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An External Active-Set Strategy for Solving
Optimal Control Problems

Elijah Polak, Hoam Chung, and Shankar Sastry ∗

Abstract

We present a new, external, active constraints set strategy for solv-
ing nonlinear programming problems with a large number of inequal-
ity constraints that arise in the process of discretizing continuous-time
optimal control problems with state-space constraints. This strategy
constructs a sequence of inequality constrained nonlinear program-
ming problems, containing a progressively larger subset of the con-
straints in the original problem, and submits them to a nonlinear
programming solver for a fixed number of iterations. We prove that
this scheme computes a solution of the original problem and show by
means of numerical experiments that this strategy results in reduc-
tions in computing time ranging from a factor of 6 to a factor of over
100.

1 Introduction

Optimal control problems with state space constraints are usually solved by
discretizing the dynamics, which results in the conversion of the continuous-
time optimal control problem into a discrete-time optimal control problem.
A discrete-time optimal control problem is, in fact, a nonlinear programming
problem and hence can be solved by nonlinear programming algorithms. The
distinguishing features of these nonlinear programming problems are (i) the
required gradients can be computed using adjoint equations, and (ii) although

∗Authors are with the Department of Electrical Engineering and Computer Science,
University of California, Berkeley, CA, 94720-1770 USA e-mail: polak/hachung/sastry at
eecs.berkeley.edu.
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they have very large numbers of inequality constraints, relatively few of these
inequalities are active.

An important example of optimal control problems with state space con-
straints arises in the control of unmanned aerial vehicles (UAV’s) using re-
ceding horizon control (RHC). RHC is a form of sample-data control that
determines the control to be applied over the next sampling interval by solv-
ing an optimal control problem during the current sampling interval. The
optimal control problems for RHC control of UAV’s are characterized by large
numbers of collision avoidance inequalities and by expensive evaluations of
the gradients of these inequality defining functions. Since potential collisions
are confined to relatively short segments of the UAV trajectories, most of
the collision avoidance inequalities are inactive. In the case of UAV’s, the
sampling intervals are short and hence the viability of the RHC scheme is
largely determined by the speed of the nonlinear programming solvers.

Unfortunately, standard nonlinear programming packages, including the
excellent set found in TOMLAB [2], including SNOPT [5], NPSOL [1], Schit-
tkowski SQP [8], and KNITRO1 [3], are not designed to exploit the fact that
a problem with a large number of nonlinear inequality constraints may have
few active constraints.

In this paper, we present a new, external active constraint set strategy for
solving nonlinear programming problems with a large number of inequality
constraints. This strategy constructs a sequence of inequality constrained
nonlinear programming problems, containing a progressively larger subset of
the constraints in the original problem, and submits them to a nonlinear pro-
gramming solver for a fixed number of iterations. We prove that this scheme
computes a solution of the original problem and show by means of numeri-
cal experiments that when applied to UAV control, this strategy results in
reductions in computing time ranging from a factor of 6 to a factor of over
100. Our new strategy is particularly effective when used with nonlinear
programming solvers that allow warm starts. It may be useful to observe
that a related strategy [7] for solving semi-infinite minimax problems using
log-sum-exponential smoothing has proved to be equally effective.

In Section II we present a motivational optimal control example, in Sec-
tion III we state our strategy in the form of an algorithm and provide the-
oretical justification for it, in Section IV we present numerical results, and

1KNITRO is a collection of optimization algorithms, and we use the algorithm option
‘Interior/Direct’ with quasi-Newton symmetric rank one updates in this paper.
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our concluding remarks are in Section V.
Notation We will denote elements of a vector by superscripts (e.g., xi) and
elements of a sequence or a set by subscripts (e.g., ηk).

2 Optimal Control Example

In order to motivate our approach, consider the following simple, fixed-time
optimal control problem, which consists of minimizing the sum of the energy
used by a UAV and the square of the distance to a desired destination point.
The UAV trajectory is required to stay out of a circle. As we will see, while
the number of state space constrains is as large as the number of points used
to discretize the dynamics, only those that touch the forbidden circle are
active. A geometric representation of the constraints is shown in Fig. 1, which
presents the given initial trajectory and the computed optimal trajectory for
the example below.

For the sake of simplicity, we assume that the UAV flies at a constant
speed v and that the scalar control u determines the yaw rate of the UAV. In
order to state the optimal control problem as an end-point problem defined
on [0, 1], we rescale the state dynamics using the actual terminal time T and
augment the 3-dimensional physical state with a fourth component, x4, so
that

x4(t) =

∫ t

0

T

2
u2(τ)dτ (1)

represents the energy used. The resulting dynamics have the form

dx

dt
=




Tv cos x3

Tv sin x3

Tu
T
2
u2




, h(x(t), u(t)) (2)

with the initial state x(0) given. We will denote the solution of the dynamic
equation (2) by x(t, u), with t ∈ [0, 1]. The optimal control problem now
assumes the form

min
u∈R

f 0(u)
4
= x4(1, u) + (x1(1, u)− 10)2 + (x2(1, u)− 10)2, (3)
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Figure 1: Initial trajectory (dashed red) and optimal trajectory (solid blue).
Active constraints (constraints within feasibility tolerance) are marked as ‘*’.
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subject to:

f t(u)
4
= (x1(t, u)− 5)2 + (x2(t, u)− 5)2 ≥ 22, t ∈ [0, 1]. (4)

In order to solve this problem, we must discretize the dynamics. We use
Euler’s method to obtain

x̄(tk+1)− x̄(tk) = ∆h(x̄(tk), ū(tk)), x̄(0) = x(0), (5)

with ∆
4
= 1/N , N ∈ N, tk

4
= k∆ and k ∈ {0, 1, . . . , N}. We use an overbar to

distinguish between the exact variables and the discretized variables. We will
denote the solution of the discretized dynamics by x̄(tk, ū), k = 0, 1, . . . , N .
Letting

ū
4
= (ū(t0), ū(t1), . . . , ū(tN−1)), (6)

we obtain the discretized optimal control problem

min
ū∈RN

f̄ 0(ū)
4
= x̄4(1, ū) + (x̄1(1, ū)− 10)2 + (x̄2(1, ū)− 10)2, (7)

subject to the constraints

f̄k(ū)
4
= − (x̄1(tk, ū)− 5)2 − (x̄2(tk, ū)− 5)2 + 22 ≤ 0, k ∈ {1, . . . , N}. (8)

Clearly, (7), (8) is a mathematical programming problem which is dis-
tinguished from ordinary mathematical programming problems only by the
fact that adjoint equations can be used in the computation of the gradients
of the functions fk(·), k = 0, 1, . . . , N .

3 The Algorithm

We now proceed in a more abstract setting. Consider the inequality con-
strained minimization problem:
Pq min{f 0(η) | f j(η) ≤ 0, j ∈ q}, (9)

where η ∈ Rn, and q , {1, . . . , q}. We assume that functions f j : Rn → R are
at least once continuously differentiable. In the context of discrete optimal
control problems, η can be either a discretized control sequence or an initial
state - discretized control sequence pair2.

2see [6] Chapter 4 for a detailed treatment of discrete time optimal control problems
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Next we define the index set qε(η) with ε > 0 by

qε(η) , {j ∈ q | f j(η) ≥ ψ+(η)− ε}, (10)

where
ψ(η) , max

j∈q
f j(η), (11)

and
ψ+(η)

4
= max{0, ψ(η)}. (12)

Definition. We say that an algorithm defined by a recursion of the form

ηk+1 = A(ηk), (13)

for solving inequality constrained problems of the form (9), is convergent if
any accumulation point of a sequence {ηi}∞i=0, constructed according to the
recursion (13), is a feasible stationary point.

Finally, we assume that we have a convergent algorithm for solving inequality
constrained problems of the form (9), represented by the recursion function
A(·), i.e., given a point ηk the algorithm constructs its successor ηk+1 accord-
ing to the rule (13).
Algorithm 1: Active-Set Algorithm for Inequality Constrained Minimiza-
tion Problems.

Data: η0, ε > 0, Niter ∈ N
Step 0: Set i = 0, Q0 = qε(η0).
Step 1: Set ζ0 = ηi and perform Niter iterations of the form ζk+1 = A(ζk)
on the problem
PQi

min{f 0(ζ)|f j(ζ) ≤ 0, j ∈ Qi} (14)

to obtain ζNiter
and set ηi+1 = ζNiter

.
Step 2: Compute ψ(ηi+1).
if ζNiter

is returned as a global, local, or stationary solution of PQi
and

ψ(ηi+1) ≤ 0, then
STOP,

else
Compute

Qi+1 = Qi ∪ qε(ηi+1), (15)

and set i = i + 1, and go to Step 1.
end if

6



Lemma 2. Suppose that ε > 0 and that the sequence {ηi}∞i=0, in Rn, is such
that ηi → η̂ as i → ∞. Then there exists an i0 such that for all i ≥ i0,
q0(η̂) ⊂ qε(η̂).

Proof. By definition (10), for any j ∈ q0(η̂),

f j(η̂)− ψ+(η̂) ≤ 0. (16)

First suppose that ψ+(η̂) = ψ(η̂) ≥ 0. Then the set q0(η̂) is nonempty.
Since all the functions f j(·) and ψ(·) are continuous, [f j(ηi) − ψ+(ηi)] →
[f j(η̂) − ψ+(η̂)] as i → ∞. Hence there must exist an i0 such that for all
i ≥ i0 and j ∈ q0(η̂),

f j(η̂)− ψ+(η̂) ≥ −ε, (17)

which proves that for all i ≥ i0, q0(η̂) ⊂ qε(η̂).
Next suppose that ψ(η̂) < 0. Then ψ+(η̂) = 0 and the set q0(η̂) is empty.

Since the empty set is a subset of any set, the desired result follows.

Lemma 3. Suppose that ε > 0 and that the sequence {ηi}∞i=0, in Rn, is such
that ηi → η̂ as i →∞ and that Q = ∪∞i=0qε(ηi) ⊂ q. For any η ∈ Rn, let

ψQ(η̂) = max
j∈Q

f j(η). (18)

If ψQ(η̂) ≤ 0, then ψ(η̂) ≤ 0.

Proof. By Lemma 2, q0(η̂) ⊂ Q. Since by assumption, f j(η̂) ≤ 0 for all
j ∈ Q, it follows that ψ(η̂) ≤ 0.

Lemma 4. Suppose that Q ⊂ q and consider the problem
PQ min{f 0(η)|f j(η) ≤ 0, j ∈ Q}. (19)

Suppose that η̂ ∈ Rn is feasible for Pq, i.e, f j(η) ≤ 0 for all j ∈ q.

(a) If η̂ is a global minimizer for PQ, then it is also a global minimizer for
Pq.

(b) If η̂ is a local minimizer for PQ, then it is also a local minimizer for
Pq.

(c) If η̂ is a stationary point for PQ, i.e., it satisfies the F. John conditions
[4] (or Theorem 2.2.4, p. 188 in [6]), then it is also a stationary point
for Pq.
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Proof. Clearly, since η̂ is feasible for Pq it is also feasible for PQ.
(a) Suppose that η̂ is not a global minimizer for Pq. Then there exists an η∗

such that f j(η∗) ≤ 0 for all j ∈ q and f 0(η∗) < f 0(η̂). Now, η∗ is also feasible
for PQ and hence η̂ cannot be a global minimizer for PQ, a contradiction.
(b) Suppose that η̂ is not a local minimizer for Pq. Then there exists a
sequence {ηi}∞i=0 such that ηi → η̂, f 0(ηi) < f 0(η̂) and f j(ηi) ≤ 0 for all i
and j ∈ q. But this contradicts the assumption that η̂ is a local minimizer
for PQ.
(c) Since η̂ satisfies the F. John conditions for PQ, there exist multipliers
µ0 ≥ 0, µj ≥ 0, j ∈ Q, such that µ0 +

∑
j∈Q µj = 1,

µ0∇f 0(η̂) +
∑
j∈Q

µj∇f j(η̂) = 0 (20)

and ∑
j∈Q

µjf j(η̂) = 0. (21)

Clearly, η̂ also satisfies the F. John conditions for Pq with multipliers µj = 0
for all j /∈ Q and otherwise as for PQ.

Combining the above lemmas, we get the following convergence result.

Theorem 5. Suppose that the problem Pq has feasible solutions, i.e., there
exist vectors η∗ such that f j(η∗) ≤ 0 for all j ∈ q.

(a) If Algorithm 1 constructs a finite sequence {ηi}k
i=0, exiting in Step 2,

with i + 1 = k, then ηk is a global, local, or stationary solution for Pq,
depending on the exit message from the solver defined by A(·).

(b) If {ηi}∞i=0 is an infinite sequence constructed by Algorithm 1 in solving
Pq. Then any accumulation point3 η̂ of this sequence is feasible and
stationary for Pq.

Proof. (a) If sequence {ηi}k
i=0 is finite, then, by the exit rule, it is feasible

for Pq and it is a global, local, or stationary solution for PQi
. It now follows

from Lemma 4, that it is also a global, local, or stationary solution for Pq.
(b) Since the sets Qi grow monotonically, and since q is finite, there must

3A point η̂ is said to be an accumulation point of the sequence {ηi}∞i=0, if there exists
an infinite subsequence, indexed by K ⊂ N, {ηi}i∈K , such that ηi

K−→ η̂. as i
K−→∞
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exist an i0 and a set Q ⊂ q, such that Qi = Q for all i ≥ i0. Next, it follows
from the fact that A(·) is convergent, that for any accumulation point η̂,
ψQ(η̂) ≤ 0 and hence, from Lemma 3 that ψ(η̂) ≤ 0, i.e., that η̂ is a feasible
point for Pq. Since for any accumulation point η̂, by Lemma 2, q0(η̂) ⊂ Q,
it now follows from the fact that A(·) is convergent and Lemma 4 that any
accumulation point η̂ is stationary for Pq.

4 Numerical Results

All numerical experiments were performed using MATLAB V7.2 and TOM-
LAB V5.5 [2] in Windows XP, on a desktop computer with an Intel Xeon
3.2GHz processor with 3GB RAM. Optimization solvers tested in this pa-
per were the Schittkowski SQP algorithm with cubic line search [8], NPSOL
5.02 [1], SNOPT 6.2 [5], and KNITRO [3]. It should clear from the form
of Algorithm 1, that our strategy benefits considerably from warm starts of
the nonlinear programming solvers, to be used after constructing the active
set Qi. Hence it is desirable to use solvers with as extensive a warm start
capability as possible, so that one can transmit the last value of important
information from the last iteration of a solver on the problem PQi

as ini-
tial conditions for solving the problem PQi+1

. SNOPT allows the user to
provide initial variables and their states and slack variables. NPSOL allows
the user to provide initial variables and their states, Lagrange multipliers, as
well as an initial Hessian approximation matrix for quasi-Newton updates.
conSolve, the TOMLAB implementation of the Schittkowski SQP algorithm,
allows the user to provide an initial solution vector and initial Hessian matrix
approximation. KNITRO allows the user to provide only the initial solution
vector. For maximum efficiency, this data must be saved at the end of the
i−th run and transmitted as initial data for the i + 1-th run of the solver.

As we will see from our numerical results, the performance of Algorithm
1 is much more sensitive to the parameters Niter and ε when using a solver,
such as KNITRO, that has minimal warm start features, than when it is
using a solver with extensive warm start features.

4.1 Single UAV Example

Our first set of results are for the optimal control problem (7), (8) described
in Section II, with initial state x0 = (0, 0, π/4, 0). All computations were
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initialized using the control ū0 = 8× 10−311×N . The Parameters used in the
numerical experiments were T = 25, v = 0.5, and N = 64, thus there were
64 inequality constraints (8) in the discretized optimal control problem.

The numerical results are summarized in the Tables 1 - 4. In these tables,
Ngrad, the total number of gradient evaluations, and tCPU , the total CPU time
for achieving an optimal solution using Algorithm 1, are defined as follows:

Ngrad =

iT∑
i=0

|Qi| × number of gradient function calls during i-th inner iteration

tCPU =

iT∑
i=0

[
CPU time spent for i-th inner iteration

+ CPU time spent for setting up i-th inner iteration
]
.

(22)

In the above, and in the tables, iT is the value of the iteration index i at
which Algorithm 1 is terminated by the termination tests incorporated in
the optimization solver used, and istab is the value of index i at which |Q| is
stabilized. Also, %RAW , the percentage of tCPU with respect to the compu-
tation time with the raw algorithm, i.e. using the solver with the full set of
constraints (shown in the last row of each table), is used in tables.
Observations.

• For all solvers, there exist parameter pairs of ε and Niter which result in
more than an 80% reduction in total CPU time, as compared to using
these solvers without our active-set strategy.

• When using an optimization solver without an extensive warm start
functionality, the performance of Algorithm 1 is much more sensitive
to the value of Niter than when using a solver with an extensive warm
start functionality. Thus with SNOPT and NPSOL, Algorithm 1 is
not very sensitive to the values of Niter. With conSolve, Algorithm 1
yields better performance when Niter ≥ 10 is given. With KNITRO,
Algorithm 1 does not work at all well with Niter ≤ 40, but it was
possible to achieve an 80% reduction in computing time (similar to the
other solvers), as compared to the direct use of KNITRO, with proper
values of Niter and ε. (Table 4).
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Table 1: External Active-Set Strategy with Schittkowski SQP Algorithm,
Single UAV Example.

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 13 5.0367 7996 27 6 46.432 109.3

02 1 20 5 5.0367 5953 21 3 32.847 77.3

03 1 30 3 5.0367 3112 16 3 17.772 41.8

04 0.1 10 10 5.0367 1478 8 6 11.265 26.5

05 0.1 20 6 5.0367 1757 8 4 12.908 30.4

06 0.1 30 3 5.0367 986 8 3 7.5872 17.9

07 0.01 10 12 5.0367 1114 5 5 10.383 24.4

08 0.01 20 5 5.0367 752 6 4 7.0621 16.6

09 0.01 30 4 5.0367 676 5 4 7.5543 17.8

Raw 5.0367 9600 64 42.500 100

Table 2: External Active-Set Strategy with NPSOL, Single UAV Example.

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 11 5.0367 3214 16 6 18.196 38.0

02 1 20 5 5.0367 2625 16 3 14.211 29.7

03 1 30 3 5.0367 2113 16 2 11.278 23.5

04 0.1 10 12 5.0367 1578 8 7 10.544 22.0

05 0.1 20 6 5.0367 1411 8 4 9.0533 18.9

06 0.1 30 4 5.0367 1465 8 3 9.1705 19.1

07 0.01 10 12 5.0367 915 5 7 7.3035 15.2

08 0.01 20 7 5.0367 920 5 5 7.3169 15.3

09 0.01 30 5 5.0367 808 5 4 6.7290 14.0

Raw 5.0367 11136 64 47.922 100
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Table 3: External Active-Set Strategy with SNOPT, Single UAV Example.

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 9 5.0367 2196 16 3 12.671 50.5

02 1 20 6 5.0367 1871 16 2 10.471 41.7

03 1 30 2 5.0367 893 16 2 4.866 19.4

04 0.1 10 7 5.0367 732 8 3 4.9606 19.8

05 0.1 20 6 5.0367 808 8 3 5.4314 21.6

06 0.1 30 2 5.0364 794 7 2 5.1596 20.6

07 0.01 10 9 5.0367 575 5 4 4.6431 18.5

08 0.01 20 6 5.0367 395 5 4 3.4343 13.7

09 0.01 30 5 5.0367 500 5 4 4.2915 17.1

Raw 5.0367 5760 64 25.094 100

Table 4: External Active-Set Strategy with KNITRO, Single UAV Example.

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 50 60 5.0369 48689 16 2 301.07 1187.2

02 1 75 1 5.0367 770 11 1 5.2344 20.6

03 1 100 1 5.0367 770 11 1 5.1875 20.5

04 0.1 50 2 5.0367 492 7 2 4.7225 18.6

05 0.1 75 2 5.0367 492 7 2 4.7224 18.6

06 0.1 100 2 5.0367 492 7 2 4.7851 18.9

07 0.01 50 4 5.0367 376 5 4 5.6167 22.1

08 0.01 75 4 5.0367 376 5 4 5.5700 22.0

09 0.01 100 4 5.0367 376 5 4 5.5855 22.0

Raw 5.0367 5568 64 25.359 100
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4.2 Multi-UAV Example

The next example consists of controlling multiple UAVs. Suppose that we
have Na UAVs, each with the same dynamics as (2), and we want them to stay
in a circular region centered at the origin, without incurring any collisions.
The stay-in-a-circle constraints are described by the following equations:

f t,i
bnd(u

i)
4
= x1,i(t, ui)2 + x2,i(t, ui)2 ≤ r2

bnd, t ∈ [0, 1], (23)

where i ∈ {1, 2, . . . , Na} denotes the UAV index. The collision avoidance
constraints are given by

f t,(i,j)
ca (ui, uj)

4
= (x1,i(t, ui)−x1,j(t, uj))2+(x2,i(t, ui)−x2,j(t, uj))2 ≥ r2

ca, t ∈ [0, 1],
(24)

where (i, j) is an element of the set of all 2-combinations of the index set
{1, 2, . . . , Na}. After discretization, as in the previous example, the con-
straints become

f̄k,i
bnd(ū

i)
4
= x̄1,i(t, ūi)2 + x̄2,i(t, ūi)2 ≤ r2

bnd, k ∈ {1, . . . , N}, (25)

and

fk,(i,j)
ca (ūi, ūj)

4
= (x̄1,i(k, ūi)− x̄1,j(k, ūj))2 + (x̄2,i(k, ūi)− x̄2,j(k, ūj))2

≥ r2
ca, k ∈ {1, . . . , N}.

(26)

Finally, we obtain the following discretized optimal control problem for the
multi-UAV example:

min
ūi∈RN , i∈{1,...,Na}

f̄ 0(ū)
4
=

Na∑
i=1

x̄4,i(1, ūi) (27)

subject to the dynamics of each UAV and the constraints (25) and (26). The
total number of inequality constraints in this problem is NNa(Na − 1)/2 +
NNa.

The dynamics of the UAV’s are nonlinear and the non-collision constraints
are non-convex. Hence this problem has many local minima. Consequently,
the solution trajectory may depend on the initial control and on the evolution
of the active sets during computation.
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For numerical experiments, we set rbnd = 4, rca = 1, N = 64 and Na = 4,
resulting in 640 nonlinear inequality constraints. The initial conditions and
initial controls for each agent are set as

x1
0 = (2.5, 2.5, π, 0), ū1

0 = −1.25× 10−111×N

x2
0 = (−2.5, 2,−π/2, 0), ū2

0 = 1.25× 10−111×N

x3
0 = (−2.5,−2.5,−π/4, 0), ū3

0 = 1.25× 10−111×N

x4
0 = (2,−2.5, π/2, 0), ū4

0 = 2.50× 10−111×N .

(28)

Fig. 2 shows a locally optimal solution for this problem. There are only
8 active constraints at the end. These are all associated with staying in the
circle; there are no active non-collision constraints. When properly adjusted,
Algorithm 1 accumulates fewer than 16 constraints. Consequently, the re-
duction in the number of gradient computations is huge, and the savings in
CPU time is more dramatic than in the single UAV case. There exist param-
eter pairs with conSolve and KNITRO that achieve more than 95% savings
in computation time. As can be seen from our tables, in several cases using
NPSOL and SNOPT, our algorithm used less than 1/100 of the CPU time
required by NPSOL or SNOPT to solve the example problem directly, i.e.,
using the full set of constraints.

5 Conclusion

We have presented an external active-set strategy for solving discrete-time
optimal control problems with state-space constraints, using nonlinear pro-
gramming solvers. Our numerical results show that this strategy results in
considerable savings in computer time. In our examples, the savings ranged
from a factor ranging from 6 to 9, on a problem with 64 constraints, to a
factor ranging from around 20 to a factor around of 135 on a problem with
640 constraints. The results depend on the nonlinear programming solver.
There is reason to believe that the larger the number of inequalities in the
discrete-time optimal control problem, the larger the computational savings
will be. This observation is consistent with the two examples presented in
this paper. Finally, it should be obvious that one can add refinements to our
algorithm, such as restarting it after a certain number of iterations, so as
to avoid accumulating constraints that are not close to being active at the
solution.
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Figure 2: Initial trajectory (dashed red) and an optimal trajectory (solid
blue). Bounding circular region is represented by the dotted blue circle.
Active constraints (constraints within feasibility tolerance) are marked as ‘*’
and initial positions are marked as ‘o’.

Table 5: External Active-Set Strategy with Schittkowski SQP Algorithm,
Four-UAV example

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 17 1.3790 27623 122 12 292.40 15.2

02 1 20 16 1.0708 41556 154 16 422.21 22.0

03 1 30 7 1.1585 16626 77 7 180.81 9.4

04 0.1 10 14 1.4203 6444 44 14 90.890 4.7

05 0.1 20 11 0.80255 9463 30 10 129.09 6.7

06 0.1 30 12 1.0970 16393 32 12 228.97 11.9

07 0.01 10 19 1.0708 4477 28 19 83.182 4.3

08 0.01 20 16 1.0708 6318 26 16 115.36 6.0

09 0.01 30 11 0.80255 5810 16 11 109.42 5.7

Raw 3.3564 274560 640 1917.8 100
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Table 6: External Active-Set Strategy with NPSOL, Four-UAV example

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 12 1.1077 12384 109 12 133.10 1.9

02 1 20 10 1.1585 15089 99 9 158.90 2.3

03 1 30 8 1.1585 17717 93 8 182.61 2.6

04 0.1 10 13 0.80255 4540 34 12 56.871 0.8

05 0.1 20 10 0.80255 6184 34 10 75.456 1.1

06 0.1 30 9 0.80255 7543 30 9 93.732 1.3

07 0.01 10 14 0.80255 1997 13 12 33.211 0.5

08 0.01 20 11 0.80255 2844 15 11 44.847 0.6

09 0.01 30 11 0.80255 3872 16 11 58.878 0.8

Raw 3.3564 1011840 640 6976.1 100

Table 7: External Active-Set Strategy with SNOPT, Four-UAV Example

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 10 7 1.1585 3212 77 7 36.927 1.6

02 1 20 7 1.1585 3505 77 7 39.880 1.7

03 1 30 7 1.1585 3646 77 7 41.797 1.8

04 0.1 10 9 1.1579 2089 31 9 29.475 1.3

05 0.1 20 9 1.1579 2197 31 9 31.326 1.4

06 0.1 30 9 1.1579 2250 31 9 31.813 1.4

07 0.01 10 11 0.80255 924 16 11 16.806 0.7

08 0.01 20 11 0.80255 965 16 11 17.608 0.8

09 0.01 30 11 0.80255 965 16 11 17.466 0.8

Raw 3.3564 313600 640 2318.4 100
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Table 8: External Active-Set Strategy with KNITRO, Four-UAV Example

Data # ε Niter iT f 0 Ngrad |Q| istab tCPU %RAW

01 1 100 100 *1 * * * * *

02 1 200 100 * * * * * *

03 1 300 9 1.1479 80614 90 9 892.13 22.6

04 0.1 100 100 * * * * * *

05 0.1 200 10 0.80255 21826 35 10 307.89 7.8

06 0.1 300 10 0.80255 21826 35 10 312.59 7.9

07 0.01 100 17 0.80255 16254 16 12 265.26 6.7

08 0.01 200 11 0.80255 7733 16 11 141.71 3.6

09 0.01 300 11 0.80255 7733 16 11 141.47 3.6

Raw 3.3485 479360 640 3943.5 100

1 ‘*’ indicates that no meaningful data is available since the algorithm returns
without an optimum after 100 iterations.
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