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Abstract

Learning Distance Functions for Exemplar-Based Object Recognition

by

Andrea Lynn Frome

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

This thesis investigates an exemplar-based approach to object recognition that

learns, on an image-by-image basis, the relative importance of patch-based features for

determining similarity. We borrow the idea of “family resemblances” from Wittgen-

stein’s Philosophical Investigations and Eleanor Rosch’s psychological studies to sup-

port the idea of learning the detailed relationships between images of the same cat-

egory, which is a departure from some popular machine learning approaches such as

Support Vector Machines that seek only the boundaries between categories.

We represent images as sets of patch-based features. To find the distance between

two images, we first find for each patch its nearest patch in the other image and

compute their inter-patch distance. The weighted sum of these inter-patch distances

is defined to be the distance between the two images. The main contribution of this

thesis is a method for learning a set-to-set distance function specific to each training

image and demonstrating the use of these functions for image browsing, retrieval,

and classification. The goal of the learning algorithm is to assign a non-negative

weight to each patch-based feature of the image such that the most useful patches are

assigned large weights and irrelevant or confounding patches are given zero weights.

We formulate this as a large-margin optimization, related to the soft-margin Support
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Vector Machine, and discuss two versions: a “focal” version that learns weights for

each image separately, and a “global” version that jointly learns the weights for all

training images. In the focal version, the distance functions learned for the training

images are not directly comparable to one another and can be most directly applied to

in-sample applications such as image browsing, though with heuristics or additional

learning, these functions can be used for image retrieval or classification. The global

approach, however, learns distance functions that are globally consistent and can be

used directly for image retrieval and classification. Using geometric blur and simple

color features, we show that both versions perform as well or better than the best-

performing algorithms on the Caltech 101 object recognition benchmark. The global

version achieves the best results, a 63.2% mean recognition rate when trained with

fifteen images per category and 66.6% when trained with twenty.

Professor Jitendra Malik, Chair Date
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Consider for example the proceedings that we call “games”. I mean

board-games, card-games, ball-games, Olympic games, and so on. What

is common to them all?—Don’t say “There must be something common,

or they would not be called ‘games’ ”—but look and see whether there is

anything common to all.—for if you look at them you will not see some-

thing that is common to all, but similarities, relationships, and a whole

series of them at that. To repeat: don’t think, but look!—Look for ex-

ample at board-games, with their multifarious relationships. Now pass to

card-games; here you find many correspondences with the first group, but

many common features drop out, and others appear. When we pass next

to ball-games, much that is common is retained, but much is lost.—Are

they all ‘amusing’? Compare chess with noughts and crosses. Or is there

always winning and losing, or competition between players? Think of pa-

tience. In ball-games there is winning and losing; but when a child throws

his ball at the wall and catches it again, this feature has disappeared. Look

at the parts played by skill and luck; and at the difference between skill in

chess and skill in tennis. Think now of games like ring-a-ring-a-roses; here

is the element of amusement, but how many other characteristic features

have disappeared! And we can go through the many, many other groups

of games in the same way; can see how similarities crop up and disappear.

And the result of this examination is: we see a complicated network of

similarities overlapping and criss-crossing: sometimes overall similarities,

sometimes similarities of detail.

– Ludwig Wittgenstein, Philosophical Investigation #66
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Chapter 1

Introduction

1.1 What is Object Recognition?

The human visual system allows us to effortlessly perceive properties of the world—

three-dimensional structure, boundaries, texture, colors, motion—and combine cues

to make higher-level distinctions about the things that surround us. For purposes of

this discussion, we define full object recognition as the task of determining the rough

extent of an individual object in the visual field or in an image and identifying it as

a member of a category containing other, similar objects. This thesis focuses on the

challenge of performing these tasks with a computer from raw digital input, such as

photographs or video.

Of course, even the concept of an “object” is a subjective human construct, de-

bated by psychologists and philosophers, not physicists and mathematicians. It can

be difficult to draw a line between what we consider a part and an object unto itself,

or to determine the physical boundary between two objects or between object and

non-object. (At the extreme, what exists at the atomic level are more and less dense

clouds of electrical charge, hardly something that lends itself to a strict definition.)
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Chapter 1. Introduction

This serves to illustrate, that even as we work with algorithms and mathematical con-

cepts, our task is fundamentally one defined by the abilities of the human perceptual

system.

Recognition is also a fuzzy concept; the meanings of “similar” and “category”

are human constructs, shaped by our context and perceptual systems and studied by

psychologists and psychophysicists. At best, the fuzzy, ill-defined output of the human

perceptual system is the starting point for machine vision applications. Realistically,

though, it is not a direct input; instead images have to be digitally collected and

labeled, usually by underpaid students.

It could be argued that there exist engineering applications where the goal of a

machine vision system is defined rigorously, for example, to find all the widgets on

an assembly line that are faulty or correctly match faces with names. But even as

algorithms show signs of out-performing humans on narrowly defined tasks, it is the

human visual system that motivates the task and/or provides the feedback needed to

train the system.

As for the terminology in the machine vision field, “recognition” can have different

meanings depending upon the context. The task of labeling an entire image with

one of 100 different generic categories is considered object recognition, but this is

different from the terminology used used working with only faces; face detection is

the task of finding the faces an in image, and face recognition is the grouping an

image of a single face with others that belong to the same individual. So, while

machine object recognition efforts are motivated and reinforced by the human visual

system, fundamentally the task is defined by the data used to train the system and

the direction chosen by the researcher. In this way, what the field considers object

recognition is in the end dictated by the state of the art in algorithms and our ability

to gather, label, and make use of visual data.
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Chapter 1. Introduction

1.2 Object Recognition is Rapidly Improving

However we define it, we should be able to agree that we are getting better at it.

We design and make use of elegant mathematical algorithms, but in the end machine

vision is an empirical study, defined by the data we use. Without quantitatively

comparing results on well-defined, benchmarked tasks, we cannot know what methods

work better than others. Of course different methods will be better suited to different

tasks, but for a given task, there are certainly some approaches that will perform

better than others. Benchmarks of increasing difficulty—and competition between

researchers to achieve the best results on them—have defined and driven the state of

the art in general-purpose object recognition.

There are of course other advancements that helped us get to where we are today.

The increase in computer speed and memory, the prevalence of computing clusters and

multi-core processors, and powerful parallel computing tools have made it tractable

to use more processor- and memory-intensive algorithms. The field appears to be

converging upon patch-based shape features as a powerful tool for summarizing the

content of images, and these have been “evolving” over the years, for example from the

Gaussian-derivative jet descriptor of [Schmid and Mohr, 1996b] to the SIFT descrip-

tor [Lowe, 1999] to the shape context [Belongie et al., 2002] and geometric blur [Berg

and Malik, 2001] descriptors. Probably the largest factor affecting the collection of

today’s data sets is the Internet; there are now large repositories of partially-labeled

images, for example from Flickr or Google Image Search, that were not available just

a few years ago.

While the data sets have been a primary factor in advancing the field, particularly

in the last four years, every data set that has been widely used in the field has had

its drawbacks. This is addressed in a recent article co-written by members of many

of the top research groups in the field [J. Ponce and Zisserman, 2006]. While it is
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Chapter 1. Introduction

considered to be a flawed data set, the Caltech 101 data set introduced by [Fei-Fei

et al., 2004] has had a large, lasting impact on the field, and at the time of this

writing is still actively used by many research groups1. Until its introduction, the

recognition of varied object categories in two-dimensional images was limited to less

than 10 categories, for example the faces, airplanes, cars, and motorbikes of Caltech-

4 [Fergus et al., 2003]. Caltech 101 was an increase by an order of magnitude with

101 different object classes (plus a background class), covering both man-made and

natural, rigid and articulated objects. It is true that this data set is easy in some of

the ways that earlier data sets were easy (for example, it includes the four categories

from Caltech-4). In many of the images, the object takes up almost the entire image,

and in many classes, the objects are in the same location and pose across images.

The creators of the data set also introduced exploitable artifacts by rotating images,

leaving black triangles in the corners of the images. Figure 1.1 shows a representation

by Antonio Torralba of the data set, created by resizing all the images and for each

category computing a pixel-wise average. It nicely illustrates the amount of regularity

within each category since a few can be easily identified by their average. However,

many of the categories, in particular the animal categories, remain very difficult.

Despite these regularities and artifacts, this was a very difficult data set when it

was introduced. Figure 1.2 shows the progress on the data set over the last three years.

The group that introduced it reported performance around 16% using fifteen examples

per category, and within three years, we are almost to 65%, some of that progress

coming from researchers building upon and refining other researchers’ algorithms and

features. The algorithm which is the main contribution of this thesis is the highest

line on this graph at fifteen and twenty images per category.

1Information about the data set, images, and published results can be found at http://www.
vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
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Chapter 1. Introduction

Figure 1.1: A representation of 100 of the categories of Caltech 101 (the Faces easy

category was removed). All the images in each category were resized, and the pixel-wise
average was taken. These are the raw, unnormalized outputs. Courtesy Antonio Torralba.
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Figure 1.2: Number of images per category versus mean recognition rate on the Caltech
101 data set. Shown are results from Chapter 5 of this thesis, [Griffin et al., 2007],
[Zhang et al., 2006], [Lazebnik et al., 2006], [Mutch and Lowe, 2006], [Grauman and
Darrell, 2006b], [Berg et al., 2005], [Wang et al., 2006], [Holub et al., 2005], [Serre et
al., 2005], and [Fei-Fei et al., 2004]. Note that the results just below ours at 20 images
per category are computed differently; they do not include the Faces easy category in
training or testing, thus eliminating a prominent confuser.
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1.3 Thesis Outline

Chapter 2 discusses our early work in the identification of different vehicles in three-

dimensional laser range data. It discusses a feature we introduced for this task, and

explores the effect of different matching approaches on recognition performance. It

also covers the basic ideas behind semi-local feature matching for recognition and

the advantages of fast nearest-neighbor algorithms, and compares the performance of

three different feature types on the task.

The main contribution of this thesis is an approach to object recognition that uses

the similarities between semi-local or patch-based features to learn distance functions

between images. Chapter 3 frames the problem as one of learning distance functions

between images, and motivates the approach with psychological studies into human

categorization and examples from the Caltech 101 data set. It shows how we can learn

from the similarity relationship within a triplet of images, how we can formulate a

distance function from similarities between patch-based features, and introduces two

variants of the approach, “focal” and “global” learning. Chapter 4 discusses the

focal version, derives the optimization used, and describes in detail how it is solved.

Examples of image browsing results are given for Caltech 101, as well as classification

results. Chapter 5 discusses the global variant, gives classification results on Caltech

101, and shows samples of retrieval results.
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Chapter 2

Features for Recognition in 2 1/2

Dimensions

2.1 Regional Descriptor Approach

Our approach to object recognition relies on the matching of feature vectors (also

referred to here as features) which characterize a region of a two-dimensional (2D) or

3D image, where by “3D image” we mean the point cloud resulting from a laser range

scan. We use the term descriptor to refer to the method or “template” for calculating

the feature vector. There are several lines of work which develop descriptors for

use in object recognition. [Schmid and Mohr, 1996a] introduced jet-based features;

[Lowe, 1999] introduced the scale- and rotation-invariant feature transform (SIFT)

descriptor for recognition and matching in two-dimensional intensity images; [Johnson

and Hebert, 1999] describes the spin image descriptor for recognizing objects by shape

in 3D range scans; [Belongie et al., 2002] describes a histogram-based descriptor for

recognizing objects in 2D images by shape, called the shape context, which is extended

to the generalized shape context in [Mori and Malik, 2003]. In this chapter we discuss

8



Chapter 2. Features for Recognition in 2 1/2 Dimensions

the 3D Shape Context descriptor, first introduced in [Frome et al., 2004], which

extends the two-dimensional shape context to three dimensions.

The spin image and shape context descriptors share a regional approach to feature

calculation; the features incorporate information within a support region of the image

centered at a chosen basis point. The locality of these regional descriptors make them

robust to clutter and occlusion, while at the same time each feature contains more

information than purely local descriptors due to their extended support. In some

recognition approaches the features are computed at particularly salient locations in

the image determined by an interest operator, such as in [Lowe, 1999]. In other ap-

proaches, including the cited works that make use of spin images and shape contexts,

the basis points at which features are computed are chosen randomly from among edge

or surface points and are not required to posses any distinguishing characteristics.

Object recognition algorithms typically work by calculating features from a query

image and comparing those features to other features previously calculated from a set

of reference images, and return a decision about which object or image from among

the reference set best matches the query image. We consider full object recognition

to be achieved when the algorithm returns the identity, location, and position of

an object occurring in a query image. Our discussion in this chapter focuses on a

relaxed version of the full recognition problem where the algorithm returns a short

list of objects, at least one of which occurs somewhere in the image. An algorithm

solving this relaxed recognition problem can be used to prune a large field of candidate

objects for a more expensive algorithm which solves the full recognition problem. In

a more complex system it could be used as an early stage in a cascade of object

recognition algorithms which are increasingly more expensive and discriminating,

similar in spirit to the cascade of classifiers made popular in the vision community

by [Viola and Jones, 2004]. A pruning step or early cascade stage is effective when it

reduces the total computation required for full recognition and does not reduce the

9



Chapter 2. Features for Recognition in 2 1/2 Dimensions

recognition performance of the system. To this end, we want a short-list recognition

algorithm which (1) minimizes the number of misses, that is, the fraction of queries

where the short list does not include any objects present in the query image, and (2)

minimizes its computational cost.

Object recognition algorithms based on features have been shown to achieve high

recognition rates in the works cited above and many others, though often in a an

easy or restricted recognition setting. We will demonstrate methods for speeding a

simple matching algorithm while maintaining high recognition accuracy in a difficult

recognition task, beginning with an approach which uses an exhaustive k-nearest-

neighbor (k-NN) search to match the query features calculated from a query image to

the reference features calculated from the set of reference images. Using the distances

calculated between query and reference features, we generate a short list of objects

which might be present in the query image.

It should be noted that the method we examine does not enforce relative geometric

constraints between the basis points in the query and reference images, and that most

feature-based recognition algorithms do use this additional information. For example,

for reference features centered at basis points p1 and p2 and query features centered

at basis points q1 and q2, if p1 is found to be a match for q1, p2 a match for q2, and

we are considering rigid objects, then it should be the case that the distance in the

image between p1 and p2 should be similar to the distance between q1 and q2. There

are many methods for using these types of constraints, [Huttenlocher and Ullman,

1990], RANSAC, and [Berg et al., 2004] to name a few. We choose not to use these

constraints in order to demonstrate the power of matching feature vectors alone. A

geometric-based pruning or verification method could follow the matching algorithms

described in this chapter.

The drawback of an exhaustive search of stored reference features is that it is

expensive, and for the method to be effective as a pruning stage, it needs to be
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Chapter 2. Features for Recognition in 2 1/2 Dimensions

fast. Many of the descriptors listed above are high-dimensional; in the works cited,

the scale-invariant feature transform (SIFT) descriptor has 160 dimensions, the spin

image has about 200, the 2D shape context has 60 (the generalized version has twice

as many for the same number of bins), and the 3D shape context has almost 2000.

The best algorithms for exact nearest-neighbor search in such high-dimensional spaces

requires time linear in the number of reference features. In addition, the number of

reference features is linear in the number of example objects the system is designed

to recognize. If we aim to build systems that can recognize hundreds or thousands

of example objects, then the system must be able to run in time sub-linear in the

number of objects.

The goal of this chapter is to present ways to maintain the recognition accuracy of

this “short-list” algorithm while reducing its computational cost. Locality-sensitive

hashing (LSH) plays a key role in a final approach that is both accurate and has

complexity sub-linear in the number of objects being recognized. In our experiments

we will be evaluating variations on the basic matching method with the 3D shape

context descriptor.

2.2 Shape Context Descriptors

We will focus on a type of descriptor called the shape context. In their original form,

shape context features characterize shape in 2D images as histograms of edge pixels

(see [Belongie et al., 2001]). In [Mori and Malik, 2003] the authors use the same

template as 2D shape contexts but capture more information about the shape by

storing aggregate edge orientation for each bin. In [Berg and Malik, 2001], the authors

developed the notion of geometric blur which is an analog to the 2D shape context

for continuous-valued images. We extended the shape context to three dimensions

in [Frome et al., 2004], where it characterizes shape by histogramming the position
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of points in a range scan. In the rest of this section, we describe the basics of the

2D and 3D shape context descriptors in more detail, and introduce the experimental

framework used in the rest of the chapter.

2.2.1 Two-dimensional Shape Contexts

To calculate a 2D shape context feature from an image, first run your favorite edge

detector on the image. Next, choose a coordinate in the edge map to be a basis

point, and imagine a radar-like template like the one in Figure 2.1 laid down over

the image, centered at that point. The lines of this pattern divide the image into

regions, each of which corresponds to one dimension of the feature vector. The value

for the dimension is calculated as the number of edge pixels which fall into the region.

This feature vector can be thought of as a histogram which summarizes the spatial

distribution of edges in the image relative to the chosen basis point. Each region in

the template corresponds to one bin in the histogram, and we use the term bin to refer

to the region in the image as well as the dimension in the feature vector. Note that

if the bins were small enough to each contain one pixel, then the histogram would be

an exact description of the shape in the support region.

This template has a few advantageous properties. The bins farther from the center

summarize a larger area of the image than those close to the center. The gives a foveal

effect; the feature more accurately captures and weights more heavily information

toward the center. To accentuate this property of shape context descriptors, we use

equally spaced log-radius divisions. This causes bins to get “fuzzy” more quickly as

you move from the center of the descriptor.

When comparing two shape context features, even if the shapes from which they

are calculated are very similar, the following must also be similar in order to register

the two features as a good match:

12
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• orientation of the descriptor relative to the object

• scale of the object

To account for different scales, we can search over scale space, e.g., by calculating a

Gaussian pyramid for our query image, calculating query features in each of the down-

and up-scaled images, and finding the best match at each scale. We could sidestep

the issue of orientation by assuming that objects are in a canonical orientation in the

images, and orient the template the same way for all basis points. Or, to make it

robust to variation, we could orient the template to the edge gradient at the basis

point or include in our training set images at different orientations.

2.2.2 Three-dimensional Shape Contexts

In order to apply the same idea to range images, we extended the 2D shape con-

text template to three dimensions. The support region for a 3D shape context is

a sphere centered on the basis point p and its north pole oriented with the surface

normal estimate N for p (Figure 2.1). The support region is divided into bins by

equally spaced boundaries in the azimuth and elevation dimensions and logarithmi-

cally spaced boundaries along the radial dimension. We denote the J + 1 radial

divisions by R = {R0 . . . RJ}, the K + 1 elevation divisions by Θ = {Θ0 . . . ΘK}, and

the L+1 azimuth divisions by Φ = {Φ0 . . . ΦL}. Each bin corresponds to one element

in the J ×K × L feature vector. The first radius division R0 is the minimum radius

rmin, and RJ is the maximum radius rmax. The radius boundaries are calculated as

Rj = exp

{
ln(rmin) +

j

J
ln

(
rmax

rmin

)}
. (2.1)

Sampling logarithmically makes the descriptor more robust to distortions in shape

with distance from the basis point. Bins closer to the center are smaller in all three
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spherical dimensions, so we use a minimum radius (rmin > 0) to avoid being overly

sensitive to small differences in shape very close to the center. The Θ and Φ divisions

are evenly spaced along the 180◦ and 360◦ elevation and azimuth ranges.

Bin(j, k, l) accumulates a weighted count w(pi) for each point pi whose spherical

coordinates relative to p fall within the radius interval [Rj, Rj+1), azimuth interval

[Φk, Φk+1) and elevation interval [Θl, Θl+1). The contribution to the bin count for

point pi is given by

w(pi) =
1

ρi
3
√

V (j, k, l)
(2.2)

where V (j, k, l) is the volume of the bin and ρi is the local point density around

the bin. Normalizing by the bin volume compensates for the large variation in bin

sizes with radius and elevation. We found empirically that using the cube root of the

volume retains significant discriminative power while leaving the descriptor robust to

noise which causes points to cross over bin boundaries. The local point density ρi is

estimated as the count of points in a sphere of radius δ around pi. This normalization

accounts for variations in sampling density due to the angle of the surface or distance

to the scanner.

We have a degree of freedom in the azimuth direction that we must remove in order

to compare shape contexts calculated in different coordinate systems. To account for

this, we choose some direction to be Φ0 in an initial shape context, and then rotate

the shape context about its north pole into L positions, such that each Φl division

is located at the original 0◦ position in one of the rotations. For descriptor data sets

derived from our reference scans, L rotations for each basis point are included. Since

we are rotating the reference features, we do not need to rotate the query features.

We could just as easily rotate the query features instead, but it should become clear

why we rotate the reference features when we discuss our use of LSH later in the
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(a) (b)

Figure 2.1: Example templates for the shape contexts: (a) for 2D, (b) for 3D. The number
of divisions shown are not the same as we used in our experiments.

chapter.

In all experiments in this chapter, we use the same set of parameters in computing

the 3D shape context features. The maximum radius of the spherical support region

is 2.5 meters, and the minimum is 0.1 m, meaning that points closer than 0.1 m to

the basis point are not counted in the descriptor. The volume is divided into fifteen

equal parts in the radial dimension, eleven along the elevation, and twelve along the

azimuth, giving the final features 1,980 dimensions. These values were chosen after a

small amount of experimentation with a similar data set using different models.

Spin images, another descriptor used for 3D object recognition presented in [John-

son and Hebert, 1999], is very similar to the 3D shape context. It differs primarily

in the shape of its support volume and its approach to the azimuth degree of free-

dom in the orientation: the spin image sums the counts over changes in azimuth. In

Section 2.9, we directly compare the 3D shape context to the spin image descriptor.
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Figure 2.2: The fifty-six car models used in our experiments.
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(a) (b) (c)

Figure 2.3: The top row shows scans from the 1962 Ferrari 250 model, and the bottom
scans are from the Dodge Viper. The scans in column (a) are the query scans at 30
degrees elevation and 15 degrees azimuth with σ = 5 cm noise, and those in (b) are from
the same angle but with σ = 10 cm noise. With 10 cm noise, it is difficult to differentiate
the vehicles by looking at the 2D images of the point clouds. Column (c) shows the
reference scans closest in viewing direction to the query scans (45 degrees azimuth and
45 degrees elevation).

2.2.3 Experiments with Three-dimensional Shape Contexts

In this subsection, we introduce the data set that we use throughout the chapter

to evaluate recognition with 3D shape contexts. The range scans from which we

calculate the features are simulated from a set of fifty-six 3D car models, and are

separated into reference scans (our training set) and query scans. The full models

are shown in Figure 2.2. The reference scans were generated from a viewpoint at

45 degrees elevation (measured from the horizon) and from four different azimuth

positions, spaced 90 degrees apart around the car, starting from an angle halfway

between the front and side views of the vehicle. The query scans were generated from

a viewpoint at 30 degrees elevation and at one azimuth position 15 degrees different

from the nearest reference scan. We also added Gaussian noise to the query scans

along the viewing direction, with either a 5 cm or 10 cm standard deviation. This

amount of noise is comparable to or greater than the noise one could expect from a

quality scanner. An example of the noisy query scans next to the nearest reference

scan for two of the car models is shown in Figure 2.3.

From the reference scans, we calculated normals at the points, and calculated 3D
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shape context features at basis points sampled uniformly over the surface, an average

of 373 features per scan. For each noisy query scan, we calculated the normals, then

calculated features at 300 randomly chosen basis points. Now we can describe our

first experiment.

2.3 Basic Matching Experiment

Experiment 1

Given a query scan, we want to return the best match from among the reference

scans. Each of the 300 query features from the query scan casts a “vote” for one

of the fifty-six car models, and the best match to the query scan as a whole is the

model which received the most votes. We determine a query feature’s vote by finding

its nearest neighbor from among the reference features, and awarding the vote to the

model that produced that reference feature. We could also give the n best matches

by ordering the models by the number of votes received, and returning the top n

from that list. We run this procedure for all fifty-six query scans and calculate the

recognition rate as the percentage of the fifty-six query scans which were correctly

identified.

The results we get are shown as confusion matrices in Figure 2.4 for the 5 cm

and 10 cm queries. Each row corresponds to the results for one query scan, and each

column to one car model (four reference scans). Each square is a color corresponding

to the number of votes that the query gave for the model. If every query feature

voted for the correct model, then the matrix would have a dark red diagonal and

otherwise be dark blue. Perfect recognition is achieved when the diagonal has the

largest number from each row, which is the case here for the 5 cm noise data set.

In the 10 cm experiment, we got fifty-two out of fifty-six queries correct, giving a
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Figure 2.4: Confusion matrices for experiment 1 for (a) 5 cm and (b) 10 cm noise queries.
Each row corresponds to one query and each column to one reference model. A square
in the matrix represents the percentage of votes for the column’s reference models by the
row’s query, where each row sums to 100%. The scale at the far right maps the colors
to numbers. The strong diagonal in (a) means that most of the votes for each 5 cm
noise query went to the correct corresponding model, giving us 100% recognition in the
top choice. There was more confusion in the 10 cm query, with fifty-two of the fifty-six
models correctly identified in the top choice, and 100% recognition within the top four
choices.
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recognition rate of 92.86%. The correct model is always in the top four matches, so

if we are want a short list of depth four or greater, then our recognition is 100%.

2.3.1 Complexity and Computation Time

Take

• m to be the number of reference images (assume one object per reference image),

• nr the number of features calculated per reference image,

• nq the number of features calculated per query image,

• d the dimensionality of the features,

• p the number of pixels or points in the query scene, and

• s the number of scales over which we need to search.

Let us first look at the cost of computing each query feature. For the 2D shape

context, we need to compute edge features at all the pixels that may lie in one of

the descriptors’ support, and then count the number of edge pixels in each bin. This

gives us a preprocessing cost of O(p) and a computation cost of O(p) for each query

feature, for a total of O(p) + O(p · nq) for the query image as a whole.

For the 3D shape context, we do not need to preprocess all the points in the scan,

just the neighborhood around the basis point to get the normal at that point. We

still need to look through the points in the scene to calculate the bin contents, giving

a cost of O(p · nq).

Once we have the query features, we need to search through the m · nr reference

features. If we are performing an exact nearest-neighbor search as in experiment 1,

we need to calculate the distance between each of those reference features and each
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of the query features. The cost for that is O(m · nr · nq · d). If we are working with

2D shape contexts, then we may also have to search over scale, increasing the cost to

O(m · nr · nq · d · s).

For the 3D shape contexts, this gives us a total cost of O(p ·nq)+O(m ·nr ·nq ·d).

In experiment 1, nq = 300, m = 224, nr = 4476 (average of 373 features per reference

scan times the twelve rotations through the azimuth for each), and d = 1980 (11×12×

15), so the second term sums to 5.96× 1011 pairs of floating point numbers we need

to examine in our search. On a 1.3 GHz 64-bit Itanium 2 processor, the comparison

of 300 query features to the full database of reference features takes an average of 3.3

hours, using some optimization and disk blocking. The high recognition rate we have

seen comes at a high computational cost.

The rest of this chapter focuses on reducing the cost of computing these matches,

first by reducing nq using the representative descriptor method and then by reducing

nr using LSH. The voting results for nq = 300 using exact nearest neighbor provides

a baseline for performance, to which we will compare our results.

2.4 Reducing Running Time with Representative De-

scriptors

If we densely sample features from the reference scans (i.e., choose a large nr), then

we can sparsely sample basis points at which to calculate features from query scans.

This is the case for a few reasons.

• Because the features are fuzzy, they are robust to small changes due to noise,

clutter, and shift in the center point location. This makes it possible to match

a feature from a reference object and a feature from a query scene even if they

are centered at slightly different locations on the object or are oriented slightly
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differently. This also affects how densely we need to sample the reference object.

• Since regional descriptors describe a large part of the scene in fuzzy terms and

a small part specifically, few are needed to describe a query scene well.

• Finally, these features can be very discriminative. Even with the data set we

use below where we are distinguishing between several very similar objects, the

features are descriptive enough that only a few are enough to tell apart very

similar shapes.

We make use of these properties via a method originally introduced in in [Mori et

al., 2001] as representative shape contexts, which speeds search of 2D shape contexts.

In this and previous work, we refer to the method as the representative descriptor

method, since it also applies to the use of other descriptors, such as spin images. Each

of the few features calculated from the query scene is referred to as a representative

descriptor or RD. What we refer to as the representative descriptor method really

involves four aspects:

1. Using a reduced number of query points as centers for query features

2. A method for choosing which points to use as representative descriptors

3. A method for calculating a score between an RD and a reference object

4. A method for aggregating the scores for the RDs to give one score for the match

between the query scene and the reference object

In our experiments, we try a range of values for the number of RDs and find

that for simple matching tasks (e.g., low-noise queries), few are needed to achieve

near-perfect performance. As the matching task becomes more difficult, the number

required to get a good recognition rate increases.
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We choose the basis points for the RDs uniformly at random from the 300 basis

points from the query scans. This is probably the least sophisticated way to make the

choice, and we do so to provide a baseline. Instead, we could use an interest operator

such as those used with SIFT descriptors.

We take the score between one RD and a particular car model to be the smallest

distance between the RD and a feature from one of the four reference scans for the

model. To calculate the score between the query scene as a whole and the model, we

sum the individual RD scores for that model. The model with the smallest summation

is determined to be the best match. We have found this summation to be superior

to the “voting” method where we take a maximum over the scores; the individual

distances give a notion of the quality of the match, and summing makes use of that

information, whereas taking a maximum discards it.

2.4.1 Experiment and Results

Experiment 2

Calculate nq features from the query scan, which will be our RDs. Find the nearest

neighbors to each of the RDs from each of the models, and calculate the scores.

The model with the smallest score is the best match. Repeat for all queries and

calculate the recognition rate as the percentage of query models that were correctly

matched. Repeat the experiment several times with different randomly chosen sets

of nq features, and report the average recognition rate across these runs. Perform the

experiment for different values of nq.

The graphs in Figure 2.5 show the results. Note that the number of comparisons

increases linearly with the number of RDs. For example, if the voting method with

300 query features required n comparisons, then using thirty RDs requires n × 30
300
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comparisons. With the 5 cm queries, we achieve 100% recognition with thirty descrip-

tors if we consider the top seven matches. If we use forty RDs, we achieve 99.9% in

the top two matches and 100% in the top three. The performance on the 10 cm noise

query degrades quickly with fewer RDs. Because of the noise, fewer of the original

300 query points are useful in matching, so we randomly choose more RDs in the

hopes that we will get more of the distinctive query features. With the 10 cm queries,

we achieve 97.8% mean recognition in the top seven results using eighty RDs. The

mean recognition within the top seven with 160 RDs is 98%.

When we consider only our top match, our performance has dropped significantly

with both query sets. However, we are primarily interested in getting a short list

of candidates, and for the 5 cm queries we can reduce the number of computations

required by 87% to 90% (depending on the length of our short list) by using the RD

method over voting. And for almost all choices of the forty RDs, we find the correct

match in the top five returned. With the 10 cm set, we can reduce our computation by

47% to 73%. Also keep in mind that these are recognition rates averaged across 100

different random selections of the RDs; for many choices of the RDs we are achieving

perfect recognition.

2.5 Reducing Search Space with a Locality-Sensitive

Hash

When comparing a query feature to the reference features, we could save computation

by computing distances only to the reference features that are nearby. Call this the

“1, 2, 3, many” philosophy: the few close ones play a large role in the recognition;

the rest of the features have little meaning for the query. One way to achieve this

is to use an algorithm for approximate k-NN search that returns a set of candidates
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Figure 2.5: Results from experiment 2, shown as the number of RDs vs. mean recognition
rate for the (a) 5 cm noise and (b) 10 cm noise queries. While our performance has
dropped when considering only the top match, our recognition within a short list of
matches is still very good, while we are performing a fraction of the feature comparisons.
Note that the number of feature comparisons increases linearly with the number of RDs.

that probably lie close to the query feature. The method we will look at is Locality

Sensitive Hashing (LSH), first introduced in [Indyk and Motwani, 1998].

We use a version of the simple LSH algorithm described in [Gionis et al., 1999].

To create a hash, we first find the range of the data in each of the dimensions and

sum them to get the total range. Then choose k values from that range. Each of

those values now defines a cut in one of the dimensions, which can be visualized as

a hyperplane parallel to that dimension’s axis. These planes divide the feature space

into hypercubes, and two features in the same hypercube hash to the same bucket in

the table. We represent each hypercube by an array of integers, and refer to this array

as the first-level hash or locality-sensitive hash. There are an exponential number of

these hashes, so we use a standard second-level hash function on integer arrays to

translate each to a single integer. This is the number of the bucket in the table, also

called the second-level hash value. To decrease the probability that we will miss close

neighbors, we create l tables, independently generating the k cuts in each. In most of
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our experiments in this section, we will use twenty tables. We will use the notation

b = hi(·) to refer to the hash function for the ith table which takes a feature vector

and returns a second-level hash, or bucket, number. Ti(bi) will refer to the set of

identifiers stored in bucket bi in the ith table.

To populate the ith hash table, we calculate bi = hi(fj) for each feature fj in

the set of features calculated from the reference scans, and store the unique integer

identifier j for the feature fj in bucket bi. Given a query feature q, we find matches in

two stages. First, we retrieve the set of identifiers which are the union of the matches

from the l tables: F =
⋃l

i=1 Ti(hi(q)). Second, we retrieve from a database on disk

the feature vectors for the identifiers, and calculate the distances dist(q, fj) for all

features fj where j ∈ F.

The first part is the LSH query overhead, and in our experiments this takes 0.01

to 0.03 second to retrieve and sort all the identifiers from twenty tables. This is small

compared to the time required in the second step, which ranges from an average

of 1.12 to 2.96 seconds per query feature, depending upon the number of matches

returned. Because the overhead for LSH is negligible compared to the time to do

the feature comparisons, we will compare the “speed” of our queries across methods

using the number of feature comparisons performed. This avoids anomalies common

in timing numbers due to network congestion, disk speed, caching, and interference

from other processes.

As we mentioned earlier, we are storing in the hash tables the azimuth rotations

of the reference features instead of performing the rotations on the query features. If

LSH returns only the features that are most similar to a query q, it will effectively

select for us the rotations to which we should compare, which saves us a linear search

over rotations.
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Figure 2.6: Results for experiment 3 using the voting method with 300 query features.
The graph shows the recognition rate versus the number of hash divisions (k) for 20 and
100 tables and for short lists of length one, three, and five (the legend applies to both
graphs). The left and right graphs show results for the 5 cm and 10 cm noise queries,
respectively. In general, as the number of hash divisions increases for a given number of
tables, the performance degrades, and if the number of tables is increased, for a given
value of k, performance increases. To see how the same factors affect the number of
comparisons performed, see Figure 2.7. To visualize the tradeoff between the number of
comparisons and recognition rate, see section 2.8.

2.5.1 LSH with Voting Method

We first examine the performance of LSH using the voting method from subsection

2.2.3 to provide a comparison with the strong results achieved using exact nearest

neighbor.

Experiment 3

Given the number of hash divisions k and the number of LSH tables l, perform

LSH search with 300 features per query, and tabulate the best matches using the

voting scheme, as we did in experiment 1. Perform for 5 cm and 10 cm noise queries.

We created 100 tables, and ran experiments using all 100 tables as well as subsets

of 20, 40, 60, and 80 tables. In Figure 2.6, we show how the recognition rate changes

27



Chapter 2. Features for Recognition in 2 1/2 Dimensions

400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
x 10

6

k

N
um

be
r 

of
 c

om
pa

ris
on

s 
pe

r 
qu

er
y 

sc
en

e

20 tables
40 tables
60 tables
80 tables
100 tables

200 400 600 800 1000
0

0.5

1

1.5

2
x 10

7

k

N
um

be
r 

of
 c

om
pa

ris
on

s 
pe

r 
qu

er
y 

sc
en

e

20 tables
40 tables
60 tables
80 tables
100 tables

5 cm noise 10 cm noise

Figure 2.7: Results for experiment 3, showing the mean number of comparisons per query
scene vs. the number of hash divisions (k), using 20, 40, 60, 80, or 100 tables. The left
and right graphs show results for the 5 cm noise and 10 cm noise queries, respectively. The
scale of the y-axis in the 10 cm graph is larger than in the 5 cm graph to accommodate the
k = 300 results, though the number of comparisons required for each k and l combination
is fewer with the 10 cm queries.

with variations in the number of hash divisions for the 5 cm and 10 cm queries.

We show results for experiments with 20 and 100 tables, and show the recognition

rate within the top choice, top three choices, and top five choices. In the 5 cm

experiment, we maintain 100% recognition with up to 600 hash divisions when using

twenty tables, and up to 800 hash divisions if we use 100 tables and consider a short

list of length five. Notice that when using twenty tables, recognition degrades quickly

as k increases, whereas recognition is better maintained when using 100 tables.

In the 10 cm experiments, we only achieve 100% recognition looking at the top

five and using 300 or 400 hash divisions, with recognition declining quickly for larger

values of k. Also notice that recognition falls with increasing k more quickly in the

10 cm experiments. As the queries become more difficult, it is less likely we will

randomly generate a table with many divisions that performs well for many of our

query features.

The recognition rate is only one measure of the performance. In Figure 2.7, we
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Figure 2.8: Results for experiment 3, where we vary the value of k along each line to show
the tradeoff between the number of comparisons performed and the mean recognition rate.
The ideal point is in the upper-left corner where the number of comparisons is low and
recognition is perfect. Exact nearest neighbor is off the graph in the upper-right corner,
and would lie at (3.0× 108, 1) if it were plotted.

show the mean number of comparisons per query scene vs. the number of hash

divisions. Here we show results for 20, 40, 60, 80, and 100 tables. In both the 5 cm

and 10 cm queries, we see a decline in the number of comparisons with increasing k,

though the decline quickly becomes asymptotic. We also see a linear increase in the

number of computations with a linear increase in the number of tables used.

For the 10 cm query, we tried using 300 hash divisions, but for more than forty

tables, the queries were computationally too expensive. The range on the y-axis is

larger in the 10 cm graph than in the 5 cm graph due to the jump at k = 300, but

the number of computations performed for all other combinations of k and l are fewer

in the 10 cm experiments. This seems to indicate that in general, the 10 cm query

features lie farther away from the reference features in feature space than the 5 cm

query features.

We see that as k decreases or the number of tables increases, the recognition im-

proves, but the number of comparisons increases. To evaluate the trade off between

speed and accuracy, we show in Figure 2.8 the number of comparisons vs. the recogni-
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tion rate, varying k along each line. The ideal point would be in the upper-left corner,

where the recognition rate is high and the number of comparisons is low. Exact near-

est neighbor gives us a point at (3.0 × 108, 1), off the graph in the far upper-right

corner. In the 5 cm graph, the leftmost point still at 100% recognition is from the

experiment with 600 divisions and twenty tables. We can see that there is little to

gain in increasing the number of divisions or the number of tables. The rightmost

points in the 10 cm graph correspond to the experiments with 300 divisions, showing

that the high recognition comes at a high computational cost. The points closest to

the upper-left corner are from experiments using twenty tables and either 400 or 500

hash divisions. Unless we require perfect recognition for all queries, it makes little

sense to use fewer than 400 divisions or more than twenty tables.

Lastly, while we are still achieving 100% mean recognition with k = 600 on the

5 cm queries using the voting method, the confusion matrix in figure 2.9 shows that

we are not as confident about the matches relative to the confusion matrix for exact

nearest neighbor (see Figure 2.4). The RD method depends upon having several

distinguishing query features, so if we combine LSH with RD, we expect a decrease in

the number of comparisons but also a further degradation in recognition performance.

2.5.2 Using RDs with LSH

Experiment 4

Perform LSH search with varying numbers of RDs, values of k, and numbers of

tables. Using the model labels returned with each feature, tabulate scores as we did

in experiment 2, with one exception: it is possible that LSH does not return any

matches corresponding to a particular model, and in that case, we substitute for the

RD model score a number larger than any of the distances as a penalty.
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Figure 2.9: Confusion matrix showing the results for the 5 cm query for k = 600 from
experiment 3. While we achieved 100% recognition with the top choice, comparing this
matrix to the one from experiment 1 using exact nearest neighbor (see Figure 2.4) shows
that we are less certain of our choices.
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Figure 2.10: Results for experiment 4, showing number of comparisons vs. recognition
rate with varying numbers of RDs along each line. We ran the experiment for different
values of k and different numbers of tables. In the left graph we show the recognition
within the top five results for the 5 cm queries, and in the right graph we show recognition
within the top seven results for the 10 cm queries.

The tradeoff for experiment 4 between number of comparisons and mean recog-

nition rate is shown in Figure 2.10. Along each line we varied the number of RDs,

and show results for combinations of 400, 600, 800, and 1000 divisions and 20 and

100 tables. For the 5 cm experiment, we show recognition in a short list of five, and

show results within the top seven for the 10 cm experiment. The mean recognition

in the 5 cm experiment using 400 divisions and twenty tables reaches 80%, which is

much worse than before. With k = 600 and twenty tables, which demonstrated a

good tradeoff when we using the voting method with 300 query features, only a 45%

mean recognition rate is achieved. We do see however, that increasing the number of

tables has helped us; using k = 400 with 100 tables yields a mean recognition rate

of 94%. We see similar degradation with the 10 cm experiments, achieving only 83%

mean recognition withing the top seven results using 400 divisions and 100 tables.

Recognition performance is decreased when using LSH because LSH misses many

of the nearest neighbors to the query points, resulting in a heavy penalty. We can

improve performance by being more “forgiving” and including in the RD sum only
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the closest x percent of the RD model matches, hopefully discarding the large values

that arise because LSH unluckily misses good matches. If we are using twenty RDs

and we are summing the top 50%, then for a given model, we would search for the

model’s closest reference features to each of the twenty RDs, and include in the sum

only the ten of those which are closest.

Experiment 5

We perform LSH search with varying numbers of RDs, values of k, and numbers

of tables. We tally the RD scores by including in the sum the distances from only

the best 50% of the RD model matches.
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Figure 2.11: Results from experiment 5, where we use the RD method but sum only the
top half of the RD scores. The graphs show the number of comparisons vs. the mean
recognition rate, with the number of RDs varying along each line. In the left graph we
show the recognition within the top 5 results for the 5 cm queries, and in the right graph
we show recognition with the top 7 results for the 10 cm queries. Note the logarithmic
scale along the x-axis.

The results for experiment 5 in Figure 2.11 show that this method improved

performance significantly within the top five results for 5 cm and top seven for 10 cm.

In the 5 cm experiments, our sweet spot appears to be forty RDs, 400 divisions, and
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twenty tables with a mean recognition rate of 99.8% within the top five matches (and

95.3% with the top match; 99.4% within the top three, not shown). In the 10 cm

experiments we reach 96% mean recognition with 160 RDs, 400 divisions, and 100

tables within the top seven matches (and 93.6% in the top five, not shown). We reach

90% mean recognition with 160 RDs, 400 divisions, and twenty tables within the top

seven matches, which requires less than one-sixth the number of comparisons as with

the same settings except with 100 tables.

The key to further improving performance lies primarily with getting better results

from our approximate nearest-neighbor algorithm. In the next section, we examine

the quality of the LSH results relative to exact nearest neighbor, and use this to

motivate the need for algorithms that provide better nearest-neighbor performance.

2.6 Nearest-Neighbor Performance of LSH

In this section, we look at the performance of LSH as an approximate nearest-neighbor

algorithm, independent of any recognition procedure. In most work on approximate

nearest-neighbor algorithms, the performance is measured using the effective distance

error or a similar measure [Liu et al., 2004; Gionis et al., 1999; Arya et al., 1998],

defined for the nth nearest neighbor as

E =
1

Q

∑
q∈Q

(
dalg,n

d∗n
− 1

)
, (2.3)

where Q is the set of query features, d∗n is the distance from the query q to the nth true

nearest neighbor, and dalg,n is the distance from q to the nth best feature returned

from the approximate algorithm. The effective distance error with increasing rank

depth n is shown for the 5 cm and 10 cm queries in the first row of Figure 2.12. Each

line of the graphs represents one LSH query with a different number of hash divisions
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(k).

The effective distance error does not capture whether an approximate nearest-

neighbor algorithm is returning the correct nearest neighbors, only how close it gets

to them. In a recognition setting, the identity of the features returned is of primary

interest, so we suggest a better measure would be error by rank. If we want the n

nearest neighbors, the error by rank is the percentage of the true n nearest neighbors

that were missing in the list of n returned by the approximate algorithm. The graphs

in the second row of Figure 2.12 show the error by rank with increasing n for the

5 cm and 10 cm queries.

In the first column of Figure 2.12 we see that for the 5 cm query, the effective

distance error reaches a maximum at 40% for 800, 900, and 1000 hash divisions, but

the same LSH results show almost 100% error by rank, meaning that almost never

are any of the correct nearest neighbors returned. The second column of the figure

shows results for the 10 cm queries. Notice that, relative to the 5 cm queries, the

ceiling on the effective distance error is actually lower; the 900 and 1000 hash division

LSH queries level off around 0.32, and all queries except LSH with 400 and 500 hash

divisions are actually performing better by this measure than in the 5 cm query.

However, we know from our recognition results that this should not be the case, that

recognition results for the 10 cm queries were worse than the 5 cm queries for the

same LSH settings. Indeed, we can see in the error-by-rank graph that the 10 cm

queries are performing much worse than the 5 cm queries for all LSH settings.

As an aside, the lines on these graphs are monotonically increasing, which does not

have to be the case in general. If an approximate nearest-neighbor algorithm misses

the first nearest neighbor, but then correctly finds every nearest neighbor of deeper

rank, than the error by rank would decrease with increasing rank depth, from 100%

to 50% to 33%, etc. It is also true that the effective distance error need not increase

with increasing rank depth. It is a feature of LSH that we get fewer correct results as
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we look further from the query, which means that we cannot expect to increase our

recognition performance by considering a greater number of nearest neighbors.

In Figure 2.13, we show the tradeoff for different numbers of tables and hash

divisions (l and k). Each line corresponds to a fixed number of divisions, and we

vary the number of tables along the line, with the largest number of tables at the

rightmost point on each line. As expected, with a greater number of tables we see

better performance but we also perform more comparisons.

In general, recognition performance should increase as error by rank decreases,

though to what degree will depend upon the recognition algorithm and data set.

Next we introduce a variant of LSH which will find the same or more of the near-

est neighbors as LSH, but at a computational cost between LSH and exact nearest

neighbor.

2.7 Associative LSH

In order to improve the error-by-rank and recognition performance, we introduce

a variation which we will refer to as associative LSH. This algorithm begins with

the results returned from LSH, and then uses the LSH tables to further explore the

neighborhood around the query feature.

Consider the situation in Figure 2.14 where we have a query q and the closest point

to it, p∗, where for all tables i, hi(q) 6= hi(p
∗). It may be the case that there exists a

point p0 such that for two different tables i and j, hi(q) = hi(p0) and hj(p0) = hj(p
∗).

This suggests that we could use p0 to find p∗.

First, a word about the data structures necessary. We will need the l LSH hash

tables. To speed the algorithm we will also use precomputed l reverse hashes bi =

Ri(j), which take an integer feature identifier and return the bucket in the ith table

in which it is stored. Note that this is the reverse of the Ti(bi) function. Note that
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these reverse hashes are not necessary since we could retrieve the feature fj from disk

and calculate hi(fi).

Results will be written to a structureR that for each match found so far stores the

integer feature identifier j and the distance to the query, dist(q, fj), sorted by distance.

This is the same structure we used for results when performing LSH queries. We will

keep lists of the numbers of the buckets we have visited, one for each of the tables.

Call the ith of these lists Bi. We will also have a set of integer identifiers A which is

initially empty.

The algorithm takes as input a rank depth r and a query feature q and outputs

the results structure R. Notice that the first three steps below are identical to the

original LSH algorithm as described earlier, with the exception of the use of Bi for

record-keeping.

1. For all i, calculate bi = hi(q). Add bi to Bi so that we do not visit the bucket bi

in the ith table again.

2. Calculate F =
⋃l

i=1 Ti(bi).

3. For all j ∈ F, calculate dist(q, fj) and add to the results list R.

4. Find a feature identifier that is within the top r results in R and that is not in

the set A, call it a. If such a feature does not exist, then terminate.

5. Add a to the set A. This, with the check above, ensures that we do not iterate

using this feature again.

6. For all i, find bi = Ri(a), the bucket in which a is stored in the ith table.

7. For all i where bi 6∈ Bi (i.e., we have not already looked in bucket bi in table i),

retrieve F =
⋃

i Ti(bi), the identifiers in the buckets in which a resides.
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8. For all i, add bi to Bi.

9. For each identifier j ∈ F that is not already in R, calculate dist(q, fj) and store

the result in R.

10. Go to step 4.

This algorithm requires only one parameter, r, that LSH does not require. In our

experiments, we did not tune r, setting it only to two. Setting it higher would result

in more comparisons and perhaps better results. The data structures for Ri(·) are l

arrays, each with an element for each reference feature stored in the LSH tables. This

roughly doubles the amount of memory required to hold the LSH tables, though it

does not need to be stored on disk as it can quickly be generated when the tables are

loaded from disk. Note that any variation on LSH that randomly generates the hash

divisions can be used with this method as well.

The running time of the algorithm is dependent upon the number of associative

iterations performed and the number of features retrieved on each iteration. The

additional bookkeeping required for associative LSH over regular LSH adds a negli-

gible amount of overhead. Step 4 requires a O(r) search through the results list and

comparison with the hashed set A, but r will be set to a small constant (two in our

experiments). Steps 8 and 9 require additional bookkeeping using the structure Bi,

but the complexity in both cases is O(l) if we make Bi a hashed set.

In Figure 2.15 we show the tradeoff between the number of comparisons performed

and the error by rank for our associative LSH queries. We see a drop in the error by

rank over regular LSH, especially when comparing results using the same number of

hash divisions, but we see a corresponding increase in the number of comparisons.

In Figure 2.15 we show the tradeoff between comparisons and error by rank us-

ing associative LSH. Comparing to the results for LSH in figure 2.13 we see that we
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achieve a better tradeoff. For example, in the 5 cm experiments using 400 divisions,

associative LSH achieves a slightly lower error and about the same number of com-

parisons using twenty tables as LSH does using eighty tables. Similarly, using 600

divisions, associative LSH achieves 65% error in 5 × 106 comparisons using twenty

tables, whereas LSH reaches only 72% error in the same number of comparisons using

100 tables. From these results we can see that our search using associative LSH is

more focused; we are finding a comparable number of nearest neighbors with asso-

ciative LSH but with fewer comparisons. In the 10 cm experiments, this effect is

more dramatic as associative LSH is able to achieve much lower error rates with a

comparable number of comparisons.

Another important difference is that associative LSH is much less sensitive to the

choices of k and the number of tables. With LSH, error changes dramatically with a

change in the number of tables, and we see a quick degradation with an increase in

the number of divisions.

2.8 Summary of 3D Shape Context Experiments

In this chapter, we have performed an analysis of methods for performing object

recognition on a particular data set, with a focus on the tradeoff between the speed

of computation and the recognition performance of the methods. We made use of

LSH for improving the speed of our queries, and demonstrated ways in which it could

be made more robust.

In Figure 2.16 we display as a scatterplot results from the different methods dis-

cussed earlier in the chapter on the 5 cm query data set. For each method, we show

points for all the variations of number of RDs, number of hash divisions, and number

of tables. In general, results for associative LSH using voting lie between LSH and

exact nearest neighbor using voting, with the same true for all three methods using
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RDs. Looking at the left graph showing results using the top choice, the best asso-

ciative LSH results using RDs is close both in recognition and speed to LSH results

using voting. If we can accept finding the match in the top three results returned, all

the methods presented can get us to 100% recognition, with LSH with RDs achiev-

ing the lowest number of comparisons by a small margin over LSH with voting and

associative LSH with RDs. We note again that the range of k using in the associative

LSH experiments is much larger than in the LSH experiments, showing that we can

achieve similar performance with less precise tuning of the parameters.

In Figure 2.17 we give a scatterplot of the results for the various 10 cm noise

experiments. Again we see that the associative LSH results lie between LSH and

exact nearest neighbor, though as we see in the first plot, LSH using 300 divisions

and the voting method shows a slightly higher recognition rate and lower comparisons

than associative LSH. In general, however, associative LSH yields a higher recognition

rate than LSH, though by performing more comparisons. We also note that when

using the voting method, the results for associative LSH are more tightly packed than

the LSH results, despite using a wider range of parameters for associative LSH in the

experiments. This indicates that associative LSH can yield similar results on this

data set with less tuning of the parameters.

In conclusion, we have found that LSH is an effective method for speeding nearest-

neighbor search in a difficult object recognition task, but at the cost of some recog-

nition performance. We have touched upon the connection between the reduction

in recognition performance and the performance of LSH as a nearest-neighbor algo-

rithm, and have presented a variation, associative LSH, which gives an improvement in

nearest-neighbor performance on our data set. This increase in nearest-neighbor per-

formance translates only roughly into recognition performance, showing small gains

in recognition performance on this data set for an additional computational cost.
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2.9 Comparative Experiments

In this section we summarize experimentation from [Frome et al., 2004], in which we

systematically compared the performance of the 3D shape context, harmonic shape

context, and spin images in recognizing similar objects in scenes with noise or clutter.

2.9.1 Harmonic Shape Context

To compute harmonic shape contexts, we begin with the histogram described above

for 3D shape contexts, but we use the bin values as samples to calculate a spherical

harmonic transformation for the shells and discard the original histogram. The de-

scriptor is a vector of the amplitudes of the transformation, which are rotationally

invariant in the azimuth direction, thus removing the degree of freedom.

Any real function f(θ, φ) can be expressed as a sum of complex spherical harmonic

basis functions Y m
l .

f(θ, φ) =
∞∑
l=0

m=l∑
m=−l

Am
l Y m

l (θ, φ) (2.4)

A key property of this harmonic transformation is that a rotation in the azimuthal

direction results in a phase shift in the frequency domain, and hence amplitudes of

the harmonic coefficients ‖Am
l ‖ are invariant to rotations in the azimuth direction.

We translate a 3D shape context into a harmonic shape context by defining a function

fj(θ, φ) based on the bins of the 3D shape context in a single spherical shell Rj ≤

R < Rj+1 as:

fj(θ, φ) = SC(j, k, l), θk < θ ≤ θk+1, φl < φ ≤ φl+1. (2.5)

As in [Kazhdan et al., 2003], we choose a bandwidth b and store only b lowest-

frequency components of the harmonic representation in our descriptor, which is
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given by HSC(l,m, k) = ‖Am
l,k‖, l, m = 0 . . . b, r = 0 . . . K. For any real function,

‖Am
l ‖ = ‖A−m

l ‖, so we drop the coefficients Am
l for m < 0. The dimensionality of the

resulting harmonic shape context is K · b(b + 1)/2. Note that the number of azimuth

and elevation divisions do not affect the dimensionality of the descriptor.

Harmonic shape contexts are related to the rotation-invariant shape descriptors

SH(f) described in [Kazhdan et al., 2003]. One difference between those and the

harmonic shape contexts is that one SH(f) descriptor is used to describe the global

shape of a single object. Also, the shape descriptor SH(f) is a vector of length b whose

components are the energies of the function f in the b lowest frequencies: SHl(f) =

‖
∑l

m=−l A
m
l Y m

l ‖. In contrast, harmonic shape contexts retain the amplitudes of the

individual frequency components, and, as a result, are more descriptive.

2.9.2 Spin Images

We compared the performance of both of these shape context-based descriptors to

spin images [Johnson and Hebert, 1999]. Spin-images are well-known 3D shape de-

scriptors that have proven useful for object recognition [Johnson and Hebert, 1999],

classification [Ruiz-Correa et al., 2003], and modeling [Huber and Hebert, 2003]. Al-

though spin-images were originally defined for surfaces, the adaptation to point clouds

is straightforward. The support region of a spin image at a basis point p is a cylin-

der of radius rmax and height h centered on p with its axis aligned with the surface

normal at p. The support region is divided linearly into J segments radially and K

segments vertically, forming a set of J×K rings. The spin-image for a basis point p is

computed by counting the points that fall within each ring, forming a 2D histogram.

As with the other descriptors, the contribution of each point qi is weighted by the

inverse of that point’s density estimate (ρi); however, the bins are not weighted by

volume. Summing within each ring eliminates the degree of freedom along the az-
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imuth, making spin-images rotationally invariant. We treat a spin-image as a J ×K

dimensional feature vector.

2.9.3 Experiments with 5cm noise

This subsection and following two subsections describe the experiments comparing

3D shape contexts, harmonic shape contexts, and spin images. The parameters for

the 3D shape contexts are the same as in the previous sections, and Table 2.9.3 shows

the parameters used for the other two types of descriptor. The parameters were

chosen based on extensive experimentation on other sets of 3D models not used in

these experiments. However, some parameters (specifically K and rmin) were fine-

tuned using descriptors in 20 randomly selected models from our 56 vehicle database.

The basis points used for training were independent from those used in testing. The

relative scale of the support regions was chosen to make the volume encompassed

comparable across descriptors. The noisy data sets used in these experiments are

also the same as those used for the previous experiments in this chapter.

In this set of experiments, our query data was a set of 56 scans, each containing

one of the car models. We added Gaussian noise to the query scans along the scan

viewing direction with a standard deviation of 5 cm (Fig. 2.3). The window for

computing normals was a cube 55 cm on a side. Fig. 2.18 shows the mean recognition

rate versus number of RDs. All of the descriptors perform roughly equally, achieving

close to 100% average recognition with 40 RDs.

2.9.4 Experiments with 10cm noise

We performed two experiments with the standard deviation increased to 10 cm (see

Fig. 2.3). In the first experiment, our window size for computing normals was the

same as in the 5 cm experiments. The results in Fig. 2.9.4 show a significant decrease
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in performance by all three descriptors, especially spin images. To test how much the

normals contributed to the decrease in recognition, we performed a second experiment

with a normal estimation window size of 105 cm, giving us normals more robust to

noise. The spin images showed the most improvement, indicating their performance

is more sensitive to the quality of the normals.

2.9.5 Experiments with clutter

To test the ability of the descriptors to handle a query scene containing substantial

clutter, we created scenes by placing each of the vehicle models in the clutter scene

shown in Figure 2.20. We generated scans of each scene from a 30◦ declination and

two different azimuth angles (φ = 150◦ and φ = 300◦), which we will call views #1

and #2, shown in Figure 2.21. We assume that the approximate location of the

target model is given in the form of a box-shaped volume of interest (VOI). The VOI

could be determined automatically by a generic object saliency algorithm, but for the

controlled experiments in this paper, we manually specified the VOI to be a 2 m ×

4 m × 6 m volume that contains the vehicle as well as some clutter, including the

ground plane (Figure 2.22). Basis points for the descriptors were chosen from within

this VOI, but for a given basis point, all the scene points within the descriptor’s

support region were used, including those outside of the VOI.

We ran separate experiments for views 1 and 2, using 80 RDs for each run. When

calculating the representative descriptor cost for a given scene-model pair, we included

in the sum only the 40 smallest distances between RDs and the reference descriptors

for a given model. This acts as a form of outlier rejection, filtering out many of the

basis points not located on the vehicle. We chose 40 because approximately half of

the basis points in each VOI fell on a vehicle. The results are shown in Fig. 2.23.

The shape context performance is impressive given that this is a result of do-
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ing näıve point-to-point matching without taking geometric constraints into account.

Points on the ground plane were routinely confused for some of the car models which

geometric constraints could rule out. A benefit of the 3D shape context over the

other two descriptors is that a point-to-point match gives a candidate orientation of

the model in the scene which can be used to verify other point matches.
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Figure 2.12: LSH performance, relative to exact nearest neighbor. The graphs in the first
column show the performance on the 5 cm queries, using effective distance error in (a)
and error by rank in (b). The second column shows results for the 10 cm query, with (c)
showing effective distance error and (d) showing error by rank. All results are for twenty
tables.
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Figure 2.13: Nearest-neighbor performance of LSH, shown as the tradeoff between the
number of comparisons and the error-by-rank for the 5 cm and 10 cm query sets. The
lower-right corner of the graph is the ideal result, where the number of comparisons and
the error by rank are low. The number of tables used is varied from 20 to 100 along each
line. With 400 divisions, we drive down the error by rank, but also dramatically increase
the number of comparisons required.
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Figure 2.14: A 2D LSH example showing the space divided into bins by axis-parallel lines.
The solid lines represent the divisions from one hash table, and the dashed lines represent
divisions from another. Note that although p∗ is the nearest neighbor to q, they do not
occupy the same bin in either of the tables. It is the case, however, that p∗ can be reached
from q: q and p0 are binmates in the solid-line table and p0 and p∗ are binmates in the
dashed-line table.
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Figure 2.15: Nearest-neighbor performance of associative LSH, shown as the tradeoff
between the number of comparisons and the error by rank for the 5 cm and 10 cm query
sets. Compare these graphs to those in figure 2.13 showing nearest-neighbor performance
of LSH. The number of tables used is varied from 20 to 100 along each line.

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 40 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 40 RDs, takemin 0.5

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

Number of feature comparisons (log scale)

R
ec

og
ni

tio
n 

or
 m

ea
n 

re
co

gn
iti

on

Exact NN, voting
Exact NN, RD method
LSH, voting method
LSH, 40 RDs, takemin 0.5
Assoc LSH, voting
Assoc LSH, 40 RDs, takemin 0.5

Top choice Within top three choices

Figure 2.16: Summary of results for various methods on the 5 cm noise data set. For
each method, we show points for all the variations of number of RDs, number of hash
divisions, and number of tables discussed earlier in the chapter.
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Figure 2.17: Summary of results for various methods on the 10 cm noise data set, showing
results for the top choice, top three, and top five choices. For each method, we show
points for all the variations of number of RDs, number of hash divisions, and number of
tables discussed earlier in the chapter.
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min radius (rmin) 0.1 0.1 -
height (h) - - 2.5
radial divisions (J) 15 15 15
elev./ht. divisions (K) 11 11 15
azimuth divisions (L) 12 12 -
bandwidth (b) - 16 -
dimensions 1980 2040 225
density radius (δ) 0.2 0.2 0.2
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Figure 2.18: Results for the 5cm noise experiment. All three methods performed roughly
equally. From 300 basis points sampled evenly from the surface, we chose varying numbers of
RDs, and recorded the mean recognition rate. The error bars show one standard deviation.
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Figure 2.19: Results for 10 cm noise experiments. In experiment (a) we used a window for
the normals that was a cube 55 cm on a side, whereas in (b) the size was increased to a
cube 105 cm on a side. The error bars show one standard deviation from the mean. From
this experiment, we see that shape contexts degrade less as we add noise and in particular
are less sensitive to the quality of the normals than spin images. All three methods would
benefit from tuning their parameters to the higher noise case, but this would entail a
recalculation of the reference set. In general, a method that is more robust to changes in
query conditions is preferable.
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Figure 2.20: An example of a cluttered scene containing trees, a house, the ground, and
a vehicle to be recognized.
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(a)

(b)

Figure 2.21: Point clouds generated from a two scan simulations of the scene in Fig-
ure 2.20, from different angles. The top and bottom scans are referred to in the text as
views #1 and #2, respectively. The scanner in view 1 was located on the other side of the
building from the car, causing the hood of the car to be mostly occluded by the building’s
shadow. In view 2, the scanner was on the other side of the trees, so the branches occlude
large parts of the vehicle.
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Figure 2.22: A close-up of the VOI in view #1, shown in Figure 2.21. There were about
100 basis points in the VOI in each query scene, and from those we randomly chose 80
representative descriptors for each run.
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Figure 2.23: Cluttered scene results. In both, we included in the cost the 40 smallest
distances out of those calculated for 80 RDs. The graphs show recognition rate versus
rank depth with error bars one standard deviation from the mean. We calculated the
recognition rate based on the k best choices, where k is our rank depth (as opposed to
considering only the best choice for each query scene). We computed the mean recognition
rate as described before, but counted a match to a query scene as “correct” if the correct
model was within the top k matches. Graph (a) shows the results for view #1 and (b) for
view #2. Using the 3D shape context we identifying on average 78% of the 56 models
correctly using the top 5 choices for each scene, but only 49% of the models if we look
at only the top choice for each. Spin images did not perform as well; considering the
top 5 matches, spin images achieved a mean recognition rate of 56% and only 34% if
only the top choice is considered. Harmonic shape contexts do particularly bad, achieving
recognition slightly above chance. They chose the largest vehicles as matches to almost
all the queries.
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Learning To Compare

I can think of no better expression to characterize these similarities than

“family resemblances”; for the various resemblances between members of

a family: build, features, colour of eyes, gait, temperament, etc., etc.

overlap and criss-cross in the same way.—And I shall say: ‘games’ form a

family. [...]

–Ludwig Wittgenstein, Philosophical Investigation #67

[...] The kinship is that of two pictures, one of which consists of colour

patches with vague contours, and the other of patches similarly shaped

and distributed, but with clear contours. The kinship is just as undeniable

as the difference.

–Ludwig Wittgenstein, Philosophical Investigation # 76

3.1 Introduction

In Chapter 2, we used the Representative Descriptor (RD) method to compute dis-

tances between pairs of images. It works by sampling patches and summing patch-
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to-image distances, effectively treating all patches equally. In this chapter, we build

upon this type of approach by introducing a way to learn which patches are more

important for determining similarity and present the primary contribution of this

thesis: a method that uses labeled training data to learn distance functions between

images, and uses those distance functions for image retrieval and classification. In

particular, we learn distance functions that are specific to individual images, and are

defined in terms of similarity between their parts.

The intuition behind this work comes from three main observations:

1. the visual features of an image are not equally important in determining its

similarity to some prototype;

2. which features are more salient depend on the category, or even the image, being

considered; and

3. the quality of the similarity structure found within and between categories af-

fects the performance of retrieval and classification;

Section 3.2 describes the common structure of many current algorithms for image

classification, identifies distance functions as playing a key role, and gives background

into recent work in designing and learning distance functions for classification. The

third observation above underlies much of the work in designing and learning distance

functions for classification.

Section 3.3 switches gears to talk about the nature of human categorization and

the concept of “family resemblances” as an organizing principle behind human cat-

egory formation. We discuss one early psychological study into category formation

and structure which supports the first observation above [Rosch and Mervis, 1975].

In Section 3.4 we bring these ideas together by giving an intuition as to why it

makes sense to learn distance functions in a way that makes use of family resem-

blances. In the remaining sections we lay out our approach to learning local distance
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functions from triplets of images, which is guided by the second observation above.

This approach is the main contribution of this thesis.

3.2 The Role of Distance Functions

Figure 3.1 shows a flow chart that represents a crude overview of the most discrimi-

native machine vision algorithms for classification. The learning algorithms are often

based on the distances between pairs of images, such as those on the far left. From

the images, sets of features are computed (e.g., raw patches, SIFT, or geometric blur).

These sets of features are given to a distance (or similarity) function that returns a

real number. This value, along with the values for many other pairs of images in the

training set, are the input to the learning algorithm. At test time, a query image is

presented to the algorithm, which compares it to some number of training examples,

and using that information with the learned model, returns a classification result (a

class label, e.g., “dalmatian”). Additionally, the algorithm may also be able to return

retrieval results, which is typically a list of training images, ordered by their similarity

to the query image.

The features computed from the images characterize image patches by fixed length

vectors, which can be compared using standard metrics such as L1 or L2. After

the feature computation step, each image is represented as a set of these feature

vectors. These sets of features are input to a distance or similarity computation.

One possible approach to computing an image-to-image distance is to attempt to

solve the correspondence problem between the image patches by taking into account

both the distances between feature vectors and the geometric arrangement of their

patches (e.g. [Berg et al., 2005]). However, this is expensive, so approaches have

made use of relaxations of varying degrees. Close to the other extreme is the bag-

of-features approach, named in reference to the bag-of-words representation common
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feature
computation

feature
computation

distance/similarity
computation

learning

e.g., SIFT, 
geometric blur

“headphones”

“beaver”

learning
algorithm

(distances for many
other pairs)

e.g., NN, SVM

Figure 3.1: This flow chart represents a crude overview of most discriminative machine
vision algorithms. The information given to the learning algorithm is usually based on
pairs of images, such as the two images on the left. From each image, a set of features is
computed. In the case of semi-local features, patches are first selected from the images
and then feature vectors, such as SIFT or geometric blur features, are computed from
the patches. This gives us two sets of patches, one for each image. From these two
sets of feature vectors, a distance or similarity score is computed. That score, along with
the scores from many other pairs of images, are then given to the discriminative learning
algorithm. (In the case of a simple nearest neighbor algorithm, only distances between
test and training images are computed and the “learning” consists only of storing the sets
of features computed from the training images.) In this work, we want to involve learning
earlier in the process, at the stage where the distance computation is performed (the
ellipse in the diagram). We use triplets of training images to learn the distance functions,
and use those functions at test time with a nearest neighbor classifier.
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in Natural Language Processing. In that setting, information about the position of

the patches is discarded, features are vector quantized, and an image is represented

by a binary or count vector that records which clusters are represented by features

present in the image. In [Mori et al., 2001], an empirical comparison showed a loss

of recognition performance in going from a representative descriptor to a bag-of-

features representation. Many recent approaches use the feature vectors and the

absolute positions of their patches, or only the feature vectors without any positional

information. These approximations work well in practice, and as in Chapter 2, we

work with only the distances between the feature vectors.

In the work to date in machine vision, it appears that both the choice of features

and distance function are vital to the performance of the algorithm. As mentioned in

Chapter 1, both SIFT and geometric blur have been successfully applied to difficult

image classification and object recognition tasks, demonstrating their ability to both

generalize and discriminate, so a priori we decide to use features of this type. This

leaves open the type of distance function to use.

In the machine vision community, some recent classification work has focused

on designing good similarity functions between sets of fixed-length vectors, such as

patch-based features. In particular, [Grauman and Darrell, 2006b], [Lazebnik et al.,

2006], and [Grauman and Darrell, 2006a] introduce the Pyramid Match Kernel, Spa-

tial Pyramid, and Vocabulary Guided (VG) Pyramid Match Kernel, respectively,

which are all Mercer kernels that approximate the correspondence between two sets

of features, in time linear in the number of features. They all choose a space in which

to perform the matching, and divide that space hierarchically, such that the bottom-

most level has very fine divisions and the uppermost level contains all the features

in the sets. Starting with the bottom-most level, they compute a histogram for each

of the two sets as the number of features that fall into each bucket. The amount

of overlap between these histograms gives gives a similarity score for that level. As
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they move up the levels, they remove the features that were matched previously and

continue to compute similarity values for each level. The final similarity values is a

weighted combination of the similarity values for the levels of the pyramid. This is

proven in [Grauman and Darrell, 2006b] to define a Mercer kernel which makes it

useful for algorithms such as Support Vector Machines (SVMs).

The original Pyramid Match Kernel draws axis-parallel boundaries, similar to

those used in locality-sensitive hashing, and builds the pyramid by halving the number

of divisions at each level. The VG Pyramid Match Kernel addresses quantization error

by choosing the divisions in a data-driven manner; they use hierarchical K-means

with Euclidean distances between feature vectors to build the pyramid such that

boundaries are unlikely to pass through clusters of points. Both of these approaches

use the full feature vectors and ignore the position of the patches in the 2D image.

The Spatial Pyramid uses the same underlying pyramid algorithm, but represents

a different set of design choices. They vector quantize the features, thus discarding

the detailed full feature vectors, and build the pyramid over the 2D image space. At

each level, a histogram is formed for each set, for each feature cluster. Thus, they

compute a distance function that uses the absolute position of features in the pyramid

matching, while making use of approximations of the feature vectors.

Of these three, only the VG Pyramid Match Kernel makes use of the training

data prior to training the classifier (SVM); it makes use of the feature vectors as

independent samples, without regard to their co-occurrence in the images or the

image class labels. It is fair to say that it does not select “visual features” in the

sense that machine vision “features” describe coherent patches of an image. Instead

it modifies the distances between sets of features by acting on the dimensions of the

feature vectors, such as the elements of a SIFT or geometric blur feature vector.

These most often correspond to edge responses in a particular part of every patch,

but not coherent visual features of the image.
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3.2.1 Learning Distance Functions

In this subsection we focus on methods that learn distance functions or metrics in

a more data-driven manner, and there is a large body of work within the machine

learning community from which we can draw.

One family of algorithms learns metrics in an unsupervised manner in order to

embed data in a low-dimensional space. This family includes the classical tech-

nique multi-dimensional scaling (MDS), and more recently, Locally-Linear Embed-

ding (LLE) [Roweis and Saul, 2000] and Isomap [Tenenbaum et al., 2000]. LLE

and Isomap work in a “local” manner in that they try to capture the relationships

between pairs or neighborhoods of points, but in a way that globally preserves the

overall structure of the data.

For each data point, LLE finds a weight vector that reconstructs that point from

its K neighbors. Then, all the data points are simultaneously mapped to a lower-

dimensional manifold that minimizes the reconstruction error according to those

weights. The first step is a least-squares problem, while the second is an eigenvector

problem.

Isomap also works by examining neighbors, but in a very different way. First,

the K nearest neighbors for each point are identified. Then, it estimates the geodesic

distance between every pair of points, defined as the shortest path between two points,

passing only through the neighbors found in the first step. In this way, it respects any

non-linear structure in the original high-dimensional manifold. Last, classical MDS

is applied to the geodesic distances to give a lower-dimensional embedding, again an

eigenvector problem.

These algorithms were designed to embed data for the purposes of of dimensional-

ity reduction and data visualization. While some attempts have been made to extend

them to out-of-sample tasks [Bengio et al., 2004], they are still unsupervised in that
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they do not make use of training labels in learning their metrics.

In recent years, a body of work has focused on the supervised learning of metrics

that then can be used with classification algorithms, such as nearest-neighbor. For

example [Xing et al., 2002; Schultz and Joachims, 2003; Shalev-Shwartz et al., 2004;

Weinberger et al., 2005; Globerson and Roweis, 2005] all aim to learn a distance

metric from labeled training data. In [Schultz and Joachims, 2003], the training data

is structured in terms of more and less similar images, while the others use examples

labeled as in- and out-of-class. They all assume that each labeled exemplar (image in

our case) is represented by a single fixed-length feature vector, and the metric they

learn between two vectors x and x′ is the Mahalanobis distance (x− x′)>A(x− x′),

where the positive semidefinite matrix A is learned by the algorithm. This metric

can be thought of as a warped Euclidean distance; each input point x is replaced by

A
1
2x and the new distance is the Euclidean distance between the new points. If A is a

diagonal matrix, then it simply rescales the axes of the feature space independently.

While the goal of all the above-mentioned metric learning algorithms is to learn

the weight matrix, they differ in how they formulate their optimizations. For ex-

ample, the goal of [Globerson and Roweis, 2005] is to collapse points in the same

class while spreading apart points that are in different classes. They take a proba-

bilistic interpretation which minimizes a KL divergence term between a probability

parameterized by the weight matrix and an “ideal” probability based on the com-

plete separation of the classes. The large-margin algorithm in [Shalev-Shwartz et

al., 2004] classifies examples as similar or dissimilar to examples according to some

threshold, and seeks a weight matrix that minimizes errors. The approach of [Schultz

and Joachims, 2003] resembles a soft-margin SVM in that the relative parameterized

distances between points are constraints and the objective is a trade-off between a

loss term summing slack variables and a term that regularizes the weight matrix. Our

learning formulation, detailed in Chapter 4 is most similar to this approach.
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These algorithms do not directly apply to the setting where each image is repre-

sented by a set of feature vectors, but they can be adapted by using a bag-of-features

representation mentioned earlier in the chapter. First a sample of the feature vectors

from several images is clustered, and the features in the training data are replaced

with the identity of the cluster to which they are assigned. Then, an image’s set of

features can then be represented as a binary vector indicating the presence or ab-

sence of the different clusters, or alternatively, as a count of the presence of different

clusters. In combining this representation with a Mahalanobis metric learning algo-

rithm, we would likely find that some clusters of visual features are more important

than others. However, there is evidence that recognition performance can suffer when

going from a set of original features to a bag-of-features representation [Mori et al.,

2001].

3.3 Category Structure: Family Resemblances

The classical view of categories, from the time of Aristotle, is that they have well-

defined boundaries, have sufficient and necessary conditions for membership, and

are an all-or-nothing phenomenon. In his 1953 work Philosophical Investigations,

Wittgenstein introduced the idea of “family resemblances” to describe the way in

which members of natural categories relate to one another [Wittgenstein, 2001]. In

investigations 66 and 67, quoted in the front of this thesis and at the start of this

chapter, he sets up the argument and introduces this terminology. He primarily uses

the example of games, demonstrating that it is not possible to find one distinguishing

characteristic that is true for all games.

Taking his analogy literally, consider the images in Figure 3.2. Here we have

members from three prominent families of actors, and while the family members look

similar to one another, there are plenty of ways in which they also look different.
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Keifer and Donald Sutherland

Charlie Sheen, Martin Sheen, and Emilio Estevez

Alec, Billy, Daniel, and William Baldwin

Figure 3.2: A literal example of Wittgenstein’s family resemblances. While the family
members look similar to one another, there are plenty of ways in which they also look
different. Furthermore, where there are three or more members, there are features that
some share but not others. Take for example Charlie Sheen, Emelio Estevez, and their
father Martin Sheen. All three could be said to share the same mouth, but Charlie and
Martin share the same eyes and brow line, where as Emelio does not. Charlie’s and
Emelio’s noses are very similar and appear different than their father’s. It is still clear,
however, that they are all related. This serves as a useful analogy for the internal structure
of categories.
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Furthermore, where there are three or more members, there are features that some

share but not others. Take for example Charlie Sheen, Emelio Estevez, and their

father Martin Sheen. All three could be said to share the same mouth, but Charlie

and Martin share the same eyes and brow line, where as Emelio does not. Charlie’s

and Emelio’s noses are very similar and appear different than their father’s. It is still

clear, however, that they are all related.

A couple decades after Wittgenstein’s Investigations, there was a growing body

of work in psychology that explored the nature of human categorization, both of

natural and artificially-constructed categories. Eleanor Rosch was one researcher at

the forefront of this research. In a 1981 retrospective paper, Mervis and Rosch list

six critical issues in investigating and modeling human categorization, in order from

most to least concrete, most of which were tackled by her previous research [Mervis

and Rosch, 1981]. Quoting:

1. Arbitrariness of categories. Are there any a priori reasons for dividing objects

into categories, or is this division initially arbitrary?

2. Equivalence of category members. Are all category members equally represen-

tative of the category, as has often been assumed?

3. Determinacy of category membership and representation. Are categories spec-

ified by necessary and sufficient conditions for membership? Are boundaries of

categories well defined?

4. The nature of abstraction. How much abstraction is required—that is, do we

need only memory for individual exemplars to account for categorization? Or, at

the other extreme, are higher-order abstractions of general knowledge, beyond

the individual categories, necessary?
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5. Decomposability of categories into elements. Does a reasonable explanation of

objects consist in their decomposition into elementary qualities?

6. The nature of attributes. What are the characteristics of these “attributes” into

which categories are to be decomposed?

These questions underly modeling choices still made in the field of machine vision,

in particular the questions raised in the second through fifth items.

In the rest of this section, we focus on items two and three and the conclusions

drawn from the studies in [Rosch and Mervis, 1975]. There is ample evidence that

some category members are more prototypical than others. This has been shown to

be true for basic perceptual categories such as color [Kay and McDaniel, 1978], and

for natural and artificially-constructed categories [Rosch and Mervis, 1975]. [Rosch

and Mervis, 1975] was the first work to go a step further and investigate the internal

structure of categories in terms of family resemblances. Their basic hypothesis was

that members of a class are prototypical to the extent that they share characteristics

or features with other members of the class, and that, conversely, there will be little

family resemblance between prototypical items and members of other classes. The

results of their experiments on human subjects using natural and artificial categories

support these claims.

For the natural superordinate categories furniture, vehicle, fruit, weapon,

vegetable, and clothing, there are seldom features that all members share which

other category members do not possess, and they found a gradient of representative-

ness from the central, prototypical members of the category to the exemplars at the

boundary. They note that because superordinate categories share few if any features,

“such categories may consist almost entirely of items related to each other by means

of family resemblances of overlapping attributes”.

In the same study, they addressed the third item in the above list by showing
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that the boundaries between classes are not well-defined, and that exemplars at the

boundary are those that share attributes with other categories. As part of their analy-

sis, they apply multidimensional scaling (MDS) to analyze the structure of categories

based on distances derived from the sharing of features. They find at the center of

the embedded space those examples subjects reported as most prototypical.

[Rosch and Mervis, 1975] also included experiments using artificially-constructed

categories made of strings of letters and numbers to test category structure where no

prior concept knowledge is available. They trained subjects with examples from two

categories and then tested their ability to categorize novel strings, and found that

examples that had a greater family resemblance to other members of their category

were learned and identified more rapidly and were judged to be more prototypical

members.

We wish to turn the structural model of family resemblances from [Rosch and

Mervis, 1975] into a processing one by using the “family resemblances” between our

training examples to help us classify novel images. Since we are only given the

examples and their class labels, we must learn the resemblances from the training

examples. Note that, like the experiments using artificial categories, our algorithm

has no prior knowledge of the categories, and like the human subjects, we expect an

algorithm based upon prototypes and family resemblances to suffer when given bad

examples.

3.4 Extending Family Resemblances to Local Distance

Functions

The main contribution of this thesis is a method for learning distance functions that

capture family resemblances, and for using those functions to perform image retrieval
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and classification. In this section we provide an intuition for the claim at the beginning

of the chapter that

which visual features are more salient depend on the category, or even the

image, being considered.

The experiments in the rest of this thesis will make use of the Caltech 101 object

recognition dataset introduced in the first chapter. While many of these categories

would be considered basic- or entry-level categories, we argue that, given the strictly

visual nature of the task, and the variations in appearance, pose, and clutter, these

categories more often act as superordinate classes in terms of their family resemblance

structure. In particular, using state-of-the-art approaches, it is unlikely that, from

the pixels, we can extract features that would occur in all examples of a category

but not in any other category. Take for example the chair category, from which

56 examples are shown in Figure 3.3. While we probably could not extract a visual

feature common to all, there are certainly relationships between these examples that

would connect many of them. Furthermore, there is a good deal of overlap between

the classes in the data set. Also in Caltech 101 is the category windsor chair (see

Figure 3.4), and it is very unlikely that we could find features consistent throughout

the chair category that do not occur in the windsor chair category.

This effect is more exaggerated for articulated objects, for example the 39 an-

imal categories in the dataset. Consider Figure 3.5 which shows examples from

the cougar face category. If we consider the objects irrespective of representation,

cougar faces do not vary much in their appearance, as the top set of images demon-

strates. However, even for an object with consistent shape and color, the representa-

tion or appearance in an image can change greatly. Though all three of the bottom

images belong to the same category, there are few visual features that could be ex-

tracted from the pixels that they would share; the features that determine similarity
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Figure 3.3: Members of the Caltech 101 chairs category.
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Figure 3.4: Members of the Caltech 101 windsor chair category. Notice the overlap in
appearance with the examples from the chair category in Figure 3.3. It would be difficult
to find visual features that are present only in one of these categories but not the other,
making the task closer to the superordinate setting described in [Rosch and Mervis, 1975].

between the left of the three and its nearest prototype are different than the features

that would make the center or right images close to their nearest prototype. This

clearly demonstrates that the important features can change on an image-by-image

basis. If images from the bottom row are given as exemplars to a nearest-neighbor

algorithm, and we wish to maximally leverage them, we would want our algorithm to

pay most attention to those features that they have in common with other, more pro-

totypical training images. But much like the human subjects in the experiments with

artificial categories, our algorithm would likely be handicapped if given bad examples

like the bottom three images.

Choosing which features are important for categorization on an image-by-image

basis may also give us a way to make better use of cluttered examples. For example,

consider the images in Figure 3.6. The first belongs to the category seahorse. While

human facial features are very important to finding faces, we want to ignore the face

for the purposes of using this as an example of the seahorse category. The second

image is an example from the buddha category. It may be that in many cases strong

vertical lines are very salient features, but in this case, we want to ignore the fence

in front of the object of interest.

Returning to the distance functions discussed in Section 3.2, the Mahalanobis

metric learning approaches give a “global” deformation in that all points in the space
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(a)

(b)

Figure 3.5: These exemplars are all drawn from the cougar face category of the Cal-
tech 101 dataset, but we can see a great deal of variation. The image on the left is a clear,
color image of a cougar face. As with most cougar face exemplars, the locations and
appearances of the eyes and ears are a strong signal for class membership, as well as the
color pattern of the face. Now consider the grayscale center image, where the appearance
of the eyes has changed, the ears are no longer visible, and hue is useless. For this image,
the markings around the mouth and the texture of the fur become a better signal. The
image on the right shows the ears, eyes, and mouth, but due to articulation, the appear-
ance of all have changed again, perhaps representing a common visual sub-category. If we
were to limit ourselves to learning one model of relative importance across these features
for all images, or even for each category, it could reduce our ability to determine similarity
to these exemplars.
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Figure 3.6: Examples of cluttered training images where the clutter would seem useful, if
we didn’t know better. These demonstrate that it may be useful to determine the saliency
of visual features on an image-by-image basis.

are acted upon in the same way by the matrix A. For example, if we were to use a

bag-of-features representation, the relative importance of the of features would be the

same regardless of an image’s category or the combination of features present in an

image. In LLE and Isomap, however, the transformations are “local” in that different

points may be acted upon differently, depending upon their neighbors. We wish to

incorporate the local nature of these embedding techniques with the supervised, out-

of-sample setting of the metric learning algorithms. Furthermore, we would like to

do this in a way that makes use of sets of features without turning to a bag-of-feature

representation. We show in the rest of this thesis that one way to achieve this is to

learn a distance function for each image.1 This allows us to choose the features that

are most salient in determining an image’s similarity to its neighbors. In essence, we

try to learn the “family resemblances” between members of a category. We do this

by learning from triplets of images.

1It has been suggested that learning a distance function for every image in a supervised setting
is doomed to overfit, but this work demonstrates that it does not overfit, but instead outperforms
state-of-the-art algorithms on a difficult classification data set.
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image j

D ji D ki

imageimage ki

Figure 3.7: Three images from the Caltech101 data set, two from the dalmatian category,
one from the Faces category. We want to learn distance functions between pairs of images
such that the distance from j to i (Dji) is smaller than from k to i (Dki). Triplets like
this one form the basis of our learning algorithm.

3.5 Learning From Image Triplets

Consider the triplet of images in Figure 3.7. Images i and j are from the Caltech 101

dalmatian category, while image k is from the faces category. Given triplets of this

sort, it is clear that image i should be considered more similar to image j than it is to

image k. Our goal is to find distances between images such that relationships of this

type hold, for example, that the distance Dji < Dki. Say that we had such distances.

Then, if we take training image i, we would be able to rank order all the training

images in order of similarity to image i, and we would have a “perfect” retrieval result,

in that all the in-class images would be ranked above all the out-of-class images.

Of course, if all our images are from the training set, they all come with labels,

so we don’t actually need the distance functions at all; we could simply rank images

using their labels, a trivial task. But now consider, in place of image i, we have a novel

query image and either we do not know its label or using its label would be cheating.

To perform the same sort of retrieval we now need the image-to-image distances. We

can learn the distance functions using the available training images and their labels.
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In an ideal situation, we would have distance functions that generalize perfectly,

meaning that we would still be able to rank those training images that match the

query’s unknown label above those that do not. This would be nice, but it is highly

unlikely that we could find such functions, especially given the difficulty of the visual

categorization task. However, we can learn distance functions that do perform well, as

measured by the error rate on standard classification benchmarks such as Caltech101.

Given the success of patch-based features, it makes sense to learn distance func-

tions that are based on distances between patch-based features. To approach this

problem, we will learn asymmetric image-to-image distance functions, such as Dji

and Dki, as a weighted linear combination of feature-to-image distances, which are

based on distances between patch-based shape features such as SIFT [Lowe, 1999] or

geometric blur [Berg and Malik, 2001].

3.5.1 Feature-to-Image Distances

Consider the images in the top row of Figure 3.8, where we want to compute the

asymmetric distance Dij. This distance will come from a combination of feature-

to-image distances, each of which is a distance between a single feature vector from

image i and the set of features in image j, similar to the minimum distances summed

to give representative descriptor scores in Chapter 2. For now we will treat these

features in a generic way, and any kind of patch-based feature would work in this

setting. In the second row of Figure 3.8, we have focused on one such feature in

image i, call it the mth of the M patches in image i. Denote the feature vector for

this patch as fi,m. In image j we show in white all the patches for which we computed

a feature. As in the representative descriptor method in the last chapter, we use a

feature-to-feature distance metric such as L2 norm, L1 norm, or inverse correlation2

2Note that this does not need to be a metric, but the commonly-used feature-to-feature distances
typically are.
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to find the best match to fi,m from among the set of feature vectors Fj. Denote the

vector in image j which is the best match f∗j . Let dij,m be the distance between fi,m

and f∗j using our feature-to-feature distance metric. Note that we have M of these

distances, one for each of the M patch features we extracted from image i. If we let

Fj be the set of features in image j, we can express the feature-to-image distance

from the mth patch in image i to image j formally as

dij,m = min
fj∈Fj

‖fi,m − fj‖2 (3.1)

where f∗j = minfj∈Fj
. Note that this feature-to-image distance is not a metric as it

does not necessarily obey symmetry or the triangle inequality. This may actually be

a benefit as a perceptual model; there is evidence from psychology that similarity

functions are not symmetric due to the internal structure of categories [Rosch, 1978].

Given the choice of patch feature fi,m, we can compute the distance between it

and any other image in this way. These feature-to-image distances give us a natural

primitive upon which we can build our image-to-image distances, and from previous

work using patch-based features for recognition and classification, we know that these

distances between patches do generalize to unseen images. Furthermore, since the

primitive we are using is based on individual patch features, it is possible to put a

greater weight on the patch features that are more salient for a particular image.

3.5.2 Parameterized Image-to-Image Distances

We could simply sum these feature-to-image distances to get an image-to-image dis-

tance, or weight them each by 1
M

, and this would give us the basic “representative

descriptor” score used in Chapter 2, which is also the distance function used to create

the kernel matrices in [Zhang et al., 2006]. However, we want to learn which parts

of an image are more important in determining its similarity to other images, so we
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Dij

fi,m

image i image j

f
∗

j

dij,m

...

Figure 3.8: The computation of a feature-to-image distance. We wish to find the image-
to-image distance from image i to image j, which will be composed of feature-to-image
distances, each computed between a single feature of image i and all features image j.
The best match between feature vector fi,m and the features of image j is found using
some distance metric (e.g. L2), call it f∗j . Then the mth feature-to-image distance dij,m

is the L2 distance between fi,m and f∗j .
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will assign weights to the patches, with the intuition that weights should be high for

“relevant” features and low or zero for “irrelevant” or confounding features. Given a

set of weights, the image-to-image distance is simply a linearly weighted combination

of the M feature-to-image distances:

Dij =
M∑

m=1

wi,mdij,m (3.2)

or, if we concatenate the M feature-to-image distances into a vector dij, and con-

catenate the M weights into a vector wi, we can rewrite this as the dot product

Dij = 〈wi · dij〉 (3.3)

We assume that in most settings, we are not given the vector of weights for an

image, so the goal of the algorithm is to learn these weights for every training image

from triplets of images, such as the triplet in Figure 3.7. To give a preview of the

output of the algorithm, Figure 3.9 provides a visualization of the weights that our

algorithm learned for three training images.

The weights we learn should give us image-to-image distance functions that ulti-

mately provide good orderings over previously-unseen images. Because the image-to-

image distances are asymmetric, we have two choices as to how we can use triplets

of images to learn these weights. Which version we use affects the output of the

algorithm and how the image-to-image distance functions can be used.

3.5.3 Focal vs. Global Learning

The weights are learned from the relationships among triplets of images, which are

provided by the labeled training data. The image-to-image distances are asymmetric,

so for a given triplet, we have two choices as to how we want to compare images to
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Figure 3.9: Visualizations of the weights learned by our algorithm for one type of shape
feature (geometric blur with 42-pixel radius) for three images from our training set. Each
circle is centered at the center point of the feature’s patch and the color of the circle
indicates the relative value of the weight. The colors are on Matlab’s jet scale, where
dark red is the highest weight (most salient feature) and dark blue is the lowest non-zero
weight. Weights that were assigned a zero weight are not shown. For (a), the algorithm
learned zero weights for all but 83 of the 400 small geometric blur features computed for
the image, and learned that the most important feature is the patch around the eye of
the panda. For (b) it learned that the most useful features are on the breast and tail of
the rooster, and assigned zero weights to all but 79 of the roughly 400 small geometric
blur features. For (c) it learned that the best features aren’t on the leopard at all, but are
along the right edge and in the upper-right corner of the image. The Leopards images
were drawn from the Corel image set and they have a thin black border around the image
that algorithms can exploit, making it a surprisingly easy category.
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one another, shown in Figure 3.10.

In the first, the arrows showing the direction of the distance functions point away

from the center image. In this version, the center image plays the role of a focal image,

with respect to which the other images are ordered. For each triplet, we ideally want

to maintain the relationship

Dij < Dik (3.4)

which can be expanded as was shown in the last section to

〈wi · dij〉 < 〈wi · dik〉 (3.5)

Note that in this version, every triplet involves only weights for the center image,

which allows us to break the problem up into a separate learning problem for every

training image.

In the second, the arrows point toward the center image, so we are learning weights

for images j and k. In this version, the center image acts as a reference image, in that

images j and k use it to calibrate their weights to one another, and the relationship

is

Dji < Dki (3.6)

which can expanded to

〈wj · dji〉 < 〈wk · dki〉 (3.7)

In this version, every triplet involves the weights for two images. For one such refer-

ence image from the training set, we could make triplets of every possible pairing of

positive and negative training images, and if we train with all these triplets, then the

weights for all images are tied together by the triplets. In this way, this second version

gives us a globally-consistent set of weights, and we refer to it as globally learned.

Chapter 4 explores the focally-learned version more fully, and Chapter 5 covers
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image kimage iimage j

"focal image"

D ij D ik

(a)

image kimage iimage j

D ji D ki

"reference image"

(b)

Figure 3.10: This is an illustration of the difference between the “focal” and “global”
learning for local distance functions. The top row shows the configuration for focal
learning, where the center image plays the role of the “focal image”, and the distance
functions learned are with respect to the focal image. The bottom row shows global
learning, where the center image is now a “reference image” used to calibrate the distance
functions learned for the other two images.
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the globally-learned version. The algorithms for the two versions are very similar; the

triplets are turned into soft margin constraints and a regularization term is added

to aid in generalization, turning the learning problem into a convex optimization

problem, similar in final form to that in [Schultz and Joachims, 2003].

3.6 Combining Feature Types

This formulation naturally extends to allow combinations of different patch-based

feature types as well as different feature-to-image distance functions. Let image i be

the image for which we are learning weights. If we have several sets of features, we

can compute the feature-to-image distances separately for each feature, and simply

concatenate them, in the same way that we described concatenating the distances into

a vector in Section 3.5.2. The only caveat being that, as is common in the application

of many machine learning algorithms, it is a good idea to scale the data to be within

comparable ranges so as to avoid numerical issues and make use of heuristics used

to speed up running time. For example, [Platt, 1998] suggests scaling data to have

unit variance. Our setting is different in that we are working with distances instead

of points in space, but we can still compute the variance of distances in our training

set, and normalize the distances we compute at test time to maintain unit variance.

In the experiments in the subsequent chapters, we will make use of geometric blur

[Berg et al., 2005] features at two different scales and a crude patch color feature. The

computation of the geometric blur feature is shown and described in Figure 3.11. The

larger of the geometric blur features has a patch radius of 70 pixels, and the smaller a

patch radius of 42 pixels. Both use four oriented channels and 51 sample points, for a

total of 204 dimensions. For the experiments in this thesis, we only compare “large”

geometric blur features to “large” features, and “small” to “small”, so while we make

use of features at different granularities, the purpose is not to make us invariant or
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geometrically blur

 and sample

one set of samples 

per channel

a channel per filter

Figure 3.11: Computation of geometric blur features. A set of sparse signals is derived
from the image, using filters, oriented energy, or a more sophisticated boundary detector
such as Pb[Martin et al., 2004]. If we have a set of eight signals, then for a given
patch in the original image, we have eight signal patches. Each signal patch is blurred
geometrically, meaning that the standard deviation of the Gaussian filter is increased with
increasing distance from the center of the patch. The blurred patch is sampled at a set of
points, and the final feature vector is the concatenation of the samples for all eight signals.
In our experiments, we use a geometric blur feature computed from four orientations of
Pb.

83



Chapter 3. Learning To Compare

more robust in comparisons across changes of scale. We also did not tune the set of

parameters used to compute the geometric blur features—we used a set of features

that was previously computed for use in [Zhang et al., 2006]. While many months

of Alex Berg’s experience have gone into the parameters used to compute geometric

blur features, those parameters were in no way chosen to complement this approach.

Our color features are histograms of eight-pixel radius patches also centered at

edge pixels in the image. Any “pixels” in a patch off the edge of the image are counted

in a “undefined” bin, and we convert the HSV coordinates of the remaining points to

a Cartesian space where the z direction is value and (x, y) is the Cartesian projection

of the hue/saturation dimensions. We divide the (x, y) space into an 11 × 11 grid,

and make three divisions in the z direction. These were the only parameters that we

tested with the color features, choosing not to tune the features to the Caltech 101

dataset.

The geometric blur features are “sphered” so that the feature vectors have unit

L2 norm, and we use the minimum L2 distance as our feature-to-image distance.

In practice, the distribution of distances between geometric blur features from the

training set gives a variance close to one. The color features were normalized to

have a unit L1 norm (so the bin contents represent a percentage of pixels), but still

the distances between color features and between geometric blur features have very

different distributions. For example, the distribution of geometric blur distances for a

given image will often fit a Gaussian very well, whereas the distributions of distances

between the color features tend to be multimodal and spikey. To effectively combine

those features, we must post-process the feature-to-image distances. We simply adjust

the color feature distances to have the same variance as the geometric blur features.

We are able to achieve very good performance without using information about

the location of patches in the images, whereas many of the best results make use

of the absolute position of the patches [Lazebnik et al., 2006; Zhang et al., 2006;
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Mutch and Lowe, 2006]. [Zhang et al., 2006] incorporates absolute position of the

patches by combining the distance between the feature vectors with the distance

between the image patch centers with a single trade-off parameter λ, and uses the

same parameter for all images and all classes. Clearly incorporating position in this

way would run counter to the spirit of this work. It would be more consistent to

incorporate feature positions into the feature-to-image distances. For example, for

feature fi,m in image i, instead of finding the best match to any feature in image j,

we could find the best match only among those features located in an area of image

j which corresponds to the location of the mth patch in image i. This is related to

the approaches taken in [Mutch and Lowe, 2006] and [Lazebnik et al., 2006], and is

one possible avenue for extending this work.

3.7 Previous Work In Multiway Classification

There is a relationship between the approach discussed above and other approaches

to multiway classification, and in this section we discuss a few select approaches and

one previous application to digit recognition that is closest to our approach.

One common approach to multiway classification is to learn several pairwise de-

cision boundaries and somehow combine their outputs at test time to assign a single

class to a test exemplar. This is popular in part due to the prevalence of simple,

proven two-way discriminative classification algorithms, including SVM, logistic clas-

sification, and latent discriminative analysis (LDA). One simple strategy for combin-

ing the classifiers is to train the complete set of N(N−1)
2

pairwise classifiers, simply

assign the label of the class that is chosen most often by the pairwise classifiers for

a test image [Friedman, 1996]. In [Dietterich and Bakiri, 1995], pairwise classifiers

are trained for every possible pair of categories, and a test image is classified using

error-correcting output codes (ECOC) based on the outputs of all the pairwise classi-
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fiers. [Hastie and Tibshirani, 1997] presents an approach for turning a set of pairwise

conditional class probabilities for each category into a single posterior probability for

each class. That problem is underconstrained, so they pose it as an optimization

where they minimize the Kullback-Liebler (KL) divergence between the conditional

and desired posterior probabilities. [Platt et al., 2000] introduces an algorithm called

DDAG that arranges the N(N−1)
2

pairwise classifiers into a directed acyclic graph with

a single root node. At the test time, one path of the graph is followed, dependent upon

the output of the classifiers until it reaches the bottom where a final class decision is

made. They call the use of this algorithm with SVMs the DAG-SVM. These pairwise

approaches are somewhere between learning at the exemplar level and at the global

level in that for different class comparisons, they learn different set of parameters.

The downside is that the learning machinery is separated from the decision process

by an ad hoc approach or additional layer of learning. Our “focal” learning approach

detailed in the next chapter, where we learn a separate classifier for every training

image, is prone to the same pitfalls. The multiclass approach of [Crammer and Singer,

2001] is a more recent approach for training a single multi-way SVM which integrates

the decision process fully with the training algorithm.

[Zhang and Malik, 2003] presents an approach similar to ours for hand-written

digit recognition in that they also use sets of patch-based features in a way that fits

well with the psychological ideas described in this chapter. For each category, they

choose a set of K exemplars, by performing a simple K-medoid clustering. These

can be thought of as the most “canonical” examples in the training set. For each

exemplar, they compute a set of shape context descriptors, and for every pairing

with another training image, they compute a distance vector of a fixed length. If M

shape contexts are computed, the distance vector to one training image is of length

2M+1. All but one of these are computed in a manner similar to that in Equation 3.1:

the feature-to-image minimum χ2 distance from M exemplar shape contexts to the
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other set of shape context gives M of the distances, and M are the feature-to-image

minimum L2 distances using the raw intensity patches from which the shape contexts

were extracted. The last distance is the bending energy required to match the two

shapes introduced in [Belongie et al., 2002]. These distance vectors are used to train

logistic classifiers for every exemplar pairing. If there are N classes and K exemplars

per class, K2N(N − 1) two-way logistic classifiers are trained, where the target value

is 1 for in-class examples and -1 for out-of-class. This results in K(N − 1) sets of

weights for every exemplar. At test time, the shape contexts are computed for the

query digit, distance vectors are computed from every exemplar to the query, and

a value in [−1, 1] is computed for each exemplar using the weights learned by the

logistic. A class choice is made using ECOC as in [Dietterich and Bakiri, 1995].

The approach in [Zhang and Malik, 2003] bears many similarities to our approach,

as it was outlined earlier in this chapter. In particular, they turn sets of features into

fixed-length feature vectors by taking the distances between shapes, and they learn

weights for the elements of these vectors, and at test time, linearly combine the

distances. However, our approach differs in many of the details. We structure our

learning algorithm differently so that we learn a number of weights that is linear

in the number of exemplars. Because of this we do not need to choose canonical

exemplars in order to reduce the complexity, a choice which is better-suited to the

more complicated structure of object categorization in natural images. Lastly, we

learn weights using a large-margin approach and make class decisions using nearest

neighbor. In the next two chapters, we detail how we apply these design choices in

the two settings described in Section 3.5.3.
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Focal Learning of Local Distance

Functions

4.1 Introduction

In the previous chapter, we discussed the role of distance functions and introduced

two different formulations for learning distance functions from triplets, described as

“focal” and “global” learning (illustrated in Figure 3.10). In this chapter, we focus on

focal learning, where each learning problem involves learning a set of weights for only

one image, which we call the “focal image”, and the learned distance function can be

used to rank images only with respect to the focal images. Sections 4.2 and 4.3 show

how, starting from this triplet arrangement, we can formulate a convex optimization

problem for each training image in order to learn the distance functions. Sections 4.4

and 4.5 discuss the mechanics of formulating and solving the optimization. Section 4.6

discusses leveraging the distance functions for retrieval and classification.
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4.2 Focal Images

In the top row of Figure 4.1, we repeat the triplet configuration for “focal” learning

introduced in the last chapter. The distance functions are asymmetric, and the arrows

point away from the central image, indicating that the distance function is computed

from image i to images j and k. Repeating the equations from the last chapter, each

triplet gives us a constraint of the form

Dij < Dik (4.1)

and by expressing each image-to-image distance as a weighted sum of patch-to-image

distances, we can expand this to

〈wi · dik〉 > 〈wi · dij〉

〈wi · (dik − dij)〉 > 0.

The key thing of note here is that this triplet constraint only involves one set of

weights, the weights for the “focal” image i. In the rest of Figure 4.1, we number

the four images shown, and show them in different roles in the triplets. A constraint

involves the weight vector for an image if and only if that image is in the central

position in the triplet. This means, for example, that the triplets that affect the

weight vector for image 1 are completely disjoint from those that act on the weight

vector for image 2, as is shown by the grouping brackets on the right side of the

figure. Since the goal is to learn the weight vectors, we can formulate two entirely

independent learning problems for images 1 and 2, and if we have 1,000 training

images, we formulate 1,000 completely independent learning problems. Once we

have learned the weights for the focal image, we can use the parameterized distance

function to order any set of images relative to the focal image.
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image iimage j image k

#2 #1 #3

#4
...... ...

#2

#2

#2

#1

#1

#1

#1

#3

#3

#4

#4

Dij = 〈wi · dij〉 Dik = 〈wi · dik〉

w1 · d12 w1 · d13

w1 · d14

w2 · d21 w2 · d23

w1 · d12

w2 · d21 w2 · d24

w3 · d34 w3 · d31

Figure 4.1: A subset of possible triplets for four training images. Each triplet constraint
involves only the focal image’s weights, thus the constraints can be grouped into inde-
pendent sets by focal image.
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4.3 Large-Margin Formulation

In this section, we will address the learning problem for one focal image, and formulate

the optimization that we use to learn the weights for that focal image. We begin with

an optimization using the hard triplet constraints, but then relax those constraints,

resulting in a form similar to the soft-margin support vector machine [Platt, 1998].

Throughout the rest of the chapter, image i will be our focal image.

We begin with the basic elements of such an optimization. We could start by using

the triplet constraints from Equation 4.2 as hard constraints in our optimization (we

will relax this later). Second, we want to enforce non-negativity on the weights

we are learning. This is necessary primarily because the quantities we are linearly

combining are distances between patches and images, and these distances are always

non-negative. We want our final image-to-image distances to have the same property

of non-negativity, so our weights must also be non-negative. We choose our patch-

to-image distances such that they should be zero where an image is compared with

itself, which means that the image-to-image distance is also zero in that case. If

we allow negative weights, and thus negative image-to-image distances, we enter a

strange case where an image can be closer to a focal image than the focal image is

with itself. Lastly, we cannot think of a case in our setting where negative weights

would be useful that is not already covered by allowing zero weights. If a patch in

the focal image is irrelevant or confounding, it is not clear why allowing a negative

weight is better than simply giving the patch a zero weight. In fact, it seems logical

not to penalize an image for having the same confounding or irrelevant information

as the focal image (which is what would happen with a negative weight).

The triplet constraints and non-negativity become the constraints of our opti-

mization problem, and in our objective function we minimize the norm of the weight
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vector, which allows us to find an unique solution and helps to prevent overfitting:

arg min
wi

1
2
‖wi‖2

s.t. : ∀j, k : 〈wi · (dik − dij)〉 > 0

∀m : wi,m ≥ 0

(4.2)

Note the constraints are only for all j and k because i is held fixed as the focal

image.

This optimization has the nice property of convexity, meaning that there is one

unique answer, the global minimum. We have a choice of the norm we wish to

minimize, and throughout this work, we use the L2 norm. We chose the L2 norm

because it is more robust to noise, which is certainly a problem in image classification

or recognition settings. However, we ideally would like our weight vector to be sparse,

and the L2 norm does not normally provide a sparse solution, though empirically we

do see some sparsity as a result of the constraint on w. If we were to use the L1

norm, we may be able to get a more sparse solution, depending upon the specifics of

the solver. It would be an interesting avenue of exploration to empirically test the

trade-offs between the L1 and L2 norms.

In an idealistic, noise-free setting, it may be possible to find weight vectors such

that the constraints above can be satisfied. However, machine vision problems are

often far from the idealistic, noise-free setting, and if any of the triplet constraints

cannot be satisfied, then the above optimization problem does not have a solution. We

relax the problem by constructing an empirical loss function that allows for noise in

our data, and minimizing that in our objective function. First, we turn our constraints

into large-margin constraints,

〈wi · (dik − dij)〉 ≥ 1.
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and then penalize linearly for each violation. Let [z]+ denote the function max{0, z}.

The hinge loss for one triplet constraint is thus

[1− 〈wi · (dik − dij)〉]+.

We wish to find a weight vector which minimizes the cumulative hinge loss across all

triplets.

As in the hard-constraint version, we include the norm of wi in the objective

function, though here it is traded off against the sum of the hinge losses:

arg min
wi

1
2
‖wi‖2 + C

∑
jk[1− 〈wi · (dik − dij)〉]+

s.t. : ∀m : wi,m ≥ 0
(4.3)

The scalar C in the objective is a trade-off parameter between the regularization

term and the empirical loss which must be set prior to training. The larger C is, the

greater the emphasis on obtaining a small empirical error. Here we use one value of

C for all triplets, but it would also be possible to use a different C for each triplet.

When doing local learning, we choose C using cross-validation.

This optimization can be rearranged to an equivalent, more convenient form by

introducing a slack variable ξijk for each triplet:

arg min
wi,ξi

1
2
‖wi‖2 + C

∑
jk ξijk

s.t. : ∀j, k : 〈wi · (dik − dij)〉 ≥ 1− ξijk

∀m : wi,m ≥ 0

∀j, k : ξijk ≥ 0

(4.4)

This form is similar to the soft-margin support vector machine [Platt, 1998], but has

some key differences. First, we have a non-negativity constraint on wi, which is not
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a part of the standard SVM formulation. Second, because our data is organized as

triplets which implicitly capture similarity or class labels, we do not have the explicit

class labels yi that are part of the standard two-class SVM formulation. Last, we do

not have a bias term, also because of the relative nature of our input data. This last

difference allows us to greatly simplify the solver, as we will show in Section 4.4.

4.3.1 Relationship to Schultz and Joachims, 2003

The form of our optimization is close to that introduced in [Schultz and Joachims,

2003]. The goal of their work is to learn weights for a global metric, as was discussed

in Section 3.2.1. Their optimization acts on fixed-length feature vectors xi of length

M , and learns an M ×M weight matrix W :

arg min
W,ξi

1
2
‖AWAT‖2F + C

∑
ijk ξijk

s.t. : ∀i, j, k : (xi − xk)
T AWAT (xi − xk)− (xi − xj)

T AWAT (xi − xj) ≥ 1− ξijk

∀m : Wmm ≥ 0

∀i, j, k : ξijk ≥ 0

(4.5)

where A is a user-defined matrix that encodes prior knowledge about the relative

importance of the feature dimensions. Note that the diagonal of W is required to

be non-negative, and if we set A = I, the identity matrix, then we can replace the

matrix W with the weight vector w from its diagonal. Regardless of the value of A,

they show that the constraints are equivalent to the those of the form

〈w · (∆ik −∆ij)〉 ≥ 1− ξijk (4.6)

if they let ∆ij = (ATxi − ATxk). ∗ (ATxi − ATxk), where we use Matlab notation .∗

to denote element-wise multiplication. Replacing the ∆ij variables in the constraints
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with our feature-to-image distances dij, and setting A = I, we get the form of our

optimization in Equation 4.4.

While the form is very close, the assumptions and setting are different. Their

goal is to learn a metric function, so their distances must also be metrics, and they

arrive at their formulation by assuming the distance functions ∆ij are warped L2

distances between fixed-length feature vectors. In our setting, we do not require our

final distances to be metrics, so we do not need our feature-to-image distances to be

metrics (see Section 3.5.1).

4.4 Solving the Optimization

We wrote a custom solver for the optimization in Equation 4.4. Standard support

vector machine packages do not handle the non-negativity constraint on the weight

vectors, but just as important, our formulation allows us to use a faster, more straight-

forward solver. We also could have used a standard convex optimization package, but

given the special structure of the constraints, a custom solver can be faster and more

memory-efficient. We chose to solve the optimization using a dual method, and were

able to find wi for one focal image with 2,000 triplet constraints in about one to two

seconds. In the rest of this section we give the derivation for the dual, the updates

for the solver that we use, and implementation details.

4.4.1 Derivation of the Dual

First, let us simplify our notation. The subscript i refers to the focal image, and

is the same throughout the optimization, so let us remove i from the optimization.
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Then let xjk = dik − dij, such that the optimization from Equation 4.4 becomes

arg min
w,ξ

1
2
‖w‖2 + C

∑
jk ξjk

s.t. : ∀j, k : 〈w · xjk〉 ≥ 1− ξjk

∀m : wm ≥ 0

∀j, k : ξjk ≥ 0

(4.7)

We will use αjk to denote the Lagrange multiplier for the triplet constraint in-

volving images j and k, µ to denote the set of Lagrange multipliers that enforce

non-negativity on the elements of w, and λjk to denote the multiplier for the non-

negativity constraint on the slack variables ξjk. The Lagrangian therefore is:

L(w, ξ, λ, α, µ) = 1
2
||w||2 + C

∑
jk ξjk −

∑
jk αjk (〈w · xjk〉 − 1 + ξjk)

−
∑

jk λjkξjk − 〈µ ·w〉
(4.8)

Let us gather our dual variables to get a more convenient form

L(w, ξ, λ, α, µ) =
1

2
||w||2−

∑
jk

αjk (〈w · xjk〉 − 1)− 〈µ ·w〉+
∑
jk

ξjk(C −αjk − λjk)

(4.9)

Now we need to find the minimum of the Lagrangian with respect to our primal

variables, w and ξ. Each ξjk value can be maximized independently, and we can see

that, since the Lagrangian is linear in ξjk, it attains a finite value only when the slope

with respect to ξjk is zero. Thus, either ξjk or C − αjk − λjk must be zero. This

removes the ξ variables from the Lagrangian and gives us the constraint

C − αjk − λjk ≥ 0 (4.10)

which, combined with the constraint λjk ≥ 0 gives us C − αjk ≥ λjk ≥ 0. Combining
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this with the positivity constraint on the dual variable α, we get

0 ≤ αjk ≤ C. (4.11)

This is the same box constraint as in the soft-margin SVM [Platt, 1998]. While it

will not be necessary to know ξjk to get the weight vector, we do need it if we wish

to compute the primal, which is useful for determining convergence. According to

the primal constraints, ξjk ≥ 1− 〈w · xjk〉 and ξjk ≥ 0. Since increasing ξjk increases

the primal objective, we want ξjk to be as small as possible, while remaining positive.

This gives us

ξ∗jk = max{0, 1− 〈w · xjk〉} (4.12)

Now we find the optimal value for w by taking the derivative of the remaining

terms with respect to w and setting to zero:

∂L
∂w

= w −
∑
jk

αjkxjk − µ
set
= 0

w =
∑
jk

αjkxjk + µ .
(4.13)
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Substituting this equality back into the Lagrangian, we get the dual

θ(α, µ) =
1

2

∥∥∥∥∥∑
jk

αjkxjk + µ

∥∥∥∥∥
2

−
∑
jk

αjk

[〈(∑
j

αjxj + µ

)
· xjk

〉
− 1

]

−

〈
µ ·

(∑
jk

αjkxjk + µ)

)〉

=
1

2

∥∥∥∥∥∑
jk

αjkxjk + µ

∥∥∥∥∥
2

−

∥∥∥∥∥∑
jk

αjkxjk

∥∥∥∥∥
2

− 2

〈
µ ·
∑
jk

αjkxjk

〉
+
∑
jk

αjk

−‖µ‖2

= −1

2

∥∥∥∥∥∑
jk

αjkxjk + µ

∥∥∥∥∥
2

+
∑
jk

αjk

(4.14)

The dual optimization that we need to solve is

arg max
α,µ

−1

2

∥∥∥∥∥∑
jk

αjkxjk + µ

∥∥∥∥∥
2

+
∑
jk

αjk

s.t. : ∀j, k : 0 ≤ αjk ≤ C

∀m : µm ≥ 0

(4.15)

4.4.2 Solving the Dual

Because our primal does not include a bias term, our dual optimization does not

include a term that jointly constrains the αjk dual variables. The soft-margin SVM

does include a term that constrains the sum of the dual variables, which is why

chunking algorithms that work with sets of the dual variables, such as Sequential

Minimal Optimization (SMO), are used to solve the optimization. Instead, we can

look at each dual variable independently in a very fast update, allowing us to use an

approach similar to the row action method described in [Censor and Zenios, 1998].

We derive these updates by taking the derivative of the dual objective with respect
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to our dual variables, µ and the set of α variables.

Taking the derivative with respect to one variable, call it αab,

∂θ

∂αab

=

〈(
−
∑
jk

αjkxjk − µ

)
· xab

〉
+ 1

= −
∑
jk

αjk 〈xjk · xab〉 − 〈µ · xab〉+ 1

= −
∑

jk 6=ab

αjk 〈xjk · xab〉 − αab ‖xab‖2 − 〈µ · xab〉+ 1
set
= 0

αab ←
1−

∑
jk 6=ab αjk 〈xjk · xab〉 − 〈µ · xab〉

‖xab‖2
.

(4.16)

After the update, we can simply clip the value to the feasible region, 0 ≤ αab ≤

C, since, due to convexity, if the optimum is outside the feasible region, the best

answer within the feasible region is at the boundary. This update can be performed

sequentially for each α variable.

Similarly, we can derive the update to the µ variable:

∂θ

∂µ
= −

∑
jk

αjkxjk − µ
set
= 0

µ← max
{
0,−

∑
jk αjkxjk

}
,

(4.17)

where the max in the second line is an element-wise max. This is necessary because

the values of µ are constrained to be positive, and as with α, if outside the feasible

region, it finds its optimum at the boundary. Note that the non-zero entries of µ

are simply the negative values of
∑

jk αjkxjk, multiplied by -1, which means that

when added to
∑

jk αjkxjk, µ simply zeroes out the negative entries. Remember that

w =
∑

jk αjkxjk + µ, so the update to µ is just really just a clipping of the negative

entries of w to zero, which makes sense since µ was the dual variable enforcing

positivity on w.
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4.4.3 KKT Conditions

The optimum of a convex nonlinear optimization is found when the Karush-Kuhn-

Tucker (KKT) conditions are satisfied for every constraint, and that the dual variable

α for a constraint does not to be updated if the constraint passes the KKT conditions.

For our optimization problem, the KKT conditions are:

αjk = 0 ⇒ 〈w · xjk〉 ≥ 1

0 < αjk < C ⇒ 〈w · xjk〉 = 1

αjk = C ⇒ 〈w · xjk〉 ≤ 1

(4.18)

These are very similar to the KKT conditions for the SVM, as described in [Platt,

1998]. We test the conditions within some tolerance to account for numerical issues

and also to speed the solver. For example, if 0.999 < 〈w · xjk〉 < 1.001, then we

consider the KKT conditions to be satisfied, regardless of the value of αjk. This

test plays a dual role: (1) we always test the KKT conditions before performing an

update, skipping the update if it passes, and (2) once all constraints pass the KKT

conditions within tolerance, we stop the optimization.

4.4.4 Iterations

We now have a set of updates, one for each α variable, and one for the µ variable, and

they can be applied in any order. In our implementation, we alternate between updat-

ing one α variable and updating the µ variable (which is equivalent to recomputing

w and clipping the values to be non-negative).

In structuring our iterations over the constraints, we use a variant of the heuristics

in [Platt, 1998]. A constraint is bound when αjk = 0 or αjk = C. The iterations are

divided at the top level into epochs. Each epoch begins with all constraints marked as

unbound, and ends when little no progress is being made with the remaining unbound
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constraints. We keep a list of the “active constraints” in the current epoch, which

are those that have not yet become bound since the beginning of the epoch. Once

a constraint is bound, it is removed from the active set and is not examined again

until the beginning of a new epoch. This heuristic is based on the observation that,

once a variable becomes bound, it is less likely to change, thus time should be spent

updating other variables.

When beginning a new epoch, we randomly reorder the constraints and iterate

through them repeatedly in that order, performing updates when they fail the KKT

conditions. We refer to each of these passes through the unbound constraints as a

sweep.

There are many possible heuristics we could use to decide when “little or no

progress” is being made in order to end an epoch. We use a combination of two

tests. If we iterate through all unbound constraints, and none change, this means

all unbound constraints pass the KKT conditions, and we end the epoch. Or, if the

dual objective is changing less than some threshold, we end the epoch. When this

second condition is met, we decrease the threshold for the next epoch, making it more

difficult to meet.

We end the optimization the first time we begin a new epoch, and on the first

sweep, no updates are performed (i.e. the KKT conditions are met for all constraints).

4.4.5 Bookkeeping

How we perform updates and track the state of the optimization can affect the amount

of computation needed to complete the optimization. In this section, we explain the

variables that we track in this implementation, and give pseudocode for updating one

constraint. Let N be the number of constraints for the optimization and D be the

dimensionality of the xjk vectors.
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To perform the α updates in Equation 4.16, we need the value for ‖xjk‖2 for every

triplet. We compute these before we begin our epochs since they are based only on

the training data and will not change. There are N of these and they are stored in

the array normxsq.

We create an array alphas of length N for our αjk variables, and set the entries

to zero. We create a variable sumalpha that will maintain
∑

jk αjk, and initialize it

to zero. We initialize an array alphax of length D to zeros. This array will maintain∑
jk αjkxjk, which is used in place of w and µ in updates. In the code below, when an

array is not indexed using brackets, we are performing a vector computation. We will

use [alphax]+ to indicate that we are only using the positive elements of the alphax

array. We have a matrix x of the data vectors, and we use x[i] to denote the data

vector for one triplet. The temporary variables oldalpha and newalpha are scalars.

For purposes of pseudocode, we index each constraint by a single index, i, which

replaces the two indexes we were using previously, e.g. jk. We will use · to denote

the dot product between two vectors. C and precision are user-defined parameters.

The update for the ith constraint:

1. testval← [alphax]+ · x[i]

2. IF (alpha[i] == 0 AND testval ≥ 1 - precision) OR

(alpha[i] > 0 AND alpha[i] < C AND abs(testval - 1) ≤ precision) OR

(alpha[i] == C AND testval ≤ 1 + precision),

ERASE i, next i, GOTO step 1. ELSE GOTO step 3.

3. oldalpha = alpha[i]

4. other alphax[d] ← alphax - oldalpha × x[i]

5. newalpha ← (1 - (other alphax + [−alphax]+) · x) / normxsq[i]
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6. IF newalpha < 0, newalpha ← 0

IF newalpha > C, newalpha ← C

7. alphax ← other alphax + newalpha × x

8. sumalpha ← sumalpha - oldalpha + newalpha

9. alpha[i] ← newalpha

4.5 Selecting Triplets

In creating the set of triplets from class-labeled training data, we could make the

exhaustive set of triplets for each focal image by pairing every in-class image with

every out-of-class image. This is excessive and can adversely affect the results.

The use of the hinge loss in the optimization gives it the property that, once

a constraint is satisfied, it does not matter by how much, and the algorithm only

focuses on constraints that are unsatisfied or are exactly satisfied. Those constraints

are referred to as “at the margin”. If we have a triplet that gives us a constraint that

is very easy to satisfy, it adds little to nothing to the final result. These easy triplets

can occur when the negative example is so different from the focal image that any

reasonable weight vector would satisfy a triplet involving it and most other positive

example. While these extra triplets do not adversely affect the outcome, they do add

to the memory and computational overhead, making it advantageous to remove them.

While easy negative examples are merely extraneous, hard positive examples are

potentially hazardous. A hard positive example is one that is so different from the

focal image in its features that, when paired with some negative example, it is not

possible to satisfy the constraints and maintain positivity of the weight vector. When

using an exhaustive set of triplets in one run on an image in the scissors category
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of Caltech 101, we observed that the only solution the algorithm could find was to

set all weights to zero, essentially “collapsing” the space.

Thus, we wish to select a subset of triplets that removes the easy negative examples

and the hard positive examples. This is equivalent to saying that we only want to

start out with training examples that are similar to the focal image in some way. For

clarity, we refer to all the images available for training as the training set and the set of

images used to train with respect to a given focal image as its learning set. We keep in

our learning set those images that are similar to the focal image according to at least

one feature-to-image distance measure. For each of the M feature-to-image patch

distance measures, we find the top K closest images. If that group contains both in-

and out-of-class images, then we make triplets out of the full bipartite match. If all

K images are in-class, then we find the closest out-of-class image according to that

distance measure and make K triplets with one out-of-class image and the K similar

images. We do the converse if all K images are out of class. In our experiments,

we used K = 5, and we have not yet performed experiments to determine the effect

of the choice of K. The final set of triplets for the focal image is the union of the

triplets chosen by the M measures. On average, we used 2,210 triplets per focal

image, and mean training time was 1-2 seconds (not including the time to compute

the features, feature-to-image distances, or choose the triplets). While we have to

solve N of these learning problems, each can be run completely independently, so

that for a training set of 1,515 images, we can complete this optimization on a cluster

of 50 1GHz computers in about one minute.

4.6 Caltech101 Experiments

We test our approach on the Caltech101 dataset [Fei-Fei et al., 2004], discussed in the

first chapter. This dataset has artifacts that make a few classes easy, but many are
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quite difficult, and due to the important challenges it poses for scalable object recog-

nition, for the last three years it has been one of the de facto standard benchmarks

for two-dimensional multi-class object recognition. The dataset contains images from

101 different categories (ignoring the background class), with the number of images

per category ranging from 31 to 800, with a median of about 50 images.

In all results we show in this chapter and the next, the features described in

Section 3.6 are used. The images are first resized to speed feature computation. The

aspect ratio is maintained, but all images are scaled down to be around 200 × 300.

We computed features for each of these images as described in Section 3.6. We used

up to 400 of each type of feature (two sizes of geometric blur and one color), for

a maximum total of 1,200 features per image. For images with few edge points,

we computed fewer features so that the features were not overly redundant. After

computing feature-to-image distances, we rescale the distances for each focal image

and feature to have a standard deviation of 0.1.

After the large-margin training, we have a set of weights, a distance function, and

an image ranking for every training image. We can get a sense of what is learned by

looking at some of the focal rankings. Figure 4.2 and 4.3 show hand-picked rankings

for two images. Figure 4.4 shows shorter rank lists for a selection of focal images

chosen uniformly at random.

4.7 Direct Applications: Searching By Prototype

The focal ranking could naturally be the basis for a browsing application over a set

of images which are sparsely labeled with relative similarity information. Consider a

ranking of images with respect to one focal image, as in Figure 4.2. The user may see

this and decide they want more sunflower images. Not all the images shown are focal

(training) images, but the eighth image in the top row is, and the user could choose
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water lilly
focal
image

water lilly
8.97

water lilly
9.01

lotus 9.65
(neg)

sunflower
9.69

sunflower
9.79

water lilly
9.80

sunflower
9.88
(neg)

sunflower
9.89

water lilly
10.00

sunflower
10.01

water lilly
10.04

lotus 10.05 sunflower
10.19
(neg)

lotus 10.24 water lilly
10.31
(pos)

Figure 4.2: The first 15 images from a ranking induced for the focal image in the upper-
left corner, trained with 15 images/category. Each image is shown with its raw distance
distance, and only those marked with (pos) or (neg) were in the learning set for this focal
image. Note that the lotus image is marked as a negative example even though it looks
very similar to the focal image. One of the artifacts of the Caltech 101 data set is the
redundancy in the categories.

sunflower
focal
image

sunflower
10.84

sunflower
11.39

sunflower
11.53

sunflower
11.64

sunflower
11.68

sunflower
11.77

sunflower
11.77

sunflower
11.87

sea horse
11.92

sunflower
11.99

sunflower
12.06

sunflower
12.06
(pos)

sunflower
12.13

sunflower
12.13
(pos)

sunflower
12.16

Figure 4.3: Focal ranking for the image in the upper-left corner, which was selected from
the results in Figure 4.2. Each image is shown with its raw distance distance, and only
those marked with (pos) or (neg) were in the learning set for this focal image.
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Figure 4.4: A selection of focal ranking results, chosen uniformly at random from 1,515
training images. The left column are the focal images, and the rankings from best to
worst are shown across the row, from left to right. As in Figures 4.2 and 4.3, the rankings
include a mix of training and testing images.
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this image. The application would then show the ranking with that sunflower image

as the focal image, shown in Figure 4.3. In this way, can help a user to navigate

images using their visual similarity, which is based upon their family resemblances.

Figure 4.5 shows two screen captures of a browsing application.

4.8 Retrieval and Classification

The distance functions only rank images with respect to a particular focal image.

When given a novel image, we can place it in the rankings for all focal images, but

the distances to that novel image are not directly comparable. This is because (1) the

weight vectors for each of the focal vectors are not constrained to share any properties

other than non-negativity, (2) the number of feature-to-image distance measures and

their potential ranges are different for each focal image, and (3) some learned distance

functions are simply better than others at characterizing similarity within their class.

There is cause for hope, however, because the set of focal rankings is a rich source

of information; every focal image ranks all other training images, and we know the

position of a test image in each of these lists. In this section we show two ways to

use these interrelated focal rankings to perform image retrieval and classification.

4.8.1 Retrieval and Classification I: Additional Training

One way to address this is to do a second round of training for each focal image where

we fit a logistic classifier to the binary (in-class versus out-of-class) training labels and

learned distances. This puts all distances on a [0, 1] scale and fits the gradient to how

well each focal ranking ranks training images of its own class. Now, given a query

image Q, we can compute a probability that the query is in the same class as each

of the focal (training) images, and we can use these probabilities to rank the training
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(a)

(b)

Figure 4.5: Two screen shots from a simple image browsing application, where the focal
rankings were learned for the prototype image. The prototype image in the bottom ranking
was selected from the second row in the top ranking. Note that the top ranking does
not contain many illustrations, and browsing using an illustration has brought up more
illustrations of dalmatians.
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0

0.5

1.0
10.80 10.86 10.98 11.01 11.11 11.19 11.29 11.31 11.39 11.43 11.43 11.49 11.54 11.56 11.56 11.62 11.67 11.66

Figure 4.6: An illustration of approach I to retrieval (Section 4.8.1) where we fit a logistic
to each focal ranking. This figure shows part of the ranking for one focal image, and the
distances to each of the training images in the ranking. Distances are shown in red for
negative training examples, and green for positive training examples. The graph is the
logistic function that maps from the training distances to the [0, 1] scale (the graph is not
smooth because it is shown sampled at the given distances).

images relative to one another. Figure 4.6 shows a function learned for one focal

image. In addition to putting the probabilities on the same scale, the logistic also

helps to penalize poor focal rankings.1

To classify a query image, we first run the retrieval method above to get the

probabilities for each training image. For each class, we sum the probabilities for

all training images from that class, and the query is assigned to the class with the

largest total. Formally, if pj is the probability for the jth training image Ij, and C

is the set of classes, the chosen class is arg maxC
∑

j:Ij∈C pj. This can be shown to be

a relaxation of the Hamming decoding scheme for the error-correcting output codes

in [Allwein et al., 2000] in which the number of focal images is the same for each

class. This decoding procedure was also used in [Zhang and Malik, 2003].

4.8.2 Retrieval and Classification II: Two Heuristics

The second approach for turning focal rankings into retrieval results makes use of

two simple heuristics that use the K focal distance functions and the position of a

1We experimented with abandoning the max-margin optimization and just training a logistic for
each focal image; the results were far worse, perhaps because the logistic was fitting noise in the
tails.

110



Chapter 4. Focal Learning of Local Distance Functions

query image Q in those rankings to order the K training images. To understand the

heuristics, it helps to think of each focal distance function as assigning a real number

to other images, and also as inducing a ranking over images.

The first heuristic attempts to put each of the K spaces on the same scale by

normalizing each of the distance functions by a constant. We took a very simple

approach, and normalized each distance function by the distance between the focal

image and the closest training image according to the focal image’s distance function.

If the distance to the closest training image is zero, then we take the smallest nonzero

distance from the ranking.

The second heuristic attempts to penalize the focal images which do not rank

the test image well relative to the rankings of other training images. The distance

function for one focal image induces a ranking that includes the query image Q. If

Q is very similar to the focal image, then there should be few dissimilar training

images ranked above Q. To capture this quantitatively, we simply count the number

of training images that are labeled as out-of-class that are ranked above Q. The

larger the value, the less similar we believe Q is to the focal image, relative to the

other focal images. We call this the error penalty for the focal image. For example,

Figure 4.2 shows the raw distances for each of the images to the focal image in the

upper-left corner. There are three negative training examples in this ranking, the

lotus in the 3rd position, the sunflower in the 7th position, and the sunflower in the

13th position. The test images in the 1st and 2nd positions would be given an error

penalty of zero, and the test image of the sunflower in the 8th position (first image,

second row) would be given an error penalty of two.

These two heuristics are complementary, and to use both, we generate a score

from Q to each focal image by simply multiplying the normalized distance by the

error penalty plus one (to avoid zeros). It is interesting to note that these two

heuristics capture the same information as the logistic approach. The first heuristic
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normalizes the space to make values across focal images more comparable, which the

logistic achieves by putting all scores on a [0, 1] scale. The second heuristic adjusts

those scores to represent the quality of the ranking, which the logistic achieves by

changing the inflection point of the curve depending upon how the training examples

were ranked.

Given retrieval results for a query image, we can assign a label to the query

using a k-nearest-neighbor classifier. In our experiments, we use a modified 3-NN

algorithm, where if two of the top three images have the same category label, that

label is assigned to the query image. If not, then we look down the list until either

(1) we find a training image with the same label as an image earlier in the list, or (2)

we reach the tenth item without finding two that agree, in which case we assign the

label of the first image in the list.

These heuristics work surprisingly well, giving results that are comparable to

or better than the results using the more principled logistic training above. These

experiments were run using a different training/testing regime and so are not directly

comparable to the results reported in the graphs. But when both approaches were

tested using that regime, the heuristic approach performed better than the logistic

version when using five training examples, and only slightly worse when using fifteen

examples.

4.8.3 Classification Results

In our classification experiments, we ignore the background class and work in a forced-

choice scenario with the 101 object categories, i.e. a query image is assigned to exactly

one of the categories. We use the same testing methodology and mean recognition

reporting described in Grauman et al. [Grauman and Darrell, 2006b]: we experiment

with different training set sizes (given in number of examples per class), and in each
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training scenario, test with all other images in the Caltech101 dataset, except the

BACKGROUND Google class. Recognition rate per class is computed, then averaged

across classes. This normalizes the overall recognition rate so that the performance

for categories with a larger number of test images does not skew the mean recognition

rate.

We ran a series of classification experiments using all features and the logistic

training method from Section 4.8.1, each with a different number of training images

per category (either 5, 15, or 30), where we generated 10 independent random splits

of the 8,677 images from the 101 categories into training and test sets. We report

the average of the mean recognition rates across these splits as well as the standard

deviations. We determined the C parameter of the training algorithm using leave-one-

out cross-validation on a small random subset of 15 images per category, and our final

results are reported using the best value of C found (0.1). In general, however, the

method was robust to the choice of C, with only changes of about 1% in recognition

with an order of magnitude change in C near the maximum. The graph in Figure

1.2 shows these results with most of the published results to date for the Caltech 101

dataset.

In the 15 training images per category setting, we also performed recognition

experiments on each of our features separately, the combination of the two shape

features, and the combination of two shape features with the color features, for a

total of five different feature combinations. We performed another round of cross-

validation to determine the C value for each feature combination2. Recognition in

the color-only experiment was the poorest at 6% (0.8% standard deviation)3 The next

2For big geometric blur, small geometric blur, both together, and color alone, the values were
C=5, 1, 0.5, and 50, respectively.

3Only seven categories did better than 33% recognition using only color: Faces easy, Leopards,
car side, garfield, pizza, snoopy, and sunflower. Note that all car side exemplars are in black
and white.
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Figure 4.7: Average confusion matrix for 15 training examples per class, across 10 inde-
pendent runs. Shown in color using Matlab’s jet scale, shown on the right side.

best performance was from the bigger geometric blur features with 49.6% (±1.9%),

followed by the smaller geometric blur features with 52.1% (±0.8%). Combining

the two shape features together, we achieved 58.8% (±0.8%), and with color and

shape, reached 60.3% (±0.7%), which is better than the best previously published

performance for 15 training images on the Caltech 101 dataset [Zhang et al., 2006].

Combining shape and color performed better than using the two shape features alone

for 52 of the categories, while it degraded performance for 46 of the categories, and

did not change performance in the remaining 3. In Figure 4.7 we show the confusion

matrix for combined shape and color using 15 training images per category. The

ten worst categories starting with the worst were cougar body, beaver, crocodile,

ibis, bass, cannon, crayfish, sea horse, crab, and crocodile head, nine of which

are animal categories.
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Almost all the processing at test time is the computation of the feature-to-image

distances between the focal images and the test image. In practice the weight vec-

tors that we learn for our focal images are fairly sparse, with a median of 69% of

the elements set to zero after learning, which greatly reduces the number of feature

comparisons performed at test time. We measured that our unoptimized code takes

about 300 seconds per test image.4 After comparisons are computed, we only need to

compute linear combinations and compare scores across focal images, which amounts

to negligible processing time. This is a benefit of our method compared to the KNN-

SVM method of Zhang, et al. [Zhang et al., 2006], which requires the training of a

multiclass SVM for every test image, and must perform all feature comparisons.

4To further speed up comparisons, in place of an exact nearest neighbor computation, we could
use approximate nearest neighbor algorithms such as locality-sensitive hashing or spill trees.
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Global Learning of Local Distance

Functions

5.1 Introduction

This chapter presents in greater detail the second formulation illustrated in Figure

3.10 for learning distance functions. The formulation in the previous chapter was the

first of the two, and it is most well-suited to image browsing because it independently

learned a distance function for each training image. To apply that formulation to

image retrieval and classification, we must employ heuristics or another round of

learning. In contrast, the formulation in this chapter is designed to learn distance

functions which apply directly to retrieval and nearest-neighbor classification. This is

possible because it learns all the distance functions together in one large optimization,

which enforces that they are globally-consistent.
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5.2 Reference Images

In the top row of Figure 5.1 we repeat the second choice for the triplet configuration

shown in Figure 3.10. In this formulation, the arrows representing the direction of

the distance functions point toward the center image, which we now call a reference

image. For this triplet, we learn the distance functions for images j and k, but not

for image i. Image i is present to ensure that the distance functions learned for j and

k are calibrated correctly to one another, given that image j should consider image

i to be closer than image k should. Thus, they are “referencing” image i in order to

learn their distance functions.

In order for such a formulation to work, we need many triplets where images

alternately play the roles of images i, j, and k. When a given image is in the role of

image j, it is adjusting its distance function so that it is closer to a positive example.

In the role of image k, it is adjusting its distance function such that it is further from

a negative example. And when it is in the role of image i, it is serving to calibrate

two other images to one another, to ensure that the distances learned are consistent.

In the rest of Figure 5.1, we show the rest of the possible triplets for four training

images. By including our training images in these various roles, we can create a rich

tapestry of distance constraints between our training images that interrelate them

all.

When we test with a new image, that test image replaces the reference image in

the triplet. Given a test image q, if Djq < Dkq, then image j is more similar to q

than is k, according to our learned distance functions, which gives us an ordering over

training images for performing retrieval. Note that this allows a direct application of

the distances we have learned, without any further manipulation. Also, say j is the

most similar image of all our training images. In that case, it would be reasonable to

guess that image q is the same class as image j (e.g., a dalmatian if we are talking
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image iimage j image k
Dki = 〈wk · dki〉Dji = 〈wj · dji〉

w2 · d21

#2 #1 #3

w3 · d31

w2 · d21 w4 · d41

#4

w1 · d12 w3 · d32

w4 · d42w1 · d12

w4 · d43 w1 · d13

...... ...

#2

#2

#2

#1

#1

#1

#1

#3

#3

#4

#4

Figure 5.1: The top row gives the triplet relationships used in the example global triplet in
Figure 3.10. Here we have numbered each image and generated five of the eight possible
triplets for this set of four images.
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1

2

3

4

“dalmatian” “Faces”

Figure 5.2: This figure shows, for the triplets in Figure 5.1, which weight vectors are
linked by a triplet constraint. Even for the incomplete set shown in that figure, we have a
complete bipartite graph for the four images shown, with a disjoint set for each category.
If we were to use all triplets for 101 different categories, our constraints would form a
101-partite graph.

about the images in the top triplet in Figure 5.1). Thus, the distance functions can

also be used directly to perform a nearest-neighbor classification.

Ideally we would like to learn a parameterized distance function for every training

image such that the relationships for all triplets of training images hold:

Dji < Dki (5.1)

As described in Chapters 3 and 4, we parameterize our distance functions to be

weighted combinations of patch distances. Using the vector notation introduced in

Equation 3.3, we can express this as

〈wk · dki〉 > 〈wj · dji〉 (5.2)

With the constraint in this form, it is perhaps easier to see a key difference between

this and the formulation in the previous chapter: this constraint involves two sets of

weights while the previous formulation involved only one. This serves to underscore

that the learning problem does not break apart as in the previous formulation; the
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weights we are trying to learn are tied together in the constraints.

As we also saw in the last chapter, the ideal case described above is seldom

possible for natural images. We again turn the triplet inequalities into constraints for

a large-margin optimization.

5.3 Large-Margin Formulation

Our derivation of the large-margin formulation largely follows that in Section 4.3. We

can again turn the above constraint into a soft constraint with a slack variable:

〈wk · dki〉 − 〈wj · dji〉 ≥ 1− ξijk (5.3)

the primary difference being that a single constraint now involves two weight vectors.

We can follow the derivation from Section 4.3 to arrive at the following optimization:

min
{wi},ξ

1
2

∑
i ‖wi‖2 + C

∑
ijk ξijk

s.t. ∀i, j, k : ξijk ≥ 0

∀i, j, k : 〈wk · dki〉 − 〈wj · dji〉 ≥ 1− ξijk

∀i, m : wi,m ≥ 0

(5.4)

However, now the optimization is over all weight vectors simultaneously, and the

constraints range over all triplets, so the constraints are for all values of i, j, and k.

This may appear to be a more complicated optimization than in Equation 4.4,

but with a small amount of manipulation, it can be massaged into the same form.

We denote by W the vector which is the concatenation of the image-specific vectors

wi for every image of our training set. Thus, each image-specific vector corresponds

to a subrange of W. We also need to introduce a similar expansion for the distances.

Let Xijk denote a vector of the same length as W such that all of its entries are 0
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except the subranges corresponding to images k and j, which are set to dki and −dji,

respectively. It is straightforward to verify that the term wk · dki −wj · dji can now

be simply written as W ·Xijk and Eq. 5.3 distills to W ·Xijk ≥ 1− ξijk. We arrive at

the following form, which differs from Equation 4.4 only in that it iterates over three

image indexes instead of two:

min
W,ξ

1
2
‖W‖2 + C

∑
ijk ξijk

s.t. ∀i, j, k : ξijk ≥ 0

∀i, j, k : W ·Xijk ≥ 1− ξijk

∀m : Wm ≥ 0

(5.5)

where C controls the trade-off between the loss and regularization terms and is an

input to the optimization (Section 5.4.4 discusses the choice of C parameter).

5.4 Solving the Optimization

As in Chapter 4, we solve this optimization using a dual method. The dual problem

of the primal in Eq. 5.5 is

max
α,µ

−1
2

∥∥∥∑ijk αijkXijk + µ
∥∥∥2

+
∑

ijk αijk

s.t. ∀i, j, k : 0 ≤ αijk ≤ C

∀m : µm ≥ 0

(5.6)

The size of the problem is our primary hurdle. The large number of constraints

results in a longer running time for all optimization methods we investigated. Also

fitting the data required into memory posed a significant challenge. We use the same

updates as in the last chapter but with minor adaptations. In the following subsec-

tions, we describe modifications and techniques that made the problem tractable.
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5.4.1 Selecting Triplets

As we discussed in Section 4.5, some triplets are extraneous (easy negative examples)

and some can cause the set of constraints to be unsatisfiable (hard positive examples).

As the in the focal learning version, extraneous triplets are harmless, except that

they add to the size of the problem. This was not as much of a concern in the focal

learning setting because the problems were small, but in the global learning setting

we are solving a much larger optimization.

If we were to use the exhaustive set of triplets formed from every combination of

reference, positive, and negative images from the training set, for an experiment using

15 images per category, we would have 15 reference images per category (1515) times

the number of positive examples for each reference image (×14), times all negative

examples for each of those positive pairs (×1500) for a total of about 31.8 million

triplets. If the training data is too large to fit into memory, then we need to perform

disk seeks within our iterations. Also, the amount of time for each iteration over the

data increases linearly with the number of triplets, and the time required to run to

completion or reach a good answer may increase super-linearly. We again prune the

possible set of triplets using the feature-to-set distances. For an image j, for each

feature, we order the other images in the training set by their feature-to-set distance

and make use of the top N closest for each feature of j. Consider a positive example

in this short list: we know that this positive pair is similar according at least one

feature, so it is likely we could find a weighting that makes the distance small. A

negative example in this short list is also a good candidate because it will probably

give a constraint close to the margin, which the algorithm should focus on. Thus,

given that image i was in the short list for j, we want to use the distance vector dji in

some of our triplets. We group these pairs by the reference images (i in this case) and

then form triplets from all pairs involving that reference image. We chose a depth of
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N = 5 without testing other parameter choices, and found it to give a good reduction

in the number of triplets. For 15 images per category, we reduce the set of triplets

by roughly half, to “only” 15.7 million.

5.4.2 Arranging the Data

Again we organize the dual updates into epochs and sweeps, as described in Sec-

tion 4.4.4, but within each sweep, we arrange the data to further speed computation.

In the focal version, we could compute off-line the difference of the distance vectors

for each triplet (the xjk vector introduced in Equation 4.7), and we could iterate

through these in any order. While there are many triplets and an xjk vector for each,

the individual learning problems are small, so it is reasonable to precompute these

and hold them in memory.

This is not possible in the global version because the d vectors involved in a single

constraint can only be combined after they are multiplied by their weight vectors, and

each time a triplet is revisited, the weight vectors may be changed. Instead, we need

to store the the d vector for each pair of images that are included in the chosen set

of triplets, and we structure the sweep such that we work with contiguous chunks

of data. The easiest way to arrange the data for the global problem is by reference

image, and inside each sweep is a set of three nested loops:

1. Loop over the reference images involved in “active” constraints, randomly or-

dered at the beginning of each epoch. Load all d vectors for which this is the

reference image.

2. Loop over the “positive” training images that use this reference image and are

involved in active constraints.

3. Loop over the “negative” training images that use this reference image and are
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involved in active constraints.

Inside the inner loop, we process the update for one active constraint. If we cannot

load all the data for the entire optimization into memory, we can at least load all the

data for a set of updates at once, reducing the number of disk seeks inside the inner

loop. If we can load all the data into memory, this still reduces the number of cache

misses in the inner loop.

The dual updates we use are very similar to the updates used in on-line algo-

rithms (e.g., [Crammer et al., 2006]), and regular structure in the data can skew the

performance or the convergence of these algorithms. While we process all constraints

for one reference image at a time, updates are performed to the weight vectors for

several training images. Our hope is that any affect regularity in the data order has

on convergence is outweighed by the speed at which we can process the data.

5.4.3 Early Stopping

The same KKT conditions (Section 4.4.3) apply as in the focal version, and the

dual solver terminates when it can make a full pass over all constraints without any

updates. A given constraint may not change because either (1) it has satisfied the

KKT conditions within some precision [Platt, 1998], or (2) the update to the dual

variable falls below a threshold for a “useful”update (we use the threshold from [Platt,

1998]). The solver often stops before full convergence, but for large data set sizes it

still takes a long time to run. Using 5 images per category, the optimization ran to

completion in about 11 minutes. Using 15 images per category, it took 10 hours, and

with 20 images, approximately 16 hours.

An advantage of the dual solver is that, like online learning methods such as

[Shalev-Shwartz et al., 2004], it finds a near-optimal solution very quickly. We record

the value of the dual objective after every pass over the data, and we use the rate of
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change of the dual as an indicator of progress; when the rate of change of the dual

becomes small (e.g. 0.001% of the value of the dual), most of the progress has already

been made, and we can use the weights learned up to that point. In practice this

works well; with 15 images per category, the recognition performance was the same

using weights taken after running to completion (10 hours) and weights sampled after

one hour of training. The results reported in this paper for 20 images per category

are from our only sample of the weights, taken after about 21
2

hours of training.

5.4.4 Setting the Trade-Off Parameter

As in the last chapter, our algorithm has one free parameter, the trade-off parameter

C in Equations 5.5 and 5.6, and it plays a crucial role. Using a large value for C

might put too much emphasis on the empirical loss which often results in over-fitting

the training set. An excessively small value as the choice of C typically yields an over-

regularized setting which leads again to poor performance in practice. A popular and

practical approach for choosing C is to run the full learning procedure with multiple

suggestions for C on a held-out portion of the training set, also called a validation set.

This approach entertains some formal properties [Kearns and Ron, 1999] and often

yields very good results in practice. However, the approach is quite time consuming

as it requires running the training algorithm several times for different partitions of

the data.

Due to the size of our problem we chose an alternative approach which is based

on recent advances in research on online learning algorithms and fits nicely with our

dual formulation of the problem. For a choice of C, we make one pass over our set of

triplets, and for each triplet i, j, k, we (1) evaluate the loss for that example using the

formula [1−W ·Xijk]+ then (2) make an update to its αijk dual variable (effectively

updating the weight vector W). In this way, every example in the set serves once as
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a “held-out” example before contributing to the model. By taking the average loss

across the training examples after one sweep through the data, we get a number that

we can compare to runs with different values of C. The value of C that gives the

smallest average loss is the parameter that we use to run the full learning algorithm.

The predictions of this online algorithm, known as Passive-Aggressive [Crammer et al.,

2006], are guaranteed to be competitive with the predictions of the optimal solution

of Eq. 5.5. Though we did not make use of it, the vector W obtained after a single

online pass through the training set can serve as a very good initialization for the

batch optimization process. We sampled values of C very coarsely, at half-orders of

magnitude. For the data set using 20 images per category, each C test took only a

couple minutes.

5.5 Caltech101 Experiments

We performed experiments on the Caltech 101 data set, similar to those in the last

chapter. We visualize the learned weights using colored circles; the circles are centered

on the patches (though are not the same size as the patches used to compute the

features), and the color illustrates the weight of the patch. Figure 3.9 showed three

such hand-picked results from the 15 images/category experiments for one of the

features. In Figure 5.3, we show the weights for all three types of features, for a

randomly-selected sample of 1,515 training images. The colors are on the Matlab jet

scale, where the largest value is in dark red, and the gradient runs from warm to

cool, to dark blue as the smallest non-zero weight. Features with zero weight are not

shown. The color mapping is normalized per image, so the colors can be compared

across features for a given image, but cannot be directly compared across images.
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Figure 5.3: Weights learned for a randomly-selected sample of 1,515 training images. The
original images are shown in the left column, and the right three columns illustrate weights
assigned to the three types of features described in Section 3.6. In order from left to right
they are the big geometric blur feature, the small geometric blur, and the color feature.
The centers of the features are marked by the circles, though they are not scaled to the
size of the feature extents. The color indicates the relative value of the weight, using the
Matlab jet scale (shown in Figure 5.5). For each image, the weights are normalized; dark
red is the largest weight assigned to any feature for the image, and the scale progresses
from warm to cool colors with dark blue indicating the smallest non-zero weights. The
weights are not normalized across images. Features assigned a zero weight are not shown.
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5.5.1 Retrieval

The distances from training images to a query image can be used directly to perform

retrieval. In Figure 5.4 we show retrieval results for a randomly-selected subset of

test images. These are from the 15 images/category experiment, and were chosen

from among the 7,162 available test images.

5.5.2 Classification

We performed experiments using 5, 10, 15, and 20 images per category, using the

remaining images in the dataset for testing, as in Section 4.6. For each test image,

we order the training images according to their distance to the test image using

their learned distance functions. We performed classification using the modified 3-

NN algorithm described at the end of Section 4.8.2. The number of test images

varies between classes, with some of the easiest classes having the greatest number,

so we compute our average recognition as in [Grauman and Darrell, 2006b] by first

computing the percentage correct for each class, and then averaging those numbers

to get mean recognition. This is equivalent to computing the average of the diagonal

of the confusion matrix. We use all 101 categories in training and testing, but do not

make use of the background class. Most results to date have been reported using all

101 categories except [Griffin et al., 2007] which omits the Faces easy category, a

confuser for the Faces category.

The graph in Figure 1.2 shows the results using the global learning with several

of the results published in the last few years. At five and ten images per category,

we perform below the best results from [Zhang et al., 2006], and cross somewhere

between ten and fifteen images per category. At fifteen images per category, we

achieve a recognition rate of 63.2%, about 3% better than the best published results,

and at 20, we achieve 66.6%, almost 10% better than the next best result that trains
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Figure 5.4: A randomly-selected sample of retrieval results from the 15 images/category
experiment. The left column are test images, and the row to the right of each shows the
top seven ranked training images according to the learned distance functions.
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Figure 5.5: Confusion matrix for 15 images per category, shown using the jet color scale
from Matlab. Dark red indicates 100% while dark blue indicates 0%, with a gradient from
warm to cool colors in between (see scale, right). A perfect matrix would be dark blue
matrix except for a dark red diagonal.

and tests on all 101 categories. It makes sense that our performance would increase

dramatically with the number of categories: we use a nearest-neighbor classifier, plus

at the core of our method is an assumption that there are pairs of similar images

in the training set. This is more likely to be true as the number of training images

grows.

All other approaches other than [Frome et al., 2006] use only shape features,

whereas our work and [Frome et al., 2006] make use of rudimentary color features.

Most of our performance is gained from the shape features; at 15 images per category,

the color features add only 2% to the mean recognition. At the same time, the fact

that these simple color features improve performance at all demonstrates that our
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method is able to naturally combine features of very different types. In Figure 5.5,

we show our confusion matrix for 15 images per category.
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Chapter 6

Conclusion: What Is Missing

The main contribution of this thesis is an algorithm for learning weights for features

in training images and using the weighted feature sets to perform exemplar-based

categorization. Fellow researchers have argued that exemplar-based methods will lose

out to approaches that generalize at the class level, and that with so many parameters

to learn, such an approach is doomed to overfit. Perhaps the true contribution of this

work is just the demonstration that it can work well. Still, there is much missing

from this approach and the recent work in the field of object recognition. The goal

of this chapter is simply to point out some of what is missing.

If our ultimate goal is to replicate animal or human visual systems, some of the

issues we need to tackle are:

1. objects can be observed at different distances, which, from the observer’s stand-

point, is seen as a change in scale;

2. 3D objects can be observed in different poses, the effect of out-of-plane rota-

tion and, in the case of non-rigid objects, articulation; most commonly these

variations are addressed by training with a set of 2D images that sample the

possible poses;
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3. objects exist as part of a larger scene, which requires first detecting the object

of interest and also makes it possible to use the surrounding context to aid in

recognition; and

4. objects are part of categorical hierarchies

As we discussed in the first chapter, machine object recognition is defined by the

data we use to train and test, and the difficulty inherent in the data set will shape our

algorithms. In the last four years, many researchers have focused on the Caltech 101

data set, which has little rotational, scale, pose, or positional variation, and most of

the recent approaches assume and exploit at least one of those regularities. Our work

is no exception. It is generally believed that scale invariance is the easiest to tackle,

just computationally expensive, so if the data set does not require it to be handled, it

is neatly swept under the rug. Approaches such as [Lazebnik et al., 2006], [Mutch and

Lowe, 2006], and [Zhang et al., 2006] use the rough absolute positions of the features,

thus exploiting the regular positions of objects in the frame, whereas approaches such

as ours do not use any positional information, so they are not guilty of exploiting

positional regularity, but they are also ignoring valuable geometric information. In

fact, none of the new approaches since [Berg et al., 2005] shown in 1.2 have provided

a way of incorporating relative geometric relationships between features. Lastly, the

data set is constructed so that there is ostensibly only one object in each image,

though it is more correct to say there is only one right answer for each image. This

is not necessarily a flaw; perhaps it is a fair assumption if we are automatically

labeling web images for a search engine since, after all, these images were gathered by

scraping a web image search engine. But perhaps this task should more properly be

called “image classification” instead of “object recognition”. All of the top-performing

algorithms exploit this aspect of the data set.

The Caltech 256 data set seeks to address some of the shortcomings of the Caltech
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101 data set, though it is still an “image classification” task. It has more rotational,

scale, and positional variation, and more than double the number of classes, which

should help to weed out approaches that are too computationally expensive to scale

to larger numbers of classes. Approaches such as [Grauman and Darrell, 2006a] and

[Lazebnik et al., 2006] which do not compare all features to one another are better

suited to larger data sets, and the method of [Lazebnik et al., 2006] is the only

approach that we know of to date for which there are published results on Caltech

256 [Griffin et al., 2007]. By using the approximate techniques in Chapter 2 such as

LSH to compute the feature-to-image distances used in the distance learning, we may

be able to greatly increase the size of the data set we can process with our method

as well. However, all of these ultimately scale linearly with the number of classes. If

we are to believe that humans recognize about 30,000 visual categories [Biederman,

1987], and this is our ultimate goal, then we have a long way to go still.

For those that wish to pursue object recognition in a setting closer to human ob-

ject recognition, there are the VOC (PASCAL) 1 and TRECVID 2 data sets, which

have been introduced as part of object recognition competitions. The VOC 2006

data set contains ten classes (bicycles, buses, cats, cars, cows, dogs, horses, motor-

bikes, people, and sheep) with a great deal of appearance, pose, scale, and positional

variation, and many images contain more than one target object. The TRECVID

data set is of a similar nature, with 39 different categories, though some of them

(such as Natural-Disaster) are not really visual categories. It would be possible

to apply approaches such as ours to these types of data sets, perhaps by using a

“sliding window” approach, though there is significant work to be done to make it

computationally efficient. If our ultimate goal is to design general object recognition

systems, we need to focus on efficiently recognizing multiple objects in larger scenes.

1http://www.pascal-network.org/challenges/VOC/databases.html
2http://www-nlpir.nist.gov/projects/t01v/
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Perhaps what is missing is an efficient way to gather a good sample of natural scenes

representing more than 200 visual classes.

Perhaps our best hope for large-scale object recognition lies in part with hier-

archical categorization. In categorization tasks that involve very large numbers of

categories, it should be possible to make very rough distinctions very quickly and fo-

cus our learning efforts on the finer distinctions. In Chapter 3 we made the argument

that which features are important varies with the image being considered, but we ig-

nored that the importance of features also depends upon to what the image is being

compared. The features that are important for telling a ketch (a type of sailboat)

from a flamingo are probably very different from those used to tell it apart from a

schooner (another type of sailboat). Our approach does not address this; it tries to

sort out all distinctions all at once. The approach in [Zhang and Malik, 2003], and

in general, multi-way classification methods based on pairwise classifiers, are closer

in spirit to a hierarchical approach in that they learn parameters to tell apart pairs

of classes, though training N(N−1)
2

classifiers as N approaches 30,000 is not realistic.

Perhaps the next frontier are algorithms that separate out the easy from the hard

decisions inside the loop. Perhaps then we can finally begin to address superordinate,

basic-level, and subordinate categories in a manner closer to humans.
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