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VOLUME 3

PTOLEMY II DOMAINS

This volume describes Ptolemy II domains. The domains implement models of computation, which are
summarized in chapter 1. Most of these models of computation can be viewed as a framework for com-
ponent-based design, where the framework defines the interaction mechanism between the compo-
nents. Some of the domains (CSP, DDE, and PN) are thread-oriented, meaning that the components
implement Java threads. These can be viewed, therefore, as abstractions upon which to build threaded
Java programs. These abstractions are much easier to use (much higher level) than the raw threads and
monitors of Java. Others (CT, DE, SDF) of the domains implement their own scheduling between
actors, rather than relying on threads. This usually results in much more efficient execution. The Giotto
domain, which addresses real-time computation, is not threaded, but has concurrency features similar
to threaded domains. The FSM domain is in a category by itself, since in it, the components are not
producers and consumers of data, but rather are states. The non-threaded domains are described first,
followed by FSM and Giotto, then the threaded domains followed by two newer domains, HDF and
DDF.

Volume 1 is an introduction to Ptolemy II, including tutorials on use of the software, and volume 2
describes the Ptolemy II software architecture.
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1 
DE Domain

Authors: Adam Cataldo
Edward A. Lee
Lukito Muliadi
Winthrop Williams
Haiyang Zheng

1.1  Introduction

The discrete-event (DE) domain supports time-oriented models of systems such as queueing sys-
tems, communication networks, and digital hardware. In this domain, actors communicate by sending
events, where an event is a data value (a token) and a tag, which contains a time stamp and microstep.
The microstep is used to sort simultaneous events, that is, events with the same time stamp. Formally,
a tag , where  is a real number representing the time stamp and  is natural number repre-
senting the microstep.

A DE scheduler ensures that events are processed chronologically according to this time stamp by
firing those actors whose available input events are the oldest (having the earliest time stamp of all
pending events). Thus, all DE actors are assumed to be causal. Informally, a DE actor is causal if any
output event with tag  depends only on input events with tags earlier than or equal to . A tag 
is earlier than tag  if  or if  and . See [27] for a mathematical definition.

A key strength in our implementation is that simultaneous events (those with identical time
stamps) are handled systematically and deterministically. Another strength is that the global event
queue uses an efficient structure that minimizes the overhead associated with maintaining a sorted list
with a large number of events.

1.1.1  Model Time

In the DE model of computation, time is global, in the sense that all actors share the same global
time stamp and microstep. The current time and current microstep of the model are advanced by the

t τ n,( )= τ n

t t τ1 n1,( )
τ2 n2,( ) τ1 τ2< τ1 τ2= n1 n2<
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DE director. The current time of the model is often called the model time or simulation time to avoid
confusion with current real time.

As in most Ptolemy II domains, actors communicate by sending tokens through ports. Ports can be
input ports, output ports, or both. Tokens are sent by an output port and received by all input ports con-
nected to the output port through relations. When a token is sent from an output port, it is packaged as
an event and stored in a global event queue. When an actor does not specify the time stamp of an out-
put, the time of the event is the model time and its microstep is the current microstep. Specialized DE
actors can produce events with future time stamps. In the current implementation, only the DE director
can advance the time stamp. Also the microstep can only be advanced by the DE director.

Actors may request that they be fired now, or at some time in the future, by calling the fireAt()
method of the director. This places a pure event (one with a time stamp and a microstep, but no data)
on the event queue at the time which is given as a parameter to the fireAt() method. This time must be
greater than or equal to the current time. A pure event can be thought of as setting an alarm clock to be
awakened in the future. Sources (actors with no inputs) are thus able to be fired despite having no
inputs to trigger a firing of the whole model. Moreover, actors that introduce delay (outputs have larger
time stamps than the inputs) can use this mechanism to schedule a firing in the future to produce an
output. For convenience, the director has a fireAtCurrentTime() method, which calls fireAt() with the
model time as a parameter. This permits I/O actors to have themselves fired in real-time whenever data
arrives at a physical I/O port. When the fireAtCurrentTime() method is called, the actor will be fired at
the next microstep. Also for convenience, the director provides a fireAtRelativeTime(). Note that
fireAt() cannot take as a parameter a time earlier than the model time.

In the global event queue, events are sorted based on their tags, including time stamps and
microsteps, and depths (explained in the next section). An event is removed from the global event
queue when the model time reaches its time stamp, and if it has a data token, then that token is put into
the destination input port.

At any point in the execution of a model, the events stored in the global event queue have time
stamps greater than or equal to the model time. The DE director is responsible for advancing (i.e.
incrementing) the model time when all events with time stamps equal to the current model time have
been processed (i.e. the global event queue only contains events with time stamps strictly greater than
the current time). The current time is advanced to the smallest time stamp of all events in the global
event queue.

1.1.2  Simultaneous events

An important aspect of a DE domain is the prioritizing of simultaneous events. This gives the
domain a dataflow-like behavior for events with identical tags. It is done by assigning a depth to each
actor and a microstep to each phase of execution within a given time stamp. Each depth is a non-nega-
tive integer, uniquely assigned; i.e. no two actors are assigned the same depth.

The depth of an actor determines the priority of events destined to that actor, relative to other
events with the same time stamp and the same microstep. The highest priority events are those destined
to actors with the lowest depth.

Consider the simple topology shown in figure 1.1. Assume that actor Y is not a delay actor, mean-
ing that its output events have the same time stamp and microstep as its input events (this is suggested
by the dotted arrow). Suppose that actor X produces an event with time stamp . That event is avail-
able at ports B and D, so the scheduler could choose to fire actors Y or Z. Which should it fire? Intu-
ition tells us it should fire the upstream one first, Y, because that firing may produce another event with

τ
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time stamp  at port D (which is presumably a multiport). It seems logical that if actor Z is going to get
one event on each input channel with the same time stamp, then it should see those events in the same
firing. Thus, if there are simultaneous events at B and D, then the one at B will have higher priority.

The depths are determined by a topological sort of a directed acyclic graph (DAG) of the actors.
The DAG of actors follows the topology of the graph, except when there are declared delays. Once the
DAG is constructed, it is sorted topologically. This simply means that an ordering of actors is assigned
such that an upstream actor in the DAG is earlier in the ordering than a downstream actor. The depth of
an actor is defined to be its position in this topological sort, starting with zero. For example, in figure
1.1, X will have depth 0, Y will have depth 1, and Z will have depth 2.

In general, a DAG has several correct topological sorts. The topological sort is not unique, mean-
ing that the depths assigned to actors are somewhat arbitrary. But an upstream actor will always have a
lower depth than a downstream actor, unless there is an intervening delay actor. Thus, given simulta-
neous input events with the same microstep, an upstream actor will always fire before a downstream
actor. Such a strategy ensures that the execution is deterministic, assuming the actors only communi-
cate via events. In other words, even though there are several possible choices that a scheduler could
make for an ordering of firings, all choices that respect the priorities yield the same results.

There are situations where constructing a DAG following the topology is not possible. Consider
the topology shown in figure 1.2. It is evident from the figure that the topology is not acyclic. Indeed,
figure 1.2 depicts a zero-delay loop where topological sort cannot be done. The director will refuse to
run the model, and will terminate with an error message.

The TimedDelay actor in DE is a domain-specific actor that asserts a delay relationship between
its input and output. Thus, if we insert a TimedDelay actor in the loop, as shown in figure 1.3, then
constructing the DAG becomes once again possible. The TimedDelay actor breaks the precedences.
Below we will explain how you can write custom actors that have the same property.

Note in particular that the TimedDelay actor breaks the precedences even if its delay parameter is
set to zero. Thus, the DE domain is perfectly capable of modeling feedback loops with zero time delay,
but the model builder has to specify the order in which events should be processed by placing a Timed-
Delay actor with a zero value for its parameter. Note that a time delay of 0.0 time will still advance the
microstep by one.

FIGURE 1.1.  If there are simultaneous events at B and D, then the one at B will have higher priority because 
it may trigger another simultaneous event at D.

X A

Y CB

ZD

τ

FIGURE 1.2.  An example of a directed zero-delay loop.
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1.1.3  Iteration

At each iteration, after advancing the current tag, the director chooses all events in the global event
queue that have the smallest time stamps, microstep, and depth (tested in that order). If two events
have the same time stamp, microstep, and depth, they are destined to the same actor, since the depth is
unique for each actor. These events are ordered by the order in which they are produced. The chosen
events are then removed from the global event queue and their data tokens are inserted into the appro-
priate input ports of the destination actor. Then, the director iterates the destination actor; i.e. it invokes
prefire(), fire(), and postfire(). The director will keep iterating the destination actor until there are no
events in its input ports or its prefire() method returns false.

A firing of an actor may produce additional events at the current model time and the current
microstep (the actor reacts instantaneously, or has zero delay), which are pending on the event queue.
The DE director repeats the above procedure until there are no more events with their time stamp and
microstep equal to the current tag. This concludes one iteration of the model. An iteration, therefore,
processes all events on the event queue with the smallest tag.

1.1.4  Starting a Model

Before one of the iterations described above can be run, there have to be initial events in the global
event queue. Actors may produce initial pure events or regular output events in their initialize()
method. A model starts when at least one actor must produce events. All the domain-polymorphic
timed sources described in the Actor Libraries chapter produce pure events, so these can be used in
DE. We can define the start time to be the smallest time stamp of these initial events.

1.1.5  Pure Events at the Current Time

An actor calls fireAt() to schedule a pure event. The pure event is a request to the scheduler to fire
the actor sometime in the future. However, the actor may choose to call fireAt() with the time argu-
ment equal to the current time. In fact, the preferred method for domain-polymorphic source actors to
get started is to have code like the following in their initialize() method:

Director director = getDirector();
director.fireAt(this, director.getModelTime());

This will schedule a pure event on the event queue with microstep zero and depth equal to that of the
calling actor.

An actor may also call fireAt() with the current time in its fire() method. This is a request to be
refired later in the current iteration. This is managed by queueing a pure event with microstep one

FIGURE 1.3.  A Delay actor can be used to break a zero-delay loop.
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greater than the current microstep. In fact, this is the only situation in which the microstep is incre-
mented beyond zero.

A pure event at the current time can also be scheduled by code like the following:

Director director = getDirector();
director.fireAtCurrentTime(this);

This code is equivalent to the previous example when used within standard actor methods like ini-
tialize() and fire(). This is because the director never advances model time while an actor is being ini-
tialized or fired. However, when methods (such as an I/O callback) queue events at the current time,
they need to use the latter code. This is because the director runs in a separate thread from the callback
and, in the former code, will occasionally advance the model time between the call to getModelTime()
and the call to fireAt().

1.1.6  Stopping Execution

Execution stops when one of these conditions becomes true:
• The global event queue becomes empty and the stopWhenQueueIsEmpty parameter of the director 

is true.
• No matter whether the stopWhenQueueIsEmpty parameter is true or false, when the current model 

time reaches the stop time (set by calling the setStopTime() method of the DE director) and there 
are no events with time stamp equal to the current model time.

Events at the stop time are processed before stopping the model execution. The execution ends by call-
ing the wrapup() method of all actors. Wrapup() is called even when execution has been stopped due to
an exception. Therefore, throwing an exception in the wrapup() method of an actor is not recom-
mended as this exception will mask the original exception, making the source of the original exception
difficult to locate.

It is also possible to explicitly invoke the iterate() method of the manager for some fixed number
of iterations. Recall that an iteration processes all events with the same tag, so this will run the model
through a specified number of discrete time steps and microsteps.

Note that an actor can prevent execution from stopping properly if it blocks in its fire() method. An
actor which blocks in fire() should have a stopFire() method which, when called, notifies the fire()
method to cease blocking and return.

1.2  Overview of The Software Architecture

The UML static structure diagram for the DE kernel package is shown in figure 1.4. For model
builders, the important class is DEDirector. At the heart of DEDirector is a global event queue that
sorts events according to their time stamps, microsteps, and depths (priorities).

The DEDirector uses an efficient implementation of the global event queue, a calendar queue data
structure [21]. In theory, the time complexity for this particular implementation is O(1) in both
enqueue and dequeue operations. This means that the time complexity for enqueue and dequeue oper-
ations is independent of the number of pending events in the global event queue. However, to realize
this performance, it is necessary for the distribution of events to match certain assumptions. Our calen-
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FIGURE 1.4.  UML static structure diagram for the DE kernel package.

DEDirector

+DEDirector()
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dar queue implementation observes events as they are dequeued and adapts the structure of the queue
according to their statistical properties. Nonetheless, the calendar queue structure will not prove opti-
mal for all models. For extensibility, alternative implementations of the global event queue can be real-
ized by implementing the DEEventQueue interface and specifying the event queue using the
appropriate constructor for DEDirector.

The DEEvent class carries tokens through the event queue. It contains their time stamp, their
microstep, and the depth of the destination actor, as well as a reference to the destination actor. It
implements the java.lang.Comparable interface, meaning that any two instances of DEEvent can be
compared. The private inner class DECQEventQueue.DECQComparator, which is provided to the cal-
endar queue at the time of its construction, performs the requisite comparisons of events.

1.3  The DE Actor Library

The DE domain has a small library of actors in the ptolemy.domains.de.lib package, shown in fig-
ure 1.5. The DETransformer base class for actors provides an input and output port. The TimedDelay
and Server actors influence the firing priorities as explained below by specifying function dependen-
cies. The Merge actor merges events sequences in chronological order.

1.4  Mutations

 The DE director tolerates changes to the model during execution. The change should be queued
using requestChange(). While invoking those changes, the method invalidateSchedule() is expected to
be called, notifying the director that the topology it used to calculate the priorities of the actors is no
longer valid. This will result in the priorities being recalculated the next time prefire() is invoked.

An example of a mutation is shown in figures 1.6. Figure 1.7 defines a class that constructs a sim-
ple model in its constructor. The model consists of a clock connected to a recorder. The method insert-
Clock() creates an anonymous inner class that extends ChangeRequest1. Its execute() method
disconnects the two existing actors, creates a new clock and a merge actor, and reconnects the actors as
shown in figure 1.6.

When the insertClock() method is called, a change request is queued with the top-level composite
actor, which delegates the request to the manager. The manager executes the request after the current
iteration completes. Thus, the change will always be executed between non-equal time stamps, since
an iteration consists of processing all events at the current time stamp.

Actors that are added in the change request are automatically initialized. Note, however, one sub-
tlety. The next to last line of the insertClock() method is:

_rec.input.createReceivers();

This method call is necessary because the connections of the recorder actor have changed, but since the
actor is not new, it will not be reinitialized. Recall that the preinitialize() and initialize() methods are

1. Often a more convenient way to generate mutations is to construct a MoML description of the mutation and 
issue a MoMLChangeRequest. We are describing here a more direct, low-level mechanism. Note that if you are 
using actor-oriented classes, you may need to modify this example to propagate the changes from a class defini-
tion to instances and/or subclasses, if the changes are made to a class definition. If you use MoML, the propaga-
tion is handled for you by the MoML parser.



8 Ptolemy II

DE Domain

FIGURE 1.5.  The library of DE-specific actors.
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guaranteed to be called only once, and one of the responsibilities of the preinitialize() method is to cre-
ate the receivers in all the input ports of an actor. Thus, whenever connections to an input port change
during a mutation, the mutation code itself must call createReceivers() to reconstruct the receivers.
Note that this will result in the loss of any tokens that might already be queued in the preexisting
receivers of the ports. It is because of this possible loss of data that the creation of receivers is not done
automatically. The designer of the mutation should be aware of the possible loss of data.

There is an additional subtlety about mutations. If an actor locks a resource, such as an I/O port or
DatagramSocket, it typically releases this resource in its wrapup() method. However, when the actor is
removed while the model is executing, wrapup() never gets called. This case can be handled by over-
riding the setContainer() method with the following code:

public void setContainer(CompositeEntity container) 
throws IllegalActionException, NameDuplicationException {

if (container != getContainer()) {
wrapup();

}
super.setContainer(container);

}

When overriding setContainer() in this way, it is best to make wrapup() idem potent because future
implementations of the director might automatically unlock resources of removed actors.

1.5  Writing DE Actors

It is very common in DE modeling to include custom-built actors. No pre-defined actor library
seems to prove sufficient for all applications. For the most part, writing actors for the DE domain is no
different than writing actors for any other domain. Some actors, however, need to exercise particular
control over time stamps and actor priorities. The first section below gives general guidelines for writ-
ing DE actors and domain-polymorphic actors that work in DE. The second section explains in detail
the priorities, and in particular, how to write actors that implement delays. The final section discusses
actors that operate as a Java thread.

1.5.1  General Guidelines

The points to keep in mind are:

FIGURE 1.6.  Topology before and after mutation for the example in figure 1.7.
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package ptolemy.domains.de.lib.test;

import ptolemy.kernel.util.*;
import ptolemy.kernel.*;
import ptolemy.actor.*;
import ptolemy.actor.lib.*;
import ptolemy.domains.de.kernel.*;
import ptolemy.domains.de.lib.*;

public class Mutate {

    public Manager manager;

    private Recorder _rec;
    private Clock _clock;
    private TypedCompositeActor _top;
    private DEDirector _director;

    public Mutate() throws IllegalActionException,
            NameDuplicationException { 

_top = new TypedCompositeActor();
_top.setName("top");
manager = new Manager();
_director = new DEDirector();
_top.setDirector(_director);
_top.setManager(manager);

_clock = new Clock(_top, "clock");
_clock.values.setExpression("[1.0]");
_clock.offsets.setExpression("[0.0]");
_clock.period.setExpression("1.0");
_rec = new Recorder(_top, "recorder");
_top.connect(_clock.output, _rec.input);

    }

    public void insertClock() {
// Create an anonymous inner class
ChangeRequest change = new ChangeRequest(_top, "test2") {

public void _execute() throws IllegalActionException,
NameDuplicationException {

_clock.output.unlinkAll();
_rec.input.unlinkAll();
Clock clock2 = new Clock(_top, "clock2");
clock2.values.setExpression("[2.0]");
clock2.offsets.setExpression("[0.5]");
clock2.period.setExpression("2.0");
Merge merge = new Merge(_top, "merge");
_top.connect(_clock.output, merge.input);
_top.connect(clock2.output, merge.input);
_top.connect(merge.output, _rec.input);
// Any pre-existing input port whose connections
// are modified needs to have this method called.
_rec.input.createReceivers();
_director.invalidateSchedule();

}
};
_top.requestChange(change);

    }
}

FIGURE 1.7.  An example of a class that constructs a model and then mutates it.
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• When an actor fires, not all ports have tokens, and some ports may have more than one token. The 
time stamps of the events that contained these tokens are no longer explicitly available. The cur-
rent model time (obtained by the getModelTime() method of the director) is assumed to be the 
time stamp of the events.

• If the actor leaves unconsumed tokens on its input ports, then it will be iterated again before model 
time is advanced. This ensures that the current model time is in fact the time stamp of the input 
events. However, occasionally, an actor will want to leave unconsumed tokens on its input ports, 
and not be fired again until there is some other new event to be processed. To get this behavior, it 
should return false from prefire(). This indicates to the DE director that it does not wish to be iter-
ated. If an actor’s output depends on the time stamp of a token with earlier time stamp, it should 
not leave unconsumed tokens. Instead, it should consume them and store the event and time stamp 
as a state for future firings.

• If the actor returns false from postfire(), then the director will not fire that actor again. Events that 
are destined for that actor are discarded.

• When an actor produces an output token, the time stamp for the output event is taken to be the cur-
rent model time. If the actor wishes to produce an event at a future model time, it needs to call the 
director’s fireAt() method to schedule a future firing, and then to produce the token at that time. 

• If an actor contains a callback method or a private thread and this callback or thread wishes to pro-
duce an event now or at a future model time, then a reliable way to achieve this is to call either the 
fireAtCurrentTime() method or the fireAtRelativeTime() method. These methods may safely be 
called asynchronously, yielding real-time liveness. By contrast, fireAt() must be called from 
within the director thread that calls standard actor methods such as prefire(), fire(), and postfire().

• By convention in Ptolemy II, actors update their state only in the postfire() method. In DE, the 
fire() method is only invoked once per iteration, so it may be tempting to ignore this convention 
and update state in the fire() method. DE actors are often useful in hybrid systems models, where 
this assumption no longer holds, so we recommend that you only update state in the postfire() 
method. The simplest way to ensure this is follow the following pattern. For each state variable, 
such as a private variable named _count,

private int _count;

create a shadow variable

private int _countShadow;

Then write the methods as follows:

public void fire() {
_countShadow = _count;
... perform some computation that may modify _countShadow ...

}
public boolean postfire() {

_count = _countShadow;
return super.postfire();

}
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This ensures that the state is updated only in postfire().

In a similar fashion, delayed outputs (produced by either mechanism) should be produced in the 
postfire() method, since delayed outputs are persistent state. Thus, fireAt() should be called in 
postfire() only.

1.5.2  Examples

TimedDelay Actor. A portion of a domain-specific actor for DE is shown in figure 1.8. This actor
delays input events by some amount specified by a parameter. The domain-specific features of the
actor are shown in bold. They are:
• It overrides the pruneDependencies() method to issue the following statement:

removeDependency(input, output);

This statement declares to the director that this actor implements a delay from input to output. The 
director uses this to break the precedences when constructing the DAG to find priorities.

• In postfire() method, there is an internal calendar queue _delayedOutputTokens to store events that 
are going to be produced in the future. This actor calls fireAt() method to request future firings to 
produce those outputs.

Server Actor. The Server actor in the DE library (see figure 1.5) uses a rich set of behavioral properties
of the DE domain. A server is a process that takes some amount of time to serve “customers.” While it
is serving a customer, other arriving customers have to wait. This actor can have a fixed service time or
a variable service time, depending on whether the ParameterPort delay is connected or not. A typical
use would be to supply random numbers to the delay port to generate random service times. These
times can be provided at the same time as arriving customers to get an effect where each customer
experiences a different, randomly selected service time.

The (compacted) code is shown in figure 1.9. This actor extends the VariableDelay actor, which
extends the TimedDelay actor. The VariableDelay actor overrides the pruneDependencies() method to
remove dependencies between the delay port and the output port.

package ptolemy.domains.de.lib;

public class TimedDelay extends DETransformer {
    ... ...
    public boolean postfire() throws IllegalActionException {
        ... ...
        if (_currentInput != null) {
            _delayedOutputTokens.put(new TimedEvent(delayToTime, _currentInput));
            getDirector().fireAt(this, delayToTime);
        }
        ... ...
    }
    public void pruneDependencies() {
        super.pruneDependencies();
        removeDependency(input, output);
    }
    ... ...
}

FIGURE 1.8.  A domain-specific actor, TimedDelay actor, in DE.
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The fire() method first reads and updates the _delay amount. Then it reads the input tokens and
store them into the local event queue that stores the delayed input tokens for future processing in the
postfire() method. In the end, it checks whether there is some output event scheduled to be produced at
the current tag. If there is one, output that event. Otherwise, do nothing. 

The postfire() method first removes the output token being produced from the local event queue
that stores delayed output tokens. If the server is free at the current time, then this actor schedules a
future firing to handle the remaining inputs. This is done in the postfire() method rather than the fire()
method in keeping with the policy in Ptolemy II that persistent state is not updated in the fire() method. 

Note that if an actor does not consume input tokens that are available in the fire() method, it is
essential that prefire() returns false. Otherwise, the DE scheduler will keep firing the actor until the
inputs are all consumed, which will never happen if the actor is not consuming inputs!

package ptolemy.domains.de.lib;

public class Server extends VariableDelay {
    public PortParameter delay;
    public void fire() throws IllegalActionException {
        delay.update();
        _delay = ((DoubleToken) delay.getToken()).doubleValue();
        Time currentTime = getDirector().getModelTime();
        if (input.hasToken(0)) {
            _currentInput = input.get(0);
            _delayedInputTokensList.addLast(_currentInput);
        } else {
            _currentInput = null;
        }
        _currentOutput = null;
        if (_delayedOutputTokens.size() > 0) {
            if (currentTime.compareTo(_nextTimeFree) == 0) {
                TimedEvent earliestEvent = (TimedEvent) _delayedOutputTokens.get();
                Time eventTime = earliestEvent.timeStamp;
                if (!eventTime.equals(currentTime)) {
                    throw new InternalErrorException("Service time is "
                            + "reached, but output is not available.");
                }
                _currentOutput = (Token) earliestEvent.contents;
                output.send(0, _currentOutput);
            }
        }
    }
    public void initialize() throws IllegalActionException {
        super.initialize();
        _nextTimeFree = Time.NEGATIVE_INFINITY;
        _delayedInputTokensList = new LinkedList();
    }
    public boolean postfire() throws IllegalActionException {
        Time currentTime = getDirector().getModelTime();
        if (_currentOutput != null) {
            _delayedOutputTokens.take();
        }
        if ((_delayedInputTokensList.size() != 0) && _delayedOutputTokens.isEmpty()) {
            _nextTimeFree = currentTime.add(_delay);
            _delayedOutputTokens.put(new TimedEvent(_nextTimeFree,
                _delayedInputTokensList.removeFirst()));
            getDirector().fireAt(this, _nextTimeFree);
        }
        return !_stopRequested;
    }
}

FIGURE 1.9.  Code for the Server actor. For more details, see the source code.
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1.5.3  Thread Actors1

In some cases, it is useful to describe an actor as a thread that waits for input tokens on its input
ports. The thread suspends while waiting for input tokens and is resumed when some or all of its input
ports have input tokens. While this description is functionally equivalent to the standard description
explained above, it leverages on the Java multi-threading infrastructure to save the state information. 

Consider the code for the ABRecognizer actor shown in figure 1.10. The two code listings imple-
ment two actors with equivalent behavior. The left one implements it as a threaded actor, while the
right one implements it as a standard actor. We will from now on refer to the left one as the threaded
description and the right one as the standard description. In both descriptions, the actor has two input
ports, inportA and inportB, and one output port, outport. The behavior is as follows.

Produce an output event at outport as soon as events at inportA and inportB occurs
in that particular order, and repeat this behavior.

Note that the standard description needs a state variable state, unlike the case in the threaded
description. In general the threaded description encodes the state information in the position of the
code, while the standard description encodes it explicitly using state variables. While it is true that the
context switching overhead associated with multi-threading application reduces the performance, we
argue that the simplicity and clarity of writing actors in the threaded fashion is well worth the cost in
some applications.

To write an actor in the threaded fashion, one simply derives from the DEThreadActor class and
implements the run() method. In many cases, the content of the run() method is enclosed in the infinite
‘while(true)’ loop since many useful threaded actors do not terminate.

The waitForNewInputs() method is overloaded and has two flavors, one that takes no arguments

1. This section describes techniques that have not been widely used, and are not extensively tested.

public class ABRecognizer extends DEThreadActor {
StringToken msg = new StringToken("Seen AB");

// the run method is invoked when the thread
// is started.
public void run() {

while (true) {
waitForNewInputs();
if (inportA.hasToken(0)) {

IOPort[] nextInport = {inportB};
waitForNewInputs(nextInport);
outport.broadcast(msg);

}
}

}

public class ABRecognizer extends DEActor {
StringToken msg = new StringToken("Seen AB");

// We need an explicit state variable in
// this case.
int state = 0;

public void fire() {
switch (state) {

case 0:
if (inportA.hasToken(0)) {

state = 1;
break;

}
case 1:

if (inportB.hasToken(0)) {
state = 0;
outport.broadcast(msg);

}
}

}
}

FIGURE 1.10.  Code listings for two style of writing the ABRecognizer actor.
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and another that takes an IOPort array as argument. The first suspends the thread until there is at least
one input token in at least one of the input ports, while the second suspends until there is at least one
input token in any one of the specified input ports, ignoring all other tokens. 

In the current implementation, both versions of waitForNewInputs() clear all input ports before the
thread suspends. This guarantees that when the thread resumes, all tokens available are new, in the
sense that they were not available before the waitForNewInput() method call. 

The implementation also guarantees that between calls to the waitForNewInputs() method, the rest
of the DE model is suspended. This is equivalent to saying that the section of code between calls to the
waitForNewInput() method is a critical section. One immediate implication is that the result of the
method calls that check the configuration of the model (e.g. hasToken() to check the receiver) will not
be invalidated during execution in the critical section. It also means that this should not be viewed as a
way to get parallel execution in DE. For that, consider the DDE domain.

It is important to note that the implementation serializes the execution of threads, meaning that at
any given time there is only one thread running. When a threaded actor is running (i.e. executing inside
its run() method), all other threaded actors and the director are suspended. It will keep running until a
waitForNewInputs() statement is reached, where the flow of execution will be transferred back to the
director. Note that the director thread executes all non-threaded actors. This serialization is needed
because the DE domain has a notion of global time, which makes parallelism much more difficult to
achieve.

The serialization is accomplished by the use of monitor in the DEThreadActor class. Basically, the
fire() method of the DEThreadActor class suspends the calling thread (i.e. the director thread) until the
threaded actor suspends itself (by calling waitForNewInputs()). One key point of this implementation
is that the threaded actors appear just like an ordinary DE actor to the DE director. The DEThreadActor
base class encapsulates the threaded execution and provides the regular interfaces to the DE director.
Therefore the threaded description can be used whenever an ordinary actor can, which is everywhere.

The code shown in figure 1.11 implements the run method of a slightly more elaborate actor with
the following behavior:

Emit an output O as soon as two inputs A and B have occurred. Reset this behavior
each time the input R occurs.

Recent work has extended the DE Director to support parallel execution in the form of actors contain-
ing private threads and callbacks. Future work in this area may involve extending the infrastructure to
support additional concurrency constructs, such as preemption, other forms of parallel execution, etc.
It might also be interesting to explore new concurrency semantics similar to the threaded DE, but with-
out the ‘forced’ serialization.

1.6  Composing DE with Other Domains

One of the major concepts in Ptolemy II is modeling heterogeneous systems through the use of
hierarchical heterogeneity. Actors on the same level of hierarchy obey the same set of semantics rules.
Inside some of these actors may be another domain with a different model of computation. This mech-
anism is supported through the use of opaque composite actors. An example is shown in figure 1.12.
The outermost domain is DE and it contains seven actors, two of them are opaque and composite. The
opaque composite actors contain subsystems, which in this case are in the DE and CT domains.
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1.6.1  DE inside Another Domain

The DE subsystem completes one iteration whenever the opaque composite actor is fired by the
outer domain. One of the complications in mixing domains is in the synchronization of time. Denote
the current time of the DE subsystem by tinner and the current time of the outer domain by touter. An
iteration of the DE subsystem is similar to an iteration of a top-level DE model, except that prior to the
iteration tokens are transferred from the ports of the opaque composite actors into the ports of the con-
tained DE subsystem, and after the end of the iteration, the director requests a refire at the smallest
time stamp in the event queue of the DE subsystem. This presumes that the DE subsystem knows at
what time stamp the it, or one of its contained actors, will wish to be refired. Future work may remove
this limitation, allowing real-time events (such as from I/O) to propagate out of a DE subsystem. Cur-
rently the DE domain can handle such asynchronous events only if it is not inside another domain.

public void run() {
try {

while (true) {
// In initial state..
waitForNewInputs();
if (R.hasToken(0)) {

// Resetting..
continue;

}
if (A.hasToken(0)) {

// Seen A..
IOPort[] ports = {B,R};
waitForNewInputs(ports);
if (!R.hasToken(0)) {

// Seen A then B..
O.broadcast(new DoubleToken(1.0));
IOPort[] ports2 = {R};
waitForNewInputs(ports2);

} else {
// Resetting
continue;

}
} else if (B.hasToken(0)) {

// Seen B..
IOPort[] ports = {A,R};
waitForNewInputs(ports);
if (!R.hasToken(0)) {
// Seen B then A..
O.broadcast(new DoubleToken(1.0));
IOPort[] ports2 = {R};
waitForNewInputs(ports2);

} else {
// Resetting
continue;

}
} // while (true)

} catch (IllegalActionException e) {
getManager().notifyListenersOfException(e);

}
}

FIGURE 1.11.  The run() method of the ABRO actor.
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The transfer of tokens from the ports of the opaque composite actor into the ports of the contained
DE subsystem actors is done in the transferInputs() method of the DE director. This method is
extended from its default implementation in the Director class. The implementation in the DEDirector
class advances the current time of the DE subsystem to the current time of the outer domain, then calls
super.transferInputs(). It is done in order to correctly associate tokens seen at the input ports of the
opaque composite actor, if any, with events at the current time of the outer domain, touter, and put these
events into the global event queue. This mechanism is, in fact, how the DE subsystem synchronize its
current time, tinner, with the current time of the outer domain, touter.(Recall that the DE director
advances time by looking at the smallest time stamp in the event queue of the DE subsystem). Specifi-
cally, before the advancement of the current time of the DE subsystem tinner is less than or equal to the
touter, and after the advancement tinner is equal to the touter.

Requesting a refiring is done in the postfire() method of the (inner) DE director by calling the
fireAt() method of the executive (outer) director. Its purpose is to ensure that events in the DE sub-
system are processed on time with respect to the current time of the outer domain, touter. 

Note that if the DE subsystem is fired due to the outer domain processing a refire request, then
there may not be any tokens in the input port of the opaque composite actor at the beginning of the DE
subsystem iteration. In that case, no new events with time stamps equal to touter will be put into the
global event queue. Interestingly, in this case, the time synchronization will still work because tinner
will be advanced to the smallest time stamp in the global event queue which, in turn, has to equal touter
because we always request a refire according to that time stamp.
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FIGURE 1.12.  An example of heterogeneous and hierarchical composition. The CT subsystem and DE 
subsystem are inside an outermost DE system. This example is developed by Jie Liu [100].
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1.6.2  Another Domain inside DE

Due to its nature, any opaque composite actor inside DE is opaque and therefore, as far as the DE
Director is concerned, behaves exactly like a domain polymorphic actor. Recall that domain polymor-
phic actors are treated as functions with zero delay in computation time. To produce events in the
future, domain polymorphic actors request a refire from the DE director and then produce the events
when it is refired.
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2 
CT Domain

Author: Jie Liu
Haiyang Zheng

2.1  Introduction

The continuous-time (CT) domain in Ptolemy II aims to help the design and simulation of systems
that can be modeled using ordinary differential equations (ODEs). ODEs are often used to model ana-
log circuits, plant dynamics in control systems, lumped-parameter mechanical systems, lumped-
parameter heat flows and many other physical systems. 

Let’s start with an example. Consider a second order differential system,

(1)

The equations could be a model for an analog circuit as shown in figure 2.1(a), where z is the voltage
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(a) A circuit implementation.

FIGURE 2.1.  Possible implementations of the system equations.

(b) A mechanical implementation.
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of node 3, and 

(2)

Or it could be a lumped-parameter spring-mass mechanical model for the system shown in figure
2.1(b), where z is the position of the mass, m is the mass, k is the spring constant, b is the damping
parameter, and c = 1. 

In general, an ODE-based continuous-time system has the following form:

(3)

(4)

, (5)

where, , , a real number, is continuous time. At any time t, , an n-tuple of real num-
bers, is the state of the system;  is the m-dimensional input of the system;  is the l-
dimensional output of the system;  is the derivative of  with respect to time , i.e.

. (6)

Equations (3), (4), and (5) are called the system dynamics, the output map, and the initial condition of
the system, respectively. 

For example, for the mechanical system above, if we define a vector

, (7)

then system (1) can be written in form of (3)-(5), like

(8)

The solution, x(t), of the set of ODE (3)-(5), is a continuous function of time, also called a wave-
form, which satisfies the equation (3) and initial condition (5). The output of the system is then defined
as a function of x(t) and u(t), which satisfies (4). The precise solution of a set of ODEs is usually
impossible to be found using digital computers. Numerical solutions are approximations of the precise
solution. A numerical solution of ODEs are usually done by integrating the right-hand side of (3) on a
discrete set of time points. Using digital computers to simulate continuous-time systems has been stud-
ied for more than three decades. One of the most well-known tools is Spice [112]. The CT domain dif-
fers from Spice-like continuous-time simulators in two ways — the system specification is somewhat
different, and it is designed to interact with other models of computation.
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2.1.1  System Specification

There are usually two ways to specify a continuous-time system, the conservation-law model and
the signal-flow model [63]. The conservation-law models, like the nodal analysis in circuit simulation
[60] and bond graphs [128] in mechanical models, define systems by their physical components, which
specify relations of cross and through variables, and conservation laws are used to compile the compo-
nent relations into global system equations. For example, in circuit simulation, the cross variables are
voltages, the through variables are currents, and the conservation laws are Kirchhoff’s laws. This
model directly reflects the physical components of a system, thus is easy to construct from a potential
implementation. The actual mathematical representation of the system is hidden. In signal-flow mod-
els, entities in a system are maps that define the mathematical relation between their input and output
signals. Entities communicate by passing signals. This kind of models directly reflects the mathemati-
cal relations among signals, and is more convenient for specifying systems that do not have an explicit
physical implementation yet.

In the CT domain of Ptolemy II, the signal-flow model is chosen as the interaction semantics. The
conservation-law semantics may be used within an entity to define its I/O relation. There are four
major reasons for this decision:

1. The signal-flow model is more abstract. Ptolemy II focuses on system-level design and behavior 
simulation. It is usually the case that, at this stage of a design, users are working with abstract 
mathematical models of a system, and the implementation details are unknown or not cared about.

2. The signal flow model is more flexible and extensible, in the sense that it is easy to embed compo-
nents that are designed using other models. For example, a discrete controller can be modeled as a 
component that internally follows a discrete event model of computation but exposes a continu-
ous-time interface.

3. The signal flow model is consistent with other models of computation in Ptolemy II. Most models 
of computation in Ptolemy use message-passing as the interaction semantics. Choosing the signal-
flow model for CT makes it consistent with other domains, so the interaction of heterogeneous 
systems is easy to study and implement. This also allows domain polymorphic actors to be used in 
the CT domain.

4. The signal flow model is compatible with the conservation law model. For physical systems that 
are based on conservation laws, it is usually possible to wrap them into an entity in the signal flow 
model. The inputs of the entity are the excitations, like the current on ideal current sources, and the 
outputs are the variables that the rest of the system may be interested in.
The signal flow block diagram of the system (3) - (5) is shown in figure 2.2. The system dynamics

(3) is built using integrators with feedback. In this figure, u, , x, and y, are continuous signals flowing
from one block to the next. Notice that this diagram is only conceptual, most models may involve mul-

FIGURE 2.2.  A conceptual block diagram for continuous time systems. 
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tiple integrators1. Time is shared by all components, so it is not considered as an input. At any fixed
time t, if the “snapshot” values x(t) and u(t) are given, then  and y(t) can be found by evaluating f
and g, which can be achieved by firing the respective blocks. The “snapshot” of all the signals at  is
called the behavior of the system at time .

The signal-flow model for the example system (1) is shown in figure 2.3. For comparison purpose,
the conservation-law model (modified nodal analysis) of the system shown in figure 2.1(a) is shown in
(9).

(9)

By doing some math, we can see that (9) and (8) are in fact equivalent. Equation (9) can be easily
assembled from the circuit, but it is more complicated than (8). Notice that in (9)  is the derivative
operator, which is replaced by an integration algorithm at each time step, and the system equations
reduce to a set of algebraic equations. Spice software is known to have a very good simulation engine
for models in form of (9).

2.1.2  Time

One distinct characterization of the CT model is the continuity of time. This implies that a contin-
uous-time system have a behavior at any time instance. The simulation engine of the CT model should
be able to compute the behavior of the system at any time point, although it may march discretely in
time. In order to achieve an accurate simulation, time should be carefully discretized. The discretiza-
tion of time, which appears as integration step sizes, may be determined by time points of interest (e.g.

1. Ptolemy II does not support vectorization in the CT domain yet.

x· t( )
t

t
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FIGURE 2.3.  The block diagram for the example system.
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discontinuities), by the numerical error of integration, and by the convergence in solving algebraic
equations. 

Time is also global, which means that all components in the system share the same notion of time.

2.2  Solving ODEs numerically

We outline some basic terminologies on numerical ODE solving techniques that are used in this
chapter. This is not a summary of numerical ODE solving theory. For a detailed treatment for ODEs
and their numerical solutions, please refer to books on numerical solutions for ODEs, e.g. [45].

Not all ODEs have a solution, and some ODEs have more than one solution. In such situations, we
say that the solution is not well defined. This is usually a result of errors in the system modeling. We
restrict our discussion to systems that have unique solutions. Theorem 1 in Appendix A states the con-
ditions for the existence and uniqueness of solutions of ODEs. Roughly speaking, we denote by D a set
in  which contains at most a finite number of points per unit interval, and let u be piecewise-contin-
uous on . Then, for any fixed u(t), if f is also piecewise-continuous on , and f satisfies the
Lipschitz condition (see e.g. [45]), then the ODE (3) with the initial condition (5) has a unique solu-
tion. The solution is called the state trajectory of the system. The key of simulating a continuous-time
system numerically is to find an accurate numerical approximation of the state trajectory.

2.2.1  Basic Notations

Usually, only the solution on a finite time interval  is needed. A simulation of the system is
performed on discrete time points in this interval. We denote by

, (10)

where

, (11)

the set of the discrete time points of interest. To explicitly illustrate the discretization of time and the
difference between the precise solution and the numerical solution, we use the following notation in
the rest of the chapter:
• : the n-th time point, to explicitly show the discretization of time. However, we write t, if the 

index n is not important.
• : the precise (continuous) state trajectory from time  to ;
• : the precise solution of (3) at time ;

• : the numerical solution of (3) at time ;

• : step size of numerical integration. We also write  if the index n in the sequence 

is not important. For accuracy reason,  may not be uniform.

• : the 2-normed difference between the precise solution and the numerical solution at 

step n is called the (global) error at step n; the difference, when we assume  are precise, 

is called the local error at step n. Local errors are usually easy to estimate and the estimation can 
be used for controlling the accuracy of numerical solutions.
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A general way of numerically simulating a continuous-time system is to compute the state and the
output of the system in an increasing order of . Such algorithms are called the time-marching algo-
rithms, and, in this chapter, we only consider these algorithms. There are variety of time marching
algorithms that differ on how  is computed given . The choice of algorithms is applica-
tion dependent, and usually reflects the speed, accuracy, and numerical stability trade-offs.

2.2.2  Fixed-Point Behavior

Numerical ODE solving algorithms approximate the derivative operator in (3) using the history
and the current knowledge on the state trajectory. That is, at time , the derivative of x is approxi-
mated by a function of , i.e.

. (12)

Plugging (3) in this, we get

(13)

Depending on whether  explicitly appears in (13), the algorithms are called explicit integration
algorithms or implicit integration algorithms. That is, we end up solving a set of algebraic equations in
one of the two forms:

(14)

or

, (15)

where  are derived from the time , the input , the function f, and the history of x
and . Solving (14) or (15) at a particular time  is called an iteration of the CT simulation at .

Equation (14) can be solved simply by a function evaluation and an assignment. But the solution
of (15) is the fixed point of FI, which may not exist, may not be unique, or may not be able to be found.
The contraction mapping theorem [21] shows the existence and uniqueness of the fixed-point solution,
and provides one way to find it. Given the map FI that is a local contraction map (generally true for
small enough step sizes) and let an initial guess  be in the contraction radius, then a unique fixed
point exists and can be found by iteratively computing:

(16)

Solving both (14) and (15) should be thought of as finding the fixed-point behavior of the system
at a particular time. This means both functions  should be smooth w.r.t. time, during one
iteration of the simulation. This further implies that the topology of the system, all the parameters, and
all the internal states that the firing functions depend on should be kept unchanged. We require that
domain polymorphic actors to update internal states only in the postfire() method exactly for this
reason.

2.2.3  ODE Solvers Implemented

The following solvers has been implemented in the CT domain.
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1. Forward Euler solver:

(17)

2. 2(3)-order Explicit Runge-Kutta solver

(18)

with error control:

(19)

if , , otherwise, fail. If this step is successful, the next 
integration step size is predicted by:

(20)

3. 4(5)-order Explicit Runge-Kutta solver1

(21)

1. This algorithm is based on "A Variable Order Runge-Kutta Method for Initial Value Problems with Rapidly 
Varying Right-Hand Sides" by J. R. Cash and A. H. Karp, ACM Transactions on Mathematical Software, 16(3), 
201-222 (1990).
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with error control:

(22)

if , , otherwise, fail. If this step is successful, the next 
integration step size is predicted by:

(23)

4. Backward Euler solver:

(24)

5. Trapezoidal Rule solver:

. (25)

Among these solvers, 1), 2) and 3) are explicit; 4) and 5) are implicit. Also, 1) and 4) do not per-
form step size control, so are called fixed-step-size solvers; 2), 3), and 5) change step sizes according
to error estimation, so are called variable-step-size solvers. Variable-step-size solvers adapt the step
sizes according to changes of the system flow, thus are “smarter” than fixed-step-size solvers.

2.2.4  Discontinuity

The existence and uniqueness of the solution of an ODE (Theorem 1 in Appendix A) allows the
right-hand side of (3) to be discontinuous at a discrete set D1, and the elements in this discrete set are
called the breakpoints (also called the discontinuous points in some literature). These breakpoints may
be caused by the discontinuity of input signal u, or by the intrinsic flow of f. At these points, the solu-
tions are defined based on a discrete-event semantics and achieved by performing discrete phase of
executions. Discrete phase of executions solve the final values at breakpoints, which are the solutions
defined on the right limits. The left limits of the solutions, which are called initial values at break-
points, are solved with the normal continuous-time equations based on the ODE.

One impact of breakpoints on ODE solvers is that history solutions are useless when approximat-
ing the derivative of x after the breakpoints. The solver should resolve the new initial conditions and
start the solving process as if it is at a starting point. So, the discretization of time should step exactly
on breakpoints for the left limit, and start at the breakpoint again after finding the right limit.

A breakpoint may be known beforehand, in which case it is called a predictable breakpoint. For

1. A discrete set is an ordered set for which there exists an order embedding to the natural numbers.
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example, a square wave source actor knows its next flip time. This information can be used to control
the discretization of time. A breakpoint can also be unpredictable, which means it is unknown until the
time it occurs is passed. For example, an actor that varies its functionality when the input signal
crosses a threshold can only report a “missed” breakpoint after an integration step is finished. How to
handle breakpoints correctly is a big challenge for integrating continuous-time models with discrete
models like DE and FSM.

2.2.5  Breakpoint ODE Solvers

Breakpoints in the CT domain are handled by adjusting integration steps. We use a table to handle
predictable breakpoints, and use the step size control mechanism to handle unpredictable breakpoints.
The breakpoint handling are transparent to users, and the implementation details (provided in section
2.8.4) are only needed when developing new directors, solvers, or event generators.

Since the history information is useless at breakpoints, a special ODE solver is designed to restart
the numerical integration process. In particular, we have implemented the DerivativeResolver, which
calculates the derivative of the current state, i.e. . This is simply done by evaluation the
right-hand side of (3). At breakpoints, this solver is used for the first step to generate history informa-
tion for explicit methods or one step methods. Notice that this solver does not advance time and it can
only be used at breakpoints.

2.3  Signal Types

The CT domain of Ptolemy II supports continuous time mixed-signal modeling. As a consequence,
there could be two types of signals in a CT model: continuous signals and discrete events. Note that for
both types of signals, time is continuous. These two types of signals directly affect the behavior of a
receiver that contains them. A continuous CTReceiver contains a sample of a continuous signal at the
current time. Reading a token from that receiver will not consume the token. A discrete CTReceiver
may or may not contain a discrete event. Reading from a discrete CTReceiver with an event will con-
sume the event, so that events are processed exactly once1. Reading from an empty discrete CTRe-
ceiver is not allowed. 

Note that some actors can be used to compute on both continuous and discrete signals. For exam-
ple, an adder can add two continuous signals, as well as two sets of discrete events. Whether a particu-
lar link among actors is continuous or discrete is resolved by a signal type system. The signal type
system understands signal types on specific actors (indicated by the interfaces they implement or the
parameters specified on their ports), and try to resolve signal types on the ports of domain polymorphic
actors. 

The signal type system in the CT domain works on a simple lattice of signal types, shown in Fig-
ure 2.4. A type lower in the lattice is more specific than a type higher in the lattice. A CT model is
well-defined and executable, if and only if all ports are resolved to either CONTINUOUS or DIS-
CRETE. Some actors have their signal types fixed. For example, an Integrator has a CONTINU-
OUS input and a CONTINUOUS output; a PeriodicSampler has a CONTINUOUS input and a
DISCRETE output; a TriggeredSampler has one CONTINUOUS input (the input), one DIS-
CRETE input (the trigger), and a DISCRETE output; and a ZeroOrderHold has a DISCRETE input
and a CONTINUOUS output. For domain polymorphic actors that implement the SequenceActor

1. This distinction of receivers is also called state and event semantics in some literatures [70]. 

dx( ) dt( )⁄
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interface, i.e. they operate solely on sequences of tokens, their inputs and outputs are treated as DIS-
CRETE. For other domain polymorphic actors that can operate on both continuous and discrete sig-
nals, the signal type on their ports are initially UNRESOLVED. The signal type system will resolve
and check signal types of ports according to the following two rules:
• If a port p is connected to another port q with a more specific type, then the type of p is resolved to 

that of the port q. If p is CONTINUOUS but q is DISCRETE, then both of them are resolved to 
NOT-A-TYPE. 

• Unless otherwise specified, the types of the input ports and output ports of an actor are the same.
At the end of the signal-type resolution, if any port is of type UNRESOLVED or NOT-A-TYPE,

then the topology of the system is illegal, and the execution is denied.
The signal type of a port can also be forced by adding an parameter “signalType” to the port. The

signal type system will recognize this parameter and resolve other types accordingly. To add this
parameter, right click on the port, select Configure, then add a parameter with the name signalType and
the value of a string of either “CONTINUOUS” or “DISCRETE”, noting the quotation marks.

Signal types may be more trickier at the boundaries of opaque composite actors than within a CT
model. Because of the information hiding, it may not be obvious which port of another level of hierar-
chy is continuous and which port is discrete. In the CT domain, we follow these rules to resolve signal
types for composite ports:
• A TypedCompositeActor within a CT model is always treated as entirely discrete. Within a CT 

model, for any opaque composite actor that may contain continuous dynamics at a deeper level, 
use the CTCompositeActor (listed in the actor library as “continuous time composite actor” in 
domain specific actors) or the modal model composite actor.

• For a CTCompositeActor or a modal model within a CT model, all its ports are treated as contin-
uous by default. To allow a discrete event going through the composite actor boundary, manually 
set the signal type of that port by adding the signalType parameter. 

• For a TypedCompositeActor containing a CT model, all the ports of the TypedCompositeAc-
tor are treated as discrete, and the CT director to use is the CTMixedSignalDirector (listed as 
CTDirector in the vergil director library).

• For a CTCompositeActor or a modal model containing a CT model, all the signal types of the 
ports of the container are treated as continuous, and can be set by adding the signalType parameter. 
The CTDirector to use in this situation is the CTEmbeddedDirector.

UNRESOLVED

CONTINUOUS DISCRETE

NOT-A-TYPE

FIGURE 2.4.  A signal type lattice. 
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2.4  CT Actors

A CT system can be built up using actors in the ptolemy.domains.ct.lib package and domain poly-
morphic actors that have continuous behaviors (i.e. all actors that do not implement the SequenceActor
interface). The key actor in CT is the integrator. It serves the unique role of wiring up ODEs. Other
actors in a CT system are usually stateless. A general understanding is that, in a pure continuous-time
model, all the information — the state of the system— is stored in the integrators. 

2.4.1  CT Actor Interfaces

In order to schedule the execution of actors in a CT model and to support the interaction between
CT and other domains (which are usually discrete), we provide the following interfaces.
• CTDynamicActor. Dynamic actors are actors that contains continuous dynamics in their I/O path. 

An integrator is a dynamic actor, and so are all actors that have integration relations from their 
inputs to their outputs.

• CTEventGenerator. Event generators are actors that convert continuous time input signals to dis-
crete output signals.

• CTStatefulActor. Stateful actors are actors that have internal states. The reason to classify this 
kind of actor is to support rollback, which may happen when a CT model is embedded in a discrete 
event model.

• CTStepSizeControlActor. Step size control actors influence the integration step size by telling 
the director whether the current step is accurate. The accuracy is in the sense of both tolerable 
numerical errors and absence of unpredictable breakpoints. It may also provide information about 
refining a step size for an inaccurate step and suggesting the next step size for an accurate step.

• CTWaveformGenerator. Waveform generators are actors that convert discrete input signals to 
continuous-time output signals. 
Strictly speaking, event generators and waveform generators do not belong to any domain, but the

CT domain is design to handle them intrinsically. When building systems, CT parts always provide
discrete interface to other domains.

A loop containing only dynamic actors or a loop containing only non-dynamic actors are not
allowed in a CT model. They introduce problems about the order that actors are executed. A loop only
containing dynamic actors can be easily broken by a Scale actor with scale 1. A loop of non-dynamic
actors builds an algebraic equation. The CT domain does not support modeling algebraic equations,
yet. 

2.4.2  Actor Library

ContinuousClock. This clock actor generates a periodic continuous-time signal with regularly spaced
intervals. The time interval is specified by the period and offset parameters, where the offset parameter
contains an array of strictly increasing values that do not exceed the period value. The values of the
signal are specified by the values parameter. The values parameter also contains an array and the
length of this array should be the same as the array length of the offset parameter. This clock actor is
different from the normal clock actor (called DiscreteClock) in the actor.lib directory in two ways.
First, this actor has a value at any time point. Second, at each offset, this actor produces two values,
where the first one is the left limit and second value is the right limit.
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ContinuousTransferFunction. A transfer function in the continuous time domain. This actor imple-
ments a transfer function where the single input (u) and single output (y) can be expressed in (Laplace)
transfer function form as the following equation:

(26)

where m and n are the number of numerator and denominator coefficients, respectively. This actors
has two parameters − numerator and denominator − containing the coefficients of the numerator and
denominator in descending powers of s. The parameters are double arrays. The order of the denomina-
tor (n) must be greater than or equal to the order of the numerator (m).

CTPeriodicalSampler. This event generator periodically samples the input signal and generates events
with the value of the input signal at these time points. The values are always the initial values of the
input signal. The sampling rate is given by the samplePeriod parameter, which has default value 0.1.
The sampling time points, which are known beforehand, are examples of predictable breakpoints.

CTRateLimiter. This actor limits the first derivative of the input signal so that the output signal does
not change faster than the specified limit.

CTTriggeredSampler. This actor samples the continuous input signal when there is a discrete event
present at the trigger input. Note that this sampler can generate values other than initial values of the
input signal.

DifferentialSystem. The differential system  model implements a system whose behavior is defined
by:

(27)

where x is the state vector, u is the input vector, and y is the output vector, t is the time. Users must
give the name of the variables by filling in the parameter and add ports with proper names. The actor,
upon creation, has no inputs and no outputs. After creating proper ports, their names can be used in the
expressions of state equations and output equations. The name of the state variables are manually
added by filling in the stateVariableNames parameter.

The state equations and output maps must be manually created by users as parameters. If there are
n state variables  then users need to create n additional parameters, one for each state equation.
And the parameters must be named as x1_dot, ..., xn_dot, respectively. Similarly, if the output ports
have names , then users must create additional r parameters for output maps. These parameters
should be named y1, ..., yr, respectively.

EventSource. This actor outputs a set of events at a discrete set of time points. It can be used to gener-
ate impulses in CT models.

FirstOrderHold. This actor converts discrete events at the input to a continuous-time signal at the out-
put by projecting the value with the derivative.
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Integrator: The integrator for continuous-time simulation. An integrator has one input port and one
output port. Conceptually, the input is the derivative of the output, and an ordinary differential equa-
tion is modeled as an integrator with feedback. 

An integrator is a dynamic, step-size-control, and stateful actor. To help resolve new states from 
previous states, a set of variables are used:

• state and its derivative: These are the new state and its derivative at a time point, which have been 
confirmed by all the step size control actors.

• tentative state and tentative derivative: These are the state and derivative which have not been con-
firmed. It is a starting point for other actors to estimate the accuracy of this integration step.

• history: The previous states and derivatives. An integrator remembers the history states and their 
derivatives for the past several steps. The history is used by multistep methods.

An integrator has one parameter: initialState. At the initialization stage of the simulation, the state 
of the integrator is set to the initial state. Changes of initialState will be ignored after the simula-
tion starts, unless the initialize() method of the integrator is called again. The default value of 
this parameter is 0.0. An integrator can possibly have several auxiliary variables. These auxiliary 
variables are used by ODE solvers to store intermediate states for individual integrators.

The CTBaseIntegrator class, which is the super class of Integrator overrides the pruneDependen-
cies() method of the AtomicActor class to issue the following statement:

removeDependency(input, output);

This statement declares that the output from an integrator from a firing does not depend on its 
input. The CT scheduler does not use this information to construct an execution schedule. How-
ever, when a CT model works as a subsystem in a DE model, this dependency information is used 
to help the DE director to construct a DE schedule and assign priorities (execution orders).

LevelCorssingDetector. This actor converts a continuous-time signal to discrete events when the con-
tinuous-time signal crosses a level threshold. It has a parameter, errorTolerance, which controls how
accurately the level crossing is determined. The direction parameter can constrain the actor to detect
rising crossing only, or falling crossing only, or both. It has three possible values, "rising", "falling",
and "both", where "both" is the default. This actor controls the step size such that level crossings never
occur during an integration. So, this actor is only used in the continuous-time domain. .

LinearStateSpace. The State-Space model implements a system whose behavior is defined by:

    (28)

where x is the state vector, u is the input vector, and y is the output vector. The matrix coefficients
must have the following characteristics:
• A must be an n-by-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.
• D must be an r-by-m matrix. 
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The actor accepts m inputs and generates r outputs through a multiple input port and a multiple
output port. The widths of the ports must match the number of rows and columns in corresponding
matrices, otherwise, an exception will be thrown.

ThresholdMonitor. This actor controls the integration steps so that the given threshold (on the input) is
not crossed in one step. This actor has one input port and one output port. It has two parameters thresh-
oldWidth and thresholdCenter, which have default value 1e-2 and 0, respectively. If the input is within
the range defined by the threshold center and threshold width, then a true token is emitted from the out-
put.

TriggeredContinuousClock. This actor is an extension of the ContinuousClock with a start and stop
input ports. It can only be used in CT models. A token at the start input port will start the clock. A
token at the stop input port will stop the clock, if it is running. If both start and stop ports receive
tokens simultaneously, then the clock will be stopped.

ZeroCrossingDetector. This is an extension of the LevelCrossingDetector actor with the threshold as
0.

ZeroOrderHold. This is a waveform generator that converts discrete events into continuous signals.
This actor acts as a zero-order hold. It consumes the token when the consumeCurrentEvent() is
called. This value will be held and emitted every time it is fired, until the next time consumeCur-
rentEvent() is called. This actor has one single input port, one single output port, and no parame-
ters.

2.4.3  Domain Polymorphic Actors

Not all domain polymorphic actors can be used in the CT domain. Whether an actor can be used
depends on how the internal states of the actor evolve when executing. 
• Stateless actors: All stateless actors can be used in CT. In fact, most CT systems are built by inte-

grators and stateless actors.
• Timed actors: Timed actors change their states according to the notion of time in the model. All 

actors that implement the TimedActor interface can be used in CT, as long as they do not also 
implement SequenceActor. Timed actors that can be used in CT include plotters that are designed 
to plot timed signals.

• Sequence actors: Sequence actors change their states according to the number of input tokens 
received by the actor and the number of times that the actor is postfired. Since CT is a time driven 
model, rather than a data driven model, the number of received tokens and the number of postfires 
do not have a significant semantic meaning. So, none of the sequence actors can be used in the CT 
domain. For example, the Ramp actor in Ptolemy II changes its state −− the next token to emit −− 
corresponding to the number of times that the actor is postfired. In CT, the number of times that the 
actor is postfired depends on the discretization of time, which further depend on the choice of 
ODE solvers and setting of parameters. As a result, the slope of the ramp may not be a constant, 
and this may lead to very counterintuitive models. The same functionality is replaced by a Current-
Time actor and a Scale actor. If sequence behaviors are indeed required, event generators and 
waveform generators may be helpful to convert continuous and discrete signals.
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2.5  CT Directors

There are two CT directors −− CTMixedSignalDirector and CTEmbeddedDirector. A CTMixed-
SignalDirector can be used both at the top-level or inside a composite actor, and a CTEmbeddedDirec-
tor can only be contained in a CTCompositeActor. In terms of mixing models of computation, both
directors can execute composite actors that implement other models of computation, as long as the
composite actors are properly connected (see section 2.6). Both CTMixedSignalDirector and CTEm-
beddedDirector can be contained by other domains. The outside domain of a composite actor with
CTMixedSignalDirector can be any discrete domain, such as DE, DT, etc. The outside domain of a
composite actor with CTEmbeddedDirector must also be CT or FSM, if the outside domain of the
FSM model is CT. (See also the HSDirector in the FSM domain.)

2.5.1  ODE Solvers

There are six ODE solvers implemented in the ptolemy.domains.ct.kernel.solver package. These
solvers are ForwardEulerSolver, BackwardEulerSolver, ExplicitRK23Solver, ExplicitRK45Solver,
TrapezoidalRuleSolver, and DerivativeResolver. The DerivativeResolver is specific for handling
breakpoints. They implement the ODE solving algorithms in section 2.2.3 and section 2.2.5, respec-
tively.

2.5.2  CT Director Parameters

The CTDirector base class maintains a set of parameters which controls the execution. These
parameters, shared by all CT directors, are listed in Table 12 on page 33. Individual directors may have
their own (additional) parameters, which will be discussed in the appropriate sections.

Table 12: CTDirector Parameters

Name Description Type
Default
Value

errorTolerance The upper bound of local errors. Actors that perform integration error control (usually 
integrators in variable step size ODE solving methods) will compare the estimated local 
error to this value. If the local error estimation is greater than this value, then the integra-
tion step is considered inaccurate, and should be restarted with a smaller step sizes.

double 1e-4

initStepSize This is the step size that users specify as the desired step size. For fixed step size solvers, 
this step size will be used in all non-breakpoint steps. For variable step size solvers, this is 
only a suggestion.

double 0.1

maxIterations This is used to avoid the infinite loops in (implicit) fixed-point iterations. If the number of 
fixed-point iterations exceeds this value, but the fixed point is still not found, then the 
fixed-point procedure is considered failed. The step size will be reduced by half and the 
integration step will be restarted.

int 20

maxStepSize The maximum step size used in a simulation. This is the upper bound for adjusting step 
sizes in variable step-size methods. This value can be used to avoid sparse time points 
when the system dynamic is simple.

double 1.0

minStepSize The minimum step size used in a simulation. This is the lower bound for adjusting step 
sizes. If this step size is used and the errors are still not tolerable, the simulation aborts. 
This step size is also used for the first step after breakpoints.

double 1e-5
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2.5.3  CTMultiSolverDirector

A CTMultiSolverDirector has two ODE solvers — one for ordinary use and one specifically for
breakpoints. Thus, besides the parameters in the CTDirector base class, this class adds two more
parameters as shown in Table 13 on page 34.

A CTMultiSolverDirector can direct a model that has composite actors implementing other models
of computation. One simulation iteration is done in two phases: the continuous phase and the discrete
phase. Let the current iteration be n. In the continuous phase, the differential equations are integrated
from time  to . After that, in the discrete phase, all (discrete) events which happen at  are pro-
cessed. The step size control mechanism will assure that no events will happen between  and . 

2.5.4  CTMixedSignalDirector

This director is designed to be the director when a CT subsystem is contained in an event-based
system, like DE or DT. As proved in [97], when a CT subsystem is contained in the DE domain, the
CT subsystem should run ahead of the global time, and be ready for rollback. This director implements
this optimistic execution. 

Since the outside domain is event-based, each time the embedded CT subsystem is fired, the input
data are events. In order to convert the events to continuous signals, breakpoints have to be introduced.
So this director extends CTMultiSolverDirector, which always has two ODE solvers. There is one

startTime The start time of the simulation. This is only applicable when CT is the top level domain. 
Otherwise, the CT director follows the time of its executive director.

double 0.0

stopTime The stop time of the simulation. This is only applicable when CT is the top level domain. 
Otherwise, the CT director follows the time of its executive director.

double Double.
MAX_
VALUE

synchronizeTo-
RealTime

Indicate whether the execution of the model is synchronized to real time at best effort. boolean false

timeResolution This controls the comparison of time. Since time in the CT domain is a double precision 
real number, it is sometimes impossible to reach or step at a specific time point. If two 
time points are within this resolution, then they are considered identical.

double 1e-10

valueResolution This is used in (implicit) fixed-point iterations. If in two successive iterations the differ-
ence of the states is within this resolution, then the integration step is called converged, 
and the fixed point is considered reached.

double 1e-6

Table 13: Additional Parameter for CTMultiSolverDirector

Name Description Type Default Value

ODESolver The fully qualified class name for the 
ODE solver class.

string “ptolemy.domains.ct.kernel.solver.ForwardEulerSolver”

breakpointODESolver The fully qualified class name for the 
breakpoint ODE solver class.

string “ptolemy.domains.ct.kernel.solver.DerivativeResolver”

Table 12: CTDirector Parameters

Name Description Type
Default
Value

tn 1– tn tn
tn 1– tn



Heterogeneous Concurrent Modeling and Design 35 

CT Domain

more parameter used by this director — the runAheadLength, as shown in Table 14 on page 35.

When the CT subsystem is fired, the CTMixedSignalDirector will get the current time  and the
next iteration time  from the outer domain, and take the min( , ) as the fire end time, where 
is the value of the parameter maxRunAheadLength. The execution lasts as long as the fire end time is
not reached or an output event is not detected. 

This director supports rollback; that is when the state of the continuous subsystem is confirmed (by
knowing that no events with a time earlier than the CT current time will be present), the state of the
system is marked. If an optimistic execution is known to be wrong, the state of the CT subsystem will
roll back to the latest marked state.

This director can also be used at the top level of a model, which works just as a CTMultipleSolver-
Director.

2.5.5  CTEmbeddedDirector

This director is used when a CT subsystem is embedded in another continuous time system, either
directly or through a hierarchy of finite state machines, like in the hybrid system scenario [99]. This
director can pass step size control information up to its executive director. To achieve this, the director
must be contained in a CTCompositeActor, which implements the CTStepSizeControlActor interface
and can pass the step size control information from the inner domain to the outer domain.

This director extends CTMultiSolverDirector, with no additional parameters. A major difference
between this director and the CTMixedSignalDirector is that this director does not support rollback. In
fact, when a CT subsystem is embedded in a continuous-time environment, rollback is not necessary.

2.6  Interacting with Other Domains

The CT domain can interact with other domains in Ptolemy II. In particular, we consider interac-
tion among the CT domain, the discrete event (DE) domain and the finite state machine (FSM)
domain. Following circuit design communities, we call a composition of CT and DE a mixed-signal
model; following control and computation communities, we call a composition of CT and FSM a
hybrid system model.

There are two ways to put CT and DE models together, depending on the containment relation. In
either case, event generators and waveform generators are used to convert the two types of signals.
Figure 2.5 shows a DE component wrapped by an event generator and a waveform generator. From the
input/output point of view, it is a continuous time component. Figure 2.6 shows a CT subsystem
wrapped by a waveform generator and an event generator. From the input/output point of view, it is a
discrete event component. Notice that event generators and waveform generators always stay in the CT
domain.

A hierarchical composition of FSM and CT is shown in figure 2.7. A CT component, by adopting
the event generation technique, can have both continuous and discrete signals as its output. The FSM

Table 14: Additional Parameter for CTMixedSignalDirector

Name Description Type
Default 
Value

runAheadLength The maximum length of time for the CT subsystem to run ahead of the global time. double 1.0

τ
τ′ τ τ′– l l
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can use predicates on these signals, as well as its own input signals, to build trigger conditions. The
actions associated with transitions are usually setting parameters in the destination state, including the
initial conditions of integrators.

2.7  CT Domain Demos

Here are some demos in the CT domain showing how this domain works and the interaction with
other domains.

2.7.1  Lorenz System

The Lorenz System (see, for example, pp. 213-214 in [40]) is a famous nonlinear dynamic system
that shows chaotic attractors. The system is given by: 

FIGURE 2.5.  Embedding a DE component in a CT system.
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FIGURE 2.6.  Embedding a CT component in a DE system.
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(29)

The system is built by integrators and stateless domain polymorphic actors, as shown in figure 2.8. 
The result of the state trajectory projecting onto the  plane is shown in figure 2.9. The ini-

tial conditions of the state variables are all 1.0. The default value of the parameters are:
. 
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FIGURE 2.8.  Block diagram for the Lorenz system.
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FIGURE 2.9.  The simulation result of the Lorenz system.
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2.7.2  Microaccelerometer with Digital Feedback.

Microaccelerometers are MEMS devices that use beams, gaps, and electrostatics to measure accel-
eration. Beams and anchors, separated by gaps, form parallel plate capacitors. When the device is
accelerated in the sensing direction, the displacement of the beams causes a change of the gap size,
which further causes a change of the capacitance. By measuring the change of capacitance (using a
capacitor bridge), the acceleration can be obtained accurately. Feedback can be applied to the beams
by charging the capacitors. This feedback can reduce the sensitivity to process variations, eliminate
mechanical resonances, and increase sensor bandwidth, selectivity, and dynamic range. 

Sigma-delta modulation [25], also called pulse density modulation or a bang-bang control, is a dig-
ital feedback technique, which also provides the A/D conversion functionality. Figure 2.10 shows the
conceptual diagram of system. The central part of the digital feedback is a one-bit quantizer. 

We implemented the system as Mark Alan Lemkin designed [88]. As shown in the figure 2.11, the
second order CT subsystem is used to model the beam. The voltage on the beam-gap capacitor is sam-
pled every T seconds (much faster than the required output of the digital signal), then filtered by a lead
compensator (FIR filter), and fed to an one-bit quantizer. The outputs of the quantizer are converted to
force and fed back to the beams. The outputs are also counted and averaged every NT seconds to pro-
duce the digital output. In our example, the external acceleration is a sine wave.

The execution result of the microaccelerometer system is shown in figure 2.12. The upper plot in
the figure plots the continuous signals, where the low frequency (blue) sine wave is the acceleration

+
-
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FIGURE 2.10.  Micro-accelerator with digital feedback

FIGURE 2.11.  Block diagram for the micro-accelerator system.
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input, the high frequency waveform (red) is the capacitance measurement, and the squarewave (green)
is the zero-order hold of the feedback from the digital part. In the lower plot, the dense events (blue)
are the quantized samples of the capacitance measurements, which has value +1 or -1, and the sparse
events (red) are the accumulation and average of the previous 64 quantized samples. The sparse events
are the digital output, and as expected, they have a sinsoidal shape.

2.7.3  Sticky Point Masses System

This sticky point mass demo shows a simple hybrid system. As shown in figure 2.13, there are two
point masses on a frictionless table with two springs attaching them to fixed walls. Given initial posi-
tions other than the equilibrium points, the point masses oscillate. The distance between the two walls
are close enough that the two point masses may collide. The point masses are sticky, in the way so that
when they collide, they will sticky together and become one point mass with two springs attached to it.
We also assume that the stickiness decays exponentially after the collision, such that eventually the

FIGURE 2.12.  Execution result of the microaccelerometer system.

FIGURE 2.13.  Sticky point masses system
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pulling force between the two springs is big enough to pull the point masses apart. This separation
gives the two point masses a new set of initial positions, and they oscillate freely until they collide
again.

The system model, as shown in figure 2.14, has three levels of hierarchy −− CT, FSM, and CT. The
top level is a continuous time model with two actors, a CTCompositeActor that outputs the position of
the two point masses, and a plotter that simply plots the trajectories. The composite actor is a finite
state machine with two modes, separated and together. 

In the separated state, there are two differential equations modeling two independently oscillating
point masses. There is also an event detection mechanism, implemented by subtracting one position
from another and comparing the result to zero. If the positions are equal, within a certain accuracy,
then the two point masses collide, and a collision event is generated. This event will trigger a transition
from the separated state to the together state. And the actions on the transition set the velocity of the
stuck point mass based on Law of Conservation of Momentum. 

In the together state, there is one differential equation modeling the stuck point masses, and
another first order differential equation modeling the exponentially decaying stickiness. There is
another expression computing the pulling force between the two springs. The guard condition from the
together state to the separated state compares the pulling force to the stickiness. If the pulling force is
bigger than the stickiness, then the transition is taken. The velocities of the two separated point masses
equal to their velocities before the separation. The simulation result is shown in figure 2.15, where the
position of the two point masses are plotted. 

2.8  Implementation

The CT domain consists of the following packages, ct.kernel, ct.kernel.util, ct.kernel.solver, and
ct.lib, as shown in figure 2.16. 

2.8.1  ct.kernel.util package

The ct.kernel.util package provides a basic data structure — TotallyOrderedSet, which is used
to store breakpoints. The UML for this package is shown in figure 2.17. A totally ordered set is a set
(i.e. no duplicated elements) in which the elements are totally comparable. This data structure is used
to store breakpoints since breakpoints are processed in their chronological order.

FIGURE 2.14.  Modeling sticky point masses.
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2.8.2  ct.kernel package

The ct.kernel package is the key package of the CT domain. It provides interfaces to classify
actors, scheduler, director, and a base class for ODE solvers. The interfaces are used by the scheduler
to generate schedules. The classes, including the CTBaseIntegrator class and the ODESolver
class, are shown in figure 2.18. Here, we use the delegation and the strategy design patterns [50][44] in
the CTBaseIntegrator and the ODESolver classes to support seamlessly changing ODE solvers
without reconstructing integrators. The execution methods of the CTBaseIntegrator class are dele-
gated to the ODESolver class, and subclasses of ODESolver provide the concrete implementations of
these methods, depending on the ODE solving algorithms.

CT directors implement the semantics of the continuous time execution. As shown in figure 2.19,
directors that are used in different scenarios derive from the CTDirector base class. The CTSched-
uler class provides schedules for the directors. 

The ct.kernel.solver package provides a set of ODE solvers. The classes are shown in figure 2.20.

FIGURE 2.15.  The simulation result of the sticky point masses system.

FIGURE 2.16.  The packages in the CT domain.
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In order for the directors to choose among ODE solvers freely during the execution, the strategy design
pattern is used again. A director class talks to the abstract ODESolver base class and individual ODE
solver classes extend the ODESolver to provide concrete strategies.

FIGURE 2.17.  UML for ct.kernel.util package.
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FIGURE 2.20.  UML for ct.kernel.solver package.
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FIGURE 2.18.  UML for ct.kernel package, actor related classes.
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FIGURE 2.19.  UML for ct.kernel package, director related classes.
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2.8.3  Scheduling

This section and the following three sections provide technical details and design decisions made
in the implementation of the CT domain. These details are only necessary if the readers want to imple-
ment new directors or ODE solvers. 

In general, simulating a continuous-time system (3)-(5) by a time-marching ODE solver involves
the following execution steps:

1. Given the state of the system  at time points , if the current integration step size 
is , i.e. , compute the new state  using the numerical integration algorithms. 
During the application of an integration algorithm, each evaluation of the f(a, b, t) function is 
achieved by the following sequence:

• Integrators emit tokens corresponding to a;
• Source actors emit tokens corresponding to b;
• The current time is set to t;
• The tokens are passed through the topology (in a data-driven way) until they reach the integrators 

again. The returned tokens are .

2. After the new state  is computed, test whether this step is successful. Local truncation error and 
unpredictable breakpoints are the issues to be concerned with, since those could lead to an unsuc-
cessful step.

3. If the step is successful, predict the next step size. Otherwise, reduce the step size and try again.
Due to the signal-flow representation of the system, the numerical ODE solving algorithms are imple-
mented as actor firings and token passings under proper scheduling.

The scheduler partitions a CT system into two clusters: the state transition cluster and the output
cluster. In a particular system, these clusters may overlap.

The state transition cluster includes all the actors that are in the signal flow path for evaluating the
f function in (3). It starts from the source actors and the outputs of the integrators, and ends at the
inputs of the integrators. In other words, integrators, and in general dynamic actors, are used to break
causality loops in the model. A topological sort of the cluster provides an enumeration of actors in the
order of their firings. This enumeration is called the state transition schedule. After the integrators pro-
duce tokens representing , one iteration of the state transition schedule gives the tokens representing

 back to the integrators. 
The output cluster consists of actors that are involved in the evaluation of the output map g in (4).

It is also similarly sorted in topological order. The output schedule starts from the source actors and the
integrators, and ends at the sink actors. 

For example, for the system shown in figure 2.3, the state transition schedule is
U-G1-G2-G3-A

where the order of G1, G2, and G3 are interchangeable. The output schedule is 
G4-Y

The event generating schedule is empty.
A special situation that must be taken care of is the firing order of a chain of integrators, as shown

in figure 2.21. For the implicit integration algorithms, the order of firings determines two distinct kinds
of fixed point iterations. If the integrators are fired in the topological order, namely  in our
example, the iteration is called the Gauss-Seidel iteration. That is,  always uses the new guess from
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 in this iteration for its new guess. On the other hand, if they are fired in the reverse topological
order, the iteration is called the Gauss-Jacobi iteration, where  uses the tentative output from  in
the last iteration for its new estimation. The two iterations both have their pros and cons, which are
thoroughly discussed in [115]. Gauss-Seidel iteration is considered faster in the speed of convergence
than Gauss-Jacobi. For explicit integration algorithms, where the new states  are calculated solely
from the history inputs up to , the integrators must be fired in their reverse topological order. For
simplicity, the scheduler of the CT domain, at this time, always returns the reversed topological order
of a chain of integrators. This order is considered safe for all integration algorithms.

2.8.4  Controlling Step Sizes

Choosing the right time points to approximate a continuous time system behavior is one of the
major tasks of simulation. There are three factors that may impact the choice of the step size. 
• Error control. For all integration algorithms, the local error at time  is defined as a vector norm 

(say, the 2-norm) of the difference between the actual solution  and the approximation  
calculated by the integration method, given that the last step is accurate. That is, assuming 

 then

. (30)

It can be shown that by carefully choosing the parameters in the integration algorithms, the local
error is approximately of the p-th order of the step size, where p, an integer closely related to the
number of f function evaluations in one integration step, is called the order of the integration algo-
rithm, i.e. . Therefore, in order to achieve an accurate solution, the step size
should be chosen to be small. But on the other hand, small step sizes means long simulation time.
In general, the choice of step size reflects the trade-off between speed and accuracy of a simula-
tion.

• Convergence. The local contraction mapping theorem (Theorem 2 in Appendix A) shows that for 
implicit ODE solvers, in order to find the fixed point at , the map  in (15) must be a (local) 
contraction map, and the initial guess must be within an  ball (the contraction radius) of the solu-
tion. It can be shown that  can be made contractive if the step size is small enough. (The 
choice of the step size is closely related to the Lipschitz constant). So the general approach for 
resolving the fixed point is that if the iterating function  does not converge at one step size, 
then reduce the step size by half and try again. 

• Discontinuity. At discontinuous points, the derivatives of the signals are not continuous, so the 
integration formula is not applicable. That means the discontinuous points can not be crossed by 
one integration step. In particular, suppose the current time is t and the intended next time point is 
t+h. If there is a discontinuous point at , where , then the next step size should be 
reduced to . For a predictable breakpoint, the director can adjust the step size accordingly 
before starting an integration step. However for an unpredictable breakpoint, which is reported 
“missed” after an integration step, the director should be able to discard its last step and restart 

td∫ td∫
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FIGURE 2.21.  A chain of integrators. 
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with a smaller step size to locate the actual discontinuous point.

Notice that convergence and accuracy concerns only apply to some ODE solvers. For example,
explicit algorithms do not have the convergence problem, and fixed step size algorithms do not have
the error control capability. On the other hand, discontinuity control is a generic feature that is inde-
pendent on the choice of ODE solvers.

2.8.5  Mixed-Signal Execution

DE inside CT. 

Since time advances monotonically in CT and events are generated chronologically, the DE com-
ponent receives input events monotonically in time. In addition, a composition of causal DE compo-
nents is causal [82], so the time stamps of the output events from a DE component are always greater
than or equal to the global time. From the view point of the CT system, the events produced  by a DE
component are predictable breakpoints.

Note that in the CT model, finding the numerical solution of the ODE at a particular time is seman-
tically an instantaneous behavior. During this process, the behavior of all components, including those
implemented in a DE model, should keep unchanged. This implies that the DE components should not
be executed during one integration step of CT, but only between two successive CT integration steps.

CT inside DE. 

When a CT component is contained in a DE system, the CT component is required to be causal,
like all other components in the DE system. Let the CT component have local time , when it receives
an input event with time stamp . Since time is continuous in the CT model, it will execute from its
local time , and may generate events at any time greater or equal to . Thus we need

(31)

to ensure causality. This means that the local time of the CT component should always be greater than
or equal to the global time whenever it is executed. 

This ahead-of-time execution implies that the CT component should be able to remember its past
states and be ready to rollback if the input event time is smaller than its current local time. The state it
needs to remember is the state of the component after it has processed an input event. Consequently,
the CT component should not emit detected events to the outside DE system before the global time
reaches the event time. Instead, it should send a pure event to the DE system at the event time, and wait
until it is safe to emit it. 

2.8.6  Hybrid System Execution

Although FSM is an untimed model, its composition with a timed model requires it to transfer the
notion of time from its external model to its internal model. During continuous evolution, the system is
simulated as a CT system where the FSM is replaced by the continuous component refining the current
FSM state. After each time point of CT simulation, the triggers on the transitions starting from the cur-
rent FSM state are evaluated. If a trigger is enabled, the FSM makes the corresponding transition. The
continuous dynamics of the destination state is initialized by the actions on the transition. The simula-
tion continues with the transition time treated as a breakpoint.

t
τ

t t

t τ≥
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Appendix A: Brief Mathematical Background

Theorem 1. [Existence and uniqueness of the solution of an ODE]  Consider the initial
value ODE problem 

. (32)

If f satisfies the conditions: 

1. [Continuity Condition] Let D be the set of possible discontinuity points; it may be empty. For each 

fixed  and , the function  in (32) is continuous. And , the 

left-hand and right-hand limit  and  are finite. 

2. [Lipschitz Condition] There is a piecewise continuous bounded function : , where  
is the set of non-negative real numbers, such that  

. (33)

Then, for each initial condition  there exists a unique continuous function

 such that,

(34)

and 

. (35)

This function  is called the solution through  of the ODE (32).

Theorem 2. [Contraction Mapping Theorem.]  If  is a local contraction map at

x with contraction radius , then there exists a unique fixed point of F within the  ball centered at x.

I.e. there exists a unique , , such that . And , the

sequence 

(36)
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SDF Domain

Author: Steve Neuendorffer
Contributor: Brian Vogel

3.1  Purpose of the Domain

The synchronous dataflow (SDF) domain is useful for modeling simple dataflow systems without
complicated flow of control, such as signal processing systems. Under the SDF domain, the execution
order of actors is statically determined prior to execution. This results in execution with minimal over-
head, as well as bounded memory usage and a guarantee that deadlock will never occur. This domain is
specialized, and may not always be suitable. Applications that require dynamic scheduling could use
the process networks (PN) domain instead, for example.

3.2  Using SDF

There are four main issues that must be addressed when using the SDF domain:
• Deadlock
• Consistency of data rates
• The value of the iterations parameter
• The granularity of execution

This section will present a short description of these issues. For a more complete description, see
section 3.3.

3.2.1  Deadlock

Consider the SDF model shown in figure 3.1. This actor has a feedback loop from the output of the
AddSubtract actor back to its own input. Attempting to run the model results in the exception shown at
the right in the figure. The director is unable to schedule the model because the input of the AddSub-
tract actor depends on data from its own output. In general, feedback loops can result in such condi-
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tions.
The fix for such deadlock conditions is to use the SampleDelay actor, shown highlighted in figure

3.2. This actor injects into the feedback loop an initial token, the value of which is given by the initia-
lOutputs parameter of the actor. In the figure, this parameter has the value {0}. This is an array with a
single token, an integer with value 0. A double delay with initial values 0 and 1 can be specified using
a two element array, such as {0, 1}.

It is important to note that it is occasionally necessary to add a delay that is not in a feedback loop
to match the delay of an input with the delay around a feedback loop. It can sometimes be tricky to see
exactly where such delays should be placed without fully considering the flow of the initial tokens
described above.

FIGURE 3.1.  An SDF model that deadlocks.

FIGURE 3.2.  The model of figure 3.1 corrected with an instance of SampleDelay in the feedback loop.
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3.2.2  Consistency of data rates

Consider the SDF model shown in figure 3.3. The model is attempting to plot a sinewave and its
downsampled counterpart. However, there is an error because the number of tokens on each channel of
the input port of the plotter can never be made the same. The DownSample actor declares that it con-
sumes 2 tokens using the tokenConsumptionRate parameter of its input port. Its output port similarly
declares that it produces only one token, so there will only be half as many tokens being plotted from
the DownSample actor as from the Sinewave.

The fixed model is shown in figure 3.4, which uses two separate plotters. When the model is exe-
cuted, the plotter on the bottom will fire twice as often as the plotter on the top, since it must consume
twice as many tokens. Notice that the problem appears because one of the actors (in this case, the
DownSample actor) produces or consumes more than one token on one of its ports. One easy way to
ensure rate consistency is to use actors that only produce and consume one token at a time. This special
case is known as homogeneous SDF. Note that actors like the SequencePlotter which do not specify
rate parameters are assumed to be homogeneous. For more specific information about the rate parame-

FIGURE 3.3.  An SDF model with inconsistent rates.

FIGURE 3.4.  Figure 3.3 modified to have consistent rates.
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ters and how they are used for scheduling, see section 3.3.1.

3.2.3  How many iterations?

Another issue when using the SDF domain concerns the value of the iterations parameter of the
SDF director. In homogeneous models one token is usually produced for every iteration. However,
when token rates other than one are used, more than one interesting output value may be created for
each iteration. For example, consider figure 3.5 which contains a model that plots the Fast Fourier
Transform of the input signal. The important thing to realize about this model is that the FFT actor
declares that it consumes 256 tokens from its input port and produces 256 tokens from its output port,
corresponding to an order 8 FFT. This means that only one iteration is necessary to produce all 256
values of the FFT.

Contrast this with the model in figure 3.6. This model plots the individual values of the signal.
Here 256 iterations are necessary to see the entire input signal, since only one output value is plotted in
each iteration.

3.2.4  Granularity

The granularity of execution of an SDF model is determined by solving a set of equations deter-
mined by declared data rates of actors, and the connections between actors. As mentioned in the previ-
ous section, this schedule may involve a small or large number of firings of each actor, depending on
the relative data rates of the actors. Generally, the smallest possible valid schedule, corresponding to
the smallest granularity of execution, is the most interesting. However, there are some instances when

FIGURE 3.5.  A model that plots the Fast Fourier Transform of a signal. Only one iteration must be executed 
to plot all 256 values of the FFT, since the FFT actor produces and consumes 256 tokens each firing.

FIGURE 3.6.  A model that plots the values of a signal. 256 iterations must be executed to plot the entire sig-
nal.
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this is not the case. In such cases the vectorizationFactor parameter of the SDF director can be used to
scale up the granularity of the schedule. A vectorizationFactor of 2 implies that each actor is fired
twice as many times as in the normal schedule.

One example when this might be useful is when modeling block data processing. For instance, we
might want to build a model of a signal processing system that filters blocks of 40 samples at a time
using an FIR filter. Such an actor could be written in Java, or it could be built as a hierarchical SDF
model, using a single sample FIR filter, as shown in Figure 3.7. The vectorizationFactor parameter of
the director is set to 40. Here, each firing of the SDF model corresponds to 40 firings of the single sam-
ple FIR filter.

Another useful time to increase the level of granularity is to allow vectorized execution of actors.
Some actors override the iterate() method to allow optimized execution of several consecutive firings.
Increasing the granularity of an SDF model can provide more opportunities for the SDF director to
perform this optimization, especially in models that do not have fine-grained feedback.

3.3  Properties of the SDF domain

SDF is an untimed model of computation. All actors under SDF consume input tokens, perform
their computation and produce outputs in one atomic operation. If an SDF model is embedded within a
timed model, then the SDF model will behave as a zero-delay actor.

In addition, SDF is a statically scheduled domain. The firing of a composite actor corresponds to a
single iteration of the contained model (See “Scheduling” on page 54). An SDF iteration consists of
one execution of the precalculated SDF schedule. The schedule is calculated so that the number of
tokens on each relation is the same at the end of an iteration as at the beginning. Thus, an infinite num-
ber of iterations can be executed, without deadlock or infinite accumulation of tokens on each relation. 

Execution in SDF is extremely efficient because of the scheduled execution. However, in order to
execute so efficiently, some extra information must be given to the scheduler. Most importantly, the
data rates on each port must be declared prior to execution. The data rate represents the number of
tokens produced or consumed on a port during every firing1. In addition, explicit data delays must be
added to feedback loops to prevent deadlock. At the beginning of execution, and any time these data
rates change, the schedule must be recomputed. If this happens often, then the advantages of scheduled
execution can quickly be lost.

1. This is known as multirate SDF, where arbitrary rates are allowed. Not to be confused with homogeneous SDF, 
where the data rates are fixed to be one.

FIGURE 3.7.  A model that implements a block FIR filter. The vectorizationFactor parameter of the director 
is set to the size of the block.
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3.3.1  Scheduling

The first step in constructing the schedule is to solve the balance equations [87]. These equations
determine the number of times each actor will fire during an iteration. For example, consider the model
in figure 3.8. This model implies the following system of equations, where ProductionRate and Con-
sumptionRate are declared properties of each port, and Firings is a property of each actor that will be
solved for:

Firings(A) × ProductionRate(A1) = Firings(B) × ConsumptionRate(B1)

Firings(A) × ProductionRate(A2) = Firings(C) × ConsumptionRate(C1)

Firings(C) × ProductionRate(C2) = Firings(B) × ConsumptionRate(B2)

These equations express constraints that the number of tokens created on a relation during an iteration
is equal to the number of tokens consumed. These equations usually have an infinite number of lin-
early dependent solutions, and the least positive integer solution for Firings is chosen as the firing vec-
tor, or the repetitions vector.

The second step in constructing an SDF schedule is dataflow analysis. Dataflow analysis orders
the firing of actors, based on the relations between them. Since each relation represents the flow of
data, the actor producing data must fire before the consuming actor. Converting these data dependen-
cies to a sequential list of properly scheduled actors is equivalent to topologically sorting the SDF
graph, if the graph is acyclic1. Dataflow graphs with cycles cause somewhat of a problem, since such
graphs cannot be topologically sorted. In order to determine which actor of the loop to fire first, a data
delay must be explicitly inserted somewhere in the cycle. This delay is represented by an initial token
created by one of the output ports in the cycle during initialization of the model. The presence of the
delay allows the scheduler to break the dependency cycle and determine which actor in the cycle to fire
first. In Ptolemy II, the initial token (or tokens) can be sent from any port, as long as the port declares
an tokenInitProduction property. However, because this is such a common operation in SDF, the Sam-
pleDelay actor (see section 3.5) is provided that can be inserted in a feedback loop to break the cycle.
Cyclic graphs not properly annotated with delays cannot be executed under SDF. An example of a
cyclic graph properly annotated with a delay is shown in figure 3.9.

1. Note that the topological sort does not correspond to a unique total ordering over the actors. Furthermore, espe-
cially in multirate models it may be possible to interleave the firings of actors that fire more than once. This can 
result in many possible schedules that represent different performance trade-offs. We anticipate that future 
schedulers will be implemented to take advantage of these trade-offs. For more information about these trade-
offs see [47].
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D1:  SDF director
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FIGURE 3.8.  An example SDF model. The model has a toplevel named E0, an SDF Director named D1 and 
three actors named A, B and C.
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In some cases, a non-zero solution to the balance equations does not exist. Such models are said to
be inconsistent, and cannot be executed under SDF. Inconsistent graphs inevitably result in either
deadlock or unbounded memory usage for any schedule. As such, inconsistent graphs are usually bugs
in the design of a model. However, inconsistent graphs can still be executed using the PN domain, if
the behavior is truly necessary. Examples of consistent and inconsistent graphs are shown in figure
3.10. 

3.3.2  Hierarchical Scheduling

So far, we have assumed that the SDF graph is not hierarchical. The simplest way to schedule a
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D1:  SDF director
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C

FIGURE 3.9.  A consistent cyclic graph, properly annotated with delays. A one token delay is represented by 
a black circle. Actor C is responsible for setting the tokenInitProduction parameter on its output port, and cre-
ating the two tokens during initialization. This graph can be executed using the schedule A, A, B, C, C.
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FIGURE 3.10.  Two models, with each port annotated with the appropriate rate properties. The model on the 
top is consistent, and can be executed using the schedule A, A, C, B, B. The model on the bottom is inconsis-
tent because tokens will accumulate between ports C2 and B2.
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hierarchical SDF model is flatten the model to remove the hierarchy, and then schedule the model as
usual. This technique allows the most efficient schedule to be constructed for a model, and avoids cer-
tain composability problems when creating hierarchical models. In Ptolemy II, a model created using a
transparent composite actor to define the hierarchy is scheduled in exactly this way. 

Ptolemy II also supports a stronger version of hierarchy, in the form of opaque composite actors. In
this case, the hierarchical actor appears to be no different from the outside than an atomic actor with no
hierarchy. The SDF domain does not have any information about the contained model, other than the
rate parameters that may be specified on the ports of the composite actor. The SDF domain is designed
so that it automatically sets the rates of external ports when the schedule is computed. Most other
domains are designed (conveniently enough) so that their models are compatible with default rate
properties assumed by the SDF domain. For a complete description of these defaults, see the descrip-
tion of the SDFScheduler class in section 3.4.2.

3.3.3  Hierarchically Heterogeneous Models

An SDF model can generally be embedded in any other domain. However, SDF models are unlike
most other hierarchical models in that they often require multiple inputs to be present. When building
one SDF model inside another SDF model, this is ensured by the containing SDF model because of the
way the data rate parameters are set as described in the previous section. For most other domains, the
SDF director will check how many tokens are available on its input ports and will refuse firing (by
returning false in prefire()) until enough data is present for an entire iteration to complete.

3.4  Software Architecture

The SDF kernel package implements the SDF model of computation. The structure of the classes
in this package is shown in figure 3.11.

3.4.1  SDF Director

The SDFDirector class extends the StaticSchedulingDirector class. When an SDF director is cre-
ated, it is automatically associated with an instance of the default scheduler class, SDFScheduler. This
scheduler is intended to be relatively fast, but not designed to optimize for any particular performance
goal. The SDF director does not currently restrict the schedulers that may be used with it. For more
information about SDF schedulers, see section 3.4.2.

The director has a parameter, iterations, which determines a limit on the number of times the
director wishes to be fired1. After the director has been fired the given number of times, it will always
return false in its postfire() method, indicating that it does not wish to be fired again. The iterations
parameter must contain an integer value. The default value is an IntToken with value 0. A non-positive
integer indicates that there is no preset limit for the number of times the director will fire. Users will
likely specify a positive value in the director of the toplevel composite actor as the number of toplevel
iterations of the model.

The SDF director also has a vectorizationFactor parameter that can be used to request vectorized
execution of a model. This parameter increases the granularity of the executed schedule so that the
director fires each actor vectorizationFactor times of the normal. The vectorizationFactor parameter
must contain a positive integer value. The default value is an IntToken with value one, indicating that

1. This parameter acts similarly to the Time-to-Stop parameter in Ptolemy Classic.
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no vectorization should be done. Changing this parameter changes the meaning of an embedded SDF
model and may cause deadlock in a model that uses it. On the other hand, increasing the vectorization-
Factor may increase the efficiency of a model, both by reducing the number of times the SDF model
needs to be executed, and by allowing the SDF model to combine multiple firings of contained actors
using the iterate() method.

The newReceiver() method in SDF directors is overloaded to return instances of the SDFReceiver
class. This receiver contains optimized method for reading and writing blocks of tokens. For more
information about SDF receivers, see section 3.4.3.

3.4.2  SDF Scheduler

The basic SDFScheduler derives directly from the Scheduler class. This scheduler provides

FIGURE 3.11.  The static structure of the SDF kernel classes.
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unlooped, sequential schedules suitable for use on a single processor. No attempt is made to optimize
the schedule by minimizing data buffer sizes, minimizing the size of the schedule, or detecting paral-
lelism to allow execution on multiple processors. We anticipate that more elaborate schedulers capable
of these optimizations will be added in the future.

The scheduling algorithm is based on the simple multirate algorithm in [87]. Currently, only single
processor schedules are supported. The multirate scheduling algorithm relies on the actors in the sys-
tem to declare the data rates of each port. The data rates of ports are specified using three parameters
on each port named tokenConsumptionRate, tokenProductionRate, and tokenInitProduction. The pro-
duction parameters are valid only for output ports, while the consumption parameter is valid only for
input ports. If a parameter exists that is not valid for a given port, then the value of the parameter must
be zero, or the scheduler will throw an exception. If a valid parameter is not specified when the sched-
uler runs, then default values of the parameters will be assumed, however the parameters are not then
created1.

After scheduling, the SDF scheduler will set the rate parameters on any external ports of the com-
posite actor. This allows a containing actor, which may represent an SDF model, to properly schedule
the contained model, as long as the contained model is scheduled first. To ensure this, the SDF director
forces the creation of the schedule after initializing all the actors in the model. The SDF scheduler also
sets attributes on each relation that give the maximum buffer size of the relation. This can be useful
feedback for analyzing deadlocks, or for visualization.This mechanism is illustrated in the sequence
diagram in figure 3.12.

SDF graphs should generally be connected. If an SDF graph is not connected, then there is some
concurrency between the disconnected parts that is not captured by the SDF rate parameters. In such
cases, another model of computation (such as process networks) should be used to explicitly specify
the concurrency. As such, the SDF scheduler by default disallows disconnected graphs, and will throw
an exception if you attempt to schedule such a graph. However, sometimes it is useful to avoid intro-
ducing another model of computation, or to allow dynamic modifications to an executing model. By
setting the allowDisconnectedGraphs parameter of the SDF director to true, the scheduler will assume
a default notion of concurrency between different parts of a model. Each disconnected ‘island’ will be
scheduled independently, and an overall schedule created that includes one execution of the schedule
for each island.

Multiports. Notice that it is impossible to set a rate parameter on individual channels of a port. This is
intentional, and all the channels of a given port of an actor are assumed to have the same rate. For
example, when the AddSubtract actor fires under SDF, it will consume exactly one token from each
channel of its input plus port, consume one token from each channel of its minus port, and produce one
token the single channel of its output port. Notice that although the domain-polymorphic adder is writ-
ten to be more general than this (it will consume up to one token on each channel of the input port), the
SDF scheduler will ensure that there is always at least one token on each input port before the actor
fires.

Dangling ports. All channels of a port are required to be connected to a remote port under the SDF
domain. A regular port that is not connected will always result in an exception being thrown by the
scheduler. However, the SDF scheduler detects multiports that are not connected to anything (and thus

1. The assumed values correspond to a homogeneous actor with no data delay. Input ports are assumed to have a 
consumption rate of one, output ports are assumed to have a production rate of one, and no tokens are produced 
during initialization.
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have zero width). Such ports are interpreted to have no channels, and will be ignored by the SDF
scheduler.

3.4.3  SDF ports and receivers

Unlike most domains, multirate SDF systems tend to produce and consume large blocks of tokens
during each firing. Since there can be significant overhead in data transport for these large blocks, SDF
receivers are optimized for sending and receiving a block of tokens en masse. 

The SDFReceiver class implements the Receiver interface. Instead of using the FIFOQueue class
to store data, which is based on a linked list structure, SDF receivers use the ArrayFIFOQueue class,
which is based on a circular buffer. This choice is much more appropriate for SDF, since the size of the
buffer is bounded, and can be determined statically1.

The SDFIOPort class extends the TypedIOPort class. It exists mainly for convenience when creat-

1. Although the buffer sizes can be statically determined, the current mechanism for creating receivers does not 
easily support it. The SDF domain currently relies on the buffer expanding algorithm that the ArrayFIFOQueue 
uses to implement circular buffers of unbounded size. Although there is some overhead during the first iteration, 
the overhead is minimal during subsequent iterations (since the buffer is guaranteed never to grow larger).

FIGURE 3.12.  The sequence of method calls during scheduling of a hierarchical model.
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ing actors in the SDF domain. It provides convenience methods for setting and accessing the rate
parameters used by the SDF scheduler.

3.4.4  ArrayFIFOQueue

The ArrayFIFOQueue class implements a first in, first out (FIFO) queue by means of a circular
array buffer1. Functionally it is very similar to the FIFOQueue class, although with different enqueue
and dequeue performance. It provides a token history and an adjustable, possibly unspecified, bound
on the number of tokens it contains.

If the bound on the size is specified, then the array is exactly the size of the bound. In other words,
the queue is full when the array becomes full. However, if the bound is unspecified, then the circular
buffer is given a small starting size and allowed to grow. Whenever the circular buffer fills up, it is
copied into a new buffer that is twice the original size. 

3.5  Actors

Most domain-polymorphic actors can be used under the SDF domain. However, actors that depend
on a notion of time may not work as expected. For example, in the case of a TimedPlotter actor, all data
will be plotted at time zero when used in SDF. In general, domain-polymorphic actors (such as
AddSubtract) are written to consume at most one token from each input port and produce exactly one
token on each output port during each firing. Under SDF, such an actor will be assumed to have a rate
of one on each port, and the actor will consume exactly one token from each input port during each fir-
ing. There is one actor that is normally only used in SDF: the SampleDelay actor. This actor is pro-
vided to make it simple to build models with feedback, by automatically handling the
tokenInitProduction parameter and providing a way to specify the tokens that are created.

SampleDelay
Ports: input (Token), output (Token).
Parameters: initialOutputs (ArrayToken).

During initialization, create a token on the output for each token in the initialOutputs array. During 
each firing, consume one token on the input and produce the same token on the output.

1. Adding an array of objects to an ArrayFIFOQueue is implemented using the java.lang.system.arraycopy 
method. This method is capable of safely removing certain checks required by the Java language. On most Java 
implementations, this is significantly faster than a hand coded loop for large arrays. However, depending on the 
Java implementation it could actually be slower for small arrays. The cost is usually negligible, but can be 
avoided when the size of the array is small and known when the actor is written.
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4.1  Introduction

Finite state machines (FSMs) have been used extensively in designing sequential control logic.
There are two major reasons behind their use. First, FSMs are a very intuitive way to capture control
logic and make it easier to communicate a design. Second, FSMs have been the subject of a long his-
tory of research work. Many formal analysis and verification methods have been developed for them.

In their simple flat form, FSM models have a key weakness: the number of states in an FSM model
can get quite large even for a moderately complex system. Such models quickly become chaotic and
incomprehensible when one tries to model a system having many concurrent activities. The problem
can be solved by introducing hierarchical organization into FSM models and using them in combina-
tion with concurrency models. David Harel first used this approach when he introduced the Statecharts
formalism [52].

The Statecharts formalism extends the conventional FSM model in three aspects: hierarchical
decomposition of states, concurrent composition of FSMs in a synchronous-reactive fashion, and a
broadcast communication mechanism between concurrent components. While how these extensions fit
together was not completely specified in [52], Harel’s work stimulated a lot of interest in the approach.
Consequently, there is a proliferation of variants of the Statecharts formalism [12], each proposing a
different way to make the extensions fit into a monolithic model. Unfortunately, in all these variants
FSM is combined with a particular concurrency model. The applicability of the resulting models is
often limited.

Based on the Ptolemy philosophy of hierarchical composition of heterogeneous models of compu-
tation, the *charts1 formalism [47] allows embedding hierarchical FSMs within a variety of concur-
rency models. If tight synchronization is possible and desirable, then FSMs can be composed by the
synchronous-reactive model. If the system has a global notion of time and components communicate
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by time-stamped events, then FSMs can be composed by the discrete-event model. The rest of this
chapter focuses on how the FSM domain in Ptolemy II supports the *charts formalism.

4.2  Building FSMs in Vergil

An FSM model is contained by an instance of FSMActor. The FSM model reacts to inputs to the
FSM actor by making state transitions. Actions such as sending tokens to the output ports of the FSM
actor can be associated with state transitions. In this section, we show how to construct and run a
model with an FSM actor in Vergil.

4.2.1  Alternate Mark Inversion Coder

Alternate Mark Inversion (AMI) is a simple digital transmission technique that encodes a bit
stream on a signal line as shown below:

The 0 bits are transmitted with voltage zero. The 1 bits are transmitted alternately with positive and
negative voltages. On average, the resulting waveform will have no DC component.

We can model an AMI coder with a two-state FSM shown in figure 4.2. To construct a Ptolemy II
model containing this coder, follow these steps:

1. Start Vergil, open a graph editor by selecting File -> New -> Graph Editor.

2. From MoreLibraries/Automata in the palette on the left, drag an FSM actor to the graph. Rename 
the FSM actor AMICoder.

3. Right click on AMICoder, select Customize -> Ports. Add an input port with name in and an out-
put port with name out to AMICoder.

4. Right click on AMICoder, select Open Actor. This will open an FSM editor for AMICoder. Note 
that the ports of AMICoder are placed at the upper left corner of the graph panel. Reposition these 
ports to the left and right sides of the graph by clicking and dragging.

5. From the palette on the left, drag a state to the graph, rename it Positive. Drag another state to the 
graph, rename it Negative. Note that because the Positive state was placed first, it has a thicker 
border, this indicates that the Positive state is the initial state. To select a different state as the ini-
tialState, double click on the state and check the isInitialState box.

6. Control-drag from the Positive state to the Negative state to create a transition.

7. Double click on the transition. This will bring up the dialog box shown in figure 4.1 for editing the 
parameters of the transition.

8. Set guardExpression to in == 1, and outputActions to out = 1 and hit the Commit button.

1. Pronounced “starcharts.” The star represents a wildcard that can be interpreted as matching multiple concur-
rency models.

0 0 0 0 0 01 1 1 1 1 1 1
+V

-V
0
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9. Create a transition from the Positive state back to itself with guard expression in == 0 and output 
action out = 0.

10. Create a transition from the Negative state back to itself with guard expression in == 0 and out-
put action out = 0.

11. Create a transition from the Negative state to the Positive state with guard expression in == 1 
and output action out = -1.

12. The construction of AMICoder is complete. It will look like what is shown in figure 4.2.

13. Return to the graph editor opened in step 1.

14. Drag a Pulse actor (from Actors/Sources/SequenceSources), a SequencePlotter (from Actors/
Sinks/SequenceSinks), and an SDF director (from Directors) to the graph.

15. Connect the actors as shown in figure 4.3.

FIGURE 4.1.  The dialog box for editing parameters of a transition.

FIGURE 4.2.  Vergil FSM editor showing the AMICoder.



64 Ptolemy II

FSM Domain

16. Edit parameters of the Pulse actor: set indexes to {0, 1, 2, 3, 4, 5}; set values to 
{0, 1, 1, 1, 0, 1}.

17. The model construction is complete.

18. Select View -> Run Window from the menu. Set director iterations to 6 and execute the model. For 
a better display of the result, open the set plot format dialog box, unselect connect and use various 
marks.

4.3  The Implementation of FSMActor

The FSMActor-related classes in the FSM kernel package are shown in figure 4.4.
The FSMActor class extends the CompositeEntity class and implements the TypedActor interface.

An FSM actor contains states and transitions. The State class is a subclass of ComponentEntity. A state
has two ports: incomingPort, which links to incoming transitions to the state, and outgoingPort, which
links to transitions going out from the state. The Transition class is a subclass of ComponentRelation.
A transition links to exactly two ports: the outgoing port of its source state, and the incoming port of its
destination state.

4.3.1  Guard Expressions

The guard of a transition is specified by its guardExpression string attribute. Guard expressions are
parsed and evaluated using the Ptolemy II expression language (see the Expressions chapter and the
Data chapter for details). Guard expressions should evaluate to a boolean value. A transition is enabled
if its guard expression evaluates to true. Parameters of the FSM actor and input variables (defined
below) can be used in guard expressions.

Input variables represent the status and input value for each input port of the FSM actor. If the
input port is a single port, two variables are used: a status variable named portName_isPresent, and
a value variable named portName. If the input port is a multiport of width n, 2n variables are used, two
for each channel: a status variable named portName_channelIndex_isPresent, and a value variable
named portName_channelIndex. A status variable will have boolean value true if there is a token at the
corresponding input, or false otherwise. A value variable has the same type as the corresponding input,
and contains the token received from the input, or null if there is no token. All input variables are con-
tained by the FSM actor.

In the following examples (and the examples in the next section), we assume that the FSM actor
has two input ports: a single port in1 and a multiport in2 of width 2; an output port out that is a multi-

FIGURE 4.3.  An SDF model with the AMICoder.
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port of width 2; and a parameter param.
• Guard expression: in2_0 + in2_1 > 10. If the inputs from the two channels of port in2 have a 

total greater than 10, the transition is enabled. Note that if one or both channels of port in2 do not 
have a token when this expression is evaluated, an exception will be thrown.

• Guard expression: in1_isPresent && in1 > param. If there is input from port in1 and the 
value of the input is greater than param, the transition is enabled.

FIGURE 4.4.  The UML static structure diagram of FSMActor-related classes.
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4.3.2  Actions

A transition can have a set of actions that produce output tokens or set parameters of the FSM
actor. To make FSM actors domain polymorphic (see section 4.5), especially for them to be operational
in domains having fixed-point semantics, two kinds of actions are defined: choice actions and commit
actions. Choice actions do not modify the extended state1 of the FSM actor. They are executed when
the FSM actor is fired and the containing transition is enabled. Commit actions may modify the
extended state of the FSM actor. They are executed in postfire() if the containing transition was
enabled in the last firing of the FSM actor. Two marker interfaces are defined in the FSM kernel pack-
age: ChoiceAction, which is implemented by all choice action classes, and CommitAction, imple-
mented by all commit action classes.

A transition has an outputActions attribute which is an instance of OutputActionsAttribute. The
OutputActionsAttribute class allows the user to specify a list of semicolon separated output actions of
the form destination = expression. The expression can use parameters and input variables of
the FSM actor. The destination is either a port name, in which case the result token from evaluating the
expression is broadcast to all channels of the port, or of the form portName(channelIndex), in
which case the result token is sent to the specified channel. Output actions are choice actions.
• outputActions: out = in1_isPresent ? in1 : 0. Broadcast the input from port in1, or 0 if 

there is no input from in1, to the two channels of out.
• outputActions: out(0) = param; out(1) = param + 1. Send the value of param to the first 

channel of out, and the value of param plus 1 to the second channel.
A transition has a setActions attribute which is an instance of CommitActionsAttribute. The Com-

mitActionsAttribute class allows the user to specify a list of semicolon separated commit actions of the
form destination = expression. The expression can use parameters and input variables of the
FSM actor. The destination is a parameter name.
• setActions: param = param + (in1_isPresent ? in1 : 0). The input values from port in1 

are accumulated in param.
It is worth noting that parameter values are persistent. If not properly initialized, the parameter param
in the above example will retain its accumulated value from previous model executions. A useful
approach is to build the FSM model such that the initial state has an outgoing transition with guard
expression true, and use the set actions of this transition for parameter initialization.

4.3.3  Execution

The methods that define the execution of an FSM actor are implemented as follows:
• preinitialize(): create receivers and input variables for each input port; set current state to 

the initial state as specified by the initialStateName attribute.
• initialize(): perform domain-specific initialization by calling the initialize(Actor) method of 

the director. Note that in the example given in section 4.2.1, the director will be the SDF director.
• prefire(): always return true. An FSM actor is always ready to fire.
• fire(): set the values of input variables; choose the enabled transition among the outgoing tran-

sitions of the current state; execute the choice actions of the chosen transition.
• postfire(): execute the commit actions of the last chosen transition; change state to the destina-

1. The extended state of an FSM actor is the current state of the state machine it contains plus the set of current val-
ues of its parameters.
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tion state of that transition. If the destination state is a final state as specified by the finalState-
Names attribute, then return false to inform the director not to fire this actor again.

Non-deterministic FSMs are also supported. A nondeterministic transition can be specified by setting
the nondeterministic parameter to true. The fire() method checks whether there is more than one
enabled transition from the current state. If there is and all enabled transitions are nondeterministic, the
FSM actor randomly chooses one. If at least one of the multiple enabled transitions is deterministic, an
exception is thrown. In the case when there is no enabled transition, the FSM will stay in its current
state.

4.4  Modal Models

The FSM domain supports the *charts formalism with modal models. The concept of modal model
is illustrated in figure 4.5. M is a modal model with two operation modes. The modes are represented
by states of an FSM that controls mode switching. Each mode has a refinement that specifies the
behavior of the mode. In Ptolemy II, a modal model is constructed in a modal model actor having the
FSM director as local director. The modal model actor contains a mode controller (an FSM actor) and
a set of actors that model the refinements. The FSM director mediates the interaction with the outside
domain, and coordinates the execution of the refinements with the mode controller.

4.4.1  A Schmidtt Trigger Example

In this section, we will illustrate how to build a modal model in Ptolemy II with a simple Schmidtt
trigger example. The output from the Schmidtt trigger will move from -1.0 to 1.0 when its input
becomes greater than 0.3, and will move back to -1.0 once its input becomes less than -0.3.

1. Open a Vergil graph editor. From Actors/HigherOrderActors, drag a ModalModel actor to the 
graph, rename it SchmidttTrigger. Add an input port named in and an output port named out to it.

2. Look inside SchmidttTrigger. This will open an FSM editor for the mode controller. Construct a 
two-state FSM as shown in figure 4.6. Set the reset parameter of both transitions to true. Set ini-
tial state name of the mode controller to N.

3. Right click on the state named P, select Add Refinement. Specify the name of the refinement as 
RefinementP. A Vergil graph editor will be opened for the refinement. Build a model for it as 
shown in figure 4.7. Set the value of Const to 1.0. Edit parameters of Pulse: set indexes to 

FIGURE 4.5.  A modal model example.
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{0, 1, 2, 3, 4}, and values to {-2.0, -1.6, -1.2, -0.8, -0.4}.

4. Add a refinement named RefinementN to state N. Build a model for it similar to the one shown in 
figure 4.7. Set the value of Const to -1.0. Edit parameters of Pulse: set indexes to 
{0, 1, 2, 3, 4}, and values to {2.0, 1.6, 1.2, 0.8, 0.4}.

5. Back to the graph editor opened in step 1. Build the model as shown in figure 4.8. The model gen-
erates an input signal (a sinusoid plus Gaussian noise) for the SchmidttTrigger and plots its output. 
Edit parameters of Ramp: set init to -PI/2, and step to PI/20. Edit parameters of Gaussian: set 
standardDeviation to 0.2.

6. Run the model for 200 iterations. A sample result is shown in figure 4.9.

FIGURE 4.6.  The mode controller for SchmidttTrigger.

FIGURE 4.7.  Model for the refinements in SchmidttTrigger. RefinementP has Const set to 1.0, Refine-
mentN has Const set to -1.0.

FIGURE 4.8.  The top-level model with the SchmidttTrigger.

FIGURE 4.9.  Sample result of the model shown in figure 4.8.
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4.4.2  Implementation

The classes in the FSM kernel package that support modal models are shown in figure 4.10. The
execution of a modal model is summarized below.

When a modal model is fired:

1. The FSM director transfers the input tokens from the outside domain to the mode controller and to 
the refinement of its current state.

2. The preemptive transitions from the current state of the mode controller are examined. If there is 
an enabled transition, execute the choice actions of the transition, go to step 5.

3. Fire the refinement of the current state.

4. The non-preemptive transitions from the current state of the mode controller are examined. If there 
is an enabled transition, execute the choice actions of the transition.

5. Any output token produced by the mode controller or the refinement is transferred to the outside 
domain.

To make a transition preemptive, set its preemptive parameter to true. The mode controller does not
change state during successive firings in one iteration in order to support outside domains that iterate
to a fixed point. In postfire(), if there is an enabled transition in the latest firing:

1. Execute the commit actions of the transition.

2. Set the current state of the mode controller to the destination state of the transition.

3. If the value of the reset parameter of the transition is true, the refinement of the destination state is 
initialized.

4.4.3  Applications

Hybrid System Modeling. An HSDirector class that extends the FSMDirector class is created for mod-
eling hybrid systems with FSMs and continuous-time (CT) models. An example is presented in section

FSMActor StateDirector

FSMDirector

+FSMDirector()
+FSMDirector(workspace : Workspace)
+FSMDirector(container : CompositeEntity, name : String)
+getController() : FSMActor
#_currentLocalReceivers(port : IOPort) : Receiver[][]

+controllerName : StringAttribute

0..n

0..1

0..1

1..1controller

CompositeActor
«Interface»
TypedActor1..1 1

1..1

1

0..n

0..1

0..1

0..1refinement

FIGURE 4.10.  FSM kernel classes that support modal models.
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2.7.3. Execution control is discussed in section 2.8.6.

Multirate System Modeling. A MultirateFSMDirector class and an HDFFSMDirector class are created
for modeling FSMs with multirate dataflow models. The MultirateFSMDirector extends the FSMDi-
rector by supporting production and consumption of multiple tokens on a port in a firing. The HDFF-
SMDirector further extends the MultirateFSMDirector by restricting that state transitions could only
occur between global iterations. More details can be found in Chapter 10.

Communication Protocol Modeling. Hierarchical FSMs are used to model protocol control logic. The
timing characteristics of the communication channel are captured by discrete-event (DE) models. We
have applied this approach to the alternating bit protocol. The detailed models can be found in the FSM
domain demo directory ($PTII/ptolemy/domains/fsm/demo/ABP).
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Giotto Domain

Authors: Haiyang Zheng
Edward Lee
Christoph Kirsch

5.1  Introduction

The Giotto model is a semantic model that describes the communication between periodic time
triggered components. It was developed by Thomas Henzinger and his group. It was designed for
deterministic and safety critical applications. 

The main points about the Giotto model are: 
1. A Giotto model is composed of one or more modes and each mode is composed of several tasks. 
2. For every task, the design specifies a worst case execution time (WCET) which constrains the

execution time of that task in the model.
3. Tasks are concurrent and preemptable.
4. Each task may consume some tokens and produce some tokens for other actors or itself, the pro-

duced tokens are not available until the end of the task’s deadline.
5. Mode switching includes invoking or terminating some tasks.
6. There are constraints on mode switching, e.g., the states consistency of tasks. 
More details of the Giotto model may be found at http://embedded.eecs.berkeley.edu/giotto.

5.2  Using Giotto

The execution time of an actor in the Giotto model is defined as the period (a parameter of the
Giotto Director) divided by the frequency (a parameter associated with the actor). To configure the
period of a Giotto model, modify the value of the period parameter. The default value of period is 0.1
sec. To configure the frequency of a task, add a parameter called frequency (the value has to be an inte-
ger). Without the explicit frequency parameter, the director assigns a default frequency 1 to the actor.
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There is also an iterations parameter associated with the director, which is used to control the num-
ber of iterations of the model, or the total execution time of the model. The default value is 0, which
means that the model executes forever.

There is one constraint when constructing models: each channel of an input port must have exactly
one source. This ensures the determinacy of the model.

Figure 5.1 is a simple Giotto model. The simulation result of this model is shown in Figure 5.2.
The blue box in Figure 5.1 is GiottoCodeGenerator. It is used to generate Giotto code for the E-Com-
piler for schedulability analysis. To use the GiottoCodeGenerator, drag the CodeGenerator into the
graph editor from the tools on the left side under the directory more libraries/experimental domains/
Giotto. Double clicking this icon will pop up a text window with the generated code. The generate
code for Figure 5.1 is shown in Figure 5.3. 

To compile the generated code, save the file as Simple.giotto in $PTII/ptolemy/domains/giotto/
demo/Simple. Download and install the Giotto Development Kit (GDK) [132] from http://embed-
ded.eecs.berkeley.edu/giotto/download.html. If necessary, edit the GIOTTO_DIR variable in $PTII/
ptolemy/domains/giotto/kernel/giotto.mk to reflect where you installed the GDK. In the $PTII/
ptolemy/domains/giotto/demo/Simple directory, run "make demo_gdk". This will create and compile
the java files in the $PTII/ptolemy/domains/giotto/demo/Simple/Simple/ directory and then start up the
GDK. In the GDK window, load Simple.giotto with File -> Open, change the package from
"giotto.functionality.code.hovercraft" to "Simple" and hit the compile button.

Run the E Code with E Code -> Run E Code. The methods names will appear on standard out.

FIGURE 5.1.  A Simple Giotto model with only one mode.
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FIGURE 5.2.  Simulation results for the model in Figure 5.1

sensor
actuator
output
  Token_port Ramp_output := CGinit_Ramp_output;
task Ramp (Token_port Ramp_trigger,Token_port 
Ramp_step)
        output (Ramp_output)
        state ()
{
        schedule 
CGRamp_Task(Ramp_trigger,Ramp_step,Ramp_output)
}
task outputs (Token_port outputs_input)
        output ()
        state ()
{
        schedule CGoutputs_Task(outputs_input,)
}
task outputs2 (Token_port outputs2_input)
        output ()
        state ()
{
        schedule 
CGoutputs2_Task(outputs2_input,)
}
driver Ramp_driver ()
        output (Token_port 
Ramp_trigger,Token_port Ramp_step)
{
}
driver outputs_driver (Ramp_output)
        output (Token_port outputs_input)
{
          if constant_true() then 
copy_Token_port( Ramp_output, outputs_input)
}
driver outputs2_driver (Ramp_output)

        output (Token_port outputs2_input)
{
          if constant_true() then 
copy_Token_port( Ramp_output, outputs2_input)
}
start SimpleGiotto {
  mode SimpleGiotto () period 100 {
    taskfreq 1 do Ramp(Ramp_driver);
    taskfreq 1 do outputs(outputs_driver);
    taskfreq 2 do outputs2(outputs2_driver);
  }
}

FIGURE 5.3.  Generated Giotto code for the model in Figure 5.1
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5.3  Interacting with Other Domains 

During the design of real applications, complex models are often decomposed into simpler models,
each having their own model of computation. So, it is important to study the interactions between
Giotto models and other models. A few discussions and examples are given in the following para-
graphs.

5.3.1  Giotto Embedded in DE and CT 

The interface between DE model and Giotto model is well defined. Embedded inside DE model,
the Giotto model could easily be invoked to meet design requirements. The composite model gives a
paradigm of asynchronous Giotto model triggered by discrete events compared with the normal Giotto
model triggered by periodic time. 

Figure 5.4 shows a Giotto model composed inside a DE model, which can be found at $PTII/
ptolemy/domains/giotto/demo/Composite/Composite.xml. The details of the DE domain are in Chap-
ter 14. The Giotto model runs with period 0.2 sec. and iterates twice each time it is invoked. There are
two triggering events: one happens at time 0.0 sec. and the other at time 1.0 sec. The result is shown in
Figure 5.5. The results in the State plot have a delay of 0.2 sec. with respect to the triggering events in
the Events plot.

There are a few important issues:

i. The results in states plot has 0.2 sec. delay according to the Giotto semantics. 
ii. For each input to the Giotto model, two outputs are generated since the value of the iterations

parameter is 2.

FIGURE 5.4.  Giotto model embedded in DE model.
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When a Giotto model is composed inside a CT model, the Giotto model is always invoked. So, the
iterations parameter does not has effect. 

5.3.2  FSM and SDF embedded inside Giotto

A Giotto model may be composed of several modes. To realize mode switching, we employed the
modal model. A modal model is basically a FSM with the states which may be refined into other mod-
els of computations. The details of the modal model is in Chapter 16. In our example, the states are
refined into the SDF models. The details of the SDF domain is in Chapter 15.

The model shown in Figure 5.6 can be found at $PTII/ptolemy/domains/giotto/demo/Multimode/
Multimode.xml. This model is a simple implementation of mode switching where each mode has only
one task, (implemented as a SDF model). The modal model has three states, init, mode1 and mode2.
The default state is init and it is never reached again after the execution starts. The states mode1 and
mode2 are refined into the tasks doing addition and subtraction respectively.

FIGURE 5.5.  Simulation results of model of Figure 5.4
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The simulation result is shown in Figure 5.7. The outputs plotter resides in the Giotto model.
Mode1 plotter and mode2 plotter reside in states of mode1 and mode2.

The outputs plot shows the results have 0.1 sec. delay according to the Giotto semantics. At time
0.4 sec., the mode1 plot shows a mode switching (from mode1 to mode2) happens. However, the mode
switching does not show on the outputs plot until 0.5 sec. 

Note that in the mode2 plot, the last result at 0.7 sec. does not show up in the outputs plot. The rea-
son is that although the result of mode2 is available at 0.7 sec., it is not transferred to the outputs actor
until 0.8 sec. Thus, the outputs plotter could not show the result until 0.8 sec., which exceeds the itera-
tions limit.

5.4  Software structure of the Giotto Domain and imple-
mentation

The Giotto kernel package implements the Giotto model of computation. It's composed of three
classes: GiottoScheduler, GiottoDirector and GiottoReceiver. Also, a code generation tool the E-com-
plier is provided as GiottoCodeGenerator. The structure of classes is shown the Figure 5.8.

FIGURE 5.6.  Modal model embedded in Giotto model.
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5.4.1  GiottoDirector

GiottoDirector extends StaticSchedulingDirector class. It implements a model of computation
according to the Giotto semantics with the help of the GiottoScheduler and the GiottoReceiver. Giot-
toScheduler provides a list of schedules and GiottoReceiver provides the buffered states.

There are three parameters associated with the GiottoDirector: period, iterations and synchronize-
ToRealTime. The execution phases of GiottoDirector include initialize, prefire, fire and postfire. 

1. In the initialize phase, the director resets all the receivers and properly initializes the output
ports of actors. The director also gets the list of schedules. A schedule is a list of actors to be fired at
the same time. It synchronizes to the cpu time if the parameter synchronizeToRealTime is true. 

2. In the prefire phase, the director updates the current time from upper level director if necessary.
It also decides to firing or not by checking whether the current time is less than the expected execution
time.

3. In the fire phase, the director iterates the list of schedules via index indicator unitIndex. Each
time, the unitIndex is incremented by 1 referring to the next schedule. When it exceeds the schedule
list size, it rounds back to 0. The director does two things in sequence: invoking all the actors listed in
the schedule and transferring outputs of the actors after their executions. The director needs to be syn-
chronized to real time if the parameter synchronizeToRealTime is true.

4. In the postfire phase, if the Giotto model is embedded, the director does not advance time by
itself. Its next firing is scheduled by the executive director (in the example in Figure 5.4, the DE direc-

FIGURE 5.7.  Simulation results for model in Figure 5.6.
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tor). Note that the last transfer of outputs happens after the execution of all the actors and no actors are
fired. A boolean variable transferOutputsOnly is introduced to indicate the transfer. When the itera-
tions requirement is first met, the director sets transferOutputsOnly to true and prepares for the next
iteration. The postfire() method returns true. In the immediately following postfire phase, transferOut-
putsOnly is set back to false. The postfire() method returns false to terminate the model execution.

When the Giotto model is embedded inside other models, for example, the model in Figure 5.4.
The Giotto director asks GiottoReceiver to call remove() instead of get(), otherwise, the states plotter
will always be fired because the _token is not cleared.

5.4.2  GiottoScheduler

GiottoScheduler extends the Scheduler class. It is used to construct a list of schedules for the Giot-
toDirector. A schedule is a list of actors that will be fired by the GiottoDirector at the same time. Giot-

StaticSchedulingDirector

GiottoDirector

+iterations : Int
+period : double
+synchronizeToRealTime : boolean
#_DEFAULT_GIOTTO_PERIOD: double

+GiottoDirector()
+GiottoDirector( container : CompositeEntity,  name : String)
+GiottoDirector(workspace : Workspace)
+getIntPeriod()
+getPeriod()

GiottoCodeGenerator

+generatedCode : String

+GiottoCodeGenerator(_container : NamedObj, name : String)
+generateCode()

Attribute

AbstractReceiver

GiottoReceiver

+GiottoReceiver()
+GiottoReceiver(container : IOPort)
+remove()
+reset()
+update()

Scheduler

TypedAtomicActorcreates

creates

uses

1 .. 1

1 .. 1

GiottoScheduler

#DEFAULT_GIOTTO_FREQUENCY : int

+GiottoScheduler()
+GiottoScheduler(workspace : Workspace)
+getFrequency(actor : Actor)
+getMinTimeStep(period : double)

FIGURE 5.8.  The static structure of the Giotto package kernel classes.
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toScheduler provides two things for GiottoDirector: the minimum unit time increment for
GiottoDirector to advance time and the list of schedules. To get schedule, use the getSchedule()
method from GiottoDirector. 

GiottoScheduler first makes topology analysis to construct a list of the actors including the opaque
composite actors and atomic actors. It also constructs an array frequencyArray, the elements are the
frequency values associated with the actor list. With the frequencyArray, the greatest common divider
(gcd) and the least common multiple (lcm) of all the frequency values are calculated. The minimum
unit time increment is defined as period / lcm. With frequencyArray and lcm, another array: interval-
Array is constructed to indicate when the actor to be added into schedule.

In order to compute the schedule, a simple timer: giottoSchedulerTime is introduced, which iter-
ates from 0 to lcm with tick increment of gcd. 

When constructing the list of schedules, there are two loops. The outer loop iterates the giot-
toSchedulerTime. The inner loop iterates the intervalArray. The inner loop constructs the fireAtSame-
TimeSchedule. The outer loop constructs a schedule, the list of the fireAtSameTimeSchedules. The
Java code of schedule computation is shown in Figure 5.9.

5.4.3  GiottoReceiver

GiottoReceiver extends the AbstractReceiver class. The key point is that the GiottoReceiver has
double buffers: _nextToken and _token. When the get() method is called, a copy of _token is con-
sumed. When the put() method is called, only the _nextToken is updated. When the update() method is
called, the _token is updated by _nextToken. When the remove() method is called, a copy of the _token
is returned and the _token is cleared. It is the GiottoDirector that delays update calls to realize the
Giotto semantics.

FIGURE 5.9.  Schedule computation of GiottoScheduler.

Schedule schedule = new Schedule();

for (  _giottoSchedulerTime = 0; _giottoSchedulerTime < _lcm; ) {

    Schedule fireAtSameTimeSchedule = new Schedule();
    actorListIterator = actorList.listIterator();

    for (i = 0; i < actorCount; i++ ) {
Actor actor = (Actor) actorListIterator.next();
if ((_giottoSchedulerTime % intervalArray[i]) == 0)

                    {
                        Firing firing = new Firing();
                        firing.setActor(actor);
                        fireAtSameTimeSchedule.add(firing);
                    }
    }

    _giottoSchedulerTime += _gcd;
    schedule.add(fireAtSameTimeSchedule);
}
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The GiottoReceiver also has a reset() method. Reset is used to clear all the tokens including
_nextToken and _token but returns nothing. Remove is used to return the _token and clear it but keeps
_nextToken. Reset is used for initialization and remove is used for transfer of outputs to outside envi-
ronment when the Giotto model is embedded inside other models. 

5.4.4  GiottoCodeGenerator

GiottoCodeGenerator extends Attribute class. It is used to generate Giotto code for E-Compiler for
schedulability analysis. 

The current GiottoCodeGenerator works for one mode only. It iterates all the entities and treats
them as tasks. From the input ports of the entities, source ports and their containers are traced. The
model inputs are treated as sensors and the model outputs are treated as actuators.

The generated Giotto code usually has six parts: sensorCode, actuatorCode, outputCode,
taskCode, driverCode and modeCode. The sensorCode and actuatorCode are the interfaces to the out-
side environment. The outputCode and driverCode describe the data dependencies. Note that for out-
putCode, it is illegal for an input port to have more than one source. TaskCode is the description of the
computation of tasks (actors). ModeCode defines which tasks are in each mode, along with their
parameters.

The example code is in Figure 5.3.

null null

_nextToken null

_nextToken _token
new token

put

update

reset

remove

token

get

FIGURE 5.10.  Working mechanism of GiottoReceiver.
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CSP Domain

Author: Neil Smyth
Contributors: Elaine Cheong

John S. Davis II
Bilung Lee
Steve Neuendorffer

6.1  Introduction

The communicating sequential processes (CSP) domain in Ptolemy II models a system as a net-
work of sequential processes that communicate by passing messages synchronously through channels.
If a process is ready to send a message, it blocks until the receiving process is ready to accept the mes-
sage. Similarly if a process is ready to accept a message, it blocks until the sending process is ready to
send the message. This model of computation is non-deterministic as a process can be blocked waiting
to send or receive on any number of channels. It is also highly concurrent. 

The CSP domain is based on the model of computation (MoC) first proposed by Hoare [61][62] in
1978. In this MoC, a system is modeled as a network of processes communicate solely by passing mes-
sages through unidirectional channels. The transfer of messages between processes is via rendezvous,
which means both the sending and receiving of messages from a channel are blocking: i.e. the sending
or receiving process stalls until the message is transferred. Some of the notation used here is borrowed
from Gregory Andrews’ book on concurrent programming [7], which refers to rendezvous-based mes-
sage passing as synchronous message passing. 

Applications for the CSP domain include resource management and high level system modeling
early in the design cycle. Resource management is often required when modeling embedded systems,
and to further support this, a notion of time has been added to the model of computation used in the
domain. This differentiates our CSP model from those more commonly encountered, which do not typ-
ically have any notion of time, although several versions of timed CSP have been proposed [59]. It
might thus be more accurate to refer to the domain using our model of computation as the “Timed
CSP” domain, but since it can be used with and without time, it is simply referred to as the CSP
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domain. 

6.2  Properties of the CSP Domain

At the core of CSP communication semantics are two fundamental ideas. First is the notion of
atomic communication and second is the notion of nondeterministic choice. It is worth mentioning a
related model of computation known as the calculus of communicating systems (CCS) that was inde-
pendently developed by Robin Milner in 1980 [107]. The communication semantics of CSP are identi-
cal to those of CCS.

6.2.1  Atomic Communication: Rendezvous

Atomic communication is carried out via rendezvous and implies that the sending and receiving of
a message occur simultaneously. During rendezvous both the sending and receiving processes block
until the other side is ready to communicate; the acts of sending and receiving are indistinguishable
activities since one can not happen without the other. A real world analogy to rendezvous can be found
in telephone communications (without answering machines). Both the caller and callee must be simul-
taneously present for a phone conversation to occur. Figure 6.1 shows the case where one process is
ready to send before the other process is ready to receive. The communication of information in this
way can be viewed as a distributed assignment statement.

The sending process places some data in the message that it wants to send. The receiving process
assigns the data in the message to a local variable. Of course, the receiving process may decide to
ignore the contents of the message and only concern itself with the fact that a message arrived.

6.2.2  Choice: Nondeterministic Rendezvous

Nondeterministic choice provides processes with the ability to randomly select between a set of
possible atomic communications. We refer to this ability as nondeterministic rendezvous and herein
lies much of the expressiveness of the CSP model of computation. The CSP domain implements non-
deterministic rendezvous via guarded communication statements. A guarded communication state-

Process A Process B

send(B, msg)

receive(A, var)

progress

blocked

transfer of data

FIGURE 6.1.  Illustrating how processes block waiting to rendezvous
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ment has the form

guard; communication => statements;

The guard is only allowed to reference local variables, and its evaluation cannot change the state of the
process. For example it is not allowed to assign to variables, only reference them. The communication
must be a simple send or receive, i.e. another conditional communication statement cannot be placed
here. Statements can contain any arbitrary sequence of statements, including more conditional commu-
nications.

If the guard is false, then the communication is not attempted and the statements are not executed.
If the guard is true, then the communication is attempted, and if it succeeds, the following statements
are executed. The guard may be omitted, in which case it is assumed to be true. 

There are two conditional communication constructs built upon the guarded communication state-
ments: CIF (conditional if) and CDO (conditional do). These are analogous to the if and while state-
ments in most programming languages. Note that each guarded communication statement represents
one branch of the CIF or CDO. The communication statement in each branch can be either a send or a
receive, and they can be mixed freely.

CIF: The form of a CIF is

For each branch in the CIF, the guard (G1, G2,...) is evaluated. If it is true (or absent, which
implies true), then the associated communication statement is enabled. If one or more branch is
enabled, then the entire construct blocks until one of the communications succeeds. If more than one
branch is enabled, the choice of which enabled branch succeeds with its communication is made non-
deterministically. Once the succeeding communication is carried out, its associated statements are exe-
cuted and the process continues. If all of the guards are false, then the process continues executing
statements after the end of the CIF.

It is important to note that, although this construct is analogous to the common if programming
construct, its behavior is very different. In particular, all guards of the branches are evaluated concur-
rently, and the choice of which one succeeds does not depend on its position in the construct. The nota-
tion “[]” is used to hint at the parallelism in the evaluation of the guards. In a common if, the branches
are evaluated sequentially and the first branch that is evaluated to true is executed. The CIF construct
also depends on the semantics of the communication between processes, and can thus stall the progress
of the thread if none of the enabled branches is able to rendezvous.

CIF {
G1;C1 => S1;

[] 
G2;C2 => S2;

[]
...

}
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CDO: The form of the CDO is 

The behavior of the CDO is similar to the CIF in that for each branch the guard is evaluated and
the choice of which enabled communication to make is taken non-deterministically. However, the
CDO repeats the process of evaluating and executing the branches until all the guards return false.
When this happens the process continues executing statements after the CDO construct.

An example use of a CDO is in a buffer process which can both accept and send messages, but has
to be ready to do both at any stage. The code for this would look similar to that in figure 6.2. Note that
in this case both guards can never be simultaneously false so this process will execute the CDO for-
ever.

6.2.3  Deadlock

A deadlock situation is one in which none of the processes can make progress: they are all either
blocked trying to rendezvous or they are delayed (see the next section). Thus, two types of deadlock
can be distinguished:

real deadlock - all active processes are blocked trying to communicate.

time deadlock - all active processes are either blocked trying to communicate or are delayed, and at 
least one processes is delayed.

6.2.4  Time

In the CSP domain, time is centralized. That is, all processes in a model share the same time,
referred to as the current model time. Each process can only choose to delay itself for some period rel-
ative to the current model time, or a process can wait for time deadlock to occur at the current model
time. In both cases, a process is said to be delayed. 

When a process delays itself for some length of time from the current model time, it is suspended
until time has sufficiently advanced, at which stage it wakes up and continues. If the process delays
itself for zero time, this will have no effect and the process will continue executing.

A process can also choose to delay its execution until the next occasion a time deadlock is reached.
The process resumes execution at the model time at which it began its delay. This allows a model to
several sequences of actions at the same model time. The next occasion time deadlock is reached, any

CDO {
G1;C1 => S1;

[] 
G2;C2 => S2;

[]
...

}

FIGURE 6.2.  Example of how a CDO might be used in a buffer.

CDO {
 (room in buffer?); receive(input, beginningOfBuffer) => update pointer to beginning of buffer;

[]
 (messages in buffer?); send(output, endOfBuffer) => update pointer to end of buffer;

}
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processes delayed in this manner will continue, and time will not be advanced. An example of using
time in this manner can be found in section 6.5.2.

Time may be advanced when all the processes are delayed or are blocked trying to rendezvous,
and at least one process is delayed. If one or more processes are delaying until a time deadlock occurs,
these processes are woken up and time is not advanced. Otherwise, the current model time is advanced
just enough to wake up at least one process. Note that there is a semantic difference between a process
delaying for zero time, which will have no effect, and a process delaying until the next occasion a time
deadlock is reached. 

Note also that time, as perceived by a single process, cannot change during its normal execution;
time can only change at rendezvous points or when the process delays. A process can be aware of the
centralized time, but it cannot influence the current model time except by delaying itself. The choice
for modeling time was in part influenced by Pamela [46], a run time library that is used to model paral-
lel programs.

6.2.5  Differences from Original CSP Model as Proposed by Hoare

The model of computation used by the CSP domain differs from the original CSP [61] model in
two ways. First, a notion of time has been added. The original proposal had no notion of time, although
there have been several proposals for timed CSP [59]. Second, as mentioned in section 6.2.2, it is pos-
sible to use both send and receive in guarded communication statements. The original model only
allowed receives to appear in these statements, though Hoare subsequently extended their scope to
allow both communication primitives [62]. 

One final thing to note is that in much of the CSP literature, send is denoted using a “!”, pro-
nounced “bang”, and receive is denoted using a “?”, pronounced “query”. This syntax was what was
used in the original CSP paper by Hoare. For example, the languages Occam [24] and Lotos [38] both
follow this syntax. In the CSP domain in Ptolemy II we use send and get, the choice of which is influ-
enced by the desire to maintain uniformity of syntax across domains in Ptolemy II that use message
passing. This supports the heterogeneity principle in Ptolemy II which enables the construction and
inter-operability of executable models that are built under a variety of models of computation. Simi-
larly, the notation used in the CSP domain for conditional communication constructs differs from that
commonly found in the CSP literature.

6.3  Using CSP

There are two basic issues that must be addressed when using the CSP domain:
• Unconditional vs. conditional rendezvous
• Time

6.3.1  Unconditional vs. Conditional Rendezvous

The basic communication statements send() and get() correspond to rendezvous communication in
the CSP domain. The fact that a rendezvous is occurring on every communication is transparent to the
actor code due to the domain framework. However, this rendezvous is unconditional (deterministic);
an actor can only attempt to communicate on one port at a time. To realize the full power of the CSP
domain, which allows non-deterministic rendezvous, it is necessary to write custom actors that use the
conditional communication constructs in the CSPActor base class. There are three steps involved:
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1) Create a ConditionalReceive or ConditionalSend branch for each guarded communication state-
ment, depending on the communication. Pass each branch a unique integer identifier, starting from
zero, when creating it.

2) Pass the branches to the chooseBranch() method in CSPActor. This method evaluates the
guards, decides which branch gets to rendezvous, performs the rendezvous, and returns the identifica-
tion number of the branch that succeeded. If all of the guards were false, -1 is returned. 

3) Execute the statements for the guarded communication that succeeded. 

A sample template for executing a conditional communication is shown in figure 6.3. This tem-
plate corresponds to the CDO (conditional do) construct in CSP, described in section 6.2.2. In creating
the ConditionalSend and ConditionalReceive branches, the first argument represents the guard. The
second and third arguments represent the port and channel to send or receive the message on. The
fourth argument is the identifier assigned to the branch. The fifth argument (for ConditionalSend) con-
tains the token to be sent. The choice of placing the guard in the constructor was made to keep the syn-
tax of using guarded communication statements to the minimum, and to have the branch classes
resemble the guarded communication statements they represent as closely as possible. This can give
rise to the case where the Token specified in a ConditionalSend branch may not yet exist, but this has
no effect because once the guard is false, the token in a ConditionalSend is never referenced. 

The code for using a CIF (conditional if) is similar to that in figure 6.3 except that the surrounding
while loop is omitted and the case when the identifier returned is -1 does nothing. At some stage the
steps involved in using a CIF or a CDO may be automated using a pre-parser, but for now the user
must follow the approach described above.

Figure 6.4 shows some actual code based on the template above that implements a buffer process.
This process repeatedly rendezvous on its input port and its output port, buffering the data if the read-
ing process is not yet ready for the writing process. It is worth pointing out that if most channels in a

boolean continueCDO = true;
while (continueCDO) {

// step 1:
ConditionalBranch[] branches = new ConditionalBranch[#branchesRequired];
// Create a ConditionalReceive or a ConditionalSend for each branch
// e.g. branches[0] = new ConditionalReceive((guard), input, 0, 0);

// step 2:
int result = chooseBranch(branches);

// step 3:
if (result == 0) {

// execute statements associated with first branch
} else if (result == 1) {

// execute statements associated with second branch.
} else if ... // continue for each branch ID

} else if (result == -1) {
// all guards were false so exit CDO. 
continueCDO = false;

} else {
// error

}
}

FIGURE 6.3.  Template for executing a CDO construct.
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model are buffered in this way, it may be easier to create the model in the PN domain, where every
channel implicitly has an unbounded buffer.

6.3.2  Time

The CSP domain does not currently use the fireAt() mechanism to model time. If an actor wishes
be delayed a certain amount of time during execution of the model, it must derive from CSPActor.
Each process in the CSP domain is able to delay itself, either for some period from the current model
time or until the next occasion time deadlock is reached at the current model time. The two methods to
call are delay() and waitForDeadlock(). If a process delays itself for zero time from the current time,
the process will continue immediately. Thus delay(0.0) is not equivalent to waitForDeadlock()

As far as each process is concerned, time can only increase while it is blocked waiting to rendez-
vous or when it is delayed. A process can be aware of the current model time, but it should only affect
the model time by delaying its execution, thus forcing time to advance. The method setCurrentTime()
should never be called from a process. However, if no processes are delayed, it is possible to set the
model time by calling the setCurrentTime() method of the director. However, this method is present
only for composing CSP with other domains.

By default every model in the CSP domain is timed. To use CSP without a notion of time, simply
do not use the delay() method. The infrastructure supporting time does not affect the model execution
if this method is not used. For more information about the semantics of Timed CSP models, see section
6.2.4

boolean guard = false;
boolean continueCDO = true;
ConditionalBranch[] branches = new ConditionalBranch[2];
while (continueCDO) {

// step 1
guard = (_size < depth);
branches[0] = new ConditionalReceive(guard, input, 0, 0);
guard = (_size > 0);
branches[1] = new ConditionalSend(guard, output, 0, 1, _buffer[_readFrom]);

// step 2
int successfulBranch = chooseBranch(branches);

// step 3
if (successfulBranch == 0) {

_size++;
_buffer[_writeTo] = branches[0].getToken();
_writeTo = ++_writeTo % depth;

} else if (successfulBranch == 1) {
_size--;
_readFrom = ++_readFrom % depth;

} else if (successfulBranch == -1) {
// all guards false so exit CDO
// Note this cannot happen in this case
continueCDO = false;

} else {
throw new TerminateProcessException(getName() + ": " +

"branch id returned during execution of CDO.");
}

}

FIGURE 6.4.  Code used to implement the buffer process described in figure 6.3.
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6.4  The CSP Software Architecture

6.4.1  Class Structure

In a CSP model, the director is an instance of CSPDirector. Since the model is controlled by a
CSPDirector, all the receivers in the ports are CSPReceivers. The combination of the CSPDirector and
CSPReceivers in the ports gives CSP semantics to a model. The CSP domain associates each channel
with exactly one receiver, which is located at the receiving end of the channel. Thus any process that
sends or receives to any channel will rendezvous at a CSPReceiver. Figure 6.5 shows the static struc-
ture diagram of the five main classes in the CSP kernel, and a few of their associations. These are the
classes that provide all the infrastructure needed for a CSP model. 

CSPDirector:  This gives CSP semantics to a model. It takes care of starting all the processes and con-
trols/responds to both real and time deadlocks. It also maintains and advances the model time when
necessary.

CSPReceiver: This ensures that communication of messages between processes is via rendezvous.

CSPActor:  This adds the notion of time and the ability to perform conditional communication. 

ConditionalReceive, ConditionalSend:  This is used to construct the guarded communication state-
ments necessary for the conditional communication constructs.

6.4.2  Starting the model

The director creates a thread for each actor under its control in its initialize() method. It also
invokes the initialize() method on each actor at this time. The director starts the threads in its prefire()
method, and detects and responds to deadlocks in its fire() method. The thread for each actor is an
instance of ProcessThread, which invokes the prefire(), fire() and postfire() methods for the actor until
it finishes or is terminated. It then invokes the wrapup() method and the thread dies.

Figure 6.6 shows the code executed by the ProcessThread class. Note that it makes no assumption

director.initialize() =>
create a thread for each actor
update count of active processes with the director
call initialize() on each actor

director.prefire() => start the process threads => 
calls actor.prefire()
calls actor.fire()
calls actor.postfire()
repeat.

director.fire() => handle deadlocks until a real deadlock occurs.

director.postfire() =>
return a boolean indicating if the execution of the model should continue for another iteration

director.wrapup() => terminate all the processes =>
calls actor.wrapup()
decrease the count of active processes with the director

FIGURE 6.6.  Sequence of steps involved in setting up and controlling the model.



Heterogeneous Concurrent Modeling and Design 89 

CSP Domain

FIGURE 6.5.  Static structure diagram for classes in the CSP kernel.
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about the actor it is executing, so it can execute any domain-polymorphic actor as well as CSP domain-
specific actors. In fact, an actor from any other domain that does not rely on the specifics of its parent
domain can be executed in the CSP domain by the ProcessThread.

6.4.3  Detecting deadlocks:

For deadlock detection, the director maintains three counters: 
• The number of active processes which are threads that have started but have not yet finished
• The number of blocked processes which is the number of processes that are blocked waiting to ren-

dezvous, and 
• The number of delayed processes, which is the number of processes waiting for time to advance 

plus the number of processes waiting for time deadlock to occur at the current model time.
When the number of blocked processes equals the number of active processes, then real deadlock

has occurred and the fire method of the director returns. When the number of blocked plus the number
of delayed processes equals the number of active processes, and at least one process is delayed, then
time deadlock has occurred. If at least one process is delayed waiting for time deadlock to occur at the
current model time, then the director wakes up all such processes and does not advance time. Other-
wise the director looks at its list of processes waiting for time to advance, chooses the earliest one and
advances time sufficiently to wake it up. It also wakes up any other processes due to be awakened at
the new time. The director checks for deadlock each occasion a process blocks, delays or dies.

For the director to work correctly, these three counts need to be accurate at all stages of the model
execution, so when they are updated becomes important. Keeping the active count accurate is rela-
tively simple; the director increases it when it starts the thread, and decreases it when the thread dies.
Likewise the count of delayed processes is straightforward; when a process delays, it increases the
count of delayed processes, and the director keeps track of when to wake it up. The count is decreased
when a delayed process resumes. 

public void run() {
try {

boolean iterate = true;
while (iterate) {

// container is checked for null to detect the termination 
// of the actor.
iterate = false;
if ((Entity)_actor).getContainer() != null && _actor.prefire()) {

_actor.fire();
iterate = _actor.postfire();

} 
}

} catch (TerminateProcessException t) {
// Process was terminated early

} catch (IllegalActionException e) {
_manager.fireExecutionError(e);

} finally {
try {

_actor.wrapup();
} catch (IllegalActionExeption e) {

_manager.fireExecutionError(e);
} 
_director.decreaseActiveCount();

}
}

FIGURE 6.7.  Code executed by ProcessThread.run().
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However, due to the conditional communication constructs, keeping the blocked count accurate
requires a little more effort. For a basic send or receive, a process is registered as being blocked when
it arrives at the rendezvous point before the matching communication. The blocked count is then
decreased by one when the corresponding communication arrives. However what happens when an
actor is carrying out a conditional communication construct? In this case the process keeps track of all
of the branches for which the guards were true, and when all of those are blocked trying to rendezvous,
it registers the process as being blocked. When one of the branches succeeds with a rendezvous, the
process is registered as being unblocked.

6.4.4  Terminating the model

A process can finish in one of two ways: either by returning false in its prefire() or postfire() meth-
ods, in which case it is said to have finished normally, or by being terminated early by a TerminatePro-
cessException. For example, if a source process is intended to send ten tokens and then finish, it would
exit its fire() method after sending the tenth token, and return false in its postfire() method. This causes
the ProcessThread (see figure 6.7) representing the process to exit its while loop and execute its finally
clause. The finally clause calls wrapup() on the actor it represents and decreases the count of active
processes in the director; the thread representing the process dies. 

A TerminateProcessException is thrown whenever a process tries to communicate via a channel
whose receiver has its finished flag set to true. When a TerminateProcessException is caught in Pro-
cessThread, the finally clause is also executed and the thread representing the process dies.

To terminate the model, the director sets the finished flag in each receiver. The next occasion a pro-
cess tries to send to or receive from the channel associated with that receiver, a TerminateProcessEx-
ception is thrown. This mechanism can also be used in a selective fashion to terminate early any
processes that communicate via a particular channel. When the director controlling the execution of
the model detects real deadlock, it returns from its fire() method. In the absence of hierarchy, this
causes the wrapup() method of the director to be invoked. It is the wrapup() method of the director that
sets the finished flag in each receiver. Note that the TerminateProcessException is a runtime exception
so it does not need to be declared as being thrown.

There is also the option of abruptly terminating all the processes in the model by calling termi-
nate() on the director. This method differs from the approach described in the previous paragraph in
that it stops all the threads immediately and does not give them a chance to update the model state.
After calling this method, the state of the model is unknown and so the model should be recreated after
calling this method. This method is only intended for situations when the execution of the model has
obviously gone wrong, and for it to finish normally would either take too long or be impossible. It
should rarely be called.

6.4.5  Pausing/Resuming the Model

Pausing and resuming a model does not affect the outcome of a particular execution of the model,
only the rate of progress. The execution of a model can be paused at any stage by calling the pause()
method on the director. This method is blocking, and will only return when the model execution has
been successfully paused. To pause the execution of a model, the director sets a paused flag in every
receiver, and the next occasion a process tries to send to or receive from the channel associated with
that receiver, it is paused. The whole model is paused when all the active processes are delayed, paused
or blocked. To resume the model, the resume() method can be called similarly on the director. This
method resets the paused flag in every receiver and wakes up every process waiting on a receiver lock.
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If a process was paused, it sees that it is no longer paused and continues. The ability to pause and
resume the execution of a model is intended primarily for user interface control. 

6.5  Example CSP Applications

Several example applications have been developed which serve to illustrate the modeling capabili-
ties of the CSP model of computation in Ptolemy II. Each demonstration incorporates several features
of CSP and the general Ptolemy II framework. The applications are described here, but not the code.
See the directory $PTII/ptolemy/domains/csp/demo for the code.

The first demonstration, dining philosophers, serves as a natural example of core CSP communica-
tion semantics. This demonstration models nondeterministic resource contention, e.g., five philoso-
phers randomly accessing chopstick resources. Nondeterministic rendezvous serves as a natural
modeling tool for this example. The second example, hardware bus contention, models deterministic
resource contention in the context of time. As will be shown, the determinacy of this demonstration
constrains the natural nondeterminacy of the CSP semantics and results in difficulties. Fortunately
these difficulties can be smoothly circumvented by the timing model that has been integrated into the
CSP domain.

6.5.1  Dining Philosophers

Nondeterministic Resource Contention. This implementation of the dining philosophers problem illus-
trates both time and conditional communication in the CSP domain. Five philosophers are seated at a
table with a large bowl of food in the middle. Between each pair of philosophers is one chopstick, and
to eat, a philosopher needs both the chopsticks beside him. Each philosopher spends his life in the fol-
lowing cycle: thinks for a while, gets hungry, picks up one of the chopsticks beside him, then the other,
eats for a while and puts the chopsticks down on the table again. If a philosopher tries to grab a chop-
stick that is already being used by another philosopher, then the philosopher waits until that chopstick
becomes available. This implies that no neighboring philosophers can eat at the same time and at most
two philosophers can eat at a time. 

The dining philosophers problem was first proposed by Edsger W. Dijkstra in 1965. It is a classic
concurrent programming problem that illustrates the two basic properties of concurrent programming: 

Liveness. How can we design the program to avoid deadlock, where none of the philosophers can 
make progress because each is waiting for someone else to do something? 

Fairness. How can we design the program to avoid starvation, where one of the philosophers 

= chopstick

= philosopher

FIGURE 6.8.  Illustration of the dining philosophers problem.
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could make progress but does not because others always go first? 

This implementation uses an algorithm that lets each philosopher randomly chose which chopstick to
pick up first (via a CDO), and all philosophers eat and think at the same rates. Each philosopher and
each chopstick is represented by a separate process. Each chopstick has to be ready to be used by either
philosopher beside it at any time, hence the use of a CDO. After it is grabbed, it blocks waiting for a
message from the philosopher that is using it. After a philosopher grabs both the chopsticks next to
him, he eats for a random time. This is represented by calling delay() with the random interval to eat
for. The same approach is used when a philosopher is thinking. Note that because messages are passed
by rendezvous, the blocking of a philosopher when it cannot obtain a chopstick is obtained for free.

This algorithm is fair, as any time a chopstick is not being used, and both philosophers try to use it,
they both have an equal chance of succeeding. However, this algorithm does not guarantee the absence
of deadlock, and if it is let run long enough this will eventually occur. The probability that deadlock
occurs sooner increases as the thinking times are decreased relative to the eating times.

6.5.2  Hardware Bus Contention

Deterministic Resource Contention. This demonstration consists of a controller, N processors and a
memory block, as shown in Figure 6.9. At randomly selected points in time, each processor requests
permission from the controller to access the memory block. The processors each have priorities associ-
ated with them and in cases where there are simultaneous memory access requests, the controller
grants permission to the processor with the highest priority. Due to the atomic nature of rendezvous, it
is impossible for the controller to check priorities of incoming requests while requests are occurring.
To overcome this difficulty, an alarm is employed. The alarm is started by the controller immediately
following the first request for memory access at a given instant in time. It is awakened when a delay
block occurs to indicate to the controller that no more memory requests will occur at the given point in
time. Hence, the alarm uses CSP’s notion of delay blocking to make deterministic an inherently non-
deterministic activity.

6.6  Technical Details

6.6.1  Rendezvous Algorithm

In CSP, the locking point for all communication between processes is the receiver. Any time a pro-

FIGURE 6.9.  Illustration of the Hardware Bus Contention example.

Processor ProcessorProcessor

Memory AlarmController
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cess wishes to send or receive, it must first acquire the lock for the receiver associated with its commu-
nication channel. Two key facts to keep in mind when reading the following algorithms are that each
channel has exactly one receiver associated with it and that at most one process can be trying to send to
(or receive from) a channel at any stage. The constraint that each channel can have at most one process
trying to send to (or receive from) a channel at any stage is not currently enforced, but an exception
will be thrown if such a model is not constructed.

The rendezvous algorithm is entirely symmetric for the put() and the get(), except for the direction
the token is transferred. This helps reduce the number of deadlock situations that could arise and also
makes the interaction between processes more understandable and easier to explain. The algorithm for
get() is shown in figure 6.10. The algorithm for put() is exactly the same except that put and get are
swapped everywhere. Thus it suffices to explain what happens when a get() arrives at a receiver, i.e.
when a process tries to receive from the channel associated with the receiver.

When a get() arrives at a receiver, a put() is either already waiting to rendezvous or it is not. Both
the get() and put() methods are entirely synchronized on the receiver so they cannot happen simulta-
neously (only one thread can possess a lock at any given time). Without loss of generality assume a
get() arrives before a put(). The rendezvous mechanism is basically three steps: a get() arrives, a put()
arrives, the rendezvous completes.

(1) When the get() arrives, it sees that it is first and sets a flag saying a get is waiting. It then waits 
on the receiver lock while the flag is still true,

(2) When a put() arrives, it sets the getWaiting flag to false, wakes up any threads waiting on the 
receiver (including the get), sets the rendezvousComplete flag to false and then waits on the 
receiver while the rendezvousComplete flag is false, 

(3) The thread executing the get() wakes up, sees that a put() has arrived, sets the rendezvousCom-
plete flag to true, wakes up any threads waiting on the receiver, and returns thus releasing the lock. 
The thread executing the put() then wakes up, acquires the receiver lock, sees that the rendezvous 
is complete and returns. 

Following the rendezvous, the state of the receiver is exactly the same as before the rendezvous
arrived, and it is ready to mediate another rendezvous. It is worth noting that the final step, of making
sure the second communication to arrive does not return until the rendezvous is complete, is necessary
to ensure that the correct token gets transferred. Consider the case again when a get() arrives first,
except now the put() returns immediately if a get() is already waiting. A put() arrives, places a token in
the receiver, sets the getWaiting flag to false and returns. Now suppose another put() arrives before the
get() wakes up, which will happen if the thread the put() is in wins the race to obtain the lock on the
receiver. Then the second put() places a new token in the receiver and sets the put waiting flag to true.
Then the get() wakes up, and returns with the wrong token! This is known as a race condition, which
will lead to unintended behavior in the model. This situation is avoided by our design.

6.6.2  Conditional Communication Algorithm

There are two steps involved in executing a CIF or a CDO: deciding which enabled branch suc-
ceeds, and carrying out the rendezvous.

Built on top of rendezvous: 
When a conditional construct has more than one enabled branch (the guard is true or absent), a new
thread is spawned for each enabled branch. The job of the chooseBranch() method is to control these
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threads and to determine which branch should be allowed to successfully rendezvous. These threads
and the mechanism controlling them are entirely separate from the rendezvous mechanism described
in section 6.6.1, with the exception of one special case, which is described in section 6.6.3. Thus the
conditional mechanism can be viewed as being built on top of basic rendezvous: conditional communi-
cation knows about and needs basic rendezvous, but the opposite is not true. Again this is a design
decision which leads to making the interaction between threads easier to understand and is less prone
to deadlock as there are fewer interaction possibilities to consider.

get arrives

put waiting? get waiting = trueNo

notifyAll

_checkAndWait
get

waiting?

register actor
blocked

register actor
unblocked

rendezvous
complete = true

notifyAll

No

Yes

put waiting = false

rendezvous
complete = false

_checkAndWait

notifyAll

rendezvous
complete?

No

Yes

Wakes up
CondSend if one
is waiting

Yes

wakes up

wakes up

FIGURE 6.10.  Rendezvous algorithm.
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Choosing which branch succeeds. 
The manner in which the choice of which branch can rendezvous is worth explaining. The choose-
Branch() method in CSPActor takes an array of branches as an argument. If all of the guards are false,
it returns -1, which indicates that all the branches failed. If exactly one of the guards is true, it performs
the rendezvous directly and returns the identification number of the successful branch. The interesting
case is when more than one guard is true. In this case, it creates and starts a new thread for each branch
whose guard is true. It then waits, on an internal lock, for one branch to succeed. At that point it gets
woken up, sets a finished flag in the remaining branches and waits for them to fail. When all the
threads representing the branches are finished, it returns the identification number of the successful
branch. This approach is designed to ensure that exactly one of the branches created performs a ren-
dezvous successfully.

Algorithm used by each branch:  
Similar to the approach followed in rendezvous, the algorithm by which a thread representing a branch
determines whether or not it can proceed is entirely symmetrical for a ConditionalSend and a Condi-
tionalReceive. The algorithm followed by a ConditionalReceive is shown figure 6.12. Again the lock-
ing point is the receiver, and all code concerned with the communication is synchronized on the
receiver. The receiver is also where all necessary flags are stored.

Consider three cases.

(1) A conditionalReceive arrives and a put is waiting.

In this case, the branch checks if it is the first branch to be ready to rendezvous, and if so, it is goes 
ahead and executes a get. If it is not the first, it waits on the receiver. When it wakes up, it checks 
if it is still alive. If it is not, it registers that it has failed and dies. If it is still alive, it starts again by 
trying to be the first branch to rendezvous. Note that a put cannot disappear.

(2) A conditionalReceive arrives and a conditionalSend is waiting

When both sides are conditional branches, it is up to the branch that arrives second to check 
whether the rendezvous can proceed. If both branches are the first to try to rendezvous, the condi-
tionalReceive executes a get(), notifies its parent that it succeeded, issues a notifyAll() on the 
receiver and dies. If not, it checks whether it has been terminated by chooseBranch(). If it has, it 
registers with chooseBranch() that it has failed and dies. If it has not, it returns to the start of the 
algorithm and tries again. This is because a ConditionalSend could disappear. Note that the parent 
of the first branch to arrive at the receiver needs to be stored for the purpose of checking if both 
branches are the first to arrive.

This part of the algorithm is somewhat subtle. When the second conditional branch arrives at the 

rendezvous

which branch should succeed?

FIGURE 6.11.  Conceptual view of how conditional communication is built on top of rendezvous.
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rendezvous point it checks that both sides are the first to try to rendezvous for their respective pro-
cesses. If so, then the conditionalReceive executes a get(), so that the conditionalSend is never 
aware that a conditionalReceive arrived: it only sees the get().

(3) A conditionalReceive arrives first.

It sets a flag in the receiver that it is waiting, then waits on the receiver. When it wakes up, it 
checks whether it has been killed by chooseBranch. If it has, it registers with chooseBranch that it 
has failed and dies. Otherwise it checks if a put is waiting. It only needs to check if a put is waiting 
because if a conditionalSend arrived, it would have behaved as in case (2) above. If a put is wait-
ing, the branch checks if it is the first branch to be ready to rendezvous, and if so it is goes ahead 
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FIGURE 6.12.  Algorithm used to determine if a conditional rendezvous branch succeeds or fails
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and executes a get. If it is not the first, it waits on the receiver and tries again.

6.6.3  Modification of Rendezvous Algorithm

Consider the case when a conditional send arrives before a get. If all the branches in the condi-
tional communication that the conditional send is a part of are blocked, then the process will register
itself as blocked with the director. When the get comes along, and even though a conditional send is
waiting, it too would register itself as blocked. This leads to one too many processes being registered
as blocked, which could lead to premature deadlock detection.

To avoid this, it is necessary to modify the algorithm used for rendezvous slightly. The change to
the algorithm is shown in the dashed ellipse in figure 6.13. It does not affect the algorithm except in the
case when a conditional send is waiting when a get arrives at the receiver. In this case the process that
calls the get should wait on the receiver until the conditional send waiting flag is false. If the condi-
tional send succeeded, and hence executed a put, then the get waiting flag and the conditional send
waiting flag should both be false and the actor proceeds through to the third step of the rendezvous. If
the conditional send failed, it will have reset the conditional send waiting flag and issued a notifyAll()
on the receiver, thus waking up the get and allowing it to properly wait for a put. 

The same reasoning also applies to the case when a conditional receive arrives at a receiver before
a put.

get waiting = true

notifyAll

_checkAndWait
get

waiting?

register actor
blocked

register actor
unblocked

No

Yes

_checkAndWaitconditional
send waiting?

No

Yes

FIGURE 6.13.  Modification of rendezvous algorithm, section 6.6.3, shown in ellipse.
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7 
DDE Domain

Author: John S. Davis II

7.1  Introduction

The distributed discrete-event (DDE) model of computation incorporates a distributed notion of
time into a dataflow style of computation. Time progresses in a DDE model when the actors in the
model execute and communicate. Actors in a DDE model communicate by sending messages through
bounded, FIFO channels. Time in a DDE model is distributed and localized, and the actors of a DDE
model each maintain their own local notion of the current time. Local time information is shared
between two connected actors whenever a communication between said actors occurs. Conversely,
communication between two connected actors can occur only when constraints on the relative local
time information of the actors are adhered to.

The DDE domain is based on distributed discrete-event processing and leverages a wealth of
research devoted to this topic. Some tutorial publications on this topic are [30][43][64][109]. The DDE
domain implements a specific variant of distributed discrete event systems (DDES) as expounded by
Chandy and Misra [30]. The domain serves as a framework for studying DDES with two special
emphases. First we consider DDES from a dataflow perspective; we view DDE as an implementation
of the Kahn dataflow model [66] with distributed time added on top. Second we study DDES not with
the goal of improving execution speed (as has been the case traditionally). Instead we study DDES to
learn its usefulness in modeling and designing systems that are timed and distributed. 

7.2  Using DDE

The DDE domain is typed so that actors used in a model must be derived from TypedAtomicActor.
The DDE domain is designed to use both DDE specific actors as well as domain-polymorphic actors.
DDE specific actors take advantage of DDEActor and DDEIOPort which are designed to provide con-
venient support for specifying time when producing and consuming tokens. The DDE domain also has
special restrictions on how feedback is specified in models.
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7.2.1  DDEActor

The DDE model of computation makes one very strong assumption about the execution of an
actor: all input ports of an actor operating in a DDE model must be regularly polled to determine
which input channel has the oldest pending event. Any actor that adheres to this assumption can oper-
ate in a DDE model. Thus, many polymorphic actors found in ptolemy/actor/[lib, gui] are suitable for
operation in DDE models. For convenience, DDEActor was developed to simplify the construction of
actors that have DDE semantics. DDEActor has two key methods as follows:

getNextToken(). This method polls each input port of an actor and returns the (non-Null) token that
represents the oldest event. This method blocks accordingly as outlined in section 7.3.1 (Communicat-
ing Time).

getLastPort(). This method returns the input IOPort from which the last (non-Null) token was con-
sumed. This method presumes that getNextToken() is being used for token consumption.

7.2.2  DDEIOPort

DDEIOPort extends TypedIOPort with parameters for specifying time stamp values of tokens that
are being sent to neighboring actors. Since DDEIOPort extends TypedIOPort, use of DDEIOPorts will
not violate the type resolution protocol. DDEIOPort is not necessary to facilitate communication
between actors executing in a DDE model; standard TypedIOPorts are sufficient in most communica-
tion. DDEIOPorts become useful when the time stamp to be associated with an outgoing token is
greater than the current time of the sending actor. Hence, DDEIOPorts are only useful in conjunction
with delay actors (see “Enabling Communication: Advancing Time” on page 7-101, for a definition of
delay actor). Most polymorphic actors available for Ptolemy II are not delay actors. 

7.2.3  Feedback Topologies

In order to execute models with feedback cycles that will not deadlock, FeedBackDelay actors
must be used. FeedBackDelay is found in the DDE kernel package. FeedBackDelay actors do not per-
form computation, but instead increment the time stamps of tokens that flow through them by a speci-
fied delay. The delay value of a FeedBackDelay actor must be chosen to be less than the delta time of
the feedback cycle in which the FeedBackDelay actor is contained. Elaborate delay values can be spec-
ified by overriding the getDelay() method in subclasses of FeedBackDelay. An example can be found
in ptolemy/domains/dde/demo/LocalZeno/ZenoDelay.java.

A difficulty found in feedback cycles occurs during the initialization of a model’s execution. In
figure 7.1 we see that even if Actor B is a FeedBackDelay actor, the system will deadlock if the first
event is created by A since C will block on an event from B. To alleviate this problem a special time
stamp value has been reserved: PrioritizedTimedQueue.IGNORE. When an actor encounters an event
with a time stamp of IGNORE (an ignore event), the actor will ignore the event and the input channel

Actor A Actor C

Actor B

Actor D

FIGURE 7.1.  Initializing feedback topologies.
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it is associated with. The actor then considers the other input channels in determining the next avail-
able event. After a non-ignore event is encountered and consumed by the actor, all ignore events will
be cleared from the receivers. If all of an actor’s input channels contain ignore events, then the actor
will clear all ignore events and then proceed with normal operation.

The initialize method of FeedBackDelay produces an ignore event. Thus, in figure 7.1, if B is a
FeedBackDelay actor, the ignore event it produces will be sent to C’s upper input channel allowing C
to consume the first event from A. The production of null tokens and feedback delays will then be suf-
ficient to continue execution from that point on. Note that the production of an ignore event by a Feed-
BackDelay actor serves as a major distinction between it and all other actors. If a delay is desired
simply to represent the computational delay of a given model, a FeedBackDelay actor should not be
used.

The intricate operation of ignore events requires special consideration when determining the posi-
tion of a FeedBackDelay actor in a feedback cycle. A FeedBackDelay actor should be placed so that
the ignore event it produces will be ignored in deference to the first real event that enters a feedback
cycle. Thus, choosing actor D as a FeedBackDelay actor in figure 7.1 would not be useful given that
the first real event entering the cycle is created by A. 

7.3  Properties of the DDE domain

Operationally, the semantics of the DDE domain can be separated into two functionalities. The
first functionality relates to how time advances during the communication of data and how communi-
cation proceeds via blocking reads and writes. The second functionality considers how a DDE model
prevents deadlock due to local time dependencies. The technique for preventing deadlock involves the
communication of null messages that consist solely of local time information. 

7.3.1  Enabling Communication: Advancing Time

Communicating Tokens. A DDE model consists of a network of sequential actors that are connected
via unidirectional, bounded, FIFO queues. Tokens are sent from a sending actor to a receiving actor by
placing a token in the appropriate queue where the token is stored until the receiving actor consumes it.
As in the process networks domain, the execution of each actor is controlled by a process. If a process
attempts to read a token from a queue that is empty, then the process will block until a token becomes
available on the channel. If a process attempts to write a token to a queue that is full, then the process
will block until space becomes available for more tokens in that queue. Note that this blocking read/
write paradigm is equivalent to the operational semantics found in non-timed process networks (PN) as
implemented in Ptolemy II (see the PN Domain chapter).

If all processes in a DDE model simultaneously block, then the model deadlocks. If a deadlock is
due to processes that are either waiting to read from an empty queue, read blocks, or waiting to write to
a full queue, write blocks, then we say that the model has experienced non-timed deadlock. Non-timed
deadlock is equivalent to the notion of deadlock found in bounded process networks scheduling prob-
lems as outlined by Parks [120]. If a non-timed deadlock is due to a model that consists solely of pro-
cesses that are read blocked, then we say that a real deadlock has occurred and the model is terminated.
If a non-timed deadlock is due to a model that consists of at least one process that is write blocked,
then the capacity of the full queues are increased until deadlock no longer exists. Such deadlocks are
called artificial deadlock, and the policy of increasing the capacity of full queues as shown by Parks
can guarantee the execution of a model in bounded memory whenever possible.
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Communicating Time. Each actor in a DDE model maintains a local notion of time. Any non-negative
real number may serve as a valid value of time. As tokens are communicated between actors, time
stamps are associated with each token. Whenever an actor consumes a token, the actor’s current time is
set to be equal to that of the consumed token’s time stamp. The time stamp value applied to outgoing
tokens of an actor is equivalent to that actor’s output time. For actors that model a process in which
there is delay between incoming time stamps and corresponding outgoing time stamps, then the output
time is always greater than the current time; otherwise, the output time is equal to the current time. We
refer to actors of the former case as delay actors.

For a given queue containing time stamped tokens, the time stamp of the first token currently con-
tained by the queue is referred to as the receiver time of the queue. If a queue is empty, its receiver time
is the value of the time stamp associated with the last token to flow through the queue, or 0.0 if no
tokens have traveled through the queue. An actor may consume a token from an input queue given that
the queue has a token available and the receiver time of the queue is less than the receiver times of all
other input queues of the actor. If the queue with the smallest receiver time is empty, then the actor
blocks until this queue receives a token, at which time the actor considers the updated receiver time in
selecting a queue to read from. The last time of a queue is the time stamp of the last token to be placed
in the queue. If no tokens have been placed in the queue, then the last time is 0.0

Figure 7.2 shows three actors, each with three input queues. Actor A has two tokens available on
the top queue, no tokens available on the middle queue and one token available on the bottom queue.
The receiver times of the top, middle and bottom queue are respectively, 17.0, 12.0 and 15.0. Since the
queue with the minimum receiver time (the middle queue) is empty, A blocks on this queue before it
proceeds. In the case of actor B, the minimum receiver time belongs to the bottom queue. Thus, B pro-
ceeds by consuming the token found on the bottom queue. After consuming this token, B compares all
of its receiver times to determine which token it can consume next. Actor C is an example of an actor
that contains multiple input queues with identical receiver times. To accommodate this situation, each
actor assigns a unique priority to each input queue. An actor can consume a token from a queue if no
other queue has a lower receiver time and if all queues that have an identical receiver time also have a
lower priority. 

Each receiver has a completion time that is set during the initialization of a model. The completion
time of the receiver specifies the time after which the receiver will no longer operate. If the time stamp
of the oldest token in a receiver exceeds the completion time, then that receiver will become inactive.

7.3.2  Maintaining Communication: Null Tokens

Deadlocks can occur in a DDE model in a form that differs from the deadlocks described in the
previous section. This alternative form of deadlock occurs when an actor read blocks on an input port
even though it contains other ports with tokens. The topology of a DDE model can lead to deadlock as
read blocked actors wait on each other for time stamped tokens that will never appear. Figure 7.3 illus-

Actor A

15.0

12.0

17.0
22.0

Actor B

15.0

22.0

17.0
22.0

Actor C

15.0

28.0

15.0
22.0

FIGURE 7.2.  DDE actors and local time.
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trates this problem. In this topology, consider a situation in which actor A only creates tokens on its
lower output queue. This will lead to tokens being created on actor C’s output queue but no tokens will
be created on B’s output queue (since B has no tokens to consume). This situation results in D read
blocking indefinitely on its upper input queue even though it is clear that no tokens will ever flow
through this queue. The result: timed deadlock! The situation shown in figure 7.3 is only one example
of timed deadlock. In fact there are two types of timed deadlock: feedforward and feedback. 

Figure 7.3 is an example of feedforward deadlock. Feedforward deadlock occurs when a set of
connected actors are deadlocked such that all actors in the set are read blocked and at least one of the
actors in the set is read blocked on an input queue that has a receiver time that is less than the local
clock of the input queue’s source actor. In the example shown above, the upper input queue of B has a
receiver time of 0.0 even though the local clock of A has advanced to 8.0. 

Feedback deadlock occurs when a set of cyclically connected actors are deadlocked such that all
actors in the set are read blocked and at least one actor in the set, say actor X, is read blocked on an
input queue that can read tokens which are directly or indirectly a result of output from that same actor
(actor X). Figure 7.4 is an example of feedback timed deadlock. Note that B can not produce an output
based on the consumption of the token timestamped at 5.0 because it must wait for a token on the
upper input that depends on the output of B!

Preventing Feedforward Timed Deadlock. To address feedforward timed deadlock, null tokens are
employed. A null token provides an actor with a means of communicating time advancement even
though data (real tokens) are not being transmitted. Whenever an actor consumes a token, it places a
null token on each of its output queues such that the time stamp of the null token is equal to the current
time of the actor. Thus, if actor A of figure 7.3, produced a token on its lower output queue at time 5.0,
it would also produce a null token on its upper output queue at time 5.0. 

If an actor encounters a null token on one of its input queues, then the actor does the following.
First it consumes the tokens of all other input queues it contains given that the other input queues have
receiver times that are less than or equal to the time stamp of the null token. Next the actor removes the
null token from the input queue and sets its current time to equal the time stamp of the null token. The
actor then places null tokens time stamped to the current time on all output queues that have a last time
that is less then the actor’s current time. As an example, if B in figure 7.3 consumes a null token on its
input with a time stamp of 5.0 then it would also produce a null token on its output with a time stamp

Actor D

Actor B

Actor C

Actor A Actor E

3.0 2.08.0 5.0

FIGURE 7.3.  Timed deadlock (feedforward).

Actor CActor A Actor D

8.0 5.0

Actor B

FIGURE 7.4.  Timed deadlock (feedback).
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of 5.0.
The result of using null tokens is that time information is evenly propagated through a model’s

topology. The beauty of null tokens is that they inform actors of inactivity in other components of a
model without requiring centralized dissemination of this information. Given the use of null tokens,
feedforward timed deadlock is prevented in the execution of DDE models. It is important to recognize
that null tokens are used solely for the purpose of avoiding deadlocks. Null tokens do not represent any
actual components of the physical system being modeled. Furthermore, the production of a null token
that is the direct result of the consumption of a null token is not considered computation from the
standpoint of the system being modeled. The idea of null tokens was first espoused by Chandy and
Misra [30].

Preventing Feedback Timed Deadlock. We address feedback timed deadlock as follows. All feedback
loops are required to have a cumulative time stamp increment that is greater than zero. In other words,
feedback loops are required to contain delay actors. Peacock, Wong and Manning [121] have shown
that a necessary condition for feedback timed deadlock is that a feedback loop must contain no delay
actors. The delay value (delay = output time - current time) of a delay actor must be chosen wisely; it
must be less then the smallest delta time of all other actors contained in the same feedback loop. Delta
time is the difference between the time stamps of a token that is consumed by an actor and the corre-
sponding token that is produced in direct response. If a system being modeled has characteristics that
prevent a fixed, positive lower bound on delta time from being specified, then our approach can not
solve feedback timed deadlock. Such a situation is referred to as a Zeno condition. An application
involving an approximated Zeno condition is discussed in section 7.5 below.

The DDE software architecture provides one delay actor for use in preventing feedback timed
deadlock: FeedBackDelay. See “Feedback Topologies” on page 7-100 for further details about this
actor.

7.3.3  Alternative Distributed Discrete Event Methods

The field of distributed discrete event simulation, also referred to as parallel discrete event simula-
tion (PDES), has been an active area of research since the late 1970’s [30][43][64][109][121].
Recently there has been a resurgence of activity [8][9][16]. This is due in part to the wide availability
of distributed frameworks for hosting simulations and the application of parallel simulation techniques
to non-research oriented domains. For example, several WWW search engines are based on network of
workstation technology. 

The field of distributed discrete event simulation can be cast into two camps that are distinguished
by the blocking read approach taken by the actors. One camp was introduced by Chandy and Misra
[30][43][109][121] and is known as conservative blocking. The second camp was introduced by David
Jefferson through the Jet Propulsion Laboratory Time Warp system and is referred to as the optimistic
approach [64][43]. In certain problems, the optimistic approach executes faster than the conservative
approach, nevertheless, the gains in speed result in significant increases in program memory. The con-
servative approach does not perform faster than the optimistic approach but it executes efficiently for
all classes of discrete event systems. Given the modeling semantics emphasis of Ptolemy II, perfor-
mance (speed) is not considered a premium. Furthermore, Ptolemy II’s embedded systems emphasis
suggests that memory constraints are likely to be strict. For these reasons, the implementation found in
the DDE domain follows the conservative approach. 
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7.4  The DDE Software Architecture

For a model to have DDE semantics, it must have a DDEDirector controlling it. This ensures that
the receivers in the ports are DDEReceivers. Each actor in a DDE model is under the control of a
DDEThread. DDEThreads contain a TimeKeeper that manages the local notion of time that is associ-
ated with the DDEThread’s actor. 

7.4.1  Local Time Management

The UML diagram of the local time management system of the DDE domain is shown in figure
7.5 and consists of PrioritizedTimedQueue, DDEReceiver, DDEThread and TimeKeeper. Since time is
localized, the DDEDirector does not have a direct role in this process. Note that DDEReceiver is
derived from PrioritizedTimedQueue. The primary purpose of PrioritizedTimedQueue is to keep track
of a receiver’s local time information. DDEReceiver adds blocking read/write functionality to Priori-
tizedTimedQueue.

FIGURE 7.5.  Key classes for managing time locally.
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When a DDEDirector is initialized, it instantiates a DDEThread for each actor that the director
manages. DDEThread is derived from ProcessThread. The ProcessThread class provides functionality
that is common to all of the process domains (e.g., CSP, DDE and PN). The directors of all process
domains (including DDE) assign a single actor to each ProcessThread. ProcessThreads take responsi-
bility of their assigned actor’s execution by invoking the iteration methods of the actor. The iteration
methods are prefire(), fire() and postfire(); ProcessThreads also invoke wrapup() on the actors they
control.

DDEThread extends the functionality of ProcessThread. Upon instantiation, a DDEThread creates
a TimeKeeper object and assigns this object to the actor that it controls. The TimeKeeper gets access to
each of the DDEReceivers that the actor contains. Each of the receivers can access the TimeKeeper
and through the TimeKeeper the receivers can then determine their relative receiver times. With this
information, the receivers are fully equipped to apply the appropriate blocking rules as they get and put
time stamped tokens.

DDEReceivers use a dynamic approach to accessing the DDEThread and TimeKeeper. To ensure
domain polymorphism, actors (DDE or otherwise) do not have static references to the TimeKeeper and
DDEThread that they are controlled by. To ensure simplified mutability support, DDEReceivers do not
have a static reference to TimeKeepers. Access to the local time management facilities is accom-
plished via the Java Thread.currentThread() method. Using this method, a DDEReceiver dynamically
accesses the thread responsible for invoking it. Presumably the calling thread is a DDEThread and
appropriate steps are taken if it is not. Once the DDEThread is accessed, the corresponding Time-
Keeper can be accessed as well. The DDE domain uses this approach extensively in DDERe-
ceiver.put(Token) and DDEReceiver.get().

7.4.2  Detecting Deadlock

The other kernel classes of the DDE domain are shown in figure 7.6. The purpose of the DDEDi-
rector is to detect and (if possible) resolve timed and/or non-timed deadlock of the model it controls.
Whenever a receiver blocks, it informs the director. The director keeps track of the number of active
processes, and the number of processes that are either blocked on a read or write. Artificial deadlocks
are resolved by increasing the queue capacity of write-blocked receivers.

Note the distinction between internal and external read blocks in DDEDirector’s package friendly
methods. The current release of DDE assumes that actors that execute according to a DDE model of
computation are atomic rather than composite. In a future Ptolemy II release, composite actors will be
facilitated in the DDE domain. At that time, it will be important to distinguish internal and external
read blocks. Until then, only internal read blocks are in use.

7.4.3  Ending Execution

Execution of a model ends if either an unresolvable deadlock occurs, the director’s completion
time is exceeded by all of the actors it manages, or early termination is requested (e.g., by a user inter-
face button). The director’s completion time is set via the public stopTime parameter of DDEDirector.
The completion time is passed on to each DDEReceiver. If a receiver’s receiver time exceeds the com-
pletion time, then the receiver becomes inactive. If all receivers of an actor become inactive and the
actor is not a source actor, then the actor will end execution and its wrapup() method will be called. In
such a scenario, the actor is said to have terminated normally.

Early terminations and unresolvable deadlocks share a common mechanism for ending execution.
Each DDEReceiver has a boolean _terminate flag. If the flag is set to true, then the receiver will
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throw a TerminateProcessException the next time any of its methods are invoked. TerminatePro-
cessExceptions are part of the ptolemy/actor/process package and ProcessThreads know to end
an actor’s execution if this exception is caught. In the case of unresolvable deadlock, the _terminate
flag of all blocked receivers is set to true. The receivers are then awakened from blocking and they
each throw the exception.

7.5  Example DDE Applications

To illustrate distributed discrete event execution, we have developed an applet that features a feed-
back topology and incorporates polymorphic as well as DDE specific actors. The model, shown in fig-
ure 7.7, consists of a single source actor (ptolemy/actor/lib/Clock) and an upper and lower branch of
four actors each. The upper and lower branches have identical topologies and are fed an identical
stream of tokens from the Clock source with the exception that in the lower branch ZenoDelay
replaces FeedBackDelay. 

As with all feedback topologies in DDE (and DE) models, a positive time delay is necessary in
feedback loops to prevent deadlock. If the time delay of a given loop is lower bounded by zero but can
not be guaranteed to be greater than a fixed positive value, then a Zeno condition can occur in which
time will not advance beyond a certain point even though the actors of the feedback loop continue to
execute without deadlocking. ZenoDelay extends FeedBackDelay and is designed so that a Zeno con-
dition will be encountered. When execution of the model begins, both FeedBackDelay and ZenoDelay

FIGURE 7.6.  Additional classes in the DDE kernel.
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are used to feed back null tokens into Wire so that the model does not deadlock. After local time
exceeds a preset value, ZenoDelay reduces its delay so that the lower branch approximates a Zeno con-
dition. 

In centralized discrete event systems, Zeno conditions prevent progress in the entire model. This is
true because the feedback cycle experiencing the Zeno condition prevents time from advancing in the
entire model. In contrast, distributed discrete event systems localize Zeno conditions as much as is
possible based on the topology of the system. Thus, a Zeno condition can exist in the lower branch and
the upper branch will continue its execution unimpeded. Localizing Zeno conditions can be useful in
large scale modeling in which a Zeno condition may not be discovered until a great deal of time has
been invested in execution of the model. In such situations, partial data collection may proceed prior to
correction of the delay error that resulted in the Zeno condition.

Lower Branch

DoubleFork

Clock

TimedWire

FeedBackDelay

Plotter

DoubleFork PlotterWire

ZenoDelay

Timed

Upper Branch

FIGURE 7.7.  Localized Zeno condition topology.
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PN Domain
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Contributors: Adam Cataldo

Elaine Cheong
Steve Neuendorffer

8.1  Introduction

The process networks (PN) domain in Ptolemy II models a system as a network of processes that
communicate with each other by passing messages through unidirectional first-in-first-out (FIFO)
channels. A process blocks when trying to read from an empty channel until a message becomes avail-
able on it. This model of computation is deterministic in the sense that the sequence of values commu-
nicated on the channels is completely determined by the model. Consequently, a process network can
be evaluated using a completely parallel schedule, a completely sequential schedule, or any schedule
in between, always yielding the same output results for a given input sequence.

PN is a natural model for describing signal processing systems where infinite streams of data sam-
ples are incrementally transformed by a collection of processes executing in parallel. Embedded signal
processing systems are good examples of such systems. They are typically designed to operate indefi-
nitely with limited resources. This behavior is naturally described as a process network that runs for-
ever but with bounded buffering on the communication channels whenever possible.1

PN can also be used to model concurrency in the various hardware components of an embedded
system. The process networks model of computation can model the functional behavior of these sys-
tems and test them for their functional correctness, but it cannot directly model their real-time behav-
ior. To address the involvement of time, we have extended the PN model such that it can include the
notion of time (timed PN).

Some systems might display adaptive behavior like migrating code, agents, and arrivals and depar-

1. In general, bounded buffers cannot be ensured for an arbitrary process network. An important part of the design 
of a process network concerns showing that the buffers are, in fact, bounded. Synchronous dataflow models are 
an important type of process network which always have bounded buffers.
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tures of processes. To support this adaptive behavior, we provide a mutation mechanism that supports
addition, deletion, and changing of processes and channels. With untimed PN, this might display non-
determinism, while with timed PN, it becomes deterministic.

The PN model of computation is a superset of the synchronous dataflow model of computation
(see the SDF Domain chapter). Consequently, any SDF actor can be used within the PN domain. How-
ever, the execution of the model is very different from SDF, since a separate process is created for each
actor. These processes are implemented as Java threads [116].

8.2  Using PN

There are two issues we consider in the PN domain:
• Deadlock in feedback loops
• Designing actors

8.2.1  Deadlock in Feedback Loops

Feedback loops in PN are handled in much the same way as in the SDF domain. One of the actors
in the feedback loop must create a number of tokens in its feedback loop in order to break the data
dependency. Just like in the SDF domain, the SampleDelay actor can be used for this purpose.
Remember, however, that the PN domain does not (and cannot) statically analyze the model to deter-
mine the size of the delay necessary in the feedback loop. It is up to the designer of the model to spec-
ify the correct amount of delay.

8.2.2  Designing Actors

In our PN domain implementation, it is not possible for an actor to check if data is present at an
input port. The hasToken() method always returns true indicating that a token is present, and if a token
is not actually present, then the get() method will block until one becomes available. This allows mod-
els to execute deterministically. However, actors that take inputs from more than one input can often
be difficult to write. An example is the Select actor; a control input is read first, and the data from that
port determines which input port to read from.

8.3  Properties of the PN domain

Two important properties of the PN domain are that processes communicate asynchronously (by
ordered queues) and that the memory used in the communication is bounded whenever possible. The
PN domain can be used with or without a notion of time.

8.3.1  Asynchronous Communication

In [65][66], Kahn and MacQueen describe a model of computation in which processes are con-
nected by communication channels to form a network. Processes produce data elements or tokens and
send them along a unidirectional communication channel where they are stored in a FIFO queue until
the destination process consumes them. This is a form of asynchronous communication between pro-
cesses. Communication channels are the only method processes may use to exchange information. A
set of processes that communicate through a network of FIFO queues defines a program. 
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Kahn and MacQueen require that execution of a process be suspended when it attempts to get data
from an empty input channel (blocking reads). Hence, a process may not poll a channel for presence or
absence of data. At any given point, a process is either doing some computation (enabled) or it is
blocked waiting for data (read blocked) on exactly one of its input channels; it cannot wait for data
from more than one channel simultaneously. Systems that obey this model are determinate; the history
of tokens produced on the communication channels does not depend on the execution order. Therefore,
the results produced by executing a program are not affected by the scheduling of the various pro-
cesses.

In case all the processes in a model are blocked while trying to read from some channel, then we
have a real deadlock; none of the processes can proceed. Real deadlock is a program state that happens
irrespective of the schedule chosen for the processes in a model. This characteristic is guaranteed by
the determinacy property of process networks.

8.3.2  Bounded Memory Execution

The high level of concurrency in process networks makes it an ideal match for embedded system
software and for modeling hardware implementations. A characteristic of these embedded applications
and hardware processes, is that they are intended to run indefinitely with a limited amount of memory.
One problem with directly implementing the Kahn-MacQueen semantics is that bounded memory exe-
cution of a process network is not guaranteed, even if it is possible. Hence, bounded memory execution
of process networks becomes crucial for its usefulness for hardware and embedded software. 

In [120], Parks addresses this aspect of process networks and provides an algorithm to make a pro-
cess network application execute in bounded memory whenever possible. He provides an implementa-
tion of the Kahn-MacQueen semantics using blocking writes that assigns a fixed capacity to each FIFO
channel and forces processes to block temporarily if a channel is full. Thus a process now has three
states: running (executing), read blocked, or write blocked and a process may not poll a channel for
either data or whether it has room for more data.

In addition to the real deadlock described above, the introduction of a blocking write operation can
cause an artificial deadlock of the process network. In this situation, all the processes in a model are
blocked and at least one process is blocked on a write. However, unlike a real deadlock, a program can
continue after artificial deadlock by increasing the capacity of the channels on which processes are
write blocked. In particular, Parks chooses to increase only the capacity of the channel with the small-
est capacity among the channels on which processes are write blocked. This algorithm minimizes over-
all required memory in the channels and is used in the PN domain to handled artificial deadlock.

8.3.3  Time

In real-time systems and embedded applications, the real time behavior of a system is as important
as the functional correctness. Process networks can be used to describe the functional properties of a
system, but cannot describe temporal properties since the basic model lacks the notion of time. One
solution is to use some other timed model of computation, such as DE, for describing temporal proper-
ties. Another solution is to extend the process networks model of computation with a notion of time, as
we have done in Ptolemy II. This extension is based on the Pamela model [46], which was originally
developed for modeling the performance of parallel systems using Dijkstra’s semaphores.

In the timed PN domain, time is global. All processes in a model share the same time, which is
referred to as the current time or model time. A process can explicitly wait for time to advance, by
delaying itself for some fixed amount of time. After being suspended for the specified amount of time,
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the process wakes up and continues to execute. If the process delays itself for zero time then the pro-
cess simply continues to execute.

In the timed PN domain, model time changes only at specific moments and never during the exe-
cution of a process. The time observed by a process can only advance when it is in one of the following
two states:

1. The process is delayed and is explicitly waiting for time to advance (delay block).

2. The process is waiting for data to arrive on one of its input channels (read block).
When all the processes in a program are in one of these two states, then the program is in a state of

timed deadlock. The fact that at least one process is delayed, distinguishes timed deadlock from other
deadlocks. When timed deadlock is detected, the current time is advanced until at least one process can
wake up from a delay block and the model continues executing. 

8.3.4  Mutations

The PN domain tolerates mutations, which are run-time changes in the model structure. Normally,
mutations are realized as change requests queued with the model. In PN there is no determinate point
where mutations can occur other than a real deadlock. However, being able to perform mutations at
this point is unlikely as a real deadlock might never occur. For example, a model with even one non-
terminating source never experiences a real deadlock. Therefore mutations cannot be performed at
determinate points since the processes in the network are not synchronized. Executing mutations at
arbitrary times introduces non-determinism in PN, since the state of the processes is unknown.

In timed PN, however, the presence of timed deadlock provides a regular point at which the state
of execution can be determined. This means that mutations in timed PN can be made deterministically.
Implementation details are presented in the next section.

8.3.5  Hierarchy

At this time, embedding a PN model within a PN model does not work.

8.4  The PN Software Architecture

The PN domain kernel is realized in the package ptolemy.domains.pn.kernel. The structure dia-
gram of the package is shown in figure 8.1.

8.4.1  PNDirector

This class extends the CompositeProcessDirector base class to add Kahn process networks (PN)
semantics. This director does not support mutations or a notion of time. It provides only a mechanism
to perform blocking reads and writes using bounded memory execution whenever possible. 

This director is capable of handling both real and artificial deadlocks. Artificial deadlock is
resolved as soon as it arises using Parks’ algorithm as explained in section 8.3.2. Real deadlock, how-
ever, cannot be handled locally and must rely on the external environment to provide more data for
execution to continue.

PNDirector has a parameter called initialQueueCapacity that sets the initial size of the queues in
all the receivers created in the PN domain. Another parameter, maximumQueueCapacity, sets the upper
bound on the queue size.
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8.4.2  TimedPNDirector

TimedPNDirector extends the PNDirector to introduce a notion of global time to the model. It also
provides for deterministic execution of mutations. Mutations are performed at the earliest timed dead-
lock that occurs after they are queued. Since occurrence of timed deadlock is deterministic, performing
mutations at this point makes mutations deterministic. The TimedPNDirector is currently experimen-
tal; there are not very many tests for it.

8.4.3  PNQueueReceiver

The PNQueueReceiver implements the ProcessReceiver interface and contains a FIFO queue to
represent a process network communication channel. The receiver is also responsible for implement-
ing blocking reads and blocking writes through the get() and put() methods.

When the get() method is called, the receiver first checks whether its FIFO queue has any token. If
not, it reports to the director that the reading thread is blocked waiting for data. It also sets an internal
flag to indicate that a thread is read blocked. Then the reading thread is suspended until some other
thread puts a token into the FIFO queue. At this point, the flag of the receiver is reset, the director is
notified that a process has unblocked, the reading process retrieves the first token from the FIFO
queue, and execution continues.

The put() method of the receiver works similarly by first checking whether the FIFO queue is at
full capacity. If so, it reports to the director that the writing thread is blocked waiting for space in the
queue. It also sets an internal flag to indicate that a thread is write blocked. The writing thread blocks

PNDirector

+PNDirector()
+PNDirector(workspace : Workspace)
+PNDirector(container : CompositeEntity, name : String)
+addProcessListener(listener : PNProcessListener)
+removeProcessListener(listener : PNProcessListener)

+initialQueueCapacity : Parameter
+maximumQueueCapacity : Parameter

«Interface»
Receiver

PNQueueReceiver

+PNQueueReceiver()
+PNQueueReceiver(container : IOPort)
+prepareToBlock(branch : Branch)
+setReadPending(readPending : boolean)
+setWritePending(writePending : boolean)
+wakeUpBlockedPartner()

QueueReceiver

FIFOQueue

1..1

1..1

TimedPNDirector

+TimedPNDirector()
+TimedPNDirector(workspace : Workspace)
+TimedPNDirector(container : CompositeEntity, name : String)
+fireAt(actor : Actor, newFiringTime : double)
+setCurrentTime(newTime : double)

«Interface»
ProcessReceiver

CompositeProcessDirector

FIGURE 8.1.  Static structure of the PN kernel.
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until some other thread gets a token from the FIFO queue, or the size of the queue is increased by the
director because the model reached an artificial deadlock. In either case, the director is notified that a
writing process has unblocked, and the internal flag is reset. The writing thread wakes up and its token
is placed into the receiver.

8.4.4  Handling Deadlock

Every time an actor in PN blocks, the count of blocked actors is incremented. If the total number of
actors blocked or paused by user request equals the total number of actors active in the simulation, a
deadlock is detected. On detection of a deadlock, if one or more actors are blocked on a read and no
actors are blocked on a write, or if there are no active processes, then this is real deadlock. When real
deadlock is detected, the fire() method of the director returns, allowing a containing model to present
more data to the inputs of the process network. Otherwise, there is artificial deadlock. In this case, one
or more actors are blocked on a write. The PN director chooses the channel with the smallest capacity
among all the channels with actors blocked on a write, and doubles its capacity. This implements the
bounded memory execution of [120].

8.4.5  Finite Iterations

An important aspect of Ptolemy II is that the firing of an actor, or an entire model is guaranteed to
complete. In the PN domain, the end of a firing occurs when deadlock is reached. The deadlock can be
real or timed deadlock. However, in a process network, real deadlock may never actually happen. In
this case, in order to manually stop execution or to execute mutations, there needs to be a way to halt
all the executing threads in the network. This is handled by the stopFire() method of the Executable
interface. The ProcessDirector, and hence the PN director, implements this method to set a flag in each
process which causes the process to pause. Note that as with most domains, it is not possible to simply
call the wrapup() method of the ProcessDirector, since the fire() method has not yet returned.

8.4.6  NondeterministicMerge

The PN domain supports a NondeterministicMerge actor, which merges any number of incoming
streams nondeterministically. This actor should be used with caution, since determinism is one of the
key features of PN. Use of this actor is risky because any given execution is only representative of the
possible executions. Nonetheless, this offers a considerable increment in expressiveness.
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Author: Steve Neuendorffer
Contributor: Shuvra Bhattacharyya

9.1  Purpose of the Domain

The parameterized synchronous dataflow (PSDF) domain is useful for modeling dataflow systems
with reconfiguration. Reconfiguration allows more interesting systems to be modeled without resort to
more generalized dataflow models. As such, the PSDF domain represents a design point between com-
plete static scheduling in the synchronous dataflow (SDF) domain, and completely dynamic execution
under the process networks (PN) domain. Under the PSDF domain, symbolic analysis of the model is
used to generate a quasi-static schedule that statically determines an execution order of actors, but
dynamically determines the number of times each actor fires. The quasi-static schedule guarantees
bounded memory execution as long as the parameters that the schedule depends on are bounded. Addi-
tionally, the model is guaranteed to be deadlock free, regardless of the parameter values. The primary
disadvantage of the PSDF domain is that current scheduling techniques are only valid for acyclic
graphs.

9.2  Using PSDF

There are several issues that must be addressed when using the PSDF domain, in addition to the
normal issues of synchronous dataflow models:
• Restricted reconfiguration
• Symbolic scheduling limitations

This section will present a short description of these issues. For a more complete description, see
section 9.3.
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9.2.1  Restricted Reconfiguration

Consider the SDF model shown in figure 9.1. This model displays arrays of various sizes. Every
time the SequenceToArray actor fires, it consumes an integer indicating the size of the next array from
the Ramp actor and then consumes that many tokens from its top input port and wraps them into an
array. The SequenceToArray actor in this case is obviously not valid in SDF, since its rates change.
This particular model is also not a valid PSDF model, although with some modifications it can be
made valid.

The difficulty with the below model arises because the schedule for the model depends on the run-
time value consumed from the Ramp actor. However, this value is not consumed (or even produced)
until after the schedule has begun executing. In the terminology of parameterized synchronous data-
flow, the model is not locally synchronous[15]. One solution is to build the model hierarchically, as
shown in figure 9.2. In this model, the Ramp actor executes first, and reconfigures the PSDF model.
The reconfiguration happens before the PSDF schedule begins executing, and the quasi-static schedule
is instantiated with the correct token rates. Another possible solution would be to make the model a
process network instead, but this would preclude static scheduling and efficient code generation.

FIGURE 9.1.  A PSDF model that is not locally synchronous.

FIGURE 9.2.  The model of figure 9.1 corrected using hierarchy.



Heterogeneous Concurrent Modeling and Design 117 

PSDF Domain

9.2.2  Symbolic scheduling limitations

Parameterized synchronous dataflow scheduling results in a quasi-static schedule. In contrast to
synchronous dataflow schedules, which are a simple sequence of actor firings, a quasi-static schedule
is more of a program that generates a sequence at runtime. Essentially, the goal of the PSDF scheduler
is to find a fixed program that will generate the correct schedules for any parameter value. PSDF
scheduling for models without feedback is reasonably understood. Additionally, in models where feed-
back does not restrict scheduling, the feedback can be eliminated for parameterized scheduling. How-
ever, for models with tight feedback loops, scheduling is not quite as simple and the feedback cannot
be eliminated. The current scheduler implementation provides none of these improvements and only
schedules models without feedback.

Another limitation of symbolic scheduling is that it must rely on a general symbolic math package
to guarantee a valid schedule. One solution is to provide side information to the model, to assist with
symbolic simplification. The current scheduler implementation provides no mechanism for this.

9.3  Properties of the PSDF domain

PSDF is an untimed model of computation, similar to the SDF domain (see Chapter 3). The key
improvement is that the PSDF domain generates a schedule by considering the token consumption and
production rates symbolically. Data rates on each port are allowed to change through reconfiguration,
as long as reconfiguration does not occur during execution of the schedule, implying that the model is
locally synchronous. Reconfiguration analysis is performed to statically determine when rate parame-
ters change to ensure a valid schedule.

9.3.1  Scheduling

The first step in constructing synchronous dataflow schedules is to solve the balance equations
[87]. These equations determine the number of times each actor will fire during an iteration. Ordi-
narily, these equations are solved for a numeric solution, and an equivalent schedule is generated. In
the PSDF domain, the balance equations are solved for a symbolic solution in the other variables. The
symbolic solutions are converted into a quasi-static schedule where the number of firings of each actor
is computed at run-time. For example, consider the model in figure 9.3. This model implies the follow-
ing system of equations, where ProductionRate and ConsumptionRate are declared properties of each
port, and Firings is a property of each actor that will be solved for:

Firings(A) × ProductionRate(A1) = Firings(B) × ConsumptionRate(B1)

E0

D1:  SDF director

A1

A
A2

C1
C

C2

B1

B
B2

FIGURE 9.3.  An example SDF model.
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Firings(A) × ProductionRate(A2) = Firings(C) × ConsumptionRate(C1)

Firings(C) × ProductionRate(C2) = Firings(B) × ConsumptionRate(B2)

These equations express constraints that the number of tokens created on a relation during an iteration
is equal to the number of tokens consumed. A symbolic solution to these equations asserts, for
instance, that:

Firings(A) = ConsumptionRate(B1) / (gcd(ConsumptionRate(C1) * ProductionRate(A1) / gcd(Pro-
ductionRate(A2), ConsumptionRate(C1)), ConsumptionRate(B1))) * ConsumptionRate(C1) / gcd(Pro-

ductionRate(A2), ConsumptionRate(C1))

where gcd(a,b) is the greatest common divisor of a and b. As with SDF models, it is possible for a
model to be inconsistent, where no symbolic solution to the balance equations exists.

The second step in constructing a PSDF schedule is dataflow analysis. Dataflow analysis in an
ordinary synchronous dataflow model orders the firing of actors, based on the relations between them.
In SDF scheduling, dataflow analysis involves simulation of the schedule execution until each actor
has been fired the required number of times. In PSDF scheduling, the situation is more complex, since
the number of times an actor will fire is not known beforehand. To simplify the problem, we assume
that each actor appears exactly once in the schedule, and executes the number of times according to the
symbolic balance equations. This simplification cannot be done for all models with feedback, but can
always be done for models without feedback, hence the restriction mentioned in the previous section.

9.3.2  Local Synchrony and Reconfiguration Analysis

Although rate parameters in PSDF models are allowed to change between schedule iterations, they
must not change during the execution of a schedule. This property is known as local synchrony. In
order to ensure local synchrony of PSDF models, reconfiguration analysis is performed during sched-
uling. This reconfiguration analysis combines information on parameter dependency (which parame-
ters depend on other parameters) and reconfiguration (which models modify parameter values). The
result of reconfiguration analysis is the least change context of a parameter. The least change context
of a parameter is a composite actor that contains the parameter, reconfigures the parameter, and is con-
tained by all other composite actors that reconfigure the parameter. Local synchrony requires that rate
parameters used for scheduling are either not reconfigured, or have a least change context that contains
the PSDF model or is the PSDF model. 

Reconfiguration analysis considers the following possible types of reconfiguration:
Reconfiguration ports: PortParameters are reconfigured when tokens are received from a Parame-

terPort.
Modal Models: Parameters may be reconfigured in finite-state machine transitions.
Reconfiguration analysis is performed in a similar matter to data type analysis. A set of inequali-

ties are extracted from a model where each inequality represents a constraint on the least change con-
text of a parameter. One class of constraint requires that the least change context of a parameter P
cannot be any higher in the hierarchy than the least change context of a parameter that P depends on.
The second constraint requires that if a parameter is reconfigured by an actor, then the actor must con-
tain the least change context of the parameter. These constraints are solved to determine the least
change context of every parameter. The PSDF scheduler uses this information to check for local syn-
chrony of the model and to reduce symbolic computations where possible if some rate parameters are
not reconfigured. The algorithm is described more completely in [102].
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9.4  Software Architecture

The PSDF kernel package implements the PSDF model of computation. The structure of this pack-
age is similar to the structure of the SDF kernel package. The PSDF scheduler relies on a scheduling
library built by students at the University of Maryland. This library implements a parameterized ver-
sion of the APGAN algorithm and makes relatively few optimizations to the symbolic schedule.
Unlike the SDF domain, the PSDF domain computes external port rates which may be symbolic. The
SDF domain also leverages reconfiguration analysis to detect such cases and report a modeling error.

Reconfiguration analysis is implemented by the ptolemy.actor.util.ConstVariableModelAnalysis
class. This analysis operates globally on a model and is intended to be used during the preinitialization
phase of execution by schedulers. The ConstVariableModelAnalysis class relies on declarations by
objects in a model which directly invoke the setToken() method on other parameters during execution
of a model. The ptolemy.domains.fsm.FSMActor class and the ptolemy.actor.parameters.Parameter-
Port class implement the ptolemy.actor.util.ExplicitChangeContext interface to declare that they mod-
ify parameters directly. On some occasions, an object might detect a changed parameter, such as
through the attributeChanged() method and modify another parameter. Such objects are expected to
use the ptolemy.actor.util.DependencyDeclaration attribute to declare this parameter dependence,
which would otherwise not be visible to the reconfiguration analysis. Dependencies which arise
through parameter expressions are directly understood by the reconfiguration analysis and do not need
to be explicitly declared.

9.5  Actors

Most domain-polymorphic actors can be used under the PSDF domain, with similar restrictions as
with the SDF domain. The SampleDelay actor can be used in PSDF models, although models with
feedback are not.
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10 
HDF Domain

Author: Ye Zhou

10.1  Introduction

The heterochronous dataflow (HDF) domain is useful for modeling dataflow systems with
restricted flow controls. Under the synchronous dataflow (SDF) domain (see Chapter 3), the set of port
rates (called rate signatures) of an actor are constant, and the schedule is statically determined prior to
execution. The HDF domain extends the SDF domain by allowing changes in rate signatures between
iterations. Within each iteration, rate signatures are fixed and an HDF model behaves like an SDF
model. This guarantees that a schedule can be completely executed. Between iterations, the HDF
domain checks if there is any rate change and recomputes the schedule when necessary.

10.2  Using HDF in Vergil

The HDF domain is often used with a modal model, whose local director is configured to an
HDFFSMDirector. The change of rate signatures is modeled by state transitions of the modal model, in
which each state refinement infers a set of rate signatures. The HDFFSMDirector restricts that state
transitions can only occur between global iterations.

Figure 10.1 shows an HDF model example. The toplevel uses an HDF director. The modal model
is constructed in the same way as discussed in section 4.4. To configure the modal model with an
HDFFSMDirector as its local director, double click on the modal model. Set the directorClass param-
eter to ptolemy.domains.hdf.kernel.HDFFSMDirector.

10.2.1  Data Rates of the Modal Model

The HDF domain uses the hierarchical scheduling algorithm of SDF to schedule modal models.
The port rates of a modal model in HDF are the external port rates of its current state refinement. A
state refinement could be an SDF model, or another HDF model. A state may also refine to another
domain that doesn’t have the notion of port rates. In this case, the default values of the rate parameters
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are used. For more details on port rate parameters, see section 3.4.2.
Note that a state in the modal model of HDF is restricted to have exactly one refinement, in order

to define a unique set of rate signatures of the modal model. There is only one exception. A state may
have no refinement if upon being entered, it has an outgoing transition with a guard expression that is
true. This will be treated as a transient state1. Transient states can have preemptive and non-preemp-
tive transitions, while non-transient states are assumed to have only non-preemptive transitions. When
a modal model reaches a transient state, it will progress through that state to the next state until it
encounters a state with a refinement. An exception is thrown if the mode controller (FSMActor)
reaches a transient state but cannot get out of it.

10.2.2  Multi-Token Syntax in Guard Expressions

A modal model with an HDFFSMDirector as its local director may consume and produce multiple
tokens on each firing. Therefore, we develop a syntax to address multiple tokens in guard expressions.
This is implemented by creating an additional input variable2 for each port (or channel if the port is a
multiport) in the FSMActor. If the port is a single port, an array value variable named portNameArray
is used. If the port is a multiport, an array value variable named portName_channelIndexArray is used
for each channel. An array value variable is an array of variables that have the same type as the corre-
sponding input. For an FSMActor governed by an HDFFSMDirector, the array value variable contains
all the token received from the input in one iteration. We use portNameArray(i) or
portName_channelIndexArray(i) to indicate the (i+1)-th most recent token received from that port
(channel). The state variable portName_isPresent (or portName_channelIndex_isPresent) is true if
there is at least one token at the corresponding port (or channel), and otherwise false. The value vari-
able portName (or portName_channelIndex) is by default the last (most recent) token received. I.e.,
portName = portNameArray(0).

In the following example, we assume that a modal model has a single input port input, which con-
sumes three tokens in one iteration.
• Guard expression: inputArray(0) + inputArray(1) > 10. If the last two tokens received

from the input port have a sum greater than 10, the transition is enabled. Note that if there are

1. Here the notion of transient state is different from what is defined in hybrid systems.
2. The introduction of input variables of an FSMActor can be found in section 4.3.1.

FIGURE 10.1.  An HDF model example.
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fewer than two tokens in the array value variable when the expression is evaluated, an exception
will be thrown.

• Guard expression: input + inputArray(1) > 10. This has the same meaning as the above
example.

• Guard expression: input_isPresent && input > 0. If at least one token is received from the
input port and the last token has a value greater than 0, the transition is enabled.

Guard expressions for multiport can be written in similar ways.

10.2.3  Actions in Modal Model

Set actions can be used in modal model to set parameters of the FSMActor. However, outputAc-
tions should not be used in HDF since any output produced by the FSMActor will introduce conflicts
with the port rates declared by the state refinement. The outputs of the modal model in HDF are all
produced by the state refinement.

10.3  Properties of the HDF domain

The HDF domain inherits most of the SDF properties. The notion of iteration and vectorization
also apply to HDF.

10.3.1  Scheduling

The scheduling of HDF follows the hierarchical scheduling algorithm in SDF. Within each itera-
tion, a modal model appears to be no different from the outside than an atomic actor, whose port rates
are set by the current state refinement. Since HDF uses modal models to define different sets of rate
signatures, it has only a finite number of schedules. We use a cache to save all these schedules, so
when a state is revisited, we do not need to recompute the schedule again. The size of the cache is set
by the scheduleCacheSize parameter of the HDF director.

10.3.2  Hierarchical Heterogeneous Models

An HDF model itself is a heterogeneous composition of dataflow models with FSM. An HDF
model can generally be embedded in any other domain, with similar restrictions as with the SDF
domain.

10.4  Software Architecture

The HDF kernel package includes an HDFDirector class and an HDFFSMDirector class.

10.4.1  HDF Director

The HDFDirector class extends the SDFDirector class by caching the schedules and dynamically
obtain schedules between iterations. When an HDF director is created, it is automatically associated
with an instance of the default scheduler class, CachedSDFScheduler, which is in the SDF kernel pack-
age. The CachedSDFScheduler extends the SDFScheduler class by maintaining a cache of schedules.
It is very efficient if only a moderate number of SDF schedules are used alternatively during execution.
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When the HDF model visits a new state (and hence a new set of rate signatures) in the modal model,
the CachedSDFScheduler computes the schedule and saved it in the cache labeled with the corre-
sponding rate signatures. Next time when this state is revisited, the HDF director obtains the schedule
from the cache by identifying the rate signatures. 

The cache also maintains an order of the schedules, with the most recently used schedule at the
head of the cache. If the cache is full, the least recently used schedule is discarded. The size of the
cache is set by the scheduleCacheSize parameter of the HDF director, which takes an integer. If the
parameter is set to a non-positive integer, it indicates the cache does not have a size limit. The default
value of the parameter is 100.

The receivers in an HDF model are instances of SDFReceiver, in order to read and write tokens in
a first-in-first-out (FIFO) order as in SDF. 

10.4.2  HDFFSM Director

An HDFFSM director collaborates with an HDF director and governs the execution of a modal
model in HDF. The HDFFSMDirector class extends the MultirateFSMDirector class in the FSM ker-
nel package. The MultirateFSM director extends the FSM director by supporting the consumption and
production of multiple tokens on a port in a firing. The HDFFSMDirector class further extends the
MultirateFSMDirector by restricting that state transitions can only occur between global iterations.
This is implemented by calling its requestChange() method, which is used to queue topology changes
(mutations). Mutations are only executed between global iterations. Therefore, state transitions in HDF
happen less often than basic finite state machines, where transitions can occur between firings.

The receivers of a modal model with a MultirateFSM or HDFFSM director as its local director are
instances of SDFReceiver. Inputs to the FSMActor inside the modal model are read in a FIFO order.

10.5  Actors

Most domain-polymorphic actors can be used under the HDF domain, with similar restrictions as
with the SDF domain. The SampleDelay actor can be used in HDF models. However, SampleDelay
actors inside state refinements might be problematic. One reason is that hiding initial tokens inside
opaque composite actors may cause deadlock. On the other hand, the notion of initial tokens in the
guard expressions are not supported.
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11 
DDF Domain

Author: Gang Zhou

11.1  Introduction

The dynamic dataflow (DDF) domain is a superset of the synchronous dataflow (SDF) and Bool-
ean dataflow (BDF) domains. (BDF domain is not implemented in Ptolemy II yet, but available in
Ptolemy Classic.) In the SDF domain, an actor consumes and produces a fixed number of tokens per
firing. This static information makes possible compile-time scheduling. In the BDF domain, the static
analysis techniques used in SDF are extended to allow Boolean-controlled dataflow actors and in some
cases a quasi-static schedule can be pre-computed where each firing is annotated with the run-time
conditions under which the firing should occur. In the DDF domain, there are few constraints on the
production and consumption behavior of actors, and the schedulers make no attempt to construct a
compile-time schedule. Instead, each actor has a set of firing rules (patterns) and can be fired if one of
them is satisfied, i.e., one particular firing pattern forms a prefix of sequences of unconsumed tokens at
input ports.

While the DDF domain can be used to model the most general form of dataflow systems, it is a
special case of Kahn process networks. Instead of using the blocking read semantics of Kahn process
networks, dataflow actors use firing rules for specifying conditions for invocations, each of which
defines a quantum of computation. Using this quantum avoids the complexities and context switching
overhead of process suspension and resumption incurred in most implementations of Kahn process
networks. Instead of context switching, dataflow systems are executed by scheduling the actor firings. 

Most of the contents of this chapter is based on [147]. Interested readers should refer to it for more
details.

11.2  Properties of the DDF domain

To understand how the DDF domain works, one must first understand the firing rules for a general
dynamic dataflow actor. Then one must also understand the criteria a particular dynamic scheduling
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algorithm is designed for.

11.2.1  Firing Rules

A general dynamic dataflow actor with m inputs and n outputs is defined by a pair {f, R} satisfying
the following conditions3:
• f: is a firing function where is a set of m-tuple sequences,
• is a set of finite sequences called the firing rules,
• is finite for all ,
• no two distinct are joinable, i.e., they are not the prefixes of the same sequence.

When a firing rule forms a prefix of the sequence of unconsumed tokens at inputs, the actor is said
to be enabled and a firing can be invoked by consuming tokens in the firing rule and producing tokens
resulting from applying the firing function f. Note that actors with no inputs (i.e., sources) are always
enabled.

The dynamic dataflow actors that can be used in the current DDF domain must also satisfy sequen-
tial firing rules. Intuitively, sequential means that the firing rules can be tested in a pre-defined order
using only blocking reads. Readers can refer to [85] for its technical definition. Some concrete exam-
ples are provided in section 11.3.2 on writing DDF actors.

11.2.2  Scheduling

Given a DDF graph, there can be numerous ways to schedule its execution. The simplest way one
can think of is to keep firing any arbitrary enabled actor until either the graph is deadlocked or some
predefined stop condition is reached. However, there are many problems with this naïve scheduler. For
one, the execution may need unbounded memory whereas some other scheduler may only need
bounded memory. Therefore we need some criteria to determine whether some scheduler is a “good”
scheduler. It is important to point out that there are no absolute criteria. Different people can pose dif-
ferent criteria as long as they can interpret their choice in a reasonable way.

The criteria used here were first realized in Ptolemy Classic, where the first criterion has higher
priority over the second one, the second one over the third one and so on:

1. After any finite time the token sequence (including consumed tokens) on any channel is a prefix of
the least fixed-point given by the denotational semantics. (Correctness)

2. The scheduler should be able to execute a graph forever if it is possible to execute a graph forever.
In particular, it should not stop prematurely if there are enabled actors. (Liveness)

3. The scheduler should be able to execute a graph forever in bounded memory if it is possible to exe-
cute the graph forever in bounded memory. (Boundedness)

4. The scheduler should execute the graph in a sequence of well-defined and determinate iterations so
that the user can control the length of an execution by specifying the number of iterations to exe-
cute. (Determinacy4)
If a schedule satisfies condition 1, it is called a correct execution. To get a correct execution, we

3. A generalization of this is left out for the purpose of clearness. Interested readers should refer to [79].
4. Here the notion of determinacy is different from that used in describing the intrinsic behavior of a model itself,

i.e., the determinacy of the channel history.
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require that the operational semantics of a graph defined by a scheduler be consistent with its denota-
tional semantics.

If a schedule satisfies condition 2 and 3, it is called a useful execution. In particular, condition 2
requires that for every non-terminating model, after any finite time, the execution will extend at least
one sequence on some channel in additional finite time. Note the subtlety here. It does not require to
extend every sequence. Condition 3 is for the purpose of practical implementation. Among all possible
schedulers, we would prefer those that can execute the graph with bounded memory. As pointed out by
Parks [120], liveness is a property of the model itself (directly related with lengths of sequences in its
denotational semantics), whereas boundedness is a property of both the model and its scheduler. Buck
proved in his Ph.D. thesis [22] that a BDF graph is Turing-complete. Since the BDF domain is a subset
of the DDF domain, a DDF graph is also Turing-complete. This has the consequence that both liveness
and boundedness are undecidable for DDF graphs, meaning that no finite analysis can answer the
question about these properties for any arbitrary DDF model. However, since a DDF scheduler has
infinite time to run an infinite execution, there may exist schedulers that can satisfy both conditions, as
Parks’ algorithm did for Process Networks. 

Condition 4 expresses the desire to extend the concept of iterations in the SDF domain to DDF
domain. In SDF, one iteration is defined as the minimum (but non-empty) complete cycle through
which the graph returns to its original state (defined as the number of tokens in each channel). This can
be determined by doing static analysis on the SDF graph. Then an SDF graph can be executed by
repeating iterations, and the user can control the length of execution by specifying the number of itera-
tions in one execution. In DDF, there is no such inherent iteration. But we still want to define a some-
what meaningful iteration which achieves something such as printing a dot on a plotter (which
involves invoking that actor once). And the set of actors executed in each iteration is determinate so
that the state of the model is a well-defined function of the number of iterations. This requires that
which actors to fire in each iteration should not depend on arbitrary decisions made by the scheduler,
like the order in which it examines the enabling status of each actor. This way the user can control the
progress of the model using the similar mechanism as in SDF.

The particular scheduler implemented in the DDF domain is based on a scheduler in Ptolemy Clas-
sic. The pseudo-code of the scheduling algorithm is given in figure 11.1. The intuition behind this
scheduler is that we defer firing of each enabled actor until it is absolutely necessary in order to avoid
deadlock. Thus we don’t create more tokens than necessary on each channel. To capture this notion, a
deferrable actor is defined as one with any output channel (except a self-loop) that already has enough
tokens to satisfy the demand of the destination actor. There are a few subtle points here. First, if the
actor has multiple output channels, it only takes one output channel satisfying one destination actor
connected to that channel to be a deferrable actor. Second, when one particular channel of a destination
actor is satisfied, it has two possible situations. One situation is that the number of tokens buffered on
that channel is greater than or equal to the number of tokens required for the next firing of the destina-
tion actor. Another situation is that the destination actor does not consume a token on that channel dur-
ing the next firing. Third, when one particular channel of a destination actor is satisfied, it does not
mean the destination actor is enabled. It may be still waiting for tokens on different channels to enable
the next firing. The consequence is that we cannot use the prefire() method of the destination actor to
check the deferability. Each actor must expose the number of tokens consumed on each input channel
as part of its interface, which may dynamically change from one firing to another.
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11.3  Software Architecture and Implementation

The DDF domain kernel is realized in the package ptolemy.domains.ddf.kernel. The package
includes an ActorEnablingStatus class and a DDFDirector class.

The ActorEnablingStatus class is a type-safe enumeration of three statuses an active actor may be
in during the execution: ENABLED_DEFERRABLE, ENABLED_NOT_DEFERRABLE and
NOT_ENABLED.

Since the communication style in a dataflow network is asynchronous message passing, we need a
first-in-first-out queue to act as the receiver in the DDF domain. There are two kinds of receivers that
are already implemented in the software which can be used for this purpose. One is the SDFReceiver,
which contains an ArrayFIFOQueue implemented with a circular array. Another is the QueueReceiver
which contains a FIFOQueue implemented with a LinkedList. The latter is used for the DDF domain.

11.3.1  DDFDirector

DDFDirector directly extends Director class. It implements a model of computation according to
the DDF semantics and a particular dynamic scheduling algorithm outlined in figure 11.1. The meth-
ods that define the execution phases of the DDFDirector are implemented as follows:
• initialize(): classify all actors into three categories: actors that are not enabled, actors that are

enabled but deferrable, and actors that are enabled and not deferrable. Search actors for a parame-
ter named requiredFiringsPerIteration, which specifies the number of times the corresponding
actor must be fired in one iteration.

• prefire(): check the input ports of the container composite actor (if necessary) to see whether

FIGURE 11.1.  The pseudo-code of the scheduling algorithm implemented in the DDF domain.

At the start of each basic iteration compute {

        E = set of enabled actors

        D = set of deferrable and enabled actors

        minimax(D) = subset of D as defined below

}

One basic (default) iteration consists of {

        If (E \ D != Ø) 

               fire (E \ D)     

        else if (D != Ø) 

               fire minimax(D)

        else 

               declare deadlock

}

minimax(D) = subset of D with the smallest maximum number of tokens
on their output channels which satisfy the demands of
destination actors
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they have enough tokens for the next iteration. Reset to zero the counting variables for those actors
which are required to fire specified number of times in each iteration.

• fire(): perform one iteration of the model, which by default is one basic iteration. However, if
some actor has a parameter named requiredFiringsPerIteration, continue to execute basic itera-
tions until the actor has been fired at least the number of times given by that parameter. If more
than one actor has such a parameter, then the iteration will continue until all are satisfied. If the
parameter runUntilDeadlockInOneIteration of the director has value true, one single iteration con-
sists of repeating the basic iteration until deadlock is reached (thus overriding the previous defini-
tion of one iteration), which is the status of the model where all active actors under the control of
this director are unable to fire because their firing rules are not satisfied. However, they may be
able to fire again during next iteration when tokens are transferred in from an outside domain.
After each actor is fired, immediately determine the new status of the actors directly connected to
this actor as well as itself since the rest of the actors won’t be affected.

• postfire(): returns false when the value specified in the director parameter iterations has been
reached (there is no upper limit if the parameter is left with its default value 0) or the model comes
to a deadlock in the current iteration.

Besides the two parameters runUntilDeadlockInOneIteration and iterations mentioned above,
DDFDirector has a third parameter maximumReceiverCapacity, which sets the upper bound on the
receiver capacities. Its default value 0 means no upper limit.

The DDF domain tolerates mutations, which are run-time changes in the model structure. Nor-
mally, mutations are realized as change requests queued with the model. The requests are executed
between iterations of top level model and any new actors are initialized and become active for the next
iteration. Some high-order components can also perform mutations by themselves, such as ActorRe-
cursion which can be used to design models with recursion at the actor-oriented level.

11.3.2  Writing DDF Actors

In SDF, the scheduling algorithm relies on the actors in the model to declare the data rate of each
port with up to three parameters named tokenConsumptionRate, tokenProductionRate, and tokenInit-
Production. The production parameters are valid only for output ports, while the consumption parame-
ter is valid only for input ports. If a valid parameter is not specified when the scheduler runs, then
default values of the parameters corresponding to a homogeneous actor will be assumed: input ports
are assumed to have a consumption rate of one, output ports are assumed to have a production rate of
one, and no tokens produced during initialization. If there are multiple channels connected to a multi-
port, all channels are assumed to have the same rate given by the parameter.

In DDF, the director also relies on the tokenConsumptionRate parameter of each input port to
determine whether an actor is enabled/deferrable. However, unlike an SDF actor, the dynamic nature
of a DDF actor dictates that this parameter will have a possible new value after each firing and thus
must be updated if needed. The tokenProductionRate parameter has no use in DDF because for a gen-
eral DDF actor this information is not available before the actor gets fired. The tokenInitProduction
parameter serves the same purpose as in SDF. 

The BooleanSelect actor is a canonical actor in DDF domain and its design is representative of
DDF actors. In the DDF domain, it is renamed DDFBooleanSelect to distinguish it from BooleanSe-
lect used in other domains such as DE. The actor has two firing rules. The first rule says if the control
port has a true token, the trueInput port must have a token and the second rule says if the control port
has a false token, the falseInput port must have a token. Compared with SDF actor firing rule which
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only specifies the number of tokens each input port must consume, the firing rules of DDFBooleanSe-
lect actor also assert the token values of some input port. It seems that just providing the rate informa-
tion wouldn’t be enough to distinguish between different firing rules. However, it turns out that for a
large category of actors which use so-called sequential firing rules, we can decompose an original
actor firing into multiple firings and in each of new firings, the rate information would be enough to
determine if an actor is enabled. This is because sequential means that the firing rules can be tested in
a pre-defined order using only blocking reads. Each blocking read can be expressed as rate information
on the corresponding input port. Upon consuming the token, the actor determines the next input port to
read token from, and the corresponding rate information is updated to reflect that. 

The firing rules of DDFBooleanSelect actor are sequential, therefore we can introduce a two-phase
firings for this actor. During initialization, the control port sets its rate to 1 and trueInput/falseInput
ports both set their rates to 0. Figure 11.2 shows the code block for the initialization.

In the first firing, the actor consumes a Boolean token from control port. Depending on the Bool-
ean value of that token (true or false), the corresponding port (trueInput or falseInput) changes its rate
to 1 and the other port keeps its rate at 0. The control port also needs to change its rate to 0 to declare
that it doesn’t consume token in the next firing. In the second firing, trueInput port or falseInput port
with rate 1 consumes one token and sends it to the output port. Then the actor resets the rate parame-
ters of all input ports the same as before the first firing. Figure 11.3 shows the code block for the split-
phase firing. Figure 11.4 shows the code block for the rate update after each firing.

Another extension to the SDF domain involves rate declaration for multiports, which allow multi-
ple-channel connections. In SDF, all channels connected to the same multiport have the same rate. This

FIGURE 11.2.  Initialization code of DDFBooleanSelect actor.

public void initialize() throws IllegalActionException {
super.initialize();
_isControlRead = false;
trueInput_tokenConsumptionRate.setToken(_zero);
falseInput_tokenConsumptionRate.setToken(_zero);
control_tokenConsumptionRate.setToken(_one);

}

private boolean _control;
private boolean _isControlRead;
private final static IntToken _zero = new IntToken(0);
private final static IntToken _one = new IntToken(1);

FIGURE 11.3.  Split-phase firing code of DDFBooleanSelect actor.

public void fire() throws IllegalActionException {
super.fire();
if (_isControlRead) {

if (_control) {
output.send(0, trueInput.get(0));

} else {
output.send(0, falseInput.get(0));

}
_isControlRead = false;

} else {
_control = ((BooleanToken) control.get(0)).booleanValue();
_isControlRead = true;

}
}
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won’t work for some dynamic actors. For example, the DDFSelect actor is very similar to DDFBool-
eanSelect actor functionally. Its input port is a multiport because the actor communicates via an inde-
terminate number of channels depending on the connections made to the input port. The control port
consumes an integer token, and its value specifies the input channel that should be read in the next fir-
ing. In this case, an ArrayToken is used to represent the rates of the channels connected to the multi-
port. The length of the array is equal to the width of the port, i.e., the number of channels connected to
the port. Each element of the array represents the rate of a channel in the order channels are created
while building the model. Figure 11.5 shows the code block for the initialization of all ArrayTokens
and their exemplary uses for the DDFSelect actor.

It is interesting to notice that two actors BooleanSwitch and Switch, the counterparts of Bool-
eanSelect and Select, don’t need special treatment to be used in DDF domain. They only have one fir-
ing rule, i.e., each input channel needs one token. And that’s the default firing rule if no rate parameters
are declared. 

Finally, all SDF actors can be directly used in the DDF domain since the SDF domain is a subset of
the DDF domain. 

11.4  Example DDF Applications

This section gives several examples to show how conditionals, data-dependent iterations and
recursions can be modeled in the DDF domain.

11.4.1  Conditionals with If-Else Structure

The DDF-inside-SDF example in figure 11.6 demonstrates an if-then-else like structure in the
dataflow context. In this example, the DDF composite actor looks like an SDF actor from outside. A
requiredFiringsPerIteration parameter is added to the DDFBooleanSelect actor and its value is set to
2. In each iteration of the DDF composite actor, each input port consumes one token. Depending on the
Boolean value of the token consumed from the control input port, the token consumed from the ramp
input port is routed to the upper or the lower branch. Then it is processed by some actor and the result
emerges from DDFBooleanSelect actor. Finally it is transferred to the outside through the output port.

FIGURE 11.4.  Rate update code of DDFBooleanSelect actor.

public boolean postfire() throws IllegalActionException {
if (_isControlRead) {

if (_control) {
trueInput_tokenConsumptionRate.setToken(_one);
falseInput_tokenConsumptionRate.setToken(_zero);
control_tokenConsumptionRate.setToken(_zero);

} else {
trueInput_tokenConsumptionRate.setToken(_zero);
falseInput_tokenConsumptionRate.setToken(_one);
control_tokenConsumptionRate.setToken(_zero);

}
} else {

trueInput_tokenConsumptionRate.setToken(_zero);
falseInput_tokenConsumptionRate.setToken(_zero);
control_tokenConsumptionRate.setToken(_one);

}
return super.postfire();

}
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11.4.2  Data-Dependent Iterations

The model in figure 11.7 illustrates a do-while like structure in the dataflow context. Each number
produced by Ramp actor is repeatedly multiplied by 0.5 until the product is below 0.5. The outside-the-
loop Plotter has a requiredFiringsPerIteration parameter with value 1. Therefore each iteration in this
model corresponds to a complete do-while loop for each number produced by Ramp actor.

FIGURE 11.5.  Initialization of ArrayTokens and their exemplary uses for the DDFSelect actor.

public void connectionsChanged(Port port) {
super.connectionsChanged(port);
if (port == input) {

_rateArray = new ArrayToken[input.getWidth()];
Token[] rate = new IntToken[input.getWidth()];
for (int i = 0; i < input.getWidth(); i++) {

rate[i] = _zero;
}
try {

_rateZero = new ArrayToken(rate);
for (int i = 0; i < input.getWidth(); i++) {

rate[i] = _one;
_rateArray[i] = new ArrayToken(rate);
rate[i] = _zero;

}
} catch (IllegalActionException ex) {

// shouldn't happen
throw new InternalErrorException(ex);

}
}

}
    
public boolean postfire() throws IllegalActionException {

if (_isControlRead) {
input_tokenConsumptionRate.setToken(_rateArray[_control]);
control_tokenConsumptionRate.setToken(_zero);

} else {
input_tokenConsumptionRate.setToken(_rateZero);
control_tokenConsumptionRate.setToken(_one);

}
return super.postfire();

}

private int _control;
private boolean _isControlRead;
private final static IntToken _one = new IntToken(1);
private final static IntToken _zero = new IntToken(0);

/** An array of ArrayTokens to be used to set tokenConsumptionRate
 *  of the input port. Each ArrayToken indicates the <i>input</i>
 *  port needs to consume one token from a corresponding channel and
 *  no token from the rest of the channels. The array is initialized
 *  in the method connectionsChanged().
 */
private ArrayToken[] _rateArray;

/** An ArrayToken to be used to set tokenConsumptionRate of the input
 *  port. It indicates the <i>input</i> port does not consume any token
 *  from any channel. This variable is initialized in the method
 *  connectionsChanged().
 */
private ArrayToken _rateZero;
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FIGURE 11.6.  A model illustrating if-then-else structure.

FIGURE 11.7.  A model illustrating do-while structure.
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11.4.3  Recursion

Eratosthenes (276 - 196 B.C.) invented a method called Sieve of Eratosthenes for efficiently con-
structing tables of prime numbers. The method goes like this: first, write down a list of increasing inte-
gers beginning with 2. Then filter out all multiples of 2. Move to the next remaining number, which in
this case is 3, then filter out all its multiples. Continue in this fashion and filter out all multiples of the
next remaining number. The numbers that are left up to the current remaining number are all prime
numbers. In principle, this process can be repeated indefinitely to find any prime number.

It is interesting to see it implemented in a dataflow context in figure 11.8. The focus is on ActorRe-
cursion, which is a composite actor with a StringParameter named recursionActor. Upon firing, it
clones the composite actor containing itself and referred to by recursionActor. It places the clone
inside itself and connects the corresponding ports of both actors. In this example, recursionActor refers
to Prime_Number_Filter. Therefore upon firing, ActorRecursion clones a filter inside itself to filter out
the multiples of the current remaining number and thus exactly implements the algorithm of Sieve of
Eratosthenes.

FIGURE 11.8.  A model illustrating recursion structure for computing prime numbers.
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