
Wireless Sensor Networks for High Fidelity Sampling

Sukun Kim

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-91

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-91.html

July 20, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Wireless Sensor Networks for High Fidelity Sampling

by

Sukun Kim

B.Eng. (Korea Advanced Institute of Science and Technology) 2002
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor David E. Culler, Chair
Professor Ion Stoica

Professor Gregory L. Fenves

Fall 2007

The dissertation of Sukun Kim is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Wireless Sensor Networks for High Fidelity Sampling

Copyright c© 2007

by

Sukun Kim

Abstract

Wireless Sensor Networks for High Fidelity Sampling

by

Sukun Kim

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Chair

Our hypothesis was that Wireless Sensor Networks (WSN) could be used for High

Fidelity Sampling (HFS). WSN is constrained by limited resources, and HFS requires

data of high quality, like high-accuracy high frequency in a large scale. This disser-

tation explains how we achieved our goal.

A Wireless Sensor Network (WSN) for Structural Health Monitoring (SHM) is

designed, implemented, deployed and tested on the 4200ft long main span and the

south tower of the Golden Gate Bridge (GGB). Ambient structural vibrations are

reliably measured at a low cost and without interfering with the operation of the

bridge. Requirements that SHM imposes on WSN are identified and new solutions to

meet these requirements are proposed and implemented. For example, diverse design

options for a reliable data transfer are analyzed and an initial solution for a reliable

data collection, Straw, is proposed.

In the GGB deployment, 64 nodes are distributed over the main span and the

tower, collecting ambient vibrations synchronously at 1kHz rate, with less than 10µs

jitter, and with an accuracy of 30µG. The sampled data is collected reliably over

1

a 46-hop network, with a bandwidth of 441B/s at the 46th hop. The deployment

is the largest WSN for SHM. Data from the deployment is analyzed. The collected

vibration data agrees with theoretical models and previous studies of the bridge.

Interesting behaviors are observed, and pitfalls and lessons are discussed. Especially,

to overcome pitfalls of reliable data collection from the deployment, an improvement,

Flush, is proposed.

The Flush protocol provides an end-to-end reliability, minimizes transfer time,

and adapts to time-varying network conditions. It achieves these properties using

end-to-end acknowledgments, implicit snooping of control information, and a rate-

control algorithm that operates at each hop along a flow. Using several real net-

work topologies, we show that Flush closely tracks or exceeds the maximum goodput

achievable by a hand-tuned, fixed-rate for each hop over a wide range of path lengths.

Professor David E. Culler
Dissertation Committee Chair

2

To my family: Kuk Kyoung Kim, Okji Lee, and Ah Young Kim

i

Contents

Contents ii

List of Figures vi

List of Tables xi

Acknowledgements xiii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Six Requirements of the Problem . 5

1.3 Background . 6

1.3.1 Wireless Sensor Networks Applications 6

1.3.2 Wireless Sensor Networks for Structural Health Monitoring . . 7

1.4 Roadmap . 8

2 Overall Architecture 10

2.1 System Architecture . 10

2.2 Composition of Software Components 11

2.3 Sentri: Structural Health Monitoring Toolkit Application 12

2.4 Data Acquisition System (Requirement 1) 13

2.4.1 Accelerometer Sensor Board 14

2.4.2 Calibration . 17

2.5 High-frequency Sampling with Low Time Uncertainty (Requirement 2) 17

2.5.1 Temporal Jitter Analysis . 18

ii

2.5.2 Temporal Jitter Control . 21

2.6 Software Components (Requirements 3, 4, and 5) 24

3 Design Space of Reliable Transfer (Requirement 6) 26

3.1 Three Options for Reliable Transfer 27

3.2 Related Work . 32

3.3 Link-level Retransmissions (Option 1) 33

3.4 Erasure Code (Option 2) . 34

3.4.1 Linear Code . 36

3.4.2 Vandermonde Matrix . 36

3.4.3 Reed-Solomon Code . 37

3.5 Modifications for Wireless Sensor Networks (Option 2) 38

3.5.1 Extension Fields . 39

3.5.2 Systematic Code . 40

3.5.3 Multiple Independent Code Words in a Packet 41

3.5.4 Operation Table . 42

3.6 Alternative Routes (Option 3) . 44

3.7 Evaluation . 45

3.7.1 Experiment Methodology . 45

3.7.2 Erasure Code . 47

3.7.3 Comparing Options . 51

3.8 Discussion . 61

3.9 Lessons . 62

3.10 Initial Reliable Data Collection Protocol: Straw 63

4 Deployment at the Golden Gate Bridge 67

4.1 Putting Components Together . 68

4.2 Environmental Challenges . 68

4.3 Deployment Plan . 72

5 Network Analysis of the Golden Gate Bridge 74

5.1 Routing Layer . 74

5.2 Transport Layer . 78

iii

6 Reliable Data Collection (Requirement 6) 80

6.1 Revisiting the Problem . 81

6.2 Related Work . 83

6.3 Models of Connectivity . 87

6.3.1 Unit Disk Model . 87

6.3.2 Multi Disk Model . 87

6.3.3 Multi Cloud Model . 88

6.4 Analysis of Pipelining . 90

6.4.1 Modeling of Pipelining . 90

6.4.2 Analysis of Model . 94

6.4.3 Use Case . 96

6.5 Flush . 98

6.5.1 Overview . 99

6.5.2 Reliability . 101

6.5.3 Rate Control . 102

A Conceptual Model . 103

Dynamic Rate Control . 104

6.5.4 Identifying the Interference Set 109

6.6 Implementation . 110

6.6.1 Protocol Engine . 112

6.6.2 Routing Layer . 112

6.6.3 Packet Delay Estimator . 113

6.6.4 Queuing . 114

6.6.5 Link Layer . 116

6.6.6 Protocol Overhead . 117

6.6.7 Memory and Code Footprint 117

6.7 Experimental Methodology . 118

6.8 Evaluation . 120

6.8.1 High Level Performance . 120

6.8.2 Performance Breakdown . 126

6.8.3 A More Detailed Look . 133

6.8.4 Adapting to Network Changes 137

iv

6.8.5 Scalability . 141

6.9 Discussion . 141

6.9.1 Density of Nodes . 143

6.9.2 Interactions with Routing . 143

6.10 Summary . 145

7 Data Analysis of the Golden Gate Bridge 146

7.1 Lifetime Analysis . 147

7.2 Failure Analysis . 148

7.3 Vibration Data . 150

8 Discussion 155

8.1 Link Estimation Under Heavy Traffic 155

8.2 De-synchronization of Packet Transmission Schedule 156

8.3 CSMA versus TDMA . 156

8.4 Practical Issues . 157

9 Conclusion 159

v

List of Figures

1.1 The Golden Gate Bridge and layout of nodes on the bridge. To cover
this large bridge, a long linear topology needs to be used, bringing
challenges to the network. 3

1.2 Bandwidth of Straw at the Golden Gate Bridge. It works over a 46-
hop network. To sustain high bandwidth over a long path, pipelining
is used avoiding interference. 4

2.1 High-Level Overview of the System 11

2.2 Overall Software Architecture . 12

2.3 Hardware Block Diagram. Details of two accelerometers (ADXL 202E
and SD 1221L) are in Table 2.2. A thermometer is used for temperature
calibration. 14

2.4 Accelerometer Board. ADXL 202E is a two axis accelerometer in a
single chip. Either Mica2 or MicaZ can be used as a mote. 15

2.5 Sources of Jitter. Temporal jitter takes place inside a node because
the software system cannot keep up with aggressive sampling and log-
ging. Spatial jitter occurs between different nodes because of variation
in mote oscillator crystals and imperfect time synchronization. Both
temporal jitter and spatial jitter should be within a threshold for the
data to have scientific value. 19

2.6 Causes of Temporal Jitter. The atomic section blocks and delays the
task of sampling. 19

2.7 (Left) One Atomic Section, (Middle) Multiple Atomic Sections, (Right)
Multiple Atomic Sections with CPU Sleep 20

2.8 Time Series of Jitter at 5kHz Sampling Rate. Writing to flash interferes
with the sampling. 22

2.9 Histogram of Jitter at 5kHz Sampling Rate. Long and thin tail indi-
cates that most samples experience small jitter, however a small num-
ber of samples still experience long jitter. 23

vi

3.1 Possible options to achieve reliability. S1 uses erasure code producing
additional code words, S2 uses thick (multiple) path which is not ex-
amined in this work, and S3 does route fixing, finding alternative for
the next hop when stuck. 31

3.2 Mechanism of Erasure Code . 35

3.3 Vandermonde Matrix . 37

3.4 High level diagram showing how Reed-Solomon code works 38

3.5 Systematic code . 40

3.6 Divide packet into multiple independent code words 42

3.7 Increase or decrease in loss rate by using erasure code. Each line indi-
cates how many redundant erasure code words are added to 8 original
messages . 48

3.8 Decrease in loss rate by systematic code. Each line indicates how many
redundant systematic code words are added to 8 original messages . . 49

3.9 Histogram of time to decode 8 messages with 4 code words containing
original messages . 52

3.10 Map of Soda hall testbed. Source and destination are also indicated. . 53

3.11 End-to-end reliability achieved by options. Each line represents num-
ber of redundant code words for 8 original messages. RF means route
fixing is used. 55

3.12 Number of packets injected to network per hop per successfully re-
ceived data. Each line represents number of redundant code words for
8 original messages. RF means route fixing is used. 56

3.13 Overhead versus reliability for different combinations of retransmission
and redundancy options. Overhead is the number of packets injected
per hop per received data packet. Points in the same curve have the
same retransmission option, and each curve has 9 points (indicated by
numbers), corresponding to the number of redundant packets for each
8 packets of data. 59

3.14 Overhead versus reliability for different combinations of retransmission
and redundancy options (Zoom). 60

3.15 Finite State Diagram of Straw Protocol 64

4.1 Board enclosure, antenna, and battery installed on the main span.
The zip tie had to be put around the antenna to control wind vibra-
tion. Poor link quality was experienced with a vibrating antenna under
strong wind. Corrosion of the C-clamp can be observed in the figure. 69

vii

4.2 A laptop PC is used as a base station. It is located inside of the south
tower. 70

4.3 Severity of rusting of the bridge can be seen. Rusting not only threat-
ens the bridge, but also was a hazard to the monitoring system, see
Figure 4.1 . 71

5.1 Average end-to-end loss rate over different depths in a routing tree. In
many cases, the loss rate is below 5%, and never exceeds 7%. 75

5.2 An example of the routing tree formed at the GGB. There are 56 nodes
in the tree. The leftmost node is the basestation. The rightmost node
is 45 hops away from the basestation. The tree is skewed. 76

5.3 Distribution of the number of children of 56 nodes in a routing tree
shown in Figure 5.2. Majority of nodes have one child. 76

5.4 Distribution of link quality measurements of 56 nodes before and after
data collection. After data collection, measured quality drops dramat-
ically, even though actual link quality does not change much. 77

6.1 Three different connectivity models. The unit disk model is the sim-
plest. The multi cloud model is the most complex and the closest to a
real world. 89

6.2 NACK transmission example. Flush has at most one NACK packet in
flight at once. 101

6.3 Maximum sending rate without collision in the simplified pipelining
model, for different numbers of nodes (N) and interference ranges (I). 105

6.4 A detailed look at pipelining from the perspective of node i, with the
quantities relevant to the algorithm shown. 107

6.5 Packet transfer from node 8 to node 7 interferes with transfer from
node 5 to node 4. However it does not interfere with transfer from
node 4 to node 3 . 108

6.6 The Flush rate control algorithm. Di determines the smallest sending
interval at node i. 109

6.7 CDF of the difference between the received signal strength from a pre-
decessor and the local noise floor. The dotted line indicated twice the
SNR threshold. Links with an SNR exceeding this threshold will not
be undetectably affected by interferers. A large fraction of interferers
are detectable and avoidable. 111

6.8 Overall structure of Flush . 116

6.9 Mirage Testbed at Intel Research Berkeley. Purple (darker) stars are
100 MicaZ nodes used in experiments. 118

viii

6.10 The network used for the scalability experiment. Of the 79 total nodes,
the 48 nodes shown in gray were on the test path. This test is a
demonstration that Flush works over a long path and is not limited to
a linear topology, as will be shown in other tests. 119

6.11 Packet throughput of fixed rate streams over different hop counts. The
optimal fixed rate depends on the distance from the sink. 122

6.12 Effective packet throughput of Flush compared to the best fixed rate
at each hop, taken from Figure 6.11. Flush tracks the best fixed packet
rate. 123

6.13 Effective bandwidth of Flush compared to the best fixed rate at each
hop, taken from Figure 6.11. Flush’s protocol overhead reduces the
effective data rate. 124

6.14 Average number of transmissions per node for sending an object of 1000
packets. The optimal algorithm assumes no retransmissions. Losses at
Fixed 40ms is only due to losses not interference. Flush closely tracks
the efficiency of this case. 126

6.15 The fraction of data transferred from the 6th hop during the trans-
fer phase and the acknowledgment phase. Greedy best-effort routing
(ASAP) exhibits a loss rate of 43.5%. A higher than sustainable rate
leads to a high loss rate. 127

6.16 The fraction of time spent in different stages. A retransmission during
the acknowledgment phase is expensive, and leads to poor throughput.
Greedy best-effort routing (ASAP) does not have the acknowledgment
phase nor the integrity check phase. 128

6.17 The fraction of data transferred during the transfer phase and the
acknowledgment phase in Flush. In many cases, most of the data is
transferred during the transfer phase. 130

6.18 The fraction of time spent in different stages in Flush. When the source
is close to the sink, time spent in the transfer phase is short, and the
relative overhead of the time spent in other phases is large. 130

6.19 Effective goodput during the transfer phase. Effective goodput is com-
puted as the number of unique packets received over the duration of
the transfer phase. 131

6.20 Effective goodput during the transfer phase. Effective goodput is com-
puted as the number of unique packets received over the duration of
the transfer phase. Flush provides comparable goodput as a lower loss
rate which reduces the time spent in the expensive acknowledgment
phase, which increases the effective bandwidth. 132

ix

6.21 Packet rate over time for a source node, which is 7 hops away from the
base station. Packet rate averaged over 16 values, which is the max
size of the queue. Flush approximates the best fixed rate with the least
variance. 134

6.22 Maximum queue occupancy across all nodes for each packet. Flush
exhibits more stable queue occupancies than Flush-e2e. Fluctuating
queue occupancy together with a change in an environment can lead
to a queue overflow and packet loss. 135

6.23 Detailed view of instantaneous queue length for Flush-e2e in Fig-
ure 6.22. Queue fluctuations ripple through nodes along a flow. 136

6.24 Sending rates at the lossy node for the forced loss experiment. Packets
were dropped with 50% probability between 7 and 17 seconds. Both
Flush and Flush-e2e adapt while the fixed rate overflows its queue. . 138

6.25 Queue length at the lossy node for the forced loss experiment. Packets
were dropped with 50% probability between 7 and 17 seconds. Flush
and Flush-e2e adapt while the fixed rate overflows its queue. 139

6.26 Detailed look at the route change experiment. Node 4’s next hop is
changed, changing all nodes in the subpath to the root (from 1a, 2a,
3a to 1b, 2b, 3b). Top 3 graphs show rates at each node. The bottom
graph shows a queue length at hop 4. No packets were lost, and Flush
adapted quickly to the change. The only noticeable queue increase was
at node 4. This figure shows Flush adapts when the next hop changes
suddenly. 140

6.27 Effective bandwidth from the real-world scalability test where 79 nodes
formed a 48-hop network at RFS. The Flush header is 3 bytes and the
Flush payload is 35 bytes (versus a 38-byte payload for the fixed rates).
Flush closely tracks or exceeds the best possible fixed rate across all
hop distances that we tested. 142

7.1 Number of nodes deployed and number of nodes accessible. About
one month after the first set of batteries depleted, the second set of
batteries was deployed with a few more nodes. 147

7.2 Time and Frequency Plots of Transverse (Horizontal) Sensor Located
at Quarter span, 365m North of the South Tower. The data matches
the fundamental frequency of the bridge in past studies [22]. 152

7.3 Transverse (Horizontal) Sensor, Mid-Span 153

7.4 The vertical modal properties match among simulation model, previous
study, and this study [22]. 154

7.5 Torsional modes also match [22]. 154

x

List of Tables

2.1 16 Operations of Sentri . 13

2.2 Comparison of the Two Accelerometers. G means the acceleration of
gravity. 15

2.3 Power Consumption in Various Operational Situations (9V input volt-
age). Idle is when both the sensor board and the mote are turned on,
but are not performing any operation. 16

3.1 Encoding time to produce all code words. Left column indicates how
many additional code words are produced in addition to 8 original
messages . 50

3.2 Decoding time of all 8 messages given how many code words are not
original messages . 50

3.3 Effect of loss rate on time to decode 8 messages 51

3.4 Given a threshold reliability requirement, what is the retransmis-
sion/redundancy combination that has the smallest overhead? 58

3.5 Decomposing causes of failures . 59

6.1 Terms used in the modeling of pipelining. 91

6.2 Typical values for each term in the deployment at the Golden Gate
Bridge. 96

6.3 Memory and code footprint for key Flush components compared with
the regular TinyOS distribution of these components (where applica-
ble). Flush increases RAM by 629 bytes and ROM by 6,058 bytes. . . 118

7.1 Causes and fractions of failures before software upgrade. A time syn-
chronization failure is the most common cause of a failure. 150

xi

7.2 Causes and fractions of failures after software upgrade. Again a time
synchronization failure is the most common cause of a failure. There
is no case of data corruption because upgraded software retransmits a
corrupted object. 150

xii

Acknowledgements

David Culler advised and guided me with enormous insight and passion that

allowed me to grow as a researcher. David taught me how to think of research

problems critically. He guided me to learn scientific approaches and methods in

solving problems. His insight often challenged my assumptions and designs, and led

to more compelling and general frameworks. He also dedicated significant passion

and patience to advise me and help crystallize my rough ideas. He was willing to

accompany me during deployments. When I was initially struggling with the language

barrier upon first arriving to Berkeley, he patiently tried to understand what I was

saying and helped me move on to a deeper discussion. David is a role model I will

always strive to follow in my research and life.

Professors Gregory Fenves, James Demmel and Steven Glaser always guided my

research towards the right direction with deep insights and warm encouragements.

Their dedicated passion for exploring and building hands-on deployments, is some-

thing I admire and wish to keep in my heart. I am fortunate to have received much

excellent advice from Professors Ion Stoica, Scott Shenker, and Anthony Joseph.

They gave me a wider point of view of wireless sensor networks and systems building

in general, which broadened my work and thought.

Shamim Pakzad wisely and patiently motivated and cheered me along through-

out this work. His strong intellect was critical in solving problems we encountered.

Shamim never lost his sense of humor, even when he was extremely exhausted after

climbing the Golden Gate Bridge countless times. He went through all difficulties

and excitement with me at the bridge, and those moments will never be forgotten in

my memory.

Rodrigo Fonseca has worked together with me in investigating the design space

of reliable transfer, and had a critical role in making the Flush happen. Rodrigo

xiii

sparked many brilliant ideas, and his fountain of ideas was never depleted. He was

very considerate in listening to my concerns confronted in research, and gently gave

warm cheers and original comments.

Jaein Jeong always listened to my worries on research and life, and always gave

kind advice. Prabal Dutta, Arsalan Tavakoli, and Phil Levis showed bright insights

and inspired me all throughout our many projects together. I owe sincere gratitude

to them. Jay Taneja generously read and gave great comments on my works.

I enjoyed meeting with people in the TinyOS/NEST/SNA teams as a colleague

and as a friend: Alec Woo, Rob Szewczyk, Kamin Whitehouse, Cory Sharp, Joe

Polastre, Jonathan Hui, Gilman Tolle, Fred Jiang, Jorge Ortiz, Cheng Tien Ee, and

Daekyeong Moon. Our discussions, lunches, and other meetings were a great source

of ideas and refinements for our work. I feel very lucky to have shared many wonderful

times with them.

In Intel Research at Berkeley, I had an exceptional opportunity to work with great

researchers: Kevin Fall, Phil Buonadonna, Wei Hong, and David Gay. I am grateful

to Tom Oberheim and Martin Turon for help on numerous occasions in the process

of designing, developing, and calibrating an accelerometer board.

I would like to thank the staff and management of the Golden Gate Bridge District,

in particular Dennis Mulligan and Jerry Kao, for their close cooperation in every step

of the project. I am especially thankful to Jorge Lee. Without his extraordinary help

the deployment at the Golden Gate Bridge would not have been possible.

This work was supported by the Defense Advanced Research Projects Agency

(grant F33615-01-C-1895), the National Science Foundation (grants EIA-0122599,

IIS-033017), the Department of Energy (grant DR-03-01), the Center for Information

Technology Research in the Interest of Society (CITRIS), Crossbow Technology Inc.,

Intel Corporation, and the Hewlett-Packard Company.

xiv

Chapter 1

Introduction

1.1 Problem Statement

High Fidelity Sampling (HFS) represents a class of applications which requires

highly accurate capturing of physical phenomena. It necessitates high resilience to

noise, manufacturing variation and environmental changes. It also requires high sam-

pling frequency with low time uncertainty in the sampling time. In many examples of

HFS, highly time-synchronized sampling is required. HFS needs to scale to extreme

numbers. Triggering acquisition and the collection of data should be done reliably

without any loss of control or data. Structural Health Monitoring (SHM) is a con-

crete example of HFS, which is used as a research vehicle in this work. However, the

result of the work can be readily applicable to other applications in HFS, including

earthquake monitoring and machine monitoring.

Structural Health Monitoring (SHM) allows the estimation of the structural state

and detection of structural changes that might affect the performance of a struc-

ture. Two discriminating factors in SHM are the time-scale of the change (how

quickly the state changes) and the severity of the change. These factors represent

1

two major sources of system change: alarm warnings [87] (e.g. disaster notification

for earthquake, explosion, etc.) and continuous health monitoring (e.g. from ambient

vibrations, wind, etc.). The general approaches taken to SHM are either direct dam-

age detection (visual inspection, x-ray, etc.) or indirect damage detection (detecting

changes in structural properties or system behavior). This dissertation describes a

platform for indirect detection of structural state through the measurement and in-

terpretation of ambient vibrations and strong motion. The chosen test bed is the

Golden Gate Bridge in San Francisco Bay.

Performing SHM by the use of sensor networks is not a new concept [28, 66].

The traditional approach uses conventional piezoelectric accelerometers hard-wired

to data acquisition boards residing in a PC. The drawbacks of such a system include

(1) the high cost of installation and disturbance of the normal operation of the struc-

ture due to wires having to run all over the structure, (2) the high cost of equipment;

and (3) cost of maintenance. Compared to the conventional methods, Wireless Sen-

sor Networks (WSN) provide comparable functionality at a much lower cost, which

permits a higher spatial density of sensors. The prototype wireless system presented

in this work costs about $600 per node compared to thousands of dollars for a node

with the same functionalities in a traditional PC-based wired network. Compared to

the wired network, installation and maintenance are easy and inexpensive in a WSN,

and disruption of the operation of the structure is minimal.

This work has four main contributions to WSN for SHM and WSN in general:

• It identifies requirements to obtain data of sufficient quality to have real scien-

tific value to civil engineering researchers, and examines how to solve them.

• The system is scalable to a large number of nodes to allow dense sensor cov-

erage of real-world structures. For example, a long-lived 46-hop network was

implemented on the Golden Gate Bridge (Figure 1.1 and 1.2).

2

8 nodes
56 nodes

1125 ft 4200 ft

500 ft

246 ft

SF
(south)

Sausalito
(north)

Figure 1.1. The Golden Gate Bridge and layout of nodes on the bridge. To cover
this large bridge, a long linear topology needs to be used, bringing challenges to the
network.

• It addresses a myriad of problems encountered in a real deployment in difficult

conditions, rather than a simulation or laboratory test bed.

• It provides a new reliable data collection protocol, which is verified and improved

using lessons from the deployment.

A WSN for SHM was deployed on the Golden Gate Bridge (GGB), see Figure 1.1.

The 46-hop system consists of 64 nodes, which measure ambient vibrations with

an accuracy of 30µG. The ambient vibrations were sampled at 1kHz with a time

jitter less than 10µs. Figure 1.2 illustrates the bandwidth obtained by Straw, a new

reliable data collection component written for this installation. The system provided

high bandwidth data streaming of 441B/s from the 46th hop to the base station by

implementing pipelining. This 46-hop wireless sensor network is the largest number-

of-hop installation reported in the literature up to now. Modal properties also match

with the simulation model and the previous study.

This dissertation will explain how the system was designed and implemented to

achieve this successful deployment on the bridge, and also lessons learned. Especially

a reliable data collection will be introduced in detail, then improvements using expe-

riences at the bridge will be presented. The late part of the dissertation will present

an analysis of the collected acceleration data recorded along a linearly dense array.

3

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (

B
/s

)

Hop Count

Bandwidth versus Hop Count

Aug 1st
Aug 7th

Sep 20th

Figure 1.2. Bandwidth of Straw at the Golden Gate Bridge. It works over a 46-hop
network. To sustain high bandwidth over a long path, pipelining is used avoiding
interference.

4

1.2 Six Requirements of the Problem

Six major requirements of SHM on WSN are identified here:

1. The data acquisition system had to be able to detect signals with peak am-

plitudes as low as 500µG [22]. The installation had to minimize sources of

distortion such as the noise floor of the system (including accelerometer, am-

plifier, analog to digital converter, etc.), installation error, and temperature

variation. We proposed a solution in Section 2.4.

2. Because of structural interest in local modes of vibration, a sampling rate of

1kHz was required as the target rate. This rate and the need for 16-bit digi-

tization accuracy require low jitter, i.e. low time uncertainty of the sampling

intervals. A proposed solution is presented in Section 2.5.

3. Time synchronization in sampling through the bridge is required to perform

correlation analysis of the structural vibrations. This was particularly challeng-

ing due to the drift of independent clocks at each of the 64 nodes. An earlier

reported solution to the time synchronization problem is FTSP [61] with an

accuracy of 67µs over 11 hops.

4. The GGB installation required a large-scale multi-hop network due to the great

length of the main span and the fact that the aggregator station could only be

located in the base of the south tower. One existing solution to the collection

network is MintRoute [86].

5. Commands had to be reliably disseminated throughout the entire system so

that all parts of the network could start on command, and insure against lost

data or a blockage of hopping. Repeated Broadcast [4] can be one solution.

6. Data must be transferred reliably. Vibration data, in this case, is too valuable to

5

be lost to a communication error. A solution (Straw) is proposed in Section 3.10,

and an improvement (Flush) is presented in Chapter 6.

Requirement 4 is connectivity at the network layer, and requirement 6 is relia-

bility at the transport layer. Existing works are used for requirements 3, 4, and 5:

FTSP [61] for time synchronization, MintRoute [86] for multi-hop collection routing,

and repeated Broadcast [4] for reliable command dissemination. The remaining three

requirements are solved in this work: a data acquisition system, high-frequency sam-

pling with low time uncertainty, and reliable data collection. As will be seen in the

next section, previous works satisfy some but not all of the requirements.

1.3 Background

This section introduces previous works which provide a background for this work.

At first, WSN applications will be presented and categorized. Then previous works

in WSN for SHM are introduced, and it is discussed why they fail to meet all of the

requirements of SHM, which are introduced in the previous section.

1.3.1 Wireless Sensor Networks Applications

WSN applications can be divided into two categories. The first category is envi-

ronmental monitoring. It monitors environmental data (e.g. temperature, humidity)

over a long period of time. For this category of problem the focus is on networks

with a low duty-cycle and low power consumption. Great Duck Island [59] and the

Redwood forest deployment [81] are examples of this category. The second cate-

gory of WSN applications consists of applications that require an identification of

a mechanical system through a measured system response. This category requires

highly sensitive sensors, high frequency sampling, highly correlated sampling, and so

6

on. The requirements can be characterized as High Fidelity Sampling (HFS). Health

monitoring of mechanical machines [51], condition-based monitoring, volcano moni-

toring [84], earthquake monitoring [37], and structural health monitoring [68] belong

to this category. The focus of this work is to address the requirements of the latter

category. As a concrete research vehicle of this abstract category of applications,

Structural Health Monitoring (SHM) is used. However, findings from this example

application are readily applicable to other applications in the category without much

difficulty, because they have very similar requirements.

1.3.2 Wireless Sensor Networks for Structural Health Mon-

itoring

Previous works on using WSN in SHM can be classified mainly into two ap-

proaches. The first approach is oriented from the research of structural analysis. The

second approach is rooted from the research of computer science.

Examples of the first approach include [27, 32, 52, 72]. MEMS accelerometers are

used to sample vibration. They all support highly accurate data acquisition systems

and high frequency sampling, satisfying requirements 1 and 2 in Section 1.2. RF radios

are used for wireless communication, and microcontrollers drive sensors and radios.

However, those early efforts use custom radios, can not scale to multiple nodes over

a multi-hop network, and they provide no reliable communication. [46] uses Mica2

and TinyOS. It supports multi-hop network, however there is no provision for time

synchronization, which is necessary for time-related sampling of the entire structure.

It is unclear whether reliable communication is provided. [57] satisfies requirements

1, 2, 3, 5, and 6. It produces data meaningful for structural analysis. However, the

problem is solved in the context of a single hop network and they does not scale to

7

a long enough multi-hop network needed to cover a large structure. Many previous

works have not been implemented and tested in a harsh real-life environment.

As examples of the second approach, Wisden [87] and Tenet [38] satisfy many re-

quirements. They provide reliable data collection over a multi-hop network. However,

Wisden can sample only up to 160Hz, and Tenet demonstrated only 50Hz sampling,

which is far below the threshold needed for structural health monitoring. Wisden and

Tenet have not been analyzed for sampling jitter, which is needed in determining to

what degree the resulting data has confidence for analysis in civil engineering. They

are tested only in a small-scale indoor test bed. The most critical pitfall of these

two systems is that they do not produce time-synchronized data. Wisden has a time

stamp on each sample. However, the input for basic modal property analysis is a

matrix of time-synchronized samples from multiple nodes [56]. This requirement is

not met by Wisden and Tenet, and the data produced by them has no value for a

meaningful structural analysis.

1.4 Roadmap

Chapter 2 shows overall architecture of the system: how the components meet

requirements and fit together. Then, the data acquisition system is introduced, which

is a solution to the first requirement this work proposed. This chapter also explains

how high-frequency sampling is achieved with low time uncertainty, which is the

second requirement addressed here.

For the last requirement this work handles (reliable data collection), Chapter 3

investigates the design space of reliable transfer, and proposes an initial solution:

Straw. Straw uses selective NACKs to provide reliability and relies on rate control

to exploit channel capacity.

8

All solutions are integrated as one system, and the system is deployed on the

Golden Gate Bridge (Chapter 4). Challenges and details of the deployment are de-

scribed in this chapter.

Chapter 5 shows how the network performed on the Golden Gate Bridge. Data

is collected reliably and with stability. With pipelining, bandwidth does not drop

significantly even when the length of a path exceeds 5 hops.

Based on experiences at the bridge, Chapter 6 presents an improved reliable data

collection protocol: Flush. Interference is measured continuously, and the rate is

optimized for a given channel capacity dynamically. Compared to a fixed rate used in

Straw, Flush achieves the same or better bandwidth, while providing more stability

and adaptivity.

Data from a large-scale real-world deployment at the Golden Gate Bridge is pre-

sented in Chapter 7, which was not possible in previous works with WSN. The data

matches with a simulation model and previous study using a wired system.

In Chapter 8, remaining issues, newly found challenges and their implications are

discussed. For example, it is found that heavy traffic disturbs the estimation of a link

quality, and there is not a solution to this issue yet.

Chapter 9 concludes revisiting contributions of the work.

9

Chapter 2

Overall Architecture

In this chapter, our overall system is introduced at a high level. Also, it explains

how all software components fit together. Then, our application layer toolkit is in-

troduced. In Section 2.4, a front-end data acquisition system is introduced, which

can capture and process a minute signal with very high sensitivity. Our system sam-

ples a signal at a high frequency, at the same time satisfying a jitter requirement.

Section 2.5 explains how it is achieved. The last section introduces components for

time synchronization, multi-hop routing, and reliable data dissemination, all three of

which are taken from existing works.

2.1 System Architecture

The wireless network is composed of multiple nodes and a base station, see Fig-

ure 2.1. A node consists of a mote and a sensor board. The node measures vibration

at two different orders of dynamic bandwidth with the data communicated back to

the base station through wireless communication. The base station is a server provid-

ing more computational power and larger storage than a mote node, and possibly a

10

Base Station

Internet

Figure 2.1. High-Level Overview of the System

connection to the Internet. In the GGB deployment a laptop is used as a base station.

The software architecture of the GGB nodes uses new components integrated into the

TinyOS [41] infrastructure to satisfy the six requirements discussed in Section 1.2.

2.2 Composition of Software Components

Figure 2.2 illustrated the overall software structure. At the bottom, there is a

best-effort single-hop communication layer [71]. Above this layer lies a dissemination

layer (Broadcast [4]), a collection layer (MintRoute [86]), and a time synchronization

(FTSP [61]). All three components will be introduced in Section 2.6. Our new reliable

data collection layer, Straw, lies above Broadcast and MintRoute. Low-level Flash

is another bottom component. Flash has a high latency of writing. BufferedLog [5]

uses a double buffer to overcome the latency, and supports high frequency sampling

with light-weight logging. At the top, there is an application layer, Sentri. Sentri

combines and drives all the underlying components. Detailed introduction of Sentri

follows in the next section.

11

Best-effort Single-hop Communication

Broadcast MintRoute
FTSP

Low-level FLASH

BufferedLog
Straw

Sentri (Application Layer)

Figure 2.2. Overall Software Architecture

2.3 Sentri: Structural Health Monitoring Toolkit

Application

Structural hEalth moNiToRing toolkIt (Sentri) is an application layer program

which drives all the components. Instead of a stand-alone program, Sentri is struc-

tured like an RPC server: for every operation an operation packet is sent from the

base station to a node. In SHM, motes are heavily used and heavy traffic makes

network bandwidth the bottleneck of the operation; therefore, additional processing

and traffic overhead must be avoided. However, since the project is in the research

stage in both computer science and civil engineering and the operation sequences and

parameters were changing frequently, the operational model was necessary. It allows

us to figure out precisely which parts of the signals are the most valuable, and to

fine-tune the system parameters in an interactive process.

This process was first tested and verified through a trial deployment of several

nodes on a model steel bridge at the campus and then again on a footbridge over

I-80 [68], both of which were used to determine system settings. Sentri provides 16

operations and each operation is contained in a single packet, see Table 2.1. More

details of Sentri operations can be found at [2]. Sentri at a server PC-side gives

diverse commands to users. One Sentri command is composed of one or more of

12

Table 2.1. 16 Operations of Sentri
Operation Explanation
LED ON Turn on red LED
LED OFF Turn off red LED
PING NODE Ping a node

FIND NODE
Same as PING NODE, except that it can be specified
which nodes should not reply

RESET Reset all parameters
ERASE FLASH Erase Flash
START SENSING Ask a node to start sampling at a specified time
READ PROFILE1 Query the first half of meta data of data in Flash
READ PROFILE2 Since meta data is large, it fits into two packets
TIMESYNC INFO Query information of the time synchronization component
NETWORK INFO Query information of the routing layer
FIX ROUTE Freeze a routing tree
RELEASE ROUTE Thaw a routing tree
TIMESYNC ON Turn on time synchronization
TIMESYNC OFF Turn off time synchronization
FOR DEBUG Internally used for debugging

Sentri operations. In response to one user command, a sequence of Sentri operations

are sent in operation packets by the base station. This model provides a great deal of

flexibility. Depending on changes in usage, a user command can be reconfigured with

a different sequence of operations. [15] shows a manual for Sentri user commands.

2.4 Data Acquisition System (Requirement 1)

Figure 2.3 shows an overview of the hardware as a block diagram. The data

acquisition system performs three primary functions: sensing, signal processing and

communication. Because of extensive experience with the product, Crossbow Mi-

caZ [20] motes were used for control and communications. The analog signals output

by the low-noise accelerometers pass through low-pass antialiasing filters on the way

to a 16-bit analog-to-digital converter before the data is logged into the flash of the

mote and then wirelessly transmitted.

13

ADXL 202E ADCLow-pass Filter

ADXL 202E ADCLow-pass Filter

SD 1221L ADCLow-pass Filter

SD 1221L ADCLow-pass Filter

Thermometer

MCU

Accelerometer Board

Antenna

Flash

Radio

Mote

Figure 2.3. Hardware Block Diagram. Details of two accelerometers (ADXL 202E
and SD 1221L) are in Table 2.2. A thermometer is used for temperature calibration.

2.4.1 Accelerometer Sensor Board

A new accelerometer board [20], shown in Figure 2.4, was designed for SHM

applications. The board has four independent accelerometer channels monitoring

two directions (vertical and transverse), and a thermometer to measure accelerometer

temperature for compensation purposes. Low-amplitude ambient vibrations, due to

wind loading and traffic, are resolved by a two-dimensional SiliconDesigns 1221L

accelerometer. A low-cost ADXL202E two-dimensional accelerometer was used to

monitor stronger shaking as might be expected from earthquake excitation. Because

input battery power can vary between 6V and 12V, the sensor board contains a

voltage regulator to provide a constant 3V output for the mote and a constant 5V

output for the ratiometric accelerometers. Table 2.2 presents the characteristics of the

two accelerometers used, and associated analog circuits. Two simple filters are used

on the board. One is a hardware-implemented single-pole 6db low-pass filter with a

cutoff frequency of 25Hz. Since the on-board ADC quantizes much faster than the

target sampling frequency, this extra capacity allows on-the-fly digital filtering after

14

Thermometer ADXL 202E

Silicon Designs 1221L

Mote

Figure 2.4. Accelerometer Board. ADXL 202E is a two axis accelerometer in a single
chip. Either Mica2 or MicaZ can be used as a mote.

Table 2.2. Comparison of the Two Accelerometers. G means the acceleration of
gravity.

ADXL Silicon Designs
202E 1221L

Type MEMS MEMS
Range of System -2G to 2G -0.1G to 0.1G

System noise floor 200(µG/
√

Hz) 32(µG/
√

Hz)
Price $10 $150

a factor of Sover = 10 oversampling, and then averages the samples before logging.

Assuming a Gaussian distribution for the noise, oversampling by a factor of Sover = 10

reduces the noise level by a factor of
√

Sover ' 3.16.

Another key hardware consideration in WSN is power consumption. The high

duty-cycle required by vibration SHM produces data sets that are between two to

four orders of magnitude larger than that of an environmental monitoring applica-

tion. In contrast to environmental monitoring, this application requires the radio to

operate most of time due to a large traffic volume. The gain from duty-cycling does

15

Table 2.3. Power Consumption in Various Operational Situations (9V input voltage).
Idle is when both the sensor board and the mote are turned on, but are not performing
any operation.

Situation Consumption (mW)
Board Only 240.3
Mote Only 117.9

Idle 358.2
One LED On 383.4
Erasing Flash 672.3

Sampling 358.2
Transferring Data 388.8

not provide compelling savings compared to its complexity and overhead, so duty-

cycling is not used. The higher data volume requires either sophisticated on-board

computation with a distributed system identification algorithm (which is expensive in

terms of energy), or transmitting all the data to a base station for further processing

(which is even more power-expensive). In the Golden Gate Bridge deployment, the

latter option is chosen. The use of batteries or other renewable sources of energy

is justified for quick and temporary applications, or where a more permanent power

source cannot be provided. An analysis of the power consumption of the boards was

performed to determine the size of the batteries. In the deployment at the Golden

Gate Bridge, 4 lantern batteries are used for each node. Table 2.3 shows the actual

power consumption profile of a complete sensor unit, from which it is seen that the

sensor board by itself consumes about twice the energy of the mote. The board design

had a single power path for the mote, sensors, and ADC. Significantly lower energy

consumption could be realized if only the mote is directly connected to the battery,

so that all other components can be turned off when the unit is not collecting data.

16

2.4.2 Calibration

The static noise floor of our accelerometer devices was quantified in the Berkeley

Seismological Laboratory underground seismometer calibration vault. Testing showed

that the SiliconDesigns 1221L devices have a noise floor of 32µG/
√

Hz, which is small

enough to allow resolution of the ambient vibrations of most structural systems. Ex-

amples of similar measurement systems in civil infrastructures can be found in [22].

Shaking table tests with patterns ranging from 0.5Hz to 8Hz were performed to study

the dynamic behavior of the accelerometers. The accelerometers perform well within

the expected dynamic range [68]. Each accelerometer channel was range-calibrated

using a tilt test process. The boards were attached to a tilting machine [21], which

has a rotational accuracy of 0.001 degree, and the digital output correlated to each

angle tested. All four channels showed linear response, and the testing provided offset

and scale factors. Prototype accelerometers were also tested in an oven to study the

response of the devices to temperature. The tests showed that not only were the

accelerometer chips sensitive to temperature, but also they are sensitive to the rate

of temperature change as well demonstrating hysteretic response to external temper-

ature fluctuations [47]. Calibration of each channel with respect to temperature is

necessary for accurate results, especially when the temperature varies throughout the

network.

2.5 High-frequency Sampling with Low Time Un-

certainty (Requirement 2)

The fundamental frequencies of most civil structures lie below 10Hz. Since the

noise level is usually high in uncontrolled structural environments, over-sampling

is generally performed to improve the signal-to-noise ratio by reducing the relative

17

noise energy. A sampling rate of 200Hz was chosen as the target logged sampling rate

for this study [68]. In order to allow on-the-fly digital filtering (smoothing), it was

decided to digitize by a factor of five faster to a target-sampling rate of 1kHz. At this

relatively high sampling rate, it is essential to cap the time uncertainty – jitter – in

order to guarantee time synchronization in the node and across the network.

There are two primary sources for jitter: temporal jitter and spatial jitter (see

Figure 2.5). Temporal jitter takes place inside a node because the software system

cannot keep up with aggressive sampling and logging. Spatial jitter occurs between

different nodes because of variation in mote oscillator crystals and imperfect time

synchronization; internal clocks of different nodes in the network remain slightly

untuned with each other even after the software time-sync component declares them

to be in sync. For a target-sampling rate of 200Hz, a total jitter of 250µs or 5% of

the sampling interval was selected as the cap to total jitter. A study of the time

synchronization component FTSP showed that it caps jitter at 67µs over a fifty-nine

node eleven-hop network [61], so spatial jitter in this case is within the tolerance

range. Temporal jitter can become larger than spatial jitter during periods of high-

speed data collection, so this was studied in detail. In particular, we explored and

modeled temporal jitter, and show that our model matches measured data.

2.5.1 Temporal Jitter Analysis

A statistical model may not catch every minute detail of the temporal jitter pro-

cess, but it will provide understanding of the distribution of temporal jitter. The

timer event for sampling ticks at uniform intervals is graphically presented in the up-

per portion of Figure 2.6. When the timer event fires, the CPU can be in the middle

of servicing other tasks, such as writing data from RAM to flash. When the CPU

18

Node 1

Node 2

Node 3

Spatial jitter

Temporal jitter

Time

Figure 2.5. Sources of Jitter. Temporal jitter takes place inside a node because the
software system cannot keep up with aggressive sampling and logging. Spatial jitter
occurs between different nodes because of variation in mote oscillator crystals and
imperfect time synchronization. Both temporal jitter and spatial jitter should be
within a threshold for the data to have scientific value.

Sampling

Other job
Non-preemptible portion
(atomic section)

Preemptible task portion

Figure 2.6. Causes of Temporal Jitter. The atomic section blocks and delays the task
of sampling.

19

C0 C0 C0 WC+Ti

Jitter Jitter Jitter

Probability Probability Probability

Pi/Ti

C+Ti C+Ti

Figure 2.7. (Left) One Atomic Section, (Middle) Multiple Atomic Sections, (Right)
Multiple Atomic Sections with CPU Sleep

is servicing an atomic section, the timer event is delayed, shown in the lower part of

Figure 2.6.

Let N be the number of atomic sections and C be the context switch time when

a timer event occurs while the CPU is executing a preemptible section. For modeling

purposes, it is assumed that C is constant regardless of the code running. Furthermore

let Ti be the length of atomic section i, Pi be the probability of atomic section i

running on the CPU when a timer event occurs and X(i) be a random variable which

is the remaining execution time of atomic section i running on the CPU when a timer

event happens. It is assumed that X(i) is uniformly distributed in [0, Ti]. First,

assume N = 1. The left graph in Figure 2.7 shows the distribution of jitter. The

first peak at 0 indicates the case where no job is running on the CPU when a timer

event occurs. The peak at C belongs to the case where preemptible code is running

when the timer event occurs. The constant portion above C is the case where an

atomic section i is running on the CPU when a timer event occurs. The middle graph

20

of Figure 2.7 shows the general case where N > 1. The right graph of Figure 2.7

incorporates the effect of CPU sleep; the CPU goes into sleep mode when no job is

running. Let W be the wakeup time; then the peak at 0 moves to W . In fact the

entire graph can be moved to the left by C, because consistent jitter of C can be

removed.

2.5.2 Temporal Jitter Control

For high-frequency timer events, MicroTimer [1] is used instead of the Timer

component [6]. The timer component of TinyOS can only trigger at 200Hz. While

MicroTimer supports only a single trigger, it can trigger at the rate of at least 10kHz.

The BufferedLog component [5] is used for light-weight flash writing at high frequency.

It is clear from the jitter analysis in the previous subsection that the worst case of

jitter is determined by the longest atomic section which can run on the CPU when

the timer event occurs. This implies that the best way to reduce temporal jitter is to

eliminate any chance that an unnecessary component’s atomic section is running on

the CPU by turning off every component except the flash during sampling.

A jitter test was performed by turning off all unnecessary components on the

CPU. Figure 2.8 shows the time series of the jitter test. A 5µs jitter means the data

is sampled 5µs later than it should be. Two sections are evident in these time series:

a section where there is a significant variation in when the data is written (noisy)

followed by a section when there is little variation (quiet). The noisy section is a

result of writing the buffer to flash memory as a background task. The quiet sections

are when sampling occurs without the interference of writing to the flash memory.

The same test was performed for sampling rates of 1kHz, 2kHz, and 6.67kHz, with

the jitter making up a higher proportion of the read cycle. At a 6.67kHz sampling

rate, flash memory write affected most of the sampling period; this can be explained

21

450 500 550
-1

0

1

2

3

4

5

6

7

8

9

10

Sample Number

Ji
tte

r (
μ s

)

Writing buffer
to Flash

Only Sampling

Figure 2.8. Time Series of Jitter at 5kHz Sampling Rate. Writing to flash interferes
with the sampling.

22

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jitter (μs)

Fr
ac

tio
n

Immediate Context
Switching

Wakeup from Sleep

Context Switching after
Finishing Atomic Section

Figure 2.9. Histogram of Jitter at 5kHz Sampling Rate. Long and thin tail indicates
that most samples experience small jitter, however a small number of samples still
experience long jitter.

by the overhead of sampling itself. During the quiet sampling sections of the time-

history plot, there is a constant delay for every sample. This delay is the time required

to wake up the CPU between samples. When the CPU is idle, it enters a sleeping

mode, and it takes five clock cycles to recover, including a function call to record the

time, which adds to 625ns for the Mica2 and MicaZ. Figure 2.9 shows a histogram

of sampling time uncertainty. There is an error peak at 625ns, which is wakeup time

W , and another near 0s due to immediate context switching. The long but small

tail shows that some sampling has a large time uncertainty. This result from the

real experiment agrees with the theoretical model of the previous subsection, with

temporal jitter values limited to about 10µs, which is smaller than the target value

of 250µs.

23

2.6 Software Components (Requirements 3, 4, and

5)

As discussed in Section 1.2, three out of six requirements are handled by existing

works. In this section, those existing software components will be introduced.

For time synchronization, there are a few existing works (e.g. RBS [31], TPSN [34],

FTSP [61]). In this work, the flooding time synchronization protocol (FTSP) [61] is

used, because it provides the smallest error and is proven in a real application [76]. In

FTSP, each node sends a packet with a time stamp. A receiver looks at the time stamp

and adjusts its own clock to be in sync with the received time stamp. At a sender, a

time stamp is put on a packet at a MAC layer after it obtains access to a channel. This

reduces uncertainty in the time of flight by removing MAC delay. The packet exchange

process repeats continuously to overcome clock drift due to variations of crystals.

However, a receiver adjusts its clock only when the received packet has a smaller root

ID and a larger sequence number. This guarantees all nodes eventually synchronize to

a single synchronization root, and keeps the clock updated continuously. In multi-hop

time synchronization, multiple packets from multiple senders may not match exactly,

so a linear regression is used.

There are diverse multi-hop routing protocols (e.g. BVR [33], VRR [26],

CLDP [49], MintRoute [86]). Command dissemination and data collection uses a

routing protocol. Any-to-any routing provides an efficient command dissemination

but has a higher overall cost. When collection routing is used, which can only de-

liver a packet from nodes to a single sink, data collection overhead is small. However

command dissemination has to rely on flooding. Since command dissemination is not

a frequent event (which is proven to be true by the data from the real deployment,

see Section 5.2), a collection routing layer can reduce the total cost, and is used in

24

this work. MintRoute [86] is used because it is the most widely used and the most

extensively proven in the field. MintRoute forms a tree rooted at a sink. To form

a tree, each node broadcasts the expected cost to deliver a packet to the sink. At

the same time, each node listens for candidates for a parent, and chooses a node

with the least cost, which is the sum of the cost from the candidate and the cost of

a link to that candidate. This process repeats continuously to adapt to a changing

environment. Packets are forwarded along a branch in a tree toward a root, which is

the sink.

Deluge [43] and Drip [80] are examples of reliable data dissemination. Deluge is

designed for disseminating a large object, and therefore is not efficient for disseminat-

ing a small command packet. A low latency dissemination service is required so that

the commands are delivered in a timely manner, therefore Broadcast [4] was used in

place of Drip [80]. Drip provides dissemination service with eventual reliability but

has long latency. Even though Broadcast provides unreliable dissemination service,

with repeated broadcast 100% eventual reliability can be achieved in practice.

25

Chapter 3

Design Space of Reliable Transfer

(Requirement 6)

Maintaining reliable communications over an extended path (e.g. 46 hops in the

Golden Gate Bridge) is in itself a challenging problem due to the large round trip time

and a high loss rate. In SHM applications, an added imperative is that no data can be

lost in the system since these events happen rarely and cannot be duplicated for unique

events such as an earthquake. The goal is to have reliable and lossless communications

over a large network with minimal overhead for other network components. The two

principal aspects of such a protocol are channel capacity and scalability over a large-

scale multi-hop network. It is also important to minimize usage of network resources,

because wireless sensor nodes are limited in computational power, memory space, and

energy.

In this chapter, design space of reliable transfer will be examined, and design

options will be evaluated. At the end, our initial solution to this problem, Straw, is

presented. Experiences with Straw at the Golden Gate Bridge show that a pessimistic

26

static rate underutilizes channel capacity (Chapter 5). To overcome this pitfall, in

Chapter 6, we will present a reliable data collection service, Flush.

Many applications in Wireless Sensor Networks, including structure monitoring,

require collecting all data without loss from nodes. End-to-end retransmissions, such

as TCP/IP uses in the Internet for reliable transport, can become very inefficient in

Wireless Sensor Networks, since wireless communication and constrained resources

pose new challenges including interference and a limited buffer space. We look at

factors affecting reliability and search for efficient combinations of the possible op-

tions. Information redundancy, like retransmission and erasure code, can be used.

Route fixing (dynamic rerouting), which tries an alternative next hop after some fail-

ures, also reduces packet loss. We implemented and evaluated these options on a real

testbed of Berkeley Mica2Dot motes. Our experimental results show that each option

overcomes different kinds of failures. Link-level retransmission is efficient but limited

in achieving reliability. Erasure code enables very high reliability by tolerating packet

losses at a prepaid static cost. Route fixing responds to link failures quickly. Previous

work had found it difficult to increase reliability past a certain threshold. We show

that the right combination of primitives can yield more than 99% reliability with low

overhead.

3.1 Three Options for Reliable Transfer

Challenges to achieving reliability on Wireless Sensor Networks can be divided

into three main categories. The first are problems related to wireless communica-

tion [86, 89]. The asymmetry of links makes link quality estimation hard. Correlated

losses, due to obstacles, interference, and highly correlated traffic patterns can lead

to consecutive losses, decreasing the effectiveness of erasure code as we will see later.

27

Weak correlation between quality and distance, hidden terminal problems, and dy-

namic change of connectivity complicates the situation further [69].

The second sort of problems comes from the constrained resources of Wireless

Sensor Network motes. A mote is often battery powered, so it has a limited power

source. Not to deplete energy too quickly, an algorithm needs to be computationally

inexpensive. A mote also has small computational power and memory space. Again,

a computationally expensive algorithm cannot be run on a mote. If an algorithm

requires large memory space, the memory footprint will not fit into a mote. Further-

more, its communication bandwidth is narrow. Therefore the algorithms running on

motes should limit traffic generation.

Finally, from a software engineering standpoint, diverse routing layers (e.g.

BVR [33], VRR [26], CLDP [49], MintRout [86]) add more challenges. Since motes

are resource constrained, applications tend to make heavy use of customization and

cross-layer optimizations [53]. Therefore, there are different routing layers customized

for specific purposes: even if we can use a general purpose, point-to-point routing for

dissemination of information or collection of data, this approach is very inefficient for

some specific cases. For collecting data (convergence routing), each node only needs

to keep track of which nodes are candidates for its parent. This reduces the burden

of keeping additional information to support routing to any node. Dissemination

of information, such as code image distribution, is similar to multicast (divergence

routing). In this case, we can benefit from the broadcast nature of wireless commu-

nication. By injecting one packet into the channel, all neighboring nodes can hear

the packet. Compared to sending packets to each single receiver, this can save a huge

effort.

There are three main routing categories: point-to-point routing, convergence rout-

ing, and divergence routing. One transport layer may not work for all three cases well.

28

But it is not a good idea to keep three separate versions of reliable transfer either.

At least it will be desirable to share some components if possible, regardless of loca-

tion in the network stack. Ultimately, we seek to find common reliability primitives

or principles that can be used even in different routing layers. In this chapter, we

examine diverse options for improving reliability over multiple hops, focusing mainly

on point-to-point routing. However, the study should be applicable to other routing

patterns without significant difficulty. One possible drawback for collection routing is

that redundancy can decrease bandwidth. Since the root is a bottleneck in collection

routing, when a channel at the root is fully utilized, added redundancy will reduce

effective goodput. First of all, it is worthwhile looking at fundamental factors that

determine reliability. Then we look at possible options which improve each factor.

Let us simplistically look at the following equation

number of packets received = Psuccess × number of packets sent

The primary goal is to increase ‘number of packets received’ sufficiently so that we can

get all data, at the same time making the delivered set as close as what we want as the

secondary goal. Even though it is also important which packets are received, as we will

see later, the basic limitation is delivering a sufficient amount of packets. This in turn

amounts to increasing either ‘number of packets sent’ or increasing the probability

to get through ‘Psuccess’. Let us take a look at diverse options to increase reliability:

end-to-end retransmission, link-level retransmission, erasure code, thick paths, and

alternative routes, a subset of which are further examined later. Let us first see options

where adding redundancy to information increases the number of packets sent.

One option is retransmission. End-to-end retransmission is used in TCP on the

Internet [45]. The cost of this option is that when a packet is lost, it is retransmitted

from end to end. The retransmission increases the latency of a data transfer. This

29

option overcomes random losses and a transient link failure. However, when the link

failure is prolonged, this option cannot recover losses efficiently.

A link-level retransmission may be used on intermediate links where loss rate is

high in wireless communication. Cost of link-level retransmission is very low; it is the

minimum of an effort required to recover a loss. However, this option can survive only

random losses. For example, a transient link failure, if longer than the retransmission

trial period, cannot be overcome by this option.

Adding redundant data is also an option. Sending an additional parity packet for

some number of previous packets is a good example. An erasure code can be thought

as a generalization of a parity code. Rather than sending one additional packet, an

erasure code can send multiple additional packets. In a parity packet case, any M

out of M + 1 packets will reconstruct original M data. Likewise, an erasure code

enables a reconstruction of M original data packets if any M out of M + R packets

are received. In Figure 3.1, S1 is sending data with an erasure code. As a cost,

M+R
M

times more packets need be sent. Random losses and transient link failures can

be survived, since this option can recover from several packet losses. However, long

correlated losses are problematic, as will be discussed later.

Alternatively we can also exploit spatial redundancy along the path. As S2 in

Figure 3.1, a ‘thick path’ can be used as in [60]. Every node within the nearby area

along the path will participate in transferring data. This method adds in-network data

redundancy. The number of messages injected to a network increases dramatically

by a factor of the width of a path. However, the wide range of a failure, even a

permanent link failure, can be survived without increasing the latency unless there is

a network outage over a wide area.

In general, we can provide redundancy where losses occur. Increasing the proba-

bility of successful delivery and changing the loss distribution can alleviate problems

30

S1

S2

S3

D2

D3

D1

Figure 3.1. Possible options to achieve reliability. S1 uses erasure code producing
additional code words, S2 uses thick (multiple) path which is not examined in this
work, and S3 does route fixing, finding alternative for the next hop when stuck.

which are hard to overcome by redundancy (number of packets sent) alone. For

example, link failures in a certain region cannot be handled by redundancy in a short

time frame, if all redundant packets go through that area. Let us assume Psuccess is

not randomly distributed, which is also what we are trying to change. An erasure

code can survive up to R losses. When consecutive R+1 or more packets are lost, an

erasure code is unable to reconstruct the original data. This phenomenon happens in

wireless communication. For example, after a link failure, it takes time for the routing

table to be updated. Until then, all packets sent to that link will fail, introducing

consecutive failures.

In the situation above, we can quickly try an alternative next hop. This is shown

as S3 in Figure 3.1. The cost is low since packets are sent to an alternative next hop

only when needed. However, alternative next hops need be identified and continuously

updated. Correlated losses and link failures can be overcome by this option.

31

In this chapter, after an introduction of related works in Section 3.2, we look

at link-level retransmissions (Section 3.3), erasure code (Section 3.4, 3.5), and alter-

native routes (Section 3.6). Other possible options like thick path and end-to-end

retransmission remain as future work. We examine several options on a real-world

testbed. We provide results in Section 3.7. After a discussion in Section 3.8, we then

see which options and which combinations thereof are good choices in Section 3.9.

Based on lessons, an initial reliable data collection protocol, Straw, is presented in

Section 3.10.

3.2 Related Work

There are many algorithms proposed and implemented for multi-hop communi-

cations in sensor networks (e.g. [33, 35, 43, 49, 54, 58, 86, 88]) , and as noted these

can be broadly divided into convergence, divergence, and point-to-point. Our work is

largely orthogonal to these routing implementations, as we examine techniques that

can be employed to varying degrees in most multihop routing schemes. However, we

show that it is a good feature of a routing algorithm to provide alternative next hops

towards a destination.

Previous work has been done in reliable transport for sensor networks. PSFQ [83]

examines the problem of retasking a sensor network (an example of divergence) re-

liably, and make use of hop by hop recovery with caching at intermediate nodes,

as opposed to end-to-end recovery. RMST [78] investigates through simulation the

tradeoff between having reliability implemented at the MAC, transport, and appli-

cation layers. Both works conclude that hop by hop recovery is very important for

achieving reliability and that end-to-end recovery is not adequate. They only consider

different retransmission/repair options and use simulated data. Our contribution to

their findings is the addition of the very effective options of erasure coding and al-

32

ternate routes for providing reliability, as well as examining the interaction of these

different mechanisms. We also use real implementation of the options on a testbed

of wireless motes, which allows us to see the effect of the radio environment on the

reliability.

There exist diverse algorithms for erasure coding which can be implemented in

either software or hardware [24, 74]. [74] exploits diverse optimizations such as ex-

tension fields, systematic code and an operation table, from which this work gained

many hints. It is an excellent introduction to Reed-Solomon codes, but focuses on

the implementation in desktop computers. We leverage many of its optimizations,

carefully choosing parameters suitable for very resource constrained WSNs. Rateless

codes [25, 62] is a class of erasure code in which an arbitrary number of code words

can be produced, and is optimized for delivery of very large amounts of data over

high-bandwidth, high-latency Internet links. These works are not optimized for sys-

tems with low capability: not much attention was paid to cases with extreme space

limitation. Work in this chapter focuses on optimization for nodes with very limited

resources.

3.3 Link-level Retransmissions (Option 1)

The loss rate on wireless links is much higher than that of wired links, and this

effect accumulates quickly as the number of hops increases. For example, let us assume

that loss rate is 10% per hop and uniformly distributed. After 15 hops loss rate

becomes 80%! If a message is lost at the nth hop, all previous n− 1 transfers become

wasted effort. To deliver the packet to nth hop again, we need n−1 additional transfers

if all n− 1 transfers succeed. With link-level retransmission, just one retransmission

can bring a packet to the same point. For efficient use of the wireless channel, link-

level retransmissions are a very attractive choice.

33

There are drawbacks to link-level retransmissions when used in some specific con-

texts. When retransmission is implemented with link-level acknowledgments, there

is a decrease in channel utilization. This has been measured to be as high as 20%

in TinyOS.1 This overhead can, however, be mitigated in some contexts by using

techniques such as passive acknowledgments, in which the next hop transmission is

interpreted as an acknowledgment. Another minor downside is that the intermediate

node needs to hold the packets in a buffer until it receives acknowledgment from the

next hop. Lastly, the delivery time depends on the number of retransmissions along

the route, so the end-to-end round trip time (RTT) can vary significantly. A large

variation in RTT makes an end-to-end retransmission inefficient. If there can be up

to N link-level retransmissions, RTT can be N times larger. To overcome the varia-

tion in RTT an (overestimated) upper bound needs to be used. The sender holds its

buffer for a longer time than necessary. Holding memory space for a long time is not

desirable in resource-constrained Wireless Sensor Networks.

3.4 Erasure Code (Option 2)

Another important mechanism we employ is erasure coding. It is a scheme with

which we can reconstruct m original messages by receiving any m out of n code words

(n > m). If n is sufficiently large compared to the loss rate, we can achieve high reli-

ability without retransmission. Figure 3.2 shows the high-level mechanism of erasure

code. We use a particular erasure coding algorithm, Reed-Solomon coding. Before

we explain the Reed-Solomon code, we first introduce linear codes and Vandermonde

matrices.

1The MAC layer in TinyOS waits 20% of a packet transmission time before considering the
transmission successful.

34

ChannelEncoding Decoding

NM N’ M
Figure 3.2. Mechanism of Erasure Code

35

3.4.1 Linear Code

For the encoding process, an encoding function C(X) is used, where X is a vector

of m messages. C(X) produces a vector of n code words (n > m). If the code has the

property that C(X)+C(Y) = C(X +Y), then it is called a linear code. Linear codes

can be represented by a matrix A, and encoding can be represented by a matrix-

vector multiplication: the code word vector Z for message vector X is simply AX.

Decoding entails finding X such that AX = Z, for a received code word vector Z,

i.e. finding the solution to the linear equation AX = Z. We can see that A should

have m linearly independent rows so that the linear equation has a unique solution,

which represents a unique message vector.

This code is very useful in practice, since encoding and decoding are computa-

tionally inexpensive, and this is especially so in resource-constrained Wireless Sensor

Networks.

3.4.2 Vandermonde Matrix

There is one more thing we need to look at before describing Reed-Solomon codes.

A Vandermonde matrix is a matrix with elements A(i, j) = xj−1
i , where each xi

is nonzero and distinct from each other, as shown in Figure 3.3. For an n by m

Vandermonde matrix (n > m), any set of m rows forms a non-singular matrix. For

whatever set with m rows we may choose, rows in the set are linearly independent.

Let’s define for future reference this property as Property V .

Definition (Property V): For an n by m (n > m) matrix A, if any set S of m

rows of A form non-singular matrix such that all rows in S are linearly independent,

then A is said to have Property V .

Vandermonde matrices have Property V . So we can see that in a linear equation

36



1 x1 x2
1 · · · xm−1

1

1 x2 x2
2 · · · xm−1

2

1 x3 x2
3 · · · xm−1

3

...
...

...
...

...
...

...
...

1 xn−1 x2
n−1 · · · xm−1

n−1

1 xn x2
n · · · xm−1

n


Figure 3.3. Vandermonde Matrix

AX = Z, where A is a Vandermonde matrix, any m rows and corresponding m

elements of Z form an m by m square matrix and a vector of size m, where the

matrix is non-singular. Then we can uniquely determine X. This is a key property

used in our implementation of the Reed-Solomon code.

3.4.3 Reed-Solomon Code

The basic idea of Reed-Solomon code is to produce n equations with m unknown

variables (n > m) such that with any m out of n equations, we can find those m

unknowns.

For some given data, let us break it down into m messages w0, w1, w2, . . . , wm−1,

and construct the polynomial P (X) using these messages as coefficients, such that

P (X) =
m−1∑
i=0

wix
i

We then evaluate this polynomial P (X) at n different points x1, x2, , xn.

P (x1), P (x2), ..., P (xn) can be represented as multiplication of a matrix and a

vector, as shown in Figure 3.4.

37



1 x1 · · · xm−1
1

1 x2 · · · xm−1
2

1 x3 · · · xm−1
3

...
...

...

...
...

...

1 xn−1 · · · xm−1
n−1

1 xn · · · xm−1
n





w0

w1

...

wm−1


=



p(x1)

p(x2)

p(x3)

...

...

p(xn−1)

p(xn)


Figure 3.4. High level diagram showing how Reed-Solomon code works

Here we can see that matrix A is a Vandermonde matrix, W is a vector of messages,

and code words are contained in a vector AW . If we have any m rows of A and their

corresponding P (X) values, we can obtain the vector W which contains coefficients

of the polynomial, which is again the original messages. Reed-Solomon codes can

also be used to correct errors. However, in the current implementation of TinyOS,

each packet has a CRC to detect bit errors. We can assume that there will be no

bit errors in packets containing code words, as these are dropped by the lower layers.

Therefore, error correction is not used in the implementation.

3.5 Modifications for Wireless Sensor Networks

(Option 2)

There are modifications needed to bring erasure codes to a real world implemen-

tation, especially in resource-constrained Wireless Sensor Networks (WSN). Several

methods used to improve efficiency in motes are heavily borrowed from [74]. We need

an efficient representation of the data and efficient and precise operations, including

vector arithmetic and matrix inversions. Fortunately, these can be made very efficient

38

with modular operations on finite fields and clever lookup tables, which we discuss

next.

3.5.1 Extension Fields

To make efficient use of bits in the packet, maintain precision, and reduce com-

putational effort, we do all calculations in an extension field with base 2. We briefly

introduce fields, and prime fields. A field [10] is any set of elements with two opera-

tions, addition and multiplication, that satisfies the field axioms – commutativity, as-

sociativity, distributivity, identity, and inverses – for both operations. Every nonzero

element has an inverse.

A field with a finite number of members is known as a finite field or Galois field.

For a given Galois field of size q, if q − 1 powers of an element x (x1, x2, . . . , xq−1)

produce all non-zero elements, that element x is called a generator of the given Galois

field.

A prime field is a Galois field whose elements are integers in [0, p − 1], where p

is prime. Addition and multiplication are normal integer addition and multiplication

with a modulo operation at the end. A prime field always have a generator. The size

of a prime field is p, and we need dlog2(p)e bits to represent all elements. Since p is

not a power of 2, there is waste in bit usage. For example, to represent a prime field

with prime 11, we need 4 bits with which 16 numbers can be represented.

An extension field is a Galois field whose elements are integers in [0, pr − 1].

Extension fields can be though as polynomials on prime field(p). Operations follow

the rules of polynomial operation with modulo operation at the end. A primitive

polynomial is the generator of extension field. Interestingly, this set with polynomial

operations stated above still satisfies the properties of fields. Moreover, by setting

39



1 0 · · · 0

0 1 · · · 0

...
...

...

0 0 · · · 1

1 xm+1 · · · xm−1
m+1

1 xm+2 · · · xm−1
m+2

...
...

...

1 xn · · · xm−1
n





w0

w1

...

wm−1


=



w0

w1

...

wm−1

p(xm+1)

p(xm+2)

...

p(xn)


Figure 3.5. Systematic code

p = 2, we can fully utilize bits in the message. Property V of Vandermonde matrices

still holds for prime field, and even for extension fields.

3.5.2 Systematic Code

When coding a message, if part of the encoded message is the original message

itself, it is possible to recover the original message without decoding, in the event

that this part arrives intact. Codes with this property are called systematic codes.

Another good property of Vandermonde matrices is that if any m rows of an n by m

(n > m) Vandermonde matrix are substituted with rows of the m by m identity

matrix, the new matrix still has Property V , even for extension fields. Figure 3.5

shows one possible case. This matrix will clearly produce a systematic code, as m of

the code words will be the original message. When we use a systematic code in this

way, at the encoding side, we don’t need any computation for the portion of code

words containing original messages. Systematic codes can give a benefit even when

we lose some packets. At the decoding side, the more of the original message part

40

we have, the closer the decoding matrix is to the identity matrix, and the quicker the

decoding process becomes.

3.5.3 Multiple Independent Code Words in a Packet

If one packet carries one code word, each code word will be very large. This

makes the implementation intractable since operations on such a large field require

huge space and time. One solution would be to use small messages and small code

words. Then, however, the payload in a packet gets too small. By putting multiple

independent code words into a packet, we can fully utilize payload space of a packet

without problems of large code words.

Imagine dividing one big block of data into t small pieces of data. Then each

piece of data is again divided into m messages, and encoded into n code words. We

have a total of tn code words to send. Pack the ith code words from each independent

k data into a single packet. We either get all the ith code words for k data, or we

get nothing. Any m packets will provide m code words for all k data, and we can

reconstruct the original k data. Since all k data have code words with same sequence

set, the decoding process is the same; the same decoding matrix can be used. This

further enhances decoding efficiency by amortizing the matrix inversion cost over k

data packets. Figure 3.6 shows an example of this. Here data is divided into 6 small

data chunks. Each data chunk is divided again to 4 messages. Messages from each

chunk are encoded to 7 code words independently. Then code words from all data

chunks with same sequence number are packed into the same packet.

The drawback of dividing packets into multiple code words is the constraints on

the number of messages and code words. The number of messages can not exceed the

number of bits used to represent the message. The number of code words should be

smaller than the size of the extension field. For example, if each code word is 8 bits

41

Encoding Unit

Figure 3.6. Divide packet into multiple independent code words

long, the maximum number of messages is limited to 8, and the maximum number of

code words is limited to 255.

3.5.4 Operation Table

Operations on extension fields are not simply addition and multiplication com-

bined with a modulo operation. They are polynomial operations with modulo. There-

fore, rather than performing complex computation on the fly, we use lookup tables.

Addition is simply the XOR of two numbers, and we don’t need a table. For multi-

plication and division, exponent and log values are computed and stored as tables.

Let the size of the extension field be q = pr, where p is prime. The extension field

has generators. Let one of them be α. For any generator α, when we keep multiplying

α, we can produce all q− 1 non-zero elements of the field. Then α is produced again,

42

restarting the cycle. That means that

αq mod q = α, αq−1 mod q = 1.

Let

x = αkx mod q, y = αky mod q.

Exponent and log are defined as follows:

exp(kx) = x, log(x) = kx where x, kx ∈ GF (pr).

Then multiplication of xy is

xy mod q = αkxαky mod q = αkx+ky mod q

= αkx+ky mod (q−1) mod q = exp(kx + ky mod (q − 1))

= exp((log(x) + log(y)) mod (q − 1)),

and the inverse of x is

1

x
= α−kx = αq−1−kx = exp(q − 1− kx)

= exp(q − 1− log(x)).

Therefore, multiplication involves two log table lookups, one addition, one modulo,

and one exponent table lookup. Inverse involves one log table lookup, one subtraction,

and one exponent table lookup, making these operations quite efficient. The size of

the tables is an important parameter when choosing the size of the extension field:

it is 2q. For current sensor networks, this means that extension fields of size 4 or 8

are good choices, but 16 is probably too large, as the lookup tables will require 64K

entries.

43

3.6 Alternative Routes (Option 3)

Adding an alternative route in the case of the failure of a given link is yet another

way to increase reliability. When a link between two nodes fails, the messages sent

through that link will successively be dropped, until the link estimation component

is triggered and selects a new route. This process, if prevalent, can eliminate the

benefits gained from erasure coding, since many consecutive losses will very likely be

above the tolerance of redundancy added by erasure code. In this case, it should be

clear that link-level retransmissions are of high temporal correlation, unless used for

a prohibitively long extent. A sensible strategy, then, is to detect the failure as soon

as possible, and send the packet to an alternative route, if possible. As a contrast

to previous options being oblivious to the source of losses, this approach avoids the

source of losses.

This points to the need of special support from the routing layer for enabling

alternative paths towards the destination. This flexibility ultimately depends on

the routing geometry of the routing algorithm [39]. For example, in the case of

aggregation, in which nodes route to a parent in the tree to the root, there may be

many nodes within communication range that decrease the distance to the root. In

geographic routing, there may also be more than one neighbor that allows progress

towards the destination. In our evaluation we use an implementation of Beacon Vector

Routing (BVR) [33]. We describe the algorithm in some detail in Section 3.7, but for

now it suffices to say that it allows flexibility in the selection of routes. We stress the

point that using alternative routes is not particular to BVR, and that our findings in

this regard can be reproduced in many other routing disciplines.

Sending packets in alternate routes can be seen as a type of retransmission to a

different node, and so in effect it increases the number of packets injected into the

network.

44

3.7 Evaluation

We implemented and evaluated the different reliability options described in pre-

vious sections – link level retransmissions, erasure coding, and alternative routes – in

the context of Beacon Vector Routing. We briefly introduce our experiment method-

ology, followed by our results.

3.7.1 Experiment Methodology

As hardware platforms for our evaluation, Mica2 [13] and Mica2Dot [14] are used.

In the evaluation of erasure code (Subsection 3.7.2), the Mica2 mote is used. For

comparing options (Subsection 3.7.3), the Mica2Dot testbed in Soda hall [16] is used.

TinyOS [42] is used as a software platform in all evaluations. TinyOS is a de facto

standard in Wireless Sensor Networks.

In our experimental evaluation, we use an implementation of Beacon Vector Rout-

ing, a point-to-point routing algorithm for wireless sensor networks. For the purpose

of our evaluation, it is not necessary to describe the routing algorithm in much detail,

except for its aspects that provide flexibility in selecting routes.

BVR assigns virtual coordinates to nodes, derived solely from the network con-

nectivity information. A subset of r nodes is selected as “beacons”, and these beacons

flood the network at least once, so that all nodes learn their distance to the set of

beacons. The beacons act as reference points for routing. A node p’s coordinates are

then given by P(p) = (B1p, B2p, ..., Brp), where Bip is the distance between p and Bi.

Each node in BVR is required to know its distance to each of the beacons, and the

coordinates of its one-hop neighbors.

The basic routing exported by BVR is a route-to-coordinate interface. Routing

in BVR is a form of greedy routing, similar to the routing used in geographic routing

45

algorithms. When given a packet to route to a coordinate, a node selects the neighbor

whose coordinates are the closest to the destination’s coordinates, by some distance

metric. The simplest such metric is given by Equation 3.1 below, and is equal to the

sum of the absolute component-wise differences of the two coordinates (a form of an

L1 metric).

δ(P(p),P(q)) =
r∑

i=1

|Bip −Biq|, (3.1)

This greedy-routing procedure may fail when no neighbor makes progress in the

coordinate space towards the destination. To get out of these ‘local minima’, BVR

employs a fallback routing mode that ultimately guarantees that the destination will

be reached. In fallback mode, the node forwards the packet towards the beacon

that is closest to the destination. This beacon is readily determined by the smallest

component of the destination’s coordinates. The minimum distance reached by the

packet is recorded in the packet; this allows each node to resume normal greedy

routing when one of the neighbors makes progress. Eventually, a packet may reach

the beacon which is closest to the destination. In this situation, normal greedy routing

cannot be used without the guarantee of no loops. The beacon then initiates a scoped

flood that will reach the destination. The choice of the fallback beacon as the closest

to the destination minimizes the flood scope.

We can now explain how in BVR one can get flexibility for choosing next hops.

At each step of greedy routing, there may be many nodes which make progress in

coordinate space to the destination. Also, when doing fallback-mode routing, any

node that is reachable and is closer to the desirable root is good to be used. In

the BVR implementation, we fix the maximum number of alternative routes to 6,

and the routing layer returns these alternatives ordered by progress and link quality.

Two critical features of BVR related to this work are a link-level retransmission and

46

maintaining alternative routes. Other routing layers, which also provides those two

features (e.g. MintRoute [86]), would have a similar result.

3.7.2 Erasure Code

To analyze how much gain in reliability can be obtained by an erasure code, a

statistical model is used assuming losses are randomly distributed. Given a loss rate,

the expected probability to receive a certain number of packets can be calculated

statistically. For each case with a certain number of packets received, it can be

determined whether an original message can be reconstructed or not. Using the

distribution of the number of packets received, the final loss rate of an erasure code

is calculated statistically. Figure 3.7 shows how much reliability can be gained from

an erasure code. Again, this graph is analytically obtained assuming loss is randomly

distributed for different redundancy levels. The X-axis represents a raw end-to-end

loss rate provided by a routing layer. Y-axis is the final loss rate after an erasure

code is used. The bandwidth consumed by additional code words is not shown: more

redundant code words achieve higher reliability, but more bandwidth will be consumed

also. When there is a small amount of redundancy, the loss rate is higher than the

raw loss rate. This happens because when we can not decode, we lose everything. So

receiving 7 packets is effectively the same as receiving 0 packets. Systematic code is

good not only for saving computation, but also for increasing reliability. By using a

systematic code, even if we receive 7 packets, when 3 packets are codes containing

original messages, we get 3 packets.

Figure 3.8 shows the improvement with systematic code. The graph is also ob-

tained analytically with a statistical modeling, just like Figure 3.7. The final loss rate

is always smaller than the raw loss rate. All the following tests use systematic code.

47

Effect of Erasure Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s
R

at
e

1
2
4
8
16
64
247

Figure 3.7. Increase or decrease in loss rate by using erasure code. Each line indicates
how many redundant erasure code words are added to 8 original messages

48

Effect of Systematic Code

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Raw Loss Rate

Fi
na

l L
os

s
R

at
e

1
2
4
8
16
64
247

Figure 3.8. Decrease in loss rate by systematic code. Each line indicates how many
redundant systematic code words are added to 8 original messages

Later in this section, we examine the trade-off between reliability and bandwidth

overhead by varying the number of additional code words.

We measured the encoding and decoding speed of our implementation of an erasure

code on Mica2 motes. Messages and code words are 29 bytes long. Message and code

words are divided into 8 bit-long units, and there are 8 original messages to send.

Table 3.1 shows the encoding time. In systematic codes, the first 8 code words

do not require any computation, they are just memory copies. Each additional code

word requires 1.7ms, which is smaller than the transmission time of a packet (20ms)

by an order of magnitude. This means that we can encode on the fly.

Table 3.2 shows the decoding time. In systematic code, decoding time depends on

the mix of code words. The more code words contain original messages, the quicker

49

Table 3.1. Encoding time to produce all code words. Left column indicates how many
additional code words are produced in addition to 8 original messages

Number of Redundant Time
Code Words (ms)

0 0.780
1 2.539
2 4.298
3 6.057
4 7.816
5 9.575
6 11.334
7 13.093
8 14.852

Table 3.2. Decoding time of all 8 messages given how many code words are not
original messages

Number of non-original-message Time
code words (ms)

0 0.427
1 4.027
2 6.876
3 9.820
4 13.713
5 17.119
6 21.059
7 24.604
8 27.065

the decoding becomes (Section 3.5.2 explains it in more detail). Decoding time is

roughly linear to the number of non-original message code words.

Table 3.3 shows the expected decoding time calculated from Table 3.2, given the

packet loss rate. Decoding time is also roughly proportional to the packet loss rate.

Decoding takes less than 30ms even in the worst case, and it takes 160ms to receive the

next 8 code words. So each decoding step can be done well before the next decoding

occurs, even though there is an issue of buffering that may need to be addressed.

The mix of code words (how many code words are original messages) determines

decoding time, but given the number of code words containing original messages,

50

Table 3.3. Effect of loss rate on time to decode 8 messages
Packet Loss Rate Time(ms)

0 0.427
0.1 3.143
0.2 5.696
0.3 8.263
0.4 10.928
0.5 13.700
0.6 16.548
0.7 19.416
0.8 22.220
0.9 24.832

the combination of code words does not affect decoding time significantly. This is

shown in Figure 3.9. 30 random cases are produced with 4 code words containing

original messages with 4 additional code words, in total decoding 8 messages. The

average decoding time was 13.44ms, with a 95% confidence interval of 1.52. Standard

deviation was 0.74 – less than 10%.

Memory usage depends on the size of the encoding unit, which is the sub code

word in code packet as shown in Figure 3.6. Most of the memory requirement comes

from operation table and matrix. With 8 bit-long units, 512 bytes are used for the

operation table, 64 bytes for the matrix, 232 bytes for 8 packet buffers, and 4 bytes are

used for other variables. Packet buffers will be provided and shared by the application,

and the operation table can be stored in program memory. The memory usage by

the erasure code component is then 68 bytes.

3.7.3 Comparing Options

We compared different combinations of options (link-level retransmissions, erasure

code, alternative routes) using experimental data on a real testbed. We ran the case

with a maximum of 5 link-level retransmissions, with route fixing which tries up to 6

alternative routes at each hop (also with 5 as the maximum number of retransmissions

51

Histogram of Decoding Time

0

0.1

0.2

0.3

0.4

0.5

0.6

11 12 13 14 15 16
Decoding Time (ms)

Fr
eq

ue
nc

y

Figure 3.9. Histogram of time to decode 8 messages with 4 code words containing
original messages

per each next hop). From this data we simulated and computed the results for other

cases: 0 to 5 retransmissions per link without route fixing. We also compute the

results as if the stream of packets consisted of erasure coded packets: we label each

packet as being an original packet or a redundant packet, and are able to infer the

results of the decoding process by labels of the received packets. Summarizing, in

our evaluation we vary two dimensions: retransmission and redundancy. We vary

the first from 0 to a maximum of 5 link retransmissions with no route fixing, and 5

maximum retransmissions with route fixing. We vary the redundancy from 0 to 8

redundant packets for each 8 packets of data. Route fixing is only for 5 maximum

retransmissions.

The testbed we use is deployed on the fourth floor of the Computer Science build-

ing – Soda Hall – at the University of California, Berkeley. It consists of 78 Mica2Dot

motes deployed in graduate student offices and is depicted in Figure 3.10. Test data

52

Destination

Source

Figure 3.10. Map of Soda hall testbed. Source and destination are also indicated.

53

shown here was collected in the following way: we let the BVR routing information in

all nodes stabilize for 75 minutes, and then had an external program send 300 packets

of data from one specific node to another. We chose the nodes so that they would

be separated by a significant number of hops. Packets are separated by 1 second,

which is long enough to eliminate interference between two consecutive packets. The

pair of nodes considered is also shown in Figure 3.10.2 The path we use presented an

average of 5 hops across all packets that were delivered, and the overall loss rate in

the network was 26.28%. This takes into account all messages that were sent over all

links during the course of the experiment.

The metrics we use to analyze the different options are reliability, cost, and over-

head. Reliability is the percentage of original data packets that arrive at the final

destination: a goodput. It measures the actual data that two applications at both

ends can exchange successfully. Cost is the total number of packets injected into the

network per unique packet of data. Cost includes both effect of loss rate, and the

average number of hops from source to destination. Since some options may take

a more reliable path even though it could be longer, cost is more meaningful than

packet loss rate. However, as we shall see, cost alone also does not tell the whole

story, because in the presence of loss one may incur cost and not do useful work. We

define overhead as the cost per hop per each successfully delivered data packet. It

is normalized by dividing by the path length, allowing us to make more meaningful

comparisons. The overhead thus measures the amount of work done in the network

(per hop) to deliver one data packet end-to-end. Ideally it should be 1, and we should

look for options that maximize the reliability with the smallest overhead. One thing

to note in cost and overhead is that they do not account for undelivered packets; even

if some packet is not delivered, this is still considered in the calculation and negatively

affects cost and overhead.

2We ran other similar experiments among other pairs of nodes with very similar results.

54

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

none 1 2 3 4 5 5+RF
Maximum number of retransmission

S
uc

ce
ss

 R
at

e

0 1 2
3 4 5
6 7 8

Figure 3.11. End-to-end reliability achieved by options. Each line represents number
of redundant code words for 8 original messages. RF means route fixing is used.

Figure 3.11 shows the reliability each option (link-level retransmissions, erasure

code, and route fixing) achieves. As described earlier in this subsection, we ran the

case with a maximum of 5 link-level retransmissions, with route fixing which tries up

to 6 alternative routes at each hop (also with 5 maximum number of retransmissions

per each next hop). From this data, other cases are statistically calculated. The x-axis

shows the number of retransmissions and whether route fixing is used. Each curve

represents how many redundant code words were added to each 8 original messages.

Figure 3.12 shows the normalized overhead for each option with the same x-axis and

legends.

Our first observation is that link level retransmissions should be used in any case.

With no retransmissions, the reliability is so low that the effect of redundancy is

negligible (in spite of adding overhead, as in Figure 3.12). The low number (less than

30%) seen in Figure 3.11, is close to the expected value for a five hop transmission over

55

Overhead

0

0.5

1

1.5

2

2.5

3

3.5

4

none 1 2 3 4 5 5+RF
Maximum number of retransmission

N
um

be
r o

f P
ac

ke
ts

0 1 2
3 4 5
6 7 8

Figure 3.12. Number of packets injected to network per hop per successfully received
data. Each line represents number of redundant code words for 8 original messages.
RF means route fixing is used.

56

links with 26.28% loss rate. When using at most 1 per-link retransmission, not only

does the success rate go substantially up, but also the effect of adding redundancy

increases.

Our second observation from Figure 3.11 is that even with 5 retransmissions and

route fixing, the reliability does not reach 100%. The reason for this may come from

the nature of the loss process: there can be packets which are dropped even after 5

retransmissions, because a link may have gone down, and this information has not

yet reached the routing layer or the link estimation component. In these cases, unless

some costly measure is taken by the network that may include holding the packet in

buffers for extended periods or backtracking the packet in the reverse path, it may

be inevitable to drop the packet. Erasure codes are useful in this scenario exactly

because they do not require that all packets be delivered to recover the data, and it

is safe to drop some packets that would otherwise be too costly to deliver.

Erasure codes, however, add a fixed overhead, since redundant packets are always

sent at a given rate. We can see in Figure 3.12 that for a given retransmission option,

the overhead always increases with the number of redundant packets. With little re-

dundancy added, the overhead, as shown in Figure 3.12, decreases as retransmission

increases. This is mostly due to the increase in the success rate, and thus the decrease

in wasted effort to deliver packets. We can notice, however, that with 4 or more redun-

dant packets per each 8 data packets (50% or more redundancy added), the overhead

increases with more retransmissions, with no corresponding gain in reliability. With

high redundancy, the destination already gets enough number of code words to re-

construct original data. Additional packets delivered by more retransmissions do not

increase the reliability any more. They just add burden to the network. Also, when

the maximum number of retransmissions is large and end-to-end reliability is high,

erasure code wastes too much bandwidth and overhead gets high.

57

Table 3.4. Given a threshold reliability requirement, what is the retransmis-
sion/redundancy combination that has the smallest overhead?

Threshold Retransmission Redundancy Overhead
90% 5+RF 0 1.381
95% 5+RF 0 1.381
98% 5+RF 1 1.512
99% 5+RF 1 1.512

99.9% 4 2 1.663

Finally, in Figures 3.13 and 3.14, we plot, for the different options, reliability

versus overhead. These plots give insight into the tradeoff at hand, and we caution

the reader that the axes have different roles than in previous plots. Each curve in the

figure corresponds to one retransmission option, and the nine points in each curve

correspond to the redundancy with that option. In all curves redundancy increases

from left to right. In this graph, we would like to choose points that have overhead

close to 1, and reliability close to 1, thus as close to the upper left corner as possible.

We can notice that adding on-demand retransmissions increases the reliability without

incurring overhead, at least for low redundancy cases. On the other hand, adding

redundancy, while always incurring overhead, is needed to get the last few percent of

reliability. We see that for a given retransmission option, in order to add reliability

one has to add redundancy, but the gains are very different for different maximum

numbers of retransmissions, or that is where an end-to-end methodology is needed.

In Table 3.4, we pose the question of how one chooses an option, given these

trends in reliability and overhead. As the threshold increases, the sweet spot moves

toward more redundancy. And when the number of redundant code words increases,

the maximum number of retransmissions drops. When the number of redundant code

words increases, more packet losses can be tolerated, so retransmission for additional

packet delivery becomes unnecessary.

Causes of failures are shown in Table 3.5. Data is from the case with 5 maximum

58

Overhead versus Reliability

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4
Overhead

R
el

ia
bi

lit
y

0
1
2
3
4
5
5+RF

8

0
2

1 2 30 4 5

1
0

1

3

8

0

Figure 3.13. Overhead versus reliability for different combinations of retransmission
and redundancy options. Overhead is the number of packets injected per hop per
received data packet. Points in the same curve have the same retransmission option,
and each curve has 9 points (indicated by numbers), corresponding to the number of
redundant packets for each 8 packets of data.

Table 3.5. Decomposing causes of failures
Cause Percentage

Independent Queue Overflow 2.667%
Consecutive Queue Overflow 0%

Independent Reroute 0.333%
Consecutive Reroute 0%

Nowhere to send 0.333%

59

Overhead versus Reliability (zoom)

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

1 2 3 4Overhead

R
el

ia
bi

lit
y

1
2
3
4
5
5+RF

8

7

6

8
7

4

3

2

1

1

2
3

0

4 51

0

Figure 3.14. Overhead versus reliability for different combinations of retransmission
and redundancy options (Zoom).

60

retransmissions and route fixing, and the table is a simulation for the case with 5

maximum retransmissions without route fixing . It is to show the effectiveness of

route fixing. ‘Reroute’ is a failure without route fixing, but which would succeed

with route fixing. ‘Nowhere to send’ is a failure without route fixing, and also a

failure with route fixing: it could not send to any next hop candidates. This failure

happens when a packet can be delivered into the node, but cannot be forwarded out.

‘Queue Overflow’ happens when pending outgoing packets fill up the queue and a new

packet arrives. Reroute and queue overflows are divided into independent failures and

consecutive failures. A consecutive reroute failure indicates a stale routing table value.

Beacon vector routing adapts to link failure quickly, and we did not shoot packets

too quickly in the test, so there are no stale routing table problems. Queue overflow

constitutes 80% of failures, indicating a need for congestion control. When link-level

retransmission and route fixing are used, packets tend to reside in queue longer until

they are successfully delivered to the next hop. Then it increases the chance of queue

overflow. Therefore, those options may not always increase reliability.

3.8 Discussion

This work presents an initial evaluation of several options for achieving reliability.

We leave as subsequent work further exploration of the design space. Route fixing

is tested only with 5 maximum retransmissions, which already provides high relia-

bility. Even though we see marginal improvement at this point, it surely not only

improves reliability but also decreases the overhead. It will be interesting to see a

case with route fixing and a small maximum number of retransmissions, and compare

its cost per reliability to a case with no route fixing and a large maximum number of

retransmissions.

A direct comparison with end-to-end retransmission is missing. For very high

61

reliability end-to-end retransmission would be an attractive solution, even though it

will increase delay.

Thick path, in which messages are forwarded simultaneously by several nodes that

make progress towards the destination, is another possible option. It achieves relia-

bility only through information redundancy, and can survive link failure. Moreover

it has low delay to deliver packets. The downside is that it injects a large number of

packets: it is the product of path length and path thickness. Since traffic is correlated

locally, channel contention will not significantly affect the whole network. However,

in terms of energy consumption this would be a bad choice. It will be interesting to

see a trade-off of success rate, overhead, delay, and energy consumption.

Some form of congestion control is needed. Large chunk transfer and admission

control would be a good candidate solution. This enables back pressure working as

congestion control without much overhead.

Initially it appeared that our implementation of erasure codes worked as long

as M + N < 2r − 1. In experiments, when M > r it worked in most cases, but not

always. Mathematical reasoning of this phenomenon is also left for future work. Also,

if we can avoid these cases without expensive operations, it would be helpful. If we

can have a larger M , tolerating any 6 packet losses provides more robustness than

tolerating 3 packet losses from each of two transfers.

3.9 Lessons

In this chapter, diverse options for achieving reliable transfer in wireless sensor

networks are discussed, implemented, and tested in a real testbed. Link-level retrans-

missions, erasure code, and route fixing are implemented and evaluated. Link-level

retransmissions handle transient link failure and contention very efficiently. Erasure

62

code introduces static overhead, however its use loosens the burden of delivering the

last few packets (99.99% versus 99%), which are very expensive and inefficient using

other methods. Route fixing solves the stale routing table problem, providing quick

adaptation to link failure if the routing layer provides flexibility in route selection.

In turn, route fixing reduces consecutive losses, increasing the usefulness of erasure

code, which does not work well with successive losses. Link-level retransmissions

happen on demand: packets are retransmitted only when necessary. Route fixing

is also on-demand: only when packet cannot be forwarded to the next hop. Those

local and on-demand options are very efficient approaches (cost per reliability). Era-

sure code allows some flexibility in the losses, and route fixing provides flexibility in

selecting the next hop. Some options address some problems efficiently but not all

failures, which can be effectively cured by some other options. Our results show that

combining options would provide a sweet spot.

3.10 Initial Reliable Data Collection Protocol:

Straw

Reflecting studies in this chapter, we designed and implemented the Straw

(Scalable Thin and Rapid Amassment Without loss) component, a reliable, highly

scalable, data collection service. Straw works over a multi-hop routing layer like

MintRoute [86], with transfer initiated by the receiver. Since it is a collection pro-

tocol, the receiver is always a PC, and the sender a node. At a high-level, selective

NACKs are used. In response to the request of the receiver, the sender sends the

entire data once, the receiver identifies missing packets, and then sends a list of those

packets (selective NACK) back to the sender. The size of a selective NACK is a

single packet. Only a single NACK can be sent before data packets from that NACK

63

S
Command
/ count = 0

/ Send Request,
Set Timer

not last

count < MAX

Timeout / count++
Receive
/ Reset Timer

Yes

No
/ Fail

No
/ Clear Timer

Yes

more in object

more in SNACK

Yes
/ count = 0

/ Send SNACK,
Set Timer

count < MAX

Timeout / count++
Receive
/ Reset Timer

Yes

No / Success
No
/ Fail

No
/ Clear Timer

Yes

Receive Receive

Timeout Timeout

State Diagram of Receiver

State Diagram of Sender

S more
Receive Request, SNACK Yes / Set Timer

No

Timeout / Send Data

Figure 3.15. Finite State Diagram of Straw Protocol

are received. The sender resends those missing packets. At this point, the selective

NACK is a single packet, so if there are missing packets some of them may not be

reported. The receiver may send a selective NACK again, and this process repeats

until all the packets are successfully received. Figure 3.15 shows finite state diagrams

of a receiver and a sender of Straw protocol. The receiver initiates and drives the

transfer, so the complexity is confined to the powerful receiver (base station), and the

sender (mote) task is kept simple and light weight.

The sender always decides at what interval to send consecutive packets, which is

the timeout value of a sender in Figure 3.15. For WSN, there can be interference

between two adjacent transfers, so the inter-packet interval should be large enough to

prevent this from occurring. One possibility for the length of the inter-packet interval

is the time taken for a transmitted packet to reach the receiver. This approach can

64

work for a small network. However, as the number of hops in the path increases, this

time interval becomes too large. In this case, a packet sent toward the receiver in

the past can be far enough down the line that the next packet can be sent without

interfering with the first. To maximize channel usage in a long multi-hop path,

pipelining is used. For nearby nodes, the sender chooses the interval by looking at its

depth in the communication tree – the needed delay interval is the time for a packet

to arrive at the receiver. For nodes many hops from the receiver, the interval is forced

to be at most five times the one-hop packet transfer time. The five hop threshold is

empirically chosen from extensive field testing.

Now let us look at the detailed controls and packet formats of Straw. A receiver

sends 4 types of commands to a sender. STRAW NETWORK INFO requests infor-

mation of the routing layer at a receiver. This information is used to tune round trip

time (RTT) and timeout value at the receiver. STRAW TRANSFER DATA triggers

a transfer of the entire data at the sender. STRAW RANDOM READ is a selective

NACK containing sequence numbers of missing packets. STRAW ERR CHK asks

for a checksum of data at a sender side. A receiver compares checksums at both sides

to determine whether the receiver data is corrupted. A sender has 3 types of replies.

STRAW NETWORK INFO REPLY is a reply to STRAW NETWORK INFO.

STRAW DATA REPLY is a reply to both STRAW TRANSFER DATA and

STRAW RANDOM READ. It is not necessary to distinguish to which command a

reply is responding. A STRAW DATA REPLY packet contains a sequence number

and data. STRAW ERR CHK REPLY is a reply to STRAW ERR CHK, and con-

tains a checksum of data at a sender. To save space in a packet, sequence numbers

start from 10 instead of 0. If the first 16 bit number in a packet is equal to or

larger than 10, it actually is a sequence number and implies the type of packet is

STRAW RANDOM READ or STRAW DATA REPLY depending on whether it is

from a receiver or a sender. All other types are represented by numbers smaller

65

than 10. With the default packet size of the MicaZ platform, the data payload

of STRAW DATA REPLY is 20 bytes, and STRAW RANDOM READ (NACK)

contains 12 sequence numbers. Detailed packet formats can be found at [3].

Lessons from analyzing options to achieve reliability influenced the design of

Straw. In Straw, link-level retransmissions are used due to their efficiency. To pro-

vide end-to-end reliability, end-to-end retransmissions are also used. Erasure code is

not used in a deployment. With link-level retransmissions, end-to-end reliability was

expected to be high-90% in many cases. This expectation was based on preliminary

field tests, and was actually true as will be seen in Section 5.1. In this situation, the

cost per reliability of erasure code is too high. Moreover, since end-to-end reliabil-

ity provides 100% reliability, trying to achieve high reliability through costly erasure

code is not meaningful. Alternative routes are not used, either. Due to link-level

retransmissions, the RTT already has quite large variations. Adding more variation

with an alternative route option is not desirable for maintaining a tight timeout of

end-to-end retransmissions.

In this and the previous chapters, the overall system architecture and major com-

ponents in the system are explained. The following chapter introduces how the system

is actually deployed on the Golden Gate Bridge.

66

Chapter 4

Deployment at the Golden Gate

Bridge

In previous chapters, solutions are proposed to unsolved challenges introduced in

Chapter 1. Components handling challenges, either by existing works or this work,

are put together into a complete system as shown in Chapter 2. Then, it is deployed

to the target site: the Golden Gate Bridge. In this chapter, let us take a close look

at how the system is deployed in the real world.

The Golden Gate Bridge at the entrance to the San Francisco Bay is a compelling

test bed for proving the usefulness of WSN for actual, difficult SHM installations.

The cable-supported bridge was designed and constructed in the 1930s and opened

to traffic in 1937. With a tower height of 746ft (227m) above sea level, and a 4200ft

(1280m) long main span (see Figure 1.1), it was the longest suspension bridge in the

world when it was completed. The extreme loading events for the bridge are expected

to be from wind and earthquakes. The goal was to determine the response of the

structure to both ambient and extreme conditions and compare actual behavior to

design predictions. The network measured ambient structural accelerations from wind

67

load at closely spaced locations, as well as strong shaking from a possible earthquake,

all at low cost and without interfering with the operation of the bridge. For this

deployment, 64 nodes were deployed over the main span and southern tower (see

Figure 1.1), creating the largest wireless sensor network ever installed for structural

health monitoring purposes.

4.1 Putting Components Together

As described in Section 2.1, the system is composed of a base station and multiple

nodes. A node actually senses the vibration of a structure, and sends the data to a

base station. Hardware for a node includes a MicaZ [20] mote and an accelerometer

board as shown in Figure 2.3. They are contained in a water-proof box [17]. A

node also includes an external bi-directional patch antenna [19] to extend range, and

batteries [18] to provide power. A node runs TinyOS software. A deployed node is

shown in Figure 4.1. A base station stores the delivered data for further analysis. It

has much more computational power and storage than a node. A laptop PC is used

in this deployment. It runs software to interact with nodes. Due to limited access to

the Internet at the bridge, real-time access to the deployed WSN is not provided in

the deployment. A deployed base station is shown in Figure 4.2.

4.2 Environmental Challenges

The bridge is located in a difficult environment; gusty wind, strong fog, and

rain present serious engineering challenges for the deployment and maintenance of

an electronic system. The combination of sea fog and strong wind results in quick

condensation of salty water and fast oxidation of metallic components. An example

of the rust accumulated at a bridge connection over a short duration is shown in

68

Figure 4.1. Board enclosure, antenna, and battery installed on the main span. The zip
tie had to be put around the antenna to control wind vibration. Poor link quality was
experienced with a vibrating antenna under strong wind. Corrosion of the C-clamp
can be observed in the figure.

69

Figure 4.2. A laptop PC is used as a base station. It is located inside of the south
tower.

70

Figure 4.3. Severity of rusting of the bridge can be seen. Rusting not only threatens
the bridge, but also was a hazard to the monitoring system, see Figure 4.1

Figure 4.3. C-clamps, metal supporting structures on the bridge tower, and even

electrical connectors quickly gather rust. The enclosure for the boards is a waterproof

plastic box that performed very well during the deployment, as shown in Figure 4.1.

Due to strong wind, major items had to be secured to the bridge with C-clamps, and

cables had to be tied or attached to the steel structure. When the wind was strong, the

bidirectional antenna vibrated back and forth fiercely, resulting in poor link quality,

so zip ties were used to fasten all antennas in order to reduce the vibration. Since the

bridge has a linear geometry, the radio signal had only to be bi-directional; therefore

an external bidirectional patch antenna was used for communication, adding signal

splitters when necessary to change direction. There is a very narrow passage along the

side of the bridge which provides limited line of sight for the bidirectional antennas.

This space is, of course, surrounded by steel components and reinforced concrete

slabs, and at some places it is obstructed by tools and materials belonging to the

maintenance crew. The range of the radio in that harsh environment is severely

71

limited, with the functional range of the Crossbow MicaZ Mote used in this project

being 50ft (15.24m) to 100ft (30.48m).

4.3 Deployment Plan

The bridge has suspension cables tying the stiffening longitudinal trusses to the

main cables every 50ft (15.24m). The node mounting plates are attached to the gusset

plate (or in a few cases to the top flange) on top of the plate-girders connecting the top

flanges of the stiffening trusses. The deployment plan was initially designed based on

radio tests on the bridge. MicaZ motes attached to the bidirectional antennas were

deployed and the signal strength was measured. The tests showed that the signal

weakens sharply after 175ft (53m), so 150ft (45.72m) was selected as the modular

distance between the boards, hence twenty-nine boards were needed to cover each

side of the main span. That nicely matched the distance between the suspension

cables and floor beams as well. The actual deployment, however, required some

readjustments since the second batch of MicaZ motes, purchased at a later time,

proved to have weaker radio strength, by up to 7.5dBm, than the prototype devices.

The new motes only yielded a reliable transmission range of 100ft (30.48m), and in

some cases the inter-mote interval had to be reduced to 50ft (15.24m). Based on the

adjusted deployment plan, a total of 64 sensor nodes were deployed: 53 on the west

side of the main span, 3 on the east side of the main span, and 8 on both sides of

the south tower. Figure 1.1 shows the overall layout of the nodes in the deployment.

Nodes are deployed on the east side of the main span to provide information necessary

for distinguishing between vertical and torsional modes of vibrations. A base station

is located inside of the south tower. A small control room is located near the entrance

from the west side of the span, see Figure 4.2.

The high-level operation is executed as follows. At the trigger signal from the

72

base station, every node starts sampling the vibration data. The sampling period is

usually set to fill up the 512KB of flash memory on the MicaZ. Then sampled data is

reliably collected from every node one by one. These constituted one cycle, and one

cycle takes about 12 hours.

73

Chapter 5

Network Analysis of the Golden

Gate Bridge

Network data from the Golden Gate Bridge and its analysis are provided in this

chapter. Control traffic of a routing layer (MintRoute) shows a collision with data

traffic of a transport layer (Straw). The data and experience with Straw indicates

problems with a static rate, and motivates an improved reliable data collection with

rate control: Flush.

5.1 Routing Layer

Figure 5.1 shows an average end-to-end loss rate provided by a routing layer.

In the routing layer, link-level retransmission is enabled. The data is taken when

Straw transfers an entire data. Only successful Straw transfers are used, because

only successful transfers have a log for end-to-end reliability at the routing layer.

As will be seen in Section 7.2, unsuccessful Straw transfers due to network problem

are not common, so inclusion of those cases will not change the trend of a result.

74

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40 45 50

Lo
ss

 R
at

e
(%

)

Depth

Figure 5.1. Average end-to-end loss rate over different depths in a routing tree. In
many cases, the loss rate is below 5%, and never exceeds 7%.

2,613 Straw transfers are taken, and depending on the depth of a source, they are

grouped and averaged. In many cases, the loss rate is below 5% and never exceeds

7%. This data supports our design decision of Straw based on an assumption that an

end-to-end success rate will be high-90% in many cases.

Let us look at the routing tree formed at the GGB. Figure 5.2 shows one example

of the routing tree. Data is taken from one case on September 21st and there are 56

nodes in the tree. The leftmost node is the basestation. The tree is skewed and the

rightmost node is 45 hops away from the basestation. Figure 5.3 shows how many

children each node has. As we can expect from the skewed tree, majority of nodes

have one child.

In link quality data, one interesting phenomenon is observed: estimation for link

quality drops suddenly after data collection. Link quality indicates the expected

number of packets to send before one packet is successfully transferred through that

75

Figure 5.2. An example of the routing tree formed at the GGB. There are 56 nodes in
the tree. The leftmost node is the basestation. The rightmost node is 45 hops away
from the basestation. The tree is skewed.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5

N
um

be
r

of
 N

od
e

Number of Children

Figure 5.3. Distribution of the number of children of 56 nodes in a routing tree shown
in Figure 5.2. Majority of nodes have one child.

76

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250

N
um

be
r

of
 N

od
e

Link Quality

Before Data Collection
During Data Collection

Figure 5.4. Distribution of link quality measurements of 56 nodes before and after
data collection. After data collection, measured quality drops dramatically, even
though actual link quality does not change much.

link. Figure 5.4 shows a distribution of link quality before and after data collection.

Data is taken from the same case used in Figure 5.2 and 5.3 However, all data from

other cases show the same characteristics. Before data collection, link quality to a

successor is very good. The histogram shows that most of the 56 nodes are close to

the best quality, 255. However, after the data collection, link quality moves to the

worst quality, 0. We suspect this is not from an actual change of radio connectivity

or environment, because such a dramatic and consistent change in an environment

after data collection is not likely to repeat all the time. It should be instead from a

strange behavior of a link estimator at MintRoute [86]. This issue will be discussed

later in Chapter 8.

77

5.2 Transport Layer

Straw is an initial solution to reliable data collection, and was introduced in Sec-

tion 3.10. This transport layer is deployed on the Golden Gate Bridge (GGB), and

the resulting bandwidth from the GGB installation are presented in Figure 1.2. The

first few hops show sharp decreases in bandwidth avoiding direct interference. How-

ever, after the fourth hop, pipelining begins, and the packet interval stays constant;

the transmission bandwidth decreases very slightly from the fourth hop down to the

46th hop.

During 2630 successful Straw transfers 36,926 packets are sent from the bases-

tation and 41,567,165 packets are received at the basestation. About 1126 times

more packets are sent than received. This data supports our assumption that com-

mand dissemination is not a frequent event and collection routing is more efficient

than any-to-any routing even if command dissemination has to rely on flooding, see

Section 2.6.

To enable pipelining, Straw forces an inter-packet interval to be limited by a

threshold. To determine the threshold, field tests were performed at the Richmond

Field Station (RFS) and GGB. In those tests, depending on a topology and time 3

or 4 packet transfer time yielded the highest bandwidth. If an inter-packet interval

is smaller than what a channel capacity can provide, it leads to cascaded losses and

unstable performance. Therefore, the threshold is pessimistically set to be higher than

a test result as 5 packet transfer times, in order to survive variations in topologies and

environment over time. Straw operated on the bridge with high stability and without

any significant problems in bandwidth, as can be seen in Figure 1.2. However, in

favor of stability, channel capacity was underutilized.

A less empirical method for determining the inter-packet interval for a given topol-

ogy with a dynamically changing link quality and an interference range is needed to

78

exploit channel capacity and to avoid a tedious manual tuning for each environment

and topology. The following chapter introduces Flush, which provides a solution to

this problem.

79

Chapter 6

Reliable Data Collection

(Requirement 6)

Previous chapter explained experiences with Straw in a real deployment at the

Golden Gate Bridge. An inter-packet interval or a rate should be statically set, so a

pessimistic value is used yielding an underutilization of a channel capacity. To fully

exploit channel capacity but still survive variations in environment and topology, a

rate needs to be dynamically adjusted.

Based on experience at the GGB with an initial protocol, Straw, we present Flush,

a reliable, high goodput transport protocol for wireless sensornets. Flush is a useful

network primitive for many sensor network applications which require transmitting

bulk data across multiple wireless hops, like structural health monitoring, volcanic

activity monitoring, or protocol evaluation. Indeed, we collected the performance data

presented in this chapter using Flush itself. The Flush protocol provides end-to-end

reliability, minimizes transfer time, and adapts to time-varying network conditions.

It achieves these properties using end-to-end acknowledgments, implicit snooping of

control information, and a rate-control algorithm that operates at each hop along

80

a flow. Using several real network topologies, we show that Flush closely tracks or

exceeds the maximum goodput achievable by a hand-tuned, fixed-rate for each hop

over a wide range of path lengths: in one experiment, Flush efficiently transfers a

26,600-byte dataset over a 48-hop wireless network.

6.1 Revisiting the Problem

This chapter presents the design and implementation of Flush, a reliable, high

goodput, bulk data transport protocol for wireless sensor networks. Flush has been

evaluated on indoor and outdoor testbeds with networks of up to 48 hops. Target

applications for Flush include structural health monitoring, volcanic activity moni-

toring, and bulk data collection [48, 67, 84]. Some of these applications cover large

physical extents, measured in kilometers, and have network depths that range from a

few to over forty hops. Power concerns and challenging radio environments can make

using smaller diameter networks built from higher-power radios unappealing. While

delivery of bulk data to the network edge may sound simple, the vagaries of wireless

communication make efficient and reliable delivery a challenge in multihop networks:

efficiency and reliability are hampered by lossy links [82], intra-path interference is

hard to avoid [85], inter-path interference is hard to cope with [44, 73], and tran-

sient rate mismatches can overflow queues. These challenges make näıve or greedy

approaches to multihop wireless transport difficult.

Intra-path interference occurs when transmissions of the same packet by successor

nodes prevent the reception of the following packet from a predecessor node. If the

packet sending rate is set too high, persistent congestion occurs and goodput suffers

– a condition that is potentially undetectable by single-hop medium access control

algorithms because it stems from a hidden terminal effect. If the packet sending rate

is set too low, then channel utilization suffers and data transfers take longer than

81

necessary. The optimal rate also depends on the route length and link quality. Since

in a dynamic environment, some of these factors may change during the course of a

transfer, we show that no static rate is optimal at all hops and over all links. This

suggests that a dynamic rate control algorithm is needed to estimate and track the

optimal transmission rate.

Inter-path interference occurs when two or more flows interfere with each other.

Designing multihop wireless transport protocols that are both interference-aware and

have congestion control mechanisms is difficult in the general case. In this work,

we greatly simplify the problem by allowing only a single flow at a time. Collecting

data sequentially from nodes, rather than in parallel, does not pose a problem for

collecting bulk datasets if the overall completion time is the critical metric, like in our

target applications. Ignoring inter-path interference allows us to focus on maximizing

bandwidth through optimal use of pipelining.

To be viable in the sensornet regime, a protocol must have a small memory and

code footprint. As of early 2007, typical motes have 4KB to 10KB of RAM, 48KB to

128KB of program memory, and 512KB to 1MB of non-volatile memory. This limited

amount of memory must be shared between the application and system software,

limiting the amount available for message buffers and network protocol state.

In summary, our goal is to develop a protocol that delivers data (1) reliably to the

edge (2) with minimal transfer time and has (3) a small memory and code footprint.

The initial protocol, Straw, satisfied the first goal. However, given a limitation of a

static rate, the rate is set at a low value to overcome variations in an environment and

a topology, missing the second goal. Our solution, Flush, considers a single flow at a

time, and uses rate-based hop-by-hop flow control to match the available bandwidth.

The rate is controlled to avoid intra-path interference, not inter-path congestion,

which is already removed by a single flow limitation. Flush finds the available band-

82

width along a flow using a combination of local measurements and a novel interference

estimation algorithm. Flush efficiently communicates this rate to every node between

the bottleneck and source, allowing the system to find and maintain the maximum

rate that avoids intra-path interference. On long paths, Flush pipelines packets over

multiple hops, maximizing spatial reuse. Flush was implemented in TinyOS, the de

facto operating system for sensor networks [41] and evaluated using the 100-node

Mirage testbed [11] as well as an ad hoc, 79-node outdoor network at the Richmond

Field Station (RFS) [12]. The results show that Flush’s rate control algorithm closely

tracks or exceeds the maximum effective bandwidth sustainable using a fixed rate

optimized for each location, even over a 48-hop wireless network. On the MicaZ plat-

form, our implementation of Flush requires just 629 bytes of RAM and 6,058 bytes

of ROM.

Section 6.2 places Flush in the context of the large prior literature on transport

reliability, rate optimization, congestion control, and flow control. Section 6.3 intro-

duces different connectivity models and provides background for interference and rate

control. Section 6.4 analyzes the performance gain of pipelining. Section 6.5 describes

the Flush protocol and Section 6.6 describes our implementation. Section 6.7 explains

experimental setup used in an evaluation. Section 6.8 evaluates Flush in compari-

son to standard routing protocols as well as static rate algorithms and distinguishes

the contributions that layer 3 and layer 4 congestion control have on goodput. Sec-

tion 6.9 presents, and attempts to resolve, some open concerns. Section 6.10 presents

our concluding thoughts.

6.2 Related Work

Our work is heavily influenced by earlier work in congestion mitigation, congestion

control, and reliable transfer in wired, wireless, and sensor networks. Architecturally,

83

our work was influenced by Mishra’s hop-by-hop rate control [63], which established

analytically that a hop-by-hop scheme reacts faster to changes in the traffic intensity

and thus, utilizes resources at the bottleneck better and loses fewer packets than

an end-to-end scheme. However, this work is focused on a model of switches in the

Internet. Kung et al’s work on credit-based flow control for ATM networks [23] also

influenced our work. Their approach of using flow-controlled virtual circuits (FCVC)

with guaranteed per-hop buffer space is similar to our design. We adapted ideas of

in-network processing in high-speed wired networks to wireless networks in which

transmissions interfere due to the nature of the broadcast medium. Li et al. [55]

studied the theoretical capacity of a chain of nodes limited by interference using

802.11, which is related to our work in finding a capacity and rate. Indeed, our

results generally appear to agree with Li’s models but our work also demonstrates

how real-world factors can cause significant variance from the ideal performance.

ATP [79] and W-TCP [77], two wireless transport protocols that use rate-based

transmission, have also influenced our work. In ATP, each node in a path keeps track

of its local delay and inserts this value into the data packet. Intermediate nodes

inspect the delay information embedded in the packet, and compare it with its own

delay, and then insert the larger of the two. This way, the receiver learns the largest

delay experienced by a node on the path. The receiver reports this delay in each

epoch, and the sender uses this delay to set its sending rate. W-TCP uses purely

end-to-end mechanisms. In particular, it uses the ratio of the inter-packet separation

at the receiver and the inter-packet separation at the sender as the primary metric for

rate control. As a result, ATP and W-TCP reduce the effect of non-congestion related

packet losses on the computation of transmission rate. The goal of both works is a

congestion control of multiple flows. Queueing delay is used as an inter-packet delay.

The goal of Flush, in contrast, is avoiding intra-path interference of a single flow.

So, Flush uses the time to escape an interference range, as an inter-packet delay.

84

Flush computes fine-grained estimates of the bottleneck capacity in real-time and

communicates this during a transfer, allowing our approach to react as packet losses

occur. Since the capacity of a link depends on an interference range of neighboring

nodes, link capacity differs among different nodes. A link along a path with the

lowest capacity determines the bottleneck capacity. Flush also applies rate control to

the problem of optimizing pipelining and interference, neither of which is addressed

in ATP and W-TCP. For this purpose, Flush actually measures interference along a

path, which is not done in ATP nor W-TCP.

A number of protocols have been proposed in the sensor network space which

investigate aspects of this problem. Fusion [44], IFRC [73], and the work in [30]

address the problems of rate and congestion control for collection, but are focused

on a fair allocation of bandwidth among several competing senders, rather than ef-

ficient and reliable end-to-end delivery. Fusion [44] uses only buffer occupancy to

measure congestion and does not try to directly estimate forward path interference.

IFRC estimates the set of interferers on a collection tree with multiple senders, and

searches for a fair rate among these with an AIMD scheme. It does not focus on

reliability, and we conjecture that the sawtooth pattern of rate fluctuations makes for

less overall efficiency than Flush’s more stable rate estimates. Event-to-Sink Reliable

Transport (ESRT) [75] defines reliability as “the number of data packets required for

reliable event detection” collectively received from all nodes experiencing an event

and without identifying individual nodes. This does not satisfy our more stringent

definition of reliability. PSFQ [83] is a transport protocol for sensor networks aimed

at node reprogramming. This is a dissemination problem that is different problem

from our collection problem, as the data moves from the basestation to a large number

of nodes.

Fetch [84] is a reliable bulk-transfer protocol used to collect volcanic activity

monitoring data. Fetch’s unit of transfer is a 256-byte block, which fits in 8 packets.

85

Similar to Flush, Fetch requests a block, and then issues a repair request for missing

packets in a block. Fetch was used to collect data from a six hop network in an

extremely hazardous environment. In collecting 52,736 bytes of data, the median

bandwidth for the 1st hop was 561 bytes per second and the median bandwidth for

6th hop was 129 bytes per second.

Wisden [67], like Flush, is a reliable data collection protocol. Nodes send data

concurrently at a static rate over a collection tree and use local repair and end-to-end

negative acknowledgments. Before a comparison, let us revisit performance metrics.

The first goal is end-to-end reliability. 100% reliability is provided by both Fetch and

Wisden. The second goal is minimal transfer time, which is analogous to a maximal

overall bandwidth. The paper [67] reports on data collected from 14 nodes in a tree

with a maximum depth of 4 hops. Of the entire dataset, 41.3% was transferred over

a single hop. Overall bandwidth was about 782 bytes per second. To compare with

Flush, we assume the same distribution of path lengths. Based on the data from our

experiments, it would take Flush 465 seconds for an equivalent transfer. We ran a

microbenchmark in which we collected 51,680 bytes using a packet size of 80 bytes

(the same as Wisden) and 68 byte payload. This experiment, repeated four times,

shows that Flush achieved 2,226 bytes per second from a single hop compared with

Wisden’s 782 bytes per second. This difference can be explained by the static rate at

every node in Wisden. Incorrectly tuned rates or network dynamics can cause buffer

overflows and congestion collapse at one extreme and poor utilization at the other

extreme. Since in Wisden, nodes are sending without avoidance and adjustment to

interference, cascading losses can occur, leading to inefficiency.

Finally, we attempted to compare Flush with Tenet’s reliable stream transport

service with end-to-end retransmission [38]. Since comparable performance for Tenet

is not available, we attempted to use and characterize its performance on the Mirage

testbed. Unfortunately, despite many bug fixes and weeks of assistance from its

86

authors, Tenet could not be instrumented to run on the Mirage testbed we used for

the majority of our experiments before the writing of this dissertation.

6.3 Models of Connectivity

For a better understanding of interference, connectivity models are introduced.

This section provides a background for rate control in Section 6.5.

6.3.1 Unit Disk Model

The unit disk model is the simplest connectivity model [9]. A node has a circular

region. It has perfect connectivity to a node within this region. For a node out of this

region, there is absolutely no connectivity. Connectivities can be drawn as a graph.

By changing transmission power, connectivities can be changed. When transmis-

sion power is increased, a hop count between two arbitrary nodes will decrease. A

shorter path will lead to a high throughput. However, it will also increase the number

of connectivities among nodes, and the number of edges in a connectivity graph. This

increase, in turn, leads to increased interference among nodes. Increased interference

will decrease the chance of concurrent multiple transfers.

6.3.2 Multi Disk Model

In a radio chip, to successfully decode a received packet, received signal strength

should be at least some signal to noise ratio (SNR) threshold higher than the noise

floor. A node can interfere with transmissions beyond its own packet delivery range.

Therefore, the delivery range (DR) is smaller than the interference range (IR) [40, 64].

87

Compared to the unit disk model, the multi disk model represents the real world more

closely [55].

In addition to IR and DR, let us define the forwarding range (FR). A routing layer

(e.g. [86]) can choose a subset of nodes within DR as candidates to which packets will

be forwarded. Let us define the forwarding to delivery ratio (FDR) as a ratio of FR

to DR. Higher FDR implies an optimistic approach, sending packets to edge nodes

within DR.

Higher FDR will decrease hop counts and lead to shorter paths and higher

throughput. However, received signal strength at a target node will not be much

higher than the SNR threshold plus a noise floor. As will be discussed in Subsec-

tion 6.5.4, in this case a transmission will be more vulnerable to jammers, nodes

beyond DR but within IR.

6.3.3 Multi Cloud Model

In a real world, communication range is not likely to be circular due to envi-

ronmental effects [50]. The packet delivery rate does not change from 0% to 100%

at some threshold. Rather it is closer to a continuous probability distribution over

space, and all these factors change over time. A multi cloud model fits better here.

Thickness and shape of a cloud change over time, and they determine probability

distributions of packet reception rate and received signal strength.

A multi cloud model is accompanied by more side effects when transmission power

and FDR are changed. When transmission power increases, a routing layer has more

alternative choices as candidates for the next hop. When FDR is increased, it also

gives more alternative choices for the next hop. However, links chosen with a higher

FDR are likely to have higher loss rates, leading to a higher end-to-end loss rate.

88

Unit Disk Model Multi Disk Model Multi Cloud Model

FR

DR

IR

Figure 6.1. Three different connectivity models. The unit disk model is the simplest.
The multi cloud model is the most complex and the closest to a real world.

In the deployment at the Golden Gate Bridge, there is only a single flow at a time,

so it is less important to worry about multiple concurrent flows. It is more desirable

to increase bandwidth, so increasing transmission power is reasonable. Actually max-

imum power is used, and an external antenna is used to increase transmission power

further. An even larger antenna could have worked better. MintRoute [86] is cau-

tious in selecting a forwarding range, because their experiments showed nodes near

DR tended to have unstable links. Lower FDR alleviated a problem with a jammer

in our proposed solution to reliable data collection: Flush. In Subsection 6.5.4, we

will talk about this issue with more detail.

Changing the density of a deployment is another option to changing the transmis-

sion power. Increasing the density of a deployment by adding more nodes provides

more alternative choices for the next hop. However, deploying more nodes incurs a

higher cost.

Figure 6.1 visualizes three models.

89

6.4 Analysis of Pipelining

In this Section, let us take a look at how much improvement can be gained through

pipelining. We will also see the effect of diverse parameters on bandwidth. In this

model, a slightly generalized version of the reliability protocol of Straw is used, which

is similar to that of Flush.

6.4.1 Modeling of Pipelining

Let us first define terms. An object is something we are trying to transfer. Let

us refer to the size of an object as o. Then let us define a chunk as a unit of transfer.

This means that a chunk is a unit of reliable data transfer. The protocol makes sure

all data in one chunk is delivered reliably, then it begins to send the next chunk. Let

us refer to the size of a chunk as c. In Straw and Flush, a chunk size is set to be an

object size (c = o). However, let us consider a general case in this model. A packet

is a unit of transfer of a radio. Let us refer to the size of a packet as p. Let us define

n to be the number of sequences that fit into a single NACK packet. Let us refer to

the bandwidth as b, the hop count of a data source from a base station as h, and the

depth of pipelining as d. The depth of pipelining is a distance between two adjacent

packets in a pipeline. For example, a pipelining depth of 5 means that the difference

between starts of two adjacent packet transfers is 5 packet transfer times. A routing

layer provides, but does not guarantee, reliability. Let us refer to a single-hop packet

success rate at this routing layer as s. Many radios have an error checking scheme

at a packet granularity. However, a physical radio sometimes suffers multiple errors,

and an error checking scheme can fail to detect these multiple errors in a packet. Let

us refer to this rate of false positives as e. To provide integrity of data, a redundant

error check is facilitated at a chunk level. When one or more packets in a chunk suffer

false positives, the entire chunk has to be retransmitted. Again, in Straw and Flush,

90

Table 6.1. Terms used in the modeling of pipelining.
Term Meaning

o object size
c chunk size
p packet size
n number of sequences in a NACK packet
b bandwidth
h hop count of the source
d depth of pipelining
s single-hop packet success rate at a routing layer
e rate of false positives of packet error check

a checksum is used for an object, because a chunk contains one complete object.

Table 6.1 summarizes all terms used.

Now that we have all terms defined, let us take a look at how long it takes to

transfer an object. For simplicity, let us assume that a wired link between a base

station mote and a powerful base station PC is not a bottleneck.

An object is divided into multiple chunks and individual chunks are transferred

independently. Therefore the expected time to transfer an object can be factored into

two components: the expected number of chunks to transfer and the expected time

to transfer a chunk.

(expected time to transfer an object)

= (expected number of chunks to transfer)

×(expected time to transfer a chunk)

At first, let us take a look at how many chunks are expected to be transferred.

If there is no undetectable error in a packet, the number of chunks to deliver is

deterministic as the number of chunks in an object. However, due to errors which

can only be detected by a checksum of a chunk, more chunks have to be delivered

including end-to-end retransmissions of chunks. This increase is determined by a

91

chunk error rate as follows.

(expected number of chunks to transfer)

= (number of chunks in an object)× 1

1− (chunk error rate)

Let us enumerate the denominator of the latter term.

1− (chunk error rate)

= (correct chunk rate)

= (end− to− end correct packet rate)
c
p

= {(one− hop correct packet rate)h}
c
p

= (1− e)
hc
p

Then, the expected number of chunks to transfer becomes

(expected number of chunks to transfer)

=
o

c
× 1

(1− e)
hc
p

=
o

c
× (1− e)−

hc
p

Now let us see how much time it takes to transfer a single chunk. A transfer of

a chunk has two main phases: a data transfer phase and an acknowledgment phase.

During the data transfer phase, the source sends the entire chunk once to the sink.

When the data transfer stage completes, the acknowledgment phase begins. The sink

sends selective NACKs to the source. As in Section 3.10, only one selective NACK

can be sent before every piece of data from that NACK is received.

(expected time to transfer a chunk)

= (expected time in data transfer phase)

+(expected time in acknowledgment phase)

In the data transfer phase, a request is sent from the sink to the source, then data

moves from the source to the sink. After the first data packet arrives, the remaining

92

packets arrive separated by some interval; k. When the source is close to the sink, k

is equal to the hop count of the source. However, when the source is is far away, k is

equal to the depth of pipelining. In short, when h < d, k = h. Otherwise, k = d.

(expected time in data transfer phase)

= (time to send a request) + (time to receive the first data)

+(time to receive remaining data)

=
p

b
× h +

p

b
× h +

c− p

b
× k

=
1

b
× {2ph + (c− p)k}

Since each NACK is a single packet, there are multiple NACKs. Each NACK is

independent from others. The expected time in the acknowledgment phase can be

factored into the expected number of NACKs and the expected time for a single

NACK, as follows.

(expected time in acknowledgment phase)

= (expected number of NACKs)

×(expected time for a single NACK)

For each NACK, a NACK packet is sent from the sink to the source, then data

moves from the source to the sink. After the first data packet arrives, remaining

packets arrive separated by k, just like the data transfer phase. The operation of a

single NACK is similar to the data transfer phase, except that the size of the data is

determined by the number of sequences in a NACK packet not by the size of a chunk.

(expected time for a single NACK)

= (time to send a NACK) + (time to receive the first data)

+(time to receive remaining data)

=
p

b
× h +

p

b
× h +

(n− 1)× p

b
× k

=
p

b
× {2h + (n− 1)k}

93

The expected time in the acknowledgment phase becomes

(expected time in acknowledgment phase)

=

c

p
× (1− sh)

n
×

[
p

b
× {2h + (n− 1)k}

]
However, there can be losses in the acknowledgment phase. To compensate for losses,

we can multiply by a factor 1
sh .

(expected time in acknowledgment phase)

=

c

p
× (1− sh)

n
×

[
p

b
× {2h + (n− 1)k}

]
× 1

sh

=
1

b
×

[
{2h + (n− 1)k} × c

n
× 1− sh

sh

]
Then, the total expected time to transfer a chunk becomes,

(expected time to transfer a chunk)

=
1

b
× {2ph + (c− p)k}

+
1

b
×

[
{2h + (n− 1)k} × c

n
× 1− sh

sh

]
=

1

b
×

[
2ph + (c− p)k + {2h + (n− 1)k} × c

n
× 1− sh

sh

]

At last, the expected time to transfer an object is

(expected time to transfer an object)

=
o

c
× (1− e)−

hc
p × 1

b
×

[
2ph + (c− p)k + {2h + (n− 1)k} × c

n
× 1− sh

sh

]

6.4.2 Analysis of Model

Using a model proposed before, let us take a look at the effect of each term in

Table 6.1 on a transfer time. Let us refer to the expected time to transfer an object

as T .

94

• T increases linearly with the size of an object (o).

• The relationship between a chunk size (c) and T is not very clear in the model.

Instead let us consider a high-level relationship. If c is too small, the relative

overhead of sending a request and a NACK increases. Then, T also increases.

On the other hand, if c is too large, the chance of a chunk getting an error

increases. This will lead to a larger fraction of chunks being retransmitted,

leading to a larger T . An optimal value of c will depend on other parameters.

• In 2ph + (c − p)k, since c � p, the packet size (p) has a negligible effect on

this term. In (1− e)−
hc
p , as p increases, this term decreases. Therefore, a larger

p leads to a smaller T . p will be eventually limited by the size of RAM in a

mote. One subtle side effect that is not represented here is that as p increases,

s decreases. That is to say, a longer packet has a higher probability of having

an error and getting discarded, even though we have not witnessed a significant

increase of s within the limit of p imposed by the RAM size.

• If a larger number of sequences can fit into a NACK packet (larger n), T will

decrease. However, there is an upper bound on n, because increasing n requires

increasing p.

• T is inversely proportional to the bandwidth at a routing layer (b).

• Regarding the hop count of the source (h), since 0 < 1− e < 1 and 0 < s < 1,

a larger h will take more time (larger T).

• In our formula, when h < d, a larger d (depth of pipelining) makes T larger.

However, there is one subtle issue here that a smaller d leads to a smaller s,

which can lead to a larger T . So we cannot make d arbitrarily small. This

chapter is about finding an optimal balance between d and s to minimize T .

• A larger single-hop packet success rate at a routing layer (s) makes T smaller.

95

Table 6.2. Typical values for each term in the deployment at the Golden Gate Bridge.
Term Value

o 512KB
c 512KB
p 20B
n 10
b 3.2KB/s
h hop count of the source
d 5
s 0.999
e 4.4e-8

• A higher rate of false positives of packet error check (e) makes T larger.

6.4.3 Use Case

Let us take a concrete use case. In Table 6.2, values for terms are listed in the

typical case of a deployment at the Golden Gate Bridge. The expected number of

chunks to transfer becomes

(expected number of chunks to transfer)

=
o

c
× (1− e)−

hc
p

=
512KB

512KB
× (1− 4.4× 10−8)

−h×512KB
20B = (0.999999956)−25600h

= 0.99887−h

The expected time in the data transfer phase will be

(expected time in data transfer phase)

=
1

b
× {2ph + (c− p)k}

=
1

3.2KB/s
× {2× 20B × h + (512KB − 20B)× k} (s)

= 0.0125h + 159.99k (s)

96

Then the expected time in the acknowledgment phase is

(expected time in acknowledgment phase)

=
1

b
×

[
{2h + (n− 1)k} × c

n
× 1− sh

sh

]
=

1

3.2KB/s
×

[
{2h + (10− 1)k} × 512KB

10
× 1− 0.999h

0.999h

]
(s)

= (32h + 144k)× 1− 0.999h

0.999h
(s)

Finally the expected time to transfer an object becomes

(expected time to transfer an object)

= (expected number of chunks to transfer)

×{(expected time in data transfer phase)

+(expected time in acknowledgment phase)}

= 0.99887−h ×
{

0.0125h + 159.99k + (32h + 144k)× 1− 0.999h

0.999h

}
(s)

Let us take 3 cases, where the source node is 1, 5, and 46 hops away from the sink

node (the base station node).

First, let us take a node which is one hop away from the base station. Then, h = 1

and k = 1.

(expected time to transfer an object)

= 0.99887−1 ×
{

0.0125 · 1 + 159.99 · 1 + (32 · 1 + 144 · 1)× 1− 0.9991

0.9991

}
(s)

= 1.0011× (160.00 + 0.17618) (s)

= 160.35 (s)

This yields a bandwidth of 3193 (B/s). It is higher than the bandwidth at the bridge,

partly because a wired link between the base station mote and the base station PC

limits the bandwidth in reality.

97

Then, let us take the case where the source is 5 hops away; h = 5 and k = 5.

(expected time to transfer an object)

= 0.99887−5 ×
{

0.0125 · 5 + 159.99 · 5 + (32 · 5 + 144 · 5)× 1− 0.9995

0.9995

}
(s)

= 1.0057× (800.01 + 4.4132) (s)

= 809.01 (s)

The bandwidth becomes 633 (B/s).

Finally, let us take the case where the source is 46 hops away; h = 46 and k = 5.

(expected time to transfer an object)

= 0.99887−46 ×
{

0.0125 · 46 + 159.99 · 5 + (32 · 46 + 144 · 5)× 1− 0.99946

0.99946

}
(s)

= 1.0534× (800.53 + 103.24) (s)

= 952.03 (s)

The bandwidth becomes 538 (B/s). This is a little bit higher than what is achieved

in the bridge.

6.5 Flush

Flush is a receiver-initiated transport protocol for moving bulk data across a mul-

tihop wireless sensor network. Flush assumes that only one flow is active for a given

sink at a time. The sink requests a large data object, which Flush divides into packets

and sends in its entirety using a pipelined transmission scheme. End-to-end selective

negative acknowledgments provide reliability: the sink repeatedly requests missing

packets from the source until it receives all packets successfully. During a trans-

fer, Flush continually estimates and communicates the bottleneck bandwidth using a

dynamic rate control algorithm. To minimize overhead and maximize goodput, the

algorithm uses no extra control packets, obtaining necessary information by snooping.

98

Flush makes five assumptions about the link layer below and the clients above:

• Isolation: A receiver has at most one active Flush flow. If there are multiple

flows active in the network they do not interfere in any significant way.

• Snooping: A node can overhear all single-hop packets destined to other nodes.

• Acknowledgments: The link layer provides efficient single-hop acknowledg-

ments.

• Forward Routing: Flush assumes it has an underlying best-effort routing

service that can forward packets toward the data sink.

• Reverse Delivery: Flush assumes it has a reasonably reliable delivery mech-

anism that can forward packets from the data sink to the data source.

The reverse delivery service need not route the packets; a simple flood or a data-

driven virtual circuit [69] is sufficient. The distinction between forward routing and

reverse delivery exists because arbitrary, point-to-point routing in sensornets is un-

common and unnecessary for Flush. Only NACKs move in a reverse direction, which

is only infrequent traffic. Moreover, links are not necessarily symmetric, so the cost

of maintaining a reverse path is more than just reversing a forward route.

6.5.1 Overview

Flush moves through four phases.

Before initiating a data transfer, Flush first probes the depth of a target source

node in a “Topology Query” phase. The request is sent using the underlying delivery

protocol. The topology query is needed to tune the RTT and compute a timeout at

the receiver.

99

Then a “Transfer Phase” starts. To initiate a data transfer, the sink sends a

request for a data object to the source node in the network. Naming of the data

object is outside of the scope of Flush, and is left to an application running above

it. During the data transfer phase, the source sends packets to the sink using the

maximum rate that does not cause intra-path interference. Over long paths, this

rate pipelines packets over multiple hops, spatially reusing the channel. Section 6.5.3

provides intuition on how this works, and describes how Flush actively estimates

this rate. The initial request contains conservative estimates for Flush’s runtime

parameters, such as the transmit rate, learned from field tests. When it receives

the request, the data source starts sending the requested data packets, and nodes

along the route begin their dynamic rate estimation. On subsequent requests or

retransmissions, the sink uses estimated, rather than conservative, parameters.

The sink keeps track of which packets it receives. When a data transfer stage

completes, an “Acknowledgment Phase” begins. The sink sends the sequence numbers

of packets it did not receive back to the data source. Flush uses selective negative

rather than positive acknowledgments because it assumes the end-to-end reception

rate exceeds 50% substantially.

This process repeats in the acknowledgment phase until the sink has received the

requested data in toto. When that occurs, the sink verifies the integrity of the data

in an “Integrity Check” phase. If the integrity check fails, the sink discards the data

and sends a fresh request for the data. If the check succeeds, the sink can request

the next data object, perhaps from another node. Integrity is checked at the level of

both packets and data objects.

To minimize control traffic overhead, Flush bases its estimates on local data and

snoops on control information in forwarded data packets. The only explicit control

packets are those four cases above (e.g. to start a flow and request end-to-end re-

100

2 4 5

4 9

2, 4, 5

4, 9

4, 9

Figure 6.2. NACK transmission example. Flush has at most one NACK packet in
flight at once.

transmissions). Flush is miserly with packet headers as well: three 1-byte fields are

used for rate control and one field is used for the sequence number. The use of few

control packets and small protocol headers helps to maximize data throughput, re-

ducing transfer time. Section 6.6 describes a concrete implementation of the Flush

protocol.

6.5.2 Reliability

Flush uses an end-to-end reliability protocol to be robust to node failures. Fig-

ure 6.2 shows a conceptual session of the protocol, where the data size is 9 packets,

and a NACK packet can accommodate at most 3 sequence numbers. In the data

transfer stage, the source sends all of the data packets, of which some are lost (2, 4, 5,

and 9 in the example), either due to retransmission failures or queue overflows. The

sink keeps track of all received packets. When it believes that the source has finished

101

sending data, the sink sends a single NACK packet, which can hold up to N sequence

numbers, back to the source. This NACK contains the first N (where N = 3 in this

case) sequence numbers of lost packets, 2, 4, and 5. The source retransmits the re-

quested packets. This process continues until the sink has received every packet. The

sink uses an estimate of the round-trip time (RTT) to decide when to send NACK

packets in the event that all of the retransmissions are lost.

The sink sends a single NACK packet to simplify the end-to-end protocol. Having

a series of NACKs would require signaling the source when the series was complete,

to prevent interference along the path. The advantage of a series of NACKs would be

that it could increase the transfer rate. In the worst case, using a single NACK means

that retransmitting a single data packet can take two round-trip times. However, in

practice Flush experiences few end-to-end losses due to its rate control and use of

link layer acknowledgments and retransmissions.

In one experiment along a 48-hop path deployed in an outdoor setting, Flush had

an end-to-end loss rate of 3.9%. For a 760 packet data object and room for 21 NACKs

per retransmission request, this constitutes a cost of two extra round trip times – an

acceptable cost given the complexity savings.

6.5.3 Rate Control

The protocol described above achieves Flush’s first goal: reliable delivery. Flush’s

second goal is to minimize transfer time. Sending packets as quickly as the data link

layer will allow poses problems in the multihop case. First, nodes forwarding packets

cannot receive and send at the same time. Second, retransmissions of the same packet

by successive nodes may prevent the reception of the following packets, in what is

called intra-path interference [82]. One-hop medium access control algorithms will not

solve the problem, due to hidden-terminal effects [69]. Third, rate mismatches may

102

cause queues further along the path to overflow. When a queue overflows, incoming

packets get dropped leading to packet losses. Then, energy used for delivering the

dropped packet is wasted, and more end-to-end retransmissions are required.

Flush strives to send packets at the maximum rate that will avoid intra-path

interference. On long paths, it pipelines packets over multiple hops, allowing spatial

reuse of the channel. To better understand the issues involved in pipelining packets,

we first present an idealized model with strong simplifying assumptions. We then

lift these assumptions as we present how Flush dynamically estimates its maximum

sending rate.

A Conceptual Model

In this simplified model, there are N nodes arranged linearly plus a basestation B.

Node N sends packets to the basestation through nodes N − 1, ..., 1. Nodes forward

a packet as soon as possible after receiving it. This can be a path through a larger

network. Time is divided in slots of length 1second (the unit is irrelevant to a result),

and nodes are roughly synchronized. They can send exactly one packet per slot, and

cannot both send and receive in the same slot. Nodes can only send and hear packets

from neighbors one hop away, and there is no loss. There is however a variable range

of interference, I: a node’s transmission interferes with the reception of all nodes that

are I hops away. As discussed in Section 6.3, a packet reception range is smaller than

an interference range. For the simplicity of modeling, these two ranges are in a unit

of hops.

We ask the question: what is the fastest rate at which a node can send packets

and not cause collisions?

Figure 6.3 shows the maximum rate we can achieve in the simplified pipeline

model for key values of N and I. If there is only one node, as in Figure 6.3(a), it

103

can send to the basestation at the maximum rate of 1 packetspersecond. There is

no contention, as no other nodes transmit. For two nodes (b), the maximum rate

falls to 1/2, because node 1 cannot send and receive at the same time, it is simply

half duplex. The interference range starts to play a role if N ≥ 3. In (c), node 3

has to wait for node 2’s transmission to finish, and for node 1’s, because node 1’s

transmission prevents node 2 from receiving. This is true for any node beyond 3 if we

keep I constant, and the stable maximum rate is 1/3. Finally, in (d) let us assume

I is 2 or larger. Any node past node 3 has to wait for its successor to send, and

for its successor’s two successors to send. Thus, the rate becomes 1/4. However, if

I is 1, node 4 can send while node 1 is sending. Then the maximum rate is 1/3.

Generalizing, the maximum transmission rate in this model for a node N hops away

with interference range I is given by

r(N, I) =
1

min(N, 2 + I)
(6.1)

Thus, the maximum rate at which nodes can send depends on the interference

range at each node, and on the path length (for short paths). If nodes send faster

than this rate, there will be collisions and loss, and the goodput can greatly suffer.

If nodes send slower than this rate, throughput will be lower than the maximum

possible. The challenge is to efficiently discover and communicate this rate, which

will changes with the environment. MintRoute yields a small I value. One open

question is whether other routing protocol choose next hops that result in I � 1.

Dynamic Rate Control

We now describe how Flush dynamically estimates the sending rate that max-

imizes the pipeline utilization. The algorithm is agile in reacting to increases and

decreases in per-hop throughput and interference range, and is stable when link qual-

ities do not vary. The rate control algorithm follows two basic rules:

104

Interference

Packet transmission time

x

1

2

3

4

N = 1(a)

(b)

(c)

(d)

N = 2

N ≥ 3

Interference = 1

N ≥ 4

Interference = 2

nodes

B

1

1

1

2

23

B

B

B

x
x

x

Rate = 1/4

Rate = 1/3

Rate = 1/2

Rate = 1

ti
m

e

ti
m

e

ti
m

e

ti
m

e

Figure 6.3. Maximum sending rate without collision in the simplified pipelining
model, for different numbers of nodes (N) and interference ranges (I).

105

• Rule 1: A node should only transmit when its successor is free from interfer-

ence.

• Rule 2: A node’s sending rate cannot exceed the sending rate of its successor.

Rule 1 derives from a generalization of our simple pipelining model: after sending

a packet, a node has to wait for (i) its successor to forward the packet, and for (ii)

all nodes whose transmissions interfere with the successor’s reception to forward the

packet. This minimizes intra-path interference. Rule 2 prevents rate mismatches:

when applied recursively from the sink to the source, it tells us that the source

cannot send faster than the slowest node along the path. This rule minimizes losses

due to queue overflows for all nodes. The two rules form a control algorithm and are

essentially the goal of rate control. Within these two rules, we want to maximize the

sending rate.

Let us consider a more realistic model, where packet reception range is not a

single hop. A routing layer would not choose the farthest node as the next hop

in favor of a stability of a link. Establishing the best rate requires each node i to

determine the smallest safe inter-packet delay di (from start to start) that maintains

Rule 1. As shown in Figure 6.4, di comprises the time node i takes to send a packet,

δi, plus the time it takes for its successor to be free from interference, Hi−1. δi is

measured between the start of the first attempt at transmitting a packet and the

first successfully acknowledged transmission. Hi−1 is defined for ease of explanation,

and has two components: the successor’s own transmission time δi−1 and the time

fi−1 during which its interfering successors are transmitting. We call the set of these

interfering nodes Ii−1. In summary, for node i, di = δi + (δi−1 + fi−1): the minimum

delay is the sum of the time it takes a node to transmit a packet, the time it takes

the next hop to transmit the packet, and the time it takes that packet to move out

of the next hop’s interference range.

106

i i-1 i-2

δi

δi-1

fi-1
Hi-1 di

i-3 i-4

……

Ii-1

ti
m

e

Forward data packets

Interference

Packet transmission time

Figure 6.4. A detailed look at pipelining from the perspective of node i, with the
quantities relevant to the algorithm shown.

Flush can locally estimate δi by measuring the time it takes to send each packet.

However, each node needs to obtain δi−1 and fi−1 from its successor, because most

likely node i cannot detect all nodes that interfere with reception at node (i − 1).

Instead of separate control packets, Flush relies on snooping to communicate these

parameters among neighbors. Every Flush data packet transmitted from node (i−1)

contains δi−1 and fi−1. Using these, node i is able to approximate its own fi as the

sum of the δs of all successors that node i can hear. As the values δi−1 and fi−1 of its

successor may change over time and space due to environmental effects such as path

and noise, Flush continually estimates and updates δi and fi.

Let us look at an example. In Figure 6.5, node 7 determines, by overhearing

traffic, that the transmissions of node 6 and 5 (but not node 4) can interfere with

reception of traffic from node 8. This means that node 7 can not hear a new packet

from node 8 until node 5 finishes forwarding the previous packet. Thus, f7 = δ6 + δ5.

107

8 7 6 5

8 6 5

4

4

3

Figure 6.5. Packet transfer from node 8 to node 7 interferes with transfer from node
5 to node 4. However it does not interfere with transfer from node 4 to node 3

Node 7 cannot receive a packet while sending, and H7 = δ7 +f7. Considering node 8’s

own transmission time, d8 = δ8 +H7 = δ8 + δ7 + f7 = δ8 + δ7 + δ6 + δ5. So the interval

between two packets should be separated by at least that time.

As described above, each node attempts to determine its own fastest sending rate.

This, however, is not enough for a node to ensure the optimal sending rate for the

path. Rule 2 provides the necessary condition: a node should not send faster than

its successor’s sending rate.

When applied recursively, Rule 2 leads to the minimum sending interval at node

i: Di = max(di, Di−1). Most importantly, this determines the sending interval at the

source, which is the maximum di over all nodes. This rate is easy to determine at each

node: all nodes simply include Di in their data packets, so that the previous node can

learn this value by snooping. To achieve the best rate it is necessary and sufficient

that the source send at this rate, but as we show in Section 6.8, it is beneficial to

impose a rate limit of Di for each node i in the path, and not only for the source.

Flush takes an advantage of in-network rate control on a hop-by-hop basis. Figure 6.6

presents a concise specification of the rate control algorithm and how it embodies the

two simple rules described above.

108

The Flush rate control algorithm

(1) δi : actual transmission time at node i
(2) Ii : set of forward interferers at node i
(3) fi =

∑
k∈Ii

δk

(4) di = δi + (δi−1 + fi−1) (Rule 1)
(5) Di = max(di, Di−1) (Rule 2)

Figure 6.6. The Flush rate control algorithm. Di determines the smallest sending
interval at node i.

Finally, while the above formulation works in a steady state, environmental effects

and dynamics as well as simple probability can cause a node’s Di to increase or

decrease. Because it takes n packets for a change in a delay estimate to propagate

back n hops, for a period of time there will be a rate mismatch between incoming and

outgoing rates. In the case an incoming rate is higher than an outgoing rate, queues

will begin to fill. In order to allow the queues to drain, a node needs to temporarily

tell its previous hop to slow down. We use a simple mechanism to do this, which

has proved efficient: while a node’s queue occupancy exceeds a specified threshold, it

temporarily increases the delay it advertises by doubling δi.

6.5.4 Identifying the Interference Set

A node can interfere with transmissions beyond its own packet delivery range,

as introduced in Section 6.3. Two nodes which can communicate well when other

nodes are quiet, may not hear each other when other nodes are sending packets, even

if those packet can not be decoded. The fact that Flush assumes it can hear its

interferers raises the question of how common this effect is in the routes it chooses.

Packet reception rates follow a curve with respect to the signal-to-noise ratio, but for

simplicity’s sake we consider the case where it follows a simple threshold not including

capture, such that reception is worse than reality.

109

Consider nodes mi and node mi−1 along a path, where mi is trying to send a

packet to mi−1 with received signal strength Si as measured at mi−1. For another

node j to conflict with this transmission, it must have a signal strength of at least

Si − T , as measured at the receiver, where T is the SNR threshold. For a node j to

be a jammer – a node which can conflict with the transmission but cannot be heard

– Sj > Si − T and Sj < Ni−1 + T , where Ni−1 is other sources of noise at mi−1. That

is, its signal strength must be within T of mi’s received signal strength at mi−1 to

conflict and also be within T of the noise floor such that it can never be heard. For

there to be a jammer, Si can be at most 2T stronger than Ni−1.

Using the 100-node Mirage testbed, we examined the topology that Flush’s un-

derlying routing algorithm, MintRoute [86], establishes. We measured the noise floor

of each node by sampling the CC2420 RSSI register and the signal strength of its

predecessor using TinyOS packet metadata. Figure 6.7 shows the results. Fewer than

20% of the links chosen are within the range [Ni + T,Ni + 2T]. For there to be a

jammer, it must be within T of these links, or approximately 3.5dBm. While Flush’s

interference estimation is not perfect, its window of inaccuracy is narrow. One open

question is that while this holds true for our given hardware (CC2420) at a given

power level with a specific routing layer (MintRoute), whether the result remains

true for other combinations of hardware, power level, and routing layers.

6.6 Implementation

To evaluate the Flush algorithms, we implemented them in the nesC program-

ming language [36] and the TinyOS [42] operating system for sensor networks. Our

implementation runs on the Crossbow MicaZ platform but we believe porting it to

other platforms like the Mica2 or Telos would be straightforward.

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 L
in

ks

Difference Between Received Signal Strength and Noise Floor (dBm)

Figure 6.7. CDF of the difference between the received signal strength from a prede-
cessor and the local noise floor. The dotted line indicated twice the SNR threshold.
Links with an SNR exceeding this threshold will not be undetectably affected by
interferers. A large fraction of interferers are detectable and avoidable.

111

6.6.1 Protocol Engine

The Flush protocol engine implements the reliable block transfer service. This

module receives and processes data read requests and selective NACKs from the

receiver. The requests are forwarded to the application, which is responsible for

returning the requested data. After the requested data have been returned, the

protocol engine writes the data and identifying sequence numbers into a packet and

then submits the packet to the routing layer at the rate specified by the packet delay

estimator, which is discussed below.

Although the Flush interface supports 32-bit offsets, a packet sequence number is a

16-bit number, which limits the size of an object. So our current implementation only

supports a limited range of data object sizes: 917,504 bytes (64K x 14 bytes/packet),

1,114,112 bytes (64K x 17 bytes/packet), or 2,293,760 bytes (64K x 35 bytes/packet),

depending on the number of bytes available for the data payload in each packet.

Again, this restriction comes from the use of 16-bit sequence numbers, which we

use in part to conserve data payload and in part because the largest flash memory

available on today’s sensor nodes is 1 MB, and the size of an object should be smaller

than that.

6.6.2 Routing Layer

MintRoute [86] is used to convergecast packets from the source to the sink, which

in our case is the root of a collection tree. Flush does not place many restrictions on

the path other than it be formed by reasonably stable bidirectional links. Therefore,

we believe Flush should work over most multihop routing protocols like CLDP [49],

TinyAODV [7], or BVR [33]. However, we do foresee some difficulty using routing

protocols that do not support reasonably stable paths. Some routing protocols, for

112

example, dynamically choose distinct next hops for packets with identical destina-

tions [65]. It is neither obvious that our interference estimation algorithm would

work with such protocols nor clear that a high rate could be achieved or sustained

because Flush would be unable to coordinate the transmissions of the distinct next

hops.

Flush uses the TinyOS flooding protocol, Bcast, to send packets from the receiver

to the source for both initiating a transfer and sending end-to-end selective NACKs.

Bcast implements a simple flood: each node rebroadcasts each unique packet exactly

once, assuming there is room in the queue to do so. A packet is rebroadcast with a

small, random delay. Although we chose a flood, any reasonably reliable delivery pro-

tocol could have been used (e.g. a virtual circuit, an epidemic dissemination protocol,

or a point-to-point routable protocol), even though this may impact performance.

6.6.3 Packet Delay Estimator

The packet delay estimator implements the Flush rate control and interference

estimation algorithms. The estimator uses the MintRoute Snoop interface to intercept

packets sent by a node’s successor hops and predecessor hop along the path of a flow,

for estimating the set of interferers. The δ, f , and D fields, used by the estimator,

are extracted from the next hop’s intercepted transmissions.

The Flush estimator extracts the received signal strength indicator (RSSI) of pack-

ets received from the predecessor hop and snooped from all successor hops along the

routing path. These RSSI values are smoothed using an exponentially-weighted mov-

ing average to filter out transients on single-packet timescales. History is weighted

more heavily because RSSI is typically quite stable and outliers are rare, so a sin-

gle outlier should have little influence on the RSSI estimate. A node i considers

a successor node (i − j) an interferer of node i + 1 at time t if, for any j > 1,

113

rssii+1(t)− rssii−j(t) < 10 dBm. The threshold of 10 dBm was chosen after consult-

ing the literature [70] and empirically evaluating a range of values.

Since the forwarding time fi was defined to be the time it takes for a packet

transmitted by a node i to no longer interfere with reception at node i, we set fi

accordingly, such that all values j for which the above inequality holds contribute to

fi. We implemented a timeout mechanism under which if no packets are overheard

from a successor during an interval spanning 100 consecutive packet receptions, that

successor is no longer considered an interferer. However, we left this mechanism

turned off so none of the experiments presented in this work use this timeout. Based

in part on the preceding information, the estimator computes di, the minimum delay

between adjacent packet transmissions. The estimator provides the delay information,

Di, to the protocol engine to allow the source to set the sending rate. The estimator

also provides the parameters δi, fi, Di to the queuing component so that it can insert

the current values of these variables into a packet immediately prior to transmission.

6.6.4 Queuing

Queues provide buffer space during transient rate mismatches which are typically

due to changes in link quality. In Flush, these mismatches can occur over short time

scales because rate estimates are based on averaged interval values, so unexpected

losses or retransmissions can occur. Note that a retransmission does not follow a

schedule and occurs as soon as a CSMA backoff ends. Also, control information

can take longer to propagate than data: at a node i along the path of a flow, data

packets are forwarded with a rate 1
δi

while control information propagates in the

reverse direction with a rate 1
δi+fi

. The forwarding interference time fi is typically

two to three times larger than the packet sending delay δi, so control information

114

flows three to four times slower than data. Since it can take some time for the control

information to propagate to the source, queues provide buffering during this time.

Our implementation of Flush uses a 16-deep rate-limited queue. Our queue is a

modified version of QueuedSend, the standard TinyOS packet queue. Our version,

called RatedQueuedSend, implements several functions that are not available in the

standard component. First, our version measures the local forwarding delay, δ, and

keeps an exponentially-weighted moving average over it. This smoothed version of

δ is provided to the packet estimator. Second, RatedQueuedSend enforces the queue

departure delay Di specified by the packet delay estimator. Third, when a node be-

comes congested, it doubles the delay (δ′) advertised to its descendants but continues

to drain its own queue with the smaller delay until it is no longer congested. We

chose a queue depth of 5, about one-third of the queue size, as our congestion thresh-

old. Fourth, the queue inserts the then-current local delay information into a packet

immediately preceding transmission. Fifth, RatedQueuedSend retransmits a packet

up to four times (for a total for five transmissions) before dropping it and attempting

to send the next packet. Finally, the maximum queuing delay is bounded, which en-

sures the queue will be drained eventually, even if a node finds itself neighborless. In

addition to six core functions, it also records all parameters together with a globally

synchronized timestamp, whenever a packet is submitted to a lower layer including

retransmissions. This information is used to construct detailed views of Flush for

evaluation. For example, by looking at when each unique packet is submitted to the

MAC layer, it is possible to calculate a real sending rate.

Figure 6.8 shows the overall structure of Flush. This figure shows where each

component and function is located and how they interact. δ′ and D′ are used for an

advertisement. δ′ gets doubled when the queue length grows. D′ is computed using

δ′.

115

Di’

Di

δi,δi’

δi’,fi,Di’

δi-1,fi-1,Di-1

Queue

Protocol
Engine

Rate
Control

Tree Routing

Data

Control

Queue

Rate Limiter

Control Info Writer

Delay Measurer

Control Info Reader

Forward Filter

Figure 6.8. Overall structure of Flush

6.6.5 Link Layer

Flush employs link-layer retransmissions at an underlying layer to reduce the num-

ber of expensive end-to-end transmissions that are needed. Flush also snoops on the

channel to overhear the next hop’s delay information and the predecessor hop and

successor hops’ RSSI values. Unfortunately, these two requirements – hardware-based

link layer retransmission and snooping – are at odds with each other on the MicaZ

mote. The CC2420 radio used in on the MicaZ does not simultaneously support hard-

ware acknowledgments and snooping, and the default TinyOS distribution does not

provide software acknowledgments. Our implementation enables the snooping feature

of the CC2420 and disables hardware acknowledgments. We use a modified version of

the TinyOS MAC, CC2420RadioM, which provides software acknowledgments [73]. We

configure the radio to perform a clear channel assessment and employ CSMA/CA for

medium access. Since Flush performs rate control at the network layer, and does not

116

schedule packets at the link layer, CSMA decreases collision due to retransmissions

during transient periods.

6.6.6 Protocol Overhead

Our implementation of Flush uses the default TinyOS packet which provides 29

bytes of payload above the link layer. The allocation of these bytes is as follow:

MintRoute (7 bytes), sequence numbers (2 bytes), Flush rate control fields (3 bytes),

and application payload (17 bytes). Flush shares packet structures and types with

Straw. Details of Straw packet and control structures are in Section 3.10. Since

in the default implementation, only 17 bytes are available for the application pay-

load, Flush’s effective data throughput suffers. During subsequent experiments, we

changed the application payload to 35 bytes. Future work might consider an A-law

style compressor/expander (compander) [8], used in audio compression, to provide

high resolution for expected delay values while allowing small or large outliers to be

represented.

6.6.7 Memory and Code Footprint

We round out our implementation of Flush by reviewing its footprint. Flush uses

629 bytes of RAM and 6,058 bytes of code, including the routines used to debug,

record performance statistics, and log traces. These constitute 15.4% of RAM and

4.62% of program ROM space on the MicaZ platform. Table 6.3 shows a detailed

breakdown of memory footprint and code size. The Protocol Engine accounts for

301 out of the 629 bytes of RAM, or 47.9% of Flush’s memory usage. A significant

fraction of this memory (180 bytes) is used for message buffers, which are used to

hold prefetched data.

117

Table 6.3. Memory and code footprint for key Flush components compared with the
regular TinyOS distribution of these components (where applicable). Flush increases
RAM by 629 bytes and ROM by 6,058 bytes.

Memory Footprint Code Size
Component Regular Flush Regular Flush

Queue 230 265 380 1,320
Routing 754 938 76 2,022
Proto Eng - 301 - 2,056
Delay Est - 109 - 1,116

Total 984 1,613 456 6,514
Increase 629 6,058

1 4
1

4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

32

A

D

F

H

J

L

N

O

P

C

E

G

I

K

M

B

5

4

3

2

1

25

11

12

13

14

19

32

30

10

20

26

28

39

36

38

56

53

66

71

78

55

59

67

79

76

45

58

69

80

95

52

48

92

105

97

142

143

119

129

126

135

148

146

122

124

134

149

111

115

121

140

136

147

113

112

23

22

33

64

37

21 41

47

42

44

65 68

61

63

24

84

89

87

108

100

81

86

91

109

99

83

85

88

110

103

137

139

93

107

127

133

138

128

90

130

9

8

7

6

18

17

16

15

31

29

34

35

57

60

75

70

51

54

77

74

50

73

106

96

131

145

114

123

141

150

118

120

132

144

116

11710498 102

49

101 12540 62 72

82

94

4627

43

Figure 6.9. Mirage Testbed at Intel Research Berkeley. Purple (darker) stars are 100
MicaZ nodes used in experiments.

6.7 Experimental Methodology

We evaluate the effectiveness of Flush through a series of experiments on the Intel

Research Berkeley sensornet testbed, Mirage, as well as a 79-node, ad hoc, outdoor

testbed at RFS. The Mirage testbed consists of 100 MicaZ nodes, see Figure 6.9.

We used node 0, in the southwest corner, as the sink or basestation. After setting

the MicaZ node’s CC2420 radio power level to -11 dBm, the diameter of the resulting

network varied between 6 and 7 hops in our experiments. The end-to-end quality

of the paths was generally good, but in Section 6.8.4 we present the results of an

experiment in which the quality of a link was artificially degraded. The outdoor

118

3
0

4

6
8

9 15
14

19
18

23
22

27
26

31
30

35
34

49
48

59
57

71
69

76
75

7977737270
6867666564

626058
55

535250
47464544434241

3938373632282420161210

1

5
7

11

13 17 21 25 29 33 40

51

54 56

61

63 74

Figure 6.10. The network used for the scalability experiment. Of the 79 total nodes,
the 48 nodes shown in gray were on the test path. This test is a demonstration that
Flush works over a long path and is not limited to a linear topology, as will be shown
in other tests.

testbed consisted of 79 nodes deployed on the ground in a linear fashion with 3ft

spacing in an open area, creating an approximately 48 hop network. The physical

extent of the network spanned 243ft. The radio transmission power was lowered to

decrease range, but not so much so that the network would be void of interference.

The resulting topology is shown in Figure 6.10, where the rightmost node is 48 hops

from the root, which is the leftmost node.

We use the MintRoute [86] protocol to form a collection tree with the sink located

at the root. MintRoute uses periodic beacons to update link quality estimates. Prior

to starting Flush, we allow MintRoute to form a routing tree, and then freeze this tree

for the duration of the Flush transfer. In Section 6.9, we discuss Flush’s interactions

with other protocols and applications.

In our experiments the basestation issues a request for data from a specific node.

All the nodes are time synchronized prior to each trial, and they log to flash memory

the following information for each packet sent: the Flush sequence number, times-

tamp, the values of δ, f , and D, and the instantaneous queue length. After each

run we collect the data from all of the nodes using Flush itself. We compare Flush

with a static algorithm that fixes the sending rate. Then, to evaluate the benefits of

using hop-by-hop in-network rate control, we compare Flush with a variation which

only adjusts the sending rate at the source, even though the intermediate nodes still

estimate and propagate the delays as described in Section 6.5.3.

To better appreciate the choice of evaluation metrics presented in this section, we

119

revisit Flush’s design goals. First, Flush requires complete reliability, which the pro-

tocol design itself provides (and our experiments validate, across all trials, networks,

and data sizes). The remaining goals are to maximize goodput, minimize transfer

time, and adapt gracefully to dynamic changes in the network.

6.8 Evaluation

We perform a series of experiments to evaluate Flush’s performance. First, we

establish a baseline using fixed rates against which we compare Flush’s performance.

This baseline also allows us to factor out overhead common to all protocols and avoid

concerning ourselves with questions like, “why is there a large disparity between the

raw radio rate of 250 kbps and Flush?” Next, we compare Flush against the baseline.

In the following subsection, we then take a more in-depth look at Flush’s perfor-

mance. We also explore the benefits of hop-by-hop rate control of Flush compared

with controlling the rate at only the source. Then, we consider the effects of abrupt

link quality changes on Flush’s performance and analyze Flush’s response to a par-

ent change in the middle of a transfer. The preceding experiments are carried out

on the Mirage testbed [11]. Next, we consider Flush’s scalability by evaluating its

performance over a 48-hop, ad hoc, outdoor wireless network at the Richmond Field

Station (RFS) [12]. To the best of our knowledge, this is the longest multihop path

used in evaluating a protocol in the wireless literature.

6.8.1 High Level Performance

In this section, we examine the effective packet throughput and bandwidth by

comparing Flush with various values of the fixed-rate algorithm. To establish a base-

line for comparison, we first consider the packet throughput achieved by the fixed

120

rate algorithm. For each inter-packet interval of 10, 20, and 40ms, we reliably trans-

fer 17,000 bytes in 850 packets along a fixed path of length ranging from zero to six

hops. The smallest inter-packet interval our hardware platform physically sustains is

8ms, which we empirically discover using a one hop goodput test.

We begin by initiating a multihop transfer from a source node six hops away from

the sink. After this transfer completes, we perform a different transfer from the 5th

hop, and continue this process up to, and including, a transfer in which the source

node is only one hop away. The data is also transferred from a basestation mote to a

basestation PC. Figure 6.11 shows the results of these trials. The X-axis represents

a hop count from the basestation sink. The 0th hop indicates the basestation mote.

The Y-axis represents an effective bandwidth in terms of packets per second. Each

line indicates a different inter-packet interval value among 10ms, 20ms, and 40ms.

Each point in the graph is the average of four runs, with the vertical bars indicating

the standard deviation.

Each path length has a fixed sending rate which performs best. When transferring

over one hop there is no forward interference, and a node can send packets as fast

as the hardware itself can handle. As the path length increases, the rate has to be

throttled down, as packets further along in the pipeline interfere with subsequent ones.

For example, sending with an interval of 20ms provides the best packet throughput

over 3, 4, 5, and 6 hop transfers, as there are too many losses due to queue overflows

when sending faster. Slower rates do not cause interference, but also do not achieve

the full packet throughput as the network is underutilized. From the view point of a

conceptual model (Equation 6.1), when hop count (N) is 1 and 2, N determines a rate

and an inter-packet interval. 10ms is close to this rate, while 20ms and 40ms is too

large and channel capacity is underutilized. As N increases, 20ms gets closer to an

optimal inter-packet time than 10ms. 10ms is too small and has a lower throughput

than 20ms. Detailed reasons for this phenomenon will be investigated later. Straw is

121

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
pk

t/s
)

Hops from Sink

Fixed 10ms
Fixed 20ms
Fixed 40ms

Figure 6.11. Packet throughput of fixed rate streams over different hop counts. The
optimal fixed rate depends on the distance from the sink.

the same as a fixed rate, except that it chooses this fixed value by looking at a depth

of a node.

Figure 6.12 shows the results of the same experiments with Flush. The circles

in the figure show the performance of the best fixed rate at the specific path length.

Flush performs very close or better than this envelope, on a packets/second basis.

These results suggest that Flush’s rate control algorithm is automatically adapting to

select the best sustainable sending rate along the path and optimizing for changing

link qualities and forward interference.

Figure 6.13 shows the effective data bandwidth on a bytes/second basis. The

effective bandwidth of Flush is sometimes lower than the best fixed rate because we

adjust for protocol overhead (see Subsection 6.6.6). In this figure, Flush’s rate control

122

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
pk

t/s
)

Hops from Sink

Flush
Best Fixed Rate

Figure 6.12. Effective packet throughput of Flush compared to the best fixed rate at
each hop, taken from Figure 6.11. Flush tracks the best fixed packet rate.

header fields account for 3 bytes (δ, f , and D each require 1 byte), leaving only 17

bytes for the payload – a 15% protocol overhead penalty.

These figures show that fixing a sending interval may work best for a specific en-

vironment, but that no single fixed rate performs well across different path lengths,

topologies, and link qualities. We could fine tune the rate for a specific deployment

and perhaps get slightly better performance than Flush, but that process is cumber-

some because it requires tuning the rate for every node and brittle because it does

not handle changes in the network topology or variations in link quality gracefully.

The Chipcon CC2420 radio in a MicaZ mote has 250kbps capacity. Bandwidth

from a node that is one hop away from a basestation is 6,530bps. Let us take a look

at why this difference exists. The TinyOS CSMA MAC layer provides an effective

packet throughput of 160 packets per second over a single-hop wireless link. A wired

123

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
B

an
dw

id
th

 (
B

/s
)

Hops from Sink

Flush
Best Fixed Rate

Figure 6.13. Effective bandwidth of Flush compared to the best fixed rate at each
hop, taken from Figure 6.11. Flush’s protocol overhead reduces the effective data
rate.

124

link between a basestation mote and a basestation PC has 100 packets per second

throughput. It is not clear how much two transfers can overlap. Assuming they

perfectly overlap, then an effective packet throughput through two links will become

100 packets per second. With a 29-byte payload at the MAC layer, an effective

bandwidth at this layer is 23,200bps. The routing layer (MintRoute) uses a 7-byte

header reducing effective bandwidth to 17,600bps. For reliable data collection, 2 bytes

are further used to include a sequence number. Flush also uses 3 bytes for rate control

information. Then possible bandwidth becomes 13,600bps. Flush has overhead of a

topology query, end-to-end retransmissions, and an integrity check. 69.8% of time is

used for actual data transfer in this case. Then the final possible effective bandwidth

becomes 9,490bps. Therefore, assuming that a basestation mote perfectly overlaps

wireless and wired transfers, an effective bandwidth of 6,530bps is 68.8% of a possible

capacity. If there can be no overlap, a possible capacity is 5,840bps, which is smaller

than what is achieved by Flush. Investigation of how much overlap actually happens

is future work. However, through this process, it is shown that the bandwidth of

Flush is in a reasonable range and not a severe underutilization.

Figure 6.14 compares the efficiency, in terms of losses, of the different alternatives

from the experiment above. The X-axis represents hop count from the sink and the

Y-axis represents the average number of transmissions of nodes along the path. We

use this average number of packets sent per hop in our transfer of 1000 packets as

an indicator for the efficiency of each sending rate. Effective bandwidth is negatively

correlated with the number of messages transmitted, as the transfers with a small

fixed interval lose many packets due to queue overflows. As in the previous graphs,

Flush performs close to the best fixed rate at each path length. Note that the extra

packets transmitted by Flush and by the “Fixed 40ms” flow are mostly due to link-

level retransmissions, which depend on the link qualities along the path. Flush and

“Fixed 40ms” flow experienced no losses due to queue overflows. In contrast, the

125

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6

A
ve

ra
ge

 T
ra

ns
m

is
si

on
s

P
er

 N
od

e

Hops from Sink

Flush
Fixed 10ms
Fixed 20ms
Fixed 40ms
Optimal

Figure 6.14. Average number of transmissions per node for sending an object of 1000
packets. The optimal algorithm assumes no retransmissions. Losses at Fixed 40ms is
only due to losses not interference. Flush closely tracks the efficiency of this case.

retransmissions of the “Fixed 10ms” and “Fixed 20ms” curves include both the link-

level retransmissions and end-to-end retransmissions for packet losses due to queue

overflows at intermediate nodes.

6.8.2 Performance Breakdown

We now explore why Flush performs well compared with fixed rates and how

Flush performs at a high level. Sending a packet during the acknowledgment phase is

more expensive than sending a packet during the transfer phase both in terms of the

number of packets needed and the total transfer time required. In response to a single

NACK, only a few packets can be sent, but this requires one more packet transfer and

one additional RTT delay. Therefore, an important design goal is to maximize the

126

0

0.2

0.4

0.6

0.8

1

1.2

Flush Fixed 40 Fixed 20 Fixed 10 ASAP

Fr
ac

tio
n

ACK Phase
Transfer Phase

Figure 6.15. The fraction of data transferred from the 6th hop during the transfer
phase and the acknowledgment phase. Greedy best-effort routing (ASAP) exhibits a
loss rate of 43.5%. A higher than sustainable rate leads to a high loss rate.

data received during the transfer phase. The higher the goodput during the transfer

phase, the greater the effective bandwidth becomes.

Figure 6.15 shows the fraction of packets received during the transfer phase from

a node that is 6 hops away from the basestation. The data set is the same one as

that in Subsection 6.8.1. Flush collects 99.5% of packets during the transfer phase.

In contrast, the “Fixed 10ms” rate flow collects only 62.7% during the transfer phase.

The spacing of packets at a 10ms interval is so small that it suffers severe loss from

intra-path interference. This high loss rate explains why “Fixed 10ms” in Figure 6.14

sends a lot more packets, losing efficiency. “ASAP” is a greedy best-effort transfer

that uses the underlying routing layer, MintRoute [86]. Packets are sent as quickly

as possible, in quick succession. “ASAP” exhibits an even higher loss rate of 43.5%.

Figure 6.16 shows a breakdown of how time is spent. As we argued previously,

the “Acknowledgment Phase” is expensive. In a case of the “Fixed 10ms” rate, a

127

0

5

10

15

20

25

30

35

40

45

50

Flush Fixed 40 Fixed 20 Fixed 10 ASAP

Ti
m

e
(s

)

Integrity
Check
ACK Phase

Transfer
Phase
Topology
Query

Figure 6.16. The fraction of time spent in different stages. A retransmission during
the acknowledgment phase is expensive, and leads to poor throughput. Greedy best-
effort routing (ASAP) does not have the acknowledgment phase nor the integrity
check phase.

128

modest fraction of packets are transferred during the transfer phase, and more time

is spent in the Acknowledgment phase. While both “Fixed 10ms” and “ASAP” spend

less time than Flush in the transfer phase, they also deliver less data than Flush in

these phases. To quantitatively compare the amount of time and data involved at

the transfer phase, we compute an effective goodput. This indicates the effectiveness

of the Flush rate control algorithm.

Figure 6.17 shows fraction of data transferred during the transfer phase and the

acknowledgment phase in Flush. As hop count from the sink increases, more data

is transferred in the acknowledgment phase, except where the source is 5 hops away.

Except this case, most of the data is transferred in the transfer phase, implying Flush

does not lose many packets. Figure 6.18 shows the fraction of time spent in different

stages of Flush. As hop count from the sink increases, more time is taken overall,

however time spent in the topology query phase and the integrity check phase remains

similar. When the source is closer to the sink, time spent in the transfer phase is

shorter, and relative overhead of time spent in other phases gets larger.

Figure 6.19 shows an effective goodput of bandwidth during the transfer phase.

These bandwidth measurements include an adjustment factor for payload size. To

see how Flush’s rate control algorithm compares with fixed rate schemes, we present

effective goodput in terms of packet throughput in Figure 6.20. We see that starting

from the 2nd hop, and continuing for all greater hop counts, Flush provides a similar

goodput to the best case among fixed rates and the greedy best-effort. For a basesta-

tion (0th hop) and the 1st hop, “Fixed 10ms” and “ASAP” provide a higher goodput.

However, they suffer higher loss rates and pay a high price during the acknowledgment

phase. Overall, Flush provides competitive goodput during the transfer phase.

In summary, Flush provides comparable effective goodput during the transfer

phase as Figure 6.20 shows but with very low loss rates as Figure 6.15 shows. Flush

129

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6
Hops from Sink

Fr
ac

tio
n

ACK Phase
Transfer Phase

Figure 6.17. The fraction of data transferred during the transfer phase and the
acknowledgment phase in Flush. In many cases, most of the data is transferred
during the transfer phase.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6
Hops from Sink

Ti
m

e
(s

)

Integrity
Check
ACK Phase

Transfer
Phase
Topology
Query

Figure 6.18. The fraction of time spent in different stages in Flush. When the source
is close to the sink, time spent in the transfer phase is short, and the relative overhead
of the time spent in other phases is large.

130

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
G

oo
dp

ut
 (

B
/s

)

Hops from Sink

Flush
Fixed 40
Fixed 20
Fixed 10

ASAP

Figure 6.19. Effective goodput during the transfer phase. Effective goodput is com-
puted as the number of unique packets received over the duration of the transfer
phase.

131

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6

E
ffe

ct
iv

e
G

oo
dp

ut
 (

pk
t/s

)

Hops from Sink

Flush
Fixed 40
Fixed 20
Fixed 10

ASAP

Figure 6.20. Effective goodput during the transfer phase. Effective goodput is com-
puted as the number of unique packets received over the duration of the transfer phase.
Flush provides comparable goodput as a lower loss rate which reduces the time spent
in the expensive acknowledgment phase, which increases the effective bandwidth.

132

also spends much less time in the expensive acknowledgment phase as Figure 6.16

shows. This combination makes Flush’s overall transfer time relatively short, and

explains Flush’s overall good bandwidth delivery.

6.8.3 A More Detailed Look

We now take a more detailed look at Flush’s operation. In the following two

subsections, Flush’s rate control header fields account for 6 bytes (δ, f , and D each

require 2 bytes). leaving 14 bytes for the payload. At this initial stage, 2 bytes are

used just in case a value exceeds 255. We discovered, however, that the δ, f , and D

values never exceeded 255, so these fields were reduced to a single byte each in other

bandwidth and scalability experiments.

“Flush-e2e” is a variation of Flush which only limits the rate at the source, even

though the intermediary nodes still estimate the delays and propagate them as de-

scribed in Subsection 6.5.3. Using the detailed logs collected for a sample transfer of

900 packets (12600 bytes) over a 7-hop path, we are able to look at the real sending

rate at each node, as well as the instantaneous queue length at each node as each

packet is transmitted. These can be done in a time-correlated manner using globally

synchronized time stamps. These traces are similar to TCP traces.

Figure 6.21 shows the sending rate of one node over a particular interval, where

the rates are averaged over the last k packets received. We set k to 16, which is the

maximum queue length. Other nodes had very similar curves. We compare Flush

and Flush-e2e with the best performing fixed-rate sending interval at this path length,

30ms. Sending at this interval did not congest the network. As expected, under stable

network conditions, the fixed-rate algorithm maintains a stable rate. Although Flush

and Flush-e2e showed very similar high-level performance in terms of throughput and

133

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
)

Time (s)

Fixed 30ms

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
) Flush-e2e

 0
 20
 40
 60
 80

 100

 0 5 10 15 20

Ra
te

 (p
kt

/s
) Flush

Figure 6.21. Packet rate over time for a source node, which is 7 hops away from the
base station. Packet rate averaged over 16 values, which is the max size of the queue.
Flush approximates the best fixed rate with the least variance.

134

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

 Flush
Congestion Threshold

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Flush Sequence Number

 Flush-e2e

Figure 6.22. Maximum queue occupancy across all nodes for each packet. Flush
exhibits more stable queue occupancies than Flush-e2e. Fluctuating queue occupancy
together with a change in an environment can lead to a queue overflow and packet
loss.

bandwidth, we see here that the Flush is much more stable, although not to the same

extent as the fixed interval transfer.

Another benefit of the in-network rate limiting, as opposed to source-only lim-

iting, can be seen in Figure 6.22. This plot shows the maximum queue occupancy

for all nodes in the path, versus the packet sequence number. Note that we use

sequence number here instead of time because two of the nodes were not properly

time-synchronized due to errors in the timesync protocol. The results are very sim-

ilar, though the rates do not vary much. The queue length in Flush is always close

to 5, which is the congestion threshold we set for increasing the advertised delay (c.f.

Subsection 6.5.3 and Subsection 6.6.4). Our simple scheme of advertising our delay

as doubled when the queue is above the threshold seems to work well in practice. It

135

 2
 4
 6
 8

 10
 12
 14
 16

 0 100 200 300 400 500 600 700 800 900
Q

ue
ue

 L
en

gt
h

Flush Sequence Number

 Flush-e2e

 2

 4

 6

 8

 10

 12

 14

 16

 760 770 780 790 800 810 820

Q
ue

ue
 L

en
gt

h

Queue at Hop 5
Queue at Hop 4
Queue at Hop 3
Queue at Hop 2
Queue at Hop 1

Figure 6.23. Detailed view of instantaneous queue length for Flush-e2e in Figure 6.22.
Queue fluctuations ripple through nodes along a flow.

is actually good to have some packets in the queue, because it allows the node to

quickly increase its rate if there is a sudden increase in available bandwidth.

In contrast, Flush-e2e produces highly variable queue lengths. The peak occu-

pancy of Flush-e2e is already 14. A little more fluctuation or packets from other

services like a routing layer can easily overflow a queue leading to packet loss. The

lack of rate limiting at intermediary nodes induces a cascading effect in queue lengths,

as shown in Figure 6.23. The top graph is the same graph in Figure 6.22 (bottom).

The bottom graph provides a closer look at the queue lengths for 5 out of the 7 nodes

in the transfer during a small subset of the entire period. The queue is drained as

fast as possible when bandwidth increases, thus increasing the queue length at the

next hop. This fast draining of queues also explains the less stable rate shown in

Figure 6.21.

136

6.8.4 Adapting to Network Changes

We also conduct experiments to assess how well Flush adapts to changing network

conditions. Our first experiment consists of introducing artificial losses for a link in

the middle of a 6-hop path in the testbed for a limited period of time. We did this by

programmatically having the link layer drop each packet sent with a 50% probability.

This effectively doubled the expected number of transmissions along the link, and

thus the delay.

Figure 6.24 provides the instantaneous sending rate over the link with the forced

losses for Flush, Flush-e2e, and Fixed 30ms. Again, 30ms was the best fixed rate for

this path before the link quality change was initiated. In the test, the link between

two nodes, 3 and 2 hops from the sink, respectively, has its quality halved between

the 7 and 17 second marks, relative to the start of the experiment. We see that

the static algorithm rate becomes unstable during this period; due to the required

retransmissions, the link can no longer sustain the fixed rate. Flush adapts gracefully

to the change: the sending rate decreases smoothly. The variability remains constant

during the entire experiment. Flush-e2e is not very stable when we introduce the

extra losses, and is also less stable after the link quality is restored.

Figure 6.25 compares the queue lengths for the same experiment for all three

algorithms, and the reasons for the rate instability becomes apparent, especially for

the fixed rate case. The queue at the lossy node becomes full as its effective rate

increases, and is rapidly drained once the link quality is reestablished.

The last experiment looks at the effect of a route change during a transfer on the

performance of Flush. We started a transfer over a 5 hop path, and approximately

21 seconds into the experiment forced the node 4 hops from the sink to switch its

next hop. Consequently, the entire subpath from the node to the sink changed (from

1a, 2a, 3a to 1b, 2b, 3b). Note that this scenario does not simulate node failure,

137

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s

Time(s)

Fixed 30ms

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s

 Flush-e2e

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20

Pk
ts

/s

 Flush

Figure 6.24. Sending rates at the lossy node for the forced loss experiment. Packets
were dropped with 50% probability between 7 and 17 seconds. Both Flush and Flush-
e2e adapt while the fixed rate overflows its queue.

138

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h

Time(s)

Fixed 30ms

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush-e2e

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20

Q
ue

ue
 L

en
gt

h Flush

Figure 6.25. Queue length at the lossy node for the forced loss experiment. Packets
were dropped with 50% probability between 7 and 17 seconds. Flush and Flush-e2e
adapt while the fixed rate overflows its queue.

139

 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30 35 40 45

Q
ue

ue
 L

en
gt

h

Time(s)

Queue at Hop 4

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

Pk
ts

/s

Hop 1a
Hop 2a
Hop 3a

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45

Pk
ts

/s

Hop 1b
Hop 2b
Hop 3b

 0
 5

 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35 40 45
Pk

ts
/s

Hop 0 (sink)
Hop 4 (parent change)

Figure 6.26. Detailed look at the route change experiment. Node 4’s next hop is
changed, changing all nodes in the subpath to the root (from 1a, 2a, 3a to 1b, 2b,
3b). Top 3 graphs show rates at each node. The bottom graph shows a queue length
at hop 4. No packets were lost, and Flush adapted quickly to the change. The only
noticeable queue increase was at node 4. This figure shows Flush adapts when the
next hop changes suddenly.

but rather a change of the next hop in a routing topology, so packets should not be

lost. The high level result is that the change had a negligible effect on performance.

Figure 6.26 presents a detailed look at the rates for all nodes (top 3 graphs), and the

queue length at the node that had its next hop changed (bottom graph). There was

no packet loss, and the rate control algorithm was able to quickly reestablish a stable

rate. Right after the change there was a small increase in the affected node’s queue,

but that was rapidly drained once the delays were adjusted.

140

While we do not show any results for node failure, we expect the algorithm will

considerably slow down the source rate, because the node before the failure will have

to perform a large number of retransmissions. If the routing layer selects a new route

in time, the results we have lead us to believe Flush would quickly readjust itself to

use the full bandwidth of the new path.

6.8.5 Scalability

Finally, to evaluate the scalability of Flush, we deployed an outdoor network

consisting of 79 MicaZ nodes in an outdoor setting at the Richmond Field Station

(RFS) [12]. For the following experiments, we increased the data payload size to

38 bytes (from 20 bytes used previously) for the fixed rate and 35 bytes (from 17 bytes

used previously) for Flush. The size of the Flush rate control header was 3 bytes,

leaving us with a protocol overhead of about 8%. We transfer a 26,600 byte data

object from the node with a depth of 48 (node 79), and then perform similar transfers

from nodes at depths 40, 30, 20, 15, 10, 7, 5, 4, 3, 2, and 1. The experiment is repeated

for Flush, and fixed rates of 20ms, 40ms, and 60ms. Each experiment is performed

twice and the results are averaged. We omit error bars for clarity. Figure 6.27 shows

the results of this experiment. The results indicate that Flush efficiently transfers

data over very long networks – 48 hops in this case.

6.9 Discussion

In this section, we discuss two important issues that we have largely ignored until

now. The first deals with whether a multihop collection protocol that scales to tens of

hops is needed and the second deals with the interactions between Flush and routing

that led us to freeze the collection tree over the duration of a transfer.

141

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

E
ffe

ct
iv

e
B

an
dw

id
th

 (
B

/s
)

Hops from Sink

Flush
Fixed 20ms
Fixed 40ms
Fixed 60ms

Figure 6.27. Effective bandwidth from the real-world scalability test where 79 nodes
formed a 48-hop network at RFS. The Flush header is 3 bytes and the Flush payload
is 35 bytes (versus a 38-byte payload for the fixed rates). Flush closely tracks or
exceeds the best possible fixed rate across all hop distances that we tested.

142

6.9.1 Density of Nodes

We claimed that delivery of bulk data to the network edge is complicated by the

vagaries of wireless communication: efficiency and reliability are hampered by lossy

links, intra-path interference is hard to avoid, inter-path interference is hard to cope

with, and transient rate mismatches can overflow queues. One compelling solution

to these challenges might be to simply sidestep them. By judiciously placing high-

power radios within a low-power sensornet and increasing the density of nodes, a

network administrator might be able to reduce it to a single-hop problem, remove the

complexities that multihop introduces, and allow simple, robust solutions.

Unfortunately, it is not always possible to convert a deployment of low-power,

short-range nodes into an equivalent network of high-power, long-range nodes. In

other words, it is not possible to arbitrarily increase the density of nodes to a degree

where all nodes are within a reach of all others. Some applications are deployed in

challenging radio environments that do not provide a clear line-of-sight over multiple

hops. For example, signals do not propagate well in steel-framed buildings, steel

truss bridges, or dense foliage. When physically large networks are deployed in such

environments, multihop delivery is often the enabler, so eliminating it eliminates the

application as well.

6.9.2 Interactions with Routing

We freeze the MintRoute collection tree immediately prior to a Flush transfer and

then let the tree thaw after the transfer. This freeze-thaw cycle prevents collisions

between routing beacons and Flush traffic. MintRoute [86] generates periodic routing

beacons but these beacons use a separate, unregulated data path to the radio. With

no rate control at the link layer, the beacons are transmitted at inopportune times,

143

collide with Flush traffic, and are lost. Since MintRoute depends on these beacons

for route updates and it evicts stale routes aggressively, Flush freezes the MintRoute

state during a transfer to avoid stale route evictions. A more general statement of a

problem is how to handle an external contention, and this problem is also observed

in the deployment at the Golden Gate Bridge, see Section 5.1.

Our freeze-thaw approach sidesteps the issue and works well in practice. Over

small time scales on the order of a Flush session, routing paths are generally stable,

even if instantaneous link qualities vary somewhat. Our results show that Flush can

easily adapt to these changes. In Figure 6.26, we also showed that Flush adapts

robustly to a sudden change in the next hop. If the underlying routing protocol can

find an alternate route, then Flush will adapt to it. But if the physical topology

changes, and routing cannot adapt, then new routes will need to be rebuilt and the

Flush session will have to be restarted.

It may seem that forcing all traffic to pass through a single (rate-limited) queue

would address the issue, but it does not. Nodes located on the flow path would be able

to fairly queue routing and Flush traffic. However, nodes located off the flow path but

within interference range of the flow would not be able to contend for bandwidth and

successfully transmit beacons. Hence, if the physical topology changes along the flow

path during a transfer, the nodes along the path may not be able to find an alternate

route since beacons from these alternate routes may have been lost. A solution may

be an interference-aware fair MAC. Many pieces are already in place [30, 44, 73] but

the complete solution would require rate-controlling all protocols at the MAC layer

across all nodes within interference range of the path.

144

6.10 Summary

In this chapter, we present Flush, a reliable, single-flow transport protocol for

transferring bulk data from a source to a sink over a multihop wireless sensor network.

Flush achieves end-to-end reliability through selective negative acknowledgments and

with its adaptive rate control algorithm, Flush can automatically match or exceed

the best fixed rate for a multihop flow. We show that Flush is scalable; it provides

an effective bandwidth of approximately 550 bytes/second over a 48-hop wireless

network, approximately one-third of the rate achievable over one hop. Flush achieves

these results by allowing just one flow at a time (a reasonable restriction for many

sensornet applications) and by following two simple rules. First, a node should only

transmit when its successor is free from interference. At each node, Flush attempts

to send as fast as possible without causing interference at the next hop along the

flow. Second, a node’s sending rate cannot exceed the sending rate of its successor.

Again, Flush attempts to send as fast as possible without increasing the average queue

occupancy at the next hop along the flow. These two rules, applied recursively along

the path, explain Flush’s performance.

145

Chapter 7

Data Analysis of the Golden Gate

Bridge

This chapter analyzes data from the deployment at the Golden Gate Bridge. Be-

fore a detailed analysis is presented, let us first take a look at a high-level deployment

history and characteristics.

The operation of a system can be divided mainly into two phases. Each phase

uses one battery set. Each battery set can last about 5 weeks. There was a non-

operational period between the two phases, which was about one month. There also

was an addition of nodes before the second phase. In the first phase, 8 nodes were

deployed on the south tower and 51 nodes were deployed on the west side of the

main span only. In total, 59 nodes were deployed. In the second phase, 2 nodes were

added to the west side of the main span to provide better connectivity. 3 nodes were

deployed on the east side of the main span to distinguish the torsional mode of a

vibration from the vertical mode of a vibration. The total count of nodes increased

to 64 nodes.

The topology that was formed at the bridge was close to a linear topology, there

146

 0

 10

 20

 30

 40

 50

 60

 70

07/08 07/22 08/05 08/19 09/02 09/16 09/30 10/14 10/28

N
um

be
r

of
 N

od
e

Time

Deployed
Accessible

Figure 7.1. Number of nodes deployed and number of nodes accessible. About one
month after the first set of batteries depleted, the second set of batteries was deployed
with a few more nodes.

were only a couple of candidates for the next hop. The failure of one node sometimes

led to a failure of all the nodes beyond that point. The topology also showed an

enormous depth. Large initial RTT and timeout values slowed down the reaction to

a loss.

7.1 Lifetime Analysis

Figure 7.1 shows how many nodes were deployed and how many of them were

actually accessible over time.

‘Deployed’ means the number of nodes deployed over time. At the beginning only

a few nodes were deployed, and their operation was observed. They worked fine, so

147

we cranked up the number of nodes from July 18th. We can see the beginning of the

second phase, when there is a sudden increase on September 15th.

‘Accessible’ indicates how many nodes were replying to a ping command. From an

initial small-scale deployment, the size of the network ramped up quickly. Then there

was a sudden drop on July 21st, and the drop was sustained for a few days. It took

a few days to find a problem, but finally it was figured out on July 24th. This drop

was due to a loose connection between the accelerometer board and the MicaZ mote.

All enclosures were opened. Screws were added to secure the connection between the

board and the mote. The number of accessible nodes increased unstably, but dropped

again on July 29th. The weather became very foggy and windy. It also took a few

days to figure out the problem. The cause was a combination of strong wind and bi-

directional patch antenna. Under heavy wind, the patch antenna flapped like a fish

tail. Zip ties were applied to every antenna. The number of accessible nodes increased

again on August 1st. The battery depleted on August 13th. The operation of the

second phase starts with a replacement of batteries on September 19th. However,

due to rusted battery connectors, nodes did not operate well from September 23rd.

On October 14th, there was a shortage of power in a control room in the south tower

where the base station server was located. The base station server also suffered power

failure, and it was decided to finish the second phase.

7.2 Failure Analysis

Each packet has a 16-bit cyclic redundancy check (CRC). An entire object, which

is the entire data set from one node, has a 16-bit checksum. A few data objects

have a checksum mismatch. It implies that there are packets which have multiple

data corruptions, yet still pass a CRC check at the packet level. It is calculated how

many packets belong to this situation out of how many one-hop packet transfers.

148

There were 2630 Straw transfers. Out of 389, 472, 400 one-hop packet transfers, 17

or more packets were corrupted (when an object is corrupted, at least one packet in

the object has multiple corruptions which CRC cannot detect). This ratio is equal to

approximately 1 out of 23 million packets.

To analyze factors contributing to a failure of an operation, a subset of data is

taken from August 1st to August 8th where hardware malfunctions are minimal. The

data can be divided into two periods: before and after software upgrade. The software

is upgraded on August 3rd reflecting lessons learned. The upgrade is only applied

to software running on the base station PC and had the following improvements:

when a routing tree becomes stale, the base station PC instructs the routing layer

to rebuild the tree. When a received object has an incorrect checksum, the PC

abandons the corrupted data and asks for a retransmission of that object. Table 7.1

and 7.2 show the causes and fractions of failures before and after the software upgrade

respectively. ‘Deployed, Not Accessible’ is a case where a node does not respond to a

ping command. It is unknown whether the cause of a failure is a hardware failure or a

transient disconnection. ‘Accessible, Sentri Disconnected’ is when a node is connected

to a network, however the application fails to communicate with that node. In ‘Sentri

Connected, Timesync Failed’, a time synchronization component (FTSP [61]) fails to

synchronize, so sampling cannot be triggered. In both Table 7.1 and 7.2, this is the

most common cause of a failure. ‘Timesync Successful, Straw Disconnected’ indicates

Straw failed in the middle of a communication due to a disconnection at a routing

layer. After the software upgrade, when Straw suffers a disconnection in the middle of

a transfer, the routing layer is instructed to rebuild the tree. Then, Straw starts the

transfer again. Sometimes, a rebuilt tree can still suffer disconnections repeatedly.

After the software upgrade, this type of failure decreased by a factor of 4. ‘Straw

Connected, Data Corrupted’ is when two checksums of an object at the source and

at the sink do not match, indicating that the object is corrupted. After the software

149

Table 7.1. Causes and fractions of failures before software upgrade. A time synchro-
nization failure is the most common cause of a failure.

Category Number of Cases Fraction
Deployed, Not Accessible 3 2.54%
Accessible, Sentri Disconnected 0 0.00%
Sentri Connected, Timesync Failed 13 11.02%
Timesync Successful, Straw Disconnected 2 1.69%
Straw Connected, Data Corrupted 1 0.85%
Successful 99 83.90%
Total 118 100.00%

Table 7.2. Causes and fractions of failures after software upgrade. Again a time
synchronization failure is the most common cause of a failure. There is no case of
data corruption because upgraded software retransmits a corrupted object.

Category Number of Cases Fraction
Deployed, Not Accessible 8 1.23%
Accessible, Sentri Disconnected 8 1.23%
Sentri Connected, Timesync Failed 61 9.40%
Timesync Successful, Straw Disconnected 3 0.46%
Straw Connected, Data Corrupted 0 0.00%
Successful 569 87.68%
Total 649 100.00%

upgrade, a corrupted object is retransmitted, so this failure disappeared thereafter.

[29] compares gain and power consumption of error-correcting codes for four different

wireless scenarios – very low power, low-power, average-power, and high-power. It

will be an interesting future work to apply their findings to our data. ‘Successful’ is

when everything works correctly and data is sampled and collected successfully. After

the software upgrade, 87.68% of cases showed a successful operation.

7.3 Vibration Data

A sample of vibration data collected on the bridge at 6 PM on the 21st of Septem-

ber, 2006, is presented in Figures 7.2 and 7.3. These data show acceleration time his-

tories and frequency domain plots of the accelerations in the transverse direction at

150

two nodes, one located near the south quarter span of the bridge (about 365m north

of the south tower) and one at the mid-span of the bridge. The accelerations were

sampled at 1kHz, with every twenty samples averaged and logged to flash. Each figure

includes a zoom to a 20s interval of the acceleration time history. The Power Spectral

Density (PSD) of the signals were computed using the Welch method [56]. The

time histories show that the signal in both orientations have an average amplitude of

about 5mG with peaks of approximately 10mG, which most likely corresponds to the

passing of large cars or trucks. The frequency analysis shows clearly defined peaks in

the low frequencies, where the natural modes of vibrations of the bridge are expected

to reside. For the vertical orientation, a peak at 0.11Hz matches the fundamental

frequency of the bridge found by past studies [22]. Modal properties also match with

the simulation model and the previous study; see Figures 7.4 and 7.5. Other resonant

peaks of 0.17Hz, 0.22Hz, and 0.27Hz are consistently repeated in all the signals from

the vertically oriented sensors, and are likely to be other fundamental modes of the

bridge structure. More extensive analysis of this data will be presented in future

publications.

151

0 200 400 600 800 100 120 140 160
-20

0

20

Time

Ac
ce

l (
m

g)

Time and Frequency plots, Horizontal sensorss392n64

0 5 10 15 20 25
0

500

1000

frequency

|F
FT

(A
cc

el
)|

(m
g*

se
c)

0 5 10 15 20 25
0

2

4

6

frequency

P
S

D
 (m

g/
H

z)

0 0.5 1 1.5 2 2.5
0

2

4

6

frequency

P
S

D
 (m

g/
H

z)

 Figure 7.2. Time and Frequency Plots of Transverse (Horizontal) Sensor Located at
Quarter span, 365m North of the South Tower. The data matches the fundamental
frequency of the bridge in past studies [22].

152

0 200 400 600 800 100 120 140 160
-50

0

50

Time

Ac
ce

l (
m

g)

Time and Frequency plots, Horizontal Sensorss392n78

0 5 10 15 20 25
0

200

400

600

frequency

|F
FT

(A
cc

el
)|

(m
g*

se
c)

0 5 10 15 20 25
0

2

4

6

frequency

P
S

D
 (m

g/
H

z)

0 0.5 1 1.5 2 2.5
0

2

4

6

frequency

P
S

D
 (m

g/
H

z)

Figure 7.3. Transverse (Horizontal) Sensor, Mid-Span

153

FE Computed, T = 10.55Sec

Abdel- Ghaffar, T = 10.92Sec

This Study, T = 9.41 Sec

Golden Gate Bridge, AntiSymmetric Vertical Mode 1

Figure 7.4. The vertical modal properties match among simulation model, previous
study, and this study [22].

FE Computed, T = 5.37Sec

Abdel- Ghaffar, T = 4.42Sec

This Study, T = 4.37 Sec

Golden Gate Bridge, AntiSymmetric Torsional Mode 1

Figure 7.5. Torsional modes also match [22].

154

Chapter 8

Discussion

This work gives a few implications to WSN that can be interesting research topics.

8.1 Link Estimation Under Heavy Traffic

The routing layer and time synchronization protocol worked fine in laboratory

tests, but revealed some problems in the deployment on the Golden Gate Bridge. One

more difficulty confronted was that heavy traffic of reliable data collection prevented

the routing layer (MintRoute) from estimating link quality correctly. Therefore, after

some time of transmission, the routing layer broke down. The routing tree had to be

frozen before each data collection. Our best guess is that heavy traffic increases the

noise level so that the link estimator gets confused.

155

8.2 De-synchronization of Packet Transmission

Schedule

In Flush, it is still not very clear what happens when a packet transmission sched-

ule gets out of synchronization. CSMA helps in handling a transient mismatch.

However, a link-level retransmission makes the problem more subtle. A packet loss

will lead to a retransmission. This retransmission is out of schedule and can cause

interference. However, the schedule of the following packet will not be influenced

by this retransmission since the beginning of transmissions of individual packets are

separated by a specified interval regardless of retransmissions.

A more complicated case happens when adjacent nodes have different packet in-

tervals for a while. In this case, the beginning of transmissions can stay out of syn-

chronization for a while, and the resolution of interference and collision may heavily

rely on CSMA. CSMA suffers a hidden terminal problem and can lead to a decreased

performance in this case. However, even in this case, Flush will decrease the rate

to be suitable for reliance on CSMA. Another remaining question is whether Flush

recovers back to a synchronized state.

8.3 CSMA versus TDMA

Flush tries to control its rate and schedule packet transmissions in order to avoid

intra-path interference. Flush performs these tasks at the transport layer. TDMA

also controls a share of the channel for each node and schedules transmissions at the

MAC layer, however for a different reason. TDMA tries to coordinate different flows

fairly and avoid inter-path collisions.

Controlling packet scheduling and transmission times at the MAC layer can be

156

more efficient than controlling these functions at the transport layer without any

knowledge about lower layers. Therefore, coordination with a TDMA MAC might

provide an opportunity for better interference control. However, in TDMA, the chan-

nel is wasted unless every node always has data to send in each slot. In the case

of Flush, there is only one active flow at a time. Therefore, other slots cannot be

utilized, leading to underutilization of potential capacity. TDMA can confront a dif-

ficulty when there is a node (A) which cannot be heard clearly. TDMA may exclude

this node in scheduling at a node (B). However a node (A) may constantly interfere

with transmissions of a node (B).

8.4 Practical Issues

In a Flush test at RFS, MicaZ motes show a shorter communication range under

the sun than under a cloud. We do not completely understand which component

contributes to a decrease in communication range when heated.

Packaging was a problem in GGB. In spite of enormous care to tightly seal the

enclosures, a few nodes had water in their packages. It is not clear whether the water

actually entered into the package or air with moisture was circulated into the package

and was condensed.

To provide high reliability at the link layer, the hardware and deployment layout

were planned and adjusted. A bi-directional patch antenna was used as a hardware

solution. When nodes were deployed, the distance between adjacent nodes was ad-

justed to provide good link quality, Since the data is very important for the research

of structural analysis, the system is somewhat overengineered to reduce the risk of

losing data. There was not a chance to confront low link quality in normal operation,

157

except those due to hardware failures. A network with moderate loss could yield

interesting observations in a future deployment.

158

Chapter 9

Conclusion

This work has four major contributions to wireless sensor networks. First, require-

ments are identified to obtain data of sufficient quality to have real scientific value

to civil engineering researchers for structural health monitoring. An accurate data

acquisition system, high-frequency sampling with low jitter and time synchronized

sampling were not provided by previous work like Wisden [87] and Tenet [38], but

are crucial for data to be useful for structural health monitoring, and are provided in

this work. Second, the system is designed to scale to a large number of nodes to allow

dense sensor coverage of real world structures. This is verified in a 64-node, 46-hop

deployment over the main span and a tower of the Golden Gate Bridge. Third, this

network is deployed in a real world structure solving a myriad of problems encountered

in a real deployment in difficult conditions. As a result, the network provided reliable

and calibrated data for analysis, which was not possible in previous studies. Finally,

a reliable data collection protocol, Flush is provided. Reflecting on experiences from

the deployment at the Golden Gate Bridge, Flush sustains high bandwidth even in a

48-hop network and adapts to environment dynamics.

159

Bibliography

[1] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/apps/

HighFrequencySampling/MicroTimerM.nc. MicroTimer Code in TinyOS Code

Repository.

[2] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/

GGB/apps/Sentri. Sentri Code in TinyOS Code Repository.

[3] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/

GGB/tos/lib/Straw. Straw Code in TinyOS Code Repository.

[4] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/tos/lib/

Broadcast. Broadcast Code in TinyOS Code Repository.

[5] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/tos/

system/BufferedLog.nc. BufferedLog Code in TinyOS Code Repository.

[6] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/tos/

system/TimerC.nc. Timer Code in TinyOS Code Repository.

[7] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/

hsn/README_TinyAODV. TinyAODV Code in TinyOS Code Repository.

[8] http://en.wikipedia.org/wiki/A-law_algorithm. A-law Companding Algo-

rithm).

160

http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ apps/HighFrequencySampling/MicroTimerM.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ apps/HighFrequencySampling/MicroTimerM.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ contrib/GGB/apps/Sentri
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ contrib/GGB/apps/Sentri
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ contrib/GGB/tos/lib/Straw
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ contrib/GGB/tos/lib/Straw
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/lib/Broadcast
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/lib/Broadcast
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/system/BufferedLog.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/system/BufferedLog.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/system/TimerC.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/ tos/system/TimerC.nc
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn/README_TinyAODV
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/hsn/README_TinyAODV
http://en.wikipedia.org/wiki/A-law_algorithm

[9] http://en.wikipedia.org/wiki/Unit_disk_graph. OKW Robust-Box

C2012201.

[10] http://mathworld.wolfram.com/.

[11] http://mirage.berkeley.intel-research.net/. Mirage Testbed in Intel Re-

search at Berkeley.

[12] http://rfs.berkeley.edu. Richmond Field Station (RFS).

[13] http://tinyos.net/scoop/special/hardware#mica2. Crossbow Mica2.

[14] http://tinyos.net/scoop/special/hardware#mica2dot. Crossbow

Mica2Dot.

[15] http://www.eecs.berkeley.edu/~binetude/ggb/Sentri.htm. Manual for

Sentri User Command.

[16] http://www.millennium.berkeley.edu/sensornets/. Soda Hall Testbed.

[17] http://www.okwenclosures.com/products/okw/robust.htm. OKW Robust-

Box C2012201.

[18] http://www.rayovacindustrial.com/assets/pdf/marketing_data_sheets/

928_003217.pdf. Rayovac 928 Heavy Duty Carbon Zinc Battery.

[19] http://www.superpass.com/SPPG24BD.html. Superpass 2.4GHz Bi-directional

Antenna SPAPG24-BD.

[20] http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_

Datasheet.pdf. Crossbow MicaZ.

[21] http://www.yuasa-intl.com/1axis.html.

161

http://en.wikipedia.org/wiki/Unit_disk_graph
http://mathworld.wolfram.com/
http://mirage.berkeley.intel-research.net/
http://rfs.berkeley.edu
http://tinyos.net/scoop/special/hardware#mica2
http://tinyos.net/scoop/special/hardware#mica2dot
http://www.eecs.berkeley.edu/~binetude/ggb/Sentri.htm
http://www.millennium.berkeley.edu/sensornets/
http://www.okwenclosures.com/products/okw/robust.htm
http://www.rayovacindustrial.com/assets/pdf/marketing_data_sheets/928_003217.pdf
http://www.rayovacindustrial.com/assets/pdf/marketing_data_sheets/928_003217.pdf
http://www.superpass.com/SPPG24BD.html
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.yuasa-intl.com/1axis.html

[22] Ahmed M. Abdel-Ghaffar. Ambient vibration studies of golden gate bridge.

Journal of Engineering Mechanics, 111(4):483–499, April 1985.

[23] T. Blackwell, K. Chang, H.T. Kung, and D. Lin. Credit-based flow control for

ATM networks. In Proc. of the First Annual Conference on Telecommunications

R&D in Massachusetts, 1994.

[24] Johannes Blomer, Malik Kalfane, Richard Karp, Marek Karpinski, Michael Luby,

and David Zuckerman. An xor-based erasure-resilient coding scheme. Technical

Report TR-95-048, International Computer Science Institute, 1995.

[25] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A

digital fountain approach to reliable distribution of bulk data. In Proceedings of

the ACM SIGCOMM ’98. ACM Press, 1998.

[26] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea, and

Antony Rowstron. Virtual ring routing: network routing inspired by dhts. In

SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technolo-

gies, architectures, and protocols for computer communications, pages 351–362,

New York, NY, USA, 2006. ACM Press.

[27] Juan M. Caicedo, Johannio Marulanda, Peter Thomson, and Shirley J. Dyke.

Monitoring of bridges to detect changes in structural health. the Proceedings of

the 2001 American Control Conference, Arlington, Virginia, June 2527, 2001.

[28] Penggen Cheng, Wenzhong John Shi, and Wanxing Zheng. Large structure

health dynamic monitoring using gps technology.

[29] Claude Desset and Andrew Fort. Selection of channel coding for low-power

wireless systems. In Vehicular Technology Conference, volume 3, pages 1920–

1924, April 2003.

162

[30] Cheng Tien Ee and Ruzena Bajcsy. Congestion control and fairness for many-

to-one routing in sensor networks. In SenSys ’04: Proceedings of the 2nd In-

ternational Conference on Embedded Networked Sensor Systems, pages 148–161.

ACM Press, 2004.

[31] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time syn-

chronization using reference broadcasts. the Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation (OSDI 2002), Boston, MA.

December 2002.

[32] Jonathan M. Engel, Lianhan Zhao, Zhifang Fan, Jack Chen, and Chang Liu.

Smart brick - a low cost, modular wireless sensor for civil structure monitoring.

International Conference on Computing, Communications and Control Technolo-

gies (CCCT 2004), Austin, TX USA, August 14-17, 2004.

[33] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee, David Culler,

Scott Shenker, and Ion Stoica. Beacon vector routing: scalable point-to-point

routing in wireless sensornets. In NSDI’05: Proceedings of the 2nd conference

on Symposium on Networked Systems Design & Implementation, pages 24–24,

Berkeley, CA, USA, 2005. USENIX Association.

[34] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol

for sensor networks. SenSys 03, November 5-7, 2003, Los Angeles, California,

USA.

[35] Deepak Ganesan. TinyDiffusion Application Programmer’s Interface API 0.1.

http://www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf.

[36] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David

Culler. The nesC language: A holistic approach to networked embedded systems.

In Programming Language Design and Implementation (PLDI), June 2003.

163

http://www.isi.edu/scadds/papers/tinydiffusion-v0.1.pdf

[37] Steven D. Glaser, Min Chen, and Thomas E. Oberheim. Terra-scope - a mems-

based vertical seismic array. Smart Structure & Systems, 2(2):115–126, 2006.

[38] Omprakash Gnawali, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup

Paek, Marcos Vieira, Deborah Estrin, Ramesh Govindan, and Eddie Kohler.

The tenet architecture for tiered sensor networks. In Proceedings of the 4th

ACM Conference on Embedded Networked Sensor Systems (Sensys ’06). ACM

Press, November 2006.

[39] Krishna Gummadi, Ramakrishna Gummadi, Steve Gribble, Sylvia Ratnasamy,

Scott Shenker, and Ion Stoica. The impact of dht routing geometry on resilience

and proximity. ACM SIGCOMM, August 2003.

[40] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. In IEEE

Transactions on Information Theory, volume 46, pages 388–404. IEEE Transac-

tions on Information Theory Society, March 2000.

[41] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and

Kristofer S. J. Pister. System Architecture Directions for Networked Sensors. In

Proceedings of the Ninth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2000), Cambridge,

MA, USA, pages 93–104. ACM Press, November 2000. TinyOS is available at

http://webs.cs.berkeley.edu.

[42] Jason Hill, Robert Szewczyk, Alec Woo, Philip Levis, Kamin Whitehouse, Joe

Polastre, David Gay, Sam Madden, Matt Welsh, David Culler, and Eric Brewer.

Tinyos: An operating system for sensor networks, 2003.

[43] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemina-

tion protocol for network programming at scale. In SenSys ’04: Proceedings of

164

the 2nd international conference on Embedded networked sensor systems, pages

81–94, New York, NY, USA, 2004. ACM Press.

[44] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in

wireless sensor networks. In SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems, November 2004.

[45] Van Jacobson and Michael J. Karels. Congestion avoidance and control. In In

Proceedings of the Sigcomm ’88 Symposium, Stanford, CA, August 1988.

[46] B.F. Spencer Jr., M. Ruiz-Sandoval, and N. Kurata. Smart sensing technol-

ogy: Opportunities and challenges. Journal of Structural Control and Health

Monitoring, in press, 2004.

[47] Sukun Kim. Wireless sensor networks for structural health monitoring. Master’s

thesis, University of California at Berkeley, May 2005.

[48] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves,

Steven Glaser, and Martin Turon. Health monitoring of civil infrastructures using

wireless sensor networks. In the Proceedings of the 6th International Conference

on Information Processing in Sensor Networks (IPSN ’07), Cambridge, MA.

ACM Press, April 2007.

[49] Young Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic

routing made practical. In Proceedings of the Second USENIX/ACM Symposium

on Networked System Design and Implementation (NSDI 2005), Boston, MA,

May 2005.

[50] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Andrea Richa. Con-

stant density spanners for wireless ad-hoc networks. In SPAA ’05: Proceedings

of the seventeenth annual ACM symposium on Parallelism in algorithms and

architectures, pages 116–125, New York, NY, USA, 2005. ACM Press.

165

[51] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet Chhabra,

Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman, and Mark Yarvis.

Design and deployment of industrial sensor networks: experiences from a semi-

conductor plant and the north sea. In Proceedings of the 3rd ACM Conference on

Embedded Networked Sensor Systems (Sensys), San Diego, pages 64–75. ACM

Press, November 2005.

[52] Markus Krüger and Christian U. Grosse. Structural health monitoring with

wireless sensor networks. Otto-Graf-Journal, 15:77–90, 2004.

[53] Philip Levis, Sam Madden, David Gay, Joe Polastre, Robert Szewczyk, Alec

Woo, Eric Brewer, and David Culler. The emergence of networking abstractions

and techniques in tinyos. In Proceedings of the First USENIX/ACM Symposium

on Networked Systems Design and Implementation (NSDI 2004), 2004.

[54] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-

regulating algorithm for code maintenance and propagation in wireless sensor

networks. In First USENIX/ACM Symposium on Network Systems Design and

Implementation (NSDI), March 2004.

[55] Jinyang Li, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and Robert

Morris. Capacity of ad hoc wireless networks. In MobiCom ’01: Proceedings

of the 7th annual international conference on Mobile computing and networking,

pages 61–69, New York, NY, USA, 2001. ACM Press.

[56] Lennart Ljung. Prentice Hall PTR, Upper Saddle River, N.J., 2nd edition, 1999.

[57] Jerome P. Lynch. Overview of wireless sensors for real-time health monitoring

of civil structures. Proceedings of the 4th International Workshop on Structural

Control (4th IWSC), New York City, NY, June 10-11, 2004.

166

[58] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks. In Proceedings of

the ACM Symposium on Operating System Design and Implementation (OSDI),

December 2002.

[59] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John

Anderson. Wireless Sensor Networks for Habitat Monitoring. In Proceedings

of the ACM International Workshop on Wireless Sensor Networks and Applica-

tions, September 2002.

[60] Miklós Maróti. Directed flood-routing framework. Technical Report ISIS-04-502,

ISIS, Vanderbuilt University, 2004.

[61] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding

time synchronization protocol. In SenSys ’04: Proceedings of the 2nd inter-

national conference on Embedded networked sensor systems, pages 39–49, New

York, NY, USA, 2004. ACM Press.

[62] Petar Maymounkov. Online codes. NYU, Technical Report TR2002-833, Novem-

ber 2002.

[63] Partho Pratim Mishra, Hemant Kanakia, and Satish K. Tripathi. On hop-by-hop

rate-based congestion control. IEEE/ACM Trans. Netw., 4(2):224–239, 1996.

[64] Thomas Moscibroda. The worst-case capacity of wireless sensor networks. In

IPSN ’07: Proceedings of the 6th international conference on Information pro-

cessing in sensor networks, pages 1–10, New York, NY, USA, 2007. ACM Press.

[65] Vinayak Naik, Anish Arora, Prasun Sinha, and Hongwei Zhang. Sprinkler: A

reliable and energy efficient data dissemination service for wireless embedded

devices. In Proceedings of the 26th IEEE Real-Time Systems Symposium (RTSS

2005).

167

[66] Clement Ogaja, Chris Rizos, Jinling Wang, and James Brownjohn. Toward the

implementation of on-line structural monitoring using rtk-gps and analysis of

results using the wavelet transform.

[67] Jeongyeup Paek, Krishna Chintalapudi, John Cafferey, Ramesh Govindan, and

Sami Masri. A wireless sensor network for structural health monitoring: Perfor-

mance and experience. In Proceedings of the Second IEEE Workshop on Embed-

ded Networked Sensors (EmNetS-II).

[68] Shamim N. Pakzad, Sukun Kim, Gregory L Fenves, Steven D. Glaser, David E.

Culler, and James W. Demmel. Multi-purpose wireless accelerometers for civil

infrastructure monitoring. In Proceedings of the 5th International Workshop on

Structural Health Monitoring (IWSHM 2005), September 2005.

[69] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach.

Morgan Kaufmann, third edition, May.

[70] Marina Petrova, Janne Riihijarvi, Petri Mahonen, and Saverio Labella. Perfor-

mance study of ieee 802.15.4 using measurements and simulations. In Wireless

Communications and Networking Conference 2006 (WCNC 2006), volume 1,

pages 487–492, April 2006.

[71] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access

for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems, pages 95–107, New York,

NY, USA, 2004. ACM Press.

[72] Pei Qiang, Guo Xun, and Zhao Chang-you. A wireless structural health moni-

toring system in civil engineering. The Third International Conference on Earth-

quake Engineering (3ICEE), Nanjing, China, October 18-20, 2004.

168

[73] Sumit Rangwala, Ramakrishna Gummadi, Ramesh Govindan, and Konstantinos

Psounis. Interference-aware fair rate control in wireless sensor networks. In

SIGCOMM 2006, Pisa, Italy, August 2006.

[74] Luigi Rizzo. Effective erasure codes for reliable computer communication proto-

cols. ACM Computer Communication Review, 27(2):24–36, April 1997.

[75] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT: Event-to-sink reliable

transport in wireless sensor networks. In In Proceedings of MobiHoc, June 2003.

[76] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav Kusy,

András Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sensor network-

based countersniper system. In SenSys ’04: Proceedings of the 2nd international

conference on Embedded networked sensor systems, pages 1–12, New York, NY,

USA, 2004. ACM Press.

[77] Prasun Sinha, Thyagarajan Nandagopal, Narayanan Venkitaraman, Raghupathy

Sivakumar, and Vaduvur Bharghavan. WTCP: A reliable transport protocol for

wireless wide-area networks. Wireless Networks, 8(2-3):301–316, 2002.

[78] Fred Stann and John Heidemann. Rmst: Reliable data transport in sensor

networks. In Proceedings of the First International Workshop on Sensor Net

Protocols and Applications, pages 102–112. IEEE, April 2003.

[79] Karthikeyan Sundaresan, Vaidyanathan Anantharaman, Hung-Yun Hsieh, and

Raghupathy Sivakumar. ATP: a reliable transport protocol for ad-hoc networks.

In Proceedings of the 4th ACM international symposium on Mobile ad hoc net-

working & computing (MobiHoc ’03), pages 64–75, 2003.

[80] Gilman Tolle and David Culler. Design of an application-cooperative manage-

ment system for wireless sensor networks. In the Proceedings of the 2nd European

169

Workshop on Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, Jan-

uary 2005.

[81] Gilman Tolle, Joseph Polastre, Robert Szewczyk, Neil Turner, Kevin Tu, Phil

Buonadonna, Stephen Burgess, David Gay, Wei Hong, Todd Dawson, and David

Culler. A macroscope in the redwoods. In the Proceedings of the 3rd ACM

Conference on Embedded Networked Sensor Systems (Sensys 05), San Diego.

ACM Press, November 2005.

[82] Amit K. Vyas and Fouad A. Tobagi. Impact of interference on the throughput

of a multihop path in a wireless network. In The Third International Conference

on Broadband Communications, Networks, and Systems (Broadnets 2006).

[83] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. Psfq: a

reliable transport protocol for wireless sensor networks. In Proc. of the 1st ACM

international workshop on Wireless sensor networks and applications. ACM

Press, 2002.

[84] Geoff Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh.

Monitoring volcanic eruptions with a wireless sensor network. In the Proceedings

of the 2nd European Workshop on Wireless Sensor Networks (EWSN 2005),

Istanbul, Turkey, January 2005.

[85] Alec Woo and David E. Culler. A transmission control scheme for media access

in sensor networks. In Proceedings of the seventh annual international conference

on Mobile computing and networking, Rome, Italy, July 2001.

[86] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges

of reliable multihop routing in sensor networks. In Proceedings of the first inter-

national conference on Embedded networked sensor systems, pages 14–27. ACM

Press, 2003.

170

[87] Ning Xu, Sumit Rangwala, Krishna Chintalapudi, Deepak Ganesan, Alan Broad,

Ramesh Govindan, and Deborah Estrin. A wireless sensor network for structural

monitoring. the Proceedings of the ACM Conference on Embedded Networked

Sensor Systems, November 2004.

[88] M. D. Yarvis, W. S. Conner, L. Krishnamurthy, A. Mainwaring, J. Chhabra, ,

and B. Elliott. Real-world experiences with an interactive ad hoc sensor network.

In Proceedings of the International Conference on Parallel Processing Workshop,

2002.

[89] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance

in dense wireless sensor networks. In Proceedings of the First International Con-

ference on Embedded Network Sensor Systems, 2003.

171

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Problem Statement
	Six Requirements of the Problem
	Background
	Wireless Sensor Networks Applications
	Wireless Sensor Networks for Structural Health Monitoring

	Roadmap

	Overall Architecture
	System Architecture
	Composition of Software Components
	Sentri: Structural Health Monitoring Toolkit Application
	Data Acquisition System (Requirement 1)
	Accelerometer Sensor Board
	Calibration

	High-frequency Sampling with Low Time Uncertainty (Requirement 2)
	Temporal Jitter Analysis
	Temporal Jitter Control

	Software Components (Requirements 3, 4, and 5)

	Design Space of Reliable Transfer (Requirement 6)
	Three Options for Reliable Transfer
	Related Work
	Link-level Retransmissions (Option 1)
	Erasure Code (Option 2)
	Linear Code
	Vandermonde Matrix
	Reed-Solomon Code

	Modifications for Wireless Sensor Networks (Option 2)
	Extension Fields
	Systematic Code
	Multiple Independent Code Words in a Packet
	Operation Table

	Alternative Routes (Option 3)
	Evaluation
	Experiment Methodology
	Erasure Code
	Comparing Options

	Discussion
	Lessons
	Initial Reliable Data Collection Protocol: Straw

	Deployment at the Golden Gate Bridge
	Putting Components Together
	Environmental Challenges
	Deployment Plan

	Network Analysis of the Golden Gate Bridge
	Routing Layer
	Transport Layer

	Reliable Data Collection (Requirement 6)
	Revisiting the Problem
	Related Work
	Models of Connectivity
	Unit Disk Model
	Multi Disk Model
	Multi Cloud Model

	Analysis of Pipelining
	Modeling of Pipelining
	Analysis of Model
	Use Case

	Flush
	Overview
	Reliability
	Rate Control
	A Conceptual Model
	Dynamic Rate Control

	Identifying the Interference Set

	Implementation
	Protocol Engine
	Routing Layer
	Packet Delay Estimator
	Queuing
	Link Layer
	Protocol Overhead
	Memory and Code Footprint

	Experimental Methodology
	Evaluation
	High Level Performance
	Performance Breakdown
	A More Detailed Look
	Adapting to Network Changes
	Scalability

	Discussion
	Density of Nodes
	Interactions with Routing

	Summary

	Data Analysis of the Golden Gate Bridge
	Lifetime Analysis
	Failure Analysis
	Vibration Data

	Discussion
	Link Estimation Under Heavy Traffic
	De-synchronization of Packet Transmission Schedule
	CSMA versus TDMA
	Practical Issues

	Conclusion

