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Abstract

Data Triage

by
Frederick Ralph Reiss

Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

Enterprise networks are becoming more complex and more vital to daily operations.
To cope with these changes, network administrators need new tools for troubleshooting
problems quickly in the face of ever more sophisticated adversaries. Passive network
monitoring with declarative queries can provide the combination of responsiveness, fo-
cus, and flexibility that administrators need. But networks are subject to high-speed
bursts of data, and keeping the cost of passive monitoring hardware under control is a
major problem.

In this dissertation, I propose an approach to passive network monitoring in which
the monitor is provisioned for the average data rate on the network. This average rate is
generally an order of magnitude or more lower than the peak rate. I describe Data Triage,
an architecture that wraps a general-purpose streaming query processor with a software
fallback mechanism that uses approximate query processing to provide timely answers
during bursts. I analyze the policy issues that this architecture exposes and present Delay
Constraints, an APl and associated scheduling algorithm for managing Data Triage. I then
describe my work on novel query approximation techniques to make Data Triage’s fall-
back mechanism work with an important class of monitoring queries. Finally, I describe a
deployment study of Data Triage in the context of a prototype end-to-end network mon-

itoring system at Lawrence Berkeley National Laboratory.
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Chapter 1

Introduction

The future will be better tomorrow.

— Dan Quayle (1947 -)



Chapter 1: Introduction

1.1

1.2

Overview

Networks are becoming more important, more complex, and more difficult to man-
age. This growth leads to the need for improved management infrastructure for
network operators. In particular, operators need up to date status information, de-
tailed data about the network, and the flexibility to focus on just the information
that is relevant. Passive network monitoring with declarative queries is a promis-
ing paradigm for meeting these needs, but the hardware costs of deploying passive
monitoring are currently prohibitive, due to the bursty nature of network traffic.

In this introductory chapter, I describe recent trends in enterprise networking
and how these trends motivate the use of passive network monitoring and declara-
tive queries. I also analyze the costs of deploying such a monitoring infrastructure
with current technology and explain the factors that make such a deployment pro-
hibitively expensive. Finally, I give an overview of my solution to this problem
and outline how the remaining chapters will describe this solution in detail.

The Growth of Enterprise Networks

Current trends in information technology are making computer networks a more
integral part of large businesses. New technologies leverage Internet protocols
and expanded network capacity to make existing processes more efficient and to
create new opportunities for growth. These technologies span a wide variety of
functions:

e Virtual organizations with global VPNs: Large organizations are using Virtual
Private Networks (VPNs) to give employees network access from home and
from WiFi Internet access points. At AT&T,

“30 percent of AT&T managers are full-time virtual office workers and
an added 41 percent work frequently out of the office. By increasing
productivity, reducing real estate costs and cutting employee turnover,
enterprise mobility initiatives are delivering significant business ben-
efits.” [23]

e Sales force automation: Companies are using Customer Relationship Manage-
ment (CRM) software and hosted services to provide continuous up-to-date
information to salespeople on the road. According to Aberdeen Group,

“hosted CRM is emerging as a major force likely to shape the future of
CRM and the software industry in ways that cannot be fully appreci-
ated today” [42]

Increasingly, salespeople are using handheld devices and third-generation
wireless modems to access CRM portals from remote locations [65].
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o IP telephony: By using existing IP infrastructure to route voice calls, businesses
are providing high-end telephony services to their employees while saving sig-
nificant amounts of money. According to BusinessWeek, “11.5 million IP lines
were shipped to businesses in 2005, a 46% increase ... from 2004” [26].

e Service oriented architecture: Companies are increasingly using web services
and open standards to tie together software components both within and be-
tween organizations. This service-oriented architecture, or SOA, allows for
greater collaboration between different groups and facilitates code reuse. Ac-
cording to analyst Tom Dwyer of the Yankee Group,

“SOA is heading toward broad implementation in only a matter of a
few years in the United States, regardless of organization size or ver-
tical industry. 2006 will be the year of initial SOA project completion
on a broad basis: not on a hit-or-miss trend, but through a rising tide
of broad and deep adoption of SOA across the market” [34]

e E-commerce and online marketing: The World Wide Web is becoming more
and more important to marketing and selling products in today’s global mar-
ketplace. According to eMarketer,

“Figures released by the Internet Advertising Bureau (IAB) and Price-
waterhouseCoopers (PwC), show that U.S. spending on Internet ad-
vertising set a record in the first quarter of 2006, reaching $3.9 billion.
That represents a healthy 38% increase over Q1 2005, when the total
was $2.8 billion, and a 6% increase over the Q4 2005 total of $3.6 bil-
lion.” [31]

These ongoing trends are leading to several kinds of growth in the complexity
of managing enterprise networks. To make use of new technologies, companies
are adding thousands of new telephones, sensors, wireless handhelds, servers,
and other devices to their networks. These new devices in turn communicate with
a broad mix of different protocols that can be difficult to analyze and can inter-
tere with each other. As vital functions like telephone communications and parts
procurement start requiring network connectivity, network downtime is becoming
far more costly than ever before. Finally, the increased reliance on networking is
drawing a new breed of sophisticated adversary, making it more difficult both to
keep networks available and secure.
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1.3 Monitoring Enterprise Networks

One of the important tasks of a network administrator is to know the status of the
network: Are all network services running smoothly? What hardware or software
failures are occurring? Is the network under attack?

The current generation of network monitoring tools has difficulty providing
these answers in the face of increasing network complexity. In particular, monitor-
ing technology needs to grow in three areas:

e Up-to-date status: To maintain high availability, network administrators need
instant notification of network problems. Quick response time is especially im-
portant when dealing with security breaches such as worm attacks [110]. New
closed-loop control systems that react automatically to problems [4, 1, 32] make
latency even more important.

e Detailed information: Today’s multi-protocol, multi-site networks are prone
to subtle failures and misconfigurations that can only be detected with detailed
analysis of the network traffic itself. For example, to detect the failure of a web
service piggybacked on the HTTP protocol, the administrator needs a tool that
can decode HTTP sessions and track track information about the web service
invocations inside of them.

o Flexibility: While a detailed view of the network is important for detecting
problems, it can easily lead to information overload. Administrators need an
efficient mechanism to filter out the details that are not relevant to the task at
hand. For example, the administrator might need to debug a problem with one
web service among several hundred on a single machine, or to trace the source
of dropped calls between a particular pair of IP-enabled telephones.

The networking community has been developing several types of tools to meet
these needs, and one of the more promising solutions is passive network monitoring.
A passive network monitor is a device that monitors the traffic on a network link,
parsing and analyzing the packet stream, as illustrated in Figure 1.1.

Early passive network monitoring systems relied on hard-coded software mod-
ules to analyze network traffic. Recent generations have moved towards a more
flexible approach that uses declarative continuous queries to decode and analyze
traffic. Passive network monitoring with continuous queries provides a way to
meet the expanded monitoring needs of today’s network administrators. Continu-
ous queries provide an up-to-date picture of the network because they constantly
stream query results back to the user. At the same time, these queries can expose a
fine-grained picture of the network’s traffic to the user, allowing him or her to ex-
tract important information about the status of important areas of the network. By
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Network 1 é Network 2

Passive Monitor

Figure 1.1: A typical passive network monitoring setup.
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Figure 1.2: Distribution of the arrival rate of TCP sessions in 1-second windows in a trace
of traffic on the NERSC supercomputing backbone.
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altering query parameters and adding new predicates, administrators can avoid
information overload, extracting just those details that are relevant to the problem

at hand.

The Hardware Cost Problem

Researchers in the networking community have long studied the aggregate char-
acteristics of network traffic. One of the more interesting and well-documented of
these characteristics is the self-similar, bursty rate of packet arrival. Packet arrival
rates in many different kinds of networks follow heavy-tailed distributions, with
high-speed bursts occurring over a broad range of time scales [61, 79, 89]. Figure 1.2
shows an example distribution, drawn from a trace of TCP flows on the NERSC
backbone link at Lawrence Berkeley National Lab.
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To avoid outages during bursts, network equipment is generally provisioned
for the peak expected load on a network link. Modern enterprise networks often
have peak data rates of one gigabit per second. With the speed of modern comput-
ing hardware, a number of common events can lead to bursts that saturate such a
network link. Some of these events are normal occurrences; for example, a server
undergoing a period of heavy load, a client backing up its files, or a cluster of users
logging in at 9 am. Other events that can cause these bursts are serious problems;
for example, a malfunctioning piece of network equipment, a denial of service at-
tack, an errant software process, or an intruder downloading many confidential
files. Network administrators need to be able to distinguish between the different
events that can saturate a gigabit link, so it is important for network monitors to
remain operational in the face of such events.

Previous work has explored the feasibility of passive network monitoring at
gigabit rates. The general conclusion of this work has been that passive monitoring
of such traffic requires server-class hardware [25] or special-purpose processors
[94]. Such hardware can cost more than the network itself: A high-end managed
Gigabit Ethernet switch currently costs about $80 per port, while a low-end rack-
mount server costs at least $750!. Until a single low-end server can monitor 10
or more network links, it will be difficult to justify deploying such a server as
a passive monitor. This hardware cost problem is a major factor holding back the
broader adoption of passive network monitoring technology.

IEstimates based on prices of Dell PowerConnect 6024 24-port managed Layer 3 gigabit switch ($1959) and Dell PowerEdge

850 entry-level server with an Intel Celeron CPU and 512 MB RAM ($769), as of July 21, 2006.

6
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1.5 Solving the Hardware Cost Problem with Data Triage

In this dissertation, I propose a novel solution to the hardware cost problem for
passive network monitoring. I have developed an architecture called Data Triage
that provides a software fallback mechanism for dealing with high-speed bursts.
Data Triage uses approximate query processing techniques to increase effective
throughput without seriously affecting the quality of query results. With this fall-
back mechanism in place, the network administrator can provision a monitor for
the the average rate of traffic, reducing hardware requirements by one or more
orders of magnitude.

The primary benefit of my approach is that it allows the monitoring of fast net-
work links with affordable hardware, surmounting a major barrier to the broader
adoption of passive network monitoring. Additionally, my solution maintains the
expressivity and flexibility of the streaming query processor and returns results
in a timely manner. In between bursts, the system provides completely accurate
results to queries. The system can absorb small bursts with no ill effects; during
large bursts, result quality degrades gracefully and returns to normal as soon as
the burst ends.

This dissertation describes and analyzes the components of my solution. Chap-
ter 3 describes the Data Triage architecture and its implementation in the Tele-
graphCQ streaming query processor. Chapter 4 analyzes the scheduling and pol-
icy tradeoffs inherent in Data Triage and presents my solutions for navigating these
tradeoffs. Chapter 5 points out weaknesses in existing work for approximating
queries over network data and presents novel classes of histogram that address
these weaknesses. Finally, Chapter 6 describes a deployment study at Lawrence
Berkeley National Laboratory that demonstrates the feasibility of my approach in
a real-world setting.
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1.6 Background

Here I present background information that is important for an understanding of
the rest of this dissertation.

1.6.1 The TelegraphCQ Streaming Query Processor

TelegraphCQ is a streaming query processor developed by the Telegraph
project at U.C. Berkeley from 2002 through 2006. The system extends the
PostgreSQL database system [53] to support continuous queries over streaming
data. TelegraphCQ maintains the core feature set of PostgreSQL, including
the transaction manager, type system, predicate logic, and stored procedures.
In addition to these capabilities, TelegraphCQ adds support of the CQL
query language (See Section 1.6.1.1) with subqueries and recursive queries;
high-performance data ingress for streaming large numbers of tuples into the
system; and continuous multi-query optimization for running many queries
simultaneously. The initial beta release of TelegraphCQ occurred in late 2003, with
version 2.0 released in 2004 and version 2.1 in 2005. Version 3.0 is targeted for a
late 2006 release and includes a new data ingress architecture and enhanced query
support. The TelegraphCQ software can be downloaded from the Telegraph web
site at <http://telegraph.cs.berkeley.edu/>.

1.6.1.1 Query Model

The work in this dissertation uses the query model of the current development
version of TelegraphCQ [19]. Queries in TelegraphCQ are expressed in CQL [6],
a stream query language based on SQL. Data streams in TelegraphCQ consist of
sequences of timestamped relational tuples. Users create streams and tables using
a variant of SQL’s Data Definition Language, as illustrated by the following sample
schema:

—— Stream of IP header information.

—— The "inet” type encapsulates a 32— bit IP address

create stream Packets ( src_addr inet, dest_ddr inet,
length integer, ts timestamp)

type unarchived,

—— Table of WHOIS information
create table Whois (min_addr inet, max_addr inet, name varchar);

In addition to traditional SQL query processing, TelegraphCQ allows users to
specify long-running continuous queries over data streams and/or static tables. In



1.6 Background

this dissertation, I focus on such continuous queries.

The basic building block of a continuous query in TelegraphCQ is a SELECT
statement similar to the SELECT statement in SQL. These statements can perform
selections, projections, joins, and time windowing operations over streams and
tables.

An overview of the SQL query language can be found in [54]. The SELECT
statement in CQL has a similar structure to that of SQL:

select <columns and aggregates>

from <stream(s) with window clauses>, <table(s)>
where <predicate(s)>

group by <columns>

order by <columns>

limit <num> per window

The entries for streams in CQL’s FROM clause take the form:

<stream name> [range '<interval>'" slide '<interval>' start '<interval>']

where the RANGE, SLIDE, and START parameters specify a time window over the
stream. Every time any stream’s time window advances, the query result is up-
dated. As in SQL, optional GROUP BY, ORDER BY, and LIMIT clauses act over the
result tuples for each update interval.

TelegraphCQ can combine multiple SELECT statements by using a variant
of the SQL99 WITH construct. The implementation of the WITH clause in
TelegraphCQ supports recursive queries, but I do not consider recursion in this
dissertation.

The specifications of time windows in TelegraphCQ consist of RANGE and op-
tional SLIDE and START parameters. Different values of these parameters can spec-
ify sliding, hopping (also known as tumbling), or jumping windows.

The following listing gives several example network monitoring queries that
demonstrate the utility of this query model.

—— Fetch all packets from Berkeley
select x
from Packets P [range by '5.seconds’ slide by '5.seconds’], Whois W
where P.src_addr >W.min_addr and P.src_addr < W.max_addr
and W.name like '%berkeley.edu’;
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—— Compute a traffic matrix (aggregate traffic between source— destination
—— pairs), updating every 5 seconds

select P.src_addr, P.dest_addr, sum(P.length)

from Packets P [range by '30_sec’ slide by '5.sec’]

group by P.src_addr, P.dest_addr;

—— Find all <source, destination> pairs that transmit more than 1000
— — packets for two 10—second windows in a row.
with Elephants as
select P.src_addr, P.dest_addr, count(x), wtime(x) + '10_sec’
from Packets P [range '10_sec’ slide '10.sec’]
group by P.src_addr, P.dest_addr
having count(x) > 1000
(select P.src_addr, P.dest_addr, count(x)
from Packets P [range '10_sec’ slide '10.sec’],
Elephants E [range '10_sec’ slide '10.sec’]

—— Note that Elephants is offset by one window!
where P.src_addr = E.src_addr and P.dest_addr = E.dest_addr
group by P.src_addr, P.dest_addr
having count(x) > 1000);

1.6.1.2 Architecture

The architecture of TelegraphCQ version 0.2 was the subject of a CIDR 2003
paper [19]. Figure 1.3 shows the architecture of TelegraphCQ version 3.0. Here I
briefly summarize aspects of the system that are relevant to the understanding of
this dissertation.

The architecture of TelegraphCQ consists of three major components: The Front
End, the Back End, and the Triage Process. Each of these components runs in a sep-
arate operating system process; the processes communicate with a combination of
shared memory and Berkeley sockets. The system currently runs on recent Linux
and MacOS platforms.

Front End Process: The TelegraphCQ Front End process has all the components
of a standard PostgreSQL ”"Back End” process; in particular, the TelegraphCQ
Front End exports the same client APIs as PostgreSQL, and it has full access Tele-
graphCQ’s buffer pool and transaction manager. The system spawns a separate
Front End process for each client connection, and conventional SQL queries run
entirely within the Front End. The Front End forwards CQL continuous queries
to the Back End process and uses a stub “mini-executor” to fetch results from the
Back End.

To run a continuous query on TelegraphCQ, clients connect to TelegraphCQ us-
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Figure 1.3: The architecture of TelegraphCQ.

ing a standard PostgreSQL interface such as ODBC, JDBC, or 1ibpqg. To fit a contin-
uous query model into these SQL-based interfaces, the client submits the query us-
ing a DECLARE CURSOR statement and retrieves query results with FETCH state-
ments. For example, to run the query:

select * from Stream:;

the client would issue the following command:

declare results cursor for
select * from Stream;

followed by a sequence of fetch from results statements to retrieve result tuples.
Clients can cancel continuous queries by terminating the current transaction.

When the Front End receives a continuous query, it parses and plans the query
as if it were a conventional SQL query. Then the Front End sends the resulting
query plan to the Back End via a shared memory queue and creates a stub operator
tree to fetch results from the Back End.

Back End Process: Inside the TelegraphCQ Back End, continuous queries ex-
ecute in a single shared execution environment similar to that of the CACQ sys-
tem [65]. Streaming joins are executed by nonblocking operators known as SteMs,
or “State Modules”. Each SteM is responsible for maintaining an in-memory index

11
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of one side of a join. Selections and projections are handled by conventional Post-
greSQL operators and a special Grouped Selection Filter operator that can perform
multiple selections at once. Aggregation occurs in a special operator that uses tree
of PostgreSQL operators to compute aggregate values for each window. Tuples
enter the back end via modified PostgreSQL scan operators. These scans can read
tuples from relations, live data streams, or the result streams of existing queries.
A special operator known as a CQEddy acts as a nexus of control, coordinating
the movement of tuples among different relational operators. The CQEddy adap-
tively routes tuples among operators, using operator selectivities to determine an
efficient execution order.

When a query plan enters the Back End, the CQEddy decomposes it into a
collection of operators and merges this collection with the current set of “live”
operators, removing duplicates. If multiple queries share a single operator, only a
single instance of the operator is created. Where possible, compatible predicates
are merged into a single Grouped Selection Filter operator. The CQEddy maintains
state about which queries each tuple satisfies and forwards query results to the
Front End as they are produced.

As noted in the previous section, TelegraphCQ supports subqueries and recur-
sion via a SQL99-like WITH syntax. Internally, the backend uses “stub” streams
to implement the internal queries of these WITH clauses. Instead of sending the
results of these subqueries to the Front End, the system forwards the result tuples
to scan operators, where the tuples re-enter the CQEddy’s collection of operators.

Triage Process: The Triage Process is the component of TelegraphCQ that pro-
vides buffering and latency management for incoming data streams. This com-
ponent is the main focus of this dissertation, and subsequent chapters describe
the internal structure of the Triage Process in detail. Streaming data sources send
data to the Triage Process, which forwards this data to the Back End as a mixture
of PostgreSQL tuples and compact summaries. The Back End sends information
about the delay tolerance of queries to the Triage Process, which uses this informa-
tion to determine the necessary mix of buffering and summarization. Internally,
the Triage Process keeps tuples in their native binary or text format, converting
them to a format that PostgreSQL (and hence TelegraphCQ) can recognize when
sending tuples to the Back End.
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Everything of importance has been said before by somebody who did not discover it.
— Alfred North Whitehead (1861 - 1947)
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Introduction

This chapter presents a survey of previous work that is relevant to this thesis.
The chapter breaks down this previous work according to which chapter of the
thesis is most relevant to it.

Architecture

The problem of monitoring bursty network traffic with inexpensive hardware
has received attention in the networking literature. My solution to this problem,
the Data Triage architecture, makes use of with a query processor that is provi-
sioned for the data stream’s average data rate. The networking community, in
contrast, has taken a different approach to the problem, working to lower the CPU
requirements of query processing itself.

The Gigascope system [25, 24] is one of the more well-known examples of this
approach. Rather than build a general-purpose query processor, the designers of
Gigascope designed a system that is closely tied to a small set of network moni-
toring applications. Gigascope operates directly on raw network packets, using a
query language with primitives for composing hard-coded modules. These mod-
ules perform the “inner loops” of query processing and are coded in low-level
languages by experts. Some modules are implemented on special-purpose hard-
ware [56]. Because the low-level portions of Gigascope are so specialized and
heavily optimized, the system can monitor high-speed network links with rela-
tively inexpensive hardware. The major disadvantage of this approach is that it
requires hours of time for experts to implement new queries. My architecture, in
contrast, uses a general-purpose streaming query processor, so that relatively un-
sophisticated users can write new queries quickly.

The CoMo system [45] represents another approach to keeping hardware costs
under control: Limit the real-time functionality of the system. The streaming com-
ponent of CoMo is hard-coded by experts for “line speed” operation, but its func-
tionality is limited to maintaining an on-disk circular buffer of recent network traf-
fic. Basic query language allows remote sites to extract data from the buffer for
offline analysis with data-mining tools. Compared with my work, CoMo is a much
simpler architecture to implement, but it provides limited real-time analysis and
alert generation.

The SNORT intrusion detection system [92] addresses the hardware cost prob-
lem by using a very simple query language. SNORT queries, known as “rules,”
can express simple selections and projections over the packet stream. A highly
optimized execution engine with multi-query optimization takes advantage of the
simplicity of the rules However, complex queries such as joins are difficult or im-
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possible to express in SNORT’s query language.

The Bro intrusion detection system [30] uses a C-like scripting language for ex-
pressing analyses procedurally, with common “inner-loop” operations hard-coded
in hand-optimized C++. Sophisticated users can use the scripting language to
write high-level operations, including “contingency plans” for dealing with var-
ious overload situations. A combination of hand-optimized low-level code and
sophisticated algorithms in the high-level code allows Bro to identify complex pat-
terns on relatively inexpensive hardware. However, the use of a procedural lan-
guage instead of a declarative one makes modifying Bro’s queries difficult and
limits the ability of unsophisticated users to write new analyses.

2.2.1 Overload Handling

Overload handling is a natural concern in stream query processing, and sev-
eral pieces of previous work have proposed solutions to the problem. The Au-
rora continuous query system sheds excess load by inserting drop operators into
its dataflow network [104]. My work differs from this approach in two ways: First
of all, I use fixed end-to-end delay constraints, whereas Aurora’s drop operators
minimize a local cost function given the resources available. Secondly, my sys-
tem adaptively falls back on approximation in overload situations, while Aurora
handles overload by dropping tuples from the dataflow.

Other work has focused on choosing the right tuples to drop in the event of
overload [27, 53, 100]. My work is complementary to these approaches. In my
work, I do not focus on choosing “victim” tuples in the event of overflow; rather, I
develop a framework that sends the victim tuples through a fast, approximate data
path to maintain bounded end-to-end latency. Choosing the right victim tuples for
Data Triage is an important piece of future work.

Other stream processing systems have focused on using purely approximate
query processing as a way of handling high load [15, 60]. Load shedding systems
that use this approach lossily compress sets of tuples and perform query process-
ing on the compressed sets. The STREAM data manager [33] uses either drop-
ping or synopses to handle load. In general, this previous work has focused on
situations in which the steady-state workload of the query processor exceeds its
capacity to process input streams; I focus here on provisioning a system to han-
dle the steady state well and to degrade gracefully when bursts lead to temporary
overload.

Techniques for providing fast, approximate answers to queries are a
well-studied area in database research. My Data Triage architecture uses these
approximate query processing techniques as a fall-back mechanism for overload
handling, and the third part of my proposed thesis presents new techniques for

15
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approximating a class of query that is important for network monitoring.

Approaches to approximate query processing generally involve either random
samples or summary data structures. Random sampling has a long history in the
literature; Olken and Rotem [74] summarize work in the area prior to 1995. As
recent examples, Chaudhuri et al. [21] analyze the effects of random sampling of
base relations on the results of joins of those relations. Acharya et al. present a
technique called join synopses that involves sampling from the join of the tables
in a star schema rather than from the base tables themselves [3]. Congressional
Sampling [?] and Dynamic Sample Selection [8] collect biased samples to improve
the accuracy of grouped aggregation.

Summary data structures are also well-studied. Garofalakis and Gibbons give
a good overview of work in this area [36]. Chakrabarti et al. [17] describe methods
of performing query processing entirely in the wavelet domain using multidimen-
sional wavelets. Getoor et al. [35] use probabilistic graph models as a compressed
representation of relations. Pavlov, Smith, and Mannila [77, 76] investigate meth-
ods for lossy summarization of large, sparse binary data sets. Wang et al. have
studied methods of performing query processing and selectivity estimation using
wavelets [67, 66, 109]. Lim et al. use query feedback to tune a materialized set of
histograms to the workload of the database [62].

Policy

Chapter 4 of this thesis explains the Delay Constraints API for controlling the
tradeoff between query result latency and accuracy in Data Triage. I develop a
scheduling algorithm for the Triage Process that ensures that it meets its con-
straints on query result delay. Scheduling algorithms that meet constraints on
delay are common in multimedia scheduling and in real-time systems, but this
previous work differs from my work in several important respects.

For “hard” real-time applications like avionics and nuclear power plant con-
trol, various algorithms can compute processor schedules to ensure that a set of
well-understood tasks meet a specified set of deadlines with 100 percent proba-
bility. The most well-known of these approaches are Rate Monotonic and Earliest
Deadline First (also known as Deadline Driven) scheduling, published by Liu and
Layland in 1973 [63]. Rate Monotonic scheduling precomputes a static schedule for
a fixed set of periodic tasks, guaranteeing that all tasks meet specified deadlines.
The Earliest Deadline First approach schedules a stream of incoming tasks, giving
highest priority to Follow-on work has extended these algorithms in a number of
ways. For example, the Spring scheduling algorithm adds support for admission
control and distribution and has been implemented in hardware [85, 16]; and Lu et



2.3 Policy

al.add closed-loop control to support tasks with unpredictable runtimes [64].

In “soft” real time applications like multimedia scheduling, the scheduler pro-
vides probabilistic guarantees that tasks will be finished on time. Lottery schedul-
ing [107] and stride scheduling [108] schedule tasks in fixed ratios to ensure that
every task receives at least the requested amount of CPU time per second. Fair
Queueing algorithms [72, 28, 9, 97, ] provide similar guarantees when routing
packets from multiple flows across a network. The Dynamic Window-Constrained
Scheduling algorithm [111] divides network bandwidth between multiple streams
with different “deadlines” (maximum end-to-end latency of any packet) and “loss-
tolerances” (percentage of packets in a given period of time that the network is
allowed to drop).

In my work, I study a significantly different scheduling problem than previ-
ous work in real-time systems and networking. Existing work on processor and
network scheduling focuses on determining the correct order in which to perform
a collection of different tasks in order to ensure that all the tasks meet individual
deadlines with high probability. The Data Triage scheduling problem, in contrast,
involves scheduling the processing of a stream of very small, substantially identi-
cal tuple processing tasks, with every tuple from a given window having the same
deadline. Since the tuples in a streaming query processor must be processed in or-
der, the individual tasks in Data Triage occur in a very constrained order; choosing
an order of operations is not an important factor in my work. The chief decision
that my scheduling algorithm must make is whether to triage or to process fully
the tuple currently at the head of the Triage Queue.

17
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Chapter 5 of this thesis describes a new class of histogram that I have de-
veloped. Histograms have a long history in the database literature. In recent
years, researchers have developed many heuristics for constructing histograms
[82, 69, 51, 12, 29, ]. Other work has focused on optimal algorithms for his-
togram construction [49, 50, 51]. Poosala et al.[81] give a good overview of work in
one-dimensional histograms, and Bruno et al.[12] provide an overview of existing
work in multidimensional histograms.

Previous work has identified histogram construction problems for queries over
hierarchies in data warehousing applications, where histogram buckets can be ar-
bitrary contiguous ranges. Koudas et al first presented the problem and provided
an O(n®) solution [57]. Guha et al.developed an algorithm that obtains “near-
linear” running time but requires more histogram buckets than the optimal so-
lution [44]. Both papers focus only on Root-Mean-Squared (RMS) error metrics. In
my work, I consider a different version of the problem in which the histogram
buckets consist of nodes in the hierarchy, instead of being arbitrary ranges; and
the selection ranges form a partition of the space. This restriction allows us to
devise efficient optimal algorithms that extend to multiple dimensions and allow
nested histogram buckets. Also, I support a wide variety of error metrics.

The STHoles work of Bruno et al.introduced the idea of nested histogram buck-
ets [12]. The “holes” in STHoles histograms create a structure that is similar to my
longest-prefix-match histogram buckets. However, I present efficient and optimal
algorithms to build my histograms, whereas Bruno et al.used only heuristics (based
on query feedback) for histogram construction. My algorithms take advantage of
hierarchies of identifiers, whereas the STHoles work assumed no hierarchy:.

Bu et al.study the problem of describing 1-0 matrices using hierarchical Mini-
mum Description Length summaries with special “holes” to handle outliers [13].
This hierarchical MDL data structure has a similar flavor to the longest-prefix-
match partitioning functions I study, but there are several important distinctions.
First of all, the MDL summaries construct an exact compressed version of binary
data, while my partitioning functions are used to find an approximate answer
over integer-valued data. Furthermore, the “holes” that Bu et al.study are strictly
located in the leaf nodes of the MDL hierarchy, whereas my hierarchies involve
nested “holes”.

Wavelet-based histograms [67, 66] are another area of related work. The error
tree in a wavelet decomposition is analogous to the UID hierarchies I study. Also,
recent work has studied building wavelet-based histograms for distributive error
metrics [37, 54]. My overlapping histograms are somewhat reminiscent of wavelet-
based histograms, but my concept of a bucket (and its contribution to the his-
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togramming error) is simpler than that of a Haar wavelet coefficient. This results
in simpler and more efficient algorithms (in the case of non-RMS error metrics),
especially for multi-dimensional data sets [37]. In addition, my histogramming
algorithms can work over arbitrary hierarchies rather than assuming the fixed, bi-
nary hierarchical construction employed by the Haar wavelet basis.

My longest-prefix-match class of functions is based on the technique used
to map network addresses to destinations in Internet routers [35]. Networking
researchers have developed highly efficient hardware and software methods for
computing longest-prefix-match functions over IP addresses [73] and general
strings [14].

Deployment

Two previous studies have used TelegraphCQ to run simple network monitor-
ing queries [80, 87]. In the deployment study I describe in Chapter 6, I embed
TelegraphCQ in an end-to-end system and use a larger workload of more complex
queries to get a more realistic view of TelegraphCQ'’s performance.

The objective of the work presented in [227] is to build a database system for
analyzing off-line network traffic data for studying coordinated scan activities.
Another recent database effort for analyzing network traffic is described in [98].
Both approaches use open source database systems and index data structures for
efficient analysis of off-line network traffic data. However, these systems do not
manage streaming data.

A combination of live and historic data processing is presented in [20]. Historic
data is managed by a B-tree that is adaptively updated based on the query load. In
order to keep up with high query loads, the B-tree updates are delayed for periods
with lower traffic. Thus, historic queries can operate on reduced (sampled) data
sets during high loads. This leads to approximate answers for queries on historical
data, which may affect analysis results. Rather than B-trees, we use bitmap indices
for querying historic data. One reason for this change is that the bitmap indices
can answer multi-dimensional range queries quickly and accurately [75, 18, 114,

, 115]. Such queries appear frequently in my network monitoring workload.

One of the motivations given in [20] for their work was that updating B-trees
may take too much time to keep up with the arrival of new records. In my work,
I reexamine this assumption in the context of bitmap indices and show that index
insertions do not need to be a bottleneck. Unlike B-trees, bitmap indices do not
require sorting of the input data. This property allows for very efficient bulk ap-
pend operations. Recent proposals for improving the write performance of B-Trees
[40] may narrow this performance gap, but I am unaware of any hard performance
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numbers for the new designs.

In the network community, two commonly used Intrusion Detection Systems
are Bro [78] and Snort [91]. These systems are used to analyze and react to suspi-
cious or malicious network activity in real time. Recently Bro was extended by a
concept called the time machine [56], i.e. to analyze historic data by traveling back
in time. The high-level concept of a time machine is similar to the one described in
Chatper 6. However, the authors do not provide any details on the performance of
querying historic data. The goal of my study is to provide a detailed performance
analysis on the combination of stream processing and historic data analysis. In ad-
dition, the analyses in Bro and Snort are performed through C-like scripting lan-
guage with manual management of data structures, while the system described in
Chapter 6 uses high-level declarative queries. In contrast, similar scripts written
in declarative languages such as SQL are much more compact and much easier to
create.

FastBit implements a set of compressed bitmap indices using an efficient com-
pression method called the Word Aligned Hybrid (WAH) code [114, 115]. In an num-
ber of performance measurements, WAH compressed indices were shown to sig-
nificantly outperform other indices [113, ]. Recently, FastBit has also been used
in analysis of network traffic data and shown to be able to handle massive data
sets [101, 11]. This earlier proof-of-concept made FastBit a convenient choice for
the prototype described in Chapter 6.
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Introduction

This chapter describes the Data Triage architecture and its implementation in the
TelegraphCQ streaming query processor. Data Triage provides a software fallback
mechanism to isolate the query processor from high-speed bursts. The architecture
shunts excess data through a shadow query that uses approximation to summarize
missing query results.

The chapter starts with a brief overview of approximate query processing, fol-
lowed by a description of the architecture. Then I describe techniques for imple-
menting approximate query processing in a general-purpose query processor like
TelegraphCQ. Finally, I describe the query rewrite process that my system uses to
produce shadow queries.

3.1.1 Approximate Query Processing with Summaries

Much work has been done on approximate relational query processing using
lossy set summaries. Originally intended for query optimization and interactive
data analysis, these techniques have also shown promise as a fast and approximate
method of stream query processing. Examples of summary schemes include ran-
dom sampling [106, 3], multidimensional histograms [52, 51,29, 103], and wavelet-
based histograms [17, 67].

Later in this dissertation, in Chapter 5, I will present my work in approximat-
ing an important class of queries in the network monitoring space. However, the
work in the current chapter centers on leveraging any kind of query approxima-
tion, including my histograms and the broad body of previous work. No single
summarization method has been shown to dominate all others for all query types,
so my system supports a variety of techniques. To simplify this support, I have de-
veloped a generic framework that allows my system to implement most existing
approximations.

My framework divides an approximation scheme into four components:

A summary data structure that provides a compact, lossy representation of a set
of relational tuples

A compression function that constructs summaries from sets of tuples.

A set of operators that compute relational algebra expressions in the summary
domain.

A rendering function that converts from the summary domain back to the rela-
tional domain by generating tuples containing either aggregates over the input
stream or representatives of that stream.
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Figure 3.1: An overview of the Data Triage architecture. Data Triage acts as a middleware
layer within the network monitor, isolating the real-time components from the best-effort
query processor to maintain end-to-end responsiveness.

3.2

These primitives allow one to approximate continuous queries of the type de-
scribed in Section 1.6.1.1. First, summarize the tuples in the current time window,
then run these summaries through a tree of operators, and finally render the ap-
proximate result.

In addition to the primitives listed above, each approximation technique also
has one or more tuning parameters. Examples of such parameters include sample
rate, histogram bucket width, and number of wavelet coefficients. The tuning pa-
rameters control the tradeoff between processing time and approximation error.

Data Triage

Figure 3.1 gives an overview of the Data Triage architecture. This architecture
consists of several components:

o The initial parsing and filtering layer of the system decodes network packets or
flow records and produces streams of binary data tuples containing detailed
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information about the packet stream.

e The Main Query operates inside a stream query processor; my prototype uses
the TelegraphCQ query processor. The query processor converts tuples from
the initial parsing and filtering layer into its internal format and passes them
through the Main Query. Architecturally, the key characteristic of this query is
that it is tuned to operate at the network’s typical data rate. Data Triage protects
the main query from data rates that exceed its capacity.

o A Triage Queue sits between each stream of tuples and the main query. Triage
Queues act as buffers to smooth out small bursts, and they provide a mecha-
nism for shunting excess data to a software fallback mechanism when there is
not enough time to perform full query processing on every tuple.

e The Triage Scheduler manages the Triage Queues to ensure that the system deliv-
ers query results on time. The Scheduler manages end-to-end delay by triaging
excess tuples from the Triage Queues, sending these tuples through the Shadow
Query. I give a detailed description of my scheduling algorithm in Section 4.4.

e The Summarizer builds summary data structures containing information about
the tuples that the Scheduler has triaged. The Summarizer then encapsulates
these summaries and sends them to the query engine for approximate query
processing.

e The Shadow Query uses approximate query processing over summary data
structures to compute the results that are missing from the main query. The
outer clause of his query then renders the summary into a set of relational
tuples that represents the approximate result.

e The Merge Query merges the results of the Main and Shadow queries to produce
a unified query answer for each time window. For GROUP BY queries, this
merge involves a join on the grouping columns. For queries that produce a set
of base tuples, the merge involves a UNION ALL clause.

I have implemented Data Triage in the TelegraphCQ stream query processor.
The sections that follow describe the approach I used to construct approximate
shadow queries efficiently.

3.2.1 Approximate Query Processing Framework

An important challenge of implementing Data Triage is adding the approxi-
mate query processing components to the query engine without rearchitecting the
system. As I noted earlier in this chapter, most query approximation techniques
can be divided into four components: a summary data structure, a compression
function, a set of operators, and a rendering function. To perform approximate
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query processing in TelegraphCQ, I have mapped these four components onto
TelegraphCQ's object-relational capabilities. This implementation permits the use
of many different summary types and minimizes changes to the TelegraphCQ
query engine.

At the core of an approximation scheme is the summarization data structure,
which provides a compact, lossy representation of a set of relational tuples. I
used the user-defined datatype functionality of TelegraphCQ to implement sev-
eral types of summary data structures, including reservoir samples, two types of
multidimensional histograms, and wavelet-based histograms.

The second component of a summary scheme is a compression function for sum-
marizing sets of tuples. My implementation actually divides the compression func-
tion into three parts, a design similar to the user-defined aggregates in PostgreSQL.
The first part of a compression is a routine for creating an empty summary; the sec-
ond part is a routine for adding a tuple to an existing summary; and the third part
is a routine that finalizes the summary and prepares it to be sent to TelegraphCQ.

The Summarizer takes a compression function as an argument, with differ-
ent C++ classes implementing different summarization schemes. This summary
is packed into the external representation (currently text) of a user-defined type
and sent to TelegraphCQ as a field of a tuple. The constructor for the user-defined
type converts this external representation into an internal binary representation of
the summary. In my experiments, the overhead of this conversion represented a
very small part of overall running time. If necessary, a production implementa-
tion of the Summarizer could avoid this conversion step entirely by generating the
internal binary representation of the summary directly.

The third component of a summary scheme is a set of relational operators
that operate on the summary domain. Once summaries are stored in objects, it
is straightforward to implement relational operators as functions on these objects.
In TelegraphCQ, the syntax to define user-defined function over a user-defined
type is derived from that of PostgreSQL.:

CREATE FUNCTION function_name(argument list)
RETURNS return_type AS
'<path._to_shared_object>", '<function_.name>'
LANGUAGE C;

where function_name is a name used for calling the function from within CQL
queries, return_type is the built-in or user-defined type that the function returns,
and the shared object and function name tell TelegraphCQ where to find the
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function implementation at runtime.

If, for example, MHIST multidimensional histograms [52] are encapsulated in a
user-defined type, the common relational operators on this type are easily declared
in TelegraphCQ syntax:

—— Project S down to the indicated columns.
create function project (S MHIST, colnames cstring)
returns MHIST as ...

—— Approximate SQL's UNION ALL construct.
create function union_all (S MHIST, T MHIST)
returns MHIST as ...

—— Compute approximate equijoin of S and T.
create function equijoin ( S MHIST, S_colname cstring,
T MHIST, T_colname cstring)
returns MHIST as ...

The C implementation of each function performs the appropriate operations on
the binary representation of the summary. The binary representation of the sum-
mary also tracks the mapping between dimensions of a multidimensional sum-
mary and the columns of stream tuples. Shadow queries can use calls to these
functions to compute relational expressions; for example:

(select b,c from A) UNION ALL (select d,e from B)

becomes

select union_all ( project (A.sum, 'b,c’), project (B.sum, 'd,e’)) from A, B;

The final component of a summary scheme is a rendering function that com-
putes aggregate values from a summary. TelegraphCQ contains functionality from
PostgreSQL for constructing functions that return sets of tuples. I use this set-
returning function framework to implement the rendering functions for the differ-
ent datatypes:

—— Convert S into tuples, one tuple for each bucket
create function mhist_render(S MHIST)
returns setof record as ...
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Figure 3.2: An illustration of the Data Triage query rewrite algorithm as applied to an
example query. The algorithm produces a main query, a shadow query, and auxiliary
glue queries to merge their results. This example uses multidimensional histograms as a
summary datatype.

3.3

Having implemented the components of a given summarization scheme, I can
construct Data Triage’s shadow queries and merging logic using query rewriting.
Section 3.3 demonstrates this process on a simple example query.

Lifetime of a Query

To illustrate the methods I use to construct shadow queries and how these methods
interact with my implementation of Data Triage, I will now describe the query
rewrite and execution process as it applies to the query in Figure 4.2. The query
reports the number of packets coming from Berkeley domains every 5 seconds.

3.3.1 Summary Streams

Recall the sample CQL schema from Section 1.6.1.1. This schema contains a
table of WHOIS information and a stream, Packet, of information about network
packets.

To use Data Triage in TelegraphCQ, the user adds an ON OVERLOAD clause to
each CREATE STREAM statement:
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create stream Packets ...
on overload keep MHIST;

This clause specifies the type of summary that Data Triage will construct on excess
tuples in the stream. An alternate syntax could have the user choose the sum-
mary type at query execution time, though I did not expose such a syntax in my
implementation.

The ON OVERLOAD clause causes TelegraphCQ to generate an auxiliary sum-
mary stream for summaries of triaged tuples:

create stream

__triaged_Packets (summary MHIST,
earliest timestamp,
latest timestamp);

The two Timestamp fields in this stream indicate the range of timestamps in the
tuples represented by the summary field. The summary stream will serve as an
input to all shadow queries that operate on the Packets stream.

TelegraphCQ supports stream-stream join queries, such as:

select

from S [range '10_sec’ slide '10_sec’],
T [range '10_sec’ slide '10._sec’]

where S.a = T.a;

A more complex example of such a query is my “dispersion” query in Chap-
ter 6. As the derivation in Section 3.3.2 indicates, the shadow query for a stream-
stream join requires joining the triaged tuples for each stream the non-triaged tu-
ples from the other stream. The system could join the summaries directly with the
non-triaged tuples, but it is generally more efficient to summarize these tuples and
then perform the join. To cover the case when a stream-stream join query operates
directly on base streams, my system also creates a second summary stream that
summarizes non-triaged tuples:

create stream

__nontriaged_Packets (summary MHIST,
earliest timestamp,
latest timestamp);
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This second stream and its associated summarizer are only activated when a
stream-stream joins query is present in the system.

3.3.2 Query Rewrite

Figure 3.2 shows the query rewrite process as applied to my sample query. My
query rewriting methodology is based on an algebraic formalism that allows my
system to correctly rewrite queries into shadow queries. I use relational algebra
to build a set of differential relational algebra operators. My approach here resembles
past work in maintaining materialized views [45], though my setting is different.

Each differential operator propagates changes from the inputs to the outputs
of the corresponding relational algebra operator. In naming the components of the
algebra, I borrow a convention from the field of signal processing. When analyzing
a noisy analog channel, it is a common practice to break the channel into “signal”
and “noise” components and to model these components separately. Similarly, the
differential relational algebra divides each input relation S into noisy, additive noise,
and subtractive noise components S,,0;s, S+ and S_, such that:

Snoisy = S+ S+ — S 3.1)

where + and — are the multiset union and multiset difference operators, respec-
tively. Each differential operator propagates changes to these components sepa-
rately.

Note that relational operations like negation and set difference can cause addi-
tional tuples to appear in an expression’s output when tuples are removed from
its inputs. The additive noise component in the differential relational algebra com-
pensates for these additional tuples. For base relations and subexpressions that
do not contain negation or set difference operators, the additive noise component
of the shadow query is always empty. In general, the empty parts of a rewritten
shadow query can be pruned by substituting the empty set () for these parts and
simplifying the resultant relational algebra expression. Appendix A gives detailed
definitions of several important differential operators, including the set difference
operator.

My query rewriter starts by constructing a differential relational algebra ex-
pression for each SELECT clause in the original query. Each differential operator is
defined in terms of the basic relational operators. The query rewriter recursively
applies these definitions to the differential relational algebra expression to obtain a
relational algebra expression for the tuples that are missing from the main query’s
output. Then the query rewriter removes empty relations and translates the rela-
tional algebra expression into the object-relational framework described in Section
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3.2.1 to produce the shadow query.

Certain portions of the shadow query reference static tables that do not change
during the lifetime of the user’s continuous query. The query rewriter precom-
putes these expressions and stores the resulting summary objects in a system table.
At runtime, the shadow query fetches these cached summaries instead of recom-
puting the corresponding subexpressions.

Finally, the query rewriter generates a single WITH statement that will run the
main and shadow queries and merge their results. The application or GUI front
end submits this rewritten query to the query engine, which begins executing the
main and shadow queries.

3.3.3 Query Execution

When TelegraphCQ receives the rewritten query, it passes query parameters
to the Triage Process and begins pulling a mix of full tuples and summaries from
the Triage Queue and Summarizer. The Scheduler monitors the Triage Queue on
the Packets stream and summarizes tuples that the system does not have time
to process fully. Once per time window, the Scheduler sends a summary to the
__triaged_Packets stream that serves as an input to the shadow query. The
Scheduler throttles the flow of full tuples until the query engine has consumed
the current summary.

The original query returns a single count of packets per time window. In place
of this single count, the rewritten query will instead return two counts per time
window — one from the main query and one from the shadow query. The ap-
plication can add these two counts to obtain an estimate of the true query results
for presentation via the appropriate interface. Keeping the results of the main and
shadow queries separate provides feedback as to how much approximation went
into the overall result.

In some applications, it is useful for the shadow query to return error estimates
or confidence intervals, in addition to the counts, aggregate values, or tuples that
the queries normally produce. For example, the designers of a graphical visualiza-
tion may wish to add error bars to indicate a 90% confidence interval. For random
samples, a set of recursive formulas exist for computing the error in estimating the
results of a relational query with aggregation [46] Most other types of approxima-
tion can produce similar, albeit looser, bounds on error.
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Figure 3.3: Illustration of how Data Triage can be extended to handle archived streams.

3.4 Extending Data Triage for Archived Streams

The Data Triage architecture as presented in this chapter provides an overload
handling mechanism for query processors that answer queries over live streams.
In many network monitoring applications, it is useful to maintain an archive of
streaming data from the past. Administrators often need to examine past history
to trace back the source of a problem that a “live” monitoring system detects. Also,
historical data can provide a baseline for comparison against current network be-
havior, helping to eliminate false positives.

Data Triage can be extended in a straightforward way to handle applications
that require keeping an archive of historical streaming data. Figure 3.3 illustrates
how this extension of the architecture works. Archived stream data is stored in
an on-disk index. In addition to being sent to the Triage Queue, streaming data
is also written to an on-disk staging area. During periods of low system load, a
background process bulk-loads data from the staging area into the index.

This design is partially based on Sirish Chandrasekaran’s work on
“live/archive” query processing [20]. Unlike this previous work, my design
takes advantages of “economies of scale” by bulk-loading indexes. My approach
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leads to a simplified design and higher indexing throughput at the expense of
somewhat delayed index generation. In Chapter 6, I present an implementation

of this design as well as experiments that characterize its throughput benefits and
index loading delays.
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I love deadlines. I like the whooshing sound they make as they fly by.
— Douglas Adams
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Introduction

The Data Triage architecture creates a tradeoff between the latency and the accu-
racy of query results. Different applications fit at different points along this trade-
off. This chapter presents the delay constraints API that I have developed to control
latency and accuracy in Data Triage, along with my techniques for meeting the
constraints this API imposes.

The chapter starts by analyzing the latency-accuracy tradeoff in detail. Then it
presents the API, followed by my scheduling algorithm for implementing this API.
I then analyze the problem of provisioning a system with Data Triage, paying par-
ticular attention to the performance the system requires from it approximate query
processing implementation. I describe the results of a microbenchmark study that
shows that my current implementations of several approximation schemes per-
form sufficiently well to provide an order of magnitude of additional data process-
ing capacity to TelegraphCQ. Finally, I present an end-to-end experimental study
on my full implementation of Data Triage.

The Latency-Accuracy Tradeoff

The Data Triage architecture uses a combination of buffering and approxima-
tion to handle overload. If tuples enter the Triage Process faster than the main
query can consume them, the Triage Scheduler has two choices: buffer the excess
tuples in the Triage Queue; or triage tuples in the Queue, adding them to the cur-
rent approximate summary. Each of these choices has significant ramifications for
the latency and accuracy of the streaming query results that the user sees, as the
benchmarks in the following paragraphs demonstrate. Choosing the right mix of
buffering and approximation is crucial to maintaining acceptable application per-
formance with Data Triage.

Figure 4.1 shows the results of an experiment to measure the latency of query
results in TelegraphCQ when the system uses buffering to absorb excess data. The
data source for this experiment was a packet trace from the Lawrence Berkeley
National Laboratories web server. I played back this trace through TelegraphCQ,
using a schema similar to that in Section 1.6.1.1. I configured TelegraphCQ to run
the query:

select count(x) from Packets [range '10_sec’ slide '10_sec’ |;

My software used the timestamps in the trace to determine when to send tuples
to TelegraphCQ. To simulate a less-powerful machine, I increased the playback
rate of the trace by a factor of 10 and reduced the query window by a factor of 10.
At these settings, the query processor was provisioned for the 90th percentile of
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Figure 4.1: Query result latency for a simple aggregation query over a 10-second time
window. The query processor is provisioned for the 90th percentile of packet arrival
rates. Data is a trace of a web server’s network traffic.

packet arrival rates. The graph shows the observed latency between query result
generation and the end of each time window.

About 200 seconds into the trace, a burst of high-speed data overwhelms the
capacity of the main query to consume data. As the amount of data in the Triage
Queue increases, the buffering creates a rapidly-increasing delay between data ar-
rival and query result generation. When the burst ends, this high latency persists
for several time windows as the query processor gradually drains the buffer. Note
that the heavy-tailed distribution of burst lengths means that this latency is poten-
tially unbounded in practice.

Of course, the Triage Scheduler can limit query result latency by triaging tuples,
removing them from the Triage Queue and incorporating them into a compressed
summary. As long as there is enough time to summarize the entire input stream,
the Scheduler can impose arbitrary limits on query result latency by limiting the
number of tuples in the Triage Queue. However, this latency reduction comes
at a significant cost: As the system triages larger fractions of the input data, the
accuracy of query results will necessarily go down.

The Triage Scheduler must choose the right mix of buffering and approxima-
tion to ensure that the system meets application requirements for latency and ac-
curacy. Unfortunately, different network monitoring applications have vastly dif-
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select count(x)
from Packets P [range by '5.seconds’ slide by '5.seconds’], Whois W
where P.src\string_addr >W.min\string_addr
and P.src\ string_addr < W.max\string_addr
and W.name LIKE "\ %berkeley.edu’
limit delay to '1.second’;

4.3
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Figure 4.2: Sample query with a delay constraint

ferent requirements for these two metrics. For example, systems that detect and
respond to security breaches [110] require very low latency but can tolerate false
positives. At the other extreme, systems that produce digests of network traffic be-
havior for offline analysis can tolerate several hours of delay but need to produce
detailed, accurate results.

In the applications that I have studied, latency requirements are more strict
and show significantly more variation across applications, compared with require-
ments for result accuracy. Because of this asymmetry, my research has focused
on maintaining strict limits on query result latency while delivering the most ac-
curate query results possible. In the sections that follow, I propose an API called
delay constraints that allows applications to inform the Triage Scheduler of their tol-
erance for query result latency on a per-query basis. Later in the chapter, I present
a scheduling algorithm that allows the Triage Scheduler to meet a delay constraint
while minimizing the system’s reliance on approximation.

Delay Constraints

A delay constraint is a user-defined bound on the latency between data arrival
and query result generation. Figure 4.2 shows an example of my syntax for delay
constraints. My modification to CQL adds the optional clause

limit delay to [interval]

to the end of the SELECT statement.

If the SELECT clause does not involve windowed aggregation, the delay con-
straint bounds the delay between the arrival of a tuple and the production of its
corresponding join results. When the SELECT clause contains a windowed ag-
gregate, the delay constraint becomes what I call a windowed delay constraint. A
windowed delay constraint of D seconds means that the aggregate results for a
time window are available at most D seconds after then end of the window.

Most of the monitoring queries I have studied contain windowed GROUP BY
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Variable Units Description

D sec The delay constraint

W sec Size of the query’s hopping window

Crul sec (CPU) Incremental CPU cost of sending a tuple through the main
query in Data Triage

Cshadow  sec (CPU) Cost of sending a tuple through the shadow query

Crup sec (CPU) Overall cost of processing a tuple

Csum sec (CPU) CPU cost of adding a tuple to a summary

Rpeak tuszlfs The highest data rate that Data Triage can handle

tuples
sec

The highest data rate at which Data Triage does not use
approximation

Table 4.1: Variables used in Sections 4.4 through 4.7

and aggregation, so I concentrate here on delay constraints for windowed queries.

Table 4.1 summarizes the variable names used in this section and the ones that
follow. Consider a query with a hopping time window of size W and a windowed
delay constraint of D seconds. Let w; denote the time window to which a given
tuple ¢ belongs, and let Cy,;, denote the marginal cost of processing a tuple. We
assume that Ctup is constant across all tuples; I discuss relaxing this assumption in
the Future Work section. Let end(w) denote the end of window w.

The delay constraint defines a delivery deadline for each tuple t of
deadline(t) = end(w;) + D — Cpyp (4.1)

It can be easily shown that, if the query processor consumes every tuple before its
delivery deadline, then the query engine satisfies the delay constraint.

Note that every tuple in a hopping window has the same deadline. During
the remainder of this chapter, I denote the deadline for the tuples in window w by
deadline(w)
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The Triage Scheduler is the control component of Data Triage. The Scheduler’s
primary purpose is to ensure that the system meets the current delay constraint.
The Triage Scheduler meets this goal by controlling three important decisions:

e Whether to send a tuple from the Triage Queue to the main query
e Whether to “triage” a tuple from the Triage Queue, by adding it to a summary

e Whether to transfer the current summary from the Summarizer to the shadow
query.

Sending tuples to the summarizer supports significantly higher data rates than
full query processing, but compression operations do not have nonzero cost. As
I will show in my experiments, summarizing a large number of triaged tuples
requires a relatively small but still significant amount of CPU time. Likewise, rela-
tional operations on summaries can take a significant amount of time, though they
only occur once per time window. In order to satisfy the user’s delay constraints,
the Triage Scheduler needs to take these costs into account when deciding which
tuples to triage and when to triage them.

Recall from the previous section that a delay constraint of D defines a tuple
delivery deadline of deadline(t) = end(w;) + D — Cy, for each tuple t, where
Ctup is the time required to process the tuple.

In the Data Triage architecture, the value of Cy,, depends on which datapath
a tuple follows. Let Cy,; denote the CPU time required to send a tuple through
the main query, and let Cs,;;, denote the CPU time to add a tuple to the current
Cru  (for main query)

summary. Then: Cy,, = { Csum (for shadow query)

The Triage Scheduler also needs to account for the cost of sending summaries
through the shadow query. Let Cgj 40, denote the cost per time window of the
shadow query, including the cost of merging query results. I assume that Cgj,,40, iS
constant regardless of the number of tuples triaged. I assume that the system uses
a single CPU. Under this assumption, an increase in Cgj,40,, decreases the amount
of processing time available for other operations.

Incorporating the costs of the approximate datapath into the deadline equation
from Section 4.3, I obtain the new equation:

Crun  (for main query)

Csum (for shadow query) (42)

deadline(w) = end(w) + D — Cyppdow — {
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In other words, the deadline for a tuple depends on whether the tuple is triaged.
Of course, whether the tuple is triaged depends on the tuple’s deadline.

One can satisfy all the above requirements with a single scheduling invariant.
Intuitively:

Time to process remaining _ Time before delay
o < S : (4.3)
tuples in window constraint violated
More formally, letting n denote the number of tuples in the Triage Queue, W
the window size, O the real-time offset into the current window, and Cg,j; the cost
of sending a tuple through the main query:

nCruy < W+ D — Cpadow — O, (4.4)
or equivalently
n < W+ D — Copadow | O ) (4.5)
Crull Crun

As long as the Triage Scheduler maintains this invariant (by triaging enough
tuples to keep n sufficiently low), the query processor will satisfy its delay con-
straint. I note that the Scheduler must maintain the invariant simultaneously for
all windows whose tuples could be in the Triage Queue.

It is important to note that 7, the number of tuples that can reside in the Triage
Queue without violating this invariant, decreases linearly throughout each time win-
dow. One could imagine using a fixed queue length to satisfy the invariant, but
doing so would require a queue length of the minimum value of n over the entire
window. In other words, using a fixed-length queue causes the system to triage
tuples unnecessarily. In keeping with my philosophy of using approximation as a
fallback mechanism, my scheduler avoids triaging tuples for as long as possible by
continuously varying the number of tuples from the window that are permitted to
reside in the Triage Queue. Figure 4.3 illustrates this variation in effective queue
length.
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Figure 4.3: The effective length of the Triage Queue for tuples belonging to a 5-second
time window, as a function of offset into the window. The delay constraint is 2 seconds,
and Cgj,p40, is 1 second.

4.5 General Sliding Windows

The previous sections have described my implementation of the Triage Scheduler
as it applies to nonoverlapping, or “hopping,” time windows. Extending this work
to multiple queries with general sliding windows is straightforward.

Briefly, the framework described in this chapter can accommodate arbitrary
combinations of TelegraphCQ window clauses with the following changes:

e Use the method described in [55] to convert overlapping time windows to a
repeating sequence of nonoverlapping windows.

e Compute delay constraints for each of the nonoverlapping windows by deter-
mining the query delay constraints that apply at a given point in the sequence.

e When constructing shadow queries, use user-defined aggregates to merge sum-
maries from adjacent windows as needed.

In the remainder of this section, I explain these steps in greater detail.
4.5.1 Converting overlapping windows
The main challenge in supporting general sliding windows is that the windows

can overlap. In particular, a tuple could belong to any number of time windows.
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If a tuple can be a member of n windows, the system should to avoid adding the
tuple to n summaries.

Krishnamurthy ef al. have developed a general method of converting any com-
bination of overlapping window specifications into a sequence of nonoverlapping
time windows [58]. The idea behind this approach is to create a new nonoverlap-
ping window whenever one of the overlapping windows advances. The transfor-
mation produces a repeating sequence of overlapping windows of varying widths.
The Triage Scheduler produces a summary for each of these nonoverlapping win-
dows.

4.5.2 Computing delay constraints

Once the original set of sliding windows has been converted into a sequence of
nonoverlapping windows, the system assigns a separate delay constraint to each
window in the sequence. To compute the delay constraint for a given nonover-
lapping window, the system starts by computing the result delivery deadline for
every sliding window that contains the nonoverlapping window. The delay con-
straint is set to the time from the end of the nonoverlapping window to the earliest
such deadline.

This approach guarantees that the Triage Scheduler will not triage a tuple un-
less at least one query requires triage in order to meet its delay constraint. At the
same time, the approach is somewhat conservative in that not every query may
require that a given tuple be triaged. If there is a large difference in delay tolerance
among queries, the system can divide the queries into clusters and create multiple
“copies” of the input stream, one for each cluster. This approach is similar to the
clustering technique used by Krishnamurthy et al.[59].

4.5.3 Using aggregates to merge summaries

Once the system has converted a sliding window to a set of nonoverlapping
windows, it needs an efficient way to merge sets of adjacent nonoverlapping win-
dows into a single sliding window. To perform this merging, I create a user-
defined aggregate function that computes the approximate UNION ALL of a set of
summaries:

create aggregate Summary_agg(
sfunc = union_all,
basetype = Summary,
stype = Summary

);
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I can now write a subquery that fetches a “custom” summary of the dropped
tuples in a particular window. For ease of exposition, I present this subquery as a
view:

—— Where <fraction in window> and
—— <window number> are SQL expressions.
create view R_triaged_windowed as
select
Summary_agg( R.summary ) as summary
from __triaged R [ original window spec]

Provisioning Data Triage

Data Triage uses approximate query processing as a fallback mechanism for isolat-
ing a streaming query processor from high-speed bursts of data. The effectiveness
of this approach of course depends on the summary implementation being faster
than the general-purpose query processor.

In particular, one would like to know:

o If the approximation method in Data Triage’s shadow query performs at a given
level, what will be the maximum throughput of the entire system?

e How quickly can different query approximation methods process data?

In this section, I address both of these questions. I start with a theoretical analy-
sis of approximate query processing performance as it applies to Data Triage, then
I apply my theory to a microbenchmark study of several approximation method-
ologies. As in previous sections, my analysis assumes that the time windows in
the user’s query are hopping windows.

4.6.1 Data Triage and System Capacity

Data Triage operates in two regimes: Up to a certain data rate Reysct, the system
can perform exact query processing, sending all tuples through the main query.
Above Reyqet, Data Triage must resort to approximation to handle data rates up to
a maximum of R

As in Section 4.4, I characterize the CPU cost of a summarization/approxima-
tion scheme by two parameters, Cgj4000 and Csyp. I assume for ease of exposition
that these parameters are constants; similar conclusions can be reached by treating
Cshadow and Csyy as random variables.

In the sections that follow, I derive the relationship between the summarization
parameters, Cgpdon and Csum, and the system capacity parameters, Rexact and R pegg.-




4.6 Provisioning Data Triage

4.6.1.1 Cypion

Cshadow represents the CPU cost incurred by sending a summary through the
shadow query.

The maximum possible value of Ry, is ﬁ, the rate at which the main query

can consume tuples. If the user’s query involves hopping windows of length W
and it takes Cgy; to process a tuple in the main query, then the number of tuples
that the main query can process in a single window is

W — Cshudow

4.6
Crul *.6)

Time spent processing the shadow query reduces R4 by a factor of 1 — %
Additionally, since the system cannot send a summary to the shadow query until
the end of a time window, Cgj,4,,, serves as a lower bound on the delay constraint.

In summary, Cgyu40, cOnstrains the query parameters D and W. In order for
Data Triage to work effectively, the value of Cgj,40, Needs to be less than the delay
constraint D and small relative to the window size W.

4-6-2 Csum

Csum represents the incremental CPU cost of adding a single tuple to a sum-
mary. In contrast to Cspadow, Csum is a per-tuple cost. The value of Csyp limits Rpear,
the maximum instantaneous rate at which tuples can enter the system.

The system must be able to summarize incoming tuples quickly enough to meet
its delay constraint. The Triage Queue can contain tuples from up to L%J +1
windows at once, and the number of tuples from each window that can reside in

1 tuples

the Triage Queue decreases at a rate of CrulS€C

handle a sustained load of R without dropping any tuples, the peak sustainable

rate is:
Cshad 1 W 1
R = (1 — —Shadow — — 1 4.7
peak ( 4 ) (Csum (LDJ " ) Cfull) @n

Note that, if Csppgon < W and Csum < Cryypy, then Rpeqx ~ ﬁ

. Since the system must be able to
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As the previous sections showed, the ability of Data Triage to handle tight delay
constraints and high data rates depends on the performance of the query approx-
imation technique in use. The Cs;;;, parameter affects the rate at which the system
can triage excess tuples, while the Cy,;; parameter affects the minimum window
size and delay constraints that the system can support, as well as having a sec-
ondary effect the maximum data rate. This section describes a microbenchmark
study that measures the value of these two parameters on prototype implementa-
tions of several query approximation techniques. The goal of this study is to deter-
mine whether these approximation schemes have sufficiently high performance to
support a useful Data Triage implementation on TelegraphCQ.

I have implemented several summary types within the framework I described
in Section 3.2.1:

e Multidimensional histograms with a fixed grid of buckets
e MHIST multidimensional histograms [57]
e Wavelet-based histograms [66]

e Reservoir sampling [106]

All of the approximation schemes I studied allow the user to adjust the trade-
off between speed and accuracy by changing a summary granularity parameter. For
example, reservoir sampling uses a sample size parameter, and wavelet-based his-
tograms keep a fixed number of wavelet coefficients.

I conducted a microbenchmark study to determine the relationship between
summary granularity and the parameters Cs,;,;, and Cgppg0 for my implementa-
tions.

4.7.1 Measuring Cg

My first experiment measured Cs,,, the CPU cost of inserting a tuple into each
of the data structures. The experiment inserted randomly-generated two-column
tuples into the summaries. I measured the insertion cost across a range of sum-
mary granularities.

Figure 4.4 shows the results of this experiment; note the logarithmic scale on
the Y axis. The X axis represents summary granularity, measured by the number
of histogram buckets, wavelet coefficients, or sampled tuples.

The insertion cost for reservoir sampling was very low compared with the
others, though it did increase somewhat at larger sample sizes, probably due to
caching effects. Fixed-grid histograms provided low insertion times across a wide
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Figure 4.4: The CPU cost of inserting a tuple into the four types of summary we imple-
mented. The X axis represents the granularity of the summary data structure.

variety of data structure sizes. The insertion operation on such a histogram is a
simple index into an array, and cache effects were not significant at the summary
sizes I examined. The insertion cost for wavelet-based histograms increased some-
what with summary size, primarily due to the cost of sorting to find the largest
wavelet coefficients. This increase was only a factor of 2 across the entire range of
wavelet sizes.

MHISTs exhibited a relatively high insertion cost that became progressively
worse as the number of buckets was increased. For more than a few hundred
buckets, inserting tuples into my MHIST implementation would be slower than
sending these tuples through a full query processor. The high insertion cost of my
implementation stems mostly from the lack of an efficient data structure for map-
ping tuples to the appropriate MHIST buckets. Using a kd-tree [10] to map tuples
to buckets would rectify this problem. Even with this optimization, my MHIST
implementation would still have a higher insertion cost than the other summaries,
as evidenced by the leftmost point on the curve.

45



Chapter 4: Policy

g 20 0
AN

S 1sf 5
5 5 &
£ T
% = d\f\'\S\og\.am
O as€
O 5
@ Fixed-Grid Histogram
O

0 20000 40000 60000 80000

Summary Size (buckets/coeffs/samples)

Figure 4.5: The time required to compute a single window of a shadow query using four
kinds of summary data structure. The X axis represents the granularity of the summaries;
the Y axis represents execution time.
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4.7.2 Measuring Cgjudow

My second experiment measured the value of the Cyj,4,,, constant as a function
of summary granularity. The experiment measured the cost of performing the
shadow query for a query involving a stream-table equijoin.

Figure 4.5 shows the results of this experiment. The cost of the join was sen-
sitive to summary size for all summaries studied. The join costs of the four sum-
mary types were separated by significant constant factors, with MHISTs taking the
longest, followed by reservoir samples, wavelet-based histograms, and fixed-grid
histograms.

Again, MHISTs were significantly slower than the other histogram-based sum-
maries. In this case, the discrepancy was due to MHIST buckets not being aligned
with each other along the join dimension. This misalignment meant that each
bucket joined with several other buckets and produced a large number of result
buckets.

I also conducted a version of this experiment in which I varied the number of
tuples inserted into the summaries. Beyond 100 tuples, the cost of the shadow
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query was insensitive to the number of tuples.
4.7.2.1 Discussion

My evaluation of the four approximation schemes I have implemented shows
that three of them can summarize tuples fast enough to be useful for Data Triage.
On the machine used in this experiment, Cyy;, the time to process a tuple in a
conventional query, typically ranges from 1 x 10~% to 1 x 1073 seconds, depending
on query complexity. The compression functions for the three summary types can
consume tuples considerably faster, with Cs,;, values of approximately 1 x 10~°
for fixed-grid or wavelet-based histograms and 1 x 107® for samples. I expect
these times would drop significantly on a production implementation.

My shadow query microbenchmark shows that simple fixed-grid histograms
have very small values of Cgj,40,, €Ven at very fine summary granularities. Even
accounting for their relatively inefficient partitioning function, these simple his-
tograms should work better than the other summary types studied for queries with
short time windows or tight delay constraints. For window sizes of 10 seconds or
more, the sampling and wavelet-based histogram techniques should provide ac-
ceptable performance.

End-To-End Experimental Evaluation

The microbenchmark study in the preceding section examined the performance
of the summarization and approximate query processing components of my Data
Triage implementation. The results of this study showed that Data Triage has the
potential to provide significant improvements in system capacity while meeting
tight delay constraints. In this section, I present an end-to-end experimental study
that verifies that my full Data Triage implementation can live up to this potential
in a realistic environment.

I used a 105-MB trace of the traffic to and from the HTTP server www.1bl.gov
as the input to my experiments. The query used in the experiments was a variant
of the example query from the previous chapter. The current implementation of
band joins in TelegraphCQ is inefficient, so I modified the query to be an equijoin
on the most significant 16 bits of the IP address and created multiple lookup table
entries for each subnet:

select count(x), ts

from Packets P [range '10_seconds’ slide '10_seconds’],
Whois W

where P.src_addr_pfx = W.addr_pfx

limit delay to ...
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Figure 4.6: A comparison of query result latency with and without Data Triage on with the
system provisioned for the 90th percentile of load. The data stream was a timing-accurate
trace of a web server. Each line is the average of 10 runs of the experiment.

I ran my experiments on a server with two 1.4 GHz Pentium III CPUs and 1.5
GB of main memory. To simulate using a less powerful embedded CPU, I wrote a
program that would “play back” the trace at a multiple of its original speed and
decreased the delay constraint and window size of the query accordingly. I used
reservoir samples as the approximation method for this experiment. I adjusted the
trace playback rate to 10 times the original rate. At this data rate, my system was
provisioned for the 90th percentile of packet arrival rates in my trace.

4.8.1 Query Result Latency

For my first experiment, I ran the query both with and without Data Triage
and measured the latency of query results. I computed latency by measuring the
time at which the system output the result for each window and subtracting the
window’s last timestamp from this figure. I repeated the experiment 10 times and
recorded the average latency for each time window.

Figure 4.6 shows a graph of query result latency during the first 500 seconds
of the trace. The the line marked “Without Data Triage” shows the latency of the
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Figure 4.7: A comparison of query result accuracy using the same experimental setup as
in Figure 4.6 and a 2-second delay constraint. Data Triage outperformed the other two
load-shedding methods tested. Each line is the average of 10 runs of the experiment.

query on an unmodified version of TelegraphCQ. The other lines show the latency
of TelegraphCQ with Data Triage and delay constraints of 10, 5, and 2 seconds,
respectively.

Approximately 180 seconds into the trace, a 50-second burst exceeds the query
processor’s capacity. Without Data Triage, the unmodified version of TelegraphCQ
falls steadily behind the trace and does not catch up until 90 seconds after the end
of the burst.

With Data Triage enabled, the Triage Scheduler shunts excess tuples to the
shadow query as needed to satisfy the delay constraint. As the graph shows, the
system triages just enough tuples to avoid violating the constraint, performing full
processing on as much of the input data as possible.

4.8.2 Query Result Accuracy

My second experiment examined how well Data Triage does at keeping ap-
proximation error in check in the presence of bursty data rates. The experiment
compared the Data Triage approach against two alternate methods of handling
bursty streams. The metric that I used for comparison was the amount of approxi-
mation error in the query results. I measured result error within each time window
using a root-mean-squared error metric. That is, I defined the error for time win-
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dow w as:

Ew = \/ Lgegroups (actual(g) — reported(g))” (4.8)

|groups|
where groups is the set of groups in the query’s output for a given time window.

Using this error metric and the same query and experimental setup as the pre-
vious experiment, I measured the result error of three load-shedding methods:

e Data Triage as described in this chapter

e Drop Excess Tuples: When the delay constraint is about to be violated, drop
the remaining tuples in the window.

e Summarize All: Generate summaries of all tuples and perform approximate
query processing on the summaries.

I used a reservoir sample as the summary type for both Data Triage and the
Summarize All technique. I tuned the reservoir size to the delay constraint and the
maximum data rate in the trace.

Figure 4.7 shows the results for the first 500 seconds of this experiment.
Throughout the trace, Data Triage provides more accurate results than either
of the other methods. During the bursts in windows 0 and 18-21, Data Triage
processes as many tuples as possible before resorting to approximation. The Drop
Excess Tuples method, on the other hand, generates query results that are missing
significant chunks of the data. Likewise, the Summarize All method drops tuples
that could have been processed fully.

During the periods in between bursts, both Data Triage and the Drop Excess
Tuples method processed all tuples in each window, producing no error. The error
for Summarize All also decreased somewhat during these lulls, as the reservoir
sample covered a larger portion of the data in the window.



Chapter 5

Histograms for IP Address Data

51



Chapter 5: Histograms for IP Address Data

5.1

52

Introduction

Data Triage relies on extensive previous work in query approximation to provide a
fast but approximate way of generating query answers. My architecture treats the
approximation method as a “black box” consisting of a summarizer and a set of op-
erators. This approach allows the system to use different approximation schemes
for different queries, which is important because different schemes work better for
different queries.

In the process of implementing and testing Data Triage, I discovered an im-
portant class of queries on which existing approximation techniques provide poor
approximations. These queries involve joining streams of unique identifiers like IP
addresses with tables of metadata about the objects to which those identifiers refer,
then aggregating according to the metadata. The general form of such a query is:

select G.Groupld, AGG(...)

from  UIDStream U [range ... slide ...],
GroupTable G

where G.uid = U.uid

group by G.Groupld;

where AGG is an aggregate.

This class of query has many important uses in the network monitoring do-
main, such as:

e Producing a breakdown of network traffic by administrative domain.

e Comparing present traffic patterns against clusters identified in an offline anal-
ysis.

e Geocoding IP addresses to produce a graph of physical location.

In my early experiments, I tried several existing techniques for approximat-
ing this class of queries, and the results were disappointing. Techniques based
on sampling resulted in high approximation error for groups represented by few
tuples. Histogram-based techniques tended to group together ranges of the IP ad-
dress space corresponding to different entries in the lookup table, again resulting
in large errors.

Since Data Triage needs an effective approximation technique to be able to
cover this class of queries, I have developed novel histogram-based techniques
for approximating these queries. My histograms exploit the inherent hierarchical
structure of the IP address space and and other unique identifier spaces to produce
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a compact representation of a set of identifiers that can be joined with a lookup ta-
ble.

Although I developed them for network monitoring in a system with Data
Triage, these histograms have additional uses in several other contexts. The class
of query that these histograms target arises in a number of different monitoring
scenarios, ranging from supply chain monitoring to military intelligence. In these
applications, a monitoring station receives a stream of unique identifiers, such as
UPC symbols or credit card numbers. The monitor uses one or more lookup tables
to map the identifiers to information about the objects they identify, then produces
periodic reports that break down the stream in terms of this information.

Like the IP address space, many of these unique identifiers have an inherent
hierarchical structure, for reasons similar to those outlined in Section 5.2 of this
chapter. Many types of identifier are assigned in batches, and there are often ad-
ditional technical reasons (Efficient postal routing with zip codes and validation
of credit card numbers are two examples.) for enforcing a hierarchy. Unlike the
IP address hierarchy, these other hierarchies are generally not binary hierarchies.
However, as I explain in Section 5.5.1, my algorithms extend to arbitrary hierar-
chies in a straightforward manner.

My histograms can be especially helpful in cases where the stream of
unique identifiers and the lookup tables are at different locations, separated by
low-bandwidth links. A histogram of a time window of the stream serves as a
compressed representation of the information in that time window.

This chapter starts by explaining the origins and basic structure of the IP ad-
dress hierarchy. I then explain how my histograms work and give a formal prob-
lem definition. Then I present efficient algorithms for precomputing a histogram
partitioning function given a lookup table and an estimate of the stream’s data dis-
tribution. Finally, I present an experimental evaluation of my techniques on real
network data.
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Figure 5.1: Diagram of the IP address hierarchy in the vicinity of my workstation. Ad-
dress range sizes are not to scale.

5.2 The IP Address Hierarchy

At first glance, an IP address appears to be a random string of bits. On closer
examination, however, there turns out to be a strong hierarchical structure in most
of the IP address space.

Figure 5.1 shows the IP address space in the vicinity of my workstation,
q.cs.berkeley.edu. I gleaned the information in the diagram from tables on the
web site of U.C. Berkeley’s Communication and Network Services division. The
IP addresses in the diagram are divided into nested ranges that show a strong
correlation with physical locations (e.g. fourth floor of Soda Hall), administrative
domains (e.g. Computer Science Division), and logical location (e.g. inside the
U.C. Berkeley campus network).

This hierarchy and its correlation with physical, administrative, and logical lo-
cation arise due to several administrative and technical factors:

e Administrative Factors: The Internet Assigned Numbers Authority (IANA) [7]
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controls the allocation of IP addresses throughout the Internet. IANA allocates
IP address prefixes according to the Classless Interdomain Routing (CIDR) stan-
dard [35]. An address prefix consists of all the IP addresses that share a given
number of their most significant bits. For example, the prefix 128.32.0.0/16
represents all addresses that share their most significant 16 bits with the address
128.32.0.0; that is, the range from 128.32.0.0 to 128.32.255.255, inclusive.

IANA generally assigns large IP address prefixes to Internet Service Providers
and other large organizations. These organizations in turn allocate sub-prefixes
to customers or suborganizations, who may further subdivide their address
blocks, and so on. As a result, most of the I address space can be divided
into nested blocks that correspond closely to customer-provider relationships.

Technical Factors: The CIDR prefixes themselves exist because they greatly
simplify the design of Internet routers. The Border Gateway Protocol (BGP)
routers that route most Internet backbone traffic use routing tables that map
prefixes of the IP address space to routing destinations. The destination ad-
dress in a packet is routed to the destination that shares the longest possible
address prefix [85]. This design allows routers to truncate routing tables by re-
moving longer prefixes, as well as allowing for efficient hardware acceleration

[73, 55, 105].

As a side effect, longest-prefix-match routing creates a strong incentive for net-
work administrators to make the physical and logical structure of their net-
works correlate closely with a tree of nested IP address prefixes. If all the com-
puters on a local network share the same IP address prefix, then routers will
need only one routing table entry to find the most efficient route to those com-
puters. This correlation keeps routing tables compact and helps ensure that
routers will choose the most efficient route for a given packet.
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Figure 5.2: A 3-level binary hierarchy of unique identifiers.

5.3 Problem Definition

The remainder of this chapter describes algorithms for choosing optimal histogram
partitioning functions over a general hierarchical unique identifier space. I start
with a description of the theoretical problem that I solve in the rest of the chapter.
First, I specify the classes of partitioning function that my algorithms generate.
Then I describe the criteria that I use to rank partitioning functions.

My partitioning functions operate over streams of unique identifiers (UIDs).
These unique identifiers form the leaves of a hierarchy, which I call the UID hi-
erarchy. Figure 5.2 illustrates a simple binary UID hierarchy. My work handles
arbitrary hierarchies, as I show in Section 5.5.1, but I limit my discussion here to
binary hierarchies for ease of exposition.

As Figure 5.2 shows, certain nodes within the UID hierarchy will have special
significance in my discussion:

e Group nodes (shown as squares in Figure 5.2) define the groups within the user’s
GROUP BY query. In particular, each group node resides at the top of a subtree
of the hierarchy. The UIDs at the leaves of this subtree are the members of the
group. In my problem definition, these subtrees cannot overlap.

o Bucket nodes (large circles in Figure 5.2) define the partitions of my partitioning
functions. During query execution, each of these partitions defines a bucket of
a histogram. The semantics of the bucket nodes vary for different classes of
partitioning functions, as I discuss in the next section.

In a nutshell, my goal is to approximate many squares using just a few circles; that
is, to estimate aggregates at the group nodes by instead computing aggregates for
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Figure 5.3: A partitioning function consisting of nonoverlapping subtrees. The roots of
the subtrees form a cut of the main tree. In this example, the UID 010 is in Partition 2.

a carefully-chosen (and much smaller) collection of bucket nodes.
5.3.1 Classes of Partitioning Functions

The goal of my algorithms is to choose optimal histogram partitioning func-
tions. I represent my partitioning functions with sets of bucket nodes within the
hierarchy. I have studied three different ways of interpreting a set of bucket nodes:
Nonoverlapping, Overlapping, and Longest-Prefix-Match. The sections that follow de-
fine the specifics of each of these interpretations.

5.3.1.1 Nonoverlapping Partitioning Functions

My simplest class of partitioning functions is for nonoverlapping partitionings.
A nonoverlapping partitioning function divides the UID hierarchy into disjoint
subtrees, as illustrated by Figure 5.3. I call the hierarchy nodes at the roots of these
subtrees the bucket nodes. Note that the bucket nodes form a cut of the hierarchy.
Each unique identifier maps to the bucket of its ancestor bucket node. For example,
in Figure 5.3, the UID 010 maps to Partition 2.

Nonoverlapping partitioning functions have the advantage that they are easy
to compute. In Section 5.4.2.2, I will present a very efficient algorithm to com-
pute the optimal nonoverlapping partitioning function for a variety of error met-
rics. Compared with my other types of partitioning functions, nonoverlapping
partitioning functions produce somewhat inferior histograms in my experiments.
However, the speed with which these functions can be chosen makes them an at-
tractive choice for lookup tables that change frequently.
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Figure 5.4: An overlapping partitioning function. Each unique identifier maps to the
buckets of all bucket nodes above it in the hierarchy. In this example, the UID 010 is in
Partitions 1, 2, and 3.
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5.3.1.2 Overlapping Partitioning Functions

The second class of functions I consider is the class of overlapping partitioning
functions. Figure 5.4 shows an example of this kind of function. Like a nonover-
lapping function, an overlapping partitioning function divides the UID hierarchy
into subtrees. However, the subtrees in an overlapping partitioning function may
overlap. As before, the root of each subtree is called a bucket node. In this case,
“partitioning function” is something of a misnomer, since a unique identifier maps
to the “partitions” of all the bucket nodes between it and the root. In the example
illustrated in the diagram, the UID 010 maps to Partitions 1, 2, and 3.

Overlapping partitioning functions provide a strictly larger solution space than
nonoverlapping functions. I have adapted my dynamic programming algorithm
for nonoverlapping partitioning functions to the space of overlapping functions.
The worst-case running time of the new algorithm is larger by a logarithmic factor,
due to the larger size of the solution space. This increase in running time is off-
set by a decrease in error. In my experiments, overlapping partitioning functions
produce histograms that more efficiently represent network traffic data, compared
with existing techniques.
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Figure 5.5: A longest-prefix-match partitioning function over a 3-level hierarchy. The
highlighted nodes are called bucket nodes. Each leaf node maps to its closest ancestor’s
bucket. In this example, node 010 is in Partition 1.

Figure 5.6: A more complex longest-prefix-match partitioning function, showing some of
the ways that partitions can nest.

5.3.1.3 Longest-Prefix-Match Partitioning Functions

My final class of partitioning functions is called the longest-prefix-match parti-
tioning functions. A longest-prefix-match partitioning function uses bucket nodes
to define partition subtrees, as with an overlapping partitioning function. How-
ever, in the longest-prefix-match case, each UID maps only to the partition of its
closest ancestor bucket node (selected in the histogram). Figure 5.5 illustrates a
simple longest-prefix-match function. In this example, UID 010 maps to Parti-
tion 1 only. Figure 5.6 illustrates a more complex longest-prefix-match partitioning
function. As the figure shows, partitions can be arbitrarily nested, and a given
partition can have multiple “holes”.

Longest-prefix-match functions are inspired by the routing tables for
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inter-domain routers on the Internet. As noted earlier in this chapter, these
routing tables map prefixes of the IP address space to destinations, and each
address is routed to the destination of the longest prefix that matches it. This
routing algorithm not only reflects the inherent structure of Internet addresses,
it reinforces this structure by making it efficient for an administrator to group
similar hosts under a single prefix.

Longest-prefix-match partitioning has the potential to produce histograms
that give very compact and accurate representations of network traffic. However,
choosing an optimal longest-prefix-match partitioning function turns out to be
a difficult problem. I propose an algorithm that explores a limited subset of
longest-prefix-match partitionings and requires at least cubic time (while offering
certain approximation guarantees for the resulting histogram), as well as two
sub-quadratic heuristics that can scale to large data sets. In my experiments,
longest-prefix-match partitioning functions created with these heuristics produce
better histograms in practice than optimal partitioning functions from the other
classes.

5.3.2 Measuring Optimality

Having described the classes of partitioning functions that my algorithms pro-
duce, I can now present the metric I use to measure the relative “goodness” of
different partitioning functions.

5.3.2.1 The Query

The introduction to this chapter gave a general description the type of query
that can be approximated with my histograms. To simplify my formal problem
definitions, the theoretical analysis in this chapter uses a slightly constrained ver-
sion of this query:

select G.gid, count(x)

from  UIDStream U [sliding window],
GroupHierarchy G

where G.uid = U.uid
— — GroupHierarchy places all UIDs below
—— a group node in the same group.

group by G.node;

As in the introduction, this query joins UIDStream, a stream of unique identifiers,
with a lookup table, Group—Hierarchy, and then performs aggregation. However,
the table Group—Hierarchy in the above query explicitly refers to the nodes of the hi-
erarchy. In this chapter, I focus on groups that consist of non-overlapping subtrees
of the UID hierarchy. I call the root of each such subtree a group node. Note that,
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since the subtrees cannot overlap, no group node can be an ancestor of another
group node. Also for ease of exposition, the aggregate in this query is a COUNT
aggregate; the extension of my work to other SQL aggregates is straightforward.

5.3.2.2 The Query Approximation

My algorithms generate partitioning functions for the purposes of approximat-
ing a query like the one in the previous section. The input of this approximation
scheme is a window’s worth of tuples from the UIDStream stream. The Summa-
rizer component of Data Triage (See Section 6.3) uses the partitioning function to
partition the UIDs in the window into histogram buckets, and the system keeps a
count for each bucket. Within each bucket, the approximation algorithm assumes
that the counts are uniformly distributed among the groups that map to the bucket.
This uniformity assumption is a common feature of most histogram-based query
approximations [81] and leads to an estimated count for each group. For overlap-
ping partitioning functions, only the closest enclosing bucket is used to estimate
the count for each group.

5.3.2.3 The Error Metric

The query approximation in the previous section produces an estimated count
for each group in the original query. There are many ways to quantify the effec-
tiveness of such an approximate answer, and different metrics are appropriate to
different applications. My algorithms work for a general class of error metrics that
I call distributive error metrics.

A distributive error metric is a distributive aggregate [41] < start, @, finalize >,
where:

e start is a function on groups that converts the actual and estimated counts for
a group into a “partial state record” (PSR);

e & is a commutative and associative operator that merges the two PSRs; and,
e finalize is a function that converts a PSR into a numeric error.

In addition to being distributive, the aggregate that defines a distributive error
metric must also satisfy the following “monotonicity” properties for any PSRs A,
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B, and C!:
finalize (B) > finalize (C) — finalize (A @ B) > finalize (A& C) (5.1)
finalize (B) = finalize (C) — finalize (A & B) = finalize (A& C) (5.2)

As an example, consider the common average error metric:

Yocc |g-actual — g.approx|
G|

where G is the set of groups in the query result. Average error can be defined as:

Error = (5.3)

start (¢§) = (|g.actual — g.approx|,1) (5.4)
(s1,01) D (s2,c2) = (s1+s2,¢1+C2) (5.5)
finalize ((s,c)) = ; (5.6)

Note that this metric uses an intermediate representation of (sum, count) while
summing across buckets. A distributive error metric can use any fixed number of
counters in a PSR.

In addition to the average error metric defined above, many other useful mea-
sures of approximation error can be expressed as distributive error metrics. Some
examples include:

e RMS error:
.actual — g.approx)?
Error \/ Yeec (8 = g-approx) 5.7)
e Average relative error:
Yo |g.actual—g.approx|
Error — 8 max(g.actual,b) (5.8)

Gl

where b is a constant to prevent division by zero (typically chosen as a low-
percentile actual value from historical data [37]).

e Maximum relative error:

Error — maxg.c (|g.actual - g.approx]) (5.9)

max(g.actual, b)

I examine all four of these error metrics in my experiments.

IThese properties ensure that the principle of local optimality needed by my dynamic programs holds. Intuitively, the
properties mean that error increases monotonically as a solution is constructed from subtrees of the hierarchy; hence the name
“monotonicity”.
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5.4 Algorithms

Having defined the histogram construction problems I solve in this chapter, I now
present dynamic programming algorithms for solving them. Section 5.4.1 gives
a high-level description of my general dynamic programming approach. Then,
Section 5.4.2 gives specific recurrences for choosing partitioning functions.

5.4.1 High-Level Description

My algorithms perform dynamic programming over the UID hierarchy. In the
context of the Data Triage architecture, these algorithms would be run periodically
to update the histogram partitioning function used by the Summarizer component
in response to changes in the lookup table or the distribution of IP addresses in the
stream.

I expect that the number of groups, |G|, will be very large. To keep the running
time for each batch tractable, I focus on making my algorithms efficient in terms of
G-

For ease of exposition, I will assume for the time being that the hierarchy is a
binary tree; later on, I will relax this assumption. For convenience, I number the
nodes of the hierarchy 1 through 1, such that the children of the node with index i
are nodes 2i and 2i + 1. Node 1 is the root.

The general structure of all my algorithms is to traverse the hierarchy bottom-
up, building a dynamic programming table E. Each entry in E will hold the small-
est error for the subtree rooted at node i, given that B nodes in that subtree are
bucket nodes. (In some of my algorithms, there will be additional parameters be-
yond i and B, increasing the complexity of the dynamic program.) I also annotate
each entry E with the set of bucket nodes that produce the chosen solution. In the
end, my algorithms will look for the solution that produces the least error at the
root (for any number of buckets < b, the specified space budget for the histogram).

5.4.2 Recurrences

For each type of partitioning function, I will introduce a recurrence relation (or
“recurrence”) that defines the relationship between entries of the table E. In this
section, I present the recurrence relations that allow us to find optimal partitioning
functions using the algorithm in the previous section. I start by describing the
notation I use in my equations.

5.4.2.1 Notation

Table 5.1 summarizes the variable names I use to define my recurrences. For
ease of exposition, I also use the following shorthand in my equations:

e If A and B are PSRs, I say that A < Bif finalize (A) < finalize (B).
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Variable Description

u

The universe of unique identifiers.

H The UID hierarchy, a set of nodes hy, hy, ..., h,. I order nodes such that
the children of h; are hy; and hy; 1.

G The group nodes; a subset of H.

b The given budget of histogram buckets.

start The starting function of the error aggregate (see Section 5.3.2.3).

&) The function that merges error PSRs (Section 5.3.2.3).

finalize The function that converts the intermediate error PSRs to a numeric
error value (Section 5.3.2.3).

grperr (i) The result of applying start and @ to the groups below h; (see Sec-

tion 5.4.2).
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Table 5.1: Variable names used in the equations in this chapter.

e For any set of group nodes G = {g1,---, 4k}, grperr(G) denotes the result of
applying the starting and transition functions of the error aggregate to G:

grperr (G) = start (g1) @ start (g2) @ - - - @ start (gx) (5.10)

5.4.2.2 Nonoverlapping Partitioning Functions

Recall from Figure 5.3 that a nonoverlapping partitioning function consists of
a set of nodes that form a cut of the UID hierarchy. Each node in the cut maps the
UIDs in its child subtrees to a single histogram bucket.

Let E[i, B] denote the minimum total error possible using B nodes to bucketize
the subtree rooted at h; (the ith node in the hierarchy). Then:

Eli, B] = grperr (i) if B=1, (5.11)
"7 | ming<c<p (E[2i,¢c] ®E[2i +1,B —c]) otherwise '

where @ represents the appropriate operation for merging errors for the error

measure and grperr (i) denotes the result of applying the start and & components
of the error metric to the groups below ;.

Intuitively, this recurrence consists of a base case (B = 1) and a recursive case
(B > 1). In the base case, the only possible solution is to make node node i a bucket
node. For the recursive case, the algorithm considers all possible ways of dividing
the current bucket budget B among the left and right subtrees of i;, and simply
selects the one resulting in the smallest error.

Observe that the algorithm does not need to consider making any node below
a group node into a bucket node. So the algorithm only needs to compute entries
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of E for nodes that are either group nodes or their ancestors. The number of such
nodes is O(|G|), where G is the set of group nodes. Not counting the computation
of grperr, the algorithm does at most O(b?) work for each node it touches (O(b)
work for each of O(b) table entries), where b is the number of buckets. A binary-
search optimization is possible for certain error metrics (e.g., maximum relative
error), resulting in a smaller per-node cost of O(blogb).

For RMS error, one can compute all the values of grperr (i) in O(|G|) amortized
time by taking advantage of the fact that the approximate value for a group is
simply the average of the actual values within, which can be computed by carrying
sums and counts of actual values up the tree. So my algorithm runs in O(|G|b?)
time overall for RMS error. For other error metrics, computing the values of grperr
takes O(|G|log|U|) amortized time (where U is the set of unique identifiers), so
the algorithm requires O(|G|(b? + log |U])) time.

5.4.2.3 Overlapping Partitioning Functions

In this section, I extend the recurrence of the previous section to generate over-
lapping partitioning functions, as illustrated in Figure 5.5. As the name suggests,
overlapping partitioning functions allow configurations of bucket nodes in which
one bucket node’s subtree overlaps another’s. To cover these cases of overlap, I
add a third parameter, j, to the table E from the previous section to create a table
E[i, B, j|. Parameter j represents the index of the closest ancestor of node i that has
been selected as a bucket node. I add the j parameter because the algorithm needs
to know about the enclosing partition to decide whether to make node i a bucket
node. In particular, if node i is not a bucket node, then the groups below node i in
the hierarchy will map to node j’s partition.

Similarly, I augment grperr with a second argument: grperr (i, j) computes the
error for the groups below node i when node j is the closest enclosing bucket node.
The new dynamic programming recurrence can be expressed as:

(grperr(i,j) ifB=0,
ming<e<s (E[2i,¢,i] ® E[2i +1,B —c —1,i])

E[i,B, ]| = ifB>1andi=j, (i is a bucket node) (5.12)
ming<.<p—1 (E[2i,¢c,j] ® E[2i+1,B—¢,j])
otherwise (i is not a bucket node)

Intuitively, the recurrence considers all the ways to divide a budget of B buckets
among node i and its left and right subtrees, given that the next bucket node up the
hierarchy is node j. For the cases in which node i is a bucket node, the recurrence
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conditions on node 7 being its children’s closest bucket node.

This algorithm computes O(|G|bh) table entries, where & is the height of the
tree, and each entry takes (at most) O(b) time to compute. Assuming that the UID
hierarchy forms a balanced tree, my algorithm will run in O(|G|b?log |U|) time.

5.4.2.4 Longest-Prefix-Match Partitioning Functions

Longest-prefix-match partitioning functions are similar to the overlapping par-
titioning functions that were discussed in the previous section. Both classes of
functions consist of a set of bucket nodes that define nested partitions. A longest-
prefix-match partitioning function, however, maps a given unique identifier to the
partition of its closest ancestor bucket node, as opposed to mapping the UID to
the partitions of all bucket nodes between it and the root. This difference in the
semantics of the bucket node set renders the optimal histogram construction prob-
lem significantly harder.

An algorithm that finds a longest-prefix-match partitioning function must de-
cide whether each node in the hierarchy is a bucket node. Intuitively, this choice
is hard to make because it must be made for every node at once. A given parti-
tion can have several (possibly nested) subpartitions that act as “holes”, removing
chunks of the UID space from the parent partition. Each combination of holes pro-
duces a different amount of error both within the holes themselves and also in the
parent partition.

For example, consider the example in Figure 5.7. Assume for the sake of argu-
ment that node A is a bucket node. Should node B also be a bucket node? This
decision depends on what other nodes below A are also bucket nodes. For ex-
ample, making node C a bucket node will remove C’s subtree from A’s partition.
This choice could change the error for the groups below B, making B a more or
less attractive candidate to also be a bucket node. At the same time, the decision
whether to make node C a bucket node depends on whether node B is a bucket
node. Indeed, the decision for each node in the subtree could depend on decisions
made at every other subtree node.

In the sections that follow, I describe an exact algorithm that explores a limited
subset of longest-prefix-match partitionings, by essentially restricting the number
of holes in each bucket to a small constant. The resulting algorithm can offer certain
approximation guarantees, but requires at least Q(n%) time. Since cubic running
times are essentially prohibitive for the scale of data sets I consider, I also develop
two sub-quadratic heuristics.

5.4.2.5 k-Holes Technique

One can reduce the longest-prefix-match problem’s search space by limiting the
number of holes per bucket to a constant k. This reduction yields a polynomial-
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B N
®

Figure 5.7: Illustration of the interdependence that makes choosing a longest-prefix-
match partitioning function difficult. The benefit of making node B a bucket node de-
pends on whether node A is a bucket node — and also on whether node C is a bucket
node.

Bucket Node New Bucket Node

\
@ [

“Holes”

Figure 5.8: Illustration of the process of splitting a partition with n “holes” into smaller
partitions, each of which has at most k holes, where k < n. In this example, a partition
with 3 holes is converted into two partitions, each with two holes.

time algorithm for finding longest-prefix-match partitioning functions.

Observe that, if k > 2, one can convert any longest-prefix-match partition with
m holes into the union of several k-hole partitions. Figure 5.9 illustrates how this
conversion process works for an example configuration. In the example, adding a
bucket node converts a partition with 3 holes into two partitions, each with 2 holes.
Given any set of b bucket nodes, one can apply this process recursively to all the
original partitions to produce a new set of partitions, each of which has at most k
holes. In general, this conversion adds at most Lk%lj additional bucket nodes to
the original solution.

Consider what happens if one applies this conversion to the optimal set of b
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bucket nodes. If the error metric satisfies the “super-additivity” property [70]:
Error(P;) + Error(P,) < Error(P; U P,) (5.13)

for any partitions P; and P,, the conversion will not increase the overall
error. (Note that several common error metrics, e.g.,, RMS error, are indeed
super-additive [70].) So, if the optimal b-partition solution has error E, there must

exist a k-hole solution with at most b(1 + L%j ) partitions and an error of at most
E.

I now give a polynomial-time dynamic programming algorithm that finds the
best longest-prefix-match partitioning function with k holes in each bucket. The
dynamic programming table for this algorithm is in the form:

El[i,B, ], H|

where i is the current hierarchy node, B is the number of partitions at or below
node i, j is the closest ancestor bucket node, and H = {hy,...,h;},l < k are the
holes in the node j’s partition.

To simplify the notation and avoid repeated computation, I use a second table
F [i, B] to tabulate the best error for the subtree rooted at i, given that node i is a
bucket node.

To handle base cases, I extend grperr with an a third parameter. grperr(i, j, H)
computes the error for the zero-bucket solution to the subtree rooted at i, given
that node j is a bucket node with the holes in H.

The recurrence for the k-holes case is similar to that of my overlapping-
partitions algorithm, with the addition of the second table F. I define this
recurrence in Figure 5.9. Intuitively, the first two cases of the recurrence for E are
base cases, and the remaining ones are recursive cases. The first base case prunes
solutions that consider impossible sets of holes. The second base case computes
the error when there are no bucket nodes (and, by extension, no elements of H)
below node i.

The first recursive case looks at all the ways that the bucket budget B could be
divided among the left and right subtrees of node i, given that node i is not a bucket
node. The second recursive case finds the best solution for i’s subtree in which
node i is a bucket node with B — 1 bucket nodes below it. Keeping the table F
avoids needing to recompute the second recursive case of E for every combination
of jand H.

The table E has O(b|G|*!log |U|) entries, and each entry takes O(b) time to
compute. Table F has O(b|G|) entries, and each entry takes O(b|G|*) time to com-
pute. The overall running time of the algorithm is O(b?|G|*"11log |G|).

Although the above algorithm runs in polynomial time for a given value of
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E[i,B, ], H] =
(00 if |H| >k
or |H Nsubtree(i)| > B
or 3hy,hy € H.hy € subtree(hy),
grperr(i,j,H) ifB=0,
ming<.<p (E[2i,¢,j, HH® E[2i+1,B —¢, j, H])
(i is not a bucket node)
F[i, B] (only if i € H)
(i is a bucket node)
\ ifB>1

F[i, B] = min

min

HCsubtree(i) E[2i,c,i,H)+E[2i+1,B—c—1,i,H]

0<c<B-1

Figure 5.9: The recurrence for the k-holes algorithm.

k, its running time (for k > 2) is at least cubic in the number of groups, making
it impractical for monitoring applications with thousands of groups. In the sec-
tions that follow, we describe two heuristics for finding good longest-prefix-match
partitioning functions in sub-quadratic time.

5.4.2.6 Greedy Heuristic

As noted earlier, choosing a longest-prefix-match partitioning function is hard
because the choice must be made for every node at once. One way around this
problem is to choose each bucket node independently of the effects of other bucket
nodes. Intuitively, making a node into a bucket node creates a hole in the partition
of the closest bucket node above it in the hierarchy. The best such holes tend to
contain groups whose counts are very different from the counts of the rest of the
groups in the parent bucket. So, if a node makes a good hole for a partition, it
is likely to still be a good hole after the contents of other good holes have been
removed from the partition.

My overlapping partitioning functions are defined such that adding a hole to
a partition has no effect on error for groups outside the hole. Consider the exam-
ple in Figure 5.7. For an overlapping partitioning function, the error for B’s sub-
tree only depends on what is the closest ancestor bucket node; making C a bucket
node does not change the contents of A’s overlapping partition. In other words,
overlapping partitioning functions explicitly codify the independence assumption
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in the previous paragraph. Assuming that this independence assumption holds,
the overlapping partitioning function algorithm in Section 5.4.2.3 will find bucket
nodes that are also good longest-prefix-match bucket nodes. Thus, my greedy al-
gorithm simply runs the overlapping algorithm and then selects the best b buckets
(in terms of bucket approximation error) from the overlapping solution. As my
experiments demonstrate, this turns out to be an effective heuristic for longest-
prefix-match partitionings.

5.4.2.7 Quantized Heuristic

My second heuristic for the longest-prefix-match case is a quantized version
of a pseudopolynomial algorithm. In this section, I start by describing a pseu-
dopolynomial dynamic programming algorithm for finding longest-prefix-match
partitioning functions. Then, I explain how to quantize the table entries in the
algorithm to make it run in polynomial time.

My pseudopolynomial algorithm wuses a dynamic programming table
E[i, B, g,t,d] where:

e iis the current node of the UID hierarchy;

B is the current bucket node budget;

g is the number of group nodes in the subtree rooted at node i;

t is the number of tuples whose UIDs are in the subtree rooted at node i; and,

d, the bucket density, is the ratio of tuples to groups in the smallest selected
ancestor bucket containing node 1.

The algorithm also requires a version of grperr that takes a subtree of groups and a
bucket density as arguments. This aggregate uses the density to estimate the count
of each group, then compares each of these estimated counts against the group’s
actual count.

One can compute E by using the recurrence in Figure 5.10. Intuitively, the den-
sity of the enclosing partition determines the benefit of making node i into a bucket
node. My recurrence chooses the best solution for each possible density value. In
this way, the recurrence accounts for every possible configuration of bucket nodes
in the rest of the hierarchy. The algorithm is polynomial with regard to the number
of values taken by each of the table indices 7, B, g, t, and d.

More precisely, the recurrence will find the optimal partitioning if the values
of ¢ and t range from O to the total number of groups and tuples, respectively;
with d taking on every possible value of gt,. The number of entries in the table

will be O(|G|>T?b), where T is the number of possible values for t. All the base
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E[i,B,g,td] =
(grperr(i,d) ifB=0
and g = number of group nodes below i
and t = number of tuples below i
00 ifB=0
and (f # number of tuples below i
or g # number of group nodes below i)
([E[2i,b,¢,t,d]
+E[2i+1,B—b,g—g,t—1,d]
(Node i is not a bucket node)

minb,g/,t/ E [Zi, b, g/, t/, d]
+E[2i+1,B-b—-1,9—¢,t—t,d
ifd =

\ (Node i is a bucket node)
if B>1

Figure 5.10: The recurrence for a pseudopolynomial algorithm for finding longest-prefix-
match partitioning.

cases can be computed in O(|G|?T) amortized time, but the recursive cases each
take O(|G|Tb) time. So, the overall running time of this algorithm is O(|G|*T?b?).
However, each combination of bucket nodes could potentially lead to distinct val-
ues of t T (the number of values of t) is therefore O(|G|?). Alternately, T is also
bounded by the total number of tuples in all the groups. Both of these bounds on T
make the pseudopolynomial algorithm intractable in practice; real-world lookup
tables can have thousands or millions of groups, and network links can receive
thousands of packets per second.

One can approximate the above algorithm by considering only quantized values
of the counters g, t and d. That is, round the values of each counter to the closest
of a set of k exponentially-distributed values (1 + ®). (Of course, k is logarithmic
in T, the number of values of t.) Recall that each entry of the dynamic program-
ming table is in the form E [i, B, g, t, d]. Since the quantized algorithm chooses from
among k values for each of ¢,t, and d, the algorithm generates O(k®b) table entries
for each node of the hierarchy. For each table entry, the quantized algorithm con-
siders each of k values for ¢’ and ' and therefore does O(k?b) work. The overall
running time for the quantized algorithm is O(k°|G|b?).
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Figure 5.11: Diagram of the technique to extend my algorithms to arbitrary hierarchies by
converting them to binary hierarchies. Each node of the binary hierarchy is labeled with
its children from the old hierarchy.

5.5 Refinements

72

Having defined my core algorithms for finding my three classes of partitioning
functions, I now present useful refinements to my techniques. The first of these re-
finements extends my algorithms to hierarchies with arbitrary fanout. The second
of these refinements focuses on choosing partitioning functions for approximat-
ing multidimensional GROUP BY queries. The third makes my algorithms efficient
when most groups have a count of zero. My final refinement greatly reduces the
space requirements of my algorithms. All of these techniques apply to all of the
algorithms presented thus far.

5.5.1 Extension to Arbitrary Hierarchies

Extending my algorithms to arbitrary hierarchies is straightforward. Conceptu-
ally, one can convert any hierarchy to a binary tree, using the technique illustrated
in Figure 5.11. As the diagram shows, the conversion labels each node in the binary
hierarchy with the set of child nodes from the original hierarchy that are below it.
One can then rewrite the dynamic programming formulations in terms of these
lists of nodes. For nonoverlapping buckets, the recurrence becomes:

E[{i},B] = E[{ji,--.,jn},Blif j1,..., ju were i’s children
grperr ({j1,...,jn}) if B=1,

. . . E[{j1, -/ jnj2t c]
E L, ,Bl = ming <, . .
[{]1 ]71} ] 1§ SB ( @E[{]n/2+1,...,]n},B—C]

otherwise

A similar transformation converts grperr (i) to grperr ({j1,...,jn}). The same
transformation also applies to the dynamic programming tables for the other algo-
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rithms.

The number of interior nodes in the graph is still O(|G|) after the transfor-
mation, so the transformation does not increase the order-of-magnitude running
time of the nonoverlapping buckets algorithm. For the overlapping and longest-
prefix-match algorithms, the longest path from the root to the leaves increases by
a multiplicative factor of O(log(fanout)), increasing “big-O” running times by a
factor of log?(fanout)).
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5.5.2 Extension to Multiple Dimensions

This chapter so far has dealt with queries over single-dimensional streams of
unique identifiers:

select G.Groupld, AGG(...)

from  UIDStream U [range ... slide ..],
GroupTable G

where G.uid = U.uid

group by G.Groupld;

Some network monitoring applications require a variant of this query that
breaks down traffic according to multiple unique identifiers:

select Gl.gid, G2.gid, AGG(...)
from  UIDStream U [sliding window],
GroupTable G1,
GroupTable G2
where Gl.uid = U.uidl
and G2.uid = U.uid2
group by G.Groupld;

The most common application of such multidimensional queries is breaking down
traffic by source and destination subnet. Other examples include tracking the rela-
tionship between subnet and DNS name or between country and web URL. In this
section, I extend my algorithms to support building histograms that approximate
these multidimensional queries.

My histograms extend naturally to multiple dimensions while still finding op-
timal histogram partitioning functions in polynomial time for a given dimension-
ality. In d dimensions, I define a bucket as an d-tuple of hierarchy nodes. I assume
that there is a separate hierarchy for each of the d dimensions. Each bucket covers
the rectangular region of space defined by the ranges of its constituent hierarchy
nodes. Figure 5.12 illustrates a single bucket of a two-dimensional histogram built
using this method. I denote the rectangular bucket region for nodes i1 through i;
asr(iq, ..., ig).

The extension of the non-overlapping buckets algorithm to d dimensions uses
a dynamic programming table with entries in the form E[(iy,...,i;), B], where i1
through i; are nodes of the d UID hierarchies. Each entry holds the best possible
error for r(iy, ..., 1) using a total of B buckets. I also define a version of grperr that
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Bucket
Nodes

Figure 5.12: Diagram of a single bucket in a two-dimensional hierarchical histogram. The
bucket occupies the rectangular region at the intersection of the ranges of its bucket nodes.

aggregates over the region r(iy, - - - ,iy): grperr (i1,...,iz)

E[(i1,...,i3),B] is computed based on the entries for all subregions of
r(i1,...,iz), in all combinations that add up to B buckets. For a two-dimensional
binary hierarchy, the dynamic programming recurrence is shown below.
Intuitively, the algorithm considers each way to split the region (7, j) in half along
one dimension. For each split dimension, the algorithm considers every possible
allocation of the B bucket nodes between the two halves of the region.

grperr(iy,ip) ifB=1,
E[(il iz) B] — ) in minlgcggE[(il,Ziz),C] D E[(i1,2i2 + 1),B — C]
Ty minlgcggE[(Zil,iz),c] @E[(le —|—1,i2),B—C]
otherwise

The extension of the overlapping buckets algorithm to multiple dimensions
is similar to the extension of the nonoverlapping algorithm. I make explicit the
constraint, implicit in the one-dimensional case, that every bucket region in a given
solution be strictly contained inside its parent region, with no partial overlap. For
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E[(i1,12), B, (j1, j2)] =

((grperr ((i1,12), (j1,j2)) if B=0,

(min()SCSB,1 (E[(Zil, iz),C, (il, 12)] & E[(Zil +1, iz), B—c—1, (il,iz)])
ming<c<g_1 (E[(i1,2i2), ¢, (i, i2)] ® E[(i1,2i» + 1), B — ¢ — 1, (i1, i2)])
((i1,12) is a bucket region)
ming<c<p (E[(2i1,72), ¢, (j1, j2)] ® E[(2i1 + 1,12), B — ¢, (j1, j2)])
mino<c<p (E[(i1,202), ¢, (j1, j2)] ® E[(i1, 22 + 1), B — ¢, (j1, j2)])
((i1,12) is not a bucket region)

min

\
otherwise

Figure 5.13: Recurrence for finding overlapping partitioning functions in two dimensions.
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the two-dimensional case, the recurrence is given in Figure 5.13. My algorithms
for finding longest-prefix-match buckets can be extended to multiple dimensions
by applying the same transformation.

Computing a V-Optimal histogram partitioning has been shown to be NP-
hard [71]. In contrast, the multidimensional extensions of my algorithms run in
polynomial time for a given dimensionality. The running time of the extended
nonoverlapping algorithm is O(|G|?db?) for RMS error; and the running time of
the extended overlapping buckets algorithm is O(db?|G|%log? |U|), where d is the
number of dimensions. Similarly, the multidimensional version of my quantized
heuristic runs in O(db?|G|?) time.

5.56.3 Sparse Group Counts

For the network monitoring queries that I target in this chapter, it is often the
case that the counts of most groups are zero. There is a very large universe of
IP addresses, and most points on the Internet can theoretically reach a significant
partition of the IP address space. At a given point in time, however, a typical
network link transmits traffic to and from only small portions of this space.

With some straightforward optimizations, my algorithms can take advantage
of cases when the group counts are sparse (e.g. mostly zero). These optimiza-
tions make the running time of my algorithms depend only on the height of the
hierarchy and the number of nonzero groups.

To improve the performance of the nonoverlapping buckets algorithm in Sec-
tion 5.4.2.2,  observe that the error for a subtree whose groups have zero count will
always be zero. This observation means that the algorithm can ignore any subtree
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Figure 5.14: One of the sparse buckets that allow my overlapping histograms to represent
sparse group counts efficiently. Such a bucket produces zero error and can be represented
in O(loglog |U|) more bits than a conventional bucket.

whose leaf nodes all have a count of zero. Furthermore, the system does not need
to store any information about buckets with counts of zero, as these buckets can be
easily inferred from the non-empty buckets on the fly.

For overlapping and longest-prefix-match buckets, I introduce a new class of
bucket, the sparse bucket. A sparse bucket consists of a single-group sub-bucket and
an empty subtree that contains it, as shown in Figure 5.14. As a result, the ap-
proximation error within a sparse bucket is always zero. Since the empty subtree
has zero count and can be encoded as a distance up the tree from the sub-bucket,
a sparse bucket takes up only O(loglog |U|) more space than a single normal
bucket.

A sparse bucket dominates any other solution that places bucket nodes in its
subtree. As a result, my overlapping buckets algorithm does not need to consider
any such solutions when it can create a sparse bucket. Dynamic programming can
start at the upper node of each candidate sparse bucket. Since there is one candi-
date sparse bucket for each nonzero group, the algorithm runs in O(gb?log |U]|)
time, where g is the number of nonzero groups.

For my target monitoring applications, it is important to note that the time
required to produce an approximate query answer from one of my histograms is
proportional to the number of groups the histogram predicts will have nonzero
count. Because of this relationship, the end-to-end running time of the system can
be sensitive to how aggressively the histogram marks empty ranges of the UID
space as empty. Error metrics that penalize giving a zero-count group a nonzero
count will make the approximate group-by query run much more quickly.
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5.5.4 Space Requirements

A naive implementation of my algorithms would require large in-memory ta-
bles. However, a simple technique developed by Guha [43] reduces the memory
overhead of the algorithms to very manageable sizes. The basic strategy is to com-
pute only the error and number of buckets on the left and right children at the root
of the tree. Once entry E[i, - - - | has been used to compute all the entries for node

L%J , the entry can be garbage-collected.

To reconstruct the entire bucket set, the technique uses a divide-and-conquer
strategy: First, run the algorithm over the entire hierarchy to determine how many
bucket nodes are in the root’s left and right subtrees, then recurse on those sub-
trees. This technique divides the original problem into two subproblems, each of
which is half the size of the original problem. To further reduce memory require-
ments, the nodes themselves could be stored on disk in this order and read into
memory as needed. In the worst case, it takes O(log |U|) passes (one pass for each
level of the hierarchy) of divide-and-conquer to reconstruct the entire solution.

When Guha’s technique is applied to my algorithm for finding nonoverlap-
ping partitioning functions for RMS error, each round of subproblems takes a total
of O(|G|(b? + log |U]|)) time. So the overall running time of the nonoverlapping
algorithm increases to O(|G| log |U|(b* + log |U]|)). Likewise, the running time of
my algorithm for finding overlapping partitioning functions also increases by a
factor of log |U| to O(|G|b? log? |U|) time. As Guha notes, algorithms that require
O(|GJ?) or more time will see no increase in running time when his technique is
applied. My algorithms for finding longest-prefix-match partitioning functions, as
well as my multidimensional algorithms, all fall into this category.

In my actual implementation, I use a less aggressive form of pruning that avoid
the O(log |U|) increase in running time of Guha’s technique. My implementation
prunes all elements of the table except those that are part of the optimal solution
to a subproblem at the current level of the hierarchy under consideration. When
dynamic programming reaches the root of the hierarchy, the optimal set of bucket
nodes can be reconstructed as if the entire table were in memory. Theoretically,
this technique may not prune any table entries at all. In my experiments, however,
the technique results in a space reduction comparable to that of Guha’s technique,
without requiring multiple passes to recover the bucket nodes. Intuitively, the
partial solutions for a given subtree tend to overlap; the best b-bucket solution
for a subtree will share most of its bucket nodes (and hence most of its optimal
sub-problems) with the best b — 1-bucket solution, and so on.

The number of table entries that must be kept in memory at a given time is
also a function of the order in which the algorithm processes the nodes of the UID
hierarchy. The maximum working set size of my algorithms can be minimized by
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Figure 5.15: Illustration of garbage-collecting unneeded table entries during a preorder
traversal of the hierarchy. At most, the algorithms in this chapter need to keep entries for
one node from each level of the hierarchy at a given time.

processing nodes in the order of a preorder traversal, keeping the memory foot-
print to a minimum. At a given point in the preorder traversal, a pass of dynamic
programming will be considering table entries associated with the nodes along
a cut in the hierarchy that contains at most one node from each level, as illus-
trated in Figure 5.15. There are O(log |U|) such nodes at any time (assuming a
balanced UID hierarchy), and the only table entries that need to be in memory are
the ones for the nodes along the cut. Since my nonoverlapping algorithm has b
table entries for each node, the algorithm needs to keep only O(blog |U|) table en-
tries in memory at a time. Similarly, my overlapping partitions algorithm requires
O(blog? |U|) space. My quantized heuristic requires O(k’blog? |U|) space, where
k is the number of quanta for each counter.
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Figure 5.16: The distribution of IP prefix lengths in my experimental set of subnets. The
dotted line indicates the number of possible IP prefixes of a given length (2'e"8th). Jumps
at 8, 16, and 24 bits are artifacts of an older system of subnets that used only three prefix
lengths.
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To measure the effectiveness of my techniques, I conducted a series of evaluations
on real network monitoring data and metadata.

The WHOIS databases store ownership information on publicly accessible
subnets of the Internet. Each database serves a different set of addresses,
though WHOIS providers often mirror each others’ entries. I downloaded
publicly-available dumps of the RIPE and APNIC WHOIS databases [90, 5] and
merged them, removing duplicate entries. I then used this table of subnets to
generate a table of 1.1 million nonoverlapping IP address prefixes that completely
cover the IP address space. Each prefix corresponds to a different subnet. The
prefixes ranged in length from 3 bits (536 million addresses) to 32 bits (1 address),
with the larger address ranges denoting unused portions of the IP address space.
Figure 5.16 shows the distribution of prefix lengths.

I obtained a large trace of “dark address” traffic on a slice of the global Internet.
The destinations of packets in this trace are IP addresses that are not assigned to
any active subnet. The trace contains 7 million packets from 187866 unique source
addresses. Figure 5.17 gives a breakdown of this traffic according to the subnets in
my subnet table.

I chose a query that counts the number of packets in each subnet:

select S.id, count(x)
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Figure 5.17: The distribution of network traffic in my trace by source subnet. Due to
quantization effects, most ranges appear wider than they actually are. Note the logarith-
mic scale on the Y axis.

from
Packet P,
Subnet S

where
—— Adjacent table entries with the same subnet
—— are merged into a single table entry
P.src.ip >1.id and P.src_ip <I.id

group by S.id

I used six kinds of histogram to approximate the results of this query:

e Hierarchical histograms with nonoverlapping buckets
e Hierarchical histograms with overlapping buckets

e Hierarchical histograms with longest-prefix-match buckets, generated with the
greedy heuristic

e Hierarchical histograms with longest-prefix-match buckets, generated with the
quantized heuristic

e End-biased histograms [50]
e V-Optimal histograms [52]
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An end-biased histogram consists of a set of single-group buckets for the b — 1
groups with the highest counts and a single multi-group bucket containing the
count for all remaining groups. I chose to compare against this type of histogram
for several reasons. End-biased histograms are widely used in practice. Also, con-
struction of these histograms is tractable for millions of groups, and my data set
contained 1.1 million groups. Additionally, end-biased histograms model skewed
distributions well, and the traffic in my data set was concentrated in a relatively
small number of groups.

A V-Optimal histogram is an optimal histogram where each bucket
corresponds to an arbitrary contiguous range of values. For RMS error, the
V-Optimal algorithm of Jagadish et al.[52] can be adapted to run in O(|G|?) time,
where G is the set of nonzero groups. For an arbitrary distributive error metric,
the algorithm takes O(|G|?) time, making it unsuitable for the sizes of data set I
considered. I therefore used RMS error to construct all the V-Optimal histograms
in my study.

I studied the four different error metrics discussed in Section 5.3.2.3:

Root Mean Square (RMS) error

Average error

Average relative error

e Maximum relative error

Note that these errors are computed across vectors of groups in the result of the
grouped aggregation query, not across vectors of histogram buckets.

For each error metric, I constructed hierarchical histograms that minimize the
error metric. I compared the error of the six histogram types, repeating the experi-
ment at histogram sizes ranging from 10 to 20 buckets in increments of 1 and from
20 to 1000 buckets in increments of 10.

5.6.1 Experimental Results

I divide my experiment results according to the type of error metric used. For
each error metric, I give a graph of query result estimation error as a function of
the number of histogram buckets. The dynamic range of this error can be as much
as two orders of magnitude, so the y axes of my graphs have logarithmic scales.

5.6.1.1 RMS Error

My first experiment measured RMS error. The RMS error formula empha-
sizes larger deviations, making it sensitive to the accuracy of the groups with
the highest counts. Longest-prefix-match histograms produced with the greedy
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Figure 5.18: RMS error in estimating the results of my query with the different histogram
types.

heuristic were the clear winner, by virtue of their ability to isolate these “outlier”
groups inside nested partitions. Interestingly, the quantized heuristic fared rela-
tively poorly in this experiment, finishing at the middle of the pack. The heuris-
tic’s logarithmically-distributed counters were unable to capture sufficiently fine-
grained information to produce more accurate results than the greedy heuristic.

5.6.1.2 Average Error

My second experiment used average error as an error metric. Figure 5.19 shows
the results of this experiment. As with RMS error, the greedy heuristic produced
the lowest error, but the V-Optimal histograms and the quantized heuristic pro-
duced results that were almost as good. Average error puts less emphasis on
groups with very high counts, and these heuristics emphasize such outliers in their
partition choices. The other types of histogram produced significantly higher er-
ror. As before, I believe this performance difference is mainly due to the ability of
longest-prefix-match and V-Optimal histograms to isolate outliers by putting them
into separate buckets.

5.6.1.3 Average Relative Error

My third experiment compared the three histogram types using average rela-
tive error as an error metric. Compared with the previous two metrics, relative
error emphasizes errors on the groups with smaller counts. Figure 5.20 shows the
results of this experiment. The quantized heuristic produced the best histograms
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Figure 5.19: Average error in estimating the results of my query with the different his-
togram types.
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for this error metric. The heuristic’s quantized counters were better at tracking
low-count groups than they were at tracking the larger groups that dominated the
other experiments. V-Optimal histograms produced low error at smaller bucket
counts, but fell behind as the number of buckets increased.

5.6.1.4 Maximum Relative Error

My final experiment used maximum relative error. This error metric measures
the ability of a histogram to produce low error for every group at once. Results
are shown in Figure 5.21. Histograms with overlapping partitioning functions
produced the lowest result error for this error measure. Interestingly, the greedy
heuristic was unable to find good longest-prefix-match partitioning functions for
the maximum relative error measure. Intuitively, the heuristic assumes that re-
moving a hole from a partition has no effect on the mean count of the partition.
Most of the time, this assumption is true; however, when it is false, the resulting
histogram can have a large error in estimating the counts of certain groups. Since
the maximum relative error metric finds the maximum error over the entire set of
groups, a bad choice anywhere in the UID hierarchy will corrupt the entire parti-
tioning function.
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Figure 5.20: Average relative error in estimating the results of my query with the different
histogram types. Longest-prefix-match histograms significantly outperformed the other
two histogram types.
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Chapter 6

Deployment Study

Good judgment comes from experience, and experience comes from bad judgment.

— Barry LePatner
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Introduction

This chapter presents a detailed performance study of the Data Triage architec-
ture in the context of an end-to-end network monitoring system. The system in
question arose from a collaboration between myself and researchers at Lawrence
Berkeley National Laboratory. The high-level aim of this collaboration was to build
a software platform for monitoring the network traffic of the Department of Engi-
neering national laboratories.

From the perspective of this dissertation, the study had several goals:

e Demonstrate the feasibility of using a general-purpose streaming query proces-
sor to monitor high-speed networks

e Show that Data Triage is necessary to maintain low query result latency in such
a context

e Demonstrate that my prototype implementation of Data Triage can scale to sup-
port a “real-world” workload

e Show that the extension of Data Triage for archived streams as described in
Section 3.4 also works in such a setting

Background

The United States Department of Energy (DOE) operates nine major research labs
nationwide. These laboratories conduct classified and unclassified research in ar-
eas such as high-energy physics, nuclear fusion and climate change. Researchers
at the labs regularly collaborate with major university and industrial research or-
ganizations. To support collaborations both between the labs and with outside
researchers, each lab maintains high-speed network connections to several nation-
wide networks. In addition, each lab publishes large amounts of information via
its connection to the public Internet.

The security of these network connections is crucial to operations at the DOE
labs. As a U.S. government agency, the Department of Energy is a prime target of
malicious hackers worldwide. The laboratories need to protect sensitive informa-
tion and to prevent illegal misuse of their equipment.

Network availability and performance are another important priority at DOE.
Large data transfers are an integral part of many important projects at the labs.
Multimillion-dollar particle accelerators cannot run unless enough network band-
width is available to absorb their data streams. DOE scientists running simulations
routinely ship large data sets across the world, and increased use of grid comput-
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Figure 6.1: High-level block diagram of the proposed nationwide network monitoring
infrastructure for the DOE labs.

ing is making network uptime even more essential.

To help maintain network security, availability, and performance at its labora-
tories, DOE is creating a nationwide network operations center. This centralized
monitoring station will enable a small team of network administrators to maintain
a 24-hour alert for potential problems. Figure 6.1 illustrates how this system will
work. At each laboratory, TCP/IP flow monitors collect information about network
sessions and stream the resulting flow records to the operations center via a back-
bone link. Software at the operations center aggregates and analyzes the streams
of flow records to present a real-time picture to the human operators on the scene.

This chapter describes my experiences working with researchers at Lawrence
Berkeley National Laboratories to build a prototype of the analysis software that
could be run at the network operations center. We identified three key require-
ments for this software:

e Flexibility: The network operator needs to focus analysis on the machines, pat-
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terns, and protocols that are relevant to the problem at hand. He or she will
also need to develop and deploy new analyses quickly in response to evolving
threats.

e History: An effective monitoring system needs access to historical data about
the network. This past history allows the operator to weed out false positives
by comparing present behavior against past behavior. History is also essential
for determining the cause of a malfunction or security breach that occurred in
the past.

e Performance: During periods of peak load, the DOE networks each generate
tens of thousands of flow records per second. It is during these peak periods
that effective network monitoring is most essential. High traffic puts stresses on
the network that make it more likely to fail. Also, knowledgeable adversaries
will attempt to hide their attacks inside these large bursts of data.

My collaborators have been working on FastBit [11, 101], a high-performance
bitmap index with a declarative SQL interface. Working with the FastBit team, I de-
signed an end-to-end system that uses TelegraphCQ for streaming query process-
ing and FastBit to provide access to historical data. This design easily meets our
first two requirements, since TelegraphCQ and FastBit both use flexible declarative
query languages and FastBit provides access to historical data. Our main question
going forward was whether the combination of these two general-purpose systems
can handle sufficiently high data rates to meet the performance requirement.

6.2.1 Data Rates

The total traffic on the Department of Energy’s networks is classified, but we
can make a rough estimate based on unclassified data. We have obtained flow
records from Berkeley Lab’s unclassified NERSC (National Energy Research Sci-
entific Computing) Center for a 42-week period from August 2004 through June
2005.

Figure 6.2 shows the number of flows (or network sessions) per week during
this period. During the trace, the network generated as many as 250 million flow
records in a week, or 500 records/sec on average. However, the rate at which
these flows arrived varied significantly, reaching as high as 55,000 flow records
per second as shown in Figure 6.3. This figure shows the histogram of flow record
rates. We observed that this distribution is heavy-tailed.

The NERSC traffic is one of three wide-area network links currently deployed
at Berkeley Lab, and the lab’s employees represent about one tenth of all DOE
lab researchers. Assuming that other network links have approximately the same
traffic levels as the NERSC link and that network usage scales with the number of
researchers, we therefore expect the NERSC link to represent approximately 1/30
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Figure 6.2: Flow records per week in our 42-week snapshot of Berkeley Lab’s connection
to the NERSC backbone.

of the total DOE traffic. So a DOE-wide network operations center would need
to process sustained rates of roughly 500 x 30 = 15,000 flow records per second,
with peaks of as much as 55, 000 x 30 = 1,650,000 records per second.

6.2.2 Query Complexity

Based on a literature survey and my own conversations with networking re-
searchers, I developed a sample workload of queries for monitoring networks. I
describe this workload in detail in Section 6.5. Each of my queries has a live stream-
ing component and a historical archive component. The live component of each
query monitors the current status of the network. The historical parts analyze pre-
vious flow records to trace problems back to their roots or to determine whether
potential anomalies are actually normal behavior. Running these queries requires
real-time analysis and fast index access to as much as a month of historical data.
A real deployment would run a mix of 10 to 100 such queries, monitoring various
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Figure 6.3: Histogram of the number of flow records per second in the data set in Fig-
ure 6.2. The distribution is heavy-tailed, with a peak observed rate of 55,000 records per
second.
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aspects of the network in real time.
6.2.3 Analyzing The Performance Problem

Based on my earlier experience with smaller prototypes, I hypothesized that
TelegraphCQ would be the major bottleneck in our combined system and that the
system would need Data Triage to provide reasonable response times in the face
of bursty network traffic. I worked with the FastBit team to design a performance
study that would break down the performance of the system in terms of both data
throughput and query result latency. The Berkeley Lab researchers optimized the
FastBit engine and tweaked the historical components of my query workload for
better performance. I debugged and performance tuned TelegraphCQ, as well as
adding query language support for my query workload. I also created a robust
high-performance implementation of Data Triage to match the performance-tuned
TelegraphCQ. Then I wrote and optimized the code that ties these three compo-
nents together. I designed a set of experiments that break down system perfor-
mance in terms of the individual components of the system, as well as end-to-end
experiments for evaluating the entire system. The FastBit team measured the per-
formance of the FastBit component of our system. I measured the performance
of TelegraphCQ by itself, both with and without my Data Triage implementation.
Finally, I ran experiments that measured the performance of the entire system. The
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the data retrieval capabilities of FastBit with the stream query processing of TelegraphCQ.

6.3

remainder of this chapter describes the steps of our performance study in detail,
starting with my overall design and data/query workload and then describing our
experimental results.

Architecture

This section gives a high-level overview of the architecture I designed for our pro-
totype monitoring system and provides references for further reading on individ-
ual components of our system. Figure 6.4 shows how the pieces of our architecture
fit together. The major components of the system are as follows:

TelegraphCQ is a streaming query processor that filters, categorizes, and ag-
gregates flow records according to one or more continuous queries, generating
periodic reports. I give an overview of TelegraphCQ in Section 1.6 of this disserta-
tion.

FastBit is a bitmap index system with an SQL interface. It is designed to work
with append-only data sets such as historical records of a network monitoring sys-
tem. My design uses FastBit to provide fast associative access to archived network
monitoring data. The keys to FastBit’s efficiency are its vertical data organization
and efficient bitmap compression algorithms [96, 114, 115].

The Ingress Manager component corresponds to the Triage Process in my de-
sign for Data Triage with archival data (See Section 3.4). The Ingress Manager pro-
cess contains a Triage Queue, Triage Scheduler, and Summarizer, as well as code
that stages data to disk for loading into FastBit. This component also merges in-
coming streams of flow records and converts data into formats that TelegraphCQ
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Week Records/week Cumulative no. of records

1 49,289,726 49,289,726
2 17,826,252 67,115,978
3 22,315,221 89,431,199
4 11,402,761 100,833,960
5 20,256,664 121,090,624

Table 6.1: Number of network traffic records collected at Berkeley Lab over a period of 5

weeks.

6.4
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and FastBit understand.

The Controller is a component that receives streaming query results from Tele-
graphCQ, requests relevant historical data from the FastBit index, and generates
concise reports for the network administrator. Each analysis that the controller
performs consists of three parts: A TelegraphCQ query template, a FastBit query
template, and application logic. The Controller reads TelegraphCQ and FastBit
query templates from configuration files and substitutes in runtime parameters.
The application logic for an analysis consists of a callback that is invoked for each
batch of query results that comes back from TelegraphCQ. Each analysis runs in
a separate process, but the Controller’s admission control limits the number of
concurrent FastBit queries to prevent thrashing.

The Controller is currently implemented in the Perl programming language. I
chose Perl because it has an efficient interface with TelegraphCQ, dynamic com-
pilation for loading application logic at runtime, and well-developed facilities for
generating reports.

Data

All our performance benchmarks are based on real network connection data
that researchers at Berkeley Lab collected on the Lab’s NERSC supercomputing
backbone connection. The data represents a time period of 5 weeks and consists
of 121 million TCP/IP flow records. Each flow record contains information on the
source/destination IP addresses, source/destination ports, time stamp, packet
size, etc. In total, each record contains 11 attributes.

Table 6.1 shows the number of network traffic records per week along with the
cumulative number of records. Note that week 1 comprises about 5 times more
records than week 4.

I mapped the attributes in the flow records into the following TelegraphCQ
stream:
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create stream Flow(

src_ip Inet,

dst_ip Inet,

src_port integer,

dst_port integer,

protocol integer, — — Protocol number
bytes_sent integer, —— src—>dst
bytes_recv integer, —— dst—>src

outgoing boolean,
—— TRUE if this connection was initiated
—— Inside the protected network

state integer,
—— Where in the TCP state machine the
— — connection ended up.

duration interval ,
tcqtime timestamp TIMESTAMPCOLUMN

)

type unarchived,

Recall from Section 1.6 that TelegraphCQ create stream statements are similar
to SQL create table statements. The text type unarchived at the end of the state-
ment indicates that the TelegraphCQ is not to archive flow records internally; my
system design uses FastBit for all archival storage. The Inet data type is a built-
in PostgreSQL type for storing IP addresses; other types used in this schema are
native SQL92 types.

To store the historical flow records, my LBNL collaborators created a
corresponding FastBit table. FastBit's queries operate over a single vertically-
partitioned table, with columns stored in separate files. Individual columns
values are stored in native C++ data types. Table 6.2 summarizes the mapping
between our FastBit and TelegraphCQ schemas.
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TCQ Column FastBit Column(s) C++ Type

src_ip IPS int
dst_ip IPR int
src_port SP int
dst_port DP int
protocol PROT int
bytes_sent S_SIZE int
bytes_recv R_SIZE int
outgoing FLAG int
state STATE int
duration dur double
tcqtime ts int

Table 6.2: Relationship between columns of our TelegraphCQ and FastBit schemas

6.5 Queries

Based on a literature search and discussions with networking researchers, I have
created a representative workload of real-time network analyses. Each analysis is
comprised of a stream query processing component, expressed as a TelegraphCQ
query; and a historical component, expressed as a FastBit query. These queries
represent an important contribution: To my knowledge, no other collection of sim-
ilarly complex live/archive queries for network monitoring has been published
in the data management, streaming query processing, or network measurement
literature.

In the sections that follow, I present these queries in the native query languages
of TelegraphCQ and FastBit, respectively, using the schemas from Section 6.4.

Each query has one or more parameters that are bound at runtime. Following
the convention of most SQL databases, I denote these variable parameters with a
preceding colon. For example, in the first “elephants” query below, the parameter
:windowsz is variable. At runtime, the Controller component of the system substi-
tutes the appropriate values for for the variable parameters in the templates.

6.5.1 Elephants

Goal: This analysis finds the k most significant sources of traffic (source/desti-
nation pairs, subnets, ports, etc.)!. TelegraphCQ finds the top k, and FastBit com-
pares these top k against their previous history. Reports significant traffic sources

IThe names of this query and the one that follow derive from the networking term “elephants and mice”, which refers to the
sources of the largest and smallest traffic on a network link, respectively. “Elephants” tend to dominate bandwidth usage, and
security problems often involve “mice”.
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that were not significant in the past.

TelegraphCQ Query: Finds top 100 addresses by data sent.

select sum(bytes_sent), src_ip, wtime(x) as now
from flow [range by :windowsz slide by :windowsz]
where outgoing = false

group by src_ip

order by sum(bytes_sent) desc

limit 100 per window;

FastBit Query: Retrieves the total traffic from the indicated 100 addresses for
the same time of day over the past 7 days. The variables : X1, : X2 and so on are the
src_ip output from the above TelegraphCQ query. Note also that FastBit queries
have an implicit GROUP BY clause on all selected attributes that are not part of any
aggregate functions.

select IPS, sum(S_SIZE), sum(R_SIZE)

where IPS in (:X1, :X2, :X3, ..., :X100) and

((ts between [:now — 24 hr] and [:now — 23 hr])
or (ts between [:now — 48 hr] and [:now — 47 hr])

or (ts between [:now — 72 hr] and [:now — 71 hr])
or (ts between [:now — 96 hr] and [:now — 95 hr])
or (ts between [:now — 120 hr] and [:now — 125 hr])
or (ts between [:now — 144 hr] and [:now — 143 hr])
or (ts between [:now — 168 hr] and [:now — 167 hr])
);

6.5.2 Mice

Goal: Find all traffic from hosts that have not historically sent large amounts
of traffic. FastBit finds the top k hosts by bytes sent over the past week. Then
TelegraphCQ looks for traffic that is not from these top k hosts.

FastBit Query: Retrieves the top k hosts by total traffic for the past week. The
variable : history, called the length of history, defines how far back in history the
query looks for historical patterns. We usually vary its value from a few days to a
month.

select sum(S_SIZE), IPS
where ts between [:now — :history] and [:now]
order by sum(S_SIZE) desc
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limit :k;

TelegraphCQ Query: Produces a breakdown of traffic that is not from the hosts
in the FastBit query’s results.

select sum(bytes sent), src_ip, dst.ip, wtime(x)
from flow [range by :windowsz slide by :windowsz]
where
src_ip !=:X1 and src_ip !=:X2 and ... and src_ip != :X100
group by src_ip, dst_ip
order by sum(bytes_sent) desc
limit 100 per window;

6.5.3 Portscans

Goal: This analysis finds behavior that suggests port scanning activity?. Tele-
graphCQ flags current behavior, and FastBit is used to filter out hosts that exhibit
this behavior as part of normal traffic.

TelegraphCQ Query: Finds external hosts that connect to many distinct desti-
nations and ports within Berkeley Lab. The ORDER BY and LIMIT clause at the end
of the query indicates that TelegraphCQ should return the top 100 hosts according
to “fanout”.

select src_ip,
count(distinct (dst_ip ::varchar || dst_port ::varchar)) as fanout,
wtime(x)

from flow [range by :windowsz slide by :windowsz]

where outgoing = false

group by src_ip

order by fanout desc

limit 100 per window;

FastBit Query: Given the IP addresses returned by the TelegraphCQ query
(: X1 through :X100), this query determine which hosts those addresses have his-
torically communicated with. Application logic can use this information to differ-
entiate between suspicious behavior and normal traffic patterns.

Note that FastBit queries with no aggregates have an implicit count(x) aggre-

2A port is a numeric identifier within a single host that is associated with a single process running on the host. The term
portscan refers to the common practice of making blind connection attempts to a remote host to determine which network ports
are associated with running programs [112].
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gate.
select IPR, IPS
where
IPS in (:X1, :X2, :X3, ... , :X100)

and (ts between [:now — :history] and [:now])

6.5.4 Anomaly detection

Goal: This analysis compares the current local traffic matrix (traffic by
source/destination pair) against a traffic matrix from the past. TelegraphCQ
fetches the current traffic matrix, and FastBit fetches the matrix in the past. Then
application logic compares the matrices using a change metric such as the L;
norm or Euclidean distance. More sophisticated analyses involving multiple
historical traffic matrices are also possible [99].

TelegraphCQ Query: Computes the local traffic matrix, merging the traffic in
both directions.

select
(case when outgoing = true
then src_ip else dst_ip end) as inside_ip ,
(case when outgoing = true
then dst_ip else src_ip end) as outside_ip,
sum(bytes_sent) + sum(bytes_recv) as bytes
from flow [range by :windowsz slide by :windowsz]
group by inside_ip, outside_ip ;

FastBit Query: Fetches the incoming portion of the traffic matrix for a single
period of time.

select

IPS, sum(S_SIZE)
where

outgoing = false

and (ts between [:now — :history] and [:now])
order by sum(S_SIZE) desc

6.5.5 Dispersion

Goal: This analysis finds subnets at a parametrizable IP prefix length that ap-
pear in two time windows within a given period, and reports the time lag be-
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tween these two windows. Certain patterns of time lag can indicate malicious
behavior[22]. A TelegraphCQ query with two subqueries does the real-time analy-
sis, and a FastBit query summarizes the traffic history for each IP prefix identified.
This is based on a query in [22].

TelegraphCQ Query: Produces a breakdown of traffic by subnet. The parame-
ter : prefixlen determines the length of the IP address prefix that defines a subnet.
WTIME(x) is a TelegraphCQ built-in function that returns the latest timestamp in
the current time window.

with
WindowResultsl as
(select
network(set_masklen( src_ip , : prefixlen )) as prefix ,
wtime(x) as tcqtime
from Flow [range by :windowsz slide by :windowsz]
group by prefix)
WindowResults2 as
(
—— Create a second copy of the stream
select * from WindowResultsl
)
(select
W1.prefix as prefix ,
W2.tcqtime — W1.tcqtime as lag,
count(x),
wtime(x)
from
WindowResults1 W1 [range by 10 * :windowsz
slide by :windowsz],
WindowResults2 W2 [range by 10 * :windowsz
slide by :windowsz]
where W1 .prefix = W2.prefix
and W2.tcqtime > W1.tcqtime
group by W1.prefix, lag);

FastBit Query: Fetches the incoming traffic for the given subnets in the given
time window.

Ideally, this query would group results by network subnet as in the
TelegraphCQ query above (e.g. select network(set_masklen(IPS, : prefixlen ))).
However, FastBit currently does not support arithmetic expressions in its select
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lists, so the query breaks down traffic by source address.

select
IPS, IPR, sum(R_SIZE)
where
( prefix (IPS, : prefixlen ) =:X1 OR ... = : X2 OR ...)

and (ts between [:now — :history] and [:now])
and outgoing = false
order by sum(R_SIZE) desc

Experiments

In this section, I evaluate the performance of our system in a series of experiments.
I start by analyzing the major components of the system separately to determine
the peak data throughput of each component. I then benchmark the throughput of
the entire system and compare this end-to-end throughput against that of the indi-
vidual components. Finally, I evaluate the performance of the system with realistic
packet arrival rates derived from the timestamps in Lawrence Berkeley National
Lab’s traces. All experiments were conducted on a server with dual 2.8 GHz Pen-
tium 4 processors, 2 GB of main memory, and an IDE RAID storage system capable
of sustaining 60 MB/sec for reads and writes.

6.6.1 TelegraphCQ Without Data Triage

My first experiment examined the performance tradeoffs of the TelegraphCQ
component of the system without Data Triage. I focused on two parameters: query
type and window size. Recall that each of the five TelegraphCQ queries in my
workload produces results for discrete windows of time, and the size of these win-
dows is given as a parameter in the query.

Bypassing the Data Triage components of the Ingress Manager, I sent week 5 of
the trace directly through TelegraphCQ and measured the total running time for
each of my five TelegraphCQ queries. From this running time, the window size,
and the number of tuples in the trace, I computed an average throughput figure
for the query processor. I repeated the experiment while varying the window size
from 1 to 1,000 seconds. This range of time intervals corresponds to an average of
between 38.1 and 38,114 tuples per time window.

Figure 6.5 shows the measured throughput of TelegraphCQ in my experiments.
Each query showed an initial increase in throughput as window size increased. As
window size continued to increase, throughput eventually reached a peak and
declined somewhat. The “dispersion” query showed a particularly pronounced
instance of this pattern, with throughput increasing from 6,000 to 25,000 tuples
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Figure 6.5: The throughput of TelegraphCQ running my queries with varying window
sizes over the 5th week of the NERSC trace. Note the logarithmic scale.
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across the range of window sizes targeted. The remaining queries had much flatter
throughput curves.

I profiled my TelegraphCQ testbed to determine the reason for the changes
in throughput I observed. I found that the relatively low throughputs at smaller
window sizes were due to the large number of result tuples the queries produce at
those window sizes. This effect was particularly pronounced with the dispersion
query because the results of the first subquery went into a self-join, which is a more
complex operation than the rest. I traced the slight falloff in performance at larger
window sizes to increased memory footprint, as TelegraphCQ buffers the tuples
in the current window in memory.

With the appropriate choice of window size, a single instance of TelegraphCQ
can handle the average aggregate flow record traffic of all the DOE labs. A small
cluster of machines should be able to run a 10-20 query workload at this average
data rate. It is important to note, however, that such a setup would buffer excess
data and return delayed query results whenever data rates exceeded the average.
The experiments in Section 6.6.7 quantify this delay and explore methods for re-
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Figure 6.6: The throughput of TelegraphCQ with Data Triage, running my queries with
varying window sizes over the 5th week of the NERSC trace. Note the logarithmic scale.

ducing it.
6.6.2 TelegraphCQ With Data Triage

My next experiment measured the peak throughput of the streaming compo-
nent of the system when Data Triage is used. I used the same setup as the experi-
ment in the previous section, except that the Data Triage components in the Ingress
Manager were enabled. I used a 1000-tuple reservoir sample as the summary type
in this experiment. To push the system to its peak data rate, I replaced the normal
Triage Scheduler with a scheduler that triages every input tuple. For each run of
the experiment, I measured both peak throughput and result error. To measure re-
sult error, I logged the results of the main and shadow queries to disk during each
run of the experiment. After each run of the experiment, a postprocessing step
measured query result error by comparing the results from the Data Triage runs
against the exact answer computed in a separate run with Data Triage disabled.

My postprocessing script used weighted percent error to measure result error.
Intuitively, this error metric measures percent error across the groups, weighted
by the actual aggregate values. More formally, weighed percent error is defined as
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follows:

YecG |g.actual — g.approx|
Y ¢ec actual

Error = (6.1)

where G is the set of groups. The error was averaged over all the time windows in
the trace.

Figure 6.6 shows the throughput results of this experiment. In general,
throughput at small average window sizes was comparable to that of
TelegraphCQ without Data Triage. The 1000-tuple reservoir kept most or all of
the data in most window, so the system was doing about as much work with
Data Triage as without. As the number of tuples per window increased, the peak
throughput supported by my Data Triage implementation increased far beyond
that which TelegraphCQ can handle by itself. Data rates peaked at between
155000 and 225000 flow records per second, depending on query.

The system’s relative throughput performance on the different queries was
similar to that of the experiment in Section 6.6.1, with the exception of the “dis-
persion” query. This query did not exhibit the same slowdown as before at smaller
window sizes. This difference was due to the query’s number of output tuples
being O(n?) in the number of flow records per window. Execution time in the
previous experiment was dominated by time windows with large amounts of traf-
fic. With almost every tuple going through a reservoir sample, these high-traffic
windows were “clipped” in the Data Triage experiment.

Figure 6.7 shows the measured result error of the queries. As window size in-
creased, the reservoir sample discarded larger portions of the data in each window,
resulting in higher error. The amount of error induced varied significantly across
queries. In particular, the “elephants,” “mice,” and “anomaly” queries produced
higher error than the “dispersion” and “portscan” queries.

The “dispersion” and “portscan” queries performed well largely because they
count the number of distinct values that meet a certain constraint. For example, the
tirst stage of the dispersion query finds all the distinct network address prefixes
that occur in each time window:

with
WindowResultsl as
(select
network(set_masklen( src_ip , : prefixlen )) as prefix ,
wtime(x) as tcqtime
from Flow [range by :windowsz slide by :windowsz]
group by prefix)
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Figure 6.7: Result error of TelegraphCQ with Data Triage, running my queries with vary-
ing window sizes over the 5th week of the NERSC trace.

Due to the projection and duplicate elimination operations performed and the
heavy-tailed distribution of our network traffic across prefixes, such queries can
be approximated from a small random sample of the input stream with relatively
high accuracy [47].

The remaining three queries produced higher result error. Analyzing the ap-
proximate results of these queries in detail, I determined that these larger errors
were due to a combination of query and data characteristics. All three high-error
queries computed SUM aggregates over the bytes_sent field of the flow records.
When using a random sample to approximate such an aggregate, the expected rel-
ative error for the sum of a group is given by:

A=f)o’N
/ 6.2)

actual sum

105



Chapter 6: Deployment Study

Count (LOG SCALE)

Values of BYTES SENT Field
1e+08 F—r—— 71— 77—

1e+07

1e+06
100000
10000
1000
100 1 2 3 4 5 6 7 8 9
10° 10" 10% 10® 10* 10° 10% 107 10® 10
Bytes Sent (LOG SCALE)

Figure 6.8: A histogram of observed values in the bytes_sent field of the flow records in
our trace. Note the logarithmic scale on both axes. The high variance of these values
makes it difficult to approximate queries that aggregate over this field.
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where N is the number of tuples in the group, f is the fraction of tuples that are
included in the sample, and and o is the variance of the values in the group [39].

As Figure 6.8 shows, the values of the bytes_sent field have extremely high
variance. Since the approximation error for a SUM aggregate is proportional to the
variance of the aggregate column, random sampling produced significant errors
on the queries that computed SUM aggregates over the bytes_sent column.

To demonstrate that the error I observed was in fact largely due to computing
sums of a high-variance column, I replaced the SUM aggregates in the elephants,
mice, and anomaly queries with COUNT aggregates and reran the experiment. As
Figure 6.9 shows, this change decreased the error of the elephants and mice queries
significantly.

Error for the anomaly detection query also decreased with the switch to a
COUNT aggregate, but by a smaller factor. Since it computes a complete traf-
tic matrix, the anomaly detection query produces results with a large number of
groups. The random sample is spread across the groups, so the effective sample
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Figure 6.9: An illustration of the decrease in result error that occurs when SUM aggregates
over a high-variance field are replaced with COUNT aggregates.

size within each group is small. Indeed, as Figure 6.10 shows, the vast majority of
(source, destination) pairs occurred only once in a given time window. If the ran-
dom sample happens not to contain the tuple from one of these singleton groups,
then the error of that group will be 100 percent.

Overall, my implementation of Data Triage gives TelegraphCQ an additional
order of magnitude of throughput capacity for this data and workload. This addi-
tional capacity comes at the cost of producing approximate answers. The amount
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Figure 6.10: Histogram of the number of tuples in a group in the output of the “anomaly
detection” query. A count of k means that a particular (source, destination) address pair
appeared k times in a time window. The bins of the histogram for more than 10 tuples are
hidden below the border of the graph.
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of approximation error observed varies depending on the query, the data distri-
bution, and the strengths of the particular approximation technique in use. Some
parts of the query and data workload pushed the reservoir sampling technique
beyond its useful range. Other approximation techniques may be able to correct
for this deficiency. In general, when using query approximation, it is important
to match the approximation technique to the expected query and data character-
istics. Early observations of this fact motivated my design choice to modularize
Data Triage’s approximation code.

6.6.3 FastBit

The next set of experiments measured the throughput of the FastBit component
of the system. I designed these experiments and worked with the FastBit team to
implement them. The experiments analyze FastBit’s performance in two separate
components: loading the index and querying the index. To measure index load
performance, we conducted an experiment to determine the effect of batch size on
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Figure 6.11: Speed for appending data and building the bitmap index in batches of sizes
ranging from 1,000 to 100,000,000. Each tuple contains 11 attributes (48 bytes).

load throughput. For querying performance, we measured average response time
while varying the amount of historical data incorporated into the analysis.

6.6.3.1 Index Creation

We first measured the speed for appending new data and building the respec-
tive bitmap indices. For these experiments we appended the data and built the
indices in batches of various sizes to identify the most efficient batch size. In par-
ticular, the batch sizes ranged from 1,000 to 100,000,000 tuples. Each tuple contains
11 attributes.

Figure 6.11 shows the speed for building the bitmap indices in terms of tuples
per second. In our test data, each tuple is 48 bytes, 10 4-byte values plus 1 8-
byte value. The maximum speed of 213,092 tuples per second is achieved when
the append and index build operations are done in batches of 10,000,000 tuples.
The performance graph also shows that the tuple rate decreases for batch sizes
above 10,000,000 tuples and later stays about constant at around 170,000 tuples
per second.
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When the batch size is small, say, 1000 tuples, fixed overheads such as opening
index scans and parsing schema information dominate the overall running time.
When the batch size is in the millions, the total time required to load the index
is dominated by the overhead of constructing index records and writing them to
disk.

Once the batch size increases beyond 10 million records, throughput decreases
somewhat due to caching effects. To enable query processing during index build
operations, FastBit keeps two copies of the index. These copies are stored in index
directories called the active directory and backup directory. During a bulk load oper-
ation, the system first loads new tuples into the backup directory. Once the backup
directory is up to date, FastBit swaps the active and backup directories and copies
the new index records to the former active directory. When the batch size sur-
passes 10 million records, the newly-created records no longer fit in the operating
system’s buffer cache, so the final bulk copy operation must read data from disk
instead of memory.

6.6.3.2 Index Lookup

In the following experiments we measure the throughput of the index lookups
(query response time) of the five queries described in Section 5. Apart from the
“mice” queries (see Section 5.2), the starting point for all the queries was one day’s
worth of output data produced by TelegraphCQ. In particular, the TelegraphCQ
continuous queries as described in Section 5 were run starting from week 5. Next,
the output of these queries was used as input for FastBit to query the historical
data. In order to measure the scalability of FastBit, we varied the length of history
between 1 and 28 days. All queries were executed with 10 different lengths of his-
tory of equal size in the range of 1 and 28 days. By increasing the length of history,
the result set (number of records fetched) of the queries increases monotonically
and thus allows us to measure the query response time as a function of the result
size.

Figure 6.12 shows the average query response time for all the 5 query types
with 10 different lengths of history. In total, 100 x 10 queries were executed per
query type on 100 million tuples with different lengths of history. The input for the
100 queries was randomly selected from the output of the TelegraphCQ stream-
ing queries. In general, we observe a linear query response time with respect to
the number of records fetched. One can see that the “elephants” and “portscans”
queries have the best query response times between 0.1 and 1 seconds. The “mice”,
“anomalies” and “dispersion” queries have a higher query response time since
they fetch more records. In fact, for large historical window sizes, nearly all of the
100 million records are fetched. Thus, the query response time is dominated by the
time spent on fetching the results as opposed to the time spent on evaluating the
queries with the bitmap index. For example, it takes about 20 seconds to answer
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Figure 6.12: FastBit index lookup time for 5 types of historical queries with various
lengths of history denoted by variable : history .

the “anomalies” and “mice” queries when they fetch about 100 million records.
Since both these queries select two attributes of 4-byte each, a total of about 800
MB are read into memory and sorted to compute aggregate functions. This leads
to a reading speed of about 40 MB/s, which is nearly optimal because the read
operations are not contiguous (some records are not needed). This implies that
the time spent in evaluating the range conditions in these queries over 100 million
records were negligible. The total query processing time is dominated by reading
the selected values.

6.6.4 Controller

Overall, the Controller component was not a bottleneck. I measured Controller
overhead by running the TelegraphCQ query select * from Flow on TelegraphCQ
via the Controller, while sending flow data directly to TelegraphCQ. This query
produces an output tuple for every input tuple and therefore puts stress on the
Controller. I found that the TelegraphCQ Front End process dominated CPU us-
age. The rate at which the Controller can consume tuples was not a bottleneck. For
the workload I studied in this chapter, the analysis and report generation functions
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of the Controller consumed far less CPU time than the process of receiving and
parsing result tuples from TelegraphCQ. This distribution of work may change in
the future if our system were to incorporate complex predictive logic such as that
proposed by Soule et al.[99]. Currently, however, the Controller component is not
a bottleneck.

6.6.5 End-to-end Throughput Without Data Triage

My next two sets of experiments combined TelegraphCQ, the FastBit loader,
the FastBit query engine, the Controller, and the Ingress Manager to create an end-
to-end system. For the first round of experiments, I disabled the Data Triage com-
ponents of the Ingress Manager. I fed our trace through this system and measured
the time until the Controller produced its last report. I then used this total elapsed
time and the number of tuples in the trace to compute the number of flow records
per second that the system can consume without Data Triage.

I benchmarked each pair of TelegraphCQ/FastBit queries separately. The
ranges of time selected in the FastBit queries were as depicted in Section 6.5.
I varied the window size of the TelegraphCQ queries over the range of time
intervals used in Section 6.6.1. Flow records were appended to the FastBit index
in batches of 1 million.

Figure 6.13 shows the results of this experiment. Each thick line shows the
performance of a TelegraphCQ/FastBit query pair. The thin dotted line indicates
the number of flow records per second the system would need to sustain to be able
to deliver results at 1-second intervals. Points above this threshold indicate data
rates at which the system can support window sizes of 1 second.

At smaller window sizes, FastBit lookup time dominated the combined query
processing time. As window size increased, TelegraphCQ’s performance came to
dominate the system throughput. One exception to this rule was the mice queries
where the FastBit component is executed offline prior to starting the TelegraphCQ
component. Since the system loaded tuples in large batches and ran the FastBit
append operations and querying operations sequentially, the time spent on ap-
pending 1 million flow records (about 4 seconds) caused a temporary lag in the
query response time. However, the decrease in overall throughput due to loading
the index was negligible.

While most of the other queries produced similar throughput curves, the dis-
persion query showed an especially high degree of performance variation at dif-
ferent window sizes. Throughput for the dispersion queries did not reach com-
parable levels to that of the other queries until the number of tuples per window
approached 20,000. This delayed increase was due to three factors. As I observed
in the previous section, the TelegraphCQ component of the queries runs slowly
at smaller window sizes. Also, the FastBit query for this analysis is also slower
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Figure 6.13: End-to-end throughput with varying window sizes over the 5th week of the
NERSC trace. Note the logarithmic scale. The thin dotted line indicates the minimum
throughput necessary to deliver results at 1-second intervals.

since the amount of data fetched is very large. Finally, as I noted in Section 6.5, the
current version of the query returns traffic broken down by address instead of by
subnet. As a workaround, the Controller currently reads in the (much expanded)
results of the FastBit query and performs an additional round of aggregation by
subnet. The FastBit team is working to remove this bottleneck by adding support
for arithmetic expressions in FastBit’s select lists.

In Figure 6.13 I also show the minimum performance needed to support a time
window of 1 second. In this application, a window size of 1 second is extremely
short. Even in this case, the system can handle between 9,000 and 20,000 flow
records per second when running a single analysis on our test machine. Such data
rates are in line with my estimates (See Section 6.2.1) of the average combined
data rates for all DOE labs. However, the system tested in this experiment cannot
handle my estimated peak rates of 1.6 million records per second. To handle these
bursts of data, the system could either spool flow records to disk for later pro-
cessing, use Data Triage [87] to trade off query result accuracy for response time,
or add additional CPU capacity (possibly via parallelism [95]) to the system. The
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Figure 6.14: End-to-end throughput at varying window sizes with Data Triage enabled.
Note the logarithmic scale. The thin dotted line indicates the minimum throughput nec-
essary to deliver results at 1-second intervals.
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experiments in Section 6.6.7 explore the tradeoffs between these three approaches.
6.6.6 End-to-end Throughput With Data Triage

My next experiment was similar in overall structure to the experiment in the
previous section, except that it measured throughput with Data Triage. As be-
fore, the experiment used the end-to-end system, including index loading and both
TelegraphCQ and FastBit queries. For this second experiment, I also enabled the
Data Triage components in the Ingress Manager. Figure 6.14 shows the results of
this experiment. Throughput is limited by FastBit query performance when the
number of tuples per window is small. As the number of tuples per window in-
creases, throughput goes up, eventually reaching a plateau of roughly 60000 tuples
per second for all of the queries. This plateau is due primarily to the speed with
which the system could stage tuples to disk and load them into FastBit. The flow
records start as a single stream of comma-delimited text, and the FastBit loader
expects a separate binary file for each column. Conversion of text to binary and
the writing of multiple binary files consumes approximately as much CPU time as



6.6 Experiments

the actual index load operation, limiting overall throughput.

Since the TelegraphCQ components of the system had not changed from those
used in Section 6.6.2, result accuracy in estimating the results of the TelegraphCQ
queries was the same as before. Approximation was not used for the FastBit por-
tion of the queries.

In practice, index loading should not have a serious effect on the system’s abil-
ity to absorb bursts without delaying query results. In the query workload I used
in this study (See Section 6.5, the historical data that is used for comparison with
current trends is always at least 24 hours in the past. Strong diurnal and weekly
patterns in network traffic make it unnatural to compare current trends against
traffic from a different time of day or day of the week. Because my queries do not
need data from the most recent 24 hours of history, the system is free to defer in-
dex loading for up to 24 hours if a sustained burst of traffic exceeds its indexing
capacity. This deferred-loading strategy is similar to that used by Chandrasekaran
and Franklin in their work on indexing archived streams [20].

Deferring indexing gives the system significant additional “headroom” to con-
sume data during such bursts, as Figure 6.15 shows. The graph in Figure 6.15 illus-
trates query throughput when indexing operations are (temporarily) disabled. As
the graph illustrates, the end-to-end system can sustain bursts in excess of 200000
flow records per second as long as the system can defer index loading until a rela-
tively quiet period in the future.

6.6.7 Timing-Accurate Playback and Latency

My next set of experiments measured the end-to-end latency of query results
over time. I wrote a program that plays back the trace at a multiple of real time, us-
ing the timestamps embedded in the trace to determine when to send flow records
to the system. I ran this program on the trace used in the previous sections’ exper-
iments, selecting speed multiples such that the average data rate was from 50 to
200 percent of the system’s measured throughput capability from the experiments
in Section 6.6.5. I measured the delay of query results by comparing the time at the
end of the window with the time at which the system produced the window’s re-
port for the user. I repeated the experiment both with the Data Triage components
of the system both enabled and disabled.

Figures 6.16 through 6.20 show the results of the experiments. Overall, when
the average data rate was 50% of the system’s capacity, the system was generally
able to return results with a delay of less than 10-15 seconds, with or without Data
Triage. However, when the average rate of data arrival was equal to the system’s
capacity, the no-triage runs of the experiment built up a persistent delay that only
gradually decreased during periods of relatively light traffic. In contrast, with Data
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Figure 6.15: End-to-end throughput at varying window sizes with Data Triage enabled
and index loading disabled. Note the logarithmic scale.
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Triage enabled, delay remained consistently below 10 seconds.

At 200% of capacity, query result delay increases continually without Data
Triage. After ten minutes of traffic at this rate, the no-triage runs of the experiment
were 5-10 minutes behind real time. Such a delay would be highly detrimental
to the efforts of administrators to find the cause of the surge in bandwidth usage.
With Data Triage enabled, however, delay remained below 10 seconds as before.

Delay when running the “dispersion” query followed the same general trend
as that of the other runs. However, the result delay with Data Triage enabled occa-
sionally reached as high as 20 seconds before dropping back below the 10-second
delay constraint. The current version of TelegraphCQ delays most of the process-
ing for each time window until the end of the window. Also, the query’s innermost
subquery specified a 100-second time window that advances at 10-second inter-
vals. The current version of TelegraphCQ recomputes query results for the entire
window each time it advances, which in this case increases the amount of work
for this subquery by a factor of 10. These factors create a significant delay between
the time a tuple enters TelegraphCQ and the time that processing triggered by the
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Figure 6.16: Measured query result latency over time for the “elephants” query. In the
tirst graph, the system was running at 50% of average capacity. The second graph shows
100% capacity, and the third graph shows 200% capacity.
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Figure 6.19: Measured query result latency over time for the “anomaly detection” query.
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Figure 6.20: Measured query result latency over time for the “dispersion” query. In the
tirst graph, the system was running at 50% of average capacity. The second graph shows
100% capacity, and the third graph shows 200% capacity.
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tuple is completed. As a result, when the Triage Scheduler begins triaging tuples,
TelegraphCQ has already buffered a large number of tuples internally, leading to
a delay before response time begins to improve.

Developers on the commercial version of TelegraphCQ are currently making
improvements that should greatly reduce this internal delay. In particular, these
developers are implementing a hash-based GROUP BY to avoid buffering an entire
window’s results, as well as efficient methods of incrementally computing query
results when the RANGE of a window clause is greater than its SLIDE.

6.6.8 Measuring the Latency-Accuracy Tradeoff

My final experiment measured the effect of the user’s choice of delay constraint
on query result accuracy. For this experiment, I used the setup from the previous
section’s experiments. First, I ran the TelegraphCQ components of the queries
without Data Triage and logged the full query answers to disk. Then I enabled all
components of the system, including the Data Triage and indexing components,
and reran the trace at a 100% average load, logging the results of the main and
shadow queries to disk. I repeated the experiment while varying the delay con-
straint from 2 seconds to 100 seconds. Afterwards, a postprocessing step measured
query result error using the same technique used in Section 6.6.2.

Figure 6.21 shows the results of this experiment. All five queries behaved sim-
ilarly as the delay constraint varied, with error decreasing as the number of tuples
the system needed to triage went down. Interestingly, the relative amounts of error
across the queries differed compared with the results in Section 6.6.2.

Whereas the earlier experiment forced the system to triage every tuple, the ex-
periment in this section “played back” the trace at a multiple of real time, allowing
the Triage Scheduler to choose which tuples to triage. In this real-time experiment,
the queries consumed data at different rates, and these rates varied depending on
the characteristics of the data itself. For example, when there were many combi-
nations of address and port in a given time window, the “portscans” query, which
computes the set of unique (address, port) combinations, slowed down by a larger
degree than the other queries. Overall, the errors across queries were closer to-
gether in the real-time experiment, indicating that the timing of triage decisions
can be as important to query result error as the quality of the query approximation
itself.
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6.7 Conclusions

The results in this chapter demonstrate that an end-to-end system that uses
Data Triage for monitoring high-speed networking data streams is feasible. They
also show that my extension Data Triage to support archival is a viable architec-
ture. I demonstrated that, without Data Triage, a network monitoring system can
bottleneck on the streaming query processor, causing significant delays in query
result generation. 11 found that overprovisioning the monitoring hardware by a
factor of 2 to 4 would keep query result latency below a 10-second threshold. With
Data Triage enabled, query result latency would stay under control, using signifi-
cantly less hardware than would be necessary to achieve the same latency without
Data Triage.
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Figure 6.21: Error of query results with Data Triage as the delay constraint varies. The
average data rate was 100% of TelegraphCQ'’s capacity. Each point represents the mean
of 5 runs of the experiment; error bars indicate standard deviation.
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Chapter 7

Conclusion

People do not like to think. If one thinks, one must reach conclusions. Conclusions are
not always pleasant.

— Helen Keller (1880 - 1968)
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Enterprise networks have been increasing in complexity while at the same time
becoming more vital to the operations of global organizations. These trends create
a need for network monitoring systems that run declarative queries and can ob-
serve the low level traffic on each network link. Unfortunately, passive network
monitoring currently requires a significant amount of processing power to keep
up with the maximum data rate of a network link, and hardware costs represent a
significant barrier to the adoption of such an infrastructure.

My approach to solving this hardware cost problem takes advantage of the
bursty nature of network traffic by using hardware provisioned for the average
data rate on the network link, which is generally at least an order of magnitude
less than the maximum rate. Of course, such a strategy requires a comprehensive
strategy for handling the overload that will inevitably occur when a burst of high-
speed network traffic exceeds the system’s capacity.

In this dissertation, I have described the principle components of such a strat-
egy:

e The Data Triage architecture, which adds a fallback mechanism based on ap-
proximate query processing to a streaming query processor.

e The Delay Constraints API and associated scheduling algorithm, which con-
trol the tradeoffs between query result delay and accuracy in the Data Triage
architecture.

e New histogram-based query approximations that allow Data Triage’s approx-
imate data path to cover an important class of network monitoring query be-
yond those that existing techniques already support.

Finally, I described a deployment study that demonstrates that my Data Triage
implementation functions properly in the context of an end-to-end monitoring sys-
tem being developed for the U.S. Department of Energy’s laboratory networks.
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Appendix A

Differential Relational Algebra

This appendix defines a set of differential operators that correspond to the relational
algebra operators (o, 7, X, —). The crux of these derivations is to capture the effects on
relational algebra expressions when tuples disappear from their base relations.
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A.l

A.2
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Selection

I define the differential selection operator 0(Syoisy, S+,5-) = (Ruoisy, R+, R-)
based on the standard selection operator o as follows:

G(Suoisys S+,S-) = (0(Snoisy), 0(S+),0(S_)). (A1)

Intuitively, the differential selection operator simply applies the conventional
selection operator to all three parts of the stream.

Projection

The definition of the differential projection operator is similar to that of the differ-
ential selection operator:

ﬁ(snoisyl S+r S—) = (H(Snoisy)r 7T(S+)/ 7-[(5—)) (AZ)

A.2.1 Duplicate Elimination

It is important to note that the differential projection operator only works prop-
erly for multisets. This is not a problem for most queries, as multiset semantics are
the default for both SQL and CQL. However, SELECT DISTINCT queries require
an additional layer of post-processing to remove duplicates. A query in the form:

select distinct <columns> from <streams> where <predicates>

must be converted into the following before the rewrites in the remainder of this
chapter can be applied:

select distinct
from (select <columns> from <streams> where <predicates>) as subquery

Then the inner subquery is rewritten, leaving the outer query to evaluate the
DISTINCT clause At runtime, each copy of a tuple in the additive noise or noisy parts
of the result “cancels out” a copy of the tuple in the subtractive noise component.




A.3 Cross Product

g |

Tnoisy L - —

7777777 -- | Sﬁoisyx-rnoiw

Figure A.1: Intuitive version of the differential cross product definition. The large square
represents the tuples in the cross-product of (S + Sy) with (T + T ), borrowing a vi-
sual metaphor from Ripple Join [46]. The smaller shaded square inside the large square
represents the cross product of the original relations S and T. The speckled square rep-
resents the cross product of these two relations after the tuples in S_ and T_ are re-
moved and the tuples in S, and T_ are added to S and T, respectively. The differen-
tial cross product computes the difference between these two cross products. Note that
Snoisy -5, =5-65_.

A.3 Cross Product

The definition of the differential cross-product operator is more complicated than
the previous two operators.

Since

Snoisy = S+ S+ — S_ (A.3)
Tnoisy =T+T1Ty -T-, (A4)
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for any relations S and T:

SXT = Snoisy X Tnoisy
- (S+ X Ty + 54 X (Tnoisy - T—i—) + (Snoisy - S—l—) X T+)
+ (S— XT_ 45X (Tnoisy - T+) + (Snoisy - S+) X T—)) :

Figure A.1 shows the intuition behind the above formula.

Accordingly, T define the differential cross product operator x as

(Snoisy/ S4,5- ) X (Tnoisy/ Ty, T—) = (Rnoisy/ Ry, R—) (A5)
where
Rnoisy = Snoisy X Tnoisy
and

Ry = 54 xTy+54x% (Tnoisy - T+) + (Snoisy - S+) x Ty

R = S XT-+S_ X (Tuisy — T+) + (Snoisy — S+) x T—).
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A.4 Join

The relational join operator is the composition of cross-product and selection. Sim-
ilarly, the differential join operator can be derived from the differential selection
and cross-product operators:

(Snoisy/ S+, S—)&(Tnoisy/ Ty, T—) =0 ((Snoisy/ S+, S—) X (Tnoisy/ T, T—)) (A6)

Substituting in the definitions of the differential selection and cross-product
operators produces the following definition:

(Snoisyr S+/ Sf)[;a(Tnoisy/ T+/ T,) = (Rnoisyr R+/ R,) (A7)
where
Rnoisy = Snoisy > Tnoisy
and

Ry = S4=xTy+541 (Tnoisy - T+) + (Snoisy - S+) > T

Ro = S_d T+ S 5< (Thoisy — Ts) + (Snoisy — S+) > T_).

141



Appendix A: Differential Relational Algebra

S\Oi sy

'-Il_qoisy

noisy

Figure A.2: Intuitive version of the definition of the differential set difference operator,
(Snoisys S+,5-) - (Thoisy, T+, T—). This operator computes a delta between (S is; — Toisy)
and (S — T), where Snoisy represents the tuples that remain in S after the query processor
drops some of its input tuples. The shaded area in the Venn Diagram on the left contains
the tuples in (Snoisy — Tnoisy), and the shaded area in the diagram on the right contains
the tuples in (S — T). The shaded regions outlined in bold in one Venn diagram are not
shaded in the other diagram.

A.5 Set Difference

The set difference operator has the interesting property that removing tuples from
one of its inputs can add tuples to its output. I model this behavior by defining the
differential set difference operator — as

(Snoisy/ S+/ S—): (Tnoisy/ T, T—) = (Rnoisy/ Ry, R—)/ (A8)
where
Rnoisy = Snoisy - Tnoisy
and
Ry = (S+ - Tnoisy) + ((T, - S+) N Snoisy)
and
R- = (S+ N T—) + ((Snoisy N T-l—) - S+) + (S— e Tnoisy)

Figure A.2 gives an intuition for this definition.
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