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Abstract

Image registration and statistical analysis for quantitative in vivo spin-lock magnetic

resonance imaging of the intervertebral disc response to compression

by

Joey Ann Kimdon

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Thomas Budinger, Chair

Low back pain decreases the quality of life and affects almost 80% of the population.

Quantitative spin-lock magnetic resonance imaging of the T1ρ relaxation parameter is a

promising marker of early degeneration in intervertebral discs. However, T1ρ measure-

ments may be affected by disc compression, and understanding this effect is necessary

for studying abnormal dynamics of disc response to compression or correlations between

degeneration and T1ρ values.

We developed an algorithm to register images of intervertebral discs in different com-

pression states and to calculate the statistical significance of local changes in T1ρ. Our

procedure includes automatic registration during image acquisition to view the same lo-

cation across exams, segmentation of intervertebral discs with minimal user intervention,
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automatic registration of discs using a non-rigid transformation guided by rigid transforma-

tions of vertebrae, and a method of investigating the statistical significance of changes in

local neighborhoods using resampling hypothesis testing with variable confidence levels.

Validation tests on phantoms and volunteer data indicate sub-pixel registration accuracy

and precision. Registration results agree with a manual gold standard. Hypothesis testing

is sensitive to registration accuracy, indicating the need for registration even with patient

movements of less than a millimeter. Tests confirm expected trade-offs between type I and

type II statistical significance errors depending on neighborhood size, significance level,

and confidence level.

We demonstrate the algorithm on varying compression states caused by lying down

after 30 minutes of standing with a 20 lb backpack or by supporting 55 pounds while

lying using a leg-press-like device. T1ρ varies locally depending on the distribution of

compression within the discs. The coefficient of variation was 7.6% while relaxing and

13.9% when applying and releasing the compression device, indicating an effect of the

device. Variation was 48% less in degenerated versus healthy discs (p < 0.04). T1ρ in

the lower discs increased by 20% (p < 0.05) when the compression device pressure was

released. Local comparisons showed that T1ρ tended to decrease under compression and

increase after compression was released. Changes were not significant during an hour of

supine resting, suggesting that variable pre-scan compression from normal daily activities

does not considerably complicate T1ρ measurements.
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Glossary

Anterior: Body position toward the front/belly of a person. Opposite of posterior.

Axial: Plane normal to the long axis of the body. Splits the body into superior and in-
ferior sections.

Coronal: Plane parallel to the long axis of the body, splitting the body into anterior and
posterior sections.

Global registration: Alignment of images using the same transformation for the entire im-
age.

Glycosaminoglycan (GAG) chains: Carbohydrate chains that provide osmotic pressure to
maintain disc hydration. GAG chains and proteins make up proteoglycans.

Hypothesis testing: A test to determine the likelihood that differences in groups of mea-
surements are due to random noise rather than representing true differences in the underly-
ing distributions.

Inferior: Body position toward the feet of a person. Opposite of superior.

Magnetic resonance imaging (MRI): A non-ionizing method of non-invasively imaging in-
side the body using the interaction between a magnetic field and the nuclei of atoms in a
sample.

Neighborhood: Pixels around a point of interest. Neighborhoods come in different sizes
and shapes.

Non-rigid registration: Alignment of images using a transformation that does not neces-
sarily preserve shapes.
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p-value: The probability of getting a test statistic as or more extreme than the observed
statistic due to random noise. Used in hypothesis testing to determine the significance of
differences in a test statistic.

Pixels: Square individual values that make up an image. A pixel is a common choice
of basis function to represent an image.

Posterior: Body position toward the back of a person. Opposite of anterior.

Prospective registration: Alignment of a pair of images before or during acquisition rather
than after.

Proteoglycans: Negatively charged molecules made of protein and glycosaminoglycan
chains. Proteoglycans make up the extracellular matrix of the intervertebral discs and
are responsible for maintaining osmotic pressure and regulating the passage of molecules
through the matrix. Proteoglycan loss is the most significant biochemical change in disc
degeneration.

Registration: Alignment of two or more images such that pixels correspond to approxi-
mately the same anatomical region in both images.

Resampling statistics: A method of using samples of a population to represent the un-
derlying distribution rather than assuming a particular distribution.

Rigid registration: Alignment of images using only translation and rotation. This type
of transformation preserves shapes.

Sagittal: Plane parallel to the long axis of the body, splitting the body into right and left
sections.

Segmentation: Classification of pixels in an image, often according to the type of tissue
the pixels represent.

Superior: Body position toward the head of a person. Opposite of inferior.

T1ρ: The spin-lattice MRI relaxation parameter in the rotating frame. It is emerging as
a marker for early degeneration of intervertebral discs and articular cartilage.

Type I error: Incorrectly rejecting the null hypothesis in hypothesis testing. With this type
of error, one asserts that there is a significant effect where there is none.

Type II error: Failing to reject the null hypothesis when it is false. With this type of er-
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ror, one does not assert that there is an effect even though there is one.
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Chapter 1

Introduction

Low back pain is a common problem causing a significant decrease in quality of life

and increase in medical costs and lost workdays. It is the most common reason for filing

worker’s compensation claims in the United States, accounting for one third of all compen-

sation costs and 40% of absences from work [1]. It is the most frequent cause for limitation

in activity for Americans under age 45 [2]. An estimated 25% of Australians experience

back pain at any given time, with over 80% experiencing back pain at some point in their

lives [2]. Back pain affects youth as well, with 50% of Danish youth under age 20 reporting

at least one back pain episode [3]. Degeneration and acute injury of intervertebral discs are

common causes of back pain1.

Magnetic resonance imaging (MRI) is a non-invasive method of imaging the human

body without ionizing radiation. Anatomic MRI creates grayscale images that show inter-

1Back pain symptoms are from pressure on nerve roots and the spinal cord as well as facet joint inflam-
mation. These causes are often the result of disc degeneration.
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nal structures. Quantitative MRI determines absolute parameter values such as relaxation

parameters T1, T2, and T1ρ, water diffusion, and intervertebral disc dimensions and volume.

T1ρ mapping [4, 5, 6, 7, 8], T2 relaxometry [9, 10, 11, 12], and apparent tissue water diffu-

sion [13, 9, 14] appear to identify degeneration in intervertebral discs [9, 14, 5, 7, 8, 12] and

articular cartilage [13, 10, 4, 6] early in the disease progression, before the degeneration

is visible in anatomic MRI. In particular, T1ρ mapping is emerging as a sensitive marker

of early disc degeneration. It has been studied in knee articular cartilage [15, 4, 16], and

is now being investigated in the intervertebral disc [17, 5, 18, 7]. Studies of disc degen-

eration seek to correlate in vivo T1ρ values with clinical diagnoses and to understand the

relationship between proteoglycan content and T1ρ relaxation maps.

Compression is known to alter intervertebral disc properties such as T2, diffusion,

sodium concentration, and volume [19, 20, 21, 13, 22, 9], so it is reasonable to hypoth-

esize that T1ρ measurements are also sensitive to pressure changes. As further motivation

to study pressure changes, T1ρ is likely a marker for proteoglycan and water concentra-

tion, and water content in the disc depends on external loads and osmotic pressure from the

concentration of negatively-charged glycosaminoglycan (GAG) chains [22]. Long-term

compression has been shown to alter proteoglycan content of intervertebral discs in dogs

[23, 24] and correlations between static loading and disc degeneration has been demon-

strated in mouse tails [25].

Time of day, activity preceding the exam, and scanning position affects the amount and

distribution of pressure in the intervertebral disc. If T1ρ depends on these factors, care must



6

be taken to control for them when using T1ρ to study disc degeneration. Disc height and

volume measured with MRI differs in the evening, morning, and after 8 hours of walk-

ing [26]. Significant decreases have been shown in T2 [27, 28], T1, and proton number

[19] between morning and evening measurements in sedentary workers. There may be

similar changes in T1ρ. Extra care must be taken to understand the effects of pressure dif-

ference when comparing healthy and degenerate discs since degenerate discs are expected

to lose fluid more quickly under load and to have a lower fluid content than healthy discs.

Hydraulic permeability increases with the decrease in proteoglycans [22] associated with

disc degeneration, thereby affecting relaxation parameter values. For example, the diurnal

change was significantly less pronounced in degenerative discs than in healthy discs for T1

[19] and T2 [27, 28]. The pressure in the disc at the time of the scan depends on the level

of compression-inducing activity preceding the scan. Standing and muscular movements

exert up to 20 times the pressure on the L4-L5 disc compared with lying prone [21, 22].

Decompression occurs while lying down [21], so the amount of time spent in the scanner

before the T1ρ mapping sequence is run may affect results. Amount of curvature in the

back (e.g. caused by varying amount of support placed under the knees during the scan)

may cause uneven pressure on the discs. Any of these causes of pressure difference can

be minimized during study design or at least considered during analysis if investigators are

aware of the degree of influence.

Since the nucleus and annulus of intervertebral discs have different T1ρ values and com-

pression will not be consistent over the entire disc depending on the amount of curvature in
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the spine, we do not expect T1ρ values to change uniformly throughout the disc. Thus we

consider changes in local neighborhoods at each pixel in the disc between images in vary-

ing states of compression. Since different compression states involve changes in position or

re-entry into the scanner, registration is required to identify anatomically corresponding re-

gions between images. A local statistical technique is then needed to analyze the registered

images.

Dissertation overview In this work, we develop an algorithm to analyze differences in

T1ρ in lumbar intervertebral discs in vivo, regardless of position changes between scans.

We emphasize automation throughout the process. Other studies attempting to compare

quantitative parameters between scans have compared values within regions of interest

(usually manually defined) placed on each of the images. Our approach is novel in that

it relies on automatic registration and looks at local differences anywhere within the disc.

Our specific novel contributions include:

• A data acquisition method for imaging the same anatomical regions across exams

• An automatic method for classifying intervertebral discs in T1ρ-weighted MRI im-

ages

• An automatic method for warping intervertebral discs to align them between two im-

ages in a manner that is consistent with the rigid motion of the surrounding vertebrae

• A method for analyzing the statistical significance of local changes in T1ρ values and

selecting the desired confidence level
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• Validation testing for the above registration, segmentation, and statistical analysis

methods

• Experiments using the above process to investigate the changes in T1ρ when interver-

tebral discs are subject to compression and decompression.

The algorithm is designed to be applied to studies investigating pressure effects as de-

scribed above, but it may be used to analyze any T1ρ study with multiple exams per person.

The method is likely applicable to studies of other quantitative MRI parameters such as T2

mapping, but these parameters are not tested in this work.

Note that this dissertation develops a method of analyzing T1ρ changes but does not

attempt to make conclusions about those changes in patients.

This work covers the process from image acquisition through statistical analysis of each

image. Chapter 2 gives a background of magnetic resonance imaging, the MRI spin-lock

technique for imaging the T1ρ parameter, and an overview of spinal anatomy to orient the

reader for the images and terminology in the rest of the document. Figure 1.1 contains a

diagram briefly describing the flow of our procedure. Chapters 3, 4, and 5 explain each step

in the diagram. Specifically, chapter 3 details our procedure for image acquisition, Chapter

4 describes the registration and segmentation portions of our algorithm, and Chapter 5 ex-

plains our approach to statistical analysis. The latter two chapters begin with a background

of applicable techniques in the field and then explain our methods.

We demonstrate the performance of the algorithm in chapter 6 with validation tests on

volunteers and phantoms. Chapter 7 shows the practical use of the algorithm via prelim-
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Step 1: Image acquisition

T1ρ maps are calculated from several T1ρ-weighted images. We begin by calculating
T1ρ maps at different times or in different positions. Registration guides the
acquisition of the same anatomical location. We use the T1ρ-weighted images for
segmentation and registration because they show clearer anatomical information, and
we use the T1ρ maps for the statistical analysis since they contain the information we
seek.

First T1ρ-weighted image
(i.e. position 1)

Second T1ρ-weighted image
(i.e. position 2)

First T1ρ map Second T1ρ map

Figure 1.1: The diagrams on this and the following pages outline the process described in
this work. See chapter 3 for a more detailed explanation of this step. (Figure continued on
the next page.)
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Step 2: Segmentation

We use a T1ρ-weighted image in the first (“fixed”) position to
identify the intervertebral discs, which are the regions of interest
and the approximate vertebral bodies, which are the rigid bodies
that will guide the registration.

Discs Rigid bodies

Figure 1.1: Algorithm overview continued. See chapter 4 for a more detailed explanation
of this step.
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Step 3: Registration

Each rigid body is individually registered to align the second image with the first
image. Points not within a rigid body are transformed according to an elastic
transformation guided by the rigid transformations.

Before registration:

First image Second image
(original position)

Difference between first
and second

(original position)

After registration:

First image Second image
(transformed)

Difference between first
and second

(transformed)

Figure 1.1: Algorithm overview continued. See chapter 4 for a more detailed explanation
of this step.
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Step 4: Statistical analysis

The transformation found in step 3 is applied to the T1ρ map values within the
intervertebral discs. We calculate the statistical significance of the difference in mean
T1ρ in a neighborhood around each pixel between the two exams. In the image below
right, only pixels with statistically significant differences in mean are colored.

200ms

0ms

200ms

0ms

First map Second map
(transformed)

40ms

-40ms

40ms

-40ms

Map difference Significant differences.

Figure 1.1: Algorithm overview continued (last page). See chapter 5 for a more detailed
explanation of this step.
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inary compression experiments. The final chapter contains a summary, an analysis of the

strengths and weaknesses of this project, and suggestions for future work.
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Chapter 2

Background

2.1 Spinal anatomy

2.1.1 Anatomical terms of location

We first introduce terms to specify relative anatomical locations. Position is identified

in three dimensions as right-left, anterior-posterior (front-back), and superior-inferior (top-

bottom), illustrated in Figure 2.1. Two-dimensional planes through the body are referred

to as sagittal (dividing into right/left sections), coronal (dividing into anterior/posterior

sections), and axial or transverse (dividing into superior/inferior sections), as shown in

Figure 2.1.
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Axial (transverse) plane

Sagittal plane
Coronal plane

posterior

anterior
left

right

superior

inferior

Figure 2.1: Terms of anatomical position. Image is in the public domain, obtained from
[29].
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2.1.2 Vertebrae

The spinal column consists of seven cervical, twelve thoracic, five lumbar, five fused

sacral and four fused coccygeal vertebrae, shown in Figure 2.2. Vertebra shorthand uses

the first letter of the location (C,T,L,S) and the number, with numbers increasing from su-

perior to inferior. For example, L1 refers to the first lumbar vertebra, which is immediately

inferior to T12, the twelfth and most inferior thoracic vertebra. Between the vertebrae are

intervertebral discs, shown in Figure 2.3. We study the discs between L1 and S1, for they

take much of the mechanical load of the spine and often exhibit pain and degeneration.

Figure 2.2: The vertebral column. Image is in the public domain, obtained from [30].

To help readers orient themselves in the MR images displayed in this document, we

point out some anatomical landmarks in diagrams and sample MR images in the sagittal

plane (Figures 2.3 and 2.4) and axial plane (Figures 2.5 and 2.6). The vertebral body is the

cylindrical portion joined by intervertebral discs to create the column that bears most of
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the compression through the spine. The transverse and spinous processes project outward

as attachment points for muscles and ligaments. The spinal cord runs through the vertebral

canal, the opening made of the vertebral foramen of successive vertebrae.

Intervertebral disc

Vertebral body

Spinous process

Vertebral canal
superior

inferior

anterior posterior

Figure 2.3: Diagram of two lumbar vertebrae, sliced through a sagittal plane. Image is in
the public domain, obtained from [31].

2.1.3 Intervertebral discs

Intervertebral discs absorb stresses, protect the vertebral bodies from touching, and

allow the spine to bend. Their inner portion, called the nucleus pulposus, is a jelly-like

substance that cushions the spine from compressive forces. Surrounding the nucleus lat-

erally are concentric rings of fibrocartilage called the annulus fibrosus, which keeps the

nucleus contained and resists both compressive and tensile forces. Figure 2.7 points out

the locations of the nucleus and annulus in the sagittal and axial planes. Fibrocartilage is
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Intervertebral disc

Vertebral body

Spinous process

Vertebral canal/spinal cord

superior

inferior

anterior posterior

Figure 2.4: MR image of lumbar vertebrae: two-dimensional slice in the sagittal plane.

Vertebral body

Spinous process

Transverse process

Vertebral foramen

anterior

posterior

Figure 2.5: Diagram of a lumbar vertebra viewed from above. Image is in the public
domain, obtained from [32].
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Vertebral body

Spinous process

Transverse process

Vertebral foramen

anterior

posterior

Figure 2.6: MR image of a lumbar vertebra: two-dimensional slice in the axial plane.

comprised of alternating rows of thick collagen fibers and chondrocytes (cartilage cells).

The fibers cross through the concentric rings of the annulus to give discs strength in twist-

ing. Among the collagen and chondrocytes is a matrix of proteoglycans, molecules made

of protein and glycosaminoglycan (GAG) chains. GAG chains provide osmotic pressure to

maintain disc hydration.

Loss of proteoglycan is the most significant biochemical change in disc degeneration,

leading to reduced hydration, a more rapid loss of hydration and height under load, and a

tendency to bulge [33]. The nucleus supports weight primarily via hydration pressure [34],

so loss in hydration related to aging and degeneration reduces the disc’s ability to absorb

stress and protect the vertebrae. Loss of negatively charged proteoglycans may also permit
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abnormal passage of positively charged ions and large uncharged molecules through the

matrix, affecting cell behavior. Studies are investigating a direct correlation between the

MR parameter T1ρ and proteoglycan content [7, 8, 5] to image early disc degeneration.

nucleus pulposus

annulus fibrosus

annulus fibrosus

Figure 2.7: Identification of the disc nucleus pulposus and annulus fibrosus in a sagittal
plane (left) and axial plane (right).

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) creates images via the interaction between an atom’s

nucleus and an external magnetic field. Protons and neutrons, nucleons, have a property

called nuclear spin, and atoms with unpaired nucleons have a net spin and a magnetic mo-

ment. In clinical MRI, we are concerned with hydrogen atoms, which have only one proton

and a net spin of 1/2. These magnetic moments are randomly aligned, canceling each other

out to create no net magnetization. However, when placed in an external static magnetic

field B0, the magnetic moments align with B0 in one of their two permitted states, parallel

or anti-parallel to the direction of B0. More protons align in the parallel orientation since
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that is the lower energy state. The proportion of proton spins aligned with the imposed

field is slightly larger than those aligned against the field (anti-parallel), and this proportion

increases with the magnetic field strength. Thus the net magnetization is in the direction

of B0. This net magnetization is represented as a vector M in Figure 2.8a. The magnetic

moments precess around the direction of B0 at a resonant frequency of

ω = γB0, (2.1)

where ω is called the Larmor frequency and γ is the gyromagnetic ratio, which is specific

to the type of nucleus. γ is 42.6 MHz/T for the hydrogen nucleus (proton), so the resonant

frequency is 127.7 MHz at 3 Tesla.

A radio frequency (RF) pulse is applied to create a magnetic field B1 perpendicular to

the original field B0. The RF pulse is at the Larmor frequency so that the energy is absorbed

by the spinning protons, causing more of the magnetic moments to align in the higher en-

ergy, anti-parallel state. At some point, there will be an equal number of moments oriented

in the parallel and anti-parallel states, canceling each other out to yield a net magnetiza-

tion vector of zero in the direction of B0. This direction is termed z, or the longitudinal

direction, by convention. While the RF pulse is turned on, it also aligns the precessing

magnetic moments in the plane normal to z. That is, the magnetic moments are rotating

around z at the same frequency with a coherent phase. This coherence creates a component

of the precessing magnetization vector M in the xy plane, called the transverse component,

illustrated in Figure 2.8b. For ease in illustration, the magnetization vector is often drawn
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in terms of a frame of reference rotating around z at the Larmor frequency so the rotating

vector M can be drawn as a static vector. The plane rotating around z is denoted as the x′y′

plane to distinguish it from the xy plane in the stationary, laboratory reference frame. Part

(c) of Figure 2.8 shows the same vector M as in part (b) but in the rotating frame. When

we combine the two effects of the RF pulse on the magnetization vector M , i.e. decreasing

the z component and increasing the x′y′ component, it appears as if M is tilting from the z

axis toward the x′y′ plane, as demonstrated in Figure 2.9. The angle of this tilt depends on

the amount of time the B1 field is applied, according to the equation:

θ = γB1t, (2.2)

where t is time in seconds, θ (radians) is termed the flip angle, γ is the gyromagnetic ratio

(rad/s/T), and B1 is the applied field strength (Tesla). A common flip angle is θ = π/2.

B0

z

x y

M

(a)

z

x y

Mω

(b)

z

x′ y′

M

(c)

Figure 2.8: We illustrate the rotating frame of reference. In (a), the magnetization vector
M begins aligned with B0. When we add a transverse component to M , it rotates around z
at the resonant frequency ω, shown in (b). The rotating frame of reference x′y′z is rotating
at the resonant frequency ω, so the precessing magnetization vector M appears stationary,
shown in (c).

Once the RF pulse is turned off, the energy it put into the system is released and the
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B0

z

x′ y′

M

(a)

z

x′ y′

M

θ

(b)

z

x′ y′

M

(c)

Figure 2.9: The magnetization vector M begins aligned with B0, shown in (a). In (b),
an RF pulse perpendicular to B0 adds energy, tilting M toward the transverse plane by an
angle θ, which depends on the duration of the pulse. In (c), the pulse is turned off and the
magnetization relaxes back to z, releasing energy.

magnetization relaxes to its pre-RF state, shown in Figure 2.9, re-aligning along z since the

B0 field is still present. The loss of transverse magnetization is due to several factors. The

proton loses energy to the molecular environment, bringing magnetic moments back to the

lower energy parallel state, represented by a decrease in the z component of M . This is

called spin-lattice or T1 relaxation. Spin-spin or T2 relaxation depends on the interaction

between protons. They exchange energy, flipping energy states resulting in random phases.

Magnetic interaction between protons causes slight differences in precession frequency,

also leading to dephasing. Since the proton phases are no longer coherent, they cancel each

other out, reducing the x′y′ component of M . Loss of phase coherence also occurs because

of small local differences in the magnetic field from B0 inhomogeneities and magnetic

susceptibility differences, termed T∗
2 relaxation. The rate at which the magnetization returns

to its pre-RF state via T1 and T2 relaxation is described by the Bloch equations:
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dMxy(t)

dt
= −Mxy(t)

T2

(2.3)

dMz(t)

dt
=

(M0 −Mz(t))

T1

, (2.4)

where Mxy is the transverse component of the magnetization vector M , Mz is the longi-

tudinal component, M0 is the steady-state magnitude along z when B0 is present but B1

is not, and T1 and T2 are the relaxation parameters (units of time) described above. The

relaxation after applying a 90◦ pulse is therefore described by:

Mxy(t) = M0e
(−t/T2) (2.5)

Mz(t) = M0

(
1− e(−t/T1)

)
. (2.6)

As the moments precess in the transverse plane, they induce a current in an RF coil

tuned to the Larmor frequency, producing a measurable signal called a free induction de-

cay. The intensity of this measured signal depends on the Mxy(t) component of the mag-

netization.

Since the precession frequency depends on the strength of the magnetic field, by chang-

ing the strength along a spatial direction, we can distinguish the location of the protons

contributing to the measured signal. This is called applying a magnetic field gradient. We

apply gradients in three normal directions to create images in three dimensions. Localizing

the source of the signal is done in three different ways. The first is to excite only protons

that are within the desired region by applying a RF pulse with select frequency components.
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Applying a magnetic field gradient of appropriate strength at the same time as the RF pulse

allows us to choose what spatial region will resonate at the range of frequencies in the RF

pulse. This is called slice or slab selection. The second method is to apply a “frequency

encoding gradient” at the time of signal acquisition so that protons in different locations are

precessing at different frequencies. Locations can be extracted from the measured signal

using a Fourier Transform since location corresponds to frequency. The third method is to

apply a “phase encoding gradient” between slice excitation and signal measurement. The

protons precess at different frequencies until the gradient is turned off, at which point they

precess at the same frequency but have phase offsets remaining from the gradient applica-

tion according to their spatial location. Again, the spatial location can be decoded from the

measured signal via a Fourier Transform.

There are many types of imaging sequences. In a spin-echo sequence, we apply a

slice selection gradient in the z direction during a 90◦ RF pulse followed by a perpendic-

ular phase encoding gradient in the y direction. Then we apply a 180◦ pulse at time t1

along with the slice selection gradient to compensate for the effect of local differences in

field strength that caused T∗
2 relaxation. The Mxy component of the magnetization had

decreased due to dephasing from local field variations following the 90◦ pulse. The com-

pensating 180◦ pulse inverts the magnetization, causing the the faster protons to be behind

the slower ones, so the different precession frequencies now work to realign the phases.

We time the signal measurement, called the “echo”, for time 2t1, the point when the phases

are realigned for maximum Mxy magnitude. The time 2t1 to the center of the echo read-
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out is called the echo time, TE. Note that the spin-echo technique removes T∗
2 but not T2

relaxation, which is energy exchanged between protons and therefore not recoverable by

inverting the magnetization vector. During the echo measurement, we apply a frequency

encoding gradient in the x direction. We want the signal to be highest at the center of

the echo readout, so we also apply an earlier dephasing gradient in the x direction so that

the frequency encoding gradient causes the protons to rephase. Once all this is done, we

have acquired one line in the two-dimensional frequency space (called “k-space”) of the

selected slice. To acquire the other lines, we repeat the sequence with a slightly different

phase encoding gradient strength for each line. The time between the repetitions is called

the repetition time, TR. The pulse sequence diagram describing the spin-echo sequence is

illustrated in Figure 2.10. In the diagram, the RF pulses are represented by sinusoids with

sinc function envelopes since they convey bandpass-filtered, equal strength oscillations at

the slice-selection frequencies. The 180◦ pulse is left on for twice as long as the 90◦ pulse,

which scales the Fourier Transform representation by 1/2, so the 180◦ pulse is scaled by 2

to compensate.

Tissues vary in proton density, characteristic T1, and characteristic T2. We can control

the relative intensities between tissues by selecting the TE and TR to emphasize parameters

we expect to be different between the tissues of interest according to the signal intensity

equation:

I(x, y, z) = p(x, y, z)(1− e−TR/T1(x,y,z))(e−TE/T2(x,y,z)), (2.7)
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RF
90◦ 180◦

...
Gs

...
Gp ...

Gf ...

S ...

TE
TR

Figure 2.10: Pulse sequence diagram for the spin echo sequence. The RF line shows the
timing of the 90◦ and 180◦ pulses. The Gs, Gp, and Gf lines show the slice selection, phase
encoding, and frequency encoding gradients, respectively. The S line shows the measured
signal. The signal is measured after time TE, and the whole sequence is repeated after time
TR. The multiple heights of the phase encoding gradient represent the different gradient
strengths at each repetition. The negative slice selection gradient and the early frequency
encoding gradient are to compensate for dephasing that occurs during the corresponding
primary gradients.

where I is the signal intensity, p is the proton density, T1 is the spin-lattice relaxation and

T2 is the spin-spin relaxation of the tissue (or combination of tissues) at the pixel (x, y, z).

Total image time depends on TR and the size of the k-space imaging matrix, for there

needs to be one repetition per matrix line. To speed up acquisition, the fast spin-echo

(FSE) technique repeats the 180◦ refocusing pulse plus echo readout sequence several times

before starting a new repetition. With each 180◦ pulse, the phase encoding gradient changes

strength to encode a different line. See Figure 2.11 for the pulse sequence diagram. The

number of times we repeat the refocusing pulse is called the echo train length (ETL). An

ETL of n reduces imaging time by a factor of n. If n is too high, the later echos will have a

very low signal intensity since the magnetization vector has been relaxing during the long

time since the 90◦ pulse.
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RF
90◦ 180◦ 180◦ 180◦

...
Gs

...
Gp ...

Gf ...

S ...

Figure 2.11: Pulse sequence diagram for the fast spin-echo sequence. The diagram is
similar to the spin-echo sequence shown in Figure 2.10, but more than one phase encoded
line in the imaging matrix is acquired before the 90◦ pulse is repeated at TR. Each phase
encode is rephased following signal acquisition. In this figure, the echo train length is three.
Note that the acquired signal S has lower intensity for the later echos due to magnetization
relaxation.

2.3 Magnetic resonance imaging of the T1ρ parameter

The spin-lock technique investigates relaxation that behaves similar to T1 at very low

magnetic field strength but allows imaging at high field strength for a high signal to noise

ratio. Imaging begins in a strong static magnetic field B0. A 90◦ RF pulse tips the mag-

netization vector to the transverse plane, as described earlier for the spin echo sequence.

The RF coils then generate a very low strength magnetic field BSL that rotates around the

z axis at the resonant frequency of the B0 field, ω0 = γB0. The magnetic field is rotating

at the same speed as the rotating reference frame, so when viewed in the rotating frame,

the magnetic field is static (ω′
M = 0) and pointing in the same direction (y′) as the tipped

magnetization vector. The parallel alignment of BSL and the tipped magnetization vector

in the rotating frame is analogous to the alignment of B0 and the initial magnetization vec-

tor along the z axis in the stationary reference frame. In the rotating frame, precession is

governed by the resonant frequency ωSL = γBSL instead of ω0. In this situation, trans-
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verse and longitudinal relaxation due to B0 does not occur – the magnetization is said to be

“locked” along BSL in the rotating frame. Instead, the magnetization relaxes according to

a parameter called T1ρ, following the equation:

M(t) = M0e
(−t/T1ρ). (2.8)

T1ρ is approximately the value of T1 that would be determined by imaging with a static

magnetic field of BSL and is often called the spin-lattice relaxation in the rotating frame.

T1ρ can be measured by applying a spin-locking preparation sequence followed by a

standard imaging sequence. According to equation (2.8), the amount of transverse mag-

netization remaining after the spin-lock pulse is turned off depends on the amount of time

(tSL) during which the pulse was applied. After the spin-lock pulse is finished, a high

amplitude -90◦ pulse brings the magnetization back to the z axis, and a crusher gradient

dephases any remaining transverse magnetization. A standard high-field imaging sequence

then begins with magnetization M(tSL) = MSL instead of M0. See Figure 2.12 for a pulse

sequence diagram of the spin-lock preparation and Figure 2.13 for an illustration of the

progression of the magnetization vector during the preparation. Because of the long dura-

tion spin-locking pulse, the examiner must be careful not to exceed specific absorption rate

safety limitations set by the Food and Drug Administration.

The spin-lock preparation sequence is followed by a standard imaging sequence. For

example, if it is followed by a spin-echo sequence, the signal intensity equation is:
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RF

90◦

Spin lock

−90◦

Begin imaging sequence

Gc

Figure 2.12: Spin-lock preparation sequence diagram. The RF line shows the radio fre-
quency pulses for creating the high amplitude B1 and low amplitude BSL magnetic fields.
The magnitude of the pulse dictates the strength of the magnetic field. We begin with a
high amplitude 90◦ pulse to bring the magnetization into the transverse plane (shown in
part (b) of Figure 2.13). Then the low amplitude spin-lock pulse locks the spins into low-
field relaxation (shown in parts (c) and (d) of Figure 2.13). A negative 90◦ pulse brings
the remaining unrelaxed portion of the magnetization back to the longitudinal axis (part
(e) of Figure 2.13) to serve as the starting magnetization for a standard imaging sequence.
The Gc line shows a crusher gradient that dephases any remaining transverse magnetiza-
tion. Finally the main imaging sequence begins. No slice selection gradient is used in this
preparation because the entire volume is excited.

I(x, y, z) = p(x, y, z)e−tSL/T1ρ(x,y,z)(1− e−TR/T1(x,y,z))(e−TE/T2(x,y,z)), (2.9)

where variables are defined as in equation (2.7).

To estimate the value of T1ρ, we acquire several images with spin-lock preparation

sequences using different spin-lock durations tSL. Keeping the imaging portion of the se-

quence consistent means keeping TE and TR constant in equation (2.9). Thus the intensity

I at point (x, y, z) in the T1ρ-weighted image prepared with spin-lock duration tSL is:

I(x, y, z) ∝ e(−tSL/T1ρ(x,y,z))

or

I(x, y, z) = ke(−tSL/T1ρ(x,y,z)), (2.10)
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B0

z

x′ y′

‖M‖= M0

(a)

z

x′ y′

‖M‖= M0

90◦

(b)

z

x′ y′

‖M‖= M0

BSL

(c)

z

x′ y′

‖M‖= MSL

BSL

(d)

z

x′ y′

‖M‖= MSL

−90◦

(e)

Figure 2.13: We show the progression of the magnetization vector during the spin-lock
preparation sequence from Figure 2.12. (a): The magnetization begins with magnitude
M0, aligned with the static magnetic field B0. (b): A 90◦ pulse brings M down to the y′

axis (in the rotating frame). (c): Next the spin-locking pulse creates a magnetic field BSL

along the direction of M . (d): While BSL is applied, M relaxes according to T1ρ but not T1

or T2, reducing its magnitude to MSL. (e): After BSL is removed, a -90◦ RF pulse brings M
back to the z axis, and a crusher gradient removes any residual transverse magnetization.
A standard high-field imaging sequence then begins starting with magnetization MSL.
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where k is an unused proportionality constant. After acquiring several such images, we

find the value for T1ρ at each pixel that best fits equation (2.10).

Relaxation mechanisms T1 relaxation depends on magnetic field strength B0 and tissue

properties that affect the motion and local environment of the protons being imaged. Many

of the mechanisms involved in the relaxation can be described in terms of random molecular

motion such as vibration, rotation, and diffusion. Correlation time τc is a measure of this

motion; it is defined as the average time for a molecule to change its orientation by one

radian. The effect of molecular motion on T1 is described with a bi-Lorentzian shape:

1

T1

∝
[

τc

1 + ω2
0τ

2
c

+
4τc

1 + 4ω2
0τ

2
c

]
, (2.11)

where ω0 is the resonant frequency for the static magnetic field B0, and T1 is the exponential

parameter describing the T1 relaxation. According to this equation, T1 relaxation is most

efficient when there are molecules with correlation times around 1/ω0 and 1/2ω0 [35].

Figure 2.14 illustrates how relaxation rate depends on the relationship between the speed

of molecular motion and the resonant frequency of the magnetic field. For frequencies far

from resonance, energy exchange is less efficient so T1 relaxation is longer.

The exponential parameter T1ρ is similar to what the T1 parameter would be if it were

imaged with a static magnetic field at the low spin-lock field strength BSL. We would

therefore expect T1ρ relaxation to be most efficient for correlation times related to the lower

resonant frequency ωSL. The relaxation is indeed dominated by τc around 1/2ωSL, as
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shown in equation (2.12) and Figure 2.14, though it is not completely independent of the

higher resonant frequency ω0.

1

T1ρ

∝
[

(3/2)τc

1 + 4ω2
SLτ 2

c

+
(5/2)τc

1 + ω2
0τ

2
c

+
τc

1 + 4ω2
0τ

2
c

]
, (2.12)

Imaging slow molecular motion using a high field strength is impractical because slow

motion relaxation is very inefficient compared with the faster motions near the resonant

frequency. Relaxation time differences between tissues will be dominated by the more

efficient relaxation mechanisms. Low field imaging focuses better on low molecular tum-

bling rates since the slower motions are nearer the resonant frequency of the field, where

the relaxation is more efficient (demonstrated by the horizontal offset of the curves in Fig-

ure 2.14). Molecular motion is slower when there are greater concentrations of macro-

molecules such as proteoglycans or when water is bound to proteins instead of moving

freely.

The two curves in Figure 2.14 are also vertically offset, showing that relaxation rates

vary with field strength, termed relaxation dispersion. At magnetic field strengths much

larger than 20 mT, thermal movement of water molecules, especially fast-moving free wa-

ter, is the dominant relaxation mechanism [36]. At lower field strengths, other causes of

relaxation become more important, especially water-protein interactions, leading to signif-

icantly faster relaxation in tissues containing more proteins. Since T1 (or T1ρ) is shorter

for tissues with more protein (e.g. pancreas and liver) at lower magnetic fields as opposed

to high fields but does not change much for low-protein tissues (e.g. blood and fat) [36],
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the range of relaxation times at lower field strengths is greater than at high field strengths,

providing increased T1 (or T1ρ) contrast between tissues.

log(Tn)

molecular motion (log(1/τc))
slower faster

T1ρ

τcωSL � 1
τcωSL � 1

T1

τcω0 � 1 τcω0 � 1

Figure 2.14: Approximate plots of equations (2.12) and (2.11) describe the T1ρ relaxation
time (left) and T1 relaxation time (right), respectively. T1ρ relaxation is more efficient in
the presence of slower molecular motion than T1 relaxation.

At magnetic fields lower than 20 mT, slow thermal movement of medium or large

macromolecules, such as proteoglycans, becomes more important in relaxation, as does

concentration and movement of water bound to proteins. Cross-relaxation between water

protons or between protons in bound water and protein is more likely to occur with slower

movement.

At BSL fields lower than 0.2 mT, describing relaxation in terms of τc is insufficient

[37]. Molecular weight, concentration, and bond structure strongly influence relaxation.

Increased molecular weight and concentration decreases T1ρ without affecting τc. Breaking

and reforming hydrogen and disulfide bonds can either increase or decrease T1ρ.

Proton exchange between water and chemical groups NH and OH is an important re-
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laxation mechanism at magnetic field strengths less than about 0.1 mT [38]. Through this

mechanism, T1ρ depends on chemical structure and pH. More proteoglycans can mean

more OH and NH groups available for proton exchange. Higher pH speeds relaxation,

possibly by increasing exchange rates of these groups [38].

If BSL is weaker than the local magnetic fields of interacting nuclei, the spin-lock con-

dition is not met and relaxation occurs according to B0 even while the BSL field is present.

In this case, T1ρ relaxation behaves like T2 relaxation.

T1ρ for imaging degeneration Disc degeneration involves changes in the extracellular

matrix [33, 39]. Proteoglycan loss begins in the early stages of degeneration, so a marker

of proteoglycan would be useful for early detection of deteriorating discs. Since low-field

T1ρ relaxation is dominated by slower molecular motions associated with macromolecules

and protein-water interactions, T1ρ is sensitive to proteoglycan loss.

There are many aspects of the molecular environment of a degenerating disc that affect

the T1ρ relaxation. Since movement of large molecules is important in low-field relax-

ation, proteoglycan motion is a factor. The proteins in proteoglycans provide sites for

protein-water interactions, including binding and cross-relaxation. Proteoglycans are neg-

atively charged and affect tissue pH, influencing low-field relaxation. Hydration due to

osmotic pressure from the glycosaminoglycan chains in proteoglycans affects relaxation.

The change of molecular weight and structure from the breakdown of proteoglycans re-

lates to T1ρ. Fewer proteoglycan molecules means there is a different concentration of
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molecules in the disc, which affects T1ρ relaxation. In addition, proteoglycans are respon-

sible for regulating the flow of other molecules into and through the extracellular matrix, so

there is a change in concentration of other molecules as well due to the loss of regulating

proteoglycans.

In the intervertebral disc nucleus pulposus, lower T1ρ (faster relaxation) is associated

with degeneration [7, 8, 5]. The reason for the change in relaxation is still under study. T1ρ

is strongly correlated with concentration of proteoglycan glycosaminoglycan chains and

moderately correlated with water content [7]. Proteoglycan loss leads to dehydration and

looser regulation of macromolecular flow into the matrix. This may cause a higher ratio

of macromolecules to water, speeding relaxation via reduced mobility (slower molecular

tumbling) and more water-protein interactions. Loss of negatively-charged proteoglycans

can also lead to higher pH, increasing relaxation rates.

The properties of the disc in compression are greatly influenced by osmotic pressure and

hydration [34], which affect T1ρ values. Since proteoglycan loss directly affects osmotic

pressure, we expect T1ρ behavior to change with compression and degeneration.

Imaging degeneration in knee articular cartilage with T1ρ preceded the study of T1ρ

for intervertebral discs. Articular (hyaline) cartilage is similar in structure to intervertebral

discs, containing collagen1 and chondrocytes in an extracellular matrix dominated by ag-

grecan proteoglycans. As with intervertebral discs, early degeneration of articular cartilage

includes loss of proteoglycans and water. However, T1ρ increases with articular cartilage

1The collagen in hyaline cartilage is of type II, while the fibrocartilage of the intervertebral discs contains
both type I and type II collagen.
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degeneration [40, 17, 4, 41, 42, 43, 16, 6]. Proteoglycan loss and dehydration associated

with degeneration may slow relaxation because of fewer water-protein interactions and re-

duced molecular concentration. Fewer proteins within the matrix may lead to molecular

tumbling rates significantly higher than the low-field resonant frequency, leading to slower

relaxation. The opposing effect of T1ρ between disc and cartilage degeneration emphasizes

that there are many competing underlying mechanisms in T1ρ relaxation, and understanding

T1ρ relaxation in intervertebral discs is not straightforward and requires further study.

2.4 Description of the scanning environment

Some details of the specific scanning environment will help the reader understand this

dissertation. A GE Signa MRI scanner is shown in Figure 2.15 with the spine receiver coil

on the scanner bed. Knowing the location of the coil is useful in interpreting the images

since regions closer to the coil have a higher signal intensity. The subject lies supine and

the examiner places a landmark at the anatomy of interest using a laser. This landmark is

the reference point for specifying where to aim the image acquisition. The scanner moves

the subject into the cylindrical bore headfirst, leaving only their feet outside the bore.
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Figure 2.15: MRI scanner
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Chapter 3

Data acquisition

We wish to measure T1ρ values in intervertebral discs. As explained in 2.3, we calculate

T1ρ maps by finding the exponential parameter for each pixel in the intervertebral discs that

best fits the following equation in the least squares sense:

I ∝ e−TSL/T1ρ , (3.1)

where I is the intensity of a pixel in the T1ρ-weighted image acquired with spin-lock dura-

tion TSL, and T1ρ is the parameter to estimate.

To obtain the values on the left hand side of equation (3.1), one acquires several consec-

utive T1ρ-weighted images with different locking pulse durations in the spin-lock prepara-

tion sequence. T1ρ-weighted images are acquired by adding a spin-lock preparation to

a single-slice Fast Spin Echo (FSE) sequence. The T1ρ-FSE sequence used for the data

presented in this work was developed and tested by Xiaojuan Li [8]. Table 3.1 lists the
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sequence parameters.

FOV (field of view) 20 cm
Imaging matrix 192x128
Slice thickness 8 mm (one central sagittal slice)

In-plane pixel size 0.78 x 0.78 mm
TR (repetition time) 2000 ms

ETL (echo train length) 16
BW (bandwidth) 244.1Hz

NEX (number of excitations) 2
Flip angle 90◦

Spin lock frequency 300 Hz (0.007 mT)
Spin lock durations 0/20/50/90 ms

Scanning time 2:11 minutes

Table 3.1: T1ρ Imaging parameters

Since the images cover only a single sagittal slice, we must ensure that we are imaging

the same slice even if the two exams we are comparing were acquired during different

exam sessions. Before the T1ρ-FSE imaging sequence in each session, we acquire an axial

T2-weighted image using a FSE sequence. These T2-weighted images are automatically

aligned using a global rigid transformation during the second imaging session so that we

may select the correct right/left offset on the scanner for the T1ρ-weighted acquisitions. See

section 4.2.1 for registration details. We chose axial for this prospective registration step

because the higher in-plane resolution includes the right/left anatomical direction, yielding

precise results in the direction we need for positioning a sagittal slice. We selected sagittal

for the main imaging sequence to reduce the effects of partial voluming between disc and

bone.

We are looking for pressure-related changes in the intervertebral discs, so we created
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situations in which we expect differences in disc compression. Measurable differences in

MR images have been recorded with subjects positioned with spinal flexion/extension and

under axial loading [44]. We tried several different methods, including rounding of the back

by flexing the muscles, application of a compression device within the machine, supported

position changes (knees bent, propped up with pillows compared with legs extended flat

on the scanner bed), and decompression while lying supine in the scanner. For future

exams, we suggest taking scans multiple times during the day since discs are expected

to be more hydrated and less compressed in the early morning than in the late evening.

For convenience in developing and testing the registration algorithm, our data sets were

all acquired in single imaging sessions of less than 2 hours. To simulate different imaging

sessions, some volunteers exited and re-entered the scanner. Thus the algorithm is prepared

to deal with studies spanning multiple imaging sessions.
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Chapter 4

Registration

Registration allows us to compare image points that are in anatomically the same posi-

tion. Prospective registration guides image acquisition, segmentation identifies rigid bodies

and regions of interest, and disc registration aligns the intervertebral discs between two im-

ages in different positions.

4.1 Background

4.1.1 Registration

Registration of medical images is the process of transforming a “moving” image such

that its pixels align anatomically with the pixels in a “fixed” image. See [45, 46, 47, 48]

for recent surveys of medical image registration techniques. An image may be registered

with another image of a different patient (inter-patient), with an anatomical atlas, or with
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another image of the same patient (intra-patient) acquired with different imaging modalities

or in different situations such as before and after treatment. In this project, we deal with

intra-patient registration.

Transformation type

Registration transformations can either preserve shapes or not. Rigid transformations

preserve shapes, whereas affine and curved transformations do not. Rigid transforms allow

only rotation and translation. Affine transforms also permit scale and shear. Restrictions

on curved transforms depends on the type of transform. For example, some are required

to conform to points of known deformations, called control points or landmarks; others

are controlled by local smoothness constraints. Usually a single type of transformation is

applied over the entire image, called a global transformation, e.g. [49]. However if one

knows the locations of image features that are expected to transform differently, different

types of transformations can be applied according to tissue type [50, 51, 52]. For example,

a rigid transform can align bony regions while a curved transform deforms the surrounding

soft tissue.

Section 4.2.3 explains how our registration technique incorporates curved registration

using a thin plate spline (TPS) deformation. A two-dimensional thin plate spline is a radial

basis function transform using the kernel φ(r) = r2 ln r. The radial basis function trans-

form determines the deformation d at a point x based on the positions of k landmark points

pi according to the following equation:
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d(x) = Ax +
k∑

i=1

wiφ (|x− pi|) , (4.1)

where |.| denotes the Euclidean norm, bold typeface indicates a two-dimensional point, A

is an affine transformation matrix, and wi is a set of weights determined by solving the

above equation after substituting the known control point deformation values for d.

Radial basis functions have been used with success in curved registration of medical

images [53, 54, 55, 56]. Basis functions φ(r) that have been explored for medical image

registration include [54]:

• r2 ln r (two-dimensional thin plate spline; the basis function we use in this work)

• r (three-dimensional thin plate spline)

• r3 (volume spline)

• [αr2I − 3xxT ]r, α = 12(1− ν)− 1, ν is Poisson’s ratio (elastic body spline),

where x is the point in question, r is the Euclidean distance between a landmark and x, and

I is the identity matrix. Each function has a physical basis for the resulting deformation.

However, it is not yet clear which physical basis is appropriate for different tissues and

number of dimensions.

Registration metric

The outcome of the registration depends on the metric chosen to evaluate alignment.

Metrics are classified as landmark-based, segmentation-based, or intensity-based. Land-

mark and segmentation-based methods bring corresponding points or surfaces identified in
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both the fixed and the moving images into alignment. These methods depend on the qual-

ity of the landmark placement or segmentation. Intensity-based methods directly compare

the image pixel values. Examples include computing the pixel-wise squared difference,

cross-correlation, or mutual information.

Mutual information (MI) is defined in terms of the entropies of two images, A and B,

as follows:

MI(A, B) = H(A) + H(B)−H(A, B), (4.2)

where H(A) and H(B) represent the entropies of A and B, and H(A, B) is the joint

entropy of the two images. Shannon’s entropy and joint entropy are defined as:

H(A) = −
∑

a

pA(a) log pA(a) (4.3)

H(A, B) = −
∑
a,b

pAB(a, b) log pAB(a, b), (4.4)

where pA(a) is the probability distribution of intensity values of image A, and pAB(a, b)

is the joint probability distribution of the intensity values of images A and B. The prob-

ability distribution pA(a) can be estimated with a histogram of pixel intensities in image

A. Entropy H(A) provides a measure of the amount of information in an image. If A is

mostly uniform, hovering around a value v, pA(a) will have a large spike around v and

will be low elsewhere. Thus H(A) will be low; the image contains little information. We

know that if we pick a pixel at random, it will probably be around v, and we don’t gain
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much information from checking the true value of the pixel because we already knew what

to expect. On the other hand, if A contains pixels of many different intensities arranged

in a visual representation of a body part, as in an MRI, pA(a) will have a more uniform

distribution of probabilities, leading to a higher entropy value H(A). The image contains a

lot of information; it is not clear from the start what the intensity of a randomly drawn pixel

will be – when you draw the pixel you learn something about the image. Similarly, joint

entropy is a measure of the amount of information contained in two images together. The

joint probability distribution pAB(a, b) can be estimated by a normalized two-dimensional

histogram of image intensities. The images are placed one on top of the other so that a pixel

location now has two values – one from A and one from B. The value of the histogram at

point (a, b) is the number of pixels in the intensity range assigned to a in image A and b in

image B. If both images contain similar intensity patterns, pAB(a, b) will have clusters of

higher intensity leading to a low joint entropy H(A, B). In other words, the information

in A and B together is low because once you know the value of A at a randomly drawn

pixel, you are likely to be able to guess B at that pixel. B isn’t giving you much additional

information. If the intensity patterns in A and B are different or if the patterns are similar

but misaligned, the joint histogram will be more spread out, meaning H(A, B) is higher

and more information is contained in the image pair. In other words, even knowing the

value in A of a randomly drawn pixel, you are unlikely to guess the pixel value in B.

Mutual information combines these entropies to give a metric of registration. According

to equation (4.2), a high MI value comes from low H(A, B) and high H(A) and H(B).
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The low H(A, B) means that the patterns in A and B are similar and aligned, i.e. knowing

A provides information about B. Since H(A) and H(B) are calculated only where A and

B overlap, a high MI value encourages alignments where the information-filled regions

of A and B overlap. That is, −H(A, B) alone is high when A and B only overlap in

homogeneous background regions, which is not a desirable registration. Including H(A)

and H(B) penalizes this trivial alignment.

Since mutual information depends on histograms rather than directly comparing pixel

values, it is useful in aligning patterns that do not necessarily have the same absolute inten-

sity values, such as images acquired using different modalities [57, 58, 48].

Smoothing the joint histogram and moving image makes the mutual information met-

ric differentiable, aiding optimization [59]. The transformed moving image is smoothed

using a B-spline interpolator, and the joint histogram is extrapolated by convolving with a

smoothing spline kernel, called a Parzen window.

Optimization method

The best registration is found by searching for the transform parameters that yield the

maximum or minimum value of the selected metric. Many methods are used success-

fully with the mutual information metric, including Powell’s method, the simplex method,

gradient ascent, and simulated annealing [48]. We found the Insight ToolKit [60] imple-

mentation of the regular step gradient descent method to yield robust and quick results with

the Mattes mutual information metric on our T1ρ-weighted MR images.
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The regular step gradient descent (or ascent) algorithm moves in the parameter space

along the curve representing the metric value. Optimizing all parameters at once, it follows

the direction opposite (or along) the gradient of the metric curve. Starting with a maximum

step length, it steps along the negative (or positive) gradient by that length to cover most of

the distance to the nearby minimum (or maximum). It continues until it hits a point where

the gradient direction changes sharply. The step length is then reduced by a set relaxation

factor so that the minimum (or maximum) is not overlooked. The search continues in this

manner until the gradient magnitude is below a set tolerance, the step size becomes smaller

than a set tolerance, or the pre-determined maximum number of iterations is reached. Pa-

rameters can be given scaling factors so that steps along that parameter are larger or smaller

according to the user’s approximation of how much that parameter is expected to change

with respect to the other parameters. For example, a rotation parameter usually changes

on a different scale than translation parameters. The gradient descent (or ascent) algorithm

converges to local minima (or maxima), so the starting parameters are influential in the out-

come. Many other optimization methods also have this drawback of tending toward local

optima.

A multi-resolution approach to optimization can help steer the solution toward global

optima rather than local optima, thereby reducing the influence of the starting parameters

[61, 62]. A multi-resolution approach often also speeds up the optimization. This approach

begins by optimizing the parameters using smoothed and downsampled versions of the im-

ages. The initial coarse level guides the optimization to a global rather than local optimum.
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The optimization continues using images that have more detail than the initial coarse step

but are still smoothed and downsampled with respect to the original images. Optimizing

with higher resolution images yields a more precise result. It is also more susceptible

to local optima, but the coarser resolution versions of the image have already placed the

higher resolution versions at an initial position closer to a global optimum. This procedure

continues until the optimization finishes with a fine-tuning on the original high-resolution

images.

Inverse mapping

After finding the optimum registration transformation, we apply it such that the moving

image is in the same position as the fixed image. We transform the moving image via an

inverse mapping. That is, the transform is defined from the fixed to the moving frames.

A blank image is created in the fixed frame, called the morphed image, and the value for

each pixel in this new morphed image is found by following the fixed-to-moving transform

into the moving frame. The pixel value at the corresponding point in the moving image

is placed in the morphed image, interpolating if necessary since the point is likely not an

integer pixel position.

An inverse mapping is preferred because with a direct mapping from the moving to

fixed images, there may be pixels in the resulting morphed image to which no intensity is

assigned or multiple intensities are assigned. Inverse mapping is a straightforward way of

approximating the transform along the regularly spaced pixel positions of a digital image.
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4.1.2 Segmentation

Segmentation is the process of classifying pixels in an image. In medical images, pix-

els are typically classified according to tissue type, anatomic organ or object, or functional

or chemical properties. As explained in section 4.2.2, our procedure requires anatomical

structure segmentation of each intervertebral disc and each vertebra. For a review of seg-

mentation methods for medical images, see [63]. Many different segmentation methods

have been developed, though no one method is general enough for all applications. Suc-

cessful segmentation schemes often combine and tailor methods for a specific application,

which is the approach we take. In the following paragraphs, we explain the general seg-

mentation techniques that we combine and modify to meet our needs.

Region growing Region growing classifies pixels according to their intensity and spatial

location. The procedure begins with a seed pixel that is known to be within the region

of interest. Neighboring pixels are tested to see if they should be included in the region.

If so the pixel is marked as included and neighboring pixels of the newly classified pixel

are tested. The procedure continues, growing the included region until no more pixels

neighboring the enlarged region satisfy the inclusion criteria. Region growing algorithms

differ in their inclusion test and in their definitions of neighboring pixels. The inclusion test

could be a simple threshold, where pixels with intensities lower than a provided threshold

(or higher or within an intensity range) are included. Other common tests are inclusion

only if all neighbors satisfy a threshold condition or inclusion only if the pixel intensity
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falls within a given number of standard deviations of the mean of the pixels that are already

included.

Voting operations Voting operations act on a pixel according to rules that depend on the

number of neighboring pixels satisfying a criterion. For example, the mathematical mor-

phological operation of binary dilation can be seen as a voting operation. In binary dilation,

a pixel changes classification from background to foreground if the number of neighboring

foreground pixels in its neighborhood is greater than or equal to one. The result is a slight

increase in the size of the foreground region. The definition of “neighboring pixels” is

given via a structuring element, or a kernel, which is a small collection of binary pixels (or

voxels for a three-dimensional image) that when overlapped on the image, centered around

the pixel in question includes a 1 for pixels in the neighborhood and a 0 for pixels outside

the neighborhood. See Figure 4.1 for some examples.
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Figure 4.1: Examples of two-dimensional structuring elements for voting operations.

Another voting operation used in this project is the binary hole filling operation. Pixels

are changed from background to foreground if a majority plus n of the neighborhood pixels

are foreground. Smaller n will fill larger holes.
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Fast marching The fast marching method is a type of level set method. Level set methods

describe the evolution of an interface [64], and if we view the interface as the outline of a

segmented region, the level set method becomes a technique for image segmentation [60].

Instead of following the evolution of an interface Γ(t) in the N -dimensional space in which

it resides, we follow the interface (hypersurface) as if it were the zero level-set at time t

of an evolving N + 1-dimensional propagating function φ(x, t). We begin by stating the

initial condition

φ(x, t = 0) = ±d, (4.5)

where d is the distance from the N -dimensional point x to the initial interface Γ(t = 0),

and the sign of d indicates if x is outside (positive) or inside (negative) the hypersurface

Γ(t = 0). Condition (4.5) means the zero level set of φ is equal to the initial interface, i.e.

Γ(t = 0) = (x|φ(x, t = 0) = 0). We want to maintain this relationship, i.e.

Γ(t) = (x|φ(x, t) = 0), (4.6)

so we note that

φ(p(t), t) = 0 (4.7)

for all time t, where p(t) is a point on the evolving hypersurface Γ(t). We denote the speed

of propagation of p(t) as F (p(t)), that is ∂p
∂t
· n = F (p(t)), where n is the normal to the

surface at p(t). Taking the derivative of equation (4.7), we get
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∂φ

∂t
= −F |∇φ| (4.8)

as the partial derivative governing the evolution of the function φ. To obtain the interface Γ

at time t, simply find the zero level set of φ(t). Advantages of this approach include ease

in managing separations, merges, and sharp corners of Γ as it evolves, ease in numerical

approximation, ease in determining Γ curvature directly from φ, and ease in following

interfaces in dimensions higher than two.

The general level set function can evolve in complex ways, including terms that control

advection, propagation, and local curvature. When the level set function is in a simple form

where the interface only advances in one direction (i.e. shrinks or expands) and the speed

of the evolution depends only on position within the image, the propagation can be solved

with a fast algorithm called the fast marching method [64]. Without loss of generality, we

explain here the case of monotonic expansion. In the fast marching algorithm, we calcu-

late the time T (x, y) at which the interface crosses the point (x, y) by sweeping outward,

moving point-by-point from points with lower to higher T according to the speed F (x, y).

Once T (x, y) is calculated, the interface at time t is found by thresholding T (x, y) at value

t.

To use the fast marching method to segment an image, we give the algorithm an initial

guess of the segmentation outline. This guess must be inside the final outline everywhere

since the assumption is that the interface always moves outward. Usually the initial guess

will be one or more points located inside the anatomical structure of interest. The easy-
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merging property of the level set method makes it simple to combine several initial points.

We also give the algorithm an image with pixel intensities representing the propagation

speed of the outline at each point. This speed image usually depends on the edges in

the image to be segmented, with high speed around 1.0 within the anatomical object and

decaying quickly to low speed around 0.0 to stop the propagation near the edges of the

object to be segmented. A possible procedure to create the speed image is to smooth the

image to be segmented with an edge-preserving smoothing function such as anisotropic

diffusion [65], followed by finding the gradient magnitude at each pixel and applying a

sigmoid function:

1

(1 + e−
(x−β)

α )
, (4.9)

where x is the gradient magnitude at the pixel, and α and β are user-defined constants to

control the sharpness of the decay. With a negative α, the sigmoid function maps high

gradients to low speeds and smoothes the edges a bit so the speed decays near the edges in-

stead of abruptly changing. The algorithm then marches along calculating T (x, y), and we

find the segmentation outline by thresholding the output T (x, y) at a user-defined stopping

time ts.
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4.2 Methods

4.2.1 Prospective registration

As mentioned in section 3, registration is first used during the image acquisition phase

to locate the same sagittal slice for both images if the person must exit the scanner between

scans.

We use a global rigid transformation, optimizing the mutual information metric using

gradient ascent. After finding the relative transformation between the axial images, we

find the desired sagittal slice position as illustrated in Figure 4.2. In the figure, Oroom

represents the origin of the coordinate system of the room, which remains constant from

scan to scan. L1 and L2 are the operator-defined landmarks for the first and second scans,

respectively. C1 and C2 are the centers of the first and second images, respectively. Note

that they are recorded with respect to the corresponding landmark point L1 or L2. The

sagittal slice in the first image passes through point s1 (measured as SL1 with respect to

the first landmark). We want the sagittal slice in the second image to pass through s2, which

is the same anatomical position as s1. s2 is measured as SL2 with respect to the second

landmark. The inset at the lower left of Figure 4.2 shows the result d of the prospective

registration, which gives the transformation needed to move from a pixel p2 in the second

image to the pixel p1 representing the same anatomical point in the first image. The green

dot p1 in the lower image represents the same pixel p1 in the upper image to show how the

anatomical position differs. The scanner tells us the values of quantities SL1, C1, and C2,
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and the prospective registration gives d. We wish to know SL2. Figure 4.2 illustrates that

we may calculate SL2 as:

SL2 = SL1 − d + C2 − C1.

We then input the right/left component of SL2 into the scanner to aim the sagittal acquisi-

tion.

4.2.2 Segmentation

Segmentation serves us in two ways. Disc segmentation identifies the regions that we

will be analyzing, and vertebral segmentation identifies the regions that move rigidly in the

images, which guides the registration of the discs, as described in section 4.2.3.

Our segmentation process requires very little human interaction, and the required inter-

action is easily learned and not sensitive to error.

Seed placement Segmentation begins with the user indicating the anterior and posterior

ends of each disc of interest, two points per disc, as shown in red in Figure 4.3.

The software then automatically selects two seed points within each disc and a centrally-

located seed point within each vertebra. See Figure 4.4 for an example of disc seed posi-

tioning. The disc seeds (large red points in Figure 4.4) are selected by splitting into thirds

the (green) line connecting the anterior/posterior (A/P) points (small red points).

Seeds for vertebrae with discs both above and below are calculated by taking the mid-
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Oroom

L1

SL1

s1

C1 sagittal slice

L2

SL2

s2

C2

desired sagittal slice

p1

p2

p1

d

In this graphic,

s1 = s2 − C2 − L2 + L1 + C1 + d

SL2 = s2 − L2

Therefore
SL2 = SL1 − d + C2 − C1

Figure 4.2: Prospective registration alignment. See page 56 of the text for details and
variable definitions.
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Figure 4.3: The user indicates the anterior and posterior points of the intervertebral
discs. These points are shown in red.

Figure 4.4: The software positions seeds within the intervertebral disc to use in
segmentation. The locations of the disc seeds (large red dots) depend on the user-
defined anterior/posterior points (small red dots).

point of the line connecting the anterior seed in the superior disc with the posterior seed of

the inferior disc, as demonstrated in the left picture in Figure 4.5. The central seed located

in a vertebra with a disc of interest either above or below (not both) is located along the

normal (yellow) to the line (green) connecting the disc seeds. The normal is placed in the

center of the green line, and the seed is located a distance of d away from the green line,
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where d is the length of the green line, as shown in the right illustration in Figure 4.5. Note

that the seeds in the vertebrae at the top and bottom of the image are located closer to the

disc rather than central to the vertebra. This is to ensure that the inferior seed does not

overshoot the vertebra due to the sharp curve of the sacrum and that the superior seed does

not rise outside the image.

Figure 4.5: The software locates seeds (largest red points) within the vertebrae
to use in segmentation. Vertebral seed locations depend on disc seed locations
(medium-sized red points). The smallest red dots are the user-defined ante-
rior/posterior points.

Disc segmentation Once the seeds are found, the software segments each disc. See Fig-

ure 4.6 for an overview of the procedure. Since the disc/vertebra contrast is high in the

T1ρ-weighted images, a threshold region growing algorithm is a good candidate for seg-

mentation. Thus the major segmentation step is a region growing algorithm on each disc

that grows from the disc seeds found above to include adjacent points that are above a

threshold. Adjacency is defined as the 3x3 matrix around a pixel. The threshold is auto-
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Pre-processing

Region growing

Fast marching

Voting operations
(dilation,

hole-filling)

Figure 4.6: Overview of disc segmentation procedure.

matically determined by finding the minimum threshold for which the vertebra seeds are

not included in the resulting segmented region. This threshold is then scaled by 1.1. The

scaling factor is not strictly required, as many images do not need it, but it reduces bleed-

ing in some images and does not hurt most images since the disc/vertebra contrast is high

enough. Before the region growing step is a pre-processing step, the first part in which we

eliminate the source of most of the region growing bleeding error, i.e. the spinal canal.

Looking at the example images shown so far, we see that the discs have a noticeably higher

intensity than their surroundings in the anterior, superior, and inferior directions. There

is also a dark bar on the posterior edge separating the disc from the high-intensity spinal

canal, but this bar is thin and is sometimes breached by the region growing algorithm.

To eliminate this problem, we use the previously-defined points indicating the anterior and

posterior boundaries of the discs. We blacken values anterior and posterior to the disc using

lines orthogonal to the line connecting the A/P points, as shown in Figure 4.7.

The second and final part of pre-processing is to smooth the result, followed by the
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Figure 4.7: Blackening the regions anterior and posterior to the disc assists segmen-
tation.

threshold region growing algorithm explained above. In some cases the region growing

still leaks outside the discs, so we next use a fast marching level set method. Instead of

basing the speed image on the original image as is typically done, we base it on the binary

output of the region growing algorithm. The fast marching method will then march outward

from the disc seeds. The resulting segmentation outline is determined by a pre-set stopping

time. The stopping time allows the propagating front to march to the nearer edges, where it

will stop. The farther edges are assumed to be errors due to region-growing leaking and are

not included in the fast marching result. We make the binary output of the region growing

algorithm into a speed image by finding the gradient magnitude and applying a sigmoid

function (see equation (4.9)) to generate high speed within the disc and zero outside, with

a short period of decay as we approach the edges. (Sigmoid parameters: maximum speed

= 1.0, minimum speed = 0.0, α = −0.5, β = 12.)

After the fast marching method, we dilate the results using a 3x3 matrix of ones as a
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structuring element to recover the width of the outline in the fast-marching speed image.

Finally, we apply a hole filling algorithm (voting threshold of majority+2) to deal with

noisy regions of low intensity within the disc. See an example result in Figure 4.8.

Figure 4.8: Example result of automatic disc segmentation.

Since there can be unexpected anatomical deviations from the anticipated shapes and

intensities in medical images, we also include a manual touch-up feature where the user

paints or erases pixels with the computer mouse as a paintbrush.

Vertebral (rigid body) segmentation The purpose of segmenting the vertebrae is to

identify which portions of the image are expected to move according to a rigid transfor-

mation, as opposed to the elastic transformation of soft tissue. Using rigid transforms to

guide the registration instead of using a fully deformable registration provides more accu-

rate and faster results. Since we are concerned with analyzing the T1ρ values within the

discs, the vertebral segmentation must be accurate near the discs. However, as will be

explained in section 8, the anterior/posterior edges of the vertebrae can be (and are even

desired to be) overestimated.
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A fast marching level set process accomplishes the vertebral segmentation. As with the

disc segmentation, we use a non-standard approach to creating the speed image. Since our

goal is to find an interface that approaches but does not the discs, we base our speed image

on the disc segmentation. We assign value one to pixels that were previously classified

as discs and value zero to other pixels. Edge detection and a sigmoid filter transform

this binary image into a speed image ranging from 0.0 to 1.0, as explained for the disc

segmentation. The resulting zero-valued edges of the segmented discs prevent the vertebral

segmentation from marching into the disc regions. For each vertebra, the fast marching

procedure is initialized with the previously-determined central vertebra seed. The stopping

value depends on the distance between the vertebra seed and the seeds within the bordering

discs so that the fast marching interface extends all the way to the discs (though the zero-

speed edges prevent it from entering the discs). The superior and inferior vertebrae use

twice this distance since these vertebra seeds are situated closer to the discs, as described

earlier. See Figure 4.9 for an example of the resulting segmentation.

4.2.3 Disc registration

After acquisition, we register the intervertebral discs so that we can statistically analyze

T1ρ values from the same disc location in both images. For each pixel p1 within a disc in

the “fixed image” (position 1), we locate the pixel in the “moving image” (position 2) that

corresponds to the same anatomical position as p1. Registration uses T1ρ-weighted images

with a short spin-lock duration since the intensity contrast between the discs and vertebrae
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Figure 4.9: Example result of automatic vertebra segmentation. Anterior/posterior
ballooning is justified in section 8.

is greater and the signal to noise ratio is higher for shorter spin-lock durations. See Figure

4.10 for an outline of the registration procedure.

Find global translation

Find rigid transformation for each vertebra

Locate landmark points in fixed image

Determine deformation at landmark points

Calculate thin plate spline coefficients

Apply TPS to disc points

Figure 4.10: Outline of the disc registration procedure.

The first step is to apply a global translation to the moving image to get the spines in

approximately the same location. We find the translation by optimizing the mutual infor-

mation metric using gradient ascent. Mutual information is often used for multi-modality
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registration, but it is also appropriate here because intensity values in T1ρ-weighted images

vary according to position within the magnet and with respect to the radio frequency coils.

To improve robustness, we use a four level multi-resolution approach, where the images

are smoothed and downsampled to create four levels of detail. Registration begins with the

coarsest levels, which is less sensitive to noise but less precise. The subsequent finer levels

improve precision.

After global registration, we register the discs with local precision. Discs are soft tissue

and deform as the spine bends, so a deformable (non-rigid) transformation is most accurate.

We use an elastic thin plate spline (TPS) transformation. Before the TPS may be computed,

we must find landmark points pi, which are points at which we know the deformation. To

find these points, we note that the discs are bounded above and below by vertebrae, which

are rigid bodies, i.e. the vertebrae change position but maintain their shape as the spine

bends. By choosing landmarks on the vertebrae, we can determine the deformation at these

landmarks by finding the rigid transformation of the vertebrae, which is beneficial since

rigid transforms have fewer degrees of freedom than most curved transforms.

We automatically determine landmark points at the edges of the vertebrae. Since closer

landmarks have a greater influence on radial basis function deformation, we can have good

control of the disc deformation without needing too many landmarks by selecting points

only on the portions of the vertebrae that border the disc. To automatically find such points,

we dilate a segmented disc until it overlaps with the two surrounding vertebrae. We then

select evenly spaced points on this overlap to serve as landmark points. Sometimes the
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ballooning vertebral segmentation includes the regions anterior and posterior to the disc,

which are not truly part of the vertebra. We eliminate any landmarks in this erroneous

section by rejecting any landmarks anterior and posterior to the disc, as done in the disc

segmentation in section 4.2.2.

The user may determine the number of landmarks; more landmarks control the de-

formation more precisely but are more costly in computation time. To find a reasonable

default number of landmarks to suggest to the user, we compare the registration results

using different numbers of landmarks on a sample image. Figure 4.11 shows the landmark

positioning for four examples: where the landmarks are evenly spaced with 2, 5, 10, and

20 pixels between them along the interface between the disc and surrounding vertebrae.

Between the closest spacing (separation of 2 pixels) and the 5, 10, and 20 pixel spacings,

the registration as measured by the mutual information between the transformed discs de-

grades by 0.08%, 0.33%, and 2.8%, respectively. The difference in registration was less

than a quarter pixel (mean 1/50 pixel) between the 2 and 5 pixel separations, less than a half

pixel (mean 1/30 pixel) between the 2 and 10 separations, and less than a half pixel (mean

1/10 pixel) between the 2 and 20 separations. The computation time to find the landmarks,

apply the deformation, and calculate the deformation field drops from almost 14 seconds at

2 pixel spacing to about 9 seconds at 5 pixel spacing to almost 8 seconds at 10 pixel spacing

to about 6 seconds at 20 pixel spacing. We select a 5 pixel spacing as the default since the

degradation of registration is minimal compared to the reduction in time. However, even

the time required for 2 pixel spacing is acceptable considering the calculations do not need
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to be done in real time.

(a) Separated by 2 pixels (b) Separated by 5 pixels

(c) Separated by 10 pixels (d) Separated by 20 pixels

Figure 4.11: Illustration of TPS landmark positioning with different numbers of landmarks.
Landmarks are separated by 2, 5, 10, or 20 pixels along the interface between the vertebral
segmentation and the disc segmentation. There are places where the points are less evenly
distributed because the interface is not of uniform thickness, so walking through n pixels
does not necessarily yield consistent spacing.

To find the rigid transformation (translation and rotation) for each vertebra, we begin at

one end of the spine and establish a bounding box that contains the entire segmented verte-

bra. Using gradient ascent to optimize mutual information, we find the appropriate rotation

and translation. The rotation is performed around the center of the bounding box. Moving

to the next vertebra, we initialize the transformation by adjusting the previous transforma-

tion to use the coordinate system of the new bounding box. This sequential method of

initialization lets the algorithm succeed even if there is a lot of relative flexion/extension in

the spine.

After calculating the thin plate spline weights, we apply the deformable registration to

the pixels within the intervertebral discs in the T1ρ maps. The moving image is transformed

to the fixed reference frame via inverse mapping. Specifically, each pixel in the transformed
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image is calculated as follows: (1) The pixel p is viewed as belonging to the fixed reference

frame. If it is not within one of the segmented discs, the value is set to zero. Otherwise,

we continue: (2) The deformation d(p) is calculated using the TPS to yield the pixel

pm = p + d(p) in the moving reference frame. (3) The intensity value in the moving

image at pm is estimated with linear interpolation and entered into the final transformed

image at pixel p. The resulting transformed images are passed to the statistical analysis

function for quantitative T1ρ value calculation and comparison.

Even though this method has so far performed reliably, there’s the chance that anatomic

variations or poor image quality could foil the algorithm. To cover this case, we include a

manual touch-up feature where the user can adjust the rigid parameters of each vertebral

transformation. To give the user visual feedback for these adjustments, we apply a hybrid

transformation to the entire image, where points within a rigid body are transformed ac-

cording to the corresponding rigid transformation, and points outside the rigid bodies are

transformed according to the thin plate spline.
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Chapter 5

Statistical analysis

To study the effect of disc compression on quantitative T1ρ values, one needs to analyze

data across many people. But first we need to understand the changes in each of those

individual people, which is the goal of the statistical analysis developed in this dissertation.

The purpose of aligning the intervertebral discs between images is to be able to locally

compare the T1ρ values. Here we describe a method of comparison to determine if there

are statistically significant changes between images of the same subject.

5.1 Background

Hypothesis testing A standard procedure when deciding whether differences viewed in

groups of measurements are real differences or just due to chance is to set up a hypothesis

test. One first decides what is going to be tested. For example, is a cluster of T1ρ values

from a volunteer’s disc different in a neutrally positioned spine than in a flexed spine?
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The null hypothesis is typically defined as there being no real difference. Under the null

hypothesis, the values in the two clusters were drawn from the same distribution, and any

measured difference is due to random chance. The alternate hypothesis is defined as there

being a real change. The values in the two clusters were drawn from distributions that differ

in some way, perhaps in the mean or the shape of the distribution, depending on how the

test is arranged. The test proceeds by calculating the probability p that we would observe

a difference at least as large as the measured difference due to random chance if the null

hypothesis were true. The lower the probability p, the less likely the null hypothesis is

true. If p is less than some pre-set significance level, often 0.05, the null hypothesis is

rejected, though it does not prove that the alternate hypothesis is true. If p is greater than

the significance level, the null hypothesis is not rejected. The evidence supports the null

hypothesis over the alternate hypothesis, though the null hypothesis is not proven.

In a one-tailed hypothesis test, the alternate hypothesis is that the test statistic of group

one (s1) is not only different from that of group two (s2) but that it is larger (or smaller,

but the decision must be made before the test begins). The p value is then an estimate of

the probability that we would observe the difference ∆ = s1 − s2 to be greater (or less)

than the observed difference. A significance level of α = 0.05 means that the area under

the probability distribution Pr(d) along d = [∆,∞) (i.e. one tail) must be less than 0.05.

A two-tailed hypothesis test looks for absolute differences between the test statistic and is

used if it is unknown or unimportant which group has the larger test statistic. The p value is

then an estimate of the probability that we would observe the difference ∆ to have a greater



71

magnitude than the observed difference. Now a significance level of α = 0.05 means the

area under Pr(d) along d = (−∞,−∆]∪ [∆,∞) (i.e. two tails) must be be less than 0.05.

If p is less than the predetermined significance level, we reject the null hypothesis.

However, for non-zero probabilities p, there is the possibility that an observed difference is

due to chance. When this does occur, we have rejected the null hypothesis even though it

was true. This is called a type I error. Failing to reject the null hypothesis when it is in fact

false is called a type II error. When we reduce the likelihood of one type of error, we often

increase the likelihood of the other. Depending on the type of experiment, one type of error

may be more critical than the other. For example, when looking for an effect of treatment,

one usually tries to reduce type I errors since they suggest the treatment has an effect when

it does not.

Resampling statistics In parametric frequentist hypothesis testing, one makes assump-

tions about the underlying probability distribution from which samples were randomly

drawn. A common assumption is that samples from two tested groups are distributed nor-

mally with the same variance. The mean of the distributions is the statistic that is tested,

with the null hypothesis being that the means are the same and any difference in the means

of the measured realization is due to chance. These types of tests provide mathematical

formulae for quickly calculating the significance of an outcome, but the results rely on the

validity of the assumptions on the distributions. Another approach, called resampling, is

to use the samples themselves to estimate the probabilities needed for the hypothesis test.
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No assumptions about the shapes of underlying distributions are required, and since the

test statistic is directly calculated, it is straightforward to compare statistics other than the

mean. The resampling null hypothesis is more general, stating that the two samples were

drawn from the same population of possible samples (often called the same “universe” of

samples), i.e. that there is no difference between the two groups other than which samples

in the universe were randomly drawn. Resampling was introduced in the 1930’s but has re-

cently gained more popularity since modern computers can handle the high computational

cost of Monte Carlo type simulations. See [66] for an introductory text on resampling.

To estimate p values using resampling, we recall that p is an estimate of the likelihood

of seeing a difference in the test statistic at least as large as the observed difference, as-

suming the difference is due to random chance, i.e. assuming the null hypothesis is true.

If the null hypothesis is true, both groups of samples were drawn from the same distribu-

tion, so swapping samples between groups should make no difference. Two main types of

resampling used for hypothesis tests are permutation and bootstrap. In a permutation test,

samples are randomly assigned to the two groups and the test statistic (e.g. the mean) is

calculated for each of the two new groups. This is repeated hundreds of times and the p

value is the fraction of trials that the difference in the trial test statistic is at least as extreme

as the original observed difference. In a bootstrap test, the underlying universe of samples

is estimated with an infinite number of copies of each of the observed samples in both

groups. If there were m samples in group one and n samples in group two, we create a trial

by drawing m samples with replacement from the pool of all samples from both groups to
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assign to trial group one, and drawing n samples with replacement to assign to trial group

two. Like the permutation test, the trial is repeated hundreds of times, and p is the fraction

of trials where the difference in the test statistic is at least as extreme as the actual observed

difference.

Geographically localized hypothesis testing A standard hypothesis test does not include

information about the geographical location of the samples. Samples may be taken from

different locations in order to draw conclusions about the effect of location on a parameter,

but usually there is only one outcome – is there a statistically significant difference between

the two groups or not. We would like to create a map of statistically significant locations

within the intervertebral discs. We generate a p value for each pixel based on the local pixel

intensities.

Investigating spatially varying data has been done under the name geographically weighted

regression (GWR), where information about the geographical location of samples is incor-

porated in regression analysis. For GWR details, see [67, 68]. Since parameter-based

hypothesis testing can be formulated as a linear regression problem, GWR is a way of de-

termining local statistical significance of differences between images. Points contributing

to the regression are weighted according to their proximity to the point being tested. The

weights are higher for closer points and lower or zero for farther points. The weighting

function often has a smooth transition between high and low weights to reduce the impact

of single points. If there is a semi-nearby high-intensity point, a weighting function with
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a sharp cutoff changes drastically if the bandwidth of the weighting function is increased

from just excluding to just including the influential point, whereas a weighting function

with a gradual decline would incorporate this point more smoothly.

5.2 Methods

We explain our method of comparing the registered T1ρ values, testing whether or not

the values at anatomically corresponding points in the two images were likely drawn from

the same distribution, where differences between them are likely due to random chance.

A simple approach would be to compare the means of all pixels in an entire disc, but this

approach encompasses the values within both the nucleus pulposus and annulus fibrosus,

which are expected to be different [18, 7] and ignores any local changes, such as a differ-

ent response within the nucleus and annulus or differences between anterior and posterior

locations caused by position changes or local pathology. Another approach is to select re-

gions of interest (ROI), separating the nucleus and annulus [18], manually selecting an ROI

at approximately the same location within the nucleus [7, 5], or manually selecting many

regions of interest within the disc, trying to aim for the same regions in both images [69].

Since we have already registered the discs in the two images, matching anatomical loca-

tions is done. We take into account local variations by running hypothesis tests centered at

each disc pixel, including in the calculation only disc values that fall within a neighborhood

of user-specified size. Allowing the user to specify the size gives the flexibility of exploring



75

the scope of the differences, including covering the entire disc. Only pixels within the seg-

mented disc are considered for the statistical analysis, so even neighborhoods at the edge of

the discs include only disc pixels, though the number of pixels is less than neighborhoods

in the center of the disc. Increasing the size of the neighborhood gives us more samples for

calculating the statistical significance but reduces the local quality of the computation.

Figure 5.1 demonstrates how neighborhood size affects the outcome of hypothesis test-

ing. We show the statistical significance for pixels using neighborhoods of 3, 7, and 11

pixels at two-tailed significance level p < 0.05. Small neighborhoods yield noisier re-

sults (Figure 5.1a) and large neighborhoods spread out the areas of significant change,

de-localizing the measure (Figure 5.1c). The effect of neighborhood size on the result of

hypothesis testing is explored more in depth in section 6.1.

0.05

0

(a) Neighborhood 3 pixels

0.05

0

(b) Neighborhood 7 pixels

0.05

0

(c) Neighborhood 11 pixels

Figure 5.1: Example of how neighborhood size affects hypothesis testing. This example
uses the T1ρ maps from volunteer I (see Chapter 7), registered from a flexed to neutral
position. Pixels that are considered significant are colored according to their two-tailed
significance level.

For the hypothesis testing, we use a resampling technique rather than a parametric test

such as Student’s t-test. Parametric tests require assumptions about the underlying prob-
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ability distribution shape and variance, whereas resampling techniques are not based on

such assumptions. Looking at histograms of the T1ρ disc values in the images we acquired,

we see that the distributions vary from Poisson-like to uniform-like, but these distributions

include pixels from many different locations in the discs, meaning they show the sum of

many different distributions. Thus the underlying distribution is not clear. If we were us-

ing a parametric test, we could assume the Gaussian distribution since it appears often in

nature and is a good approximation for many other distributions under certain conditions,

but we chose to use resampling instead of making this assumption. We use the bootstrap

method rather than the permutation method because it is more robust to differences in pop-

ulation variances. For each pixel, we follow the bootstrap procedure outlined in section

5.1. One group of samples is defined as the neighborhood around the pixel in question in

the fixed image. The second group is the neighborhood around the corresponding pixel

in the moving image after registration into the fixed reference frame. The null hypothesis

is that the neighborhood pixels in the two images were drawn from the same distribution.

Our test statistic is the mean. We use the standard significance level of p < 0.05, although

we also report the actual value of p to give the investigator a more complete picture of the

strength of the significance. Since it is not known which state of compression will yield

higher T1ρ values, and different portions of the same disc may experience compression or

decompression depending on spinal curvature, we chose a two-tailed test.

If the local neighborhood is small, the number of samples used by the bootstrap to

approximate the underlying universe is relatively small, so we may question the quality of
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the p-value estimate. To give an estimate how confident we are in the p-value, we modified a

bootstrap method that is typically used for estimating the sample size required for a desired

accuracy in a study. We estimate the probability that we committed a type I or type II error

at a given pixel by estimating the probability that a random draw from the bootstrapped

universe represented by the observed samples would lead us to a different conclusion about

statistical significance. This error estimate is available to the investigators to help interpret

the results of a data set.

To estimate the probability of error at a given pixel, we first collect the values within

the local neighborhood of size n pixels from the first image in an array a1, the n values

from the second image into an array a2, and the combined 2n values from both images

in an array aboth. We find the minimum separation of means ∆m considered statistically

significant at the 0.05 level using the bootstrap technique described above. To do so, we

randomly draw with replacement n values from aboth to represent a trial resample of the

first image and calculate the mean of these n values. We draw another n values to represent

a trial of the second image, calculate the mean, and subtract the two means. We repeat

this hundreds of times, entering the absolute value of the difference of the means into a

histogram. The minimum separation ∆m is at the 95% quantile of the histogram. Next we

calculate the percentage of time we expect to find means that are at least ∆m apart if the two

universes are represented by the samples we have. We use the bootstrap idea again to create

the universes, but this time drawing with replacement only from the samples in one group

rather than the pooled samples from both groups. Specifically, we draw with replacement
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n values from a1 and another n values from a2 and compute the difference in the means of

the two groups. After repeating the trial hundreds of times, the percentage Plower of trials

with difference in means lower than ∆m indicates how often we would conclude that the

difference is insignificant, assuming the universe is similar to the measured values. Thus if

the original pixel pair was not deemed significantly different, we expect to make a type I

error (100− Plower)% of the time, and if the original difference was deemed significant, we

expect to make a type II error Plower% of the time. As a way of visualizing this information,

the user can choose to have pixels highlighted only if their error estimate e is lower than

a specified threshold (or equivalently the confidence level (100 − e)% is greater than a

specified value).
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Chapter 6

Validation

Validation of registration methods on in vivo medical images is difficult because the

true transformation is not available for comparison. Nevertheless, researchers must use

some measure to indicate the performance of algorithms. As summarized in [45], there are

several items to consider in registration validation, which we will address in turn, including:

• Precision

• Accuracy

• Robustness/stability

• Reliability

• Resource requirements

• Algorithm complexity

• Assumption verification

• Clinical use
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6.1 Precision

Agreement between repeated measurements is the typical definition of precision in en-

gineering and science. For image registration, precision is defined in [45] as “the typical

systematic error that can be obtained when the registration algorithm is supplied with ideal-

ized input.” This definition emphasizes the properties of the system rather than the specific

cases since the input is considered (close to) ideal. The input is often a phantom or a sam-

ple affected by known motion. Our evaluation of precision is two-fold, testing both the

registration and statistical analysis components of the algorithm.

We evaluate the registration in two ways. First, we use the known global transformation

obtained from prescribing an offset on the scanner while scanning a volunteer. We use axial

images to test the prospective registration and sagittal images to test the main in-plane

registration. Second, we transform vertebrae from a volunteer image, creating a realistic

phantom with known vertebral transformations.

Figure 6.1 shows the result of the prospective registration on a known offset of 5mm

to the left. This offset was artificially created by programming the scanner to aim the two

acquisitions accordingly. The prospective registration program output was 4.97mm. The

0.03mm error is lower than the 0.1mm precision available for programming the scanner

position and lower than the 0.31mm in-plane pixel size.

Figure 6.2 shows the result of the in-plane registration on a known global offset of

5.5mm to the right and 3.1mm up, i.e. rotation by 0.0 radians and transformation of

(5.5mm, -3.1mm). The offset was artificially created by programming the scanner to aim
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(a) First image (b) Second image, offset by
5mm

(c) Pre - registration (d) Post - registration

Figure 6.1: We test the precision of the prospective registration used for selecting the same
anatomical location for the sagittal slice in two separate exams. The offset between images
(a) and (b) was set to be 5mm to the left, and the extent of the misalignment is visible in
the difference image (c). The registration algorithm found an offset of 4.97mm. Image (d)
shows the difference in position after applying the registration.
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the two acquisitions accordingly. The registration program output is shown in Table 6.1

as rotation and translation parameters organized by vertebra. Differences between the pro-

gram output and the known transformation ranges from 0 to 0.01 radians in rotation and

0.03mm to 0.28mm in translation. These differences are lower than the 0.78x0.78mm pixel

size. In fact, judging from the difference images in Figures 6.2d and 6.2e, the difference

between the program output and the known global motion may be an improvement rather

than an error, for perhaps the volunteer moved very slightly between acquisitions.

Vertebra Angle (rad) Translation X (mm) Translation Y (mm)
Lumbar 1 0.00 5.53 -2.91
Lumbar 2 0.00 5.54 -2.93
Lumbar 3 0.00 5.57 -2.83
Lumbar 4 -0.01 5.78 -2.83
Lumbar 5 0.00 5.60 -2.84
Sacral 1 0.00 5.57 -2.90

Table 6.1: Results of automatic registration of each vertebra for a known global translation
of (5.5mm,-3.1mm).

Next we look at a realistic phantom with known vertebral transformations. To create

the phantom, we began with an image A of a volunteer. After segmentation, we chose

transformations for each vertebra to simulate spinal flexion. The two positions are shown

in Figure 6.3, (a) and (b). We applied these transformations to the original image A (creat-

ing phantom PA) and also to a second image B acquired immediately following and in the

same position as image A (creating phantom PB). Phantom PA is an ideal situation where

we precisely know the true transformation. Phantom PB allows us to test the registration

while taking into account the intensity variations that occur between image acquisitions.
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(a) First image (b) Second image

(c) Pre - registration (d) Post - registration (e) Registration with the known
global transformation

Figure 6.2: We test the precision of the in-plane registration using a known global offset.
The offset between the acquisition of images (a) and (b) was set to be 5.5mm to the right
and 3.1mm up. The extent of the original misalignment is visible in the difference image
(c) and the improved alignment is seen in (d). Applying the known offset yields difference
image (e).
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Since there was minimal movement between images A and B, we consider the true trans-

formation to be the same for both phantoms. After running the segmentation/registration

algorithm on phantom PA, we evaluate the results qualitatively and quantitatively. The re-

sult looks accurate by visual inspection, as shown in Figure 6.3d. We ran the registration

three times, and the registration error is summarized in Table 6.2. Both the table and the

figure show that the registration error is low. The highest error is in the disc between the

first and second lumbar vertebrae, which is likely due to inconsistencies at the edge of the

image, such as rotating out of the image and not segmenting the partially-included T12-L1

disc.

Phantom PA

Error vector magnitude Angle Translation
Avg 0.08 pix (0.06mm) 0.003 rad 0.06 pix (0.04mm)
Max 0.2 pix (0.2mm) 0.008 rad 0.1 pix (0.1mm)

Phantom PB

Error vector magnitude Angle Translation
Avg 0.2 pix (0.2mm) 0.005 rad 0.2 pix (0.1mm)
Max 1 pix (0.8mm) 0.01 rad 0.7 pix (0.6mm)

Table 6.2: Registration error summary for the phantoms described on page 82. Error vector
magnitude (column 1) refers to lengths of vectors created by subtracting the true transfor-
mation vector field with the one determined by the automatic registration. Only vectors
within the intervertebral discs are calculated since that is the region of interest. Angle (col-
umn 2) and translation (column 3) refer to the absolute value of the difference between the
known and the calculated rigid transformation parameters for each vertebra.

The goal of the algorithm is not just to have a valid registration but to indicate where
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(a) Fixed image (b) Moving image

Pre-registration Post-registration

(c) Phantom PA

Pre-registration Post-registration

(d) Phantom PB

Figure 6.3: We test registration precision using a computer-generated phantom created by
transforming the vertebrae of a volunteer image (a) to simulate spinal flexion, shown in
(b). The second row demonstrates the registration on the phantom created by transforming
image (a). The registration is quite successful as seen in image (d). The small differences
seen within the disc are mostly due to interpolation error since we used linear interpolation
to create a smoother, more realistic-looking phantom. The third row demonstrates the
registration on the phantom created by using the same transformation but applying it to
a different image of the same volunteer in the same position. As shown in image (f) and
discussed on page 82, the registration is accurate with most error occurring near the superior
boundary of the image.
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changes in T1ρ values are statistically significant. Thus we also estimate the precision of

the calculation of the significance level p-value. Using software phantoms, we calculate

the number of pixels where we commit type I and type II errors. Since we created the

phantom, we know which pixels were drawn from the same distribution and can count

those for which the null hypothesis was incorrectly accepted or rejected.

We also compare the p-values with those calculated using the well-known Student’s

t-test. As discussed in section 5, the t-test makes more assumptions about the distribution

than we are comfortable making for real data, but it is appropriate for comparisons using

phantom data created with Gaussian-distributed noise. By counting the number of type I

and II errors committed by the t-test, we compare the precision of our technique with the

widely accepted t-test.

The phantom consists of six ovals representing intervertebral discs. Three discs (left

column) are uniform in true T1ρ intensity, and three (right column) contain a central circle

of different true intensity to model local T1ρ changes. Data is generated with two sources of

noise. Zero-mean Gaussian distributed noise is first added to the true T1ρ values described

above to generate noisy T1ρ map values m. The values m determine the T1ρ-weighted val-

ues v at spin lock duration TSL via the equation v = exp (−TSL/m). Zero-mean Gaussian

distributed noise is then added to the T1ρ-weighted values v. The resulting phantom is de-

termined by finding the best-fitting exponential parameter from these dual-noise adjusted

values v as described in chapter 3 for real data. The true pixel intensities and the noise

variances were chosen to be similar to those found in real data. Additive Gaussian noise is
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chosen because of its preponderance in nature and its relationship to the t-test, which we

use for quantitative comparison with the resampling method.

We show results from three realizations/cases of the above phantom. In case 1, the

background values (i.e. the values within the discs but not in the central circle) are at mean

70ms for both images, and a central circle of mean 120ms appears in the second image.

Standard deviations of the two noise sources are selected such that the local standard de-

viation in the resulting phantom is about 35% of the mean. (Measurements on actual data

show local standard deviations of 20-30% of the mean and global standard devations of 20-

45%.) Case 2 is the same as case 1 except the standard deviation is set to about 50% of the

mean to investigate a worse-case situation. In Case 3, disc background intensity decreases

from mean 90ms to 60ms and central circle intensity decreases from mean 150ms to 70ms.

T1ρ values in the nucleus pulposus of healthy discs are typically 80-150ms, whereas de-

generative discs have lower values, around 50-80ms. See Table 6.3 for a summary of the

calculated type I and II errors. The data in the table are given in the form A(B), where for

type I, A is the percentage of pixels mislabeled as significant out of all truly non-significant

pixels in the image. B is the percentage of pixels mislabeled as significant out of pixels

that are both truly non-significant and whose local neighborhood was truly drawn from

the same distribution. Similarly, for type II, A is the percentage of pixels mislabeled as

non-significant out of all pixels that are truly significant, and B is the percentage of pixels

mislabeled as non-significant that are both truly significant and are truly drawn from the

same distribution (homogeneous neighborhood).
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Table 6.3 shows that across the board, resampling and t-test results are similar, with

slightly more type I errors for resampling and slightly more type II errors with the t-test.

Looking at the significance maps in Figures 6.4, 6.5, and 6.6, the difference between the

resampling and t-test is imperceptible. Comparing results with different sized neighbor-

hoods in Table 6.3, we see that the type I errors increase with size and the type II errors

decrease. We expect a trade-off in accuracy with neighborhood size, for increasing the

size improves the hypothesis test by providing more samples per pixel, yet larger sizes re-

duce the local property of the measure by including more regions with potentially different

means. We get an idea of the latter effect by comparing the percentages A (all pixels) and

B (only neighborhoods that span homogeneous regions). In contrast with the increasing

A type I errors, the B type I errors decrease or stay about the same as neighborhood size

increases, suggesting that as long as the pixels in the neighborhood are drawn from similar

distributions, larger neighborhoods increase or maintain the accuracy of the statistical sig-

nificance calculations. The B calculation is something we can only do if we already know

which locations in the image are drawn from the same distribution, which we do not for

in vivo data. Thus the investigator should be aware of the precision trade-off with neigh-

borhood size and view results at several sizes before drawing conclusions on a given data

set. However, the numbers in Table 6.3 do not tell the whole story. For example in case

1, even though the type I errors are greater at neighborhood size 7 and the type II errors

are greater at size 3, looking at the significance maps in Figure 6.4, the shape and patterns

of the significant pixels at sizes 3 and 7 are very similar. The different number of errors
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is mostly manifested in speckled pixels, maintaining the overall visual impression of the

locations of significant differences between the two T1ρ maps. Thus an increase in number

of erroneously classified pixels does not necessarily lead to a corresponding increase in

human interpretation of locations of significant changes. Finally, we note that as the level

of noise increases compared with the contrast in the image pairs (the order of decreasing

contrast to noise ratio is case 1, case 3, case 2), the number of errors increases, as expected.

Neighborhood side length (pixels) → 3 5 7

Error type → I II I II I II

Case1 resampling 7 (6) 20 (3) 10 (5) 4 (0) 12 (3) 0 (0)
t-test 4 (3) 27 (5) 7 (3) 4 (0) 10 (2) 0 (0)

Case 2 resampling 6 (6) 37 (14) 9 (7) 14 (0) 12 (7) 5 (0)
t-test 3 (3) 46 (18) 6 (4) 16 (0) 10 (5) 6 (0)

Case 3 resampling N/A 34 (36) N/A 6 (8) N/A 1 (2)
t-test N/A 44 (47) N/A 8 (10) N/A 2 (2)

Table 6.3: Summary of errors in classification of statistical significance in three realizations
of a phantom. Numerical values in the table represent percentage of pixels exhibiting the
error. Data in each cell is presented as A(B), where A is calculated using all pixels in the
simulated discs, and B is calculated only at pixels where the local neighborhood was drawn
from the same distribution. Data is organized to show differences between the resampling
and t-test hypothesis tests and between neighborhood size. Level of significance is p =
0.05, two-tailed. Rejecting a true null hypothesis is a type I error, and not rejecting a false
null hypothesis is a type II error. See page 87 for a discussion of this table.
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170
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(a) First image

170

40

(b) Second image

0.05

0

(c) Resampling, neighborhood
with side length 3 pixels

0.05

0

(d) Resampling, neighborhood
with side length 7 pixels

0.05

0

(e) t-test, neighborhood side
length 3 pixels

0.05

0

(f) t-test, neighborhood side
length 7 pixels

Figure 6.4: Statistical significance calculations on the phantom, case 1, as described on
page 87. The first row shows the generated T1ρ values, where a high-intensity bright center
appears in the right column of the second image. The second row shows the statistical sig-
nificance values calculated using resampling. The third row shows the significance values
calculated using Student’s t-test for comparison. Pixels that are not significant are colored
white, and the rest are colored according to their p-value. The correct statistical significance
map has insignificant ovals (white) and significant central circles in the right column.
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(a) First image

170
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(b) Second image

0.05

0

(c) Resampling, neighborhood
side length 3 pixels

0.05

0

(d) Resampling, neighborhood
side length 7 pixels

0.05

0

(e) t-test, neighborhood side
length 3 pixels

0.05

0

(f) t-test, neighborhood side
length 7 pixels

Figure 6.5: Statistical significance calculations on the phantom, case 2 as described on page
87. The first row shows the two generated images of T1ρ values, where a high-intensity
bright center appears in the right column of the second image. The second row shows the
result of resampling. The third row shows the statistical significance values calculated using
Student’s t-test. Pixels that are not significant are colored white, and the rest are colored
according to their p-value. The correct statistical significance map has insignificant ovals
(white) and significant central circles in the right column.
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(a) First image
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(b) Second image

0.05

0

(c) Resampling, neighborhood
side length 3 pixels

0.05
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(d) Resampling, neighborhood
side length 7 pixels
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(e) t-test, neighborhood side
length 3 pixels
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(f) t-test, neighborhood side
length 7 pixels

Figure 6.6: Statistical significance calculations on the phantom, case 3 as described on
page 87. The first row shows the two generated images of T1ρ values, where the intensity
decreases from (a) to (b) in both the high-intensity center and lower intensity oval. The
second row shows the result of resampling. The third row shows the statistical significance
values calculated using Student’s t-test. Pixels that are not significant are colored white,
and the rest are colored according to their p-value. The correct statistical significance map
shows all pixels within the ovals as significant.
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6.2 Accuracy

Accuracy refers to the error measured in a specific instance on real input. This measure

is useful in evaluating the algorithm (as we are doing now) and during a clinical/research

application (to give an idea of how much to trust the results for each particular case).

Evaluating registration accuracy with real images is difficult because the true transfor-

mation is unknown. For a test example, we compare the automatic result with a human

observer’s manual registration. However, as the manual process is tedious and defeats

some of the purpose of having a computerized algorithm, our main measure of accuracy is

a qualitative evaluation in the form of difference images.

The manual registration for comparison was done with the touch-up feature of the

graphical user interface that we developed. The operator uses arrows to control the ro-

tation and translation of each vertebra. S/he has visual feedback by switching between

views of the fixed image, transformed image, and difference image. We had three opera-

tors each register one spine twice. The process took about an hour per operator for the two

less experienced operators and about 30 minutes for the more experienced operator. Table

6.4 shows the mean and maximum difference in transformation vectors between each user’s

two attempts and the automatic result. For each operator, the difference between his/her

two attempts is on the same order as the difference between one attempt and the automatic

result. We conclude that the automatic algorithm agrees well with manual registration, at

least for this example.

When used in the course of a study, the software includes a graphical user interface that
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Operator Run 1 vs Auto Run 2 vs Auto Run 1 vs Run 2

1
mean (pix): 0.0055 0.0058 0.0029
max (pix): 0.51 0.52 0.57

2
mean (pix): 0.011 0.011 0.017
max (pix): 0.84 1.3 1.6

3
mean (pix): 0.011 0.0074 0.0062
max (pix): 1.3 0.85 1.4

Table 6.4: Comparison of manual and automatic registration. Three operators each regis-
tered the same spine twice. This table shows the mean and maximum differences between
the resulting transformation vectors.

displays the difference between the fixed and moving images before and after registration,

so the user has visual feedback on the accuracy of the registration for the particular case

they are analyzing. Figure 6.7 gives a few examples of difference images before and after

registration. Other examples are shown in chapter 7 and appendix A. Difference images are

a qualitative measure of registration accuracy. The difference image of perfectly aligned

identical images would be uniformly gray. Misalignments or inconsistencies between the

fixed and moving images show up whiter or darker. These examples show that the algorithm

yields visually very accurate registration.

To evaluate the prospective registration, we look at the difference image before and af-

ter the global registration on a pair of axial images, shown in Figure 6.8. The two images

are acquired during different exams, so the subject has exited and re-entered the scanner.

It is clear from parts (a) and (b) of Figure 6.8 that the images are not aligned in the supe-

rior/inferior (S/I) direction, i.e. the images shown are clearly not of the same anatomical

axial plane. Part (c) is the original difference image, showing that we also start off with a
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(a) Case 1: pre-registration (b) Case 1: post-registration

(c) Case 2: pre-registration (d) Case 2: post-registration

(e) Case 3: pre-registration (f) Case 3: post-registration

Figure 6.7: Here we show the difference between fixed and moving images before and
after registration for three different volunteers. The moving image is subtracted from the
fixed image, so the bright intervertebral discs from the fixed image show up whiter in
the difference image, and the discs from the moving image show up darker. In the pre-
registration images in the left column, the mismatch of discs and vertebrae is clear from
the bright and dark regions. The alignment is visually very good in the post-registration
images in the right column, with most of the darker and lighter areas due to differences
between the images rather than misalignment.
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right/left (R/L) and anterior/posterior (A/P) misalignment. The R/L and A/P misalignment

is most obvious in the vertebral canal since the canal is bright and the vertebra is dark,

making the difference image dark in the upper left of the canal and bright in the lower

right. (Neutral gray represents the desired difference of zero.) Part (d) is the difference

image after registration. The bright and dark intensities around the vertebral canal are sym-

metrical, indicating good alignment in the R/L and A/P directions. There are still many

dark and light areas outside the vertebrae, indicating that the S/I alignment is still poor,

which is expected since the resolution in the slice direction is about ten times larger than

the in-plane resolution. However, since the purpose of the prospective registration is to

aim a sagittal slice, only the R/L alignment is used, which is one of the directions that is

visually accurately registered.

We next look at the automatic disc segmentation. As we will see in the robustness sec-

tion (Section 6.3), registration is relatively insensitive to segmentation accuracy. However,

accurate coverage of the disc is convenient for visual analysis. Thus we give a brief qualita-

tive evaluation of the segmentation accuracy by showing several examples of varying image

quality in Figure 6.9. We see that the segmented regions adequately cover most discs, with

the exception of the L4-L5 disc in part (c) of the figure. There are several places where the

segmented region is too large, especially in parts (b), (e), and (f) of the figure. Since the

significant pixels are shown overlaid on an anatomical image, these misclassified pixels are

obvious to the user. If this were an actual study, the investigator could erase those incorrect

portions of the disc segmentation with a few swipes of the mouse, which is quicker than
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(a) First image (b) Second image

(c) Pre - registration (d) Post - registration

Figure 6.8: We demonstrate the accuracy of the prospective registration. Images (a) and
(b) were acquired during two different exams. The volunteer exited the scanner between
exams and the scanner landmark was reset. The pre-registration difference (c) shows in-
plane misalignment, which is particularly visible in the dark and light regions around the
vertebral canal, and out-of-plane misalignment, which is clear from the dark and light
structures outside the vertebra. The post-registration difference image (d) indicates good
in-plane alignment, shown by the symmetrical patterns around the vertebral canal. The out-
of-plane alignment is still about the same, but that is unimportant since only the right/left
(in-plane) component of the transformation is considered when selecting a sagittal slice,
which is the purpose of the prospective registration.



98

coloring every disc.

We would also like to have an estimate of the accuracy in the decision whether to

reject the null hypothesis. Since these are in vivo experiments, we do not know the true

distribution from which the samples are drawn, so we cannot know for certain the error

in the p-value estimate. Instead we use a resampling technique described in section 5.2

to estimate the probability that we committed a type I or type II error at a given pixel,

providing a measure of the confidence we have in our estimate of p and therefore in our

decision about rejecting the null hypothesis.

This accuracy estimate helps the investigator interpret the results of a given data set.

However, before applying it to real data, we get a feel for the measure by applying it to

the phantom from page 86. We then reject the null hypothesis only for pixels that are both

under the p = 0.05 significance level and are estimated to be in error less than X% of the

time, i.e. at confidence level 100-X%. In Table 6.5, we show the number of type I and

type II errors on the case 1 phantom at confidence levels 30%, 50%, 80%, and 95% using

a neighborhood of 5 pixels. The estimated error was less than 70% for all pixels, so the

30% confidence level is identical to the situation without accuracy estimates, i.e. the case

1 resampling size 5 cell in Table 6.3. As we increase the confidence level, we trade off

type I errors for type II errors since we are rejecting the null hypothesis less often. Recall

the error percentage in parentheses in the table is calculated using only pixels where the

neighborhood is truly drawn from the same distribution. These errors are less affected by

the confidence level since they are less prone to error. The error-prone pixels cluster at the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Examples of automatic disc segmentation. For each image pair in this figure,
the image to be segmented is on the left, with the resulting segmentation overlaid in brown
on the right.
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boundaries between universes, i.e. at the border of the high-intensity central circle, as seen

in Figure 6.11.

Confidence level 30% 50% 80% 95%
Error type I II I II I II I II

Error percentage 10 (5) 4 (0) 9 (5) 4 (0) 5 (3) 9 (0) 3 (3) 27 (0)

Table 6.5: Error count for hypothesis testing on a known phantom. Data is presented in
the same format as Table 6.3. Numerical values in the table represent percentage of pixels
exhibiting the error. Data in each cell is presented as A(B), where A is calculated using all
pixels in the simulated discs, and B is calculated only at pixels whose local neighborhood
was drawn from the same distribution. The A values trade type I for type II errors as the
confidence level increases. The B values are less affected by the confidence level. See page
98 for details.

While analyzing a particular data set, the researcher can opt to threshold the significant

pixels at a selected confidence level. Figure 6.11 compares the effect of no thresholding

with the effect of thresholding at the 80% and 95% confidence levels. Type II errors in-

crease at higher confidence levels, but type I errors decrease, and often type I errors are

considered more harmful since they suggest change where there is none.

6.3 Robustness/stability

In registration, robustness/stability is the property where small variations in the input

yield small variations in the result. The three important areas of stability in our algorithm

are robustness of segmentation given variation in manual initialization, robustness of reg-

istration given errors in the segmentation, and robustness of statistical analysis given errors

in the registration.
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(a) More than 5% error is estimated
for the red pixels

0.05

0

(b) Colored pixels are significant
at the 95% confidence level

(c) More than 20% error is esti-
mated for the red pixels

0.05

0

(d) Colored pixels are significant
at the 80% confidence level

Figure 6.10: We demonstrate the effect of rejecting the null hypothesis only if we expect
to be correct more than 5% (top row) or 20% (bottom row) of the time. Pixels in red in the
left images, (a) and (c), have p-values below the significance level of 0.05, but since the
confidence level is lower than the specified threshold, we do not consider them significant.
Colored pixels in the right images, (b) and (d), are statistically significant with estimated
error lower than the specified threshold.
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0.05

0

(a) No error thresholding

0.05

0

(b) 80% confidence level

0.05

0

(c) 95% confidence level

Figure 6.11: We show the effect of thresholding the statistical significance p values ac-
cording to the amount of error expected in the p value calculation. This example takes
the registered T1ρ maps between a neutral and flexed position (see Figure 7.27) and runs
hypothesis testing with a neighborhood of side length 7 and significance cutoff p < 0.05,
two-tailed. Results are in (a). If we do not reject the null hypothesis for pixels with confi-
dence lower than 80% and 95%, the statistically significant pixels change as shown in (b)
and (c), respectively. Thresholding at higher confidence levels decreases the type I error
but increases the type II error.

We test robustness of segmentation with respect to initialization by initializing with

intentionally misplaced points. Test points were selected directly at the anterior/posterior

(A/P) points of the disc, slightly within the disc, largely within the disc, slightly outside

the disc, or largely outside the disc. We visually evaluated the resulting segmentations on

two volunteers, shown in Figure 6.12. As the A/P points get farther apart (rows 2 and 3

in the figure), the segmentation does not change much. Minimal change is expected since

the points are still close enough to the disc that the derived seed points are still within

the disc (as described on page 56). The exact seed placement within the disc is slightly

different, meaning the automatic threshold may end up different, accounting for the slight

segmentation differences in volunteer 2 (right half of the figure). As the initialization points

get closer together (rows 4 and 5), the resulting segmentation gets narrower, as is expected
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since the A/P points designate the extreme points of the segmentation. All of these changes

in segmentation are reasonable and expected given the different input points, indicating

a high level of robustness. As long as the points are fairly close to the disc and located

exterior to the portion of the disc that is being evaluated, the resulting segmentation is

reasonably consistent.

To test the registration robustness, we created intentional mis-segmentations where the

bottom of each disc was either eroded or dilated by 3 pixels, as shown in Figure 6.13.

We compare the registration deformation vector field automatically obtained using the cor-

rect, eroded, and dilated disc segmentations. This example registers the neutral and flexed

positions of volunteer I (see Figure 7.10). All three vector fields match within a quarter

pixel (mean difference less than a tenth of a pixel). The close match suggests slightly poor

disc segmentation does not affect the registration much. Therefore the main penalty for

a slightly poor disc segmentation is in the statistical analysis step, where some non-disc

pixels would be included or some disc pixels would be excluded. The investigator can

easily locate these areas on the disc segmentation overlay in the graphical user interface

and can either manually touch up the segmentation or mentally discard extraneous pixels

as unreliable.

To get an idea of the robustness of the statistical analysis, we took two images that were

originally in different positions, found the automatically determined registration param-

eters, perturbed the correct registration slightly, and compared the resulting significance

levels before and after the mis-alignment. Global translation by a tenth of a pixel resulted
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Volunteer 1 Volunteer 2

Points placed near ends

Points placed slightly outside disc

Points placed well outside disc

Points placed slightly inside disc

Points placed well inside disc

Figure 6.12: We explore the robustness of the disc segmentation with respect to the user-
placed initialization points. The user is instructed to place points at the anterior and pos-
terior ends of the disc. The figure shows the resulting segmentation with intentionally
misplaced points. We show representative discs from two volunteers. The two columns on
the left show a volunteer whose discs were bright and easy to segment. The two columns
on the right show a volunteer whose vertebrae had bands of higher intensity, confusing the
segmentation. The initialization points are shown in red and the resulting segmentation in
yellow. The first row in the figure shows initializations that we may reasonably expect from
a typical user. Each of the following rows show a different type of point placement error.
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(a) Dilated (b) Eroded

Figure 6.13: We intentionally corrupted the disc segmentation to test the robustness of the
registration with respect to errors in the automatic segmentation. The bottom of the discs
were dilated by three pixels in (a) and eroded by three pixels in (b).

in 4% more pixels marked as significant at the p < 0.05 level. Translation by a quarter pixel

and one full pixel led to 9% and 55% more pixels marked as significant, respectively. The

random nature of the resampling hypothesis test yielded about a 2% variation in number

of significant pixels even without any registration difference. Figure 6.14 shows that the

changes in significant pixels for the quarter pixel translation is barely noticeable, whereas

many additional significant regions appear after the one pixel translation. The figure also

shows the difference image after the quarter and one pixel translations. The mis-registration

is clearly seen for the one-pixel translation (black and white lines above and below each

disc), meaning the investigator can see this registration error and either correct it using the

user interface touch-up feature or mentally take it into account when analyzing the meaning

of the significance maps.
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(a) Difference image using the
correct registration

(b) Difference image with mis-
registration of 0.25 pixel

(c) Difference image with mis-
registration of 1 pixel

0.05

0

(d) Significant pixels using the
correct registration

0.05

0

(e) Significant pixels with mis-
registration of 0.25 pixel

0.05

0

(f) Significant pixels with mis-
registration of 1 pixel

Figure 6.14: We demonstrate the effect of small registration errors on the results of hy-
pothesis testing. The left column considers the “correct” registration, i.e. the output of
the automatic registration algorithm. The other columns consider the intentionally incor-
rect registration obtained by increasing the “correct” translation parameters by 0.25 pixel
(0.2mm) upward for the middle column and by 1 pixel (0.78mm) upward for the right col-
umn. In each column, the upper image is the difference between the fixed and transformed
moving images to give an idea of the extent of mis-alignment. The lower image shows the
result of the hypothesis test. We see that the 0.25 pixel translation is barely noticeable in
both the difference image and the significance map, whereas the one pixel translation makes
a visible difference. The analyses in this figure use the neutral/flexed positions of volunteer
A with hypothesis testing on a neighborhood of 5 pixels and two-tailed significance level
of p < 0.05.
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6.4 Other validation measures

Reliability A reliable algorithm will perform acceptably given the expected range of in-

put, i.e. a reasonable amount of anatomical variability and noise levels. Such variations are

difficult to predict. In the four different patients in the five different compression situations

presented here, the segmentation and registration are visually successful. We did not test

the algorithm on any extremely degenerate cases. To deal with any extreme situations that

foil the algorithm, there are manual touch-up features as explained in sections 4.2.2 and

4.2.3.

Resource requirements The material and effort involved in the analysis should be com-

mensurate with the clinical or research benefit of the algorithm. To run the algorithm on

a given case, a human being must make two semi-accurately aimed clicks per disc. The

computation can take several minutes to complete, but the user can be doing something

else during that time. The user must then interpret the results in the context of the overall

study. The computer must be reasonably fast with enough memory to compile the C++

code, but most modern computers in research or clinical institutions meet this requirement

so no extra hardware is required. The code must also be maintained, but no more so than

any other development software. The use of the National Library of Medicine’s Insight

Registration and Segmentation Toolkit and the C++ Standard Template Library help make

the code readable and maintainable by other researchers. In exchange for these required

computing resources, we are released from some man-power requirements. Manual seg-
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mentation and registration is time-consuming and prone to error especially for users with

less medical experience. Reducing the human resource requirements improves the accu-

racy and speeds up overall analysis time, making a systematic study of in vivo quantitative

parameters a reasonable proposition.

Algorithm complexity The computation requires several minutes on a 2GHz Intel pro-

cessor with 2MB RAM running Ubuntu Linux. Since the analysis does not need to be

done in real time, this is a reasonable amount of time. Computation time does not differ

much with amount of initial mis-alignment. Larger neighborhoods in the statistical analysis

noticeably increase the running time but only on the order of a minute.

Assumption verification During algorithm development, we assumed that that the disc

deforms according to a thin plate spline function. We cannot know the exact true disc

deformation of in vivo images. Instead we address this assumption by exploring different

deformations consistent with the rigid transformations of the surrounding vertebrae. We

compare results using different radial basis functions and stiffness values, using the data

from volunteer I (see Chapter 7), registering between neutral and flexed.

First we apply the four different kernels presented in section 4.1.1: two-dimensional

thin plate spline, three-dimensional thin plate spline, volume spline, and elastic body spline.

The difference in registration using each of these basis functions is minimal. The transfor-

mation vectors are all within a quarter pixel of each other (mean less than a twentieth of

a pixel). The thin plate spline kernel r2 ln r has the best match according to the mutual
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information metric, but the improvement is less than 0.5%. The small magnitude of the

differences suggest that as long as the non-rigid deformation scheme we choose is in agree-

ment with the surrounding rigid vertebral transformations, our use of the two-dimensional

thin plate spline is satisfactory.

Next we look at the stiffness parameter in the TPS, a value usually around 0 − 0.1

that permits the TPS to approximate rather than interpolate between landmarks, providing

a deformation that is smoother and less sensitive to landmark errors [56]. Even with the

relatively large difference in stiffness between 0 and 1, the mutual information improves

only 0.007%, with less than a thirtieth of a pixel difference in deformation vector magnitude

(mean less than 1/500 pixel). The minuscule difference suggests that introducing a stiffness

parameter does not noticeably improve the match between the TPS deformation and the

true anatomical deformation, so we set the stiffness parameter at zero, making the TPS an

interpolating rather than an approximating spline.

Clinical use This algorithm is designed for research use to improve the understanding of

the behavior of T1ρ values in different situations. We must understand the changes in T1ρ

if we are to study the relationship between T1ρ and early disc degeneration. Studying early

disc degeneration may lead to early treatments and decreased morbidity in spine disease.
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Chapter 7

Experiments

We demonstrate our registration and statistical analysis methods with three sets of ex-

amples. Each set constitutes a small preliminary experiment on T1ρ behavior in lumbar

discs under differing compression states. The studies are so small that while they may give

us insights into T1ρ behavior, they are not meant to draw general conclusions. We give

suggestions for further study in Chapter 8 to expand on these investigations.

7.1 Methods

7.1.1 Data acquisition

For each of the three experiments, we used the fast spin echo T1ρ sequence described

in Chapter 3. The sequence details are repeated here for reference in Table 7.1. Note that

the echo train length (ETL) affects the calculated T1ρ relaxation values. We chose a long



111

ETL of 16 to shorten the sequence to a reasonable duration for examining T1ρ dynamics.

Since the ETL does not change in these experiments, we can make relative comparisons

within these studies, but the T1ρ values should not be directly compared with studies using

a different ETL (e.g. an ETL of 2 [8]).

FOV (field of view) 20 cm
Imaging matrix 192x128
Slice thickness 8 mm (one central sagittal slice)

In-plane pixel size 0.78 x 0.78 mm
TR (repetition time) 2000 ms

ETL (echo train length) 16
BW (bandwidth) 244.1Hz

NEX (number of excitations) 2
Flip angle 90◦

Spin lock frequency 300 Hz (0.007 mT)
Spin lock durations 0/20/50/90 ms

Scanning time 2:11 minutes

Table 7.1: T1ρ Imaging parameters

We recruited volunteers without back pain for these preliminary studies for several rea-

sons. Healthy discs are expected to change more with compression, as discussed in Chapter

1, so we chose healthy volunteers for a better chance of seeing changes. In addition, the

compression procedures are potentially painful for someone with back pain, so we initially

chose healthy volunteers to try the procedures. Recruited volunteers were aged 21 to 38

years, with mean age 30.5 years.

In the first experiment, we looked at dynamic disc decompression while the volunteer

relaxed supine for one hour. Initial compression occurred due to normal weight-bearing

activities plus approximately 30 minutes of standing wearing a 20 lb backpack immediately
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preceding the exam. The exam consisted of repeated T1ρ maps over the course of one hour.

Four healthy volunteers participated. One volunteer complained of back soreness at the

completion of the procedure. The exams occurred on the General Electric Signa 3 Tesla

scanner at the University of California, San Francisco Radiology Imaging Center at China

Basin Landing. The receiver coil was a 4-channel spine coil located on the scanner bed

posterior to the volunteer.

For the second experiment, we created compression changes by using a leg-press-like

device, where hanging weights compress the spine by pulling a shoulder harness toward

a plastic footplate, as shown in Figure 7.1. We applied and released approximately 55

lbs as the volunteer lay supine. The volunteer remained in the scanner, instructed not to

move during the approximately 45 minute exam. The procedure was well tolerated by

the four healthy volunteers who participated. The exams occurred on the General Electric

Signa 3 Tesla scanner at the University of California, San Francisco Mission Bay Campus.

The receiver coil was an 8-channel spine coil located on the scanner bed posterior to the

volunteer.

A single healthy volunteer alternately flexed and relaxed his/her spine in the third ex-

periment. The volunteer lay supine with knees resting flat on the scanner bed for the neutral

(relaxed) images. For the flexed image, he or she used leg and abdominal muscles to round

the spine into the scanner bed. The volunteer held each position for the duration of the 2:11

minute scan, breathing shallowly to minimize motion artifacts. These images were taken

during the same exam, and the volunteer did not exit the scanner between images. Holding
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Figure 7.1: The compression device consists of a shoulder harness, straps, foot plate, and
weights.

the positions without moving was difficult. The exams were taken on the General Electric

Signa 3 Tesla scanner at the University of California, San Francisco Mission Bay Campus.

The receiver coil was an 8-channel spine coil located on the scanner bed posterior to the

volunteer.

The images using the compression device were acquired as part of the study titled “Ad-

vanced MR Imaging in Patients with Painful, Degenerative Disc Disease: A Pilot Study.”

This study is being conducted at the University of California at San Francisco under prin-

cipal investigator Sharmila Majumdar, PhD. It is funded by the United States National

Institutes of Health, and was approved by the UCSF Institutional Review Board (Commit-

tee on Human Research), with approval number H6513-26624-03. The images without the

compression device were acquired as part of the study titled “Assessment of Spinal Steno-

sis and Characterization of the Intervertebral Disc,” also conducted at UCSF with principal

investigator Sharmila Majumdar, PhD, and funded by the National Institutes of Health. It
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was approved by the UCSF Committee on Human Research with approval number H6513-

19070-06.

7.1.2 Data analysis

We demonstrate the quality of the automatic registration by subtracting the fixed and

moving images before and after registration, as described in section 6.2.

To analyze the changes in T1ρ, we show the statistically significant local differences in

T1ρ for each pair of consecutive images. The statistical tests were run with a neighborhood

size of 5 pixels and significance level p < 0.05, without confidence thresholding. Statisti-

cally significant changes in the mean value of a neighborhood are indicated by coloring the

central pixel in the neighborhood with the amount of the change, reported in milliseconds.

Positive change is colored in red and indicates that the T1ρ parameter increased from the

first to second image (i.e. T1ρ relaxation is slower in the second image since the time is

longer). To relate the T1ρ with physical evidence of compression or relaxation, we calcu-

lated changes in disc height between each two images. We selected pairs of points at the

superior and inferior border at the anterior, central, and posterior part of each disc. Then

using the transformation parameters automatically determined during the registration pro-

cess, we transformed these points from the earliest image of a volunteer into each of the

later images and measured the length of the lines connecting each superior/inferior point

pair. We then measured how much the line length changed between images. The differ-

ence in length is reported in percent change, with positive numbers indicating an increase
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in length (expansion) and negative numbers indicating a decrease in length (compression).

To test the repeatability of the disc height measurements, we repeated the registration four

times and repeated the point selection four times for two volunteers. With five discs per

volunteer and three disc height measurements per disc, this gives us 7 (=4+4-1) repetitions

of 30 (=2*5*3) measurements. The average standard deviation of the percent change is 0.7

%.

We display the T1ρ map value for each individual image to show the actual values (as

opposed to the difference in values) in each disc. T1ρ values are interesting since lower

values are associated with degeneration [7, 8, 5]. Using T1ρ maps and T2-weighted images,

a radiologist identified pathological discs. We compared the amount of fluctuation of T1ρ

in healthy versus degenerate discs, using the Student’s t-test for this comparison. As a mea-

sure of the T1ρ fluctuation, we computed the standard deviation over the repeated images

of the T1ρ mean throughout a given disc. We also ran a one-way analysis of variance test

to see if the fluctuation depends on the disc type (i.e. L1-L2, L2-L3, etc.)

We analyzed the changes in T1ρ by examining the images showing the local statisti-

cally significant changes, looking for patterns in T1ρ that correlate with disc height and

the expected compression or relaxation related to the compression method. This analysis

method finds local changes and is appropriate given the unique responses expected between

individuals and the complexity of the way the spine handles a load. However, due to the

pixel-by-pixel nature of the method, it yields too many numbers to cleanly report a finding,

and our summaries are subjective. Thus we also analyzed the changes quantitatively over
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regions of interest to find significant changes over all discs and all patients. We used four

automatically-determined regions of interest: the entire disc, the anterior half, the posterior

half, and the central portion in the anterior/posterior direction. The anterior and posterior

halves are defined as the midpoint between the anterior / posterior points selected by the

user for segmentation. The central portion of the disc is defined as the central third between

those same user-selected portions. All regions include the full superior / inferior height of

the disc.

To study the T1ρ values in these regions of interest, we first plotted the progression of

the mean T1ρ within each of these regions of interest. We then calculated the variation of

T1ρ values using the coefficient of variation (CV) measure, which is defined as the ratio of

the standard deviation over the mean. The CV of the backpack experiment gives an estimate

of the amount of change in T1ρ that is expected during relaxation, which we compared with

the T1ρ differences induced by the compression device to see if the device produced more

change than what is expected from uninterrupted relaxation. We checked for significant

changes in T1ρ within the regions of interest with a paired Student’s t-test. The significance

value p depends on a the value t, which is calculated as t = d̄
√

N/σd̄, where N is the

number of samples, d̄ =
∑N

i=1(xi − yi)/N is the mean of the difference in T1ρ between

the two images (xi and yi are the mean values of T1ρ in sample i in the first and second

images, respectively), and σd̄ is the standard deviation of the differences in means over all

disc pairs. Since we compared differences between means of pixel values, it is reasonable

to approximate their distribution as normal, making the t-test an appropriate statistical test.
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We perform the paired t-test on each of the discs separately (i.e. L5-S1, then L4-L5,

and so on) to look for changes specific to the disc location as well as on all of the discs

combined to look for changes global to all discs. We first compared pairs of images within

each of the three experiments to look for effects unique to each protocol. Next we checked

to see if the difference between the first and last images of a patient was significant com-

pared with the differences between consecutive images. Finally we tested the significance

of the differences between compressed and relaxed images using the compression device

compared with the differences between consecutive images in the backpack experiment to

see the effect of the compression device beyond pure supine relaxation.

7.2 Results and discussion

7.2.1 Qualitative assessment of registration accuracy

Figures 7.2, 7.3, 7.4, and 7.5 show difference images for each volunteer in the backpack

experiment, comparing consecutive images over time. In each case, the post-registration

difference image shows good visual alignment. As for how much the registration was

needed, we see that with some image pairs, the pre-registration images are already well

aligned, such as the 6-10 minute pair in Figure 7.2. In other cases, the volunteer has

shifted slightly, which can be seen by thin black and white lines on opposite edges of the

intervertebral discs, such as the 10-16 minute pair in Figure 7.2. Other cases show larger

initial misalignment, caused by moving the image field of view between acquisitions, as
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with the 17-25 minute pair in Figure 7.3.

The difference images for the compression device experiment are shown in Figures

7.6, 7.7, 7.8, and 7.9.The images are labeled indicating the status of the consecutive image

pairs. “Relax” means the image was taken without weight applied, and “compress” means

the volunteer was supporting weight during image acquisition. “Relax-relax” indicates

that both images were taken without changing the compression state, with a few minutes

separating the two acquisitions. “Relax-compress” means the compression was applied be-

tween the images, with a few minutes separating the two acquisitions. As was the case in

the previous experiment, the post-registration alignment is visually very good. Between

images without a state change (i.e. “relax-relax” or “compress-compress”), the alignment

before registration is also good (though sometimes still slightly misaligned). Application

of the weight (i.e. “relax-compress”) tends to shift the entire spine inferiorly in addition to

changing the relative positions of the vertebrae. To a lesser extent, release of compression

(i.e. “compress-relax”) tends to shift the spine superiorly as well as alter the relative verte-

bral positions. In addition, misalignment was caused by shifting the field of view in order

to compensate for the compression-induced shifts of the spine for volunteer F in the third

row of Figure 7.7 and in all the rows in the continuation of Figure 7.7.

The difference images before and after registration in the third (flexion/extension) ex-

periment are shown in Figure 7.10. The pre-registration mis-alignment is clear when com-

paring flexed and neutral images and is minimal between the two final neutral images, as is

expected. Again, we see a drastic visual improvement in alignment after registration.
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Pre-registration Post-registration

(a) 6-10 min

Pre-registration Post-registration

(b) 10-16 min

Pre-registration Post-registration

(c) 16-25 min

Pre-registration Post-registration

(d) 25-30 min

Pre-registration Post-registration

(e) 30-34 min

Pre-registration Post-registration

(f) 34-38 min

Figure 7.2: Volunteer A. This figure shows difference images between pairs of consecutive
images before and after registration. The label “xx-yy min” indicates that the two images
were taken xx and yy minutes after the 20 lb backpack was removed.
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Pre-registration Post-registration

(a) 17-25 min

Pre-registration Post-registration

(b) 25-34 min

Pre-registration Pre-registration

(c) 34-39 min

Figure 7.3: Volunteer B. This figure shows difference images between pairs of consecutive
images before and after registration. The label “xx-yy min” indicates that the two images
were taken xx and yy minutes after the 20 lb backpack was removed.
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Pre-registration Post-registration

(a) 12-22 min

Pre-registration Post-registration

(b) 54-65 min

Pre-registration Post-registration

(c) 65-68 min

Pre-registration Post-registration

(d) 68-78 min

Figure 7.4: Volunteer C. This figure shows difference images between pairs of consecutive
images before and after registration. The label “xx-yy min” indicates that the two images
were taken xx and yy minutes after the 20 lb backpack was removed.
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Pre-registration Post-registration

(a) 5-11 min

Pre-registration Post-registration

(b) 11-17 min

Pre-registration Post-registration

(c) 17-22 min

Pre-registration Post-registration

(d) 22-28 min

Pre-registration Post-registration

(e) 28-33 min

Pre-registration Post-registration

(f) 33-38 min

Figure 7.5: Volunteer D. This figure shows difference images between pairs of consecutive
images before and after registration. The label “xx-yy min” indicates that the two images
were taken xx and yy minutes after the 20 lb backpack was removed.
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Pre-registration Post-registration

(a) relax-compress

Pre-registration Post-registration

(b) compress-compress

Pre-registration Post-registration

(c) compress-relax

Pre-registration Post-registration

(d) relax-relax

Pre-registration Post-registration

(e) relax-compress

Pre-registration Post-registration

(f) compress-compress

Figure 7.6: Volunteer E. This figure shows differences between consecutive images before
and after registration. Weight was applied between the two images in the pairs labeled
“relax-compress” and removed between the images in the pairs labeled “compress-relax”.
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Pre-registration Post-registration

(a) relax-compress

Pre-registration Post-registration

(b) compress-compress

Pre-registration Post-registration

(c) compress-relax

Pre-registration Post-registration

(d) relax-relax

Pre-registration Post-registration

(e) relax-compress

Pre-registration Post-registration

(f) compress-compress

Figure 7.7: Volunteer F. This figure shows differences between consecutive images before
and after registration. The volunteer was supporting weight during the images labeled
“compress” and was lying without weight during the images labeled “relax”.
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Pre-registration Post-registration

(a) relax-relax

Pre-registration Post-registration

(b) relax-compress

Pre-registration Post-registration

(c) compress-relax

Pre-registration Post-registration

(d) relax-relax

Pre-registration Post-registration

(e) relax-compress

Figure 7.8: Volunteer G. This figure shows differences between consecutive images before
and after registration. Weight was applied between the two images in the pairs labeled
“relax-compress” and removed between the images in the pairs labeled “compress-relax”.
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Pre-registration Post-registration

(a) compress-relax

Pre-registration Post-registration

(b) relax-relax

Pre-registration Post-registration

(c) relax-compress

Pre-registration Post-registration

(d) compress-relax

Figure 7.9: Volunteer H. This figure shows differences between consecutive images before
and after registration. Weight was applied between the two images in the pairs labeled
“relax-compress” and removed between the images in the pairs labeled “compress-relax”.
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Pre-registration Post-registration

(a) neutral-flexed

Pre-registration Post-registration

(b) flexed-neutral

Pre-registration Post-registration

(c) neutral-flexed

Pre-registration Post-registration

(d) flexed-neutral

Pre-registration Post-registration

(e) neutral-neutral

Figure 7.10: Volunteer I. This figure shows differences between consecutive images. The
volunteer was relaxing with knees straight for the neutral images and rounding his/her back
for the flexed images.
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7.2.2 Assessment of local changes in T1ρ

The T1ρ values progressing through time during the backpack experiment are shown

in Figures 7.11, 7.13, 7.15, and 7.17. Statistically significant local changes in mean T1ρ

for this experiment are colored according to the amount of change, shown in Figures 7.12,

7.14, 7.16, and 7.18. The rows of numbers alongside each image gives the percent change

in disc height. Each row represents one vertebra and the A (anterior), C (central), and P

(posterior) columns indicate the location of the point pair. Image labels are in the form

xx-yy min, meaning the first image was taken xx minutes and the second image taken yy

minutes after the 20 lb backpack was removed.

For all volunteers (Figures 7.12, 7.14, 7.16, and 7.18), we note that there are statisti-

cally significant changes in T1ρ between each pair of consecutive images with magnitudes

up to 75% of the map value. However, the changes do not go in a consistent direction as

time passes. The disc height measurements do not go in a uniform direction as time passes

either, nor is there a correlation between the directions of T1ρ and disc height changes. Ver-

tebral motion due to decompression from resting for one hour may be too small to measure

relative to the normal slight movements of a living volunteer from breathing, heartbeat,

and muscular inability to hold completely still. Perhaps visible differences in T1ρ and disc

height between standing and lying occur more quickly than we were able to capture since

the MRI setup and landmarking takes several minutes before the first images are captured,

and the sequence itself takes more than two minutes. On the other end of the time spectrum,

it is known that after many hours of sleep, the spine measurably decompresses, so perhaps
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(a) 6 min (b) 10 min (c) 16 min (d) 25 min

(e) 30 min (f) 34 min (g) 38 min

180 ms

0 ms

Figure 7.11: T1ρ maps for volunteer A as time progresses. T1ρ parameter values are overlaid
on an anatomical image. Minutes indicate the length of time since the 20 lb backpack was
removed.
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A C P
6-10 min

3.8 -0.1 -5.9

-3.1 -0.7 2.4

0.6 -0.5 -3.9

-1.9 -1.2 -0.5

1.0 0.4 -0.8

A C P
10-16 min

-5.4 1.8 16.4

5.0 1.6 -1.9

-2.0 -0.2 1.5

-2.0 -0.8 1.9

3.3 1.4 -2.0

16-25 min
6.3 -1.6 -14.5

0.2 0.3 1.3

0.4 -0.8 -2.8

1.2 0.6 -0.4

-2.4 -0.8 3.4

25-30 min
2.9 0.6 -2.0

-3.6 -0.7 3.2

5.5 2.4 1.3

-1.0 -0.1 1.9

-1.9 -1.3 -1.7

30-34 min
-6.2 -0.9 7.4

3.1 1.2 -0.6

-1.8 0.2 3.3

1.4 0.6 -1.1

2.6 0.8 -1.0

34-38 min
9.3 0.6 -11.1

-3.3 -0.8 2.6

-3.9 -1.4 -1.5

1.2 -0.3 -3.7

-1.2 0.6 4.1

60 ms

-60 ms

The numbers indicate the percent change in
disc height at the A(nterior), C(entral), and
P(osterior) parts of the disc. Each row repre-
sents one disc. Average standard deviation of
repeated measurements is 0.7%.

Figure 7.12: Statistically significant changes in T1ρ for Volunteer A are colored according
to the amount of change.
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(a) 17 min (b) 25 min (c) 34 min (d) 49 min

180 ms

0 ms

Figure 7.13: T1ρ maps for volunteer B as time progresses. T1ρ parameter values are overlaid
on an anatomical image. Minutes indicate the length of time since the 20 lb backpack was
removed.
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A C P
17-25 min

0.4 -0.3 -1.4

0.1 0.4 0.9

-0.9 -0.8 -1.2

0.6 0.7 1.0

0.5 0.8 1.5

A C P
25-34 min

-0.3 0.0 0.4

-0.2 -0.0 0.4

0.6 0.9 1.8

0.2 0.0 -0.5

1.3 -0.1 -1.4

34-49 min
0.0 0.4 1.1

-0.5 -0.4 -0.7

-0.2 0.2 0.8

0.1 0.2 0.3

0.6 0.8 1.4

60 ms

-60 ms

Figure 7.14: Statistically significant changes in T1ρ for Volunteer B are colored accord-
ing to the amount of change. The numbers indicate the percent change in disc height at
the A(nterior), C(entral), and P(osterior) parts of the disc. Each row represents one disc.
Average standard deviation of repeated measurements is 0.7%.
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(a) 12 min (b) 22 min (c) 54 min

(d) 65 min (e) 68 min (f) 78 min

180 ms

0 ms

Figure 7.15: T1ρ maps for volunteer C as time progresses. T1ρ parameter values are overlaid
on an anatomical image. Minutes indicate the length of time since the 20 lb backpack was
removed.
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A C P
12-22 min

3.7 0.4 -4.8

0.7 -0.1 -1.0

-0.2 0.8 2.0

1.9 1.0 0.3

0.6 0.3 -0.3

A C P
54-65 min

0.3 -0.3 -1.2

0.0 -0.0 -0.1

1.6 0.6 -0.1

-1.0 0.3 2.6

65-68 min

1.4 1.0 1.4

-0.1 0.1 0.4

-3.0 -0.7 1.3

1.7 -0.2 -3.6

68-78 min

-1.1 -0.4 0.1

0.4 -0.2 -1.2

2.7 0.6 -0.8

0.6 0.8 1.5

60 ms

-60 ms

Figure 7.16: Statistically significant changes in T1ρ for Volunteer C are colored accord-
ing to the amount of change. The numbers indicate the percent change in disc height at
the A(nterior), C(entral), and P(osterior) parts of the disc. Each row represents one disc.
Average standard deviation of repeated measurements is 0.7%.
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(a) 5 min (b) 11 min (c) 17 min (d) 22 min

(e) 28 min (f) 33 min (g) 38 min

180 ms

0 ms

Figure 7.17: T1ρ maps for volunteer D as time progresses. T1ρ parameter values are overlaid
on an anatomical image. Minutes indicate the length of time since the 20 lb backpack was
removed.
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A C P
5-11 min

-1.1 1.1 4.2

0.9 0.7 0.4

-0.9 -0.3 -0.2

1.1 1.0 1.0

A C P
11-17 min

2.8 -0.6 -4.4

-0.6 0.6 2.5

2.3 1.0 0.6

-1.4 -1.3 -1.2

17-22 min

-4.2 -0.5 2.7

0.9 1.0 1.6

0.5 -0.1 -0.7

-1.1 -0.5 0.3

22-28 min

3.0 1.5 2.2

-0.4 -1.3 -2.7

-0.4 0.1 0.6

-3.7 -2.6 -1.2

28-33 min

-0.5 -0.9 -2.3

0.8 0.6 0.8

0.8 0.8 1.6

3.6 3.5 4.1

33-38 min

-1.3 0.2 1.7

2.0 0.5 -1.2

1.9 0.4 0.4

-2.6 -2.1 -1.5

60 ms

-60 ms

The numbers indicate the percent change in
disc height at the A(nterior), C(entral), and
P(osterior) parts of the disc. Each row repre-
sents one disc. Average standard deviation of
repeated measurements is 0.7%.

Figure 7.18: Statistically significant changes in T1ρ for Volunteer D are colored according
to the amount of change.
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an hour was not long enough to show a discernible pattern.

On the other hand, there is a consistent relationship between the magnitude of T1ρ

change and the magnitude of the T1ρ map values. The more inferior discs, especially L5-

S1, have less variation in T1ρ than other discs and also have markedly lower T1ρ values,

which are associated with degeneration. The first question we ask is whether this decrease

in variation is an artifact from noise or if it is a true pattern. A lower T1ρ value means

that the exponential T1ρ relaxation curve decreases faster, so more of the measurements

will be lower. We expect some level of noise in each measurement. Assuming the noise

level is approximately the same for each measurement point, the relative amount of noise is

larger for lower measurements, meaning we expect the noise to affect the lower T1ρ values

more, which is the opposite of what we observed. In addition, discs with lower T1ρ values

often have lower initial measurements at spin lock time of 0ms. Once again, we would

expect these lower values to be more sensitive to noise, which is the opposite of what we

are seeing. This analysis suggests the relationship between less variation and low values is

a true observation. Since low values are associated with degeneration, the reduced amount

of T1ρ change agrees with other studies showing less T1 and T2 variation in degenerate

discs compared with healthy discs between morning and evening measurements [19, 27,

28]. Another factor contributing to less change in the inferior discs may be anatomical

positioning. The arrangement of the sacrum, pelvis, and fifth lumbar vertebra (L5) restricts

the movement of L5 compared with the other vertebrae. The curvature of the spine is

different at this level as well, meaning that the pressures on the disc are different, possibly
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decreasing the amount of decompression that occurs while the volunteer is resting.

When analyzing the T1ρ changes, we must recognize that we did not use prospective

registration to select the sagittal slice from image to image. Since the volunteer was lying

still, we expected minimal movement, which was indeed the case as the pre-registration

difference images in Figures 7.2, 7.3, 7.4, and 7.5 all show minimal misalignment, with the

exception of 7.3a and 7.4b-(d), where the larger misalignments were due to repositioning

the field of view. The pre-registration misalignment is less than about one in-plane pixel

(0.78mm). We have shown in Section 6.3 that this amount of in-plane misalignment affects

the outcome of the statistical analysis and thus must be corrected with registration. On

the other hand, since the sagittal slice thickness is 8mm, we expect the out-of-plane mis-

alignment to be relatively small with minimal effect. Since prospective registration takes

up to 10 minutes and we were looking for high temporal resolution for dynamic analy-

sis, we opted not to take the time for prospective registration. However, the actual effect

of potential out-of-plane misalignment was not tested and should therefore be considered

when interpreting these results. None of the other examples in this chapter used prospective

registration either, for these same reasons.

We now show the T1ρ maps for the compression device experiment in Figures 7.19,

7.21, 7.23, and 7.25. Statistically significant differences in T1ρ and changes in disc height

are displayed in Figures 7.20, 7.22, 7.24, and 7.26.

One thing to keep in mind when studying the differences between compression and re-

laxation is that these processes are dynamic and take time. For example, cadaver discs have
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(a) Relax (b) Maintain
relaxation

(c) Compress (d) Maintain
compression

(e) Relax (f) Maintain
relaxation

(g) Compress (h) Maintain
compression

220 ms

0 ms

Figure 7.19: T1ρ maps for volunteer E
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Figure 7.20: Statistically significant changes in T1ρ for Volunteer E are colored according
to the amount of change. See continuation on the next page.
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Figure 7.20: Statistically significant changes in T1ρ for Volunteer E, continued. The num-
bers indicate the percent change in disc height at the A(nterior), C(entral), and P(osterior)
parts of the disc. Each row represents one disc. Average standard deviation of repeated
measurements is 0.7%.

been shown to continue to decrease in height after four hours under a static load [9]. Thus

we would expect the disc compression process to be complicated in a living volunteer with

alternating application and release of compression every 10 minutes. Relaxation / com-

pression will not be complete when the load is toggled. Also complicating the analysis,

the distribution of the weight and the way the body supports it is different between upright

standing (i.e. the pre-scan weight-bearing position) and the compression device. In addi-

tion, the way the spine takes the load (and consequently the distribution of compression

over the discs) will vary from person to person, from weight application to weight appli-

cation of the same person, and perhaps even over the course of holding the weight if the

volunteers consciously or subconsciously adjust how they are supporting the weight.

Keeping these complexities in mind, we survey the T1ρ comparisons for Volunteers E-

H. Volunteers E, F, and G (Figures 7.20, 7.22, 7.24) all began the study relaxing, followed

by resisting weight, relaxing, and resisting again. Volunteer H (Figure 7.26) had already
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(a) Relax (b) Maintain
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(c) Compress (d) Maintain
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compression
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Figure 7.21: T1ρ maps for volunteer F
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Figure 7.22: Statistically significant changes in T1ρ for Volunteer F are colored according
to the amount of change. See continuation on the next page.
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Figure 7.22: Statistically significant changes in T1ρ for Volunteer F, continued. The num-
bers indicate the percent change in disc height at the A(nterior), C(entral), and P(osterior)
parts of the disc. Each row represents one disc. Average standard deviation of repeated
measurements is 0.7%.

been lying in the scanner for about 10 minutes for other scans, then began the study resisting

weight, followed by relaxing, resisting, and relaxing again.

The dominant color in the T1ρ comparison images appears to be red, representing a T1ρ

increase, from start to finish for each of these volunteers, especially E, F, and G. There

is likely an underlying decompression over time due to the brevity of the compression

sessions, so we suggest this observation points to a correlation between decompression and

an increase in T1ρ.

Looking in more detail, we begin with the first pair of images for Volunteer E. Both im-

ages were taken during relaxation (relax-relax). Most of the measurements of disc height

change are positive, indicating height increase, which is reasonable since the discs are de-

compressing. There are many bright red areas, meaning increasing T1ρ, which agrees with

our earlier observation. The magnitude of the change is much lower in the L5-S1 disc than

the other discs, which agrees with the findings in the backpack experiment. For the second
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Figure 7.23: T1ρ maps for volunteer G
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Figure 7.24: Statistically significant changes in T1ρ for Volunteer G are colored accord-
ing to the amount of change. The numbers indicate the percent change in disc height at
the A(nterior), C(entral), and P(osterior) parts of the disc. Each row represents one disc.
Average standard deviation of repeated measurements is 0.7%.
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relaxation
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Figure 7.25: T1ρ maps for volunteer H
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Figure 7.26: Statistically significant changes in T1ρ for Volunteer H are colored accord-
ing to the amount of change. The numbers indicate the percent change in disc height at
the A(nterior), C(entral), and P(osterior) parts of the disc. Each row represents one disc.
Average standard deviation of repeated measurements is 0.7%.
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image pair, weight was applied between the two images (relax-compress). The L5-S1 and

L1-L2 discs decreased in height anteriorly and increased in height posteriorly, while the

others increased in height anteriorly and decreased in height posteriorly, showing how the

vertebrae rotated differently to support the applied weight. In discs L2-L3, L3-L4, and L4-

L5, the change in T1ρ follows the increase-decompression pattern suggested earlier, with

increases in the anterior sections (where an increase in disc height indicates decompression)

and decreases in the posterior sections (where compression is marked by a decrease in disc

height). The L5-S1 disc does not follow this pattern, as the T1ρ increases throughout most

of the disc even though the anterior portion decreased in height. On the other hand, this

disc does follow the pattern where T1ρ changes are smaller in magnitude than for the more

superior discs. The third image pair compares the two images taken after compression was

applied. The disc height differences are much smaller, as the compression state remained

the same. T1ρ decreases in the upper discs and increases in the lower discs, corresponding

to a tendency toward disc height decrease in the upper discs and increase in the lower discs.

Disc L5-S1 now shows a large T1ρ change, contrary to our earlier observations. Perhaps

while resisting compression over several minutes, the posture shifted, releasing some of

the pressure on the pelvic region. The fourth image pair compares before and after remov-

ing the weight (compress-relax). Disc height measurements resemble the opposite of the

relax-compress pair, which is expected since the spine is returning to a relaxed state. T1ρ

predominately increases, following the pattern of relaxation, though it decreases in parts

of the L5-S1 disc. In the fifth pair (relax-relax), the disc heights change to a lesser degree
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than the previous pair. T1ρ changes are also minimal, with some increase in the L5-S1

disc. The disc height changes in the relax-compress (sixth) pair follow a similar pattern

as the earlier relax-compress pair. There are more regions of T1ρ decrease than the earlier

relax-compress pair – perhaps the compressive effect of the load is larger since the spine

has had more time to relax in the supine position before applying the load this time. There

are regions of increasing T1ρ in most of the discs, suggesting how different parts of the

disc may be affected by the load. Finally in the seventh pair, maintaining compression

(compress-compress) leads to some disc height increase and T1ρ increase in the upper discs

and disc height decrease and T1ρ decrease in the lower discs.

We move on to Volunteer F. The largest T1ρ changes for this volunteer are decreases

in the first relax-compress pair, which is again consistent with the previous volunteer. The

magnitude of the T1ρ changes in the other image pairs are much lower and do not have

an obvious pattern. The disc heights follow a general pattern of squishing the posterior

and stretching the anterior parts of discs L2-L3, L3-L4, and L5-S1 when the weights were

applied and doing the reverse for weight removal, though the magnitude of the changes are

different.

Volunteer G shows the same patterns fairly distinctly. The first pair (relax-relax) is dom-

inated by strong T1ρ increase and disc height increase, which is the pattern seen in earlier

for initial relaxation. The L5-S1 disc has both lower T1ρ values and reduced T1ρ changes

compared with the other discs, again following the pattern for relaxation before applying

the load. The second pair (relax-compress) follows the patterns for compression by show-
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ing mainly T1ρ decreases and disc heights that decrease posteriorly and increase anteriorly.

T1ρ changes with subsequent relaxation (pair three) mimic the initial relaxation with mostly

increases, though at lower magnitude, suggesting the magnitude of the relaxation between

standing and lying is greater than the relaxation between applying and removing weight in

the compression device, which might be expected. Disc heights for L2-L3 and L3-L4 re-

verse their directions from the initial compression, while the other discs behave differently.

The following continued relaxation (pair four) again follows the T1ρ change pattern of in-

creasing for relaxation. The disc height changes are low in magnitude and do not follow

any particular pattern. Disc heights for the next compression (pair five) do not follow the

pattern either and are also mostly low in magnitude. T1ρ changes for pair five are lower in

magnitude than the other pairs and show both increases and decreases.

Volunteer H followed a slightly different procedure. Since he or she had been in the

scanner for about 10 minutes before compression, some relaxation had already occurred.

The compression/relaxation pattern began with compression, unlike the other three vol-

unteers who began with relaxation. Finally, he or she spent only about 4 minutes in the

second set of compressed and uncompressed states as opposed to the approximately 15

minutes that the other volunteers remained in each state, leading to less time for the discs

to adjust to each new compression state. The initial compress-relax pair follows our relax-

ation T1ρ change pattern with mostly increases accompanied by mostly increases in disc

height. The following relax-relax pair continues to show disc height increases, which is

expected for continued relaxation. However, there is a lot of T1ρ decrease, which is the
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opposite of what we expect given the previous patterns. The following compression yields

disc height decreases as expected, many places of T1ρ decrease, also as expected, but also

some regions of strong T1ρ increase. The next pair (compress-relax) shows a similar mix-

ture of T1ρ directional changes. These mixtures of increases and decreases may be due to

the short period of time in each compression state; some parts of the discs may not have

gotten a chance to compress or relax.

Finally we show the T1ρ maps for the neutral vs. flexion experiment in Figure 7.27, with

the statistically significant T1ρ changes and percentage changes in disc height reported in

Figure 7.28.

The first comparison is between neutral and flexed positions. The upper four discs com-

press anteriorly and expand posteriorly according to the disc height measurements, which

is expected given the spinal flexion. T1ρ changes continue to follow the above-mentioned

pattern in these discs, increasing posteriorly (corresponding to expansion) and decreasing

centrally and anteriorly (corresponding to compression). The L5-S1 disc behaves differ-

ently, with its height decreasing everywhere but mostly increasing in T1ρ, which is the

opposite of our hypothesized pattern. The second comparison is between flexed and neu-

tral positions. The upper three disc heights reverse the effect of the previous neutral-flexed

motion as expected, expanding anteriorly and compressing posteriorly, with correspond-

ing T1ρ increases in central and anterior locations, except for a slight anterior decrease in

L3-L4. The disc height decreases on L4-L5 indicate compression, with a corresponding

decrease in T1ρ. The L5-S1 disc height increases anteriorly and decreases posteriorly like
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(a) Neutral (b) Flexed (c) Neutral

(d) Flexed (e) Neutral (f) Neutral

200 ms

0 ms

Figure 7.27: T1ρ maps for volunteer I
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Figure 7.28: Statistically significant changes in T1ρ for Volunteer I are colored accord-
ing to the amount of change. The numbers indicate the percent change in disc height at
the A(nterior), C(entral), and P(osterior) parts of the disc. Each row represents one disc.
Average standard deviation of repeated measurements is 0.7%.
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the upper discs, but the T1ρ changes in this disc are minimal. The third comparison is again

between neutral and flexed positions. The disc height changes resemble the first neutral-

flexion comparison with some deviations, especially in the superior discs. The inferior two

discs follow the pattern of T1ρ moving in the same direction as the disc height. The other

three discs loosely follow this pattern. The fourth image set repeats the flexed and neutral

position comparison. Disc heights are again mostly as expected, with anterior expansion

and posterior compression. T1ρ changes are minimal, with some increase centrally and

anteriorly in L4-L5 and L5-S1; these discs also have corresponding anterior expansion in

disc height, which is consistent with our hypothesized pattern. The final comparison is be-

tween two neutral images with no position change and minimal time (less than 3 minutes)

between them. As expected, there is very little change in T1ρ, and only slight disc height

differences for many of the discs, though L5-S1 expands anteriorly a fair amount.

7.2.3 Assessment of T1ρ changes within regions of interest

These calculations compare large regions of interest (ROI) within the discs (all, anterior,

posterior, or central portions), so there is one value per disc for each of the four ROI’s.

These calculations are less local than in the previous section, but since there are fewer

numbers, it is easier to report results.

We begin this section by discussing the reproducibility of the T1ρ measurements. The

average coefficient of variation (CV) of the median T1ρ within discs between two repeated

measurements for the T1ρ-FSE sequence we used has been reported as 5.64% [8]. In an-
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other study, the CV was 4.59% in vivo and under 3% for agarose phantoms using a se-

quence with the same T1ρ preparation but a spiral acquisition [18]. Using the data from

our experiments, the average CV per disc is 7.6% for the backpack experiment, 13.9% for

the compression device experiment, 6.9% for the flexion/extension experiment, and 10.4%

for all the data. CV’s are often used to report reproducibility, but here they also reflect any

changes in T1ρ related to the state of compression as all the data in each experiment were

averaged. The larger values for the compression device are likely because the compres-

sion device creates more differences in the spine than supine relaxation. The CV for the

backpack experiment is closer to the previously reported CV’s, indicating that the change

in T1ρ over the course of an hour is not much different than the expected variation between

measurements. The rest of this section explores these relative differences.

Let us look at the progression of T1ρ in each disc for each volunteer, as plotted in Figures

7.29 - 7.37. There are many fluctuations, but most are not significant using the paired

Student’s t-test. We did find a significant increase of 20% in T1ρ when comparing images

under compression with those after compression was released in the anterior region of the

L4-L5 disc (p ≈ 0.03) and in the anterior and posterior regions and the entirety of the L5-S1

disc (p < 0.02). This test identifies significant changes with decompression compared with

changes during repeated tests in the relaxation sequence. The relaxation sequence consisted

of 5-7 separate measurements at about 7 minute intervals after the backpack loading. We

used the standard deviation of this sequence in the t-test to represent the control distribution.

This change in T1ρ follows the same formula of increasing with the release of compression
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as the local patterns we pointed out in the previous section.

We now look quantitatively at our earlier observation that discs with lower T1ρ values

have less variation in T1ρ. Discs with lower T1ρ values are associated with degeneration.

We compared the variation in the four discs identified as degenerate to the variation in the

32 healthy discs. We found the variation in T1ρ between successive images to be 48% lower

(p < 0.03) in degenerate than in healthy discs.

Using a one-way analysis of variance, we checked whether T1ρ variation depended on

the location of the disc (i.e. L2-L3, L3-L4, L4-L5, or L5-S1). We found no significant

effect of disc identity on the amount of T1ρ variation.

We also noticed that the discs identified as degenerate using clinical T2-weighted im-

ages had noticeably lower T1ρ values, as has been shown by other researchers [7, 8, 5]. It

is not the main emphasis of this work, but we mention it here as an additional observation.

7.3 Summary

The misalignment in the pre-registration difference images demonstrates that registra-

tion is needed for multiple acquisitions of the same person, even if the images are acquired

during the same exam. The post-registration difference images show that the registration is

visually accurate for all of the image pairs in these experiments.

The data shown suggest that T1ρ values in lumbar intervertebral discs decrease when

compressed and increase when expanded or relaxed. This pattern occurs in the local com-
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Figure 7.29: Progression of T1ρ values in regions of interest for Volunteer A.
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Figure 7.30: Progression of T1ρ values in regions of interest for Volunteer B.
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Figure 7.31: Progression of T1ρ values in regions of interest for Volunteer C.



161

Figure 7.32: Progression of T1ρ values in regions of interest for Volunteer D.
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Figure 7.33: Progression of T1ρ values in regions of interest for Volunteer E. Note that the
T1ρ scale for the plots in this figure is slightly different than for the other similar figures.
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Figure 7.34: Progression of T1ρ values in regions of interest for Volunteer F.
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Figure 7.35: Progression of T1ρ values in regions of interest for Volunteer G. Note that the
T1ρ scale for the plots in this figure is slightly different than for the other similar figures.
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Figure 7.36: Progression of T1ρ values in regions of interest for Volunteer H.
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Figure 7.37: Progression of T1ρ values in regions of interest for Volunteer I.
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parisons and is backed up by the statistically significant increase in T1ρ when compression

was released during the compression device experiment. Note that lower T1ρ values are

associated with degeneration. Compression seems to change the T1ρ values in the same

direction as degeneration does, and relaxation seems to raise T1ρ higher, which is associ-

ated with healthy discs. Lower T1ρ (faster relaxation) under compression may be because

the proteoglycans and water molecules are closer together, allowing more water-protein

interactions and decreasing the molecular tumbling rate, which increases the T1ρ relaxation

rate, as discussed in Section 2.3.

The above pattern occurs often in the data but is not entirely consistent. One does not

expect a completely consistent pattern in vivo due to different ways of loading, which is

related to individual anatomy, muscular support, etc. The way a load is distributed through

a disc varies with the load situation, the person, and the anatomical location of the disc.

Disc health also affects the way it responds to a load. Equilibrium after applying or re-

moving a load takes many hours, so in our studies (under an hour) the response to a load

is complicated by previous loads applied before or during the study. For example, in the

compression device study the magnitude of T1ρ changes tended to decrease in the second

round of compression / relaxation, perhaps from a residual condition from the first round

of loading and unloading.

There was no significant difference in mean T1ρ over the course of the hour-long re-

laxation after the upright backpack loading. This protocol missed the first 5-10 minutes of

relaxation between backpack removal and the first T1ρ acquisition due to the setup tasks
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of helping the volunteer enter the machine and get comfortable, landmarking the anatomy

of interest, acquiring a localization scan, and positioning the field of view. Any significant

compression from the backpack and other pre-scan activities had either relaxed close to

equilibrium by the time the setup was complete or was relaxing slowly over a much longer

time period than is practical for MRI exams. The setup tasks are required for all exams

and the exam duration is typical for scan sessions, so compression differences due to pre-

scan activities is not likely to be a problem in most situations, reducing the need to control

pre-scan activities before T1ρ studies.

Variation in T1ρ is lower in L5-S1 discs that have lower T1ρ values. This is shown in the

local comparisons and by the significant difference in T1ρ variation between healthy and

degenerate discs. This observation is consistent with studies of T1 [19] and T2 [27, 28] un-

der compression. Lower T1ρ values are associated with degeneration, and degenerate discs

are expected to lose water more quickly under compression and have fewer proteoglycans

and water molecules than healthy discs. Thus we expect the difference in restriction and

interactions of proteoglycan and water molecules under compression to be less pronounced

with respect to healthy discs, leading to less change in T1ρ values.

Measurements of disc heights give us insight into how the spine handles an applied load.

Disc heights between flexed and neutral positions responded as expected, with most discs

compressing anteriorly and expanding posteriorly for flexion with the reverse for extension

back to the neutral position. When a load was applied, discs tended to compress posteriorly

and expand anteriorly. However, these observations are only general patterns, as the disc
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height response to compression varied with the disc’s anatomical location, with different

volunteers, and with different trials of the same volunteer, as expected. Disc heights did not

follow a pattern of decompression during the backpack study, likely because the amount of

height change with supine relaxation is on the same order as changes due to small volunteer

movement over time.

It is important to note that while we did see some tendencies and patterns in the T1ρ

behavior under compression, this study is far from conclusive. The observed patterns were

not seen in all of the examined discs, so there may be other observations that could be

made in a larger study. The human body is quite complex and we do not yet completely

understand the mechanisms that T1ρ measures, so there is likely to be more going on than

these observations show. To help isolate the effect of compression, future studies could be

done on animal tails so that compression can be applied on individual vertebrae for longer

periods of time.
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Chapter 8

Conclusion

Our aim is to quantitatively assess local changes in the T1ρ relaxation parameter within

intervertebral discs under different amounts of compression. This section discusses the

information from previous sections to address how well our method accomplishes this goal,

how much human interaction is required, and how useful the method is likely to be.

We begin by looking at data acquisition. Since the imaging sequence is single-slice, we

need to aim the second acquisition to contain the same anatomical points as the first. Even

if a future sequence were multi-slice, the slice thickness is typically so large (4-8mm) that

a slice in an incorrectly positioned second image could include points several millimeters

away from the first image. As an alternative to prospective registration, a highly skilled

technician may be able to locate a given anatomical landmark in both imaging sessions

with acceptable accuracy, but there are limitations to this approach. First, the desired slice

must be at a landmark distinctive enough for human visual identification. Second, to recall
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where the slice was located in the initial exam, the technician must either have the images

from the first exam on hand, with the sagittal slice marked on the axial image (which is

unlikely to be easily available) or the slice must be a standard named landmark identifiable

across patients. Third, the same technician must be available for both exams. Even if

these conditions are met, the accuracy of manual positioning is difficult to quantify so the

investigator will not know how much to trust the end statistical comparison of the images.

The prospective registration tool increases flexibility, quantification, and possibly accuracy

over technician localization.

The flexibility of the spine in bending and twisting means that global rigid transfor-

mation is not the only motion that can affect which anatomical points are imaged between

exams. MRI acquisition methods cannot accommodate a twisting, curving path, so we

must instead help the patient lie as straight as possible. The scanner bed keeps the hips

and shoulders from twisting, and lateral bending can be minimized by asking the volunteer

to lie with a straight spine. We have visually noted reasonably consistent positioning with

respect to twisting and lateral bending as volunteers exit and reenter the scanner. However,

we do not present a quantitative measure for assisting or evaluating this type of positioning.

The amount of initial misalignment is limited in a standard closed-bore MR scanner.

However, we saw in section 6.3 that even a misalignment of a single pixel is enough to

affect the local hypothesis testing, indicating that registration is worthwhile. If in the future

we wanted to apply the algorithm to larger motions, such as those possible in open scanners,

we would have a much greater possibility of twisting and out-of-plane bending, suggesting



172

that a sagittal slice is no longer sufficient. Rather, we would seek a three-dimensional ac-

quisition with near isotropic voxels. Three-dimensional T1ρ sequences have been reported

for the knee [70], but not for the spine and not with isotropic voxels at sub-millimeter reso-

lution. Theoretically, our registration and analysis technique would still apply. I wrote the

code using the C++ Standard Template Library with image dimension as one template pa-

rameter, so using the algorithm in three dimensions should be reasonably straightforward.

Next we examine the disc segmentation. As described in section 6.3, the required

manual initialization is quick and insensitive to minor variations. Figure 6.9 gives examples

showing that disc segmentation covered most of the disc with minimal leaking. This level of

segmentation accuracy is sufficient to produce sub-pixel registration accuracy, which in turn

is sufficient for accurate hypothesis testing within the disc (as demonstrated in section 6.3).

A more accurate segmentation may be desired for the interpretation of the hypothesis tests

since including portions of the vertebrae can include distracting, irrelevant information,

and not filling in all of the disc could cause one to miss significant changes. Even where

over-segmentation causes pixels in the vertebrae (rather than the disc) to appear statistically

significant, since the hypothesis tests are done within local neighborhoods and the data is

presented as an overlay on the anatomical image, it is obvious which of the regions marked

significant are truly within the disc. If desired, the small number of incorrectly labeled

pixels can be erased via the graphical user interface. As for under-segmenting, or not

including all portions of the disc, in our examples, missed areas were small and at the

edges of the disc, not interfering much with the statistical analysis.
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While our examples include a few discs with low T1ρ (associated with degeneration),

we did not image any severely diseased discs, where the disc is barely visible. We expect

segmentation to be difficult in such cases; manual touch-ups could be done, but if the disc

is nearly gone or the intensity is too low even with no T1ρ preparation, it is likely that T1ρ

values cannot be reliably estimated, making the segmentation unnecessary.

We now address vertebral segmentation, which determines landmark locations and

bounding boxes for the rigid transformations that guide the deformable registration of the

discs. Since rigid registration of an individual vertebra is done using a bounding box around

the vertebral segmentation rather than using the segmentation borders directly, the regis-

tration is very robust to errors in vertebral segmentation. In fact, slight over-segmenting

(including more than the actual vertebra) in the anterior/posterior direction is beneficial in

that it incorporates more features to guide the registration. The deformable registration of

the disc is sensitive to landmark placement, so the vertebral segmentation must be more

precise near the discs. This unequal need for precision led to the balloon-type shape of the

vertebral segmentation demonstrated in section 4.2.2.

Next we look at the registration of the discs, which we use to ensure that the pixels

from the first image are being compared with pixels in the same anatomical region in the

second image for reliable comparison of local T1ρ values. Registration on rigid bodies

can be simpler and more robust than deformable registration of soft tissue since it requires

optimizing fewer parameters. By using a piecewise-rigid transformation to select control

points for deformable registration, we take advantage of the constraints offered by the rigid
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bodies (vertebrae) while still allowing non-rigid deformation within the discs, which is

more anatomically accurate for flexible tissue. Using more tissue than just the discs to

guide the registration is more reliable since we expect the pixels within the discs to change.

Using surrounding tissue ensures that the transformation is based on physical motion rather

than changing intensities. As discussed in chapter 6, we register with sub-pixel accuracy

and high repeatability. Automatic results are similar to manual results but more consistent,

and the process is less tedious and faster.

Now we consider the statistical analysis. One of the strengths of our statistical tech-

nique is the opportunity for the user to investigate statistically significant areas by chang-

ing the neighborhood size, significance level, and confidence level. Allowing exploration

gives more information than an isolated report of statistical significance at the common

but somewhat arbitrary cutoff of 0.05. First, hypothesis tests are probability-based so the

significance level gives only a likelihood, not a certainty, of a change being due to chance.

Several pixels will therefore be incorrectly labeled as statistically significant. To address

this, the user may view results at different significance levels to explore the strength of the

significance. Second, since neighborhood size affects the calculations, we made it easy for

the user to adjust the size. Third, some error arises from using a limited number of samples

(pixels) in the statistical estimate. We calculate a confidence estimate based on this type

of error, and the user may opt to reject the null hypothesis only for pixels that are above a

certain confidence level.

The statistical technique developed in this dissertation extends the geographically
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weighted regression (GWR) idea to the image domain and alters it to use resampling tech-

niques. Our geographical weighting function has a hard bandwidth (i.e. weights of one for

pixels within a bandwidth and zero elsewhere), and since we are limited to a small num-

ber of finite-size square pixels, to increase the number of pixels within the bandwidth and

for computational simplicity, our weighting function is not radially symmetric, i.e. we use

a square neighborhood rather than a circle. We experimented using a radially symmetric

function with a soft cutoff but found the results harder to interpret. The main advantage

cited for using a weighting function with a smooth cutoff in GWR is to reduce the impact

of single points at the edge of the bandwidth. This advantage is reduced when we are calcu-

lating the values for many adjacent pixels in a regular grid (as in an image), for even if one

neighborhood includes an outlier, its neighbors will not, thereby limiting its influence. A

gentle cutoff would result in a spatially smoother result, but we prefer ease of interpretation

to smoothness.

The last comparison (neutral-neutral) in Figure 7.28 shows two consecutively acquired

images between which we do not expect any significant changes, yet there are small speck-

les of pixels marked as significantly different. This gives us the opportunity to remind the

reader that statistical significance is simply stating that such a large change occurring by

chance is unlikely. At the p < 0.05 level, “unlikely” means that 5% of the time, we expect

it to happen. Thus the investigator must keep in mind that there are specks of noise in the

significance calculations and that not all statistically significant pixels are truly different.

Exploring with varying significance levels, confidence thresholds, and neighborhood sizes
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can help one understand the true character of T1ρ changes.

We reported results of small preliminary studies of T1ρ under varying states of com-

pression. The main reason to present them in this work is to provide an example of our

algorithm in action. The algorithm was successful in this capacity, providing visually accu-

rate registration results and maps of statistically significant differences in T1ρ in a manner

that allowed us to analyze these differences in all locations within the disc. Another rea-

son to include these results is to inspire further investigation of the behavior of T1ρ within

intervertebral discs subject to varying loading situations. Our preliminary finding is that

T1ρ tends to decrease with compression and increase with relaxation / expansion and that

T1ρ varies less in degenerated discs than in healthy discs. T1ρ changes vary depending on

the location within the disc, likely due to the unequal distribution of weight throughout the

disc. These suggested patterns are not conclusions because the study population is small

and the complexities of the load bearing are great. Further studies are warranted to see if

these ideas hold.

Using a compression device increased the coefficient of variation of T1ρ values be-

tween repeated measurements to 13.9% compared with 7.6% for uninterrupted supine re-

laxation. There was a significant increase (p < 0.05) in T1ρ when compression was re-

leased. Changes were not significant during an hour of supine resting, indicating that the

pre-scan compression from normal daily activities does not considerably complicate T1ρ

measurements.

These experiments also demonstrate that the registration algorithm can be used to mea-
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sure changes in disc height. Points indicating the top and bottom of the disc in the anterior,

central, and posterior regions of the disc are manually selected on one of the images and

transformed to each of the other images via the transformation determined by the registra-

tion algorithm. When compared with the measurement method of manually placing points

on each image and comparing the disc height from each pair, the automatic method is faster,

more convenient, and potentially more accurate. It is faster because only one set of points

needs to be manually placed. The entirely manual method requires a very experienced op-

erator to be able to identify the same anatomical points in each image, so the automatic

version is more convenient because it can be done by a less-trained operator still with rea-

sonable accuracy. Also, it is possible that the vertebral endplates do not have sharp enough

landmarks to place three sets of repeatably-identifiable points, even by a trained operator,

in which case the automatic method may be more accurate.

We also note that while the examples in this work all deal with T1ρ in varying states of

compression, the registration could be used for any other studies of T1ρ that require two or

more images of the same person, not just in a compression context. Also, the algorithm

could be used with other quantitative parameters. For example, we show a successful

example of registration of T2 maps in Appendix A, Figure A.6.

In summary, we have developed an automatic method of comparing T1ρ values in in-

tervertebral discs between different images of the same person, intended for investigating

the behavior of T1ρ when the disc is under various types of loads. The method includes

registration to deal with spinal movement, including large intentional position changes,
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small unintentional movement, field of view repositioning, and exams on different days.

Understanding T1ρ behavior under load could provide insight into the reason for the cor-

relation between low T1ρ and disc degeneration, could help people interpret or control for

compression-related changes when using T1ρ to evaluate disc health, and could provide

another measure in itself for assessing disc health.

Further work We recommend that future studies look further at the tendency of T1ρ to

increase under compression and decrease under extension / relaxation. We suggest using

more volunteers, more controlled loading methods, and including volunteers with docu-

mented disc degeneration. We also propose comparing T1ρ values between morning and

evening measurements since disc compression as well as other diurnal differences may

produce discernible tendencies in T1ρ.
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Appendix A

Additional examples

We present several image pairs used for testing the registration accuracy that were not in
the context of the experiments in Chapter 7. We show the difference between the fixed and
moving images before and after registration to give a qualitative measure of the registration
accuracy for these cases.
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Pre-registration Post-registration

38 min apart

Exit and re-enter

Figure A.1: Volunteer J. The fixed and moving images compared in the top row were
separated in time, without any intentional volunteer movement. There is not much initial
misalignment in this case. The bottom row compares images where the volunteer exited
the scanner between scans. The prospective registration method found the correct slice
to image when the volunteer re-entered the scanner. There is significant initial in-plane
misalignment, which is corrected during registration.
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Pre-registration Post-registration

Straight-bent knees

Figure A.2: Volunteer K. For the fixed image, the volunteer has his/her knees straight, lying
flat on the scanner bed. For the moving image, the knees are propped up by a pillow in a
bent position. The initial misalignment is mostly corrected by the registration program, but
some misalignment remains at the very bottom of the image. It is more difficult for the
registration to work at the edges of the image, especially when a transformation causes the
bounding box to exit the image. Nevertheless, the alignment is good, and the dark and light
areas that remain after registration are mostly due to differences between the two images
rather than misalignment. We did not use prospective registration here, so the slices are not
exactly the same in the fixed and moving images.

Pre-registration Post-registration

10 minutes apart

Figure A.3: Volunteer L. The moving image was acquired about 10 minutes after the fixed
image, with no other change. There is only slight initial misalignment, mostly near the
bottom of the image, which is improved after registration.
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Pre-registration Post-registration

Compress-relax

20 min apart

Figure A.4: Volunteer M. This is another example using the compression device. The top
row demonstrates compression (fixed image) compared with relaxation (moving image),
and the bottom row compares two images taken 20 minutes apart, relaxing without weights
during and between the acquisitions. This example is not included in the experiment in
Chapter 7 because the imaging sequence was not working properly, so the T1ρ values are
not reliable. However, it is still a useful case to examine the performance of the registration
portion of the algorithm. Note that the misalignment was so large in the first row that the
user needed to set a coarse initial global translation. Setting this initial translation is simple
with our user interface.
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Pre-registration Post-registration

Compress-relax

Figure A.5: Volunteer N. Here is another example of compression/relaxation using the
compression device. This case is not included in Chapter 7 because the T1ρ values are
unreliable due to low signal from the receiver coil. We include it here as another example
of the registration algorithm.

Pre-registration Post-registration

T2 compress - relax

Figure A.6: Volunteer O. In this example, we register T2 maps to demonstrate flexibility in
analyzing quantitative MR parameters other than T1ρ. For the fixed image, the volunteer
sustained weight in the compression device (as in Chapter 7). The weight was removed for
the moving image.
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