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Abstract

We study the rates of growth of the regret in online convex optimiza-
tion. First, we show that a simple extension of the algorithm of Hazan et
al eliminates the need for a priori knowledge of the lower bound on the
second derivatives of the observed functions. We then provide an algo-
rithm, Adaptive Online Gradient Descent, which interpolates between the
results of Zinkevich for linear functions and of Hazan et al for strongly
convex functions, achieving intermediate rates between

√
T and log T .

Furthermore, we show strong optimality of the algorithm. Finally, we
provide an extension of our results to general norms.

1 Introduction

The problem of online convex optimization can be formulated as a repeated game
between a player and an adversary. At round t, the player chooses an action
xt from some convex subset K of Rn, and then the adversary chooses a convex
loss function ft. The player aims to ensure that the total loss,

∑T
t=1 ft(xt), is

not much larger than the smallest total loss
∑T

t=1 ft(x) of any fixed action x.
The difference between the total loss and its optimal value for a fixed action is

∗Corresponding author
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known as the regret, which we denote

RT =
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

Many problems of online prediction of individual sequences can be viewed as
special cases of online convex optimization, including prediction with expert
advice, sequential probability assignment, and sequential investment [1]. A
central question in all these cases is how the regret grows with the number of
rounds of the game.

Zinkevich [2] considered the following gradient descent algorithm, with step
size ηt = Θ(1/

√
t). (Here, ΠK(v) denotes the Euclidean projection of v on to

the convex set K.)

Algorithm 1 Online Gradient Descent (OGD)
1: Initialize x1 arbitrarily.
2: for t = 1 to T do
3: Predict xt, observe ft.
4: Update xt+1 = ΠK(xt − ηt+1∇ft(xt)).
5: end for

Zinkevich showed that the regret of this algorithm grows as
√

T , where T
is the number of rounds of the game. This rate cannot be improved in general
for arbitrary convex loss functions. However, this is not the case if the loss
functions are uniformly convex, for instance, if all ft have second derivative at
least H > 0. Recently, Hazan et al [3] showed that in this case it is possible
for the regret to grow only logarithmically with T , using the same algorithm
but with the smaller step size ηt = 1/(Ht). Increasing convexity makes online
convex optimization easier.

The algorithm that achieves logarithmic regret must know in advance a
lower bound on the convexity of the loss functions, since this bound is used
to determine the step size. It is natural to ask if this is essential: is there an
algorithm that can adapt to the convexity of the loss functions and achieve the
same regret rates in both cases—O(log T ) for uniformly convex functions and
O(
√

T ) for arbitrary convex functions? In this paper, we present an adaptive
algorithm of this kind.

The key technique is regularization: We consider the online gradient de-
scent (OGD) algorithm, but we add a uniformly convex function, the quadratic
λt‖x‖2, to each loss function ft(x). This corresponds to shrinking the algo-
rithm’s actions xt towards the origin. It leads to a regret bound of the form

RT ≤ c
T∑

t=1

λt + p(λ1, . . . , λT ).

The first term on the right hand side can be viewed as a bias term; it increases
with λt because the presence of the regularization might lead the algorithm
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away from the optimum. The second term is a penalty for the flatness of the
loss functions that becomes smaller as the regularization increases. We show
that choosing the regularization coefficient λt so as to balance these two terms
in the bound on the regret up to round t is nearly optimal in a strong sense.
Not only does this choice give the

√
T and log T regret rates in the linear and

uniformly convex cases, it leads to a kind of oracle inequality: The regret is no
more than a constant factor times the bound on regret that would have been
suffered if an oracle had provided in advance the sequence of regularization
coefficients λ1, . . . , λT that minimizes the final regret bound.

To state this result precisely, we introduce the following definitions. Let K
be a convex subset of Rn and suppose that supx∈K ‖x‖ ≤ D. For simplicity,
throughout the paper we assume that K is centered around 0, and, hence, 2D
is the diameter of K. Define a shorthand ∇t = ∇ft(xt). Let Ht be the largest
value such that for any x∗ ∈ K,

ft(x∗) ≥ ft(xt) +∇>
t (x∗ − xt) +

Ht

2
‖x∗ − xt‖2. (1)

In particular, if ∇2ft−Ht ·I � 0, then the above inequality is satisfied. Further-
more, suppose ‖∇t‖ ≤ Gt. Define λ1:t :=

∑t
s=1 λs and H1:t :=

∑t
s=1 Hs. Let

H1:0 = 0. Let us now state the Adaptive Online Gradient Descent algorithm
as well as the theoretical guarantee for its performance.

Algorithm 2 Adaptive Online Gradient Descent
1: Initialize x1 arbitrarily.
2: for t = 1 to T do
3: Predict xt, observe ft.

4: Compute λt = 1
2

(√
(H1:t + λ1:t−1)

2 + 8G2
t /(3D2)− (H1:t + λ1:t−1)

)
.

5: Compute ηt+1 = (H1:t + λ1:t)
−1.

6: Update xt+1 = ΠK(xt − ηt+1(∇ft(xt) + λtxt)).
7: end for

Theorem 1.1. The regret of Algorithm 2 is bounded by

RT ≤ 3 inf
λ∗

1 ,...,λ∗
T

(
D2λ∗1:T +

T∑
t=1

(Gt + λ∗t D)2

H1:t + λ∗1:t

)
.

While Algorithm 2 is stated with the squared Euclidean norm as a regu-
larizer, we show that it is straightforward to generalize our technique to other
regularization functions that are uniformly convex with respect to other norms.
This leads to adaptive versions of the mirror descent algorithm analyzed recently
in [4, 5].
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2 Preliminary results

The following theorem gives a regret bound for the OGD algorithm with a
particular choice of step size. The virtue of the theorem is that the step size can
be set without knowledge of the uniform lower bound on Ht, which is required
in the original algorithm of [3]. The proof for arbitrary norms is provided in
Section 4 (Theorem 4.1).

Theorem 2.1. Suppose we set ηt+1 = 1
H1:t

. Then the regret of OGD is bounded
as

RT ≤ 1
2

T∑
t=1

G2
t

H1:t
.

Proof. Let us go through the proof of [3]. From Ineq. (1), we have

2(ft(xt)− ft(x∗)) ≤ 2∇T
t (xt − x∗)−Ht‖x∗ − xt‖2.

Using the expression for xt+1 in terms of xt and expanding,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2ηt+1∇T
t (xt − x∗) + η2

t+1‖∇t‖2,

which implies that

2∇T
t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2
t .

Combining,

2(ft(xt)− ft(x∗)) ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2
t −Ht‖x∗ − xt‖2.

Summing over t = 1 . . . T and collecting the terms,

2
T∑

t=1

(ft(xt)− ft(x∗)) ≤
T∑

t=1

‖xt − x∗‖2
(

1
ηt+1

− 1
ηt
−Ht

)
+

T∑
t=1

G2
t ηt+1.

We have defined ηt’s such that (1/ηt+1 − 1/ηt −Ht) = H1:t−H1:t−1−Ht = 0.
Hence,

2RT ≤
T∑

t=1

G2
t∑t

s=1 Hs

. (2)

In particular, loosening the bound,

2RT ≤ maxt G2
t

mint
1
t

∑t
s=1 Hs

log T.

4



Note that nothing prevents Ht from being negative or zero, implying that the
same algorithm gives logarithmic regret even when some of the functions are
linear or concave, as long as the partial averages 1

t

∑t
s=1 Hs are positive and

not too small. The above result already provides an important extension to the
log-regret algorithm of [3]: no prior knowledge on the uniform convexity of the
functions is needed, and the bound is in terms of the observed sequence {Ht}.
Yet, there is still a problem with the algorithm. If H1 > 0 and Ht = 0 for all
t > 1, then

∑t
s=1 Hs = H1, resulting in a linear regret bound. However, we

know from [2] that a O(
√

T ) bound can be obtained. In the next section we
provide an algorithm which interpolates between O(log T ) and O(

√
T ) bound

on the regret depending on the curvature of the observed functions.

3 Adaptive Regularization

Suppose the environment plays a sequence of ft’s with curvature Ht ≥ 0. Instead
of performing gradient descent on these functions, we step in the direction of
the gradient of f̃t(x) = ft(x) + 1

2λt‖x‖2, where the regularization parameter
λt ≥ 0 is chosen appropriately at each step as a function of the curvature of
the previous functions. We remind the reader that K is assumed to be centered
around the origin, for otherwise we would instead use ‖x − x0‖2 to shrink the
actions xt towards the origin x0. Applying Theorem 2.1, we obtain the following
result.

Theorem 3.1. If the Online Gradient Descent algorithm is performed on the
functions f̃t(x) = ft(x) + 1

2λt‖x‖2 with

ηt+1 =
1

H1:t + λ1:t

for any sequence of non-negative λ1, . . . , λT , then

RT ≤ 1
2
D2λ1:T +

1
2

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t
.

Proof. By Theorem 2.1 applied to functions f̃t,

T∑
t=1

(
ft(xt) +

1
2
λt‖xt‖2

)
≤ min

x

(
T∑

t=1

ft(x) +
1
2
λt‖x‖2

)
+

1
2

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t
.

Indeed, it is easy to verify that condition (1) for ft implies the corresponding
statement with H̃t = Ht + λt for f̃t. Furthermore, by linearity, the bound on
the gradient of f̃t is Gt + λt‖xt‖ ≤ Gt + λtD. Define x∗ = arg minx

∑T
t=1 ft(x).

Then, dropping the ‖xt‖2 terms and bounding ‖x∗‖2 ≤ D2,

T∑
t=1

ft(xt) ≤
T∑

t=1

ft(x∗) +
1
2
D2λ1:T +

1
2

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t
,

which proves the the theorem.
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The following inequality is important in the rest of the analysis, as it allows
us to remove the dependence on λt from the numerator of the second sum at
the expense of increased constants. We have

1
2

(
D2λ1:T +

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t

)
(3)

≤ 1
2
D2λ1:T +

1
2

T∑
t=1

(
2G2

t

H1:t + λ1:t
+

2λ2
t D

2

H1:t + λ1:t−1 + λt

)

≤ 3
2
D2λ1:T +

T∑
t=1

G2
t

H1:t + λ1:t
, (4)

where the first inequality holds because (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R.
It turns out that for appropriate choices of {λt}, the above theorem recovers

the O(
√

T ) bound on the regret for linear functions [2] and the O(log T ) bound
for strongly convex functions [3]. Moreover, under specific assumptions on the
sequence {Ht}, we can define a sequence {λt} which produces intermediate rates
between log T and

√
T . These results are exhibited in corollaries at the end of

this section.
Of course, it would be nice to be able to choose {λt} adaptively without any

restrictive assumptions on {Ht}. Somewhat surprisingly, such a choice can be
made near-optimally by simple local balancing. Observe that the upper bound
of Eq. (3) consists of two sums: D2

∑T
t=1 λt and

∑T
t=1

G2
t

H1:t+λ1:t
. The first sum

increases in any particular λt and the other decreases. While the influence of
the regularization parameters λt on the first sum is trivial, the influence on the
second sum is more involved as all terms for t ≥ t′ depend on λt′ . Nevertheless,
it turns out that a simple choice of λt is optimal to within a multiplicative factor
of 2. This is exhibited by the next lemma.

Lemma 3.1. Define

HT ({λt}) = HT (λ1 . . . λT ) = λ1:T +
T∑

t=1

Ct

H1:t + λ1:t
,

where Ct ≥ 0 does not depend on λt’s. If λt satisfies λt = Ct

H1:t+λ1:t
for t =

1, . . . , T , then
HT ({λt}) ≤ 2 inf

{λ∗
t }≥0

HT ({λ∗t }).

Proof. We prove this by induction. Let {λ∗t } be the optimal sequence of non-
negative regularization coefficients. The base of the induction is proved by
considering two possibilities: either λ1 < λ∗1 or not. In the first case, λ1 +
Ct/(H1 + λ1) = 2λ1 ≤ 2λ∗1 ≤ 2(λ∗1 + Ct/(H1 + λ∗1)). The other case is proved
similarly.

Now, suppose
HT−1({λt}) ≤ 2HT−1({λ∗t }).
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Consider two possibilities. If λ1:T < λ∗1:T , then

HT ({λt}) = λ1:T +
T∑

t=1

Ct

H1:t + λ1:t
= 2λ1:T ≤ 2λ∗1:T ≤ 2HT ({λ∗t }).

If, on the other hand, λ1:T ≥ λ∗1:T , then

λT +
Ct

H1:T + λ1:T
= 2

Ct

H1:T + λ1:T
≤ 2

Ct

H1:T + λ∗1:T
≤ 2

(
λ∗T +

Ct

H1:T + λ∗1:T

)
.

Using the inductive assumption, we obtain

HT ({λt}) ≤ 2HT ({λ∗t }).

The lemma above is the key to the proof of the near-optimal bounds for
Algorithm 2 1.

Proof. (of Theorem 1.1)
By Eq. 3 and Lemma 3.1,

RT ≤ 3
2
D2λ1:T +

T∑
t=1

G2
t

H1:t + λ1:t

≤ inf
λ∗

1 ,...,λ∗
T

(
3D2λ∗1:T + 2

T∑
t=1

G2
t

H1:t + λ∗1:t

)

≤ 6 inf
λ∗

1 ,...,λ∗
T

(
1
2
D2λ∗1:T +

1
2

T∑
t=1

(Gt + λ∗t D)2

H1:t + λ∗1:t

)
,

provided the λt are chosen as solutions to

3
2
D2λt =

G2
t

H1:t + λ1:t−1 + λt
. (5)

It is easy to verify that

λt =
1
2

(√
(H1:t + λ1:t−1)

2 + 8G2
t /(3D2)− (H1:t + λ1:t−1)

)
is the non-negative root of the above quadratic equation. We note that division
by zero in Algorithm 2 occurs only if λ1 = H1 = G1 = 0. Without loss of
generality, G1 6= 0, for otherwise x1 is minimizing f1(x) and regret is negative
on that round.

1Lemma 3.1 effectively describes an algorithm for an online problem with competitive ratio
of 2. In the full version of this paper we give a lower bound strictly larger than one on the
competitive ratio achievable by any online algorithm for this problem.
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Hence, the algorithm has a bound on the performance which is 6 times the
bound obtained by the best offline adaptive choice of regularization coefficients.
While the constant 6 might not be optimal, it can be shown that a constant
strictly larger than one is unavoidable (see previous footnote).

We also remark that if the diameter D is unknown, the regularization coef-
ficients λt can still be chosen by balancing as in Eq. (5), except without the D2

term. This choice of λt, however, increases the bound on the regret suffered by
Algorithm 2 by a factor of O(D2).

Let us now consider some special cases and show that Theorem 1.1 not only
recovers the rate of increase of regret of [3] and [2], but also provides intermediate
rates. For each of these special cases, we provide a sequence of {λt} which
achieves the desired rates. Since Theorem 1.1 guarantees that Algorithm 2 is
competitive with the best choice of the parameters, we conclude that Algorithm
2 achieves the same rates.

Corollary 3.1. Suppose Gt ≤ G for all 1 ≤ t ≤ T . Then for any sequence of
convex functions {ft}, the bound on regret of Algorithm 2 is O(

√
T ).

Proof. Let λ1 =
√

T and λt = 0 for 1 < t ≤ T . By Eq. 3,

1
2

(
D2λ1:T +

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t

)
≤ 3

2
D2λ1:T +

T∑
t=1

G2
t

H1:t + λ1:t

≤ 3
2
D2
√

T +
T∑

t=1

G2

√
T

=
(

3
2
D2 + G2

)√
T .

Hence, the regret of Algorithm 2 can never increase faster than
√

T . We
now consider the assumptions of [3].

Corollary 3.2. Suppose Ht ≥ H > 0 and G2
t < G for all 1 ≤ t ≤ T . Then the

bound on regret of Algorithm 2 is O(log T ).

Proof. Set λt = 0 for all t. It holds that RT ≤ 1
2

∑T
t=1

G2
t

H1:t
≤ 1

2

∑T
t=1

G
tH ≤

G
2H (log T + 1).

The above proof also recovers the result of Theorem 2.1. The following
Corollary shows a spectrum of rates under assumptions on the curvature of
functions.

Corollary 3.3. Suppose Ht = t−α and Gt ≤ G for all 1 ≤ t ≤ T .

1. If α = 0, then RT = O(log T ).

2. If α > 1/2, then RT = O(
√

T ).

3. If 0 < α ≤ 1/2, then RT = O(Tα).
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Proof. The first two cases follow immediately from Corollaries 3.1 and 3.2. For
the third case, let λ1 = Tα and λt = 0 for 1 < t ≤ T . Note that

∑t
s=1 Hs ≥∫ t−1

x=0
(x + 1)−αdx = (1− α)−1t1−α − (1− α)−1. Hence,

1
2

(
D2λ1:T +

T∑
t=1

(Gt + λtD)2

H1:t + λ1:t

)
≤ 3

2
D2λ1:T +

T∑
t=1

G2
t

H1:t + λ1:t

≤ 2D2Tα + G2(1− α)
T∑

t=1

1
t1−α − 1

≤ 2D2Tα + 2G2 1
α

Tα + O(1) = O(Tα).

4 Generalization to different norms

The original online gradient descent (OGD) algorithm as analyzed by Zinkevich
[2] used the Euclidean distance of the current point from the optimum as a
potential function. The logarithmic regret bounds of [3] for strongly convex
functions were also stated for the Euclidean norm, and such was the presentation
above. However, as observed by Shalev-Shwartz and Singer in [5], the proof
technique of [3] extends to arbitrary norms. As such, our results above for
adaptive regularization carry on to the general setting, as we state below . Our
notation follows that of Gentile and Warmuth [6].

Definition 4.1. A function g over a convex set K is called H-strongly convex
with respect to a convex function h if

∀x, y ∈ K . g(x) ≥ g(y) +∇g(y)>(x− y) +
H

2
Bh(x, y).

Here Bh(x, y) is the Bregman divergence with respect to the function h, defined
as

Bh(x, y) = h(x)− h(y)−∇h(y)>(x− y).

This notion of strong convexity generalizes the Euclidean notion: the func-
tion g(x) = ‖x‖22 is strongly convex with respect to h(x) = ‖x‖22 (in this case
Bh(x, y) = ‖x− y‖22). More generally, the Bregman divergence can be thought
of as a squared norm, not necessarily Euclidean, i.e., Bh(x, y) = ‖x − y‖2.
Henceforth we also refer to the dual norm of a given norm, defined by ‖y‖∗ =
sup‖x‖≤1{y>x}. For the case of `p norms, we have ‖y‖∗ = ‖y‖q where q satisfies
1
p + 1

q = 1, and by Hölder’s inequality y>x ≤ ‖y‖∗‖x‖ ≤ 1
2‖y‖

2
∗ + 1

2‖x‖
2 (this

holds for norms other than `p as well).
For simplicity, the reader may think of the functions g, h as convex and dif-

ferentiable2. The following algorithm is a generalization of the OGD algorithm
2Since the set of points of nondifferentiability of convex functions has measure zero, convex-
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to general strongly convex functions (see the derivation in [6]). In this extended
abstract we state the update rule implicitly, leaving the issues of efficient com-
putation for the full version (these issues are orthogonal to our discussion, and
were addressed in [6] for a variety of functions h).

Algorithm 3 General-Norm Online Gradient Descent
1: Input: convex function h
2: Initialize x1 arbitrarily.
3: for t = 1 to T do
4: Predict xt, observe ft.
5: Compute ηt+1 and let yt+1 be such that ∇h(yt+1) = ∇h(xt) −

2ηt+1∇ft(xt).
6: Let xt+1 = arg minx∈K Bh(x, yt+1) be the projection of yt+1 onto K.
7: end for

The methods of the previous sections can now be used to derive similar,
dynamically optimal, bounds on the regret. As a first step, let us generalize the
bound of [3], as well as Theorem 2.1, to general norms:

Theorem 4.1. Suppose that, for each t, ft is a Ht-strongly convex function
with respect to h, and let h be such that Bh(x, y) ≥ ‖x−y‖2 for some norm ‖·‖.
Let ‖∇ft(xt)‖∗ ≤ Gt for all t. Applying the General-Norm Online Gradient
Algorithm with ηt+1 = 1

H1:t
, we have

RT ≤ 1
2

T∑
t=1

G2
t

H1:t
.

Proof. The proof follows [3], with the Bregman divergence replacing the Eu-
clidean distance as a potential function. By assumption on the functions ft, for
any x∗ ∈ K,

ft(xt)− ft(x∗) ≤ ∇ft(xt)>(xt − x∗)− Ht

2
Bh(x∗, xt).

By a well-known property of Bregman divergences (see [6]), it holds that for
any vectors x, y, z,

(x− y)>(∇h(z)−∇h(y)) = Bh(x, y)−Bh(x, z) + Bh(y, z).

ity is the only property that we require. Indeed, for nondifferentiable functions, the algorithm
would choose a point x̃t, which is xt with the addition of a small random perturbation. With
probability one, the functions would be smooth at the perturbed point, and the perturbation
could be made arbitrarily small so that the regret rate would not be affected.
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Combining both observations,

2(ft(xt)− ft(x∗)) ≤ 2∇ft(xt)>(xt − x∗)−HtBh(x∗, xt)

=
1

ηt+1
(∇h(yt+1)−∇h(xt))>(x∗ − xt)−HtBh(x∗, xt)

=
1

ηt+1
[Bh(x∗, xt)−Bh(x∗, yt+1) + Bh(xt, yt+1)]−HtBh(x∗, xt)

≤ 1
ηt+1

[Bh(x∗, xt)−Bh(x∗, xt+1) + Bh(xt, yt+1)]−HtBh(x∗, xt),

where the last inequality follows from the Pythagorean Theorem for Bregman
divergences [6], as xt+1 is the projection w.r.t the Bregman divergence of yt+1

and x∗ ∈ K is in the convex set. Summing over all iterations and recalling that
ηt+1 = 1

H1:t
,

2RT ≤
T∑

t=2

Bh(x∗, xt)
(

1
ηt+1

− 1
ηt
−Ht

)
+ Bh(x∗, x1)

(
1
η2
−H1

)

+
T∑

t=1

1
ηt+1

Bh(xt, yt+1)

=
T∑

t=1

1
ηt+1

Bh(xt, yt+1). (6)

We proceed to bound Bh(xt, yt+1). By definition of Bregman divergence,
and the dual norm inequality stated before,

Bh(xt, yt+1) + Bh(yt+1, xt) = (∇h(xt)−∇h(yt+1))>(xt − yt+1)

= 2ηt+1∇ft(xt)>(xt − yt+1)

≤ η2
t+1‖∇t‖2∗ + ‖xt − yt+1‖2.

Thus, by our assumption Bh(x, y) ≥ ‖x− y‖2, we have

Bh(xt, yt+1) ≤ η2
t+1‖∇t‖2∗ + ‖xt − yt+1‖2 −Bh(yt+1, xt) ≤ η2

t+1‖∇t‖2∗.

Plugging back into Eq. (6) we get

RT ≤ 1
2

T∑
t=1

ηt+1G
2
t =

1
2

T∑
t=1

G2
t

H1:t
.

The generalization of our technique is now straightforward. Let A2 =
supx∈K g(x) and 2B = supx∈K ‖∇g(x)‖∗. The following algorithm is an ana-
logue of Algorithm 2 and Theorem 4.2 is the analogue of Theorem 1.1 for general
norms.
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Algorithm 4 Adaptive General-Norm Online Gradient Descent
1: Initialize x1 arbitrarily. Let g(x) be 1-strongly convex with respect to the

convex function h.
2: for t = 1 to T do
3: Predict xt, observe ft

4: Compute λt = 1
2

(√
(H1:t + λ1:t−1)

2 + 8G2
t /(A2 + 2B2)− (H1:t + λ1:t−1)

)
.

5: Compute ηt+1 = (H1:t + λ1:t)
−1.

6: Let yt+1 be such that ∇h(yt+1) = ∇h(xt)− 2ηt+1(∇ft(xt) + λt

2 ∇g(xt))).
7: Let xt+1 = arg minx∈K Bh(x, yt+1) be the projection of yt+1 onto K.
8: end for

Theorem 4.2. Suppose that each ft is a Ht-strongly convex function with re-
spect to h, and let g be a 1-strongly convex with respect h. Let h be such that
Bh(x, y) ≥ ‖x − y‖2 for some norm ‖ · ‖. Let ‖∇ft(xt)‖∗ ≤ Gt. The regret of
Algorithm 4 is bounded by

RT ≤ inf
λ∗

1 ,...,λ∗
T

(
(A2 + 2B2)λ∗1:T +

T∑
t=1

(Gt + λ∗t B)2

H1:t + λ∗1:t

)
.

If the norm in the above theorem is the Euclidean norm and g(x) = ‖x‖2,
we find that D = supx∈K ‖x‖ = A = B and recover the results of Theorem 1.1.
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