand-

written documents is minuscule. Business documents have historically and mostly

likely will continue to represent the bulk of scanned materials. In absolute terms,

however, the available collections of historical manuscripts is quite large and growing

rapidly. In contrast to business or legal documents, there is no strong commercial

incentive to provide manual transcriptions for documents where OCR fails. Because

of this, most of these collections are opaque to search and will most likely remain so

for the foreseeable future.

Accurately decoding Mark Twain’s scrawled cursive or the degraded print of the

Bodleian Library’s Piers Plowman manuscript, illustrated on the last row of figure 1.1,

is beyond the capability of current systems. However, the first two rows of the figure

contain documents that while not printed, are still quite regular. The two Medieval

manuscripts on the top line of figure 1.1 are good examples. The manuscripts pro-

duced by medieval scribes are notable for the regularity in their character forms. On

the second line, George Washington’s neat Copperplate hand is nearly as regular as

that of the Medieval scribes. The second example on this line is an example of an early

printed work, De Sensu Composito et Diviso by Heyte. Block prints and the glyphs

from early movable type both show far greater variability between instances than

modern printed fonts. For the purposes of OCR, they are more naturally grouped

with handwritten scribal manuscripts than with later, more regular printed works.

There is a wide spectrum of documents between those in clean, computer printed

3

Chapter 1. Introduction

fonts and those in scrawled handwritten cursive. The number of these intermediate

documents is surprisingly large and many of their scripts seem sufficiently regular

that one might imagine we could adapt current OCR techniques to decode them.

However, no current OCR system can recognize them because we have no existing

model for their fonts. What we require is an OCR system that can be easily trained

on new scripts, even when those scripts are less regular than modern printed fonts.

The focus of research in OCR has however generally shifted away from the basic

problem of character recognition to that of document layout. The field of Docu-

ment Image Understanding (see Srihari [1986] for example) focuses on the broader

problem of accurately representing the physical layout of a scanned document in an

electronic form. Even in simple documents, lines of text must at the very least be

ordered correctly in order to provide a coherent transcriptions. More complicated

documents may contain many types of content apart from text, including images,

graphs, maps and mathematical equations. Parsing documents into these constituent

pieces is currently the most active area of OCR research. Still, any document un-

derstanding engine contains as a subproblem the task of transcribing a sequence of

printed text. When we use the term OCR or character recognition, we are referring

to this subproblem of Document Image Understanding. In Section 3.3 we will present

methods for breaking documents in our collections into lines of text. In the rest of

our work, however, we assume that the transcription of an input image can in fact be

well represented as a sequence of ASCII or Unicode characters.

Document Image Understanding is an important problem, but as the documents

of figure 1.1 illustrate there is still important work to be done in transcribing character

strings, and adapting currently available OCR systems to new scripts is not an easy

task. Traditionally, OCR research has emphasized efficiency over adaptability. This

is historically understandable. Images are computationally expensive to work with,

and thus most of the early challenges of OCR involved algorithms to work within the

4

Chapter 1. Introduction

speed and memory constraints of existing hardware. Moreover, the vast majority of

scanned documents were then (and continue to be) business documents, and it was

reasonable to assume that they were printed using a small set of known fonts. The

unfortunate result of this historical path, however, is that OCR systems frequently

employ many components manually optimized for a specific script. Because of this,

it is generally difficult to tune them for new purposes.

In this dissertation, we reevaluate the problem of OCR from the perspective of

adaptability. Collections of historical and handwritten manuscripts are far more

heterogeneous than modern printed works. While the script within any one document

may be regular, it is quite likely that any script model we learn may only apply to this

single document. One of the core design assumptions of most OCR has been that the

set of fonts to be recognized is known, and that system designers have access to an

almost unlimited number of training exemplars, by which we mean labeled instances

of character images. Providing the large number of character exemplars required by

standard techniques is a practical impossibility if one must do this separately for each

document in an archive.

1.1 An “Easily adaptable” OCR system?

We are interested in designing character recognition systems that can be easily adapted

to recognize new, previously unknown scripts. Moreover, the ideal “easy” system

could learn to transcribe this new font with very little manual intervention. To more

crisply define “adaptability” and “manual intervention,” we must introduce some

terminology.

We can think of an OCR algorithm as a function mapping from images to character

strings.

OCR(image) ⇒ (char1, char2, . . . , charN) (1.1)

5

Chapter 1. Introduction

More generally, we may ask an OCR system to return a ranked list of word hy-

potheses. Let f(image, string) be a function that returns a real numbered value given

an image and a candidate transcription. We rank alternate transcription hypothe-

ses according to the scores provided by f . Equation 1.1 can be rewritten as the

optimization problem

OCR(image) = argmax
s∈strings

f(image, s) (1.2)

An OCR algorithm also usually has a set of tunable parameters. For example,

many OCR methods are designed to work with binary images. Given a grayscale

image, pixels are assigned in a preprocessing step as either “ink” or “background,”

based on a threshold. This threshold value is a tunable parameter. Using θ to refer

to the set of all tunable parameters for a system, equation 1.3 now becomes

OCR(image, θ) = argmax
s∈strings

f(image, s, θ) (1.3)

As we vary θ, we expect that the hypothesized transcriptions for a given image will

also change. Thus the system’s performance depends on finding good values for these

parameters.

In modern OCR systems, these parameters are not generally set by hand, but

rather by optimizing some performance criteria on a training set. Training is also an

optimization problem, where the goal is to minimize some loss function L calculated

over the training set. A natural training set for OCR might consist of a set of images

and their corresponding correct transcriptions. Perhaps the easiest example of a loss

function is the 0-1 loss, which is defined simply as the number of training exemplars

that the system correctly transcribes. Let T = ((I1, s1), . . . , (IN , sN)) be our training

set pairs, and δ(·, ·) be a function equal to 1 if its two inputs are identical and zero

6

Chapter 1. Introduction

otherwise. Under the 0-1 Loss function, the optimal parameters θ∗ are2

θ∗ = argmax
θ

∑
(I,s)∈T

δ(OCR(I, θ), s) (1.4)

We can now provide a definition of an adaptable system. An OCR system is

adaptable if it can be tuned to recognize a wide variety of fonts by providing an

appropriate training set. This implies two things. First, for each font f , there exists

a setting of the parameters θ∗f such that the system accurately transcribes this font.

Second, that provided a training set from some font f , we have a mechanism to find

the optimal set of parameters. Most commercial OCR, for instance, is not adaptable

under this criteria, at least for the end user. It provides no method to train the system

for a different style. On the other hand, online handwriting recognition engines used

on tablet PCs are generally adaptable. Plamondon and Srihari [2000] provide an

extensive survey. These systems improve as the user provides more training data of

his handwriting, but they also depend on knowledge of the pen trajectory available

from the tablet input, and so are not directly applicable to the recognition of scanned

historical manuscripts.

Adaptability has to do with the flexibility of the function f(·, ·, θ). However, not

all adaptable functions are equally easy to work with. We characterize a system as

“easy” or “hard” based on the manual labor involved in providing a training set. This

definition is qualitative but hopefully uncontroversial. Given an image of a line of

text, for instance, we claim that it is easier to provide an ASCII transcription than it

is to provide an ASCII transcription and the bounding box of each word. Providing

the bounds for each word, in turn, is less cumbersome than manually segmenting the

2The 0-1 loss function is easily described, and thus a useful example. In practice, however, it is
rarely used for OCR because its criteria for success is too strict. For instance, the 0-1 loss for a seven
letter word makes no distinction between a system that correctly transcribes 6 out of 7 characters
and one that gets all 7 wrong.

7

Chapter 1. Introduction

image into individual characters.

1.2 Decomposing the OCR Function

In designing an OCR system, we must balance three competing goals: adaptability,

trainability and efficiency. We want a system with enough representational power to

accurately recognize a wide variety of scripts under varied conditions. However, we

also want a system that can be easily trained. Modern OCR systems often require

hundreds or thousands of examples of each character, but these requirements are

unreasonable for the historical manuscripts we consider. Finally, we must have com-

putationally efficient methods for optimizing the OCR function to find the optimal

parameters given a training set, and to find the optimal transcription given an image

and values for the parameters.

To achieve the goals of trainability and efficiency, most systems decompose the

OCR function of equation 1.3 into a set of smaller, interacting pieces. To a large

degree, the history of OCR and handwriting recognition is a study of the effects of

different decompositions. There are two broad families of decompositions that are

perhaps the most fundamental, however, and crop up in most any OCR system.

• Spatial Decomposition: We can break the OCR function into smaller units

that make use of only a portion of the input image. For example, if we can

confidently segment a text image into individual words, we might try to translate

each word separately.

f
(
g(word image 1, string 1), . . . , g(image N, string N)

)
(1.5)

Of course, breaking at word boundaries is not the only option. Alternative

approaches attempt to segment the line into individual characters. Yet others

8

Chapter 1. Introduction

avoid segmentation altogether in favor of a series of measurements taken at a

discrete set of locations along the line. As we will see in chapter 2, OCR systems

can be roughly grouped by their approach to spatial decomposition.

• Language and Visual Cues The OCR function can be decomposed along

different lines by making some functions language specific and others solely

visual. For example, after breaking the line into individual characters, a system

might try to recognize each character based solely on its visual appearance. Let

g(I, c) be the function that assigns a score for each character c given an image

I.

However, visual appearance is not the only feature humans use when reading

text. A human reader also knows which strings are valid words and which are

not. He or she can use this language knowledge to infer the correct transcription

even if the word is blurry or otherwise visually ambiguous. We might devise

a second function h(string) that gives a score based on whether this string is

valid or not. This leads to an OCR function of the form

OCR(image) = argmax
s∈strings

f

(
h(s),

∑
i

g(Ii, si)

)
(1.6)

The final score will be some combination of a purely linguistic score from h and

a purely visual score from the sequence of g’s.

As we will see throughout the following chapters, finding a useful decomposition of

the OCR function is the key challenge in handwriting and print recognition. We would

like a decomposition that is adaptable and easily trained as defined in section 1.1. At

the same time, we would like the family of functions to be such that it can achieve

high accuracy given enough training data. Finally, we need to be able to efficiently

compute results for the two core optimization problems of training to find optimal

9

Chapter 1. Introduction

parameters, and finding the optimal string, or ranking a set of strings.

10

Chapter 2

A Review of Adaptable Character

Recognition

The history of OCR stretches back to the 1950s. However, the history of research

into adaptable systems is considerably shorter. In general, OCR researchers and

commercial systems have focused on improving accuracy and speed of recognition for

a small set of of known modern fonts. Gary Kopec’s Document Image Decoding work

from the nineties is a notable exception to this trend, and provides one of the earlier

attempts to frame OCR as an optimization problem over a family of functions. [Kopec

and Lomelin, 1995] The question of adaptability has received broader attention from

the handwriting recognition community, since the input to these systems has so much

higher variability than print. In this chapter we review and draw comparisons between

the major models presented in the existing literature. Major reviews of handwriting

recognition include Steinherz et al. [1999] and Vinciarelli [2003]. Mori et al. [1995]

provides an extensive historical review of OCR techniques.

11

Chapter 2. A Review of Adaptable Character Recognition

2.1 Single Character Recognition

Perhaps the simplest formulation of the OCR problem assumes that the input images

contain just a single character from a known alphabet. This is a classification problem

from an input image to a small, fixed alphabet of characters A. In most systems, the

input image is mapped to a fixed length vector, and a statistical classification method

is trained from a set of labeled exemplar images.

The most widely tested dataset for the single character recognition problem is the

MNIST collection [LeCun and Cortes, 1998], a set of handwritten digits drawn from

postal address zipcodes. It consists of 60,000 training and 10,000 test images. These

images have been size normalized and centered in the image window.

Lecun et al. [1998], report results on the MNIST collection for a wide variety

of approaches. In the simplest setup, the image is reshaped into a vector whose

values are the original pixels. Other methods preprocess the images in various ways

including deskewing, blurring and denoising. K Nearest neighbors on the original

images achieves a 5% error rate. Using preprocessing, this number is reduced to

1.22%. SVMs with a gaussian kernel on the original images achieve a 1.1% error rate,

reduced to .8% with a 9th degree polynomial kernel. The best performing method

is the authors’ special purpose neural network, the Convolutional Neural Net. With

this system, they achieve an error rate of .4%.

Belongie et al. [2002] report comparable results using shape contexts. In this

method, the set of edge points from an image are sampled at some fixed number

of randomly selected points. The feature calculated at each of these points is a

histogram of the locations of surrounding edge pixels, calculated with log-polar bins.

Test images are classified by performing nearest neighbors to the test set, using a

metric measuring the correspondence between these extracted points for each image.

Performance for these datasets is extremely high. Their .4% error rate means that

12

Chapter 2. A Review of Adaptable Character Recognition

only 40 out of 10,000 characters were misrecognized.

With test error rates this low, it seems that recognition of the postal address

digits is basically a solved problem, and digit recognition has indeed made its way

into real world applications for automatically recognizing postal addresses and the

courtesy amounts on checks. [Srihari and Kuebert, 1997; LeCun et al., 1997] However,

providing 60,000 training exemplars involves a lot of manual labor. In addition, by

providing images that are broken up into individual characters, this dataset makes the

problem much easier. As we will see in the following sections, accurately segmenting

a line into characters as a pre-processing step is difficult to accomplish automatically.

In this dissertation, one major goal is to introduce algorithms to reduce the amount

of manual supervision necessary to train an accurate OCR system on new scripts.

2.2 Holistic Word Recognition

Methods similar to those in section 2.1 have been applied to the recognition of larger

strings as well. In this case, systems assume that the input consists of word images

from some known vocabulary list. Some examples include [Kornfield et al., 2004;

Moreau, 1991; Leroux et al., 1991] This vocabulary list serves the same role as the

alphabet for single character recognition.

These systems extract a fixed length feature vector from the image, although the

feature set is generally somewhat different than in single character recognition. For

example, since word images are not of standardized size (as in the MNIST database),

width and height are useful features. Rath and Manmatha [2003] treat various projec-

tions of the word image as 1-D signals, and convert them to fixed length vectors using

the first few coefficients of their Discrete Fourier Transforms. Although the features

are different that those used for single character recognition, the classification func-

tions and training methods are similar. Lavrenko et al. [2004] fit a Gaussian mixture

13

Chapter 2. A Review of Adaptable Character Recognition

model to training data, with one class for each word. Recognition of an entire text

proceeds as a word level HMM, with this Gaussian model as the emission model.

The difficulty for holistic methods is that the range of the classification function

grows linearly with the size of the vocabulary. In practice, this means that the training

set must include multiple examples of each word the system is expected to classify.

This requirement is frequently unachievable as the vast majority of words in a given

language are very rare.1 Holistic methods do not share parameters between different

words, and because of this, have a serious problem with sparsity as the vocabulary

size grows. Even for small vocabularies of common words, this method requires a

fairly costly round of manual supervision.

In their “wordspotting” work, Lavrenko et al. [2004] use these methods on a

large vocabulary, They report 65% word accuracy rates on a collection of letters by

George Washington and Thomas Jefferson. They also introduce some interesting

methods for reducing the cost of training. Most notably, they perform an initial

unsupervised clustering of the word feature vectors. They can then label clusters

instead of individual instances of words. Still, the overhead for a new document is

substantial.

2.3 OCR as Sequence Alignment

To handle large or open vocabulary problems, non-holistic systems make use of the

fact that both ASCII words and their visual representations are composed of smaller

repeatable structures. This is explicitly true for printed works, and a reasonable

assumption for handwritten ones. The basic units of printed text are generally referred

to as glyphs. Historically, a glyph was the basic unit of movable type. For most ASCII

characters, there is a one to one relationship between characters. Sometimes, however,

1See, for example, the discussion of Zipf’s law in [Manning and Schütze, 1999]

14

Chapter 2. A Review of Adaptable Character Recognition

character bigrams interact in a way that is not simply the concatenation of their two

separate images. These are known as ligatures. Whistler et al. [2004] provide a useful

discussion on the relationship between characters and glyphs for modern computer

fonts. We will use the term glyph to refer to handwritten characters as well. It is

worth noting that even when breaking a document into glyphs, the sparsity problem

does not entirely disappear. For example, the capitalized version of some characters

may be rare enough that the corresponding glyphs may happen only a few times even

in reasonably long documents.

Since we are not usually provided with a segmentation of the image into glyphs,

OCR systems must have some method for breaking an image into a discrete set of

pieces. As we will see, these pieces may or may not correspond to our intuitive

notion of a glyph. Some systems break a line into smaller pieces. Others refrain

from segmenting the line at all and sample vectors of image features at a sequence of

image points. They all, however, generate a discrete sequence of measurements and

use this as the starting point of inference. We will refer to this family of approaches

as sequential models, to contrast them with the holistic models of section 2.2. In

section 2.4 we return to the question of segmenting the line. For the moment, however,

we will assume that a correct segmentation is provided, and turn to the question of

inferring a transcription given a sequence of glyph images.

2.3.1 Importance of Context

Assume for the moment that we could segment a line into a sequence of glyphs, and

that the mapping between glyphs and characters was one to one. In this case, we

could directly employ the single character recognition techniques of section 2.1 to

generate a transcription by considering each character in isolation. However, systems

will often be able to improve recognition rates by letting the identities of surrounding

15

Chapter 2. A Review of Adaptable Character Recognition

characters influence the classification process for a glyph.

Visually, characters in some scripts have contextual forms, [Whistler et al., 2004].

For example, in many early scripts, the first of a pair of s’s was written in a form

resembling an f, as in figure 2.1(a), an excerpt from a letter by George Washington.

These effects are still present in modern fonts, for example in the connectors between

cursive characters, figure 2.1(b). In these cases, the identity of adjacent characters

directly influences the appearance of the current one.

(a)

cat bat
(b)

Figure 2.1: 2.1(a) the word “assigned”, excerpted from a letter by George Washington.
Note that the first ‘s’ has a very different form than the second. This is called a contextual
form. 2.1(b) A contextual form from a modern font, Lucida Handwriting. Note the
connectors between “ca” in cat as opposed to “ba” in bat.

A character’s context is also useful because it allows us to bring language knowledge

to bear. Humans do not need to accurately recognize every character in order to read,

and this is because text in any language is not a random sequence of characters. If a

reader sees the sequence “obv?ous”, most English speakers will have no trouble filling

in the missing character. In some situations, the identities of neighboring characters

are so highly correlated, that given one a reader may predict another without even

looking at the image. In an English language document, for example, given that the

previous character is a “q”, an OCR system could presumably predict the identity of

the following character without ever examining the image itself.

16

Chapter 2. A Review of Adaptable Character Recognition

2.3.2 Inference in Contextual Models

The major advantage of considering characters in isolation is that it is computation-

ally efficient to infer a transcription. The computational cost grows only linearly

with the size of the string. If we allow arbitrary interactions between characters, the

complexity of inference becomes exponential in string length. However, if we restrict

ourselves to pairwise interactions, optimization can once again be performed in poly-

nomial time through dynamic programming. Most sequential models for character

recognition are of this form. Many of these methods are variants of Hidden Markov

Models and provide a generative model for an image of text. Others use undirected

graphical models or energy-based models.2 HMMs are a subfamily of this larger class

of methods. Pairwise energy-based models for sequences have the following form:

Let fI(g, c) be a function that returns a real valued score given a glyph image and

a candidate character label. Let fL(c1, c2) be a function that assigns scores to pairs

of adjacent characters. For example, a good function would assign a high score to the

pair (“q”,“u”) and a low score to the pair (“q”,anything else). We assign a score to

a sequence of characters c1...N and an associated sequence of glyphs g1...N as

score(c, g) = fL(α, c1)
N∏

i=1

fI(gi, ci)
N∏

i=2

fL(cv1 , cv2) (2.1)

Here α is a special dummy character that we assume begins any string.

Figure 2.2 provides a useful visual depiction of such a model for the word “cab”.

We define a trellis graph as a directed acyclic graph that can be depicted as a series

columns of vertices with all edges running from left to right. We associate a label

lv and a glyph gv with each vertex. If we assign the score fI(gv, lv) to each vertex,

and the score fL(cv1 , cv2 to each edge e = (v1, v2), then we can define the score of a

2The term energy-based model is used extensively by [LeCun et al., 1998]

17

Chapter 2. A Review of Adaptable Character Recognition

a

b

z

...

a

b

z

...
a

b

z

...
α ω

c c c

cab

Figure 2.2: Pairwise dependencies between adjacent characters can be represented as a
trellis graph. A score is associated with each vertex and each edge. The vertex score
rates the match between a glyph and a character. Edge scores allow adjacent characters
to influence the classification of their neighbors. Each path through the graph defines a
possible transcription. We add a special start state α and end state ω, and denote the
correct path by the dark blue arrows. Finding the optimal route through such a graph
is a single source, shortest path problem, and may be solved efficiently through dynamic
programming

18

Chapter 2. A Review of Adaptable Character Recognition

particular transcription as the combination of those scores along a path in the graph

from α to ω. Let Vp and Ep be the vertices and edges respectively of a given path p.

The score of a path is

score(p) =
∏
v∈V

fI(g, cv)
∏

(v1,v2)∈E

fL(cv1 , cv2) (2.2)

2.3.2.1 Hidden Markov Models

Models of the form in equation 2.2 are Hidden Markov Models if fL is discrete, and

both fI and fL are constrained to be conditional probability distributions. Impedovo

[1993] provides an extensive review of the use of HMMs in handwriting recognition.

We define fI as the probability of the image g (or a feature xg derived from the image)

given the character label, and fL as the probability of a character given the previous

character. This represents a character bigram model. We can extend the model to

character N grams by expanding fL to depend on additional preceding characters.

In this case, fL = P(c|cprevious) is a multinomial distribution over character labels.

A common method is to model fI as a mixture of Gaussians. Vinciarelli et al.

[2004] provide one example. A fixed length feature vector is generated from the

image (as in single character recognition). The mixture parameters depend on the

class label, and the Gaussian parameters are specific to the mixture.

fI(g, c) = P(xg|c) =
K∑

i=1

πckN (xg; θck) (2.3)

Here, the mixture has K components, feature vector x and character label c, the

probability of a feature given a character is where πk is the probability of the kth

mixture component, and N (f ; θk) is the probability of the feature f under a Gaussian

with mixture specific parameters θk.

Hidden Markov Models are also extensively used in Speech Recognition. Models

19

Chapter 2. A Review of Adaptable Character Recognition

are generally trained via Maximum Likelihood, although researchers have also trained

these models using discriminative methods, see [Rabiner and Juang, 1993; Jelinek,

1997] for further references. The maximum likelihood path is calculated via the

Viterbi algorithm, which is an instance of the single-source shortest path algorithm

on a directed acyclic graph. [Cormen et al., 2001]. See also [Jordan, Pre Print].The

cost of the best path c∗(v) from the start state α and ending at a given vertex v is

given recursively in terms of the costs of v’s direct ancestors Av in the DAG

c∗(v) = fI(vg, vc) + min
v′∈Av

(c∗(v′) + fL(v′, v)) (2.4)

For probabilistic methods, the scores are log-likelihoods. Posterior probabilities

for individual characters, i.e. P(ci|image) are calculated using the related forward-

backward algorithm, which replaces the min in the Viterbi algorithm with

log
∑

v′∈Av

exp (c∗(v′) + fL(v′, v)) (2.5)

2.3.2.2 Energy-Based models and Undirected Graphical Models

Alternatively, we could forego a generative model, letting fI and fL be more general

functions. Graph Transformer Networks [LeCun et al., 1998], Conditional Random

Fields [Lafferty et al., 2001], and Max Margin Markov Networks [Taskar et al., 2003]

present various methods for training such models discriminatively. These methods

assume that we are given a set of transcribed images as a training set. Optimization

of these methods involves maximizing the margin between the true transcription of

each training exemplar, and some set of alternatives.

The margin may be defined in a number of ways. We might, for example, maximize

the difference between the score of the true transcription and that of the next best

contender. Let p∗ = (V ∗, E∗) be the path of the true transcription in the trellis. Let

20

Chapter 2. A Review of Adaptable Character Recognition

sim sum qui

Figure 2.3: In many scripts, characters are locally ambiguous. On the left, are three
windows from the Terence manuscript. Only one of these is actually a “u”. On the right
we are given additional context. The first instance is in fact an “i” and the first third of
an “m”. The last is half a “u” and the following “i”. Only the middle example is in fact
a true “u”.

Palt be the set of all other paths, and let T be a training set of images with their

correct transcriptions. The optimization goal is then

argmax
θ

∑
t∈T

(
Score(p∗)− max

p′∈Palt

Score(p′)

)
(2.6)

Alternately, in a probabilistic setting, the system may directly maximize P[p∗|image]

argmax
θ

∑
t∈T

(
log P(p∗)− log

∑
p′∈Palt

P(p′)

)
(2.7)

2.4 Real World Segmentation Approaches

To use the above methods in the context of a longer string, we need some method

to segment the image into characters. This is rarely easy. A rule of thumb that has

come to be known as Sayre’s paradox states that “it is impossible to segment without

first recognizing characters, and it is impossible to recognize characters without a

segmentation.” [Sayre, 1973]

There are, in fact, many examples where even a human reader must rely on

contextual cues to segment. Figure 2.3 shows three windows extracted from a 10th

21

Chapter 2. A Review of Adaptable Character Recognition

century manuscript of Terence’s Comedies, written in Latin. This document is one of

our main training sets, and we will return to it in chapters 3 and 4. All three windows

appear to be a “u” when viewed in isolation, but as is clear when given additional

context, only one actually is. The other two are not true characters, but combine

portions of two adjacent glyphs, demonstrating mis-segmentations of the line.

At times, it may be theoretically possible to segment characters, but difficult to

do so automatically. In the leftmost example of figure 2.3, the “i” in “sim” is nestled

under the cross bar of the preceding “s”. Historically, in movable type, these two

characters would have been cast as a single unit, known as a ligature. There are many

examples of ligatures in modern fonts as well. [Whistler et al., 2004] OCR systems

must choose how to manage ligatures. They may treat them as single characters, or

break them into smaller pieces. The former approach more accurately models the

true generative process, but the latter is often more computationally convenient as it

preserves a one to one mapping between the ascii characters of a transcription and

image pieces.

Since the segmentation is not normally provided, researchers have devised various

methods of breaking a line of text into a finite sequence. In tandem with these

approaches to segmentation, researchers have also had to introduce extensions to the

inference mechanisms described in the last section in order to account for the fact that

there is no longer a one to one correspondence between the ASCII characters of the

transcription and the steps in the visual image sequence. In the following sections,

we introduce examples of the major approaches to segmentation and the extensions

to the sequential inference model that each method requires.

22

Chapter 2. A Review of Adaptable Character Recognition

(a)

(b)

(c)

Figure 2.4: In oversegmentation methods, the line is broken at a large number of places,
in the hopes that the true glyph breaks will be contained in this larger set. In this example,
the original image (a) is deslanted, so that strokes are roughly vertical. The projection
profile (b) is computed by summing along columns and smoothing. Breaks are introduced
(c) at local minima of this projection profile.

2.4.1 Inference in Oversegmented Images

One method for working with images that cannot be easily split into single characters

is to oversegment the line. This is also one of the earliest methods proposed. Burgest

[1992] and Breuel [1994] illustrate two early examples.

The method entails identifying some repeatable feature at which to segment. Fig-

ure 2.4 shows an example. An image of text is first deslanted, so that strokes are

roughly vertical. We derive a vertical projection from the image by first binarizing

the text, then summing along each column of pixels, and finally smoothing the re-

sulting signal with a Gaussian filter. The image is split at each local minima of this

projection profile.

Oversegmentation methods rely on the assumption that the true breaks between

23

Chapter 2. A Review of Adaptable Character Recognition

Figure 2.5: This figure, borrowed from [LeCun et al., 1998], demonstrates a partial lattice
graph for oversegmentation. The system extracts a set of proposed break points. At each
step along a path, one or more adjacent pieces may be combined as a single image, which
the system then attempts to classify.

characters will be contained in this larger set of segmentation points. If this assump-

tion holds, and if the algorithm were told the correct subset of breaks to use, then

the setup would be the same as in the previous section, with each image snippet

corresponding to a single character. One approach is to exhaustively try different

break subsets. For each subset, generate the best scoring transcription using one

of the models from section 2.3.2, and choose as the final output the [break subset,

transcription] pair with the best score. This is the method employed for example by

Burges [1992] for example.

The trellis graph of figure 2.2 can be modified to allow this inference over different

segmentations (See figure 2.5). First, the meaning of the vertices changes. Previously,

each vertex represented a subimage. Now, each vertex represents a break. Each edge

between adjacent columns represents one of the segments in the input image, but

we now also allow longer edges, which correspond to the concatenation of multiple

segments. In [Burges, 1992] and [Breuel, 1994], for example, each edge receives the

score of a single character recognizer whose input is the corresponding image window.

The output of these recognizers is a score between 0 and 1, with 0 representing a likely

character. The optimal transcription is the shortest path in this new trellis, which

can be computed using the same methods as in section 2.3.2. Inference is slightly

24

Chapter 2. A Review of Adaptable Character Recognition

more expensive, because we have increased the number of edges. One caveat about

this approach is that there is a bias toward shorter paths. The papers cited here

safely ignore this wrinkle because their single character recognizers are sufficiently

well behaved that they give very low scores to significantly too short segmentations.

These methods require a significant amount of training data. In [Breuel, 1994],

1000 characters are manually segmented from the NIST dataset [Wilkinson, 1994].

This dataset additionally provides 18,000 strings with their transcriptions, that they

break (in an undisclosed percentage) between training and test. Given the initial

1000 characters, they train character recognizers, using these to segment the rest of

the training set. Given this expanded set, they train new character recognizers.

2.5 HMM Based Methods

One major deficiency of oversegmentation methods is that they are fragile. If the

original segmenter misses a glyph break, the subsequent inference algorithm cannot

recover, because the single character recognizer is never presented with a valid char-

acter window. Vinciarelli et al. [2004] describe a method that avoids the problem of

segmentation by using a sliding window technique. This is a model also extensively

used in the speech recognition community. Instead of segmenting the image into

subwindows, the image is treated as a 1-D signal, and feature samples are taken at

regular points along the line.

The feature vector extracted at each interest point is modeled as a draw from

a character specific mixture of Gaussians. Because characters may cover more than

one sample point, the authors expand their alphabet, so that each character has 3

states associated with it c1, c2 and c3. They experiment with different topologies.

For example, in some c1 may only transition to c2 while in others it might also be

able to transition directly to the next character. Characters may never transition

25

Chapter 2. A Review of Adaptable Character Recognition

(a)

(b)

Figure 2.6: In sliding window techniques, fixed length feature vectors are extracted from
the image at a horizontal sequence of points. These points may be regularly spaced (a).
Alternatively, one may define some interest point operator to create a sequence of image
dependent feature points. In (b), for example, the interest points are the local maxima of
the projection profile. The projection profile is shown in 2.4(c)

backwards, however. In other words ci may never transition to cj for j < i within the

same character.

With this expanded alphabet, inference in the model proceeds using the same

techniques as those in section 2.3.2.1. As with LeCun, the training data for this

method is lines of text. It does not require that individual characters be hand seg-

mented. This is a significant improvement in ease of training over earlier methods.

However, the data requirements are still large. On two datasets of handwritten words,

they use 3037 and 8062 labeled words respectively as training data.

2.5.1 Inference with Graph Transformer Networks

Lecun et al. [1998] introduce a different method to integrate segmentation more

directly into inference. The authors’ Convolutional Neural Networks achieved highly

accurate performance on the MNIST single digit dataset, as described in section 2.1).

In this work, they introduce a method, the Space Displacement Neural Network,

which builds on their single character recognizer to infer characters in context. They

26

Chapter 2. A Review of Adaptable Character Recognition

address the fragility of oversegmentation methods by exhaustively considering all

possible locations for each character, at least to pixel resolution.

Their model expands the trellis of figure 2.2 so that there is a column of vertices

for every column of pixels in the image. They allow edges between between widely

separated columns, connecting every pixel with displacements in a small range about

a manually provided mean width. In this work, they recognize the courtesy amounts

on checks, which have been normalized for height, so they do not have to learn

this spacing number. Moreover, CNNs show high robustness to translations of the

position of the character in the input image, so this width parameter does not have

to be finely tuned. There is an unaddressed problem in their work, namely that a

character might, if the spacing is right, be counted as two separate instances. The

digits in the courtesy check dataset was presumably fairly regularly spaced.

The key element of this work is that all of the parameters of the SDNN entire

model, including both the neural net parameters of the CNN and the transition pa-

rameters between different character labels, can be optimized with respect to the

transcription of the entire string via gradient descent. This addresses another defi-

ciency of oversegmentation methods, where the segmenter and the single character

recognizers are trained separately, and never optimized with respect to the ultimate

goal of transcription accuracy. The authors also introduce Graph Transformer Net-

works, which provide an elegant framework for combining modules in such a way

that the output remains differentiable with respect to the parameters, ensuring that

the performance of the entire system remains optimizable through gradient descent.

[Mohri et al., 2000]

Performance on courtesy check amounts was quite high, and the system proved

robust to various kinds of introduced noise. The system has been used in real world

applications for recognizing the courtesy amounts on checks. [LeCun et al., 1997] To

our knowledge, however, it has never been extended for use in more general OCR or

27

Chapter 2. A Review of Adaptable Character Recognition

handwriting recognition systems with full alphabets.

2.5.2 Document Image Decoding

Gary Kopec [1995] introduced the Document Image Decoding model. It is notable

because it represents the most extensive early attempt to present OCR in a mathe-

matically clean way. Moreover, it provides a quite natural generative model of printed

texts, and it gives an early example of an adaptable system.

Its representation of space is very close to that which we use in our Overlap gHMM

of chapter 4. Their model for a glyph was a binary image with ones at inked pixels, and

zeros for the background. They called this binary image the template. Since they were

concerned mostly with printed fonts, there is in fact an idealized glyph of this form.

Paraphrasing the generative model, assume that each glyph template is printed on a

transparency such that ink pixels are opaque and all others are perfectly transparent.

We can then generate an image by placing a series of these transparencies down on

a larger canvas, each at a different offset relative to a global coordinate system. The

final template for a page is the logical OR of each of the transparencies. Finally, this

page template may be corrupted by noise. Inference in this model is intractable, but

Kopec introduced a greedy approximation method to allow its estimation.

2.6 Vocabulary and Language Models

We have discussed approaches to segmentation, but have not yet discussed uses of

language knowledge. Traditional OCR makes very little use of language priors, de-

pending instead on accurate single character recognizers. Handwriting recognition

has had to rely on language to a greater extent because of the larger ambiguity in

the input images. Vinciarelli [2004] shows marked improvements in an HMM based

28

Chapter 2. A Review of Adaptable Character Recognition

sliding window model by moving from using only visual features to a model that

incorporates trigram character statistics. In chapter 3, we see similar performance

boosts in our research.

N-gram character models fit naturally into the dynamic programming models

introduced in this chapter, although the computational costs for n-grams larger than

trigrams becomes quite large. A different approach is to use a large wordlist and

constrained inference. Any of the sequential models described in this chapter may

be used to score individual words in this way. A system builds a modified trellis,

constrained so that every path must contain the lexicon word as a substring. In this

way, it can generate scores for each word in a wordlist, and pick the best from that set.

This hearkens back to our discussion of holistic methods in that transcription is now

treated as a classification problem over a known vocabulary, It has the benefit over

holistic approaches that words can be added to the dictionary without retraining the

model. Because the computational cost grows linearly with the size of the vocabulary,

however, there are serious practical issues with using this method on large vocabulary

problems.

An interesting exception to this rule is the method employed by Madhvanath et al.

[1997] to recognize handwritten addresses on envelopes. They begin by recognizing

the zip code. Using this information allows them to reduce the lexicon to the point

where holistic methods can be employed to classify words. Holistic methods can be

very useful even with very large dictionaries if you are working in a domain where

other information can help you initially prune the vocabulary.

2.7 Moving Forward

All of the methods presented in this chapter require significant amounts of manual

supervision during the training process. Character recognizers have traditionally been

29

Chapter 2. A Review of Adaptable Character Recognition

trained using large numbers of manually segmented character exemplars. Vinciarelli,

LeCun and Kopec each offer methods that alleviate the difficulty of training. In

their works, one need only provide transcriptions of lines of text, not individual

characters or even words. However, each of these approaches still require a manual

transcription of many dozens of lines from the target document. If our goal is to OCR

historical manuscripts en masse, we cannot assume that there will be the manpower

to transcribe even a small set of lines for every document.

One of the biggest problems facing any OCR method is the question of segmen-

tation. Each method presented in this chapter takes a somewhat different approach,

and each choice impacts the ease with which their models may be trained. For ex-

ample, sliding window techniques and the Space Displacement Neural Network both

build robustness to translation directly into their appearance models for characters.

This makes their inference step less sensitive to accurately localizing characters, but

also increases the amount of training data they must provide to initialize their mod-

els. In the following chapter, we introduce a model, the generalized HMM, that is far

easier to initialize than existing techniques.

30

Chapter 3

Searching Historical Documents with

Generalized Hidden Markov Models

Statistical models of handwritten text rely on two distinct families of features: lan-

guage cues that describe which strings of ASCII text are likely, and visual cues that

determine how closely a given image window matches each of the possible charac-

ter labels. For the types of historical manuscripts we consider, the script may be

unique to a specific document, but the language statistics largely are not. We can

thus fit language parameters much more easily than visual ones by training them

against separate collections of ASCII texts that are easy to collect from the publicly

available sources. In this chapter, we investigate the degree to which these easily

trainable language cues may compensate for visual ones, particularly when the end

goal is searching a text for query words (as opposed to providing a full transcription).

To a surprising degree, we can use language cues to differentiate visually ambiguous

text images. This is key since we are interested in building systems that easily adapt

to new scripts, and language models generalize across documents more easily than

visual character recognizers.

31

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

We introduce a statistical method, based on a generalized hidden Markov model,

and demonstrate its efficacy in searching a medieval manuscript from the Bodleian

collection. This is a twelfth century manuscript version of Terence’s comedies.

3.1 The Dataset

We selected the Terence manuscript for two reasons. First, its script is quite regular

and thus seemed a natural starting point for moving beyond printed works. Second,

Latin has not been extensively studied in natural language processing but large col-

lections of ASCII works in Latin are available online to provide data to automatically

learn language statistics.1 In addition, the Latin language is heavily inflected com-

pared to English. The large number of word forms mean that we must break words

into smaller component pieces, or deal with very large dictionaries. We collected the

images of these two manuscripts from the online repository of the Bodleian Library

maintained by Oxford University. [Oxford, 2007]

We calculate statistics about the Latin language from this set of downloaded

ASCII texts. In particular, we derive word-lists and unigram, bigram and trigram

character statistics. We did not collect word n-gram statistics, because word choice

in Latin is very flexible, and so we did not expect it to be very useful. This process

involved little human intervention beyond designing the web spider.

Training data for the visual appearance of the script, on the other hand, is more

difficult to provide, and so in this work we provided a minimal amount of supervised

data. We manually segmented just a single example of each of the 22 most common

glyphs from the Terence manuscript. These are basically the Latin lower case charac-

ters, although “u” and “’v,” while distinct in ASCII were visually indistinguishable

on the page. We also experimented with a second manuscript, a copy of the the Latin

1In this work, we used documents collected from www.thelatinlibrary.com

32

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Figure 3.1: Top,Two full pages from the main dataset of this chapter, a 12’th century
manuscript of Terence’s Comedies obtained from [Oxford, 2007]. Bottom, The first four
lines of the second page Note: (a) the richness of page layout; (b) the clear spacing of
the lines; (c) the relatively regular handwriting.

33

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Gospels, also from the Bodleian library. For this manuscript, we provide no visual

training data, but use the model trained from Terence to investigate its adaptability.

3.2 Introducing the gHMM

Twenty two visual exemplars is a very small amount of training data by the standards

of the OCR and Handwriting Recognition communities. Generally OCR systems re-

quire hundreds of examples of each character. As noted in chapter 2, some researchers,

[LeCun et al., 1998; Vinciarelli, 2003; Kopec and Lomelin, 1995] have developed sys-

tems to train from transcriptions of whole lines, without providing individual charac-

ter segmentations, but they still require a large number of these transcribed lines. As

we will demonstrate, the generalized HMM is attractive because it can be initialized

with small amounts of data, and yet still achieve quite strong results.

There are two additional aspects, in particular, that make the gHMM attractive.

First, the parameters associated with language are distinct from those associated with

visual appearance, allowing language models to be trained independently. Second,

the gHMM explicitly models not only transcriptions but also different possible seg-

mentations of the line into characters. This is necessary since in the manuscripts

we consider, the individual glyphs are not generally well separated by whitespace,

and by assumption, we will not have accurate character recognizers. Because of this,

any segmentation based solely on visual cues will be quite inaccurate. The gHMM

explicitly allows joint inference over transcriptions and alternate segmentations.

3.3 Preprocessing

Our input is the unprocessed scanned pages of a handwritten document. Figure 3.1

shows some examples from the Terence Manuscript, our main dataset for this chapter.

34

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Figure 3.3 shows additional manuscripts from the Oxford Library collections. Our

models assume that their input is a set of image windows and that the output for

each image window will be a single sequence of characters. Our first goal is to extract

a set of these sub windows from the document page that meet this criteria, and to

order those windows so that we can recombine them into a full transcription once we

have translated each one.

We have two methods for accomplishing this. The first makes the assumption

that lines of text are largely uncurved, and identifies lines by analyzing the projec-

tion profile of a page. This is the method used to provide the training set used in

this chapter from Terence and the Beast Headed Evangelist manuscripts. We also

demonstrate a second method, based on identifying regions with “text-like” texture,

that performs well on a wider array of document types.

3.3.1 Identifying Lines by Projection Profile

In the projection profile method, we convert the color images to grayscale. The steps

are illustrated in figure 3.2. We provide a manual bounding box to crop the image so

that only the page remains. The pages of these manuscripts are scanned in a regular

manner, so that a single bounding box sufficed.2 For a simple page, what remains will

be a set of roughly horizontal lines of text on an unmarked background Assume for

the moment that the lines are perfectly horizontal. If we project onto the vertical axis

by summing along each row of pixels, we are left with a highly peaked graph. If we

project along any other direction, the resulting graph will be less peaked. Assuming

the lines are basically linear, we can determine the correct orientation of the page

by performing this projection at a variety of angles, and choosing the orientation

2The bounding box shown in figure 3.2 would normally include the whitespace of the page. We
have reduced it for illustrative purposes.

35

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

(a) Cropping Original Image (b) Projecting onto Vertical Axis

−10 −8 −6 −4 −2 0 2 4 6 8 10
8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

angle (in degrees)

en
tr

op
y

(c) Entropy of Angled Projections

(d) Final Line Image

Figure 3.2: We have two methods for extracting lines of text from scanned pages. In the
projection profile method, shown here, we first crop the original image (a) to eliminate
the non-textual border. We threshold the image, setting ink pixels to 1 and background
pixels to 0. The plot in (b) is this thresholded image, summed along pixel rows, and
smoothed with a Gaussian. Treating this plot as a distribution, we find its entropy for a
range of rotations of the image (c). We extract lines (d) from the rotated image with
minimal entropy. 36

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

whose resulting graph has the lowest entropy.3 Let sθi =
∑

j imageij be the sum of

foreground pixels along a row of pixels in a copy of the page image, rotated by θ. Let

pθi = sθi/
∑′

i sθi′ We estimate the rotation of the page as

Optimal Rotation = argmin
θ

∑
i

−pθi log pθi (3.1)

3.3.2 Identifying Text Texture Regions

Most pages of the Terence manuscript were well segmented using the projection profile

method. Unfortunately, many historical manuscripts violate the assumption that a

page is composed only of unbroken and nearly linear strings of text. Documents

frequently contain illustrations, curved lines, and various other artifacts such as dark

streaks or holes. The method outlined above relies heavily on our ability to crop

out or otherwise ignore these artifacts. A more robust method is to provide a local

definition of a “text like” region, and to cut the document into text snippets that are

close to locally linear. We define a text like region by its texture.

We designed a text texture operator. This operator assumes that text has two

distinguishing features in scale space. First, at a low resolution, text appears as a

horizontal bar. At a higher resolution, it has a significant number of vertical edges.

Our text detector searches scale space for the maximal response to a horizontal bar

detector, multiplied by the strongest response to a vertical edge detector at four times

the scale. We then threshold these responses, blur them, and take the connected

components. These become our text snippets. This method worked well on a variety

of scripts in addition to the two used in this chapter. Further refinements might train

the texture classifier automatically, but we have not experimented with this.

3see [Cover and Thomas, 1991]

37

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

(a) Beast Headed Evangelists

(b) Many documents are degraded, including holes in the page

Figure 3.3: Extracting “text texture” regions: Most manuscript pages do not contain
unbroken lines on an otherwise blank page. Many have embedded images or other artifacts,
such as holes in the page or intra line annotations. Our second line finding method,
section 3.3.2 handles such features, by identifying regions of text texture, and extracting
locally linear text snippets.

38

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

3.4 The Generalized HMM Model

We assume that each image provided by the line extractor has a transcription that is

a single sequence of ASCII characters drawn from a known alphabet. Unfortunately,

we do not know where in the image each character lies. If someone were to segment

the image into N pieces such that each segment contained a single character, and then

uniquely label each segment with a number from 1 to N we would have a one-to-one

mapping between characters in the transcription and segments in the image. In this

setting, an HMM is a fairly natural choice to model our data.

To use a Hidden Markov Model in this context, we assume that each character ci

in the transcription is drawn based on the previous k characters. Given ci we generate

the corresponding image segment si. Let gi be the k-gram ending at ci. Without yet

specifying the details of these distributions, the probability of the image under such

a model is

P[line] = P(g1)P(s1|c1)
N∏

i=2

P(gi|gi−1)P(si|ci) (3.2)

The hidden Markov Model is attractive primarily for its computational efficiency.

Because each state is independent of the rest of the sequence given its neighbors, we

can use the forward-backward algorithm (section 2.3.2.1) to efficiently calculate the

likelihood of different candidate transcriptions. It is also attractive because of its

natural separation between language and visual parameters. The transition matrix

P(gi|gi−1) represents language knowledge in the form of frequencies over character

n-grams, while our emission model P(si|ci) will encode visual cues.

Unfortunately, the HMM model presented thus far requires that a segmentation

be provided a priori. This may actually be reasonable for printed works without

noise, and many early OCR systems did expect an independent character segmenter

[Mori et al., 1995]. However, this approach is fragile and fails on the handwritten

historical manuscripts we consider. If the preprocessor fails, the system cannot re-

39

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

cover. It seems reasonable that if someone were to give us the transcription before

we attempted to segment, then we could use this information to improve our seg-

mentation guesses. What we would like is to delay making an initial hard decision

on character boundaries, and instead try to infer segments and their labels jointly.

To operationalize this idea, we now introduce an extension to our HMM model that

allows us to include reasoning over segmentations.

Formally, our new method is derived from one frequently called a generalized or

segment HMM [Murphy, 2002]. In a standard HMM, each hidden state gi emits a sin-

gle evidence variable si. In a generalized HMM, each hidden state is allowed to emit

a variable length number of evidence variables (si1 . . . siwi
), where w is drawn from

some arbitrary distribution.4 Additionally, the gHMM does not assume that the vari-

ables emitted by a single hidden state are independent. Mapping this to our specific

problem, the si are individual columns of pixels from the image, and wi represents

the width of a character. Each character emits a variable width column of pixels.

These columns partition the image pixels, and therefore represent a segmentation of

the image.

Letting xi =
∑i−1

j=1 wj denote the position of the leftmost column of pixels associ-

ated with character ci, the probability of a line of text under the generalized HMM

is

P(line) = P(g1)
∏
i>1

P(gi|gi−1)
∏
i≥1

P(wi|ci)P(sxi
. . . sxi+wi−1|xi, wi, ci) (3.3)

The final step is to expand P(sxi
. . . sxi+wi−1|xi, wi, ci), i.e. the probability of a

column of pixels given character label. Recall that we have provided a single example

image of each character. Intuitively, the generative story for a column of pixels

sxi
. . . sxi+wi−1 is simply that we choose a vertical position yi, and place a copy of the

4The generalized HMM is equivalent to a standard HMM in the case where w is drawn from a
geometric distribution.

40

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

corresponding example character into the image with its top left corner at (xi, yi).

To refine this intuitive story, we define a local coordinate system for the column

with origin (xi, yi). At each pixel location, we assume that we have an associated

feature vector fxy. We discuss the details of these features in the next section. We

model each fxy as drawn from a multivariate normal distribution. The parameters of

this normal distribution for a specific pixel in this column depend on the character

label (ci) and on the pixel’s position relative to the local coordinate system in the

following way:

1. We use each of our example character images to derive a corresponding character

template. Figure 3.4. This template is a matrix of values the same size as

the original character image, but whose “pixels” are the means and covariance

matrices of a set of Gaussian distributions. Once again, we postpone the details

of training these parameters until the next section.

2. Given ci, we choose a character template. Given (xi, yi) we also know where

to place the template in the image. This template then overlays a rectangle

of pixels in the column. Each of these covered pixels is drawn from a normal

distribution whose parameters are the corresponding entries in the template

matrix. Any pixels not covered by the template are drawn from a single, shared

normal distribution representing the background.

Letting ti represent a character template, we expand the last term in equation 3.3

as

P(sxi
. . . sxi+wi−1|xi, wi, ci) =

∑
yi

P(yi|ci)P(ti|ci)
Y∏

y′=1

xi+wi−1∏
x′=xi

P(fx′y′|ti, xi, yi) (3.4)

3.4.1 Transition, Position and Emission Distributions

The gHMM model has five trainable distributions:

41

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

• The transition distribution, P(gi|gi−1) , is the probability of seeing a given ASCII

character given k preceding characters. We generate character n-gram statistics

by collecting a large number of ASCII Latin texts from [LatinLibrary, 2004].

This website includes a transcription of the Terence manuscript, but we exclude

this document from the training set. We experiment with unigram, bigram and

trigram models for this distribution, applying Kneser-Ney smoothing to the

collected statistics.

• The width distribution, P(wi|ci), describes how many columns of pixels a char-

acter occupies. We restrict the values that w may take on. We assume each

character has a mean width ŵc, and that the width distribution is only non-zero

in the range (ŵc − dw . . . ŵc + dw for some small dw. This is a fairly innocuous

assumption as empirically the widths of a specific character do not vary greatly

from instance to instance. The mean width for each character is initialized

to the width of the corresponding example character image, and we assume a

uniform distribution over values within the nonzero range.

• The vertical position, P(yi|ci) localizes a character template within a column.

We assume a uniform distribution over possible y positions.

• In this chapter, the distribution over templates P(ti|ci) is a delta function. We

assume a one-to-one correspondence between labels and character templates.

• The emission distribution, P(fx′y′|ti, xi, yi) defines the likelihood of pixel feature

vectors given their position relative to a character template.

– Image Representation: We associate a five dimensional vector with each

pixel. The first element is the original gray-scale pixel value. For the

other four, we convolve the image with two derivative of Gaussian filters

oriented vertically and horizontally. We then separate the responses of

42

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Figure 3.4: Top, the 22 instances, one per letter, used to train our emission model. These
templates are extracted by hand from the Terence document. Bottom, the five image
channels for a single letter.

these convolutions into positive and negative channels, invert the negative

channels, and smooth each image. The resulting four response images are

positive near edges in one of four axis aligned directions and zero elsewhere.

Figure 3.4 shows examples of these 5 channels for our “p” exemplar.

– Template Parameters: We generate the 5-channel image described above

for each of our example character images. We initialize the means of the

corresponding character templates with the values from these feature im-

ages. We set the mean for the background distribution by providing one

more example image of blank paper. We assume a diagonal covariance

matrix for these features.

3.4.2 The Generative Process

Putting all the pieces together, we now have a full generative process for a line of

text. At each sequence step, the hidden state of a a generalized HMM consists of

a character label n-gram c, width w, horizontal and vertical position (x,y). In this

model, the characters of c are drawn from the characters ‘a’-‘z’, a space ‘ ’, and

a special end state Ω. (We do not treat capital letters separately.) Let Tc be the

43

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

template associated with character c, Tch, Tcw be respectively the height and width

of that template, and m be the height of the image.

Beginning at image column 1 (and assuming a dummy space before the first

character),

• choose a character c ∼ p(c|previous n characters) (an n-gram label model)

• choose the corresponding template Tc This is deterministic given c

• choose a width w ∼ Uniform(Tcw − k, Tcw + k) (for some small k)

• choose a vertical position y ∼ Uniform(1, m− Tch)

• z,y and Tch now define a bounding box b of pixels. Let i and j be indexed from

the top left of that bounding box.

– draw pixel (i, j) ∼ N (µ(Tcij), σ(Tcij)) for each pixel in b

– draw all pixels outside of b from background Gaussian N (µ0, σ0)

(See 3.4.1 for greater detail on pixel emission model)

• move to column w + 1 and repeat until we enter the end state Ω.

3.5 Results

3.5.1 Transcription

Transcription is not our primary task, but methods that produce good transcriptions

are going to support good searches. The gHMM can produce a surprisingly good

transcription, given the small number of exemplars used to train the emission model.

We aligned an editors version of Terence with 25 pages from the manuscript by hand,

and computed the edit distance between the transcribed text and the aligned text; as

44

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

bigram

 b u r t o r a d v o s v e m o o r u a t u p r o l o g r

trigram

f o r a t o r a d v o s v e n i o o r n a t u p r o l o g i

unigram

 b u r t o r a d u o s u e m o o r n a t u p r o l o g r

Editorial translation Orator ad vos venio ornatu prologi:

(a)

bigram

 s a r t i m su m e a r u m e x a ct u s p r r r t i m i u x sir e t r

trigram

sc a r t i m su m e a r u m e x a ct v s p a r t i m v i x sir e t i

unigram

 s a r t i m su m e a r u m e x a ct u s p r r r n m i u x sf e t r

Editorial translation Partim sum earum exactu’, partim vix steti.

(b)

Figure 3.5: We transcribe the text by finding the maximum likelihood path through the
gHMM. The top line of text in each figure shows the standard version of the line (obtained
by consensus among editors who have consulted various manuscripts; we obtained this
information in electronic form from http://www.thelatinlibrary.com). Below, we
show the line as segmented and transcribed by unigram, bigram and trigram models. In
(a) the word “venio,” for example is mistranscribed as “vemo” under the unigram and
bigram models, but trigrams provide enough context to correctly transcribe this ambiguous
piece of ink. This word also demonstrates the importance of transcribing and segmenting
jointly. In (b), the trigram model also improves our transcriptions of “partim” and “vix”,
although all three models have trouble with the nested “t” in “steti.”

45

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

bigram

 c l o v a s q u i o x a ct a s f o c i u t i n u o t en a scer en t

trigram

d il o v a s q u i e x a c t a s f e c i u t i n u o t en a scer en t

unigram

 r l o u a s q u i q x a ct a s f o c i u t r n u o t en a scer en t

Editorial translation Novas qui exactas feci ut inveterascerent,

(a)

bigram

 d m m u m c ccu p a r a c n u n c h ec p l a n e es c p r o n o v a

trigram

es m iu u m o ccu p a r a c n u n c h ec p r a n e est p r o n o v a

unigram

 d m m u m c ccu p a i a c m m c h ec p l a n e es b p r o n o u a

Editorial translation Animum occuparat. nunc haec planest pro nova,

(b)

Figure 3.6: Additional lines and their proposed transcriptions under unigram, bigram and
trigram models. (a) The trigram model correctly transcribes 4 out of 6 words. Note
that the model has no knowledge of the appearance of capital letters, and so the poor
performance on the first character of each line is unsurprising. (b) Stronger language
priors help, but are not a panacea. Note that the word “plane” is correctly transcribed by
unigram and bigram models, but the model ignores the ink in favor of the prior under the
trigram model and mistranscribes the word as “prane.” On the other hand, more robust
priors than trigrams would correct problems such as the final character of “occuparat”.
“Occuparac” is not a valid Latin word, but has acceptible trigram statistics.

46

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Model matching chars substitutions insertions deletions

Perfect transcription 21019 0 0 0
unigram 14603 5487 534 773
bigram 15572 4597 541 718
trigram 15788 4410 507 695

Table 3.1: Edit distance between our transcribed Terence and the editor’s version. Note
the trigram model produces significantly fewer letter errors than the unigram model, but
that the error rate is still a substantial 25%.

table 3.1 indicates, approximately 75% of letters are read correctly. Note that we have

no models of capital characters, and so the errors at these locations are unsurprising.

Figures 3.5 and 3.6 show transcription results for four lines from the Terence

manuscript. Each line is transcribed using unigram, bigram and trigram character

transition models. Our transcriptions significantly improve as we move from unigrams

to bigrams. Stronger language models are clearly useful. Our transcriptions of almost

all words are improved by their use. It is important to note, however, that strong

language priors can occasionally mislead, by forcing the model to ignore evidence

from the ink. In figure 3.5b, the word “plane” is correctly transcribed under unigram

and bigram models, but changes incorrectly to “prane” under a trigram model, as

“pra” is significantly more likely than “pla”.

3.5.2 Searching

An attractive aspect of the generalized HMM is that it provides a true probabilistic

interpretation. This in turn means that we can ask questions of the form, what is

the probability that a given word exists in this image? and we can meaningfully rank

the responses to such a question for each image in a large database. This allows us

to perform search.

For search, we rank lines by the probability that each contains our search word.

47

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Spe incerta certum mihi laborem sustuli,

Nonnumquam conlacrumabat. placuit tum id mihi.

Sto exspectans siquid mi imperent. venit una, "heus tu" inquit "Dore,

Quando nec gnatu’ neque hic mi quicquam obtemperant,

(a)

Faciuntne intellegendo ut nil intellegant?

Placuit: despondi. hic nuptiis dictust dies.

Meam ne tangam? CH. Prohibebo inquam. GN. Audin tu? hic furti se adligat:

Habet, ut consumat nunc quom nil obsint doli;

(b)

Figure 3.7: The handwritten text does not fully correspond to the transcribed version; for
example, scribes commonly write “michi” for the standard “mihi”. Our search process
reflects the ink fairly faithfully, however. (a) the first four lines returned for a search on
the string “michi”; (b) the first four lines returned for a search on the string “mihi”,
which does not appear in the document. Note that our search process can offer scholars
access to the ink in a particular document, useful for studying variations in transcription,
etc.

48

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Ne intus sit; porro autem pater ne rure redierit iam.

Quantam fenestram ad nequitiem patefeceris,

SI. "Tute ipse his rebu’ finem praescripsti, pater:

Iube illam redire. PA. Non est consilium, pater:

(a)

Habet, ut consumat nunc quom nil obsint doli;

CH. Meam sororem. THR. Os durum. CH. Miles, nunc adeo edico tibi

GN. Miseret tui me qui hunc tantum hominem facias inimicum tibi.

Sine nunc meo me vivere interea modo."

(b)

Figure 3.8: Search Results for mid-length strings. The top four lines returned for the
words (a) “pater” and (b) “nunc”. Three of the top four are correctly identified and
located in the line.

49

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

Quid te futurum censes quem adsidue exedent?

Quae ibi aderant forte unam aspicio adulescentulam

Qui gnatum haberem tali ingenio praeditum.

Quod si scripturam sprevissem in praesentia

(a)

Qui gnatum haberem tali ingenio praeditum.

Novas, studiose ne illum ab studio abducerem.

Et is qui scripsit hanc ob eam rem noluit

Habet, ut consumat nunc quom nil obsint doli;

(b)

Figure 3.9: Our search method may be used to find substrings and not only whole words.
In this figure we show search results for two small words, including substrings of longer
words. (a) Top four lines returned for the search query “tu”. (b) Results of a search for
“ab.”

50

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

50 100 150 200 250 300 350 400 450 500 550

Figure 3.10: Our search ranks 587 manuscript lines, with higher ranking lines more likely
to contain the relevant term. This figure shows complete search results for each term that
appears more than three times in the 587 lines. Each row represents the ranked search
results for a term, and a black mark appears if the search term is actually in the line; a
successful search will therefore appear as a row which is wholly dark to the left, and then
wholly light. All 587 lines are represented. More common terms are represented by lower
rows. More detailed results appear in figure 3.11 and figure 3.12; this summary figure
suggests almost all searches are highly successful.

Using Bayes rule,

P[word in line|image] =
P[image|word in line]P[word in line]

P[image]
(3.5)

The denominator is simply the probability of the end state as calculated by the

forward-backward algorithm. It must be calculated in order for the search score to

be meaningful across different lines of text. The numerator is the probability of the

image when we restrict inference to the subset of character sequences that contain

our query word. This value can also be calculated using a second pass of the forward

algorithm, constraining inference to paths containing the word.

Search results are strong. We show results for two documents. The first set of

results refers to the edition of Terence’s Comedies, from which we took the 22 letter

51

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

50 100 150 200 250 300 350 400 450 500 550

eius
autem

etsi
gnatum

magnum
omnes

prius
scire

tantum
virginem

ais
facile
hodie

labore
mali

neque
omnis
posse

uxorem
coepi

facit
forte

interea
istuc
nichil
porro

quidem
quor

eiu
ilico

quem
simul

hac
illam
nec
sibi

volo
eum
feci

causa
ille
illo

vos
mea

atque
dum

ubi
haec
una

quae
tibi

nam
eam
res

nunc
non
pro

sum
ita

quam
ex

quid
rem
per
est
ad
ac
ne
de

me
si
te
is
tu

Figure 3.11: Search results for selected words (indicated on the leftmost column). Each
row represents the ranked search results for a term, and a black mark appears if the
search term is actually in the line; a successful search will therefore appear as a row
which is wholly dark to the left, and then wholly light. Note only the top 300 results are
represented, and that lines containing the search term are almost always at or close to
the top of the search results (black marks to the left).

52

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

nisi

siet

vero

illi

inter

hic

michi

ibi

qui

tu

Figure 3.12: Here we plot precision against recall for a set of different words by taking
the top 10, 20, ... lines returned from the search, and checking them against the aligned
manuscript. Note that, once all cases have been found, if the size of the pool is increased
the precision will fall with 100% recall; many words work well, with most of the first 20
or so lines returned containing the search term.

instances. In particular, for any given search term, our process ranks the complete

set of lines. We used a hand alignment of the manuscript to determine which lines

contained each term; figure 3.10 shows an overview of searches performed using every

word that appears in the document more than three times, in particular, showing

which of the ranked set of lines actually contained the search term. For almost every

search, the term appears mainly in the lines with higher rank. Figure 3.11 contains

more detailed information for a smaller set of words. We do not score the position of

a word in a line (for practical reasons).

Figure 3.7 demonstrates (a) that our search respects the ink of the document and

(b) that for the Terence document, word positions are accurately estimated. The

spelling of medieval documents is typically cleaned up by editors; in our manuscript,

the scribe reliably spells “michi” for the standard “mihi”. A search on “michi” pro-

duces many instances; a search on “mihi” produces none, because the ink doesn’t

actually contain the editorial version of this word. Notice this phenomenon also in

53

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

the bottom right line of figure 3.7, the scribe writes “habet, ut consumat nunc cum

nichil obsint doli” and the editor gives “habet, ut consumat nunc quom nil obsint

doli.” Figure 3.9 shows that searches on short strings produce many words con-

taining that string as one would wish. Figure 3.13 shows two search results for an

alternate manuscript, MS. Auct. D. 2. 16, a copy of the Latin Gospels from the

Bodleian library. For this manuscript, we do not have an aligned text, so cannot

measure recall and precision, but searches perform reasonably given the lack of any

training data from this manuscript.

3.6 Search, Transcription and Language Models

Performance on transcription and search is clearly related. At one extreme, if a

search engine had access to a perfect transcription, it would have no need to review

the original document. Surprisingly, though, the results of this chapter demonstrate

that we do not necessarily need to accurately transcribe in order to perform accurate

searches. For Terence, our 75% character transcription accuracy rate means that we

only rarely will transcribe an entire word without error. Our search results, on the

other hand, are far stronger.

In part this is due to the fact that for search, we return a ranked list. If the best

result is not first, it is still likely found in the top few ranked lines. For transcription,

in contrast, we return only the best result. Still, this does not account for the largest

boost in performance. We see examples where the top ranked search result is correct,

but the transcription of that word image is wrong. Figure 3.14 shows one example.

The word “animo” is incorrectly transcribed by the trigram model, and yet this line

is the top ranked search result.

The answer here is that search implicitly uses a much stronger language prior

than transcription. For transcription we must hypothesize the most likely string for

54

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

interrogaverunt

sunt

Figure 3.13: The first six lines returned from the second manuscript, (MS. Auct. D.
2. 16, Latin Gospels with beast-headed evangelist portraits made at Landvennec, Brit-
tany, late 9th or early 10th century, from [Oxford, 2007]), in response to the queries
“interrogeraverunt” (left; lines three and six contain the word, which is localized largely
correctly) and “sunt” (right; lines one and four contain the word). We do not have
aligned text, so cannot measure the recall and precision for searches on this document.
The recall and precision are clearly not as good as those for the Terence document, the
search is reasonably satisfactory, given that no training information from this document
was available.

55

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

bigram

 s s u n e q u i d p et a m c m ea ca u sa eq u o am m o sct t en d r t e

trigram

d is u n c q u i d p et a m c m ea ca u sa eq u o am m o sect en d i t e

unigram

 iq u n c q m d p et a m c m ea ca u sa eq u o am m o r ct t en d r t e

Editorial translation Nunc quid petam mea causa aequo animo attendite.

(a)

Nunc quid petam mea causa aequo animo attendite.

Favete, adeste aequo animo et rem cognoscite,

Neque commovetur animus in ea re tamen,

(b)

Figure 3.14: Searches for words often succeed even when the transcription fails. Figure
(a) shows the maximum likelihood trigram transcription for a line from the Terence
manuscript. It incorrectly transcribes “animo” as “ammo.” In (b), this same line is still
the best ranked result when searching the document for “animo”.

56

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

an image. Since the model only has access to trigram statistics, this comparison

includes many strings that are not valid Latin words.

In search, however, we are given a query string, such as “animo,” and asked to

hypothesize likely locations in the document. The important difference is that in this

case we benefit from the fact that the author only writes valid Latin. Presumably, if

the author had actually written the gibberish string “ammo,” this would harm our

search results for the term “animo,” just as we saw with transcription. In search, we

implicitly use that true distribution over Latin words in a way that we cannot when

transcribing.

3.6.1 Improving Visual Classifiers

Clearly, language priors boost our performance. We see a significant boost in tran-

scription performance when moving from unigram to trigram character models. How-

ever, trigram statistics still provide only a “weak” prior on acceptable Latin strings in

that they still give high probability to many invalid transcriptions. Our search results

are evidence that stronger language priors could improve performance still further.

However, moving beyond trigrams presents two problems. First, it introduces a sub-

stantial computational burden into gHMM inference. Second, we run into sparsity

problems in our training data. We do not have enough ASCII texts to derive good

estimates of the frequency of longer strings. Finally, even if we had perfect knowledge

of the distribution over Latin words, too much reliance on a language prior can force

the model in some cases to ignore useful evidence from the ink, as we saw in figure 3.6

with the word “plane.” Detrimental effects such as this are most likely for rare words,

For search purposes, it is exactly these rare words that a user is often most interested

in retrieving.

In some sense, however, we have taken our reasoning about language models to

57

Chapter 3. Searching Historical Documents with Generalized Hidden Markov Models

an extreme. Our model would not need rely so heavily on language cues if our

visual character recognizers were more discriminative. Our initial character emission

model is weak, because it is trained on just one example of each character. It seems

reasonable that if we had more examples of each character that we could train a more

discriminative classifier. This, in turn, would lessen our reliance on a language prior,

and improve our performance on all words, including uncommon ones.

We propose an iterative process, where we use the existing gHMM to propose

segmentations and labels for lines of text, and then use those labeled segments as

additional training data to improve the visual character classifiers. It turns out that

the vanilla gHMM is not well suited to such a process. In the next chapter, however,

we will examine the problems with the gHMM, and present an extension to the model

that will allow us to effectively retrain the visual classifiers.

58

Chapter 4

Improving Visual Appearance Models

In the preceding chapter we demonstrated that language models can be used in a

handwriting recognition system to greatly reduce the need for accurate visual char-

acter recognizers. We introduced the generalized HMM, and used this model to

accurately search a medieval manuscript from the Bodleian collection.

Our reliance on language models came at a price, however. The stronger the

language model, the less well the system recognizes out of vocabulary or uncommon

words. This is less a problem for search than for transcription, since for search the

user provides the query term and thereby removes the problem of out of vocabulary

words. Still, in both cases, while the degree to which we can rely on language alone is

impressive, it stands to reason that better character recognizers could only improve

performance.

The imbalance between language and visual cues is a result of our decision to

restrict the amount of document specific supervised data we would use to initialize

the gHMM. For the language parameters, we collected a large set of ASCII documents

and could therefore compile quite accurate n-gram character statistics and extensive

wordlists. For the document specific script model, on the other hand, we provided

59

Chapter 4. Improving Visual Appearance Models

just one example each of 22 lower case characters. It is reasonable to expect that we

could build more accurate models of character appearance if we were given a larger

collection of exemplars with which to train them, but once again we would like to

avoid the manual labor of cutting these additional examples out from the document

by hand.

In this chapter, we present a method for automatically extracting additional ex-

emplars from a document. We train a somewhat modified version of the gHMM with

the same 22 exemplars as previously used. Once trained, the model provides candi-

date segmentations and labels for the document. Recall that our search results were

more reliable than maximum likelihood transcriptions. To exploit this, we provide a

generic dictionary of words in the target language. We restrict the portions of the

document from which we extract examples by identifying “high confidence” regions.

These are image regions for which exactly one word from our dictionary scores highly

under our model. Given a set of high confidence regions, we effectively have a training

corpus of text images with associated transcriptions. In these regions, we infer a seg-

mentation and extract new character examples. Finally, we use these new exemplars

to learn an improved character prediction model. As in chapter 3, our document in

this work is a 12th century manuscript of Terence’s Comedies obtained from Oxford’s

Bodleian library [Bodleian, 1100].

4.1 Extending the Segmentation Model

In the gHMM, visual recognition of a character is a local operation. Given a segmen-

tation and the ASCII labels of surrounding characters, the probability of a character

in a segment is independent of the appearance of the rest of the document. In a local

model such as this, the natural training data is a set of image segments each con-

taining an instance of a labeled character. Given a large number of these segments,

60

Chapter 4. Improving Visual Appearance Models

researchers have proposed a wide variety of methods for training better single charac-

ter recognizers. See the discussion in section 2.1. The less variance in the appearance

of a glyph, the fewer exemplars these methods need to train an accurate recognizer.

We have no control over some sources of variance such as noise and pen strokes. We

do, however, have control over segmentation of the line image into windows contain-

ing glyphs. The recognition task will be easier if we can train the system with a set

of glyph examples that are well aligned with respect to each other.

In the previous chapter, we primarily focused on the influence of language models.

We briefly discussed the importance of modeling segmentations and labels jointly, but

did not investigate this thread of reasoning in great detail. However, with our new

emphasis on accurate segmentation, we must reevaluate the gHMM’s performance.

Unfortunately, we discover that the gHMM frequently localizes characters poorly,

even when it returns the correct transcription.

4.1.1 the gHMM, Segmentation Review

In the simplest application of an HMM to modeling handwriting, we might assume

that every character has a fixed width. In this case, a hidden state represents a

character and the evidence variable is some feature vector calculated for fixed blocks

along the line. Recalling our notation from chapter 3, let ci be the ith character in a

sequence, and gi, the n-gram ending at ci.

The probability of a line under this model is given as

p(line) = p(g1|α)
∏
t>1

p(gt|gt−1)p(yt|ct)p(im[w∗(t−1):w∗t]|ct) (4.1)

α is the special start state, w is the width of a character, im[w(t−1)+1:wt] the column

of pixels beginning at column w ∗ (t− 1)+1 of the image and ending at column w ∗ t,

(i.e. the set of pixels spanned by c), and yt is the vertical position of the character

61

Chapter 4. Improving Visual Appearance Models

inside this column.

As we have seen, character’s widths do vary quite substantially and so in chapter 3

we introduced the gHMM to accommodate different possible segmentations. In this

model a hidden state is allowed to emit a variable length series of evidence variables.

We introduce an explicit distribution over the possible widths of a character. Letting

xt refer to the horizontal position of the left edge of a character on the line, the

probability of a line under this revised model is

p(line) = p(c1|α)
∏
t>1

p(ct|ct−1)p(wt|ct)p(yt|ct)p(im[xt+1:xt+wt]|wt, ct, xt, yt) (4.2)

The last term in the above equation gives the probability of a column of pixels.

Within each column, a template covers a rectangular “region of influence,” in which

it defines the pixel emission parameters. Outside this region, pixels are drawn from

a background distribution. Since columns are disjoint, each pixel has a single parent

in the generative model.

The gHMM’s assumption of non-interacting, rectangular bounding boxes is com-

putationally attractive, but in practice quite inaccurate. Most commonly, this is a

result of ligatures, where a small character is deliberately nestled inside the bounding

box of a larger preceding character, as we see repeatedly in figure 4.1.

Figure 4.1 demonstrates the problems with the segmentations allowed by the

gHMM. The restriction to non-overlapping rectangular bounding boxes means that

in many cases, in order to accurately place one character, we must inaccurately place

another. In fact, these effects can be quite far reaching. There are many incorrect

segmentations that join half of two adjacent characters. This can potentially disrupt

the segmentation of a line for large distances.

62

Chapter 4. Improving Visual Appearance Models

Figure 4.1: Under the original gHMM, it is rarely possible to accurately localize all char-
acters. This model was formulated so that the bounding boxes of adjacent characters
abutted, but could not overlap. As the (left) image demonstrates, it is impossible to ac-
curately segment all characters and meet this requirement. The goal in this chapter is to
extract new exemplars with which to train character models. In this context, accurate lo-
calization is extremely important. By allowing adjacent characters to overlap (right), we
can achieve accurate localization while maintaining only pairwise dependencies between
characters.

4.1.2 Effect of segmentation on gHMM search results

Why didn’t these segmentation problems have a larger adverse effect on our search

results in the previous chapter? Recall that in search, we did not score segmentations.

Our reported results were based on matching to a reference transcription, regardless of

whether the component characters were accurately segmented or localized. Referring

back to our discussion of section 3.6, we note that the edit distance between words

is generally quite large, which in turn means that if we can correctly identify just a

few characters in a word, and we know its approximate length, we may very well still

be able to identify the word unambiguously. We hypothesize that search scores for a

specific word under the gHMM frequently depend on correctly localizing only a few

key characters in each word. This in turn creates inaccurate segmentations of other

characters, but the large margins between scores for real words in a language prevent

these inaccuracies from affecting the final transcription.

63

Chapter 4. Improving Visual Appearance Models

In the previous chapter, we treated inaccurate segmentations as additional noise,

and this noise did not seem to have a large adverse effect on the final transcriptions.

In this chapter, however, our goal is to build a library of glyph examples in order

to retrain a more discriminative visual classifier. In order to accomplish this, we

must accurately localize examples of each glyph, and thus we must reevaluate our

segmentation model.

4.2 The Overlap gHMM

We would like to broaden the family of segmentations we consider, but in a manner

that preserves the computational attractiveness of the original gHMM as much as

possible. One possible approach is to allow arbitrarily shaped template boundaries.

This approach is computationally unattractive, however, because it greatly expands

the space of segmentations we need consider. An alternative method is to preserve

rectangular boundaries, but allow templates to overlap. We adopt this second strat-

egy, calling our modified model the Overlap gHMM

For computational reasons, it is imperative to limit templates’ interactions and the

size of their regions of influence. Without any restrictions, we approach the limiting

case where every character on a page may influence the appearance of every pixel in

the image. Clearly, inference in such a model is intractable. In the following model,

we move one step beyond the gHMM’s assumption of complete visual independence

between characters, and allow pairwise interactions between templates. By pairwise

interaction, we mean that at most two templates are allowed to cover any specific

pixel.

This assumption is not completely accurate. For example, in documents with

justified margins, space must be adjusted globally in order to line up both ends of

each line. In modern fonts, this is generally accomplished by adjusting the interword

64

Chapter 4. Improving Visual Appearance Models

v
0

v
1

s0
s1

b0

b1

w0 x0

y0

w1 x1 w2 x2

y1

Figure 4.2: In the overlap gHMM, character templates may overlap. However, in the
parameterization of space used by the original gHMM, there is no way to uniquely define
the locations of overlapping templates. In that model (left), the location bounding box
of a template is variable, and defined by an (x, y) position and width w. An alternate,
more flexible representation (right), explicitly defines a template’s “region of influence”
with respect to an origin s and fixed size bounding box b. The origins of adjacent glyphs
are related by an offset vector v.

spaces. In handwritten words, however, the effect is sometimes also accomplished by

stretching the characters themselves. Other, more local examples include decorative

ascenders or descenders which may extend past the immediately adjacent characters.

However, these are pathological and infrequent cases. In general, allowing pairwise

interactions covers most of the features we see in real world documents.

4.2.1 New parameterization of space

To define the Overlap gHMM, we introduce a somewhat different parameterization

of character templates and their relative spatial relationships than presented in chap-

ter 3. Recall that in the gHMM, a character template is a function mapping from R2 to

the parameters of a normal distribution. The domain of this function is specified rela-

tive to a coordinate system local to the template. Pixel locations, on the other hand,

are given relative to a global frame attached to the image. Their distributions are

fully specified by the sequence of variables ((T1, w1, y1), (T2, w2, y2), . . . , (TN , wN , yN)),

65

Chapter 4. Improving Visual Appearance Models

where Ti,wi and yi are the ith template, width and vertical position respectively. Im-

plicitly, these variables define an offset vector mapping from the global coordinate

frame to that of each individual template, and that template’s rectangular region of

influence.

Once we allow templates to overlap, however, the sequence of widths no longer

unambiguously defines the horizontal positions of the templates, nor their ROIs. To

correct this, we replace w and y with two new variables v, an offset vector, and b, an

explicit encoding of the template’s bounding box. It proves convenient to use relative

offset vectors. We define the sequence of v’s as

• v1: the position of the first template origin relative to the top left pixel of the

image.

• vi: the position of the ith template relative to the origin of the (i−1)th template.

A template’s absolute position in image coordinates is given by v∗i =
∑i

j=1 vj

The b variables are four element vectors (b−x, b+x, b−y, b+y). They define the rect-

angular region of influence for a template as the set of pixels P ⊆ image such that

region of influence = {p : b−x ≤ px ≤ b+x, b−y ≤ py ≤ b+y} (4.3)

Without loss of generality, we assume that the origin of the template is contained

within this region of influence.

Clearly, this new parameterization (T, v, b) can be transformed back to our orig-

inal variables (T, w, y). Moreover, we can enforce non-overlap of adjacent templates

by restricting the allowed displacement vectors between pairs of templates. This al-

ternate encoding can therefore represent the gHMM, but it is in fact more flexible.

In particular, by changing the restrictions we place on displacement vectors, we can

use this encoding to allow two templates, and no more than two, to overlap.

66

Chapter 4. Improving Visual Appearance Models

4.2.2 Compositing Overlapping Templates

In the original gHMM, a pixel feature was modeled as a draw from a Gaussian distribu-

tion, and these parameters were provided by the corresponding “pixel” of a character

template, or by a background distribution if no template covered that pixel. The

Overlap gHMM allows a third possibility: that two templates overlay the same pixel,

and we must extend our emission model to accommodate this alternative.

• No template covers pixel: As in the gHMM, the pixel is drawn from a Gaus-

sian with mean and variance determined by a single background distribution

• One template covers pixel: As in the gHMM, the pixel distribution is a

normal distribution with parameters taken from the corresponding location in

the character template.

• Two templates cover pixel: With overlapping templates, a pixel is drawn

from a normal distribution whose mean and variance are the sum of those from

the two corresponding template pixels.

4.2.3 Pixel Representation

Our method for compositing two templates is applicable because of the specific image

representation we use in this work. In particular, we perform a soft binarization of

the image. We fit a Gaussian mixture model to the pixels of a randomly selected

collection of text images, positing two clusters: foreground (ink) and background

(plain paper) pixels. We preprocess each text image by replacing each pixel in the

raw image with the probability of its being foreground under the mixture model. In

this feature image, then, pixels range from 0 to 1, with ink pixels close to 1. Our

initial template glyphs are the 22 handcut lower case exemplars, after being passed

67

Chapter 4. Improving Visual Appearance Models

through this preprocessing step. Each pixel in the template represents the mean of a

Gaussian describing the value we expect that pixel to take on.

With the above representation for a pixel, summing the means of two or more

templates effectively serves as a logical “or”, and allows us to accurately model effects

such as an “i” nesting under an “f” in the bigram “fi”. For locations where an ink

stroke is shared by two characters, this is clearly not an accurate representation.

When two ink strokes overlap, they may get slightly darker, but certainly not twice

as dark. However, we also know that while characters do overlap slightly, significant

amounts of overlap is to be avoided. Fortuitously, then, this bias away from the true

representation of a pixel actually aids our recognition engine.

4.2.4 The Generative Process

We assume a set of labels L. Each label is represented electronically by an ASCII

character. We associate a set of templates Tl with each label l ∈ L. We initialize

these sets as in the gHMM by providing a single handcut example for each label.

Each template t ∈ Tl is a function mapping from R2 to the parameters of a normal

distribution. Each template also has an associated bounding box b defining its region

of influence. b is fully specified by the four element vector (b−x, b+x, b−y, b+y), defining

the offsets from the origin of the template to the edges of the bounding box. The

bounding boxes of our initial templates are derived from the widths and heights of

the hand cut exemplars.

To ensure that no more than two templates overlap, we constrain the displacement

vectors such that the bounding box of each template in a sequence lies entirely to the

right of the preceding template’s origin. For computational reasons, we also bound

the maximum amount of whitespace allowed between two adjacent templates. We

set this max-width parameter manually, and assume it is template independent. Let

68

Chapter 4. Improving Visual Appearance Models

s
1

-d di ix xe er ri is s-
s
2
s
3

s
4

s
5
s
6
s
7
s
8

Figure 4.3: A line, and the states that generate it. Each state st is defined by its
left and right characters ctl and ctr (eg “x” and “e” for s4). In the image, a state spans
half of each of these two characters, starting just past the center of the left character
and extending to the center of the right character, i.e. the right half of the “x” and
the left half of the “e” in s4. The relative positions of the two characters is given by a
displacement vector vt (superimposed on the image as white lines). Associating states with
intercharacter spaces instead of with individual characters allows for the bounding boxes
of characters to overlap while maintaining the independence properties of the Markov
chain.

ti−1 and ti be two adjacent templates in a sequence, with corresponding bounding

boxes bi−1 and bi. Let σmax be the maximum amount of whitespace allowed between

templates, The constraints on vi can be given in terms of b and σ as

max(b(i−1,+x), b(i,−x)) ≤ vix ≤ b(i−1,+x) + b(i,−x) + σmax (4.4)

4.2.5 Overlap gHMM Generative Process

The generative process then, is

1. Choose a label li. The label is chosen from a multinomial distribution con-

ditioned on the previous k labels. In this chapter we use character bigrams, so

k = 1. As in chapter 3, this distribution is trained from a separate set of ASCII

documents collected from the web.

69

Chapter 4. Improving Visual Appearance Models

2. Choose a template ti, and region of influence bi Given l, t is chosen

uniformly at random from the set Tl. Each template deterministically defines a

bounding box bi

3. Choose a displacement vector vi This vector is chosen such that no more

than two templates overlap at any pixel.

(a) The horizontal component vix is chosen uniformly at random from the

range specified in equation 4.4

(b) For the first template, the vertical component viy is chosen u.a.r. from

the range [1, height of image]. For subsequent templates, we assume the

mean vertical displacement is 0. viy is chosen u.a.r. from the range [vi−1,y−

k, . . . , vi−1,y + k] for some small k.

4. Given Ti−1, Ti and vi, we have fully specified the emission distributions for the

column of pixels lying between the origins of these two templates. Each pixel

may be covered by 0,1 or 2 templates.

(a) The pixel is uncovered, and drawn from a background distribution

pxy ∼ N [µ(bg), σ(bg)2]

(b) Pixels covered only by template Ti are drawn from the distribution

pxy ∼ N [(µ, σ2) = Ti(px − xi, py − yi)]

and those covered only by Ti−1 from an equivalent distribution

pxy ∼ N [(µ, σ2) = Ti−1(px − xi−1, py − yi−1)]

70

Chapter 4. Improving Visual Appearance Models

(c) Pixels covered by both templates are drawn from

pxy ∼ N [(µ, σ2) = Ti(px − xi, py − yi) + Ti−1(px − xi−1, py − yi−1)]

4.3 Efficiency Considerations

The state space of this model is not intrinsically larger than that of the gHMM.

However, allowing symbols to overlap has increased the dependencies between adja-

cent steps in the chain. In chapter 3, adjacent characters were linked only through

the language parameters. In this model, visual appearance is linked as well. The

model remains a generalized HMM, and in principle inference can therefore be treated

tractably as an instance of dynamic programming with the forward-backward algo-

rithm, but the added visual dependencies eliminate our ability to use a number of

optimizations that allowed for efficient inference in the vanilla gHMM.

4.3.1 Efficient Inference in the Overlap gHMM

The lattice graph, introduced in section 2.3.2, is a useful representation to describe in-

ference algorithms for the gHMM and Overlap gHMM. Each vertex represents the pos-

sible position of a glyph template on the image. Edges are the allowed displacement

vectors between adjacent glyphs. In the gHMM, a vertex is indexed by (x, y, w, c), the

(x, y) position of the bottom left template pixel, its width w, and its character label

c. We need w because the bounding box for a template is only implicitly defined.

In the Overlap gHMM, the bounding box is explicitly given for each glyph template,

so the (x, y) coordinate of the origin fully specifies a template’s location. Unlike in

chapter 3, however, we allow multiple glyphs g per character label c. A vertex in the

Overlap gHMM is indexed by (x, y, g, c).

Inference in either model is as described in section 2.3.2. Each path through

71

Chapter 4. Improving Visual Appearance Models

the lattice represents a possible transcription and sequence of glyph locations. We

can use the Viterbi algorithm to find the maximum likelihood path, and the related

forward-backward algorithm to generate posterior probabilities. The computational

complexity of these inference algorithms is directly related to the number of vertices

and edges in the lattice graph. In the gHMM, we calculate a different likelihood for

a column of pixels for each vertex in this graph. Let (m, n) be the size of an image

in pixels, RL be a bound on the computational cost of calculating this likelihood at

a specific location, and G be the number of different glyphs in our model. The cost

of calculating likelihoods for every position is O(mnRLG). When we allow character

overlaps, pixel likelihoods now depend on the position of two adjacent glyphs, not

just one. This makes the number of distinct values we must calculate depend not only

on the identities of two glyphs instead of one, but also on the displacements between

them. We can provide some bound on the allowable displacement vectors. Let DY

be a bound on the number of different vertical displacements, and DX a bound on

horizontal ones. Still, we have drastically increased the number of distinct values we

must calculate from O(mnRLG) to O(mnRLG2DY DX)

For inference in the gHMM, we can also reduce the size of the lattice graph without

losing the ability to perform exact inference. The reason for this is that in the previous

model, the vertical position of each glyph template, yi, is chosen independently. In

particular, it is independent of the y position of other characters. We can therefore

sum over this variable before traversing the graph, and our vertex set collapses from

(x, y, w, c) to (x, w, c). The score at a vertex becomes

L(v(x, w, c)) =
m∑

y=1

L(image|x, y, w) + L(y) (4.5)

In the overlap gHMM, because pixel likelihoods depend on the displacement vec-

tor, we can no longer reduce the lattice graph using this technique.

72

Chapter 4. Improving Visual Appearance Models

4.3.2 Pruning the State space

For each model, there is a computational cost Ce associated with calculating the

score for an edge, and a cost Cv for calculating the score of a vertex. The total

computational complexity of inference on a lattice graph is O(ECe + V Cv). In both

these models, the number of edges grows roughly quadratically with the number of

vertices. As the previous section explains, we have a far larger number of vertices

in the overlap gHMM, because we cannot sum over y positions. The costs are also

dominated by calculating pixel likelihoods. In the gHMM, this cost is associated with

a vertex. In the overlap gHMM, it is an edge cost, because it depends on the relative

positions of two templates. Because of these two differences, exact inference in the

overlap gHMM, although still polynomial, is no longer practically possible. In this

section, therefore, we introduce a series of approximations to prune the lattice by

removing very unlikely vertices and edges before traversing the graph.

4.3.2.1 Pruning Candidate Locations

Restricting candidate displacement vectors is not sufficient, and so we also restrict the

locations we consider. The true likelihood of the pixels covered by glyph s at position

(x, y) depends on the position and template of both adjacent glyphs. However, we

can approximate this likelihood with an independent likelihood identical to that used

in the original gHMM. We prune our set of candidate (glyph,location) pairs by only

considering sites where this independent value is sufficiently high and locally optimal.

We only calculate the true bigram glyph likelihoods for pairs of locations where both

unigram likelihoods are sufficiently high. In particular, our threshold for a given

location is that L(block) < .7L(background) (where L(x) represents the negative log

likelihood of x). In other words, a location has to look at least marginally more like

a given block than it looks like the background.

73

Chapter 4. Improving Visual Appearance Models

This heuristic pruning step will only effect our accuracy if it eliminates true char-

acter locations. In practice, this happens very rarely. Our hypothesis is that while

overlap is necessary for accurate localization, it does not normally effect the pixel

likelihood very significantly, because the number of foreground pixels participating

in the overlap is generally small relative to the total number of pixels in the symbol.

This reasoning is questionable for a few cases such as the character “f”. In this case,

following characters tend to nest under the right crossbar of the “f”, significantly

overlapping its bounding box. However, in practice, the true “f” locations still ended

up as local maxima, and our pruning threshold was loose enough that even in this

case we did not appear to have a problem.

With these pruning steps, we have a much reduced set of candidate locations for

characters. While the forward-backward algorithm is generally presented in matrix

form, it can also be thought of as a graph traversal. The corresponding graph has a

vertex for each (symbol,location,timestep) tuple, and edges connecting any two ver-

tices with a valid displacement vector. In the vanilla HMM, the vertices corresponding

to adjacent timesteps are fully connected. The pruning steps outlined above make

the graph very sparse. The forward-backward algorithm runs in time O(E) where E

is the number of edges in this sparse graph.

4.3.3 Search Efficiency

So far we have addressed efficiency problems introduced because of our decision to

allow character overlaps. However, the original gHMM itself had a serious efficiency

problem with regards to its search technique. The search score for each query word

was calculated by a separate application of the forward backward algorithm. In this

work, our approach depends on efficiently searching a large dictionary. To accomplish

this, we introduce a second set of approximations to enable efficient search.

74

Chapter 4. Improving Visual Appearance Models

Recall that the search score we used in the original gHMM was the probability of

a line of text containing the query word

P[word in line|image] =
P[image|word in line]P[word in line]

P[image]
(4.6)

The denominator on the right hand side is independent of the query, and can

be calculated just once per line of text in our database. The numerator may also

be calculated with the forward pass of a forward-backward algorithm by defining a

modified set of hidden states and transition matrix. Unfortunately, however, these

modifications are different for each query word. Thus the computational cost of

indexing for search scales linearly with dictionary size, and has a large constant

factor.

Our first step for more efficient search is to replace true probabilities with maxi-

mum likelihood. Our search score becomes

P[word in line|image] ≈ max P[sequence through line containing word]

max P[any sequence through line]
(4.7)

This is not yet computationally more efficient than true probabilities, but it allows

us two optimizations that made search sublinear in the size of the dictionary.

As a first step, we calculate the likelihood of the maximum path through each

vertex in the lattice. This score is an upper bound on the numerator search score

for any path using this vertex. We heuristically prune sites with excessively low

likelihoods, keeping only the top 30%.

We reduce the computational burden of search still further, by introducing a prefix

tree. This is a datastructure that allows work performed for one query be reused for

other words that share the same starting characters.

The prefix tree is a data structure used to represent a dictionary of words in a

75

Chapter 4. Improving Visual Appearance Models

compact manner. It is a directed tree graph in which each vertex has one outgoing

edge for each unique label in our alphabet. We associate a string with each vertex

as the sequence of labels for each edge from the root to this node. A dictionary may

be encoded by adding an extra bit to each vertex, indicating whether its associated

string is a valid word. In what follows, each vertex in the prefix tree is given a unique

tree id.

Using a prefix tree, we can search the entire dictionary at a fraction of the cost of

sequentially searching each word. Actually, storage requirements might be less for a

suffix tree, given that Latin is an inflective language, but we did not experiment with

this alternative.

Search proceeds as follows:

Run the forward backward algorithm to determine max path score for each site.
Prune sites with insufficiently high maximum path scores.
For each site in topological order,

For each candidate predecessor site
Calculate transition score
For each prefix tree vertex linked to predecessor site

Traverse tree edge with current site’s label.
new path score = prior path score + transition score
If (new path score > best so far) for this path

add tuple (score,prefix tree id, prior site) to list at this site
If this site in the prefix tree is a word

calculate the search score for this word instance
Return search score.

An instance of a word in our lattice is a path that passes through a series of sites

whose labels spell that word. The final search score for an instance of a word is the

likelihood of the best path for the line passing through this sequence. This score

is easily calculable by compositing the score from the (treeid, site)record with those

calculated from the initial max path run.

76

Chapter 4. Improving Visual Appearance Models

Letting Vpre(s) be the likelihood of the best path from the beginning of the line

to site s. Let Vpost(s) be the likelihood of the best path from s to the end of the line.

Let Vword be the score reported from the record associated with a specific (site,prefix

tree node) pair. Finally, let sα be the first site in the word instance sequence and sω

be the last site of the word instance. Then the search score for this instance is

search likelihood = Vpre(sα) + Vword + Vpost(sω) (4.8)

4.4 Extracting New Templates

One approach to estimate new character templates is to calculate the posterior of

each possible character location under our model. The traditional EM approach to

estimating new templates would be to use these sites as training examples, weighted

by their posteriors. Unfortunately, the constraints imposed by 3 and even 4-gram

character models seem to be insufficient. The posteriors of sites are not discriminative

enough to get learning off the ground.

We need to restrict ourselves to a smaller, less noisy subset of the entire docu-

ment. We have shown that even when the posteriors of individual characters are not

discriminative, one can still achieve very good search results with the same model.

The search word significantly restricts the transitions between hidden states, only

allowing paths through the state graph that actually contain the query term. The

longer the query, the more it constrains the model. Whole words impose much tighter

constraints than a 2 or 3-gram character model. If we are given a large dictionary

of words and no alternative word explains a region of ink nearly as well as the best

scoring word, then we can be extremely confident that this is a true transcription of

77

Chapter 4. Improving Visual Appearance Models

3300

3350

3400

S
co

re
 U

nd
er

 M
od

el
best

worse

Confidence Margins

Figure 4.4: Each line segment in the lower figure represents a proposed location for a word
from our dictionary. It’s vertical height is the score of that location under our model. A
lower score represents a better fit. The dotted line is the score of our model’s best possible
path. Three correct words, “nec”, “quin” and “dari”, are actually on the best path. We
define the confidence margin of a location as the difference in score between the best
fitting word from our dictionary and the next best.

that piece of ink.

Starting with a weak character model, we do not expect to find many of these

“high confidence” regions, but with a large enough document, we should expect to find

some. With the optimizations presented in the last section, we are able to efficiently

return search scores for all words from a dictionary of 9500 words. Figure 4.4 gives

a visual representation of search scores for a line, showing results for all words that

score within a fixed percentage of the score of the best possible path. We mark two

of these high confidence regions.

Restricting ourselves to the smaller set of high confidence document snippets,

we can extract new, reliable templates with which to improve our character models.

The most valuable of these new templates will be those that are significantly different

from any in our current set. For example, in figure 4.7, note that our system identifies

capital Q’s, even though our only input template was lower case. It identifies this ink

as a Q in much the same way that a person solves a crossword puzzle. We can easily

78

Chapter 4. Improving Visual Appearance Models

Figure 4.5: Extracting Templates For a region with sufficiently high confidence mar-
gin, we construct the maximum likelihood template from our current exemplars. top left,
and we assign pixels from the original image to a template based on its distance to the
nearest pixel in the template image, extracting new glyph exemplars top right. These
new glyphs become the exemplars for our next round of training. Lines 2 and 3 show
additional template masks from high confidence regions.

infer the missing character in the string “obv-ous” because the other letters constrain

us to one possible solution. Similarly, if other character templates in a word match

well, then we can unambiguously identify the other, more ambiguous ones. In our

Latin case, “Quid” is the only likely explanation for “-uid”.

Within a high confidence region we have both a transcription and a localization

of template centers. It remains only to cut out new templates. We accomplish

this by creating a template image for the column of pixels from the corresponding

79

Chapter 4. Improving Visual Appearance Models

block templates and then assigning image pixels to the nearest template character

(measured by Euclidean distance). Figure 4.5.

Given a set of templates extracted from high confidence regions, we choose a

subset of templates that best explain the remaining examples. We do this in a greedy

fashion by choosing the example whose likelihood is lowest under our current model

and adding it to our set. Currently, we threshold the number of new templates for

the sake of efficiency. Finally, given the new set of templates, we can add them to

the model as additional character templates. Finally, we rerun our searches using the

new model, potentially identifying new high confidence regions.

4.5 Results

Our algorithm improves the character model by gathering new training data from

high confidence regions. Figure 4.7 shows that this method finds new templates sig-

nificantly different from the originals. In this document, our set of examples after

one round appears to cover the space of character images well, at least those in lower

case. Our templates are not perfect. The “a”, for instance, has become associated

with at least one block that is in fact an “o”. These mistakes are uncommon, par-

ticularly if we restrict ourselves to longer words. Those that do occur introduce a

tolerable amount of noise into our model. They make certain regions of the document

more ambiguous locally, but that local ambiguity can be overcome with the context

provided by surrounding characters and a language model.

80

Chapter 4. Improving Visual Appearance Models

Figure 4.6: Original Training Data These 22 glyphs are our only document specific
training data. We use the model based on these characters to extract the new examples
shown below

Figure 4.7: Examples of extracted templates We extract new templates from high
confidence regions. From these, we choose a subset to incorporate into the model as new
exemplars. Templates are chosen iteratively to best cover the space of training examples.
Notice that for “q” and “a”, we have extracted capital letters, of which there were no
examples in our original set of glyphs. This happens when the combination of constraints
from the dictionary the surrounding glyphs make a “q” or “a” the only possible explanation
for this region, even though its local likelihood is poor. The groups in this figure are the
templates used in the second round search

81

Chapter 4. Improving Visual Appearance Models

Selected Words, Top 100 Returned Lines

10 20 30 40 50 60 70 80 90100

est
(15,24)/24

nescio
(1, 1)/ 1

postquam
(0, 2)/ 2

quod
(14,14)/14

moram
(0, 2)/ 2

non
(8, 8)/ 8

quid
(9, 9)/ 9

1 2-5 6-20 21-50 >500

0.2

0.4

0.6

0.8

1 Original Model
Refit Model

Search Rank

P
er

ce
nt

ag
e

Figure 4.8: The figure on the left gives a synopsis of search results for 7 selected words
under our initial model, and after learning new templates. In each row, a colored dot at
position i indicates that the ithranked search result actually contained the query term. In
an ideal row, all colored points are to the left. The odd rows (in red) are the results using
only the original templates. The even rows (in green) are the results after integrating
templates from high confidence regions. Almost all search words in our corpus show a
significant improvement. The numbers to the right (x/y) mean that out of y lines that
actually contained the search word in our document, x of them made it into the top ten.
The right figure shows a histogram of search ranks for 321 words that occur just once in
the test set. In round 2, the number of words correctly returned as the first search result
rises from 50% to 78%.

4.5.1 Improved Search Results

We evaluate the method more quantitatively by testing the impact of the new tem-

plates on the quality of searches performed against the document. To search for a

given word, we rank lines by the ratio of the maximum likelihood transcription/segmentation

that contains the search word to the likelihood of the best possible segmentation/transcription

under our model. The lowest possible search score is 1, happening when the search

word is actually a substring of the maximum likelihood transcription. Higher scores

mean that the word is increasingly unlikely under our model. In Figure 4.8, the figure

on the left shows the improvement in ranking of the lines that truly contain selected

search words. The odd rows (in red) are search results using only the original 22

glyphs, while the even rows (in green) use an additional 332 glyphs extracted from

82

Chapter 4. Improving Visual Appearance Models

100 200 300 400 500 600

20
40
60
80

2600

2650

2700
R

nd
 1

dotted (wrong):
solid (correct):

nupta
nuptiis

inquam (v|u)ideo
videt

1840
1860
1880
1900
1920

R
nd

 2

dotted (wrong):
solid (correct): iam

nupta
nuptiis

post inquam
postquam

(v|u)ideo
videt

Figure 4.9: Search Results with (Rnd 1) initial templates only and with (Rnd 2) tem-
plates extracted from high confidence regions. We show results that have a score within
5% of the best path. Solid Lines are the results for the correct word. Dotted lines
represent other search results, where we have made a few larger in order to show those
words that are the closest competitors to the true word. Many alternative searches, like
the highlighted “post” are actually portions of the correct larger words. These restrict
our selection of confidence regions, but do not impinge on search quality.
Each correct word has significantly improved after one round of template reestimation.
“iam” has been correctly identified, and is a new high confidence region. Both “nup-
tiis” and “postquam” are now the highest likelihood words for their region barring
smaller subsequences, and “videt” has narrowed the gap between its competitor “video”.

high confidence regions. Search results are markedly improved in the second model.

The word “est”, for instance, only had 15 of 24 of the correct lines in the top 100

under the original model, while under the learned model all 24 are not only present

but also more highly ranked. The right of figure 4.8 shows that the new model also

greatly improves performance for rare words. For 320 words occurring just once in

the dataset, 50% are correctly returned as the top ranked result under the original

model. Under the learned model, this number jumps to 78%.

83

Chapter 4. Improving Visual Appearance Models

Figure 4.9 shows the improved performance of our refitted model for a single line.

Most words have greatly improved relative to their next best alternative. “postquam”

and “iam” were not even considered by the original model and now are nearly optimal.

84

Chapter 5

Toward Extensible Holistic Searches

In the two preceding chapters, we have paid a great deal of attention to the problem

of segmentation of a text image. The gHMM of chapter 3 attempted to segment a line

into individual characters but often placed the characters inaccurately. In chapter 4,

we introduced a substantially more complicated model, the Overlap gHMM, in order

to accurately localize the bounding boxes of characters in the image. One way in

which we could extend the overlap gHMM is by incorporating some of the more

complicated single character recognizers introduced in chapter 2. This should allow

us to more accurately localize and recognize characters, but at the cost of significantly

more complicated training.

Another direction, however, is to recall that the goal of an OCR engine is not to

segment an image into characters, but rather to transcribe entire words or lines of

text. Since accurate segmentation into individual characters can be so difficult we

might ask if it is really necessary. The work of Manmatha et al. [1995] argues that the

answer may be no. Manmatha et al design a successful search engine that avoids the

85

Chapter 5. Toward Extensible Holistic Searches

complicated step of segmenting into characters, relying instead on features extracted

from images of entire words. Unfortunately, the cost of simplifying segmentation is

that their method is not extensible. It can only be used to search for words that

are present in their training set. This chapter presents an outline for future work

that we believe has the potential to blend the strengths of holistic methods such as

Manmatha’s wordspotting with the easy extensibility of sequential methods like the

gHMM.

5.1 A Review of Wordspotting

Recall our search for “confidence regions” with the Overlap gHMM in chapter 4.

We used the likelihood under the Overlap gHMM as a search score to find instances

of words from a large dictionary. There are many parallels between the search for

confidence regions and the wordspotting approach to search described by Manmatha

[1995]. Manmatha uses the term wordspotting to describe a method that searches a

document for any instances of words from a dictionary. It differs from traditional OCR

in that it may simply refuse to predict at certain locations instead of hypothesizing

an out of vocabulary transcription. Because the dictionary in a wordspotting method

is fixed, the problem can be approached as a traditional classification task.

P[dictionary word|feature vector]

Wordspotting methods are somewhat restrictive compared to traditional OCR

methods in that they will not make hypotheses for “out of vocabulary” words. For

search, however, this is not a serious drawback as long as the dictionary can be

86

Chapter 5. Toward Extensible Holistic Searches

Figure 5.1: One set of holistic features used in [Lavrenko et al., 2004] are derived from
the projection profile shown above. The authors extract the first 7 DFT coefficients from
this 1D signal. Unfortunately, it is difficult to predict features such as these for words not
found in the training set.

easily extended when, for example, a user enters a never before seen query term.

Unfortunately, this dynamic extension of the dictionary is not possible in the system

presented by Manmatha et al. Their method can only search for queries that are

present in their training set of word images. On this front, the gHMM is more

appealing since its search dictionary may contain arbitrary words.

Still the holistic method introduced by Manmatha is attractive for numerous rea-

sons. It avoids the difficult step of segmenting into individual characters. It is also

easy to combine different types of features, measured on differently scaled windows,

something considerably less straightforward in generative sequential models such as

the gHMM. Manmatha’s system also perform well despite the fact that its features

encode only low resolution statistics about a word image, The use of low resolution

features is attractive, because we believe it should make a system more robust to

certain kinds of noise in the image, or moderate changes in font.

5.1.1 Wordspotting Features

For wordspotting, Manmatha uses features first described in work with Lavrenko

[Lavrenko et al., 2004]. These features can be reliably estimated even in quite low

87

Chapter 5. Toward Extensible Holistic Searches

resolution images. The authors measure simple global features such as the width

and height of the bounding box. They also take various profiles of the word image.

Figure 5.1 (repeated from section 2.4) shows one of these, a vertical projection profile.

It is a smoothed 1D signal, derived by summing the number of ink pixels in each

column of a deslanted image. Manmatha et al extract the first 7 coefficients of this

signal’s Discrete Fourier Transform as a feature vector. They extract similar vectors

from the upper and lower word profiles, lines that roughly follow the outline of the

top and bottom of the word. These coarse features prove quite discriminative. The

authors report word accuracy rates of 65%, which ranks as state of the art on these

types of manuscripts.

There are real benefits to working with low resolution features. Measurements

based on low resolution features should be more robust to variations in segmentation

or font style than the character templates we used with the gHMM or other more

fine-tuned single character recognizers like those described in section 2.1.

The count of ascenders in a word, for instance, is unlikely to be affected by chang-

ing the word’s bounding box by a few pixels. In the Overlap gHMM, we often faced

the problem that the bounding box of characters was not well defined, and yet our

features were very sensitive to getting the bounding box correct. Decoupling feature

measurements from the need for exact segmentations is a very attractive feature.

Moreover, the type of profile measurements described above should be unaffected

by small changes in the font. For example, the two fonts in figure 5.2 differ in their

details, but their low resolution features are consistent with each other.

88

Chapter 5. Toward Extensible Holistic Searches

Figure 5.2: The fonts of these two medieval manuscripts differ in subtle details, but
their low resolution features are largely the same. Models like the gHMM that attempt to
describe the appearance of individual characters must account for these subtle differences.
Holistic models generate comparable transcription accuracy rates while working with more
robust, low resolution features.

5.2 Character Decomposable Features

The problem with the profile features used by Lavrenko is that there is no clear way

to predict the expected feature vector for a word we have not seen. Contrast this

with the gHMM, where we can search for any word without retraining, since our

templates model individual characters and may be rearranged to model an arbitrary

string without needing to retrain. To retain the strengths of both methods, we need

features that can be measured without segmentation, but for which we can predict

P[feature vector|word] for words we have not seen. We now propose a family of

features that meet both criteria.

5.2.1 Character Decomposable Holistic Features

Many holistic features are naturally modeled as the sum of contributions from individ-

ual characters. The width of a word, for example, is to a first approximation the sum

of widths of the characters it contains. Given a training set of labeled word images,

we can estimate these character widths without the need to segment the characters

89

Chapter 5. Toward Extensible Holistic Searches

themselves.

Let X be an N × A matrix, where N is the number of training words, and A

is the number of characters in the alphabet. Let Xij be the number of times the

jthcharacter occurs in word i. Let y be the N × 1 vector of word image widths and

w an A× 1 vector of parameters. The expected widths of individual characters may

be estimated using non-negative least squares.

argmin
w

(Xw − y)T (Xw − y) s.t. ∀i : wi ≥ 0

We know that this model of word widths is not entirely accurate. The width of

certain character bigrams will be substantially different than the sum of their com-

ponent characters because they form ligatures. We easily extend the above technique

to include bigram terms by appending bigram counts to the matrix X. We would

like the corresponding parameter vector to be sparse, since we know this effect is

only important in a small set of cases. Since the effect of a ligature should always

be to make the combined width smaller, we could constrain these bigram terms to

be always negative which should also help to make the estimated parameter vector

sparse.

Many other useful holistic features may be modelled in this manner. Counting the

local maxima in the projection profile shown in figure 5.1 gives us an estimate of the

number of vertical strokes, while counting the number of local maxima above some

threshold would give an estimate of the total number of ascenders and descenders in

the word.

90

Chapter 5. Toward Extensible Holistic Searches

Figure 5.3: When treating a word image holistically, it is easy to combine a wide variety
of features measured on differently sized windows. From the full word window In this
example, we might estimate the number of characters, as well as the number of ascenders
and descenders, pruning to a small set of candidate words. Meanwhile, classifiers tuned to
especially discriminative characters or bigrams allow us to further refine our predictions.
It is much more difficult to combine such heterogenous features in sequential models.

5.2.2 Templates Revisited

In fact, any method that returns a set of point features in the image can be trained

as a decomposable feature. We could, for instance, take the local maxima of the

responses to the gHMM’s character templates. Unlike with the gHMM, however,

we do not need to model every character. Holistic, low resolution features get us

most of the way there, and we can opportunistically choose to use templates that are

particularly discriminative.

In Terence, for example, a “p” or “q” is very distinctive, even if the image is

somewhat blurry. Moreover, they are quite rare letters, and so correctly identifying

them significantly constrains the set of possible words at that location. Other char-

acters are less useful. An “i” for example, is a much more common letter and is not

visually distinctive. In the Terence manuscript, an “i”, seen in isolation, is virtually

indistinguishable from pieces of other characters including “n”, “m” and “u”. It is

therefore difficult to segment accurately, and not particularly informative even if we

do succeed in locating it.

Additionally, this method may incorporate templates for discriminative groups

91

Chapter 5. Toward Extensible Holistic Searches

of characters. The bigram ‘ct,’ for example, is very discriminative. (Figure 5.3).

We might consider automating the process of choosing discriminative windows by

allowing the system could to randomly choose image windows from the training set.

The ability to easily combine windows with variable length transcriptions is far more

complicated in sequential models like the gHMM.

All of the features we’ve described are modeled as

xT
wφ + ε

where xw is the vector of character counts, φ our fit parameters, and ε a Gaussian

noise term.

We are inspired in part by the successful tradition of “bag of words” feature models

used in both computer vision and NLP. For example, NLP methods for clustering

documents, generally work with vectors of word counts, discarding any information

about word order. See, for example, [Manning and Schütze, 1999]. Researchers in

Computer Vision have similarly built successful object recognition systems based on

counts of local point features, discarding information about their relative positions.

See for example, Sivic et al. [2005]. In each of these works, the input features are

based on counts of local features, while the relative spatial location of these point

features is largely ignored.

5.2.3 Extending the Dictionary

The decomposable features of this section are modelled as draws from a Gaussian

distribution conditioned on the character count vector of a word. We can train their

92

Chapter 5. Toward Extensible Holistic Searches

parameters without ever segmenting more than word boundaries. Since we have a

generative model, we are now in a position to estimate the expected feature vector

for words that are not in our training set. This means that, as desired, the dictionary

used by our wordspotting method may be extended on the fly, without the need to

provide additional training data.

5.3 Equivalence Classes

Particularly given only low resolution features, we expect that maximum likelihood

classification of words may often be unreliable. Clearly, there are some strings that

will be more easily confused than others. We argue that there will be some distinctions

that it is simply unwise to try and make. We define an equivalence classes of words

as a set of words that are indistinguishable given a particular feature representation.

In this section, we outline a method to identify such equivalence classes. Rather than

train via maximum likelihood, we propose explicitly build binary classifiers that test

for membership in these classes.

As an illustrative example, take the hypothetical case where our features are three

perfect oracles. One gives the number of ascenders in an image, another the number

of descenders, and the last gives the image’s width in “stroke units” which we’ll define

as 1 for “i”,“j” and “l”, 3 for “m” and 2 for all other characters. The vector [3, 0, 5],

for instance, is a 5 unit wide image, with three ascenders and no descenders.

Given only the vector [3, 0, 5], we cannot uniquely reconstruct the true transcrip-

tion. However, we can prune the possible strings down to a very small set. There

are only six common English words or substrings of words that match these criteria.

93

Chapter 5. Toward Extensible Holistic Searches

They are “bill”, “kill”, “hill”, “fill”, “lift” and “till”. These six features form an

equivalence class under the given set of features. In a real world setting, the feature

vectors for these 6 strings are unlikely to exactly coincide at a single point and one of

these 6 will probably have a marginally higher likelihood than the others. However,

it seems unreasonable to now try and differentiate them, simply because we’ve added

noise to our inputs.

On the other hand, it seems likely that these six transcriptions will form a well

defined cluster in feature space. Treating the expected feature vectors for our tran-

scriptions as a point cloud in feature space, we can actually search for such clusters.

The most useful of these clusters will be have few members, and be well separated

from the nearest alternative transcription. We propose to search for such “useful”

clusters, and to build binary classifers for membership. In the example above, for ex-

ample, the classifier would predict that the transcription was one of these six words,

but would not attempt to distinguish which one.

Most all other OCR methods, including the gHMM of previous chapters will

always return a maximum likelihood string, but we feel that the concept of equivalence

classes is very real. For a certain set of features, there are differentiations one should

not try to make. Methods that return a single maximum likelihood transcription do

not remove the ambiguity, they simply mask it.

5.4 Word Pieces and Efficient Search

As described thus far, our decomposable features throw away information about the

relative spatial position of features in a word. It is possible to reintroduce some spa-

94

Chapter 5. Toward Extensible Holistic Searches

tial reasoning, however, without the need to return to sequential models, by building

classifiers not only whole words, but also smaller pieces. As Lavrenko et al have

demonstrated, holistic methods clearly benefit from from calculating features on win-

dows much larger than characters. However, there is nothing in the method requiring

that these windows contain entire words.

In the previous section, we learned equivalence class classifiers for word images

based on decomposable features. These features serve equally well as an appearance

model for word substrings. We will build equivalence class classifiers not just for whole

words, but also for these substrings. Once we have pruned our set of hypotheses for

an image down to a small set using whole word classifiers, we can further refine

our hypotheses by examining the classifications for subwindows of the image, and

throwing away words that are inconsistent.

Suppose that we have used the equivalence class classifiers of the previous section

to narrow the hypotheses for an image to a set of two words: “mane’ and “amen”.

If we have an accurate classifier for the snippet “me,” we can differentiate the two

by searching subimages of the input for this string. We additionally know that these

snippets should also appear in a consistent ordering. In “amen,” “am” must lie to

the left, and partially overlap “me” etc. In some cases, it may be necessary to enforce

this type of spatial consistency, and this leads us back to a sequential models. We

hypothesize, however, that in many cases the simpler test of existence of the correct

substrings may be enough.

One unfortunate aspect of this approach is that is still involves an exhaustive

search over windows in the image. By focusing exclusively on whole word images,

existing holistic methods avoid this costly search. Word boundaries are attractive

95

Chapter 5. Toward Extensible Holistic Searches

segmentation points because they are generally easy to identify, even in low resolution

images. As we have discussed, however, word boundaries are not the only repeatable

low resolution features. Segmenting a word into characters is difficult, but there are

repeatable visual cues that we should be able to consistently identify. We can use

these cues to extract subwindows corresponding to equivalence classes.

5.4.1 Inference with Substrings

The proposed system will select image subwindows opportunistically, and so the num-

ber of pieces per input image is not fixed. Because of this, we can no longer build

a classifier by simply concatenating features from each window into a larger vector.

One possible method to combine the evidence from these subimages is as follows:

For each word in our lexicon, let Sw be the set of all substrings of word w, and

let F be the set of feature vectors for the windows in some word image. We choose

the word w that maximizes ∏
f∈F

max
s∈Sw

P(s|f) (5.1)

This assigns each window in the word the score associated with the best match of any

substring of a word. We choose the transcription with the highest score, and report

“no match,” if all dictionary words score below some cutoff.

5.4.2 Efficient Search with Equivalence Classes

The search method using Equation 5.1 must be calculated separately for each word

in our dictionary, which presents a prohibitive computational burden for large dictio-

naries. We can use snippet classifiers to build a far more efficient search method.

96

Chapter 5. Toward Extensible Holistic Searches

Assume we have built a set of snippet equivalence class classifiers. For each of

these, we have trained a binary classifier that can predict whether an image window

is or is not a member of that class. Applying each of these classifiers to an input

image, the model will identify a small set of windows that are members of one of the

classes. In place of equation 5.1, our classification becomes basically a logical and.

Each window must be explained by some substring of a candidate word.

Each equivalence class acts as an index into our dictionary of words, and our

output wordset is simply the intersection of the lists from each window.

5.4.3 Ignoring Noise and Unknown Glyphs

Both holistic methods and sequential methods like the gHMM suffer if part of a

word image is obscured by noise like the examples in figure 5.4 They have similar

difficulties if a word includes glyphs that were not present in the training set. While

working with the gHMM, for instance, we had no model of capital letters. The model

was forced to predict labels for these regions, however, and this frequently hurt the

transcription of the whole word. Holistic models face an equivalent problem, because

noise or unknown glyphs will corrupt their feature measurements.

By opportunistically choosing snippets, our proposed method may be able to

address this problem. We expect that if some region of the image is corrupted enough

to significantly alter the measured feature vector, it is unlikely that the system will

confuse it with a different string. It is far more likely that the corrupted feature

will be so far from any possible transcription that our method will simply refuse

to predict. This means that the set of image pieces considered in equation 5.1 will

naturally exclude those that cover the problem region.

97

Chapter 5. Toward Extensible Holistic Searches

Figure 5.4: left quidem, right studeat. are two examples of a corrupted word image.
The gHMM of chapter 3 has trouble with such images because it is forced to predict a
character for the noisy regions. The method of this chapter, on the other hand, should
refuse to predict on any window including the noisy region. This has the desirable side
effect of making it base its prediction on the portions of the word it can confidently
transcribe.

As a corollary, we can also use word piece predictions to say something about out

of dictionary words, even if it can’t propose a full transcription. For instance, the

system might not be able to recognize the full word, but could say that it ends in

“ing”. We can cache this partial information to improve search speeds.

98

Chapter 6

In Conclusion

Optical Character Recognition is often falsely represented as a solved problem. How-

ever, there are a wide array of publicly available documents on which current OCR

techniques fail. These provide ample evidence that the field still has open problems.

In particular, current methods lack the ability to easily adapt to previously unseen

fonts. Throughout this dissertation, we have focused our efforts on the design of such

an adaptable system. With the gHMM and Overlap gHMM, we have successfully

designed a system that may be initialized with a bare minimum of document specific

training data.

This ease of initialization is the most notable feature of the gHMM when com-

pared to leading alternatives such as sliding windows [Vinciarelli et al., 2004], Space

Displacement Neural Networks [LeCun et al., 1998], or Document Image Decoding

[Kopec and Lomelin, 1995]). We are able to initialize the system using only a single

instance of each character from the target document, and language statistics learned

from electronic texts spidered from the Internet. To our knowledge, this is the first

99

Chapter 6. In Conclusion

approach that does not require any line aligned transcriptions as training data.

In chapter 4, we extended the gHMM to allow more accurate localization of char-

acter templates. We showed that this Overlap gHMM can be used to automatically

refine our initial character models. This in turn led to substantially improved search

accuracy over the original gHMM.

Our work with the gHMM has provided ample evidence of the importance of lan-

guage models. In the original gHMM, we provided only trigram character statistics.

Such a model gives high probability to many strings that are not valid words. In order

to automatically extract a clean training set of new character exemplars in chapter 4,

we used a far more discriminative language model. We generated a large list of Latin

words and searched the document for each one. We extracted characters only from

“high confidence” regions, which we defined as a location where only one dictionary

word had high probability under the model. Traditionally, OCR methods rely only

lightly on language cues, the reason being that too tight a language prior will force

the model to ignore the ink and mis-transcribe certain rare and out of vocabulary

words. This is a valid concern, but the important insight of chapter 4 is that a model

may be free to use very restrictive language models during training, in order to learn

more accurate character models. Once the character models have been learned, we

may relax the language constraints.

Our work with the gHMM has taught us a simple, but hard won, lesson. Accurate

localization of individual characters is difficult. Not only the gHMM, but all models

that decompose words into smaller pieces must deal with the problem of segmentation

and localization of those smaller windows. The character models in the gHMM are

quite sensitive to accurate localization, and our overlap gHMM of chapter 5 was de-

100

Chapter 6. In Conclusion

signed specifically to address this problem. However, the flexibility to accurately place

characters came at the cost of a significantly more complicated inference process. In

contrast, methods such as sliding windows and the SDNN [Vinciarelli et al., 2004;

LeCun et al., 1998] are less sensitive to accurate localization when performing infer-

ence, but this is because they have built robustness to translation into their character

appearance models. The cost for this approach is the requirement for substantially

more training data to estimate appearance models.

A desire to avoid the cost and complexity of segmenting individual characters, has

led us to reconsider holistic models such as the wordspotting technique presented in

[Lavrenko et al., 2004]. Moreover, our search for high confidence regions in chapter 4

illustrated the benefits of turning the task of transcription into a classification problem

over a known dictionary. Holistic methods are also appealing because they appear

to achieve comparable results to sequential methods while using lower resolution

features, features that are more likely to be shared across different scripts.

Clearly, transcribing from a fixed dictionary is unacceptable if the system will

encounter out of vocabulary words, but for search the queries are provided by a user.

If the dictionary can be easily extended at query time, then there is never an out of

vocabulary problem. Unfortunately, no existing holistic methods can be adapted on

the fly in this way. They must be retrained for new words.

We wish to reemphasize the distinction between search and transcription in OCR.

Most models in OCR and handwriting recognition, the gHMM included, are originally

designed to transcribe documents. Clearly, if a model can provide a perfect transcrip-

tion, then search is a trivial problem. But transcription is harder than search, because

it must hypothesize transcriptions for words that are outside its vocabulary. In search,

101

Chapter 6. In Conclusion

the vocabulary is provided, although we may need to expand our dictionary on the

fly. Treating transcription as a classification problem over a fixed dictionary allows

for far greater flexibility in our choice of models than with transcription models. We

can easily mix feature spaces and window sizes. This means that we can more eas-

ily focus on the pieces of a font that are both visually distinctive and linguistically

informative, while ignoring more difficult regions.

In chapter 5 we outline a direction for future work that is explicitly aimed at

search. We propose a set of methods designed to avoid the thorny issue of character

segmentation. As in holistic models, our approach treats transcription as a classifi-

cation task over a known vocabulary. Unlike existing holistic methods, however, this

dictionary may be easily extended without retraining. We believe that this approach

may achieve search accuracy rates comparable to existing methods, while preserving

the easy adaptability of the gHMM.

We hope the reader will agree that adaptability in print and handwriting recogni-

tion is an important, and still quite open line of research. For example, the documents

we have considered are in English and Latin, but many collections will be in languages

such as Arabic or Chinese that will certainly present new challenges. In this disser-

tation, we have made a number of positive steps toward an easily adaptable system

for OCR and handwriting recognition, but there are still many interesting challenges

ahead.

102

Bibliography

[Bancroft, 2006] Bancroft. Mark twain’s letters,1876-1880: An electronic edition.
http://bancroft.berkeley.edu/MTP/publications.html, 2006.

[Belongie et al., 2002] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. Pattern Analysis and Machine Intelligence,
2002.

[Bodleian, 1100] Bodleian. Terence’s comedies, ms. auct. f. 2.13, 1100.

[Breuel, 1994] T. Breuel. A system for off-line recognition of handwritten text, 1994.

[Burges, 1992] C.J.C. Burges. Shortest path segmentation: A method for training a
neural network. Proc. Int’l Joint Conf. Neural Networks, Oct. 1992.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. MIT Press, second edition, 2001.

[Cover and Thomas, 1991] Thomas M. Cover and Joy A. Thomas. Elements of in-
formation theory. Wiley-Interscience, New York, NY, USA, 1991.

[Impedovo, 1993] S. Impedovo, editor. Fundamentals of Handwriting Recognition,
chapter Hidden Markov Models in Handwriting Recognition. Springer-Verlag, 1993.

[Jelinek, 1997] Frederick Jelinek. Statistical methods for speech recognition. MIT
Press, Cambridge, MA, USA, 1997.

[Jordan, Pre Print] Michael I. Jordan. An introduction to probabilistic graphical
models. Unpublished manuscript, Pre-Print.

[Kopec and Lomelin, 1995] G. Kopec and M. Lomelin. Document image decoding
approach to character template estimation, 1995.

[Kornfield et al., 2004] E.M. Kornfield, R. Manmatha, and J. Allan. Text alignment
with handwritten documents. In Proceedings of Document Image Analysis for Li-
braries (DIAL), 2004.

103

BIBLIOGRAPHY

[Lafferty et al., 2001] John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional random fields: Probabilistic models for segmenting and la-
beling sequence data. In ICML ’01: Proceedings of the Eighteenth International
Conference on Machine Learning, pages 282–289, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

[LatinLibrary, 2004] LatinLibrary. The latin library website, 2004.

[Lavrenko et al., 2004] V. Lavrenko, T. Rath, and R. Manmatha. Holistic word recog-
nition for handwritten historical documents. In Proceedings of Document Image
Analysis for Libraries (DIAL), pages 278–287, 2004.

[LeCun and Cortes, 1998] Y. LeCun and C. Cortes. The mnist database.
http://yann.lecun.com/exdb/mnist/, 1998.

[LeCun et al., 1997] Y. LeCun, L. Bottou, and Y. Bengio. Reading checks with graph
transformer networks. In International Conference on Acoustics, Speech, and Signal
Processing, volume 1, pages 151–154, Munich, 1997. IEEE.

[LeCun et al., 1998] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[Leroux et al., 1991] M. Leroux, J.C. Salome, and J. Badard. Recognition of cursive
script words in a small lexicon. In Proc. First Int’l Conf. Document Analysis and
Recognition, pages 774–782, 1991.

[Madhvanath et al., 1997] Sriganesh Madhvanath, Evelyn Kleinberg, Venu Govin-
daraju, and Sargur N. Srihari. The hover system for rapid holistic verification
of off-linehandwritten phrases. In ICDAR ’97: Proceedings of the 4th International
Conference on Document Analysis and Recognition, pages 855–860, Washington,
DC, USA, 1997. IEEE Computer Society.

[Manmatha et al., 1995] R. Manmatha, C. Han, and E. M Riseman. Word spottin:
A new approach to indexing handwriting. Technical Report UM-CS-1995-105, ,
1995.

[Manning and Schütze, 1999] Christopher D. Manning and Hinrich Schütze. Foun-
dations of Statistical Natural Language Processing. The MIT Press, Cambridge,
Massachusetts, 1999.

[Mello, 1999] Carlos De Mello. A comparative study on ocr tools, 1999.

104

BIBLIOGRAPHY

[Mohri et al., 2000] M. Mohri, F. Pereira, and M. Riley. Weighted finite state trans-
ducers in speech recognition. In ISCA ITRW Automatic Speech Recognition: Chal-
lenges for the Millenium, pages 97–106, 2000.

[Moreau, 1991] J. Moreau. A new system for automatic reading of postal checks.
In Proc. Int’l Workshop on Frontiers in Handwriting Recognition, pages 121–132,
Bonas, France, Sept 1991.

[Mori et al., 1995] Shunji Mori, Ching Y. Suen, and Kazuhiko Yamamoto. Historical
review of OCR research and development, pages 244–273. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1995.

[Murphy, 2002] Kevin Patrick Murphy. Dynamic bayesian networks: representation,
inference and learning. PhD thesis, MIT, 2002. Chair-Stuart Russell.

[Oxford, 2007] Oxford. Early manuscripts at oxford university, 2007.

[Plamondon and Srihari, 2000] Rejean Plamondon and Sargur N. Srihari. On-line
and off-line handwriting recognition: A comprehensive survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(1):63–84, 2000.

[Rabiner and Juang, 1993] Lawrence Rabiner and Biing-Hwang Juang. Fundamen-
tals of speech recognition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[Rath and Manmatha, 2003] T. M. Rath and R. Manmatha. Word image matching
using dynamic time warping. In Proc. of the Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 521–527, 2003.

[Sayre, 1973] K.M. Sayre. Machine recognition of handwritten words: a project re-
port. Patter Recognition, 5(3):213–228, 1973.

[Sivic et al., 2005] Josef Sivic, Bryan Russell, Alexei A. Efros, Andrew Zisserman,
and Bill Freeman. Discovering objects and their location in images. In International
Conference on Computer Vision (ICCV 2005), October 2005.

[Srihari and Kuebert, 1997] S.N. Srihari and E.J. Kuebert. Integration of hand-
written address interpretation technology into the united states postal service re-
mote computer reader system. icdar, 00:892, 1997.

[Srihari, 1986] Sargur N. Srihari. Document image understanding. In ACM ’86: Pro-
ceedings of 1986 ACM Fall joint computer conference, pages 87–96, Los Alamitos,
CA, USA, 1986. IEEE Computer Society Press.

105

BIBLIOGRAPHY

[Steinherz et al., 1999] Tal Steinherz, Ehud Rivlin, and Nathan Intrator. Offline cur-
sive script word recognition - a survey. IJDAR, 2(2-3):90–110, 1999.

[Taskar et al., 2003] B. Taskar, C. Guestrin, and D. Koller. Max margin markov
networks, 2003.

[Vinciarelli et al., 2004] Alessandro Vinciarelli, Samy Bengio, and Horst Bunke. Of-
fline recognition of unconstrained handwritten texts using hmms and statistical
language models. IEEE Trans. Pattern Anal. Mach. Intell., 26(6):709–720, 2004.

[Vinciarelli, 2003] A. Vinciarelli. Offline Cursive Handwriting: From Word to Text
Recognition. PhD thesis, University of Bern, Bern, Switzerland, 2003.

[Whistler et al., 2004] Ken Whistler, Mark Davis, and Asmus Freytag. Unicode tech-
nical report 17, character encoding model. Technical report, Unicode Technical
Committee, 2004. [Online; accessed 24-January-07].

[Wilensky, 1995] Robert Wilensky. Uc berkeley’s digital library project. Commun.
ACM, 38(4):60, 1995.

[Wilkinson, 1994] R. Allen Wilkinson, editor. The Second Census Optical Character
Recognition System Conference, 1994.

106

	Introduction
	An ``Easily adaptable'' OCR system?
	Decomposing the OCR Function

	A Review of Adaptable Character Recognition
	Single Character Recognition
	Holistic Word Recognition
	OCR as Sequence Alignment
	Real World Segmentation Approaches
	HMM Based Methods
	Vocabulary and Language Models
	Moving Forward

	Searching Historical Documents with Generalized Hidden Markov Models
	The Dataset
	Introducing the gHMM
	Preprocessing
	The Generalized HMM Model
	Results
	Search, Transcription and Language Models

	Improving Visual Appearance Models
	Extending the Segmentation Model
	The Overlap gHMM
	Efficiency Considerations
	Extracting New Templates
	Results

	Toward Extensible Holistic Searches
	A Review of Wordspotting
	Character Decomposable Features
	Equivalence Classes
	Word Pieces and Efficient Search

	In Conclusion
	Bibliography

