
A Hierarchical Coordination Language for Reliable
Real-Time Tasks

Arkadeb Ghosal

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-10

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-10.html

January 31, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Hierarchical Coordination Language for Reliable Real-Time Tasks

by

Arkadeb Ghosal

B.Tech. (Indian Institute of Technology, Kharagpur) 2001
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Alberto Sangiovanni-Vincentelli, Chair
Professor Thomas A. Henzinger

Professor Edward A. Lee
Professor J. Karl Hedrick

Spring 2008

The dissertation of Arkadeb Ghosal is approved:

Professor Alberto Sangiovanni-Vincentelli, Chair Date

Professor Thomas A. Henzinger Date

Professor Edward A. Lee Date

Professor J. Karl Hedrick Date

University of California, Berkeley

Spring 2008

A Hierarchical Coordination Language for Reliable Real-Time Tasks

Copyright c© 2008

by

Arkadeb Ghosal

Abstract

A Hierarchical Coordination Language for Reliable Real-Time Tasks

by

Arkadeb Ghosal

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

Complex requirements, time-to-market pressure and regulatory constraints have

made the designing of embedded systems extremely challenging. This is evident by

the increase in effort and expenditure for design of safety-driven real-time control-

dominated applications like automotive and avionic controllers. Design processes are

often challenged by lack of proper programming tools for specifying and verifying crit-

ical requirements (e.g. timing and reliability) of such applications. Platform based

design, an approach for designing embedded systems, addresses the above concerns

by separating requirement from architecture. The requirement specifies the intended

behavior of an application while the architecture specifies the guarantees (e.g. exe-

cution speed, failure rate etc). An implementation, a mapping of the requirement

on the architecture, is then analyzed for correctness. The orthogonalization of con-

cerns makes the specification and analyses simpler. An effective use of such design

methodology has been proposed in Logical Execution Time (LET) model of real-time

tasks. The model separates the timing requirements (specified by release and termi-

nation instances of a task) from the architecture guarantees (specified by worst-case

execution time of the task).

1

This dissertation proposes a coordination language, Hierarchical Timing Language

(HTL), that captures the timing and reliability requirements of real-time applica-

tions. An implementation of the program on an architecture is then analyzed to

check whether desired timing and reliability requirements are met or not. The core

framework extends the LET model by accounting for reliability and refinement. The

reliability model separates the reliability requirements of tasks from the reliability

guarantees of the architecture. The requirement expresses the desired long-term reli-

ability while the architecture provides a short-term reliability guarantee (e.g. failure

rate for each iteration). The analysis checks if the short-term guarantee ensures the

desired long-term reliability. The refinement model allows replacing a task by another

task during program execution. Refinement preserves schedulability and reliability,

i.e., if a refined task is schedulable and reliable for an implementation, then the re-

fining task is also schedulable and reliable for the implementation. Refinement helps

in concise specification without overloading analysis.

The work presents the formal model, the analyses (both with and without re-

finement), and a compiler for HTL programs. The compiler checks composition and

refinement constraints, performs schedulability and reliability analyses, and generates

code for implementation of an HTL program on a virtual machine. Three real-time

controllers, one each from automatic control, automotive control and avionic control,

are used to illustrate the steps in modeling and analyzing HTL programs.

Professor Alberto Sangiovanni-Vincentelli, Chair

Date

2

Acknowledgements

I thank Prof. Alberto Sangiovanni-Vincentelli for his help, guidance and support.

The course he taught on embedded systems has been a foundation for my research. I

have been surprised again and again with his enthusiasm and energy, and thank him

for making time from his busy schedule; our discussions have always been a great

learning experience for me.

I thank Prof. Thomas A. Henzinger for his guidance and support in my research.

Many of the research directions explored in this thesis grew out of discussions with

him. He has been relentless in providing feedback, comments, suggestions and direc-

tions for the work presented here. His classes on algorithms and formal verification

have been central in understanding many concepts. The experience of seeing him

work from close will be a memory of a life-time.

Prof. Christoph Kirsch has been truly a friend, philosopher and guide. The hours

of discussions that I had with him in the last six years led the foundation of my

research. I am grateful for his time and patience. His guidance on language design,

writing styles and research presentations have helped me immensely.

Prof. Edward A. Lee was a reader of my Masters report, served as the chair

of my qualifying exam committee, has agreed to be a member of my dissertation

committee, taught an excellent course on embedded systems and has always given

valuable feedback on my research. I would like to thank him for his help and support.

I would like to thank Prof. J. Karl Hedrick for being in my qualifying exam

committee and agreeing to be in the dissertation committee. I am grateful for his

comments and feedback on a research project I was working with his student, Carlos

Zavala.

i

Daniel Iercan has been a strong support for this work with his excellent skills in

programming and implementation. We have never met but spent hours on Skype

discussing theoretical details, designs, proofs, examples, papers, presentations, and

bugs. He has been relentless in implementing many of the concepts presented here.

I would like to thank Prof. Andreas Kuehlmann, Prof. Kurt Keutzer, Prof. George

Necula, Prof. Satish Rao, and Dr. John Koo, for the excellent classes they taught. A

special thanks to Prof. Kurt Keutzer who was equally comfortable in teaching CAD

design flow and business of software.

During the course of the research, I had an opportunity to work with General

Motors Research on cost modeling of embedded systems. I would like to thank Tom

Fuhrman, Alan Baum, Paolo Giusto, Sri Kanajan and Randall Urbance for their help

and guidance for the project. I am particularly grateful to Sri Kanajan for his support

and time.

I would like to thank the Management of Technology Program for providing an

excellent opportunity to learn the basics of business. I am grateful to Prof. Andrew

Isaacs, Prof. Reza Moazzami, Prof. Charles Wu and Prof. Sarah Beckman for the

amazing courses they taught.

I would like to extend my gratitude for the support and help I received from my

friends: Mohan Dunga, with whom I shared apartment, cooking and television time

for six years; Satrajit Chatterjee, with whom I discussed everything under the sun

and beyond; Kaushik Ravindran, who has surprised me repeatedly with his knowl-

edge; Krishnendu Chatterjee, whose skills in music and in games are captivating;

Arindam Chakrabarti, who amazed me by his ability to passionately debate any

topic; Rahul Tandra, whose poker and cricket skills could have been better utilized;

Pankaj Kalra, who has been always a gentleman; Anshuman Sharma, whose company

always brought a smile; Abhishek Ghose, who was usually the coolest dude in town;

and Vinayak Prabhu, who has been an excellent office mate.

ii

I would like to acknowledge the following friends at the DOP center who have been

a source of joy and encouragement: Alvise Bonivento, Mike Case, Elaine Cheong,

Abhijit Davare, Douglas Densmore, Ben Horowitz, Jorn Janneck, Marcin Jurdzinski,

Animesh Kumar, Yanmei Li, Cong Liu, Slobodan Matic, Rupak Mazumdar, Mark

McKelvin, Trevor Meyerowitz, Claudio Pinello, Alessandro Pinto, William Plishker,

Marco Sanvido, N. R. Satish, Farhana Sheikh, Gerald Wang, Chang-Ching Wu,

Guang Yang, Haibo Zeng, Yang Zhao, Haiyang Zheng, Wei Zheng, and Qi Zhu.

I am lucky to enjoy support of my friends Sombuddha Chakraborty, Arnab Chowd-

hury, Neha Dave, Sohini Mitra, Shubrangshu Nandi, Binayak Roy, and Sabyasachi

Siddhanta. Life would have been no fun without the “Davis gang”: Ravi Shankar

Rao, Renuka Sriram, Shankar Guhados, Chintamani Kulkarni, and Jaya Nair.

Outside the academic program, music classes with Judith Meitez and work-outs

at Funky Door Yoga and Recreational Sports Facility made life enjoyable.

I thank the members of the EECS Department administration for maintaining and

supporting an excellent workplace : Mary Byrnes, Ruth Gjerde, Jontae Gray, Patrick

Hernan, Cindy Keenon, Brad Krepes, Ellen Lenzi, Loretta Lutcher, Dan MacLeod,

Marvin Motley, Jennifer Stone, and Carol Zalon. A special thanks to Ruth Gjerde of

EE Graduate Student Affairs for her help in so many situations.

A major portion of the thesis was written at Bel Forno (at Shattuck and Rose),

Starbucks (at Cedar and Shattuck) and Mishka’s Cafe (at Davis).

The last few years would not have been so wonderful without the smile and en-

couragement from Deboshmita.

The last six years in graduate school would not have been possible without the

support of my parents, Sipra and Basudev Ghosal. When I was low, they made me

forget the troubles. When I was sad, they made me smile. When I felt lonely, they

gave me company. When I felt weak, they inspired me. No thanks would be enough

to express my gratitude for them.

iii

Publications, Co-Authors and Grants

Chapters 2, 3, 4, 5 and 6 are based on the following publications: (1) A hier-

archical coordination language for interacting real-time tasks (in Proceedings of the

6th ACM & IEEE International conference on Embedded software, 2006) authored

by Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan, Christoph M. Kirsch and

Alberto Sangiovanni-Vincentelli; and, (2) Hierarchical Timing Language (Technical

Report, UC Berkeley, 2006) authored by Arkadeb Ghosal, Thomas A. Henzinger,

Daniel Iercan, Christoph M. Kirsch and Alberto Sangiovanni-Vincentelli.

Chapter 8 is based on the publication Separate compilation of hierarchical real-

time programs into linear-bounded embedded machine code (in Online Proceedings of

Workshop on Automatic Program Generation for Embedded Systems, 2007) authored

by Arkadeb Ghosal, Daniel Iercan, Christoph M. Kirsch, Thomas A. Henzinger and

Alberto Sangiovanni-Vincentelli. Daniel implemented a prototype compiler.

Chapters 2 and 7 are based on the publication Logical Reliability of Interacting

Real-Time Tasks (in Proceedings of International Conference on Design, Automa-

tion and Test in Europe, 2008) authored by Krishnendu Chatterjee, Arkadeb Ghosal,

Thomas A. Henzinger, Daniel Iercan, Christoph M. Kirsch, Claudio Pinello and Al-

berto Sangiovanni-Vincentelli.

The HTL modeling in Chapter 9 is a joint work with Daniel Iercan. Daniel

implemented the tank controller and a simulation environment for the Javiator.

I am grateful to my co-authors for their help, suggestions and guidance.

This work was supported by the GSRC grant 2003-DT-660, the NSF grant CCR-

0208875, the HYCON and Artist II European NoE, the European Integrated Project

SPEEDS, the SNSF NCCR MICS, the Austrian Science Fund Project P18913-N15,

General Motors, United Technologies Corp., and the CHESS at UC Berkeley, which

is supported by the NSF grant CCR-0225610, the State of California Micro Program,

Agilent, DGIST, Hewlett Packard, Infineon, Microsoft, and Toyota.

iv

Dedicated to my parents,

Mrs. Sipra Ghosal and Mr. Basudev Ghosal

v

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Automotive Industry . 4

1.2 Separation of Concerns . 6

1.3 Logical Execution Time . 7

1.4 Logical Reliability Model . 9

1.5 Refinement . 10

1.6 Hierarchical Timing Language . 12

1.7 Overview . 13

2 Programming Model 15

2.1 Logical Execution Time Model . 16

2.2 Extension of LET Model . 19

2.3 Communicators and Logical Execution Time 20

2.4 Logical Reliability Model . 22

2.5 Reliability Analysis . 25

2.6 Refinement . 33

vi

3 Hierarchical Timing Language 36

3.1 Overview of HTL . 37

3.2 Abstract Syntax . 44

3.3 Hierarchy and Relation between Components 48

3.4 Task Invocation and Relation with Input/Output 50

4 Operational Semantics 55

4.1 Execution State . 56

4.2 Execution Trace . 58

5 Determinism 64

5.1 Well-Formed Program . 64

5.2 Structural Properties . 69

5.3 Execution Properties . 74

5.4 Determinism . 76

6 Schedulability Analysis 79

6.1 HTL Implementation . 80

6.2 Semantics of Implementation . 81

6.3 Schedulable Implementation . 88

6.4 Schedulability-Preserving Implementation 91

7 Reliability Analysis 99

7.1 Extension of HTL Syntax . 100

7.2 Implementation . 101

7.3 Semantics of Implementation . 102

7.4 Reliable Implementation . 103

7.5 Reliability Analysis . 103

vii

7.6 Reliability-Preserving Implementation 106

7.7 Extension of Program Structure . 107

8 Compiler 109

8.1 The Embedded Machine . 109

8.2 Hierarchical E Code . 111

8.3 HTL in HE Code . 117

8.4 HE Code Generator for HTL . 120

8.5 Design Flow . 129

9 Control Applications 131

9.1 Three-tank-system Controller . 131

9.2 Steer-by-Wire Controller . 141

9.3 Helicopter Controller . 148

10 Related Work 152

10.1 Giotto . 152

10.2 Other Timed Languages . 155

10.3 Synchronous Languages . 158

10.4 Real Time Extensions . 160

10.5 Programming Languages for Specialized Domains 162

10.6 Reliability Analysis for Embedded Systems 163

10.7 Design Platforms . 165

11 Conclusion 167

11.1 Reflections . 167

11.2 Future Work . 170

Appendices 173

viii

Appendix A Reliability of Networks 174

Appendix B Flattening of HTL 178

Appendix C Giotto to HTL 184

Appendix D HTL Program for 3TS Controller 190

Appendix E HTL Program for SBW Controller 193

Appendix F HTL Program for Heli Controller 197

Bibliography 204

ix

List of Figures

1.1 Move to drive-by-wire . 5

1.2 Growth of electronic control and software in automobiles 6

1.3 Platform-based design . 7

1.4 Overview of task refinement . 11

2.1 LET model of task execution . 17

2.2 Time determinism . 18

2.3 Value determinism . 18

2.4 Portability . 18

2.5 Composability . 18

2.6 Task execution and transmission . 19

2.7 Communicators and tasks . 21

2.8 Communication via communicators 22

2.9 Fraction of reliable values . 23

2.10 Intro to reliability analysis . 24

2.11 Reliability preserving refinement . 24

3.1 An HTL mode . 38

3.2 Two HTL modes . 39

3.3 An HTL program with three modules 40

x

3.4 An HTL program . 41

3.5 Refinement in HTL . 43

4.1 Successor configurations . 61

5.1 Mode switching through hierarchy . 76

6.1 Schedulability-preserving implementation 92

7.1 Reliability-preserving implementation 107

8.1 Triggers, queue of triggers and implicit tree 111

8.2 Handling switch checks in HE code 119

8.3 Handling switch checks in HE code 119

8.4 Structure of compiler and runtime system 130

9.1 Overview of 3 tank system . 132

9.2 HTL program for 3TS controller . 133

9.3 Timing behavior of the tasks t1 and t2 135

9.4 Timing behavior of the tasks in mode imode 135

9.5 Program graph . 137

9.6 Implementation . 140

9.7 3TS setup . 140

9.8 3TS system while running . 140

9.9 Data flow and functional blocks . 141

9.10 Implementation of SBW system . 142

9.11 Modules for the SBW implementation 143

9.12 Modes for the modules . 144

9.13 Refinement programs in the SBW description 145

9.14 SBW controller . 146

xi

9.15 Timing and communication in the SBW controller 147

9.16 Helicopter control program . 149

9.17 Helicopter control tasks . 150

10.1 Giotto modes . 153

10.2 HTL code fragments . 154

10.3 Schematic view of differences in Giotto and HTL implementations . . 155

A.1 Series and parallel reaction block diagrams 176

A.2 Comparison between RBDs and Fault trees 177

B.4 Number of E code instructions . 183

B.5 Number of HE code instructions . 183

C.1 Example 1 . 185

C.2 Example 2 . 187

C.3 Example 3 . 189

xii

List of Tables

8.1 Variable update and task release instructions 114

8.2 New trigger instructions . 114

8.3 Control flow instructions . 115

8.4 Instruction for handling registers . 116

8.5 Symbolic addresses and their significance 121

9.1 Reliabilities of tasks for the implementations 137

xiii

Chapter 1

Introduction

Embedded systems are present everywhere: from large-scale industrial plants to mi-

nuscule sensors. They are used in automotive stability controllers, avionic fly-by-wire

controllers, medical devices, intelligent buildings, distributed sensor networks and

smart machines. The design of such systems has two challenges: the development of

required hardware resources (e.g. ecus, sensors, actuators) and the use of solid de-

sign methodologies for implementing applications on the hardware resources. While

the design of hardware resources is challenging and interesting, the focus of this dis-

sertation would be design methodologies for implementing applications on existing

hardware resources.

As the complexity of the applications is growing constantly, designer productivity

is decreasing. Since these applications are often safety critical and time sensitive,

errors are a very expensive proposition and are to be avoided at all costs. For flexibility

reasons, system designers favor software solutions. The productivity of embedded

software designers is notoriously very low; industry reports indicate about 10 lines

of code per day. The reason for such a low productivity is rooted in the extensive

verification needed to make sure that the design satisfies all constraints including real-

1

Chapter 1. Introduction

time ones that are typical of important applications such as automotive and avionic

controllers. The high verification cost is due to the absence of solid design methods:

the current processes are empirical and ad-hoc.

The seriousness of the problem is reflected in the opening paragraph of arti-

cle “Programming Languages for Real-Time Systems” [Bouyssounouse and Sifakis,

2005]: The interdependence between functional and real-time semantics of real-time

software makes its design, implementation and maintenance especially difficult. Pro-

viding a programming language that directly supports the characteristics of embedded

real-time software can significantly ease these difficulties. In addition, embedded soft-

ware systems are not portable as they depend on the particular underlying operating

system and hardware architecture. Providing implementation-independent program-

ming models also increases the portability.

The challenges in design of software controllers for embedded systems comes from

both the formal constraints of the design space and the practical constraints of the

industry. The formal constraints include concurrency, composability, time-criticality,

heterogeneity, distributiveness and constraints on resources (e.g. limit to execution

speed, communication latency, unreliability etc). The industrial constraints include

factors like faster time to market, OEM based supply chain, option packaging in the

same product line, extensibility/flexibility/reuse of design, standardization, regulation,

market dynamics, concerns for safety, and validation effort.

This dissertation focuses on improving design productivity by raising level of ab-

straction (in the form of a programming language) for system specification and using

formal verification (for validation of system implementation). The need for good ab-

straction that efficiently combines real-time semantics and formal verification is of

utmost importance. Instead of being a computation model, the abstraction expresses

interaction of a task with other tasks (e.g. data dependency) and response of a task

to changes in environment (e.g. progress of clock). The computation is expressed

2

Chapter 1. Introduction

and implemented in a conventional language e.g. C or C++, while the abstraction is

captured in a coordination language. A coordination language is the linguistic em-

bodiment of a coordination model, offering facilities for controlling synchronization,

communication, creation and termination of computational activities [Gelernter and

Carriero, 1992] [Ciancarini, 1996] [Papadopoulos and Arbab, 1998]. The choice for

coordination language is two-fold. First, there is a large amount of legacy code for

functionalities in real-time controllers. Second, the need is to verify system issues

which largely depend on task interaction instead of task definition. By defining a co-

ordination language, the model focuses on checking system properties related to task

interaction rather that functional properties of task definition. Timing and reliability

of the system are the two primary concerns.

The correctness of a real-time system depends not only on the logical result of

the computation, but also on the time at which the results are produced. [Burns and

Wellings, 2001]. Thus the execution of a time critical system should be available

when it is due, neither before nor after the deadline. There are applications where the

timing may be slightly relaxed (soft real-time system); however for most applications

the timing is a crucial property (hard real-time systems).

In the domain of safety-driven embedded applications, such as automotive sta-

bility controllers and medical devices, reliability and fault tolerance are increasingly

important as regulatory bodies and customers demand robust products. Much re-

search has been carried out over the years on topics such as reliability analysis, fault

tolerant architectures, and fault analysis. However, we are still at the early stages for

design methodologies and tools that take into consideration, constraints on reliability

and fault tolerance. The design processes are further limited when reliability and fault

tolerance analysis needs to be combined with timing and schedulability analysis. The

thesis proposes a model that effectively captures reliability requirements and that is

amenable to efficient formal verification.

3

Chapter 1. Introduction

Earlier several industries, where embedded systems play a pivotal role, were men-

tioned; Section 1.1 discusses one of them: the automotive industry. Section 1.2

presents the design methodology on which the proposed model is based. Section 1.3

and Section 1.4 provide an overview of the timing and reliability model for interacting

real-time tasks respectively. Section 1.5 proposes a technique for efficient analysis.

An overview of the new coordination language is presented in Section 1.6.

1.1 Automotive Industry

The effect of growing complexity in the design and deployment of embedded sys-

tems is crucial in automotive industry. While there has been an explosion in car

electronics related to infotainment, communications with external world, safety, and

climate-and-body control, embedded systems have become a major player in the core

functionalities of a car e.g. braking, shifting and steering. This has enabled the re-

placement of traditional mechanical coupling with x-by-wire technology (Figure 1.1)

which in turn allows fine-tuning vehicle handling without changing the mechanical

components of a vehicle. For example, traditionally steering wheel rotation is ac-

companied by a mechanical link rotation which signals the change in direction of the

wheel. In steer-by-wire system, the change in steering angle is recorded by a sensor.

The data is sent to an electronic control unit (ECU). The ECU also receives data

from a motor control unit which reads the driving conditions (wheel speed, angle,

yaw, pitch, roll etc). The ECU computes the required wheel angle based on the

above signals and sends the evaluation to motor control units which in turn update

the wheel motor actuators. Due to inherent fault behavior of an ECU, the compu-

tation may be replicated on several ECUs. A steer feedback is computed and send

back to the steer for realistic driving feeling. Depending on system requirements, a

supervisor module may coordinate between different x-by-wire controllers.

4

Chapter 1. Introduction

Mechanical Braking Mechanical Shifting Mechanical Steering

Shift-by-wireBrake-by-wire Steer-by-wire

Figure 1.1: Move to drive-by-wire

The shift to x-by-wire systems has increased the importance of design and develop-

ment of electronic control and software in design, development and manufacturing of

automotive product lines. In the last two decades, General Motors reports (Fig. 1.2),

the number of electronic control unit in cars have increased by 150% and the size of

software modules increased by 9900%. This increased the cost associated with elec-

tronic control and software by 200%. In the future, cost is predicted to rise. Nihon

Keizai Shimbun reports that cost associated with development effort (in Japan) for

automotive related software would grow from 903 million US dollars (in 2006) to 9.1

billion US dollars (in 2014).

5

Chapter 1. Introduction

1970s 1990s 2020s2000s 2010s1980s1960s

Mechanical 76
Electronics 13
Software 02
Others 09

Mechanical 55
Electronics 24
Software 13
Others 08

Estimated Cost 200 %
Number of ECUS 150 %
Software Size 9900%

Figure 1.2: Growth of electronic control and software in automobiles

1.2 Separation of Concerns

One of the proposed approaches for embedded systems design is platform-based de-

sign [Sangiovanni-Vincentelli et al., 2004] that emphasizes separating functional spec-

ification from architecture. Functional specification (e.g. a set of functions with data

dependencies) denotes what the system is supposed to do. Architecture (e.g., a set

of computational resources connected through communication links) accounts for the

available hardware resources. An implementation of the specification on an architec-

ture is an allocation of the specification to the architecture, e.g. an implementation

can be a mapping of the functions to computational resources and the data dependen-

cies to communication links. An implementation can be analyzed to check whether

constraints posed by the designer such as power consumption, latency, and deadlock

freedom have been met or not. If the constraints are not met, then the designer can

update/modify the architecture. The architecture can be modified independent of

the functional specification which speeds up the exploration of different architectures

and mapping. Once the implementation meets design constraints, the specification is

synthesized (e.g. code is generated) for the target architecture.

6

Chapter 1. Introduction

Common Semantics Domain
(Platform)

Application
Space

Architecture
Space

Synthesis

Performance
Analysis

System
Specification

System
Architecture

Mapping

Function definition with
data dependencies

Communication and
Computation Resources

f1
f2

f3

h1

h2

h3

Figure 1.3: Platform-based design

1.3 Logical Execution Time

An effective utilization of the separation-of-concerns approach has been used in Log-

ical Execution Time (LET) Model [Henzinger et al., 2003] for task execution where

specification of a task is captured by release and termination events while the actual

execution time is obtained by analyzing the task relative to an architecture. At release

event, a LET task is released for execution; the task output is available only when the

termination event occurs. Even if the task completes its execution before the termi-

nation event arrives, the task output is not released. The interval between the release

and termination event is the LET for the task. An execution of a LET task is time-safe

7

Chapter 1. Introduction

if the task completes execution within the respective LET. The LET model makes

the program execution time-deterministic (no jitter) and value-deterministic (no race

conditions); this supports efficient schedulability analysis which checks whether all

tasks are time-safe or not. The separation of timing from functionality also helps in

architecture exploration and portability.

The LET model is a meet-in-the-middle approach when compared to more tradi-

tional paradigms used to ensure timing and predictability of real-time systems [Burns

and Wellings, 2001], [Edwards, 2000], [Buttazzo, 1997]. Previous attempts can be

broadly classified on the basis of when the evaluation of a task is available. In one

approach, task evaluations are made available as soon as the execution is complete.

Priorities are used to specify (indirectly) the relative deadlines of tasks. The approach

is supported by efficient code generation based on scheduling theory [Buttazzo, 1997].

However the execution time of tasks varies from one real-time platform to other and

this causes race conditions (non-determinism in program variables), which in turn

makes program verification and analysis extremely difficult. The other approach is

based on the synchrony assumption [Halbwachs, 1993] that the underlying platform

is much faster than the response time of tasks and the task may be assumed to be

executing in zero time (logically). In other words, analysis of the system is performed

assuming task evaluations are available as soon as they are released. The approach

is mathematically very expressive and supports determinism and formal verification.

However compiling synchronous languages is non trivial when it comes to tasks with

non-negligible execution time and distributed computing. LET model, which allows

task outputs to be available only after certain instances, trades code efficiency in

favor of code predictability when compared with the first approach, which makes all

outputs visible as soon as they become available. When compared with the second

approach, LET model (where all logical execution times are assumed to be strictly

positive) trades mathematical expressiveness in favor of computational realities.

8

Chapter 1. Introduction

1.4 Logical Reliability Model

The separation-of-concerns approach used for schedulability has been extended for

reliability analysis [Chatterjee et al., 2008] thus setting the foundations for a joint

schedulability/reliability analysis methodology. The main idea is the separation of

application dependent (“logical”) information from platform dependent (“physical”)

data. The reliability requirements (of real-time tasks) is separated from the reliability

characteristics of hosts (on which the tasks execute). Reliability requirements are

specified by Logical Reliability Constraint (LRC) and the architecture ensures Singular

Reliability Guarantee (SRG). In the analogy between timing and reliability, LRCs

play the role of release times and deadlines, while SRGs play the role of worst-case

execution times. The timing analysis checks that all tasks get access to execution no

less than the respective worst-case execution time (WCET); in case of transmission

of output, worst-case transmission time (WCTT) should also be accounted. The

reliability analysis checks that SRG for all tasks meets the respective LRC.

In the reliability model, each input and output variable of a task is assigned a

LRC. As tasks read and write the variables, this implicitly defines LRCs for the tasks.

Each variable is associated with a LRC which is a real number between 0 and 1. LRC

denotes the fraction of all periodic writes (to the variable) in the long run that are

required to be valid e.g. if LRC of a variable is 0.9, then in the long run, at least

0.9 fraction of all periodic writes to this variable are required to be valid values; thus

LRC is also referred as long-term reliability constraint. LRC, similar to release and

termination event, is independent of the architecture.

Given an architecture on which a task (writing to a variable) executes, SRG of

the variable (relative to that architecture) can be computed. SRG, a real number

between 0 and 1, denotes the probability with which the variable would be assigned a

reliable value at an update instance. Similar to WCET/WCTT, SRG depends on the

9

Chapter 1. Introduction

underlying architecture, and is computed from the reliability of the components of the

architecture. For example, consider a task executing on a host; the task periodically

reads from a reliable input and writes to a variable. The host has a reliability of 0.8

i.e., the probability that the variable has a valid value at the end of task execution

is 0.8; in other words SRG of the variable for the architecture is 0.8. If the task is

replicated on two such hosts, the updated SRG is .96 (= 1− .22, i.e., the probability

that at least one host is executing), assuming reliable communication and reliable

inputs. If the SRG is no less than the LRC, then the implementation (of the task

on the host) is reliable for the variable. SRG is a guarantee for each invocation of

the task i.e., it ensures short-term reliability; thus SRG is also referred as short-term

reliability guarantee. The analysis checks whether the SRG ensures the LRC or not;

this is similar to schedulability analysis which checks whether the WCET/WCTT can

be accommodated within the LET or not.

1.5 Refinement

Given a LET task and a host on which the task is implemented, schedulability analysis

checks whether the WCET of the task (on that host) is less then the LET of the task.

If there are multiple tasks, then a detailed schedulability analysis (e.g. aperiodic task

scheduling) may be performed. Consider two tasks t1 and t2 executing in parallel

(Fig. 1.4.a). The LET of respective tasks are denoted by the rectangles. An aperiodic

EDF scheduling analysis can be performed to check whether the tasks are time-safe

or not. If there is another set of tasks, t2 and t3 (Fig. 1.4.b), then the schedulability

analysis need to be repeated. Consider the schedulability analysis is done for a third

set of tasks a2 and a13 (Fig. 1.4.c). The LET and WCET of the tasks t2 and a2

are identical; also the release event of a13 is later than the release events of t1 and

t3, termination event of a13 is earlier than the terminations events of t1 and t3,

10

Chapter 1. Introduction

and WCET of a13 is larger than both t1 and t3. Under the above conditions, if a2

and a13 are time-safe, then the other two combinations are also time-safe. Thus if

schedulability analysis is performed on a2 and a13, the analysis need not be repeated

for the other two sets of tasks which reduces the number of checks. The combination

a2 and a13 is referred as an abstract specification and the other two combinations

are concrete implementations of the abstract specification. Task t2 is a refinement

of task a2; while both tasks t1 and t3 are refinement of task a13. Refinement

reduces the validation effort: only abstract specification need to be analyzed and

if each concrete task (in the concrete implementation) is a refinement of a task in

the abstract specification, then the validation need not be repeated. In the above

example, there are only two concrete specifications; in real example there can be

arbitrary number of concrete specifications.

t1

t2

t3

t2

t1

t2

t3

t2

a13

a2

(a) (b) (c)

abstract specification

concrete implementation 1 concrete implementation 2

Figure 1.4: Overview of task refinement

If an abstract specification is time-safe (schedulable), then any concrete implemen-

tation that refines the abstract specification is also time-safe (schedulable). This is a

sufficient condition i.e. there may be concrete implementations which are schedulable

but the corresponding abstract specification may not be schedulable. The condition

being sufficient denotes that resource usage is over-approximated; however refinement

reduces the validation effort significantly and introduces flexibility in system design.

11

Chapter 1. Introduction

Refinement constrains the timing interface of the tasks and not the IO interface or

the task functionalities.

The approach can be extended for reliability analysis too. Consider a situation

where task a13 reads from a reliable input and writes to a variable v13. If the

reliability of the host for the period of execution of a13 is 0.9, then the SRG for v13

is 0.9. It can be shown that if the LRC of v13 is not greater than 0.9, then the

implementation is reliable. Let task t1 reads from a reliable input and writes to a

variable v1. If the LRC of v1 is less than the LRC of v13, then the implementation

is reliable for task t1; in other words, if implementation of abstract specification is

reliable, then the implementation is reliable for a concrete specification, with some

restrictions on LRCs of output variables. Note the analysis (for concrete specification)

is done by comparing the LRCs of the outputs of the tasks instead of comparing the

SRG and the LRC of variable v1.

1.6 Hierarchical Timing Language

Hierarchical Timing Language (HTL) is a coordination language for hard real-time

systems. Like it predecessor Giotto [Henzinger et al., 2003], HTL builds on the LET

model of task execution. The HTL model allows sequential, parallel and conditional

composition of LET tasks; and encompasses the refinement model to offer hierarchi-

cal layers of abstraction. While the layers of abstraction add structural conciseness

to program specification, the refinement property reduces effort in schedulability and

reliability analysis. Thus, feasible schedules for lower layers can be efficiently con-

structed from feasible schedules for higher layers; and if implementation is reliable for

higher layers, then the implementation is reliable for lower layers. The HTL model

accommodates a more general model than the LET as it extends composition and

refinement from single tasks to task group with precedence.

12

Chapter 1. Introduction

While the model of task execution in HTL is LET, the tasks in HTL communicate

with each other (and with the environment) through so-called communicators. A com-

municator defines a sequence of real-time instances of a static variable. Sensors and

actuators are special cases of communicators. Task reads and writes specify commu-

nicator instances. As the read and written time instances of communicators are fixed

by a program, they remain unchanged when the context of the program is modified

e.g. ported to another architecture. This implies that the communicator instances (a

task reads from and write to) specify the LET for the task. Each communicator is

also specified a LRC. Tasks read from and write to communicators; thus LRC of the

communicators implicitly specify the LRC of the task. In other words, the commu-

nicators specify both the timing and reliability requirements on tasks. Composition

and refinement constraints, and program execution ensures determinism.

1.7 Overview

Chapter 2 presents an overview of the LET model of task execution, the communicator

model of communication and the logical reliability model. Next the schedulability and

reliability analysis is defined for a group of periodic tasks, followed by a discussion of

schedulability- and reliability-preserving refinement.

Chapter 3 presents an overview of HTL: the structural components (programs,

modules, modes and refinement), the communication model (communicators and

ports), and the task model (declaration and invocation). The formal definitions and

the relation between components across levels of refinement are also presented.

Chapter 4 discusses the operational semantics of HTL. The semantics is inde-

pendent of the implementation (distribution of program modules) or performance

guarantee of the architecture on which the program is implemented.

13

Chapter 1. Introduction

Chapter 5 presents certain structural constraints on HTL and discusses key prop-

erties on execution behavior of such constraints. The constraints ensures that there

is no race in updating program variables. This makes the program execution de-

terministic i.e., given sufficient execution speed the values of program variables are

determined by the values of the sensors.

Chapter 6 discusses the schedulability analysis for an HTL implementation which

is a mapping of an HTL program on an architecture. The chapter presents the

execution of an implementation followed by the formal definition of schedulability

analysis. Lastly, it is shown that for schedulability- preserving implementation, if

the implementation of the root program without refinement is schedulable, then the

whole program (root program with refinement) is schedulable.

Chapter 7 discusses how to incorporate the LRC model into HTL and to perform

reliability analysis. The formal definition of reliable HTL implementation is followed

by reliability analysis. The chapter concludes with a discussion of how reliability-

preserving refinement helps is avoiding repetitive reliability analysis.

Chapter 8 presents an HTL compiler for a virtual machine, the Embedded Ma-

chine. An overview of the Embedded Machine is followed by the algorithms for code

generation from HTL to Embedded Machine code.

Chapter 9 presents HTL modeling and subsequent analysis of three controllers:

a controller for three tank system, a steer-by-wire controller for automotive system,

and a fly-by-wire controller for unmanned helicopter.

Chapter 10 compares the work with other programming languages including timed

languages (Giotto and its successors), real-time extensions of conventional languages

and languages for specialized real-time applications.

Chapter 11 concludes the thesis by reviewing the core concepts presented and

possible future directions.

14

Chapter 2

Programming Model

The computation model is based on LET model of task execution. A brief overview

of LET model from previous work is presented in Section 2.1 followed by a discussion

on the extension of LET models used in this work.

The communication model in the framework is centered around communicators.

A communicator [Ghosal et al., 2006a] is a typed variable that can be accessed (read

from or written to) only at specific time instances. These time instances are periodic

and specified through a communicator period. Communicators are used to exchange

data between tasks. A task reads from certain instances of some communicators,

computes a function, and updates certain instances of the same or other communica-

tors. Communicators are also used to exchange data between tasks and environment.

Input communicators are updated by physical sensors (possibly through drivers) and

read by tasks. Output communicators are updated by tasks and read by physical ac-

tuators (possibly through drivers). Expressing LET with communicators is discussed

in Section 2.3. Section 2.4 discusses the reliability model: the logical requirement and

performance guarantee. Section 2.5 formally presents the reliability analysis for a set

of periodic tasks. Section 2.6 extends the analyses for refinement.

15

Chapter 2. Programming Model

2.1 Logical Execution Time Model

The Logical Execution Time (LET) model of task execution separates logical timing

requirements from actual physical platform execution. A LET task is sequential code

with its own memory space (henceforth referred as local memory) and without internal

synchronization points. The logical specification consists of a set of program variables

(henceforth referred as input variables) read by the task, a set of program variables

(henceforth referred as output variables) updated by the task and timing constraints.

The program variables are global i.e. they can be accessed by any other task; local

memory of a task cannot be accessed by any other task. Logical timing constraints

are specified by a release event and a termination event; the events are triggered by

clock ticks or sensors interrupts. The release and termination events determine the

LET of the task; the termination time strictly follows the release time. At release

event, the task reads input variables to the local memory of the task. At termination

event, the task updates program variables by the result of the computation (defined

by the sequential code) on the state of local memory at the release event. The copying

of program variable to local memory (and vice versa) is done synchronously i.e. in

logical zero time. The task may not immediately start execution at release event. The

underlying platform (or the scheduling strategy) determines when the task execution

should start, get preempted and resumed. Between the release and termination event,

the task may be preempted and resumed any number of times. Upon completion it

may give out a completion event (if required by specification) and stores the value of

the computation to local memory. At the termination event, the output variables are

updated from the local memory.

A LET task is time-safe for a given host if the task completes execution on that

host before the termination event occurs. A task, executing on a host (where no other

task is executing), is time-safe if the worst-case execution time (WCET) is less than

16

Chapter 2. Programming Model

release event termination event

completionstart resumepreemption

Logical

Physical

release termination

task t

Logical Execution Time (LET)

completion event

running running

input variables read
to local memory

output variables written
from local memory

Figure 2.1: LET model of task execution

the LET duration. For multiple tasks, this entails a detailed schedulability check. If

tasks are race free (i.e. at any instance at most one task writes a program variable)

and a program variable is written before it is read (at any update instance), then time-

safe LET tasks are time and value deterministic, portable and composable [Henzinger

and Kirsch, 2002].

The output variables of a LET task are updated when the termination event oc-

curs, even if the task completes its physical execution earlier. The input variables are

read to local memory when the release event occurs, and not when the task actually

starts executing. As a consequence, a LET task always exhibits the same behavior in

the value and time domain on different hosts as long as the task is time-safe. Fig. 2.2

shows LET task t and two possible physical executions of the task. Consider any

instant in the execution (shown by the vertical dashed line): irrespective of the ex-

ecution pattern, the values of output variables remain invariant. Fig. 2.3 shows two

tasks t1 and t2 with identical LETs. Task t2 reads the output of t1. For the two

possible physical execution pattern shown, the value of the output variable (written

by t1) will be identical because output is not updated (and thus cannot be used by

task t2) until the termination event. This makes the model value-deterministic.

17

Chapter 2. Programming Model

Task t

release termination

release event of t termination event for t

Figure 2.2: Time determinism

Task t1

t1 t2

t1t2

Task t2

release of t1 and t2 termination of t1 and t2

release event of t1 and t2 termination event for t1 and t2

Figure 2.3: Value determinism

Time-safe LET tasks are portable. Task t (Fig. 2.4) is ported to a host with half

the speed than the original one without modification of the LET. Thus LET tasks can

be ported to different hosts as long as they are time-safe; the bound on the scaling is

determined by the host speed. The LET model also supports composition. Two LET

tasks from two hosts, can be composed on a single host without modifying individual

LET of the tasks (Fig. 2.5). Refer to [Matic and Henzinger, 2005] for detailed analysis

of portability and composability of LET model.

t ported to a hardware with half the efficiency

t

release

release event

termination

termination event

Figure 2.4: Portability

t2t2

t2t2

t1 t1

t2

t1 t1t2
P1 and P2 are composed on a single hardware

release event for t1 and t2 termination event for t1 and t2

release of t1 termination of t1

release of t1 and t2 termination of t1 and t2

release of t2 termination of t2

Figure 2.5: Composability

18

Chapter 2. Programming Model

2.2 Extension of LET Model

To account for distributed implementation, the LET model is extended to include

both execution and transmission of output (Fig. 2.6). In particular, along with WCET

of a task, worst-case transmission time (WCTT) for the communicating network is

required to decide whether the task is time-safe or not.

release event termination event

completionstart

Logical

Physical

release termination

task t

Logical Execution Time (LET)

completion event

running transmittingrunning

Figure 2.6: Task execution and transmission

The LET model is also extended to account for failures of the input variables.

Three models are considered:

• series - if one of the input variables is not reliable the task fails to execute

• parallel - if any one of the input variables is not reliable, then the task may

execute (possibly with an pre-assigned value for the input variable); the task

fails to execute if all of the input variables are unreliable

• independent - if an input variable is unreliable, the task considers a pre-assigned

value for that input variable; the task may execute even if all of the input

variables are unreliable.

The LET model is extended to account for reliability of output program variables.

A output variable may have an unreliable value if a task fails to execute and/or the

19

Chapter 2. Programming Model

memory fails to store the value of the variable. The task algorithms are assumed to

be correct i.e., if a task executes reliably, then the task generates the desired output

for given input. The model is formally discussed in Section 2.5.

2.3 Communicators and Logical Execution Time

A task reads from certain instances of some communicators, computes a function,

and updates certain instances of the same or other communicators. Fig. 2.7 shows

the interaction between four communicators (c1, c2, c3, and c4 with periods 2, 3, 4

and 3 time units respectively) and three tasks (t1, t2 and t3). Task t1 reads the

second instances of c1 and c4 and updates the fourth instance of c2. Task t2 reads

the second instance of c3 and updates the sixth instance of c1 and the fifth instance

of c2. Task t3 reads the sixth instance of c1 and updates the fifth instance of c4.

The latest read and earliest write instances specify the LET for the tasks: the latest

read instance determines the release time, and the earliest write instance determines

the termination time. The task can read any communicators before the latest read

time but cannot be released; similarly it must complete execution before the earliest

communicator instance it writes to. Task t1 reads c1 at time 2 and stores the value

in local memory; the task cannot be released at time 2 as it has not read all the inputs

it needs to read. At time 3, the task reads c4; as all inputs have been read, the task

is released for execution. Task t2 writes c1 and c2; as the update of c1 is earlier the

task must complete execution by time 10. Thus LET of t1 spans from time 3 to time

9, the LET of t2 from time 4 to time 10, and the LET of t3 spans from time 10 to

time 12. Note that the time unit is logical and has no physical significance. Only at

implementation the time unit is bound to a clock, e.g, millisecond or second. For

schedulability analysis, the communicator periods and execution time for tasks are

assumed to be bound to the same clock.

20

Chapter 2. Programming Model

10 2 43 5 76 8 109 11 12

c1 c1 c1 c1 c1 c1 c1

c2 c2 c2 c2 c2

c4 c4 c4 c4 c4

c3 c3 c3 c3

reads c1 reads c4 updates c2
task t1

reads c3 updates c1
task t2

updates c2

reads c1

task t3

updates c4

Figure 2.7: Communicators and tasks

Communicators communicate between the environment and tasks (Fig. 2.8). The

input communicators can only be written by the environment; i.e., values of input

communicators are input from the environment. Typically an input communicator

is updated by a physical sensor, possibly through drivers and read by a task. The

output communicators can only be read by the environment, i.e., values of output

communicators are output to the environment. Typically a task updates an output

communicator, and a physical actuator reads the output communicator, possibly

through a driver. Any other communicators can both be read and written by tasks.

Tasks define the input/output interface through communicators and thus commu-

nicators are the key to compose tasks. Task composition is deterministic i.e. given

sufficient CPU speed for time-safety, the real-time behavior of the LET tasks is deter-

mined by the input (i.e., the values of all sensor communicator instances), independent

of the host speed and utilization. The determinism in task composition is ensured

in two ways. First, update races on communicators are prohibited i.e. different tasks

21

Chapter 2. Programming Model

s

sensor writes
input communicator s

(possibly though drivers)

t' read c

task t t writes c

a

actuator reads
output communicator a

(possibly though drivers)

c

task t't' read s task t'

task t t writes a

Figure 2.8: Communication via communicators

cannot write to the same instance of a communicator. Second, if a communicator

update is due at any instance then the communicator is updated before it is read.

The first is ensured by structural properties (e.g. task input and output) and the

second is ensured by execution properties.

2.4 Logical Reliability Model

A communicator may have an unreliable value if a task fails to execute and/or the

memory fails to store the value of the communicator. An application accessing the

communicator must specify the tolerance of the unreliable values for the communi-

cator: the tolerance is specified through Logical (long-term) Reliability Constraint

(LRC). Each communicator has a specified LRC, where the LRC denotes the desired

fraction of reliable values of the communicator that the system expects in the long-

run. For example, if LRC for a communicator c is 0.9, then .9 fraction of all instances

of communicator c on all execution (in the long-run) should have reliable values.

Fig. 2.9 shows a sample execution trace with the value of communicator c at the first

twenty instances. The communicator has type integer; an unreliable value is denoted

by ⊥. For the given trace, there are 20 instances of communicator c out of which

18 are reliable i.e. the fraction of reliable values is 18/20 = .9. If an implementation

used the communicator c, then the above fraction must be .9 for all execution traces

22

Chapter 2. Programming Model

in the long-run. It is assumed if a task fails to execute or memory fails to hold value,

a ⊥ would be generated; i.e. any integer value (in the last example) is reliable.

cc cc cc cc cc cc cc cc cc cc

2 4 2 643 1 845 34 34 64 84

1 + 1 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 1 + 1 + 1
= 18/20 = 0.9

T T

Figure 2.9: Fraction of reliable values

Similar to LRC, each communicator is associated with an Singular (short-term)

Reliability Guarantee SRG, a fraction between 0 and 1. SRG=0.95 means the proba-

bility that a host fails during the execution of a task (writing to the communicator)

is 0.05; i.e., given reliable inputs to a task executing on the host, the probability that

the task writes ⊥ to the communicator is 0.05. Fig. 2.10 shows a task t which reads

from an input communicator s (with LRC=1) and writes to an output communicator

a (with LRC=0.9) periodically. LRC=1 suggests that the sensor is 100% reliable.

The task can only fail if the host on which it is implemented fails to execute. The

task algorithm is assumed to be correct. Consider the task is implemented on a host

h with reliability .95. There being no replication the SRG is also equal to .95. In

other words for every iteration of task t, the probability that there is reliable output

at a is at least 0.95. In this case, the LRC is satisfied by the SRG as SRG is greater

than LRC; Section 2.5 presents the formal reasoning. In a different scenario if a

host h′ with reliability 0.8 is considered then the LRC is not satisfied (LRC > SRG).

However if two replications of h′ are available, then task t can be replicated on both

the hosts. The new SRG = 1− (1− .8)2 = .96 (probability that at least one host is

reliable) which is greater than the required LRC. The SRG is computed by reaction

block diagram (RBD) modeling. Refer Appendix A for details on RBDs. The hosts

are assumed to be connected over a reliable broadcast network. Section 2.5 present

the analysis for multiple inputs and different input failure models.

23

Chapter 2. Programming Model

s

reliability=0.95

host h

LRC = 1

task t

host h'

a

LRC = 0.9 SRG = 0.95
host h'

reliability=0.8 SRG=.96

specification architecture 1 architecture 2

Figure 2.10: Intro to reliability analysis

Reliability analysis on the logical reliability model can be preserved over refine-

ment. Fig. 2.11 shows two tasks t and t′ where t′ refines t. Both the tasks read from

identical input and execute on same host. Task t writes to actuator a, while task t′

writes to actuator a′. Let the host be reliable for t i.e. the SRG is no less than the

LRC of a. If the LRC of a′ is no more than the LRC of a, then host is also reliable

for t′; the SRG cannot be less than the LRC of a′ from mathematical comparison.

Instead of repeating the reliability analysis, comparison of the LRCs of the outputs

of the tasks concluded the reliability of the host to task t′.

s task t a LRC(a') ≤ LRC(a)

s task t' a'
If LRC(a) is satisfied,

then LRC(a') will be satisfied

Figure 2.11: Reliability preserving refinement

As discussed in Chapter 1, LRC and SRG is an approach to reliability analysis, as

LET and WCET is an approach for timing analysis. The idea is based on separating

requirements from guarantees. Timing requirements are expressed through release

and termination events while performance guarantee (for an architecture) is expressed

through WCETs. Release and termination events are application dependent “logical”

information while WCETs are architecture dependent “physical” data. Similarly,

24

Chapter 2. Programming Model

LRC is application dependent “logical” information for desired reliability, while SRG

is architecture dependent physical data on reliability that can be guaranteed. Timing

analysis checks whether the “physical” data ensures the “logical” requirement for

timing i.e. whether the LET is enough to ensure allocation for WCET time units.

Similarly reliability analysis checks whether the “physical” data ensures the “logical”

requirement for reliability i.e. whether the SRG is enough to ensure the LRC.

2.5 Reliability Analysis

The section presents the reliability analysis (based on the logical reliability model) for

a set of periodic tasks running on a set of hosts connected over a broadcast network.

System

A system (S, A, I) consists of specification S, architecture A and implementation I. A

specification S = (tset, cset) consists of a set of tasks tset and a set of communi-

cators cset, where tasks and communicators are declared as follows.

A communicator declaration (c, type, init, π, µ) consists of a communicator name

c, data type type, an initial value init, an accessibility period π ∈ N>0 and LRC

µ ∈ R(0,1]. All communicator names are unique i.e. if (c, ·, ·, ·, ·) and (c′, ·, ·, ·, ·)

are two distinct communicator declarations then c 6= c′. Given a communicator

c ∈ cnames(P), the type type[c] denotes the range of values the communicator can

evaluate to and init[c] ∈ type[c] denotes the initial value of the communicator. The

data type includes a special symbol ⊥ to indicate unreliable communicator value; a

non-⊥ value indicates that the communicator has a reliable value. The evaluation of

a communicator val[c] is a function that maps c to a value in type[c]. The period

and LRC of a communicator c is denoted as π[c] and µ[c] respectively.

25

Chapter 2. Programming Model

A task declaration (t, ins, outs, fn, fmodel, default) consists of a task name t,

a list of inputs ins, a list of outputs outs, a function fn, an input failure model

fmodel ∈ {1, 2, 3} and a list of default values default. All task names are unique

i.e. if (t, ·, ·, ·, ·, ·) and (t′, ·, ·, ·, ·, ·) are two distinct task declarations then t 6= t′.

Given a task t, the inputs, outputs, function, fault model and default values are

denoted as ins[t], outs[t], fn[t], fmodel[t] and default[t] respectively. An ele-

ment of the input/output list is a pair (c, i) consisting of a communicator name

c ∈ cset and a communicator instance number i ∈ N≥0. The j-th element of

the input list is denoted as insj[t] where 1 ≤ j ≤ |ins[t]|. The k-th element

of the input list is denoted as outsk[t] where 1 ≤ k ≤ |outs[t]|. For a task t,

the length of input list is |ins[t]| and the length of output list is |outs[t]|. If

insj[t] = (c, ·), then type(insj[t]) = type[c]; similarly if outsk[t] = (c′, ·), then

type(outsk[t]) = type[c′]. If |ins[t]| = m and |outs[t]| = n, then the function fn[t]

is, fn[t] : Π1≤j≤mtype(insj[t]) → Π1≤k≤ntype(outsk[t]). Let rcset[t] be the set of

communicators read by task t.

The input failure model fmodel[t] denotes the action of a task if one or more inputs

are unreliable; the list default[t] is a list of default values for the communicators in

rcset[t]. The three failure models are:

• series (fmodel[t] = 1): if any one of the inputs fails, the task fails to execute

• parallel (fmodel[t] = 2) if an input is unreliable, the task may execute by using

the default value of the communicator from the list default[t]. If all of the

inputs are unreliable the task fails to execute.

• independent (fmodel[t] = 3) if an input is unreliable, the task uses the corre-

sponding default value for that input from the list default[t]. The task may

execute even if all inputs are unreliable.

26

Chapter 2. Programming Model

For a task t, read time rtime[t] is the latest communicator instance t reads from

and write time ttime[t] is the earliest communicator instance t writes to. Formally,

rtime[t] = maxj(π[c] · i) where insj[t] = (c, i) and ttime[t] = mink(π[c′] · i) where

outsk[t] = (c′, i). The tasks repeat with periodicity π[S] where π[S] = lcm(cset) ·

d(maxt∈tset ttime[t])/(lcm(cset)e and lcm(cset) is the least common multiple of the

communicator periods.

The restrictions on task declarations are as follows: (1) all tasks read from some

communicators and write to some communicators, (2) for all tasks, read time is

strictly earlier than the write time, (3) no two tasks write to the same communica-

tor, and, (4) no task can write a communicator instance multiple times. In other

words, a communicator can be written by at most one task at any instance, i.e., the

specification is race free.

An architecture A is a tuple (hset, sset, C[S]) where hset is a set of hosts (con-

nected over a reliable broadcast network), sset is a set of sensors and C[S] is a set of ar-

chitectural constraints for a given specification S = (tset, ·). The constraints are: (1)

reliability of hosts and sensors specified by host reliability map hrel : hset→ R(0,1],

and sensor reliability map srel : sset → R(0,1]; and, (2) execution metrics for the

tasks specified by worst-case-execution-time (WCET) map, wemap : tset × hset →

N>0 and worst-case-transmission-time (WCTT) map, wtmap : tset× hset→ N>0.

The hosts are assumed to be fail-silent [Cristian, 1991] i.e. if a host fails, then

it does not produce any garbage output. In other words, a host works correctly or

stops functioning (becomes silent). If tasks are replicated on several fail silent hosts,

then all faulty components do not produce any output while all working components

produce identical output for a given cycle of computation. In [Baleani et al., 2003],

the authors argue that fail-silence can be achieved at reasonable cost. To keep the

analysis simple, the broadcast network is assumed to be reliable. Non-reliability in

broadcast network can be accounted in the model as long as the faulty behavior is

27

Chapter 2. Programming Model

atomic i.e. if the broadcast fails then none of the hosts receives any input. The WCTT

is measured as the broadcast time for each task from each host. Memory is assumed

to be 100% reliable.

Given a specification S = (tset, ·) and an architecture (hset, ·, ·), an implemen-

tation I is a function from tasks to a set of hosts i.e. I : tset → 2hset \ ∅. The

implementation is assumed to distributed i.e. there are multiple hosts and all tasks

are not implemented on a single host. Tasks can also be replicated on multiple hosts.

If a task t is mapped to multiple hosts then each host h executes a local copy of t; the

local copy is referred as a task replication (t, h). All communicators c are replicated

on all hosts h; each local copy of communicator is referred as a communicator repli-

cation (c, h). When a task replication completes execution, it broadcasts the output

to all hosts (to update relevant communicator replications).

Semantics

An execution of an implementation, also called an implementation trace (or simply

trace), is a (possibly infinite) sequence of communicator values for every time in-

stance. A time instance (or simply an instance) is a sequence of positive integers

and denotes the harmonic fraction of all communicator periods. In practice, time

instances are generated by the architecture through clock interrupts. We will assume

the following. (1) Time instances are global i.e. synchronized across all hosts. (2)

If a sensor s is replicated over multiple hosts, then the environment writes identi-

cal values to all replications of s when the update is due. (3) At any instance, if

a communicator c is updated, then all replications of c are first updated and then

read. The above constraint and exclusion of races ensure that all communicator repli-

cations have unique values when they are read. (4) When a task replication (t, h)

completes execution, it broadcasts the output (to be written to a communicator c)

28

Chapter 2. Programming Model

to all hosts hset/{h}. Every host receives the values from each replication of t and

stores them in a local memory space (assigned to c). When update of c is due, voting

is used to decide on the final value to be written to the communicator replication on

the host. All tasks are functionally correct and given identical inputs provide iden-

tical outputs. All replications of a task have identical input failure models. At any

given iteration, the replications of a task either generate ⊥ (unreliable execution) or

the correct value. Thus if some replications generated a non-⊥ value then all other

replications which executed reliably generated the identical non-⊥ value. This makes

the voting straightforward. If there is at least one non-⊥ value, the communicator

replication is assigned that value.

The semantics is formally defined as follows. For i ≥ 0, let Xi be a function

from the communicator set to the set of values, with possibly the empty set i.e.,

Xi : cset→ typehset∪∅, where type = ∪c∈csettype[c]. If i mod πc = 0, then Xi(c) ∈

typec
hset, otherwise ∅. A trace is an infinite sequence (Xi)i≥0 of such functions. The

semantics is the set of all possible traces.

Reliability

Given a communicator c, and set α ∈ typehsetc , the value of α is reliable if α contains at

least one non-⊥ value. A reliability based abstraction consists of only values 0 and 1,

where 1 denotes reliable value, and 0 denotes unreliable value. Given a trace (Xi)i≥0,

we define the reliability based abstraction trace (Zj)j≥0 = ρ((Xi)i≥0) as follows, Zj :

cset → {0, 1}; Zj(c) = 1 if the set Xj·πc
(c) is reliable, 0 otherwise. In other words,

the function ρ maps a trace (Xi)i≥0 to another trace (Zj)j≥0; the second trace is

referred as reliability-based abstract trace. We define the limit average value of a

reliability-based abstract trace for communicator c, τ c = (Zj(c))j≥0 as the “long-run”

average of the number of 1’s in the abstract trace. Formally, the limit-average value

29

Chapter 2. Programming Model

limavg(τc) of a reliability-based abstract trace for communicator c, τc = (Zi(c))i≥0 is

defined as: limavg(τc) = lim
n→∞

1

n

n−1∑
i=0

Zi(c). Given a communicator c, the set of reliable

abstract traces, denoted as tracesc, is the set of reliability-based abstract traces for c

with limit-average no less than µ[c] i.e. tracesc = {τc : limavg(τc) ≥ µ[c]}. Given

set of communicators cset = {c1, c2, · · · , ck}, the set of reliable abstract traces is

tracescset = {(Zj(ci))j≥0 : ∀1 ≤ i ≤ k.limavg((Zj(ci))j≥0) ≥ µ[ci]}.

Analyses on Implementation

Given an implementation I for a specification S on an architecture A, we define the

following analyses:

• Schedulability analysis. The implementation I is schedulable if (all replications

of) all tasks complete execution and transmission (of the outputs) between the

read and the write time of the respective task [Ghosal et al., 2006a].

• Reliability analysis. The implementation I is reliable if for each communicator,

long-run average of the number of reliable values observed at access points of

the communicator is at least LRC of the communicator.

An implementation I is valid for a specification S on an architecture A, if I is

schedulable and reliable.

Reliability Analysis

A specification graph GS = (VS, ES) with ES ⊆ VS × VS is defined as follows. The

set of vertices is VS = {(c, i) : c ∈ cset ∧ i ∈ {0, · · · , π[S]/π[c]}} ∪ {t : t ∈

tset}. The set of edges is ES = {((c, i), t) : (c, i) ∈ ins[t]} ∪ {(t, (c, i)) : (c, i) ∈

outs[t]} ∪ {((c, i), (c, i′)) : i < i′ ∧ ∀t ∈ tset.∀i < i′′ ≤ i′.(c, i′′) 6∈ outs[t]} ∪

30

Chapter 2. Programming Model

{((c, π[S]/π[c]), (c, 0))|c ∈ csetnino}. The set csetnino ⊆ cset is the set of all non-

input non-output communicators. A communicator cycle is a path δ from (c, i) to

(c, i′) such that the path δ contains at least one vertex t ∈ tset. A specification S

is memory free if the specification graph GS contains no communicator cycle.

Given the constraints on tasks and assumptions on architecture, environment and

semantics, the task replications can be assumed to be connected in parallel to each

other. Each block of such task replications are connected in series with parallel

blocks of replications of other tasks. Given an implementation I, reliability of a task

t, λt = 1−
∏

h∈I(t)(1− hrel(h)), i.e., at every iteration the probability that the task

t executes is at least λt.

SRG λc of a communicator c is inductively defined as follows: (a) for an input

communicator c we have λc = srel(s) where c is updated by sensor s; (b) for

an non-input communicator c let t be the task that writes c and let SRGs of the

communicators in the set icsett be defined, then λc is defined as follows: (1) if

fmodel[t] = 1, then λc = λt ·
∏

c′∈rcset[t] λc′ , (2) if fmodel[t] = 2, then λc = λt · (1−∏
c′∈rcset[t](1− λc′)), and (3) if fmodel[t] = 3, then λc = λt.

With the constraints on task declarations, a non-input communicator c can be

written by a single task. Given an implementation I, at every iteration the probability

that a non-input communicator c has a reliable value is at least λc. The input

communicators are written at every step by the environment. For an implementation

I, at every iteration the probability that input communicator c has a reliable value

is at least λc. Hence from the definition of local (or one-step) probabilities we obtain

a probability space Pr I(·) on the set of infinite traces.

Definition 1. Given a memory-free specification an implementation I is reliable if

the probability of the set of reliable abstract traces is 1, i.e., Pr I[tracescset] = 1.

Next a reliability analysis is proposed; the analysis compares the LRCs and SRGs

31

Chapter 2. Programming Model

for all communicators and decides on the reliability of the implementation from

the comparison. For proof of the proposition, the Strong Law of Large Numbers

(SLLN) [Durrett, 1995] is used; SLLN states that: Let X1, X2, · · · be independent and

identically distributed with E|Xi| < ∞. Let EXi = µ and Sn = X1 + X2 + · · · + Xn.

Then Sn/n → µ almost surely as n →∞.

Proposition 1. Given a memory-free, race-free specification, an implementation is

reliable if for all communicators c, we have λc ≥ µ[c].

Proof. Let Yi(c) be a random variable denoting the reliable value for c at instance

i·π[c]. Since the specification is memory-free, it follows that the sequence (Yi(c))i≥0 is

independent, and from the constant reliability of the hosts we obtain that the random

variables are also identical. Let E[Yi(c)] = β, and by SRG of c, we have β ≥ λc. Let

Sn =
∑n−1

i=0 Yi. Applying the strong law of large numbers (SLLN), we obtain that Sn

n

converges almost-surely to β. Formally, we have the following,

∀ε > 0. Pr I({τ : |Sn(τc)
n

− β| > ε infinitely many n’s}) = 0

∀ε > 0. Pr I({τ : |Sn(τc)
n

− β| < ε ultimately forall n’s}) = 1

∀ε > 0. Pr I({τ : | limn→∞
Sn(τc)

n
− β| < ε}) = 1

Pr I({τ : limn→∞
Sn(τc)

n
= β}) = 1.

Since β ≥ λc, the desired result follows.

If the specification graph has a cycle then the result does not hold for all task

models. Consider a task t, with fmodel[t] = 1, that reads and writes to a commu-

nicator c. Once ⊥ is written, then the value of c is always ⊥ from that instance.

Hence if λ[t] < 1, then the long-run average of the number of reliable value of c is 0

with probability 1. The source of the problem is that the value of the communica-

tor at any iteration is dependent on the value of the communicator in the previous

32

Chapter 2. Programming Model

iteration. In other words, the values of communicators are not independent contrary

to the assumption made in the proof. The solution to the problem is that for each

communicator cycle, there should exists at least one task in the cycle with input

failure model ‘independent’. The failure model ensures that even if there is a faulty

input, the output is independent of the failure as a default value would be used. This

ensures that for every communicator the random variable values at different iterations

is independent

Time-Dependent Implementation

Consider two tasks t1 and t2 that write to two communicators c1 and c2, respectively.

The LRCs of both the communicators is 0.9. Let h1 and h2 be two hosts with re-

liability 0.92 and 0.88, respectively. An implementation that maps t2 to h2 violates

the reliability requirement for c2, and an implementation that maps t1 to h2 violates

the reliability requirement for c1. The above implementation is time-independent

i.e., the tasks are always executed on same host. A time-dependent implementation

is one where tasks are executed on different sets of hosts depending on the time of

their execution. For example, a time-dependent implementation may map the tasks

t1 and t2 alternately to hosts h1 and h2. This implementation is reliable. Our defini-

tion of reliability for implementation is general enough to allow such time-dependent

implementations.

2.6 Refinement

A specification can be replaced by another specification; the first one is referred as

refined specification and the second one as refining specification. Every task in the

refining specification maps to a unique task in the refined specification such that no

33

Chapter 2. Programming Model

two tasks in the refining specification can map to the same task in the refined spec-

ification. We will show that if an implementation is valid for a refined specification

and all tasks write to communicators whose LRC do not exceed the LRC of com-

municators being written by the task (in refined specification) it maps to, then the

implementation is valid for the refining specification.

Consider two systems (S, A, I) and (S′, A′, I′), where S = (tset, cset), S′ =

(tset′, cset′), A = (hset, sset, CS), and A′ = (hset′, sset′, CS′). Let κ be a total

and one-to-one function from tset′ to tset. The system (S′, A′, I′) refines system

(S, A, I) under κ, denoted as (S′, A′, I′) ≤κ (S, A, I), if the following set of refinement

constraints are met: (a) hset = hset′, (b) for all tasks t′ ∈ tset′, we require

1. I(t′) = I(κ(t′)), i.e. tasks t and t′ are mapped to the same set of hosts

2. ∀h ∈ I(t′) : wemap(t′, h) ≤ wemap(κ(t′), h) and wtmap(t′, h) ≤ wtmap(κ(t′), h),

i.e. tasks t and tasks ′ have identical WCET and WCTT for any host

3. rtime[t′] ≤ rtime[κ(t′)] and ttime[t′] ≥ ttime[κ(t′)], i.e. latest read time of

t′ is not later than that of t and earliest write time of t′ is not earlier than that

of t

4. if (c′, ·) ∈ outs[t′], then µ[c′] ≤ max(c,·)∈outs[κ(t′)] µ[c], i.e. the LRC of any

communicator written by task t′ should be less than the maximum of the LRCs

of the communicators written by task t

5. fmodel[t′] = fmodel[κ(t′)], i.e. fault model of the tasks t and t′ are identical,

and,

6. if fmodel[t′] = 1, then rcset[t′] ⊆ rcset[κ(t′)], i.e. if task t′ has input fail-

ure model 1, then the set of communicators read should be a subset of the

communicators read by task t, and,

34

Chapter 2. Programming Model

7. if fmodel[t′] = 2, then rcset[t′] ⊇ rcset[κ(t′)], i.e. if task t′ has input fail-

ure model 2, the the set of communicators read should be a superset of the

communicators read by task t.

Note that all the constraints are local checks on t′ and κ(t′). Refinement relation

is reflexive, anti-symmetric and transitive. Given (S′, A′, I′) ≤κ (S, A, I), we have the

following result.

Proposition 2. Given (S′, A′, I′) ≤κ (S, A, I) and I is valid for S on A, then I′ is valid

for S′ on A′.

Proof. The result follows from Lemmas 1 and 2.

Lemma 1. If I is schedulable for S, then I′ is schedulable for S′.

Proof. Given the schedule of tset for each period, tasks in tset′ can be scheduled, for

each period, in the same time slots in which the respective parent task is scheduled.

Lemma 2. If I is reliable for S, then I′ is reliable for S′.

Proof. The result follows from the fact that given a random variable X, if Pr(X ≥

µ) = 1, then for all µ′ ≤ µ we have Pr(X ≥ µ′) = 1.

35

Chapter 3

Hierarchical Timing Language

Hierarchical Timing Language (HTL) is a coordination language. HTL can express

I/O interfaces of tasks, interaction between tasks (and possibly environment), and

real-time behavior of tasks; however individual tasks are implemented in foreign lan-

guages. The computation model of HTL is based on LET model of task execution.

The communication model of HTL is centered on communicators. Based on the LET

model and communicators, HTL provides a framework to specify (sequential, condi-

tional and parallel) composition of tasks and refinement of task into task groups with

precedence. Task composition exhibits deterministic behavior i.e. absence of races

(on communicators) and consistency of value (of a communicator) at any instance.

The determinism is ensured by constraints (Chapter 5) on program structure and

program execution. Task refinement preserves schedulability (resp. reliability) anal-

ysis i.e. if a higher level program is schedulable (resp. reliable), then so is a lower

level program provided the lower level program is a valid refinement of the higher

level program. Chapter 6 discusses valid schedulability-preserving refinement and

Chapter 7 discusses valid reliability-preserving refinement.

36

Chapter 3. Hierarchical Timing Language

3.1 Overview of HTL

The key structural components of HTL are: mode, module, program and refinement.

Mode

In the communicator model of communication, all tasks must communicate via com-

municators. HTL modifies the communication model, by allowing communication

between certain tasks through ports. A port is a typed variable, but unlike a com-

municator, it is not bound to time instances i.e., as soon as a task writes to a port,

another task can read the port. Interaction through communicators may introduce

latency but interaction through ports does not have any latency. Communication

through communicators is referred as indirect communication, while communication

through ports is referred as direct communication.

HTL allows direct communication between tasks if they are grouped in a so called

mode. A mode is a group of tasks with identical period of invocation and the tasks

can communicate with each other through direct or indirect communication. The

period of invocation is specified through a mode period. While tasks in a mode

can communicate through ports or communicators, tasks in different modes must

communicate through communicators only. The direct communication flow between

tasks within a mode determines an acyclic precedence relation on the tasks in the

mode.

Fig. 3.1 shows three tasks t1, t2, and t3 in a mode m1. Task t1 reads the second

instances of communicators c1 and c4, and updates a port p and third instance of

communicator c3. Task t2 reads the third instance of c3 and updates the seventh

instance of c1. Task t3 reads the port p and updates the fifth instance of communi-

cator c2. The communication between t1 and t3 occurs through port p. The port

p is not bound to time instances i.e., as soon as t1 completes execution, port p is

37

Chapter 3. Hierarchical Timing Language

task t3

task t1

task t2

reads c1 reads c4

reads c3

10 2 43 5 76 8 109 11 12

c1 c1 c1 c1 c1 c1 c1

c2 c2 c2 c2 c2

c4 c4 c4 c4 c4

c3 c3 c3 c3

p

updates c3
updates c1

updates c2

mode m1

Figure 3.1: An HTL mode

updated. Tasks t3 can read the port p as soon as it is updated and starts execution.

This essentially reduces latency to zero. On the contrary, communication via com-

municators may introduce latency. Task t1 and t2 communicates via communicator

c3. Task t2 has to wait till time 8, when c3 is updated; t2 cannot read the evalua-

tion even if task t1 completes execution earlier. The dependence on ports denotes a

precedence relation between tasks. In mode m1, tasks t1 precedes t3. Tasks within a

mode interact through ports and communicators; tasks from different modes interact

only through communicators. Fig. 3.2 shows two modes m1 and m2 with periods 6 and

12, respectively. The arrows between tasks denote precedence through port access.

38

Chapter 3. Hierarchical Timing Language

10 2 43 5 76 8 109 11 12

c1 c1 c1 c1 c1 c1 c1

c2 c2 c2 c2 c2

c3 c3 c3 c3

mode m1 mode m1

t1
t3

t1
t3

mode m2t4 t8

t9

t5

t6
t7

t2 t2

Figure 3.2: Two HTL modes

Module

In real-time applications, a group of tasks may have to be replaced by an alternate

group depending on some specific condition (e.g., a certain sensor reading). HTL

accommodates this by allowing mode switches at the end of mode periods, which are

triggered by conditions on communicator and port values. A network of modes and

mode switches is called a module (Fig. 3.3). One mode in each module is specified as

the start mode; the start mode is the first to execute. In Fig. 3.3, module mdl1 has

three modes m11, m12 and m13, switching between themselves. The switching between

modes is denoted by the arrow between the modes; the direction of the arrow implies

the switching. The start mode is m11 (denoted by an incoming arrow without source

mode).

A module is essentially a conditional and sequential composition of modes; con-

ditional composition is specified by mode switching and sequential composition is

ensured by the semantics that at most one mode from a module can be active at any

39

Chapter 3. Hierarchical Timing Language

instance. Determinism in mode switching is ensured by specifying a start mode and

having deterministic mode switches i.e., at any instance at most one switch of a mode

can evaluate to true.

m
od

ul
e

m
dl

1

m
od

ul
e

m
dl

2

m
od

ul
e

m
dl

3

pr
og

ra
m

 P

mode m13

mode m31

mode m31

mode m21

mode m22 mode m21

mode m11 mode m12

Figure 3.3: An HTL program with three modules

Program

An HTL program is a set of modules. A program is a parallel composition of modules

i.e., all modules are active at any instance. While the modes within a module are

composed sequentially (i.e., at any time, the tasks of at most one mode of a module are

active), the modes from different modules are composed in parallel and may interact

through communicators. Communicators are used to exchange data between tasks

from different parallel modules, as well as to exchange data from one task within a

module to a later task within the same module (but possibly in a different mode).

Fig. 3.3 shows a program P with three modules mdl1, mdl2 and mdl3.

Refinement

HTL allows replacing a mode by another HTL program (Fig. 3.4); the technique is

referred as mode refinement. In essence, the technique extends the refinement of task

40

Chapter 3. Hierarchical Timing Language

concept (Chapter 2) for a group of tasks with precedence. Fig. 3.4 shows a program

P with multiple levels of refinement. Program P is referred as root program; modules

in root program are root modules. In the root program, modes m13, m22 and m23 are

refined by programs P4, P1 and P2 respectively. In turn, mode m83 (in program P4)

is refined by program P5, and mode m42 (in program P1) is refined by program P3.

m
dl

1 P

mode m13

mode m31

mode m32

mode m21

mode m22 mode m23

m11 m12

m
dl

2

m
dl

3

P
1mode m41

mode m42
m

dl
4 P2

mode m51

mode m52

m
dl

5

m
dl

6 P3

mode m63

mode m71

mode m72

m61 m62

m
dl

7

m
dl

8 P
4

mode m83

mode m91

mode m92

m81 m82

m
dl

9

P5

mode m01

mode m02

m
dl

0

Figure 3.4: An HTL program

Refinement does not add expressiveness to the programming model. An HTL

program with multiple levels of refinement can be translated into an equivalent flat

program without refinement. Appendix B presents an overview of the techniques to

flatten an HTL program. Even though, refinement does not add expressiveness, the

techniques has two key advantages:

41

Chapter 3. Hierarchical Timing Language

• Refinement allows structured and concise specification. Specifying all behav-

iors through mode switching is cumbersome, e.g. if module mdl2 (Fig. 3.4) is

flattened, then it will have 10 modes and 32 mode switches. This is not only

cumbersome to conceive and express, but also error-prone.

• Refinement simplifies program analysis. Refinement is constrained in such a way

that if an analysis holds for the root program, then the analysis holds for the

whole program. Consider a program with only module mdl2. From refinement

constraints, if the module is schedulable, then schedulability of the refinement

of the module need not be checked. This reduces the schedulability check from

10 modes to 3 modes.

The refinement constraints are informally explained through an example (Fig. 3.5).

A program P has a single module mdl with single mode m. Mode m′ is refined by a

program P′ with a single module mdl′ which has a single mode m′. HTL imposes the

following restrictions on m′. First, the period of mode m′ is identical to that of m.

This ensures that when m switches (which is only possible at the end of its period),

then all tasks in the modes refining m have terminated execution. The constraints

avoids unsafe termination of task invocations in mode m′. Second, every task in m′

refines an unique task in m (mapping denoted with vertical arrows); e.g., t5′ refines

t5. HTL considers t5 as a placeholder (an abstract task) for t5′ (the concrete task):

the abstract task t5 does not execute at run-time but ensures that t5′ is accounted

for during the schedulability analysis of the root program. Therefore, (1) the latest

(resp. earliest) communicator read (resp. write) of t5′ must be equal to or earlier

(resp. later) than that of t5; (2) every task that precedes t5′ must refine a task that

precedes t5; and (3) the WCET of t5′ must be less than or equal to the WCET of

t5. These three constraints ensure that if t5 can be scheduled in the root program,

then t5′ can be scheduled in the refined program.

42

Chapter 3. Hierarchical Timing Language

10 2 43 5 76 8 109 11 12

c1 c1 c1 c1 c1 c1 c1

c2 c2 c2 c2 c2

c3 c3 c3 c3

t4 t8

t9

t6

t5
t7

t4'

t9't5'
t7'

mode m

Pm
dl

mode m'

P'm
dl

'

Figure 3.5: Refinement in HTL

Refinement constrains the timing behavior of a concrete task (relative to the

abstract task it maps to) and not the functional behavior or I/O interface. This

allows expressing choice and change in task functionality. Choice is expressed when

an abstract task in a mode is the parent of multiple concrete tasks (in different

modes of the refinement program), each representing different execution scenario.

Change is expressed when a concrete task, refining an abstract task, reads from

and writes to different communicators than the abstract task. Refinement allows

adding and replacing parts of program without overloading analyses. A program

may contain abstract tasks which are not refined. Refinements may be added later

without repeating the schedulability analysis and/or modifying the timing interfaces

of other tasks. Similarly, a refinement can be replaced by another refinement without

change in analyses. For example, refinement to mode m52 can be added, or program

P5 can be replaced by another program without repeating schedulability analysis.

43

Chapter 3. Hierarchical Timing Language

Distribution

Many embedded applications are distributed: the tasks are distributed on several

hosts and interact with each other through communication channels. In HTL, dis-

tribution is specified through a mapping of root modules to hosts. The distribution

is implemented by replicating shared communicators on all hosts, and then have the

tasks that write to shared communicators broadcast the outputs. The semantics (i.e.,

the real-time behavior) of an HTL program is independent of the number of hosts

and replication, but code generation and program analyses take the distribution into

account. If a root module is mapped to host h, then all the programs in the refine-

ment of the module is mapped to host h. This is a refinement constraint under a

distributed implementation. Intuitively if a root module is schedulable for a host h,

the schedulability of the refinement of the root modules can be predicted (without

repeating analysis) only if the refinement are implemented on the same host h. If

modules mdl1, mdl2 and mdl3 (Fig. 3.4) are mapped to hosts h1, h2 and h3 respec-

tively, then programs P4, P5 are executed on h1, and programs P1, P2, P3 are executed

on host h2.

3.2 Abstract Syntax

The main components of HTL are presented in an abstract way. In practice a concrete

syntax can be written from this abstract syntax (refer [Ghosal et al., 2006b]). An

HTL program P is a pair (communicators, modules) where communicators is a set of

communicator declarations and modules is a set of module declarations. Given a pro-

gram P, the communicator and module declarations are denoted as communicators(P)

and modules(P) respectively.

44

Chapter 3. Hierarchical Timing Language

Communicator Declaration

A communicator declaration (c, type, init, π) consists of a communicator name c,

a structured data type type, an initial value init (if different from the default

value of type), and a period of access π ∈ N>0. Data type indicates integer,

float and boolean. More complex data types like arrays can be defined; however

types are not an integral part of the program definition and refinement proper-

ties. Hence complex type definitions has been left out. All communicator names

are unique; i.e., if (c, ·, ·, ·) and (c′, ·, ·, ·) are two distinct communicator declarations,

then c 6= c′. The set of declared communicator names for a program P is cnames(P);

formally, cnames(P) = {c|(c, ·, ·, ·) ∈ communicators(P)}. Given a communicator

c ∈ cnames(P), the type type(c) denotes the range of values the communicator can

evaluate to and init(c) ∈ type(c) denotes the initial value of the communicator.

The evaluation of a communicator val(c) is a function that maps c to a value in

type(c). The period of a communicator c is denoted as π(c).

Module Declaration

A module declaration (mdl, ports, tasks, modes, start) consists of a module name

mdl, a set of port declarations ports, a set of task declarations tasks, a set of mode

declarations modes, and a mode name start. All module names are unique; i.e.,

if (mdl, ·, ·, ·, ·) and (mdl′, ·, ·, ·, ·) are two distinct module declarations, then mdl 6=

mdl′. The set of declared module names for a program P is mdlnames(P); formally,

mdlnames(P) = {mdl|(mdl, ·, ·, ·, ·) ∈ modules(P)}. Given a module mdl, the port

declarations, task declarations, mode declarations, and start mode are denoted as

ports(mdl), tasks(mdl), modes(mdl) and start(mdl) respectively.

45

Chapter 3. Hierarchical Timing Language

Port Declaration

A port declaration (p, type, init) consists of a port name p, a structured data type

type, and an initial value init (if different from the default value of type). All port

names are unique; i.e., if (p, ·, ·) and (p′, ·, ·) are two distinct port declarations, then

p 6= p′. The set of declared port names for a module mdl is pnames(mdl); formally,

pnames(mdl) = {p|(p, ·, ·) ∈ ports(mdl)}. Given a port p ∈ pnames(mdl), the type

type(p) denotes the range of values the port can evaluate to and init(p) ∈ type(p)

denotes the initial value of the port. The evaluation of a port val(p) is a function

that maps p to a value in type(p).

Task Declaration

A task declaration (t, fins, fouts, fn) consists of a task name t, a list of formal

input parameters fins, a list of formal output parameters fouts and an optional

task function fn. All task names are unique; i.e., if (t, ·, ·, ·) and (t′, ·, ·, ·) are two

distinct task declarations, then t 6= t′. Given a task t, the formal input parame-

ters, formal output parameters and task function are denoted as fins(t), fouts(t)

and fn(t) respectively. If the task function is omitted, then fn(t) = ∅. An ele-

ment of the formal input parameter list is a data type; type of the j-th parameter

of the formal input list is type(finsj(t)) where 1 ≤ j ≤ |fins(t)|, and |fins(t)|

is the length of input parameter list. An element of the formal output param-

eter list is a data type; type of the k-th parameter of the formal output list is

type(foutsk(t)) where 1 ≤ k ≤ |fouts(t)|, and |fouts(t)| is the length of out-

put parameter list. If |fins(t)| = m and |fouts(t)| = n, then the function fn(t)

is, fn(t) : Π1≤j≤mtype(finsj(t)) → Π1≤k≤ntype(foutsk(t)). The set of declared

task names for a module mdl is tnames(mdl); formally, tnames(mdl) = {t|(t, ·, ·, ·) ∈

tasks(mdl)}.

46

Chapter 3. Hierarchical Timing Language

Mode Declaration

A mode declaration (m, π, invocs, switches, ref) consists of a mode name m, a mode

period π ∈ N>0, a set of task invocations invocs, a set of mode switches switches,

and an optional program name ref. Mode names are unique; i.e., if (m, ·, ·, ·, ·) and

(m′, ·, ·, ·, ·) are two distinct mode declarations, then m 6= m′. The set of declared mode

names for a module mdl is mnames(mdl); formally, mnames(mdl) = {m|(m, ·, ·, ·, ·) ∈

modes(mdl)}. Given a mode m, the corresponding period, task invocation set, switch

set and optional program name are denoted as π(m), invocs(m), switches(m), and

ref(m) respectively. If the program name is omitted, then ref(m) = ∅.

Task Invocation

A task invocation (t, ains, aouts, ptask) consists of a task name t, a list of actual

input parameters ains, a list of actual output parameters aouts and an optional task

name ptask. Task names of the invocations are unique; i.e., if (t, ·, ·, ·) and (t′, ·, ·, ·)

are two different task invocations, then t 6= t′. Given invocation of a task t, the

actual input list, actual output list and optional task name are referred as ains(t),

aouts(t) and ptask(t) respectively. If the fourth parameter, an optional task name,

is omitted, then ptask(t) = ∅. An element of the actual input parameter list is either

a port or an instance of a communicator; i.e., j-th parameter of the actual input list

is ainsj(t) = p or ainsj(t) = (c, i) where 1 ≤ j ≤ |ains(t)|, |ains(t)| is the length

of actual input list, p is a port, c is a communicator and i ∈ N≥0. An element of

the actual output parameter list is either a port or an instance of a communicator;

i.e., k-th parameter of the actual output list is aoutsj(t) = p or aoutsj(t) = (c, i)

where 1 ≤ j ≤ |aouts(t)|, |aouts(t)| is the length of actual output list, p is a port,

c is a communicator and i ∈ N≥0. The set of invoked task names for a mode m is

invnames(m); formally, invnames(m) = {t|(t, ·, ·, ·) ∈ invocs(m)}.

47

Chapter 3. Hierarchical Timing Language

Mode Switch

A mode switch sw = (cnd, m′) consists of a condition cnd (expressed as a predicate

on ports and communicators). Mode switches are deterministic; i.e., if (cnd, ·) and

(cnd′, ·) are two distinct mode switches, then for all valuations of ports and commu-

nicators, either cnd evaluates to false or cnd′ evaluates to false. For a mode m, the

set of destination modes is destmodes(m) = {m′|(., m′) ∈ switches(m)}.

3.3 Hierarchy and Relation between Components

The section defines the relation between mode, modules and program across hierarchy.

Module Types

A module mdln is a sub module of a module mdl1 if there exists n ∈ N>1 modules

mdl1, mdl2, · · · , mdln such that for every pair mdlj, mdlj+1 there exists a mode m where

ref(m) = P, m ∈ mnames(mdlj) and mdlj+1 ∈ mdlnames(P) for 1 ≤ j < n. The module

mdl1 is a super module of mdln. A module is a sub module (and a super module) of

itself. Given a module mdl, superset(mdl) and subset(mdl) are the sets of super

modules and sub modules of mdl respectively. A root module is one with no super

module other than itself; a leaf module is one with no sub module other than itself.

A module mdl2 is an immediate sub module of a module mdl1 if there exists a mode m

such that ref(m) = P, m ∈ mnames(mdl1) and mdl2 ∈ mdlnames(P). The module mdl1

is an immediate super module of mdl2. An immediate sub (super) module is also a

sub (super) module. The set of all the sub modules of a module mdl is submdls(mdl).

Module mdl is a sibling of module mdl′ if mdl, mdl′ ∈ mdlnames(P) for a program

P. The sibling set for module mdl is siblings(mdl) = mdlnames(P) \ {mdl} where

mdl ∈ mdlnames(P).

48

Chapter 3. Hierarchical Timing Language

Program Types

If mdl′ ∈ mdlnames(P′), mdl ∈ mdlnames(P) and mdl′ is a (immediate) sub module of

mdl, then P′ is a (immediate) sub program of P and P is a (immediate) super program

of P′. A program P is both a sub program and a super program to itself. Given

a program P, superset(P) and subset(P) are the sets of super programs and sub

programs of P respectively. A root program is one with no super program than itself.

A leaf program is one with no sub-program than itself. A flat program is one which

is both a root and a leaf program. Abstract program abstract(P) for program P

is the root program with all immediate sub-programs removed. Formally, if P =

(communicators, modules) then abstract(P) = (communicators, modules′) where

(mdl, ports, tasks, modes′, start) ∈ modules′ if (mdl, ports, tasks, modes, start) ∈

modules, and (m, invocs, switches, ∅) ∈ modes′ if (m, invocs, switches, ·) ∈ modes.

An abstract program is always flat.

Mode Types

Given a mode m, ref(m) (if declared) is refinement program of m and m is parent of

mode m′ where m′ is any mode in ref(m). Mode mn is transitive parent of mode m1 if

there exists n ∈ N>1 modes such that for every pair mi, mi+1, where 1 ≤ i < n, mi+1 is

a parent of mi. A (transitive) parent mode m is a root parent if m is declared in a root

program. Ancestors ancestors(m) of mode m is a set of modes that includes the parent

modes of m and the ancestors of the parent modes; ancestors for modes of root program

is empty. Given a module mdl, start(mdl) is referred as the start mode of the module

mdl. The start set of a mode m with refinement (i.e. ref(m) 6= ∅) includes itself and

the start set of the start modes of all the modules in the refinement program; formally,

startmodes(m) =
⋃

mdl∈mdlnames(ref(m)) startmodes(start(mdl))
⋃
{m}. If mode m has

no refinement (i.e. ref(m) = ∅), then startmodes(m) = {m}.

49

Chapter 3. Hierarchical Timing Language

3.4 Task Invocation and Relation with Input/Output

The section defines the relation between task invocation, corresponding input/output,

precedence and hierarchy.

Task Declaration Types

A task declaration (t, ·, ·, ·) is abstract if there is no function definition, i.e., fn(t) = ∅.

A task declaration (t′, ·, ·, ·) is concrete if there is a function definition, i.e., fn(t′) 6= ∅.

A task invocation (t, ·, ·, ·) is abstract if the corresponding task declaration for t is

abstract. A task invocation (t′, ·, ·, ·) is concrete if the corresponding task declaration

for t is concrete.

Communicator and Port Access

Read communicator set rcset(t, m) for a task t invoked in mode m (t ∈ invnames(m)),

is the set of communicators read by invocation of t; i.e., rcset(t, m) = {c|∃j ∈

N≥0 s.t. ainsj(t) = (c, ·)} where (t, ains, aouts, ·) is the corresponding invocation.

Given the HTL definition that names of invoked task names in a mode are unique,

the sets ains and aouts are unique for invocation of task t in mode m. Write

communicator set wcset(t, m) is the set of communicators written by the invocation

of task t in mode m; i.e., wcset(t, m) = {c|∃j ∈ N≥0 s.t. aoutsj(t) = (c, ·)}. Read

port set rpset(t, m) is the set of ports read by the invocation of task t in mode m; i.e.,

rpset(t, m) = {p|∃j ∈ N≥0 s.t. ainsj(t) = p}. Write port set wpset(t, m) is the set

of ports updated by the invocation of task t in mode m; i.e., wpset(t, m) = {p|∃j ∈

N≥0 s.t. aoutsj(t) = p}.

Switch communicator set scomms(sw, m) for a switch sw = (cnd, .) ∈ switches(m)

is the set of communicators in predicate of switch condition cnd, i.e., scomms(sw, m) =

50

Chapter 3. Hierarchical Timing Language

{c|c is in condition cnd}. Switch port set sports(sw, m) for a switch sw = (cnd, .) ∈

switches(m) is the set of ports in cnd, i.e., sports(sw, m) = {p|p is in condition cnd}.

Read communicator set rcset(m) for a mode m is the set of all communicators read

by the invocations in m; i.e., rcset(m) =
⋃

t∈invnames(m) rcset(t, m). Write communica-

tor set wcset(m) for a mode m is the set of all communicators read by the invocations

in m; i.e., wcset(m) =
⋃

t∈invnames(m) wcset(t, m). Read port set rpset(m) for a mode

m is the set of all communicators read by the invocations in m; i.e., rpset(m) =⋃
t∈invnames(m) rpset(t, m). Write port set wpset(m) for a mode m is the set of all com-

municators read by the invocations in m; i.e., wpset(m) =
⋃

t∈invnames(m) wpset(t, m).

Switch communicator set scomms(m) for a mode m is the set of communicators used

by the switch predicates in m; i.e., scomms(m) =
⋃

sw∈switches(m) scomms(sw, m). Switch

port set sports(m) for a mode m is the set of ports used by the switch predicates in

m; i.e., sports(m) =
⋃

sw∈switches(m) sports(sw, m).

Read communicator set rcset(mdl) for a module mdl is the set of communica-

tors read by the task invocations and used by the mode switches of modes in mdl;

i.e., rcset(mdl) =
⋃

m∈mnames(mdl){rcset(m) ∪ scomms(m)}. Write communicator set

wcset(mdl) for a module mdl is the set of communicators updated by the task invo-

cations of modes in mdl; i.e., wcset(mdl) =
⋃

m∈mnames(mdl) wcset(m).

Accessible communicator set acccommset for a module mdl in program P is the

set of communicators declared in the super programs of P. Formally, for module

mdl ∈ mdlnames(P), acccommset(mdl) = ∪P′∈superset(P)cnames(P
′).

Hierarchical read set, hrcset(mdl), for a module mdl is the set of communicators

that are read by any sub-module of mdl and belongs to the accessible communicator

set of mdl; i.e., hrcset(mdl) =
⋃

mdl′∈submdls(mdl){rcset(mdl′) ∩ acccommset(mdl′)}.

Hierarchical write set, hwcset(mdl), for a module mdl is the set of communicators that

are written by any sub-module of mdl and belongs to the accessible communicator

set of mdl; i.e., hwcset(mdl) =
⋃

mdl′∈submdls(mdl){wcset(mdl′) ∩ acccommset(mdl′)}.

51

Chapter 3. Hierarchical Timing Language

Dependencies between Task Invocations

A binary relation prec(m) for mode m contains the dependency information of the

tasks invoked in mode m. A task t1 precedes another task tn in mode m(or (t1, tn) ∈

prec(m)) if there exists n (where n ∈ N>1) tasks t1, · · · , tn such that for each pair

tj and tj+1, wpset(tj, m) ∩ rpset(tj+1, m) 6= φ where 1 ≤ j < n and t1, · · · , tn ∈

invnames(m). The task tn follows the task t1 in mode m. The preceding set prec(t, m)

consists of tasks which precede the task t in mode m; i.e., prec(t, m) = {t′|(t′, t) ∈

prec(m)}. The following set foll(t, m) is the set of tasks which follows the task t

in mode m; i.e., foll(t, m) = {t′|(t, t′) ∈ prec(m)}. A task t′ immediately precedes

a task t in mode m, if the invocation of t reads a port updated by the invocation of

t, i.e., wpset(t′, m) ∩ rpset(t, m) 6= φ. The immediately preceding set immprec(t, m)

consists of tasks which immediately precedes task t in mode m; i.e., immprec(t, m) =

{t′|t′ ∈ invnames(m) and (wpset(t′, m) ∩ rpset(t, m) 6= φ)}.

Read and Write Time of Task Invocation

The read time rtime(t, m) of a task t ∈ invnames(m) is the latest communica-

tor instance read by the invocation of t in m; i.e., rtime(t, m) = maxj(π(c) · i)

where (t, ains, ·, ·) ∈ invocs(m), ainsj(t) = (c, i), and j ∈ N≥0. The write time

ttime(t, m) of a task t ∈ invnames(m) is the earliest communicator instance updated

by the invocation of t in m; i.e., ttime(t, m) = mink(π(c) · i) where (t, ·, aouts, ·) ∈

invocs(m), ainsj(t) = (c, i), and j ∈ N≥0. If invocation of a task t in mode m does

not read any communicator, then the read time of the task is the start of the mode

period, or rtime(t, m) = 0. If invocation of a task t in mode m does not write any

communicator, then the write time of the task in mode m is the end of the mode

period, or ttime(t, m) = π(m).

52

Chapter 3. Hierarchical Timing Language

The transitive read time rtime∗(t, m) of a task t ∈ invnames(m) is the latest

communicator instance that the invocation of t or any of its preceding task reads

from. The transitive write time ttime∗(t, m) of a task t ∈ invnames(m) is the ear-

liest communicator instance that the invocation of t or any of its following task

writes to. Formally, rtime∗(t, m) = max(rtime(t, m), max
t′∈prec(t,m)

rtime∗(t′, m)), and

ttime∗(t, m) = min(ttime(t, m), min
t′∈foll(t,m)

ttime∗(t′, m)). For a task t with no pre-

ceding task in mode m, rtime∗(t, m) = rtime(t, m). For a task t with no following

task in mode m, ttime∗(t, m) = ttime(t, m).

Parent Task Invocation

A task t2 ∈ invnames(m2) is parent of task t1 ∈ invnames(m1) if ptask(t1) = t2.

The task t1 is a child of the task t2. A task tn+1 ∈ invnames(mn+1) is n-th transitive

parent of task t1 ∈ invnames(m1) if there exists n (where n ∈ N>1) modes m1, · · · , mn

such that for any two modes mj, mj+1, there exists task tj ∈ invnames(mj) and task

tj+1 ∈ invnames(mj+1), such that ptask(tj) = tj+1, for all 1 ≤ j ≤ n. A parent task

is also a 1-st transitive parent. A task t is a root parent of a task t′ if t ∈ invnames(m),

mode m ∈ mnames(mdl) and mdl is a root module.

Local Variables for Task Invocations

An invocation of a task t in mode m has an input (resp. output) port associated with

each actual input (resp. output) parameter; these ports are referred as task ports ; for

differentiation, the ports of a module would be referred as module ports. The input

task ports store the value of the inputs (module ports and communicators) read by

the task invocation across the LET interval. At completion of execution, the output

task ports store the evaluation of the task invocation (specified by the function in

task declaration) on the values of input task ports at the release instance of the task

53

Chapter 3. Hierarchical Timing Language

invocation. The outputs (module ports and communicators) are updated from the

output task ports. The set of input (resp. output) task ports for invocation of a

task t ∈ invnames(m) is tips(t, m) (resp. tops(t, m)). A task port has the same type

and initial value as the communicator (or module port) corresponding to the actual

parameter denoted by the task port. The input (resp. output) task port that reads

from (resp. writes to) a module port p is tip
p
t,m (resp. toppt,m) for invocation of task

t in mode m. The input (resp. output) task port that reads from (resp. writes to)

i-th instance of a communicator c is tipc,it,m (resp. topc,it,m). The set of task ports (both

input and output) for a module mdl is tpset(mdl). The value of a task port p is

val(p).

54

Chapter 4

Operational Semantics

The semantics (i.e., set of traces) of an HTL program is independent of the archi-

tecture; neither execution metrics nor distribution needs to be accounted for. The

execution metrics and distribution will be taken into account later, for code gener-

ation and program analyses. The execution of an HTL program yields a (possibly

infinite) sequence of configurations, called trace. Each configuration tracks the values

of the variables (ports and communicators), a set of guards, and a set of released

(but not yet completed) tasks. A guard defines an action to be taken at a future

event, which is specified by an integer n and a set cmps of tasks. When n time ticks

have passed and all tasks in cmps have completed execution, the guard becomes en-

abled. In practice, time ticks and task completion events are raised by the execution

platform through interrupts: the time unit of the interrupt is harmonic fraction of

all communicator and mode periods. When a guard becomes enabled, the associated

action is carried out. An action may be one of the following: writing a communica-

tor (handled by write guards), checking a mode switch (handled by switch guards),

reading a communicator (handled by read guards), or releasing a task (handled by

release guards). Enabled write, switch, read, and release guards are handled in this

55

Chapter 4. Operational Semantics

order. If no guard is enabled, then the next time tick is awaited, and any number of

released tasks may complete their execution.

4.1 Execution State

The execution state of a program is recorded by configurations. A configuration u is

a triple (state, gset, tset), where state is variable state, gset is a set of guards,

and tset is a set of task names.

Variable State

The variable state is a valuation of all communicators, (module) ports, and task ports

(of task invocations). Without loss of generality, two assumptions are used: (1) all

communicator names and module port names across the hierarchy are unique, and (2)

task names for all invocations are unique; i.e., task names uniquely identifies the mode

in which the task is invoked (and for task ports the mode names are ignored). The

set of communicators consists of all the communicators accessed by the sub modules

of the root modules. For a root module mdl, the set of communicators accessed (i.e.,

read and/or written) by all the sub modules of mdl is
⋃

mdl′∈subset(mdl){rcset(mdl′) ∪

wcset(mdl′)}. The set of module ports consists of all the ports defined in each sub

module for all root modules. For a root module mdl, the set of ports declared in the

sub modules of mdl is
⋃

mdl′∈subset(mdl) pnames(mdl
′). The set of task ports consists of

all the task ports for each sub module for all root modules. For a root module mdl,

the set of task ports in the sub modules of mdl is
⋃

mdl′∈subset(mdl) tpset(mdl
′). At a

configuration u, cu (resp. pu) denotes the value of a communicator c (resp. port p)

and cndu denotes the boolean value of a mode switch condition cnd.

56

Chapter 4. Operational Semantics

Event Instance

An event instance is a pair (n, cmps), where n ∈ N≥0 and cmps is a set of tasks; n

denotes the number of time ticks being waited for and cmps consists of the tasks whose

completion event is being waited for. Time ticks and task completion events are raised

by the platform (on which the program is being executed) through interrupts. The

interrupt is periodic with the interval being an harmonic fraction of all communicator

and mode periods. Without loss of generality, all input communicators are assumed

to have unit period and execution time for task invocations to be a positive integer.

For the above conditions, each interrupt is a time tick event and some tasks may

possibly complete execution at every time tick event.

Guard

A guard g is a triple (τ, e, a), where τ ∈ {w, s, d, l} is a tag that identifies the type

of the guard, e is an event instance and a is action to be carried out when the guard

is handled. The guard is enabled if event instance e = (0, ∅). If none of the guards of

a configuration is enabled, then the configuration is in state waiting. If at least one

of the guards of a configuration is enabled, then the configuration is in state active.

There are four types of guards: write, switch, read and release.

A write guard is a tuple (τ, e, a) where tag τ = w, e is an event instance and

action a is a tuple (c, i, t) with communicator name c, i ∈ N≥0 and task name t.

When the write guard is handled, the communicator c is updated from the output

task port topc,it .

A switch guard is a tuple (τ, e, a) where tag τ = s, e is an event instance and

action a is a tuple (sw, m) with mode switch sw = (cnd, m′) ∈ switches(m). When

the switch guard is handled, the switch condition cnd is checked; if the condition

evaluates to true, then a mode switch occurs from m to m′.

57

Chapter 4. Operational Semantics

A read guard is a tuple (τ, e, a) where tag τ = d, e is an event instance and action

a is a tuple (t, c, i) with task name t, communicator name c and i ∈ N≥0. When the

read guard is handled, the value of the communicator c is copied to the input task

port tipc,it .

A release guard is a tuple (τ, e, a) where tag τ = l, e is an event instance and

action a is a task name t. When the release guard is handled, the task t is released

i.e., task t is added to the task set.

4.2 Execution Trace

A trace of an HTL program is a sequence of configurations u0, u1, u2, . . . where u0 is

the starting configuration, and for all i > 0, configuration ui is a successor of ui−1.

There are five types of successors: time-event, write, switch, read and release.

Time-event Successor

A configuration u′ = (state′, gset′, tset′) is time-event successor of configuration

u = (state, gset, tset) is waiting and a time tick event occurs. Possibly some tasks

in tset completes execution and the completed tasks are removed from task set. Thus

tset′ ⊆ tset, and the set of completed tasks is tset \ tset′. The positive time tick

counts of all guards in are reduced by one. The completed tasks are removed from the

completion event set of event instances in guards. Formally, if (·, (n, cmps), ·) ∈ gset,

then (·, (n′, cmps′), ·) ∈ gset′, where (1) n′ = n− 1 if n > 0, and n′ = n if n ≯ 0; and

(2) cmps′ = cmps \ (tset \ tset′). The output task ports of the completed tasks are

updated; the update value is the evaluation of the task function on the value of input

task ports at task release instance. The task model being LET, the values of input

task ports remain identical from task release to task termination. Formally, for all

58

Chapter 4. Operational Semantics

tasks t ∈ tset \ tset′: for all output task ports p ∈ tops(t), pu′ = fn[Πp′∈tips(t)p
′
u′].

Once the output task ports have been updated, the modules ports written by the

completed tasks are updated from the output task ports. Formally, for all tasks

t ∈ tset \ tset′: for all (module) ports p ∈ wpset(t) : pu′ = top
p
t,u′ . To maintain

consistency, the module ports must be updated once all the output task ports have

been updated. The input communicators are written by environment. Formally, for

all c ∈ icset(P), cu′ = ϑ(type(c)) where ϑ(type(c)) non-deterministically assigns a

value from type(c) and icset(P) is the set of all input communicators in superset(P)

for root program P.

Write Successor

A configuration u′ = (state′, gset′, tset′) is a write successor of configuration u =

(state, gset, tset) if an enabled write guard is handled at configuration u. Say the

guard being handled is g = (w, (0, ∅), (c, i, t)) ∈ gset. The value of output task

port top
c,i
t is copied to the communicator c, i.e., cu′ = top

c,i
t,u′ ; this updates the

variable state from state to state′. The guard g is removed from the guard set; i.e.,

gset′ = gset \ {g}. The task set remains identical, i.e., tset′ = tset.

Switch Successor

A configuration u′ = (state′, gset′, tset′) is a switch successor of configuration

u = (state, gset, tset) if an enabled switch guard is handled at configuration u.

An enabled switch guard g = (s, (0, ∅), (sw, m)) ∈ gset, where sw = (cnd, m1), can

be handled if two conditions are met: (1) there are no enabled write guards, i.e.,

@(w, (0, ∅), ·) ∈ gset, and, (2) if the switch guard belongs to mode m, then there are

no enabled switch guards for any ancestors of m, i.e., ∀(s, (0, ∅), (·, m2)) ∈ gset \ {g},

m2 6∈ ancestors(m). There are three possible scenarios depending on the evaluation

59

Chapter 4. Operational Semantics

of the switch condition cnd.

1. if the switch condition evaluates to false, and there exists another enabled switch

guard from m, then the switch guard g is removed. Variable state and task set

remains the same. Formally, if ¬cndu and ∃g′ = (s, (0, ∅), (·, m)) ∈ gset \ {g},

then gset′ = gset \ {g}, state′ = state, and tset′ = tset.

2. if the switch condition evaluates to false and there exists no other enabled

switch guard from m, then the switch guard g is removed and m is reinvoked.

Variable state and task set remains the same. Formally, if ¬cndu and @g′ =

(s, (0, ∅), (·, m)) ∈ gset \ {g}, then gset′ = gseti(m) ∪ gset \ {g}, state′ =

state, and tset′ = tset, where gseti(m) is the set of guards added on invoking

mode m.

3. if the switch condition evaluates to true, then all enabled switch guards of m

and of the descendants of m are removed, and all modes in startmodes(m1)

are invoked. Variable state and task set remains the same. Formally, if cndu,

then gset′ = ∪m3∈startmodes(m1)gseti(m3) ∪ gset \ gsetr(m, u), state
′ = state

and tset′ = tset. The set gsetr(m, u) consists of all the enabled switch

guards from mode m and from all the modes descendant to m, i.e., gsetr(m, u) =

{(s, (0, ∅), (·, m4)) ∈ gset(u) : (m4 = m) ∨ (m ∈ ancestors(m4))}.

An invocation of mode m (Alg. 1) generates a set of guards, gseti(m) as follows: (1)

for each concrete task invocation in m, a read guard is added for each communicator

input; (2) for each concrete task invocation in m, a write guard is added for each

communicator output; (3) for each concrete task invocation, a release guard is added;

and, (4) for each mode switch, a switch guard is added.

60

Chapter 4. Operational Semantics

successor†
the following conditions hold on
u = (state, gset, tset)

the following conditions hold on
u′ = (state′, gset′, tset′)

time
event no enabled guard in gset

tset′ ⊆ tset,
if (·, (n, cmps), ·) ∈ gset then
(·, (n′, cmps′), ·) ∈ gset′, where
n′ = n	 1 and
cmps′ = cmps \ (tset \ tset′)

∀t ∈ tset \ tset′ :
∀p ∈ tops(t) :
pu′ = fn[Πp′∈tips(t)p

′
u′],

∀p ∈ wpset(t) : pu′ = toppt,u′

∀c ∈ icset(P) : cu′ = ϑ(type(c))F

write
∃g = (w, (0, ∅), (c, i, t)) ∈ gset cu′ = topc,it,u′ , gset′ = gset \ {g}

tset′ = tset

switch

no enabled write guard
in gset,
∃g = (s, (0, ∅), (sw, m)) ∈ gset :
where sw = (cnd, m1) and
∀(s, (0, ∅), (·, m2)) ∈ gset \ {g}:
m2 6∈ ancestors(m))

if ¬cndu and there exists other
enabled switch guard for m in gset:
gset′ = gset \ {g}, tset′ = tset
if ¬cndu and no other enabled

switch guard for m in gset:
gset′ = gseti(m) ∪ gset \ {g}
tset′ = tset
if cndu :

gset′ = ∪m3∈startmodes(m1)gseti(m3)
∪gset \ gsetr(m, u)

tset′ = tset

read
no enabled write or switch
guards in gset
∃g = (d, (0, ∅), (t, c, i)) ∈ gset

tipc,it,u′ = cu′ , gset′ = gset \ {g}
tset′ = tset

release
no enabled write or switch or
read guards in gset
∃g = (l, (0, ∅), t) ∈ gset

∀p ∈ rpset(t) : tippt,u′ = pu′ ,
gset′ = gset \ {g},
tset′ = tset ∪ {t}

†Values of variables remain unchanged from u to u′ unless noted.
Fϑ non-deterministically assigns a value from type type(c) of communicator c.

n	 1 = n− 1, if n > 0; n	 1 = n, otherwise
gseti(m) = Procedure Invoke Mode(m)

gsetr(m, u) = {(s, (0, ∅), (·, m4)) ∈ gset(u) : (m4 = m) ∨ (m ∈ ancestors(m4))}

Figure 4.1: Successor configurations

61

Chapter 4. Operational Semantics

Algorithm 1 Procedure Invoke Mode(m)

gseti(m) = ∅;
∀t = invnames(m) where t has a concrete invocation in mode m
∀k ∈ N s.t. ainsk(t) = (c, i)

add guard (d, (i · π(c), ∅), (t, c, i)) to gseti(m)
∀j ∈ N s.t. aoutsj(t) = (c, i)

add guard (w, (i · π(c), ∅), (c, i, t)) to gseti(m)
add guard (l, (n, cmps), t) to gseti(m)

where n = rtime(t, m) and cmps = prec(t, m)}
∀sw ∈ switches(m)

add guard (s, (π(m), ∅), (sw, m)) to gseti(m)
return gseti(m)

Read Successor

A configuration u′ = (state′, gset′, tset′) is a read successor of configuration u =

(state, gset, tset) if an enabled read guard is handled at configuration u. An enabled

read guard g = (d, (0, ∅), (t, c, i)) ∈ gset can be handled if no write or switch guard

is enabled, i.e., @(w, (0, ∅), ·) ∈ gset and @(s, (0, ∅), ·) ∈ gset. The variable state is

updated by copying the value of the communicator to the respective input task port,

i.e., tipc,it,u′ = cu′ . The guard is removed from guard set, i.e., gset′ = gset \ {g}, and

the task set remains the same, i.e., tset′ = tset.

Release Successor

A configuration u′ = (state′, gset′, tset′) is a release successor of configuration

u = (state, gset, tset) if an enabled release guard is handled at u. An enabled

release guard g = (l, (0, ∅), t) ∈ gset can be handled if no write, switch or read

guard is enabled, i.e. if ∃(τ, (0, ∅), ·) ∈ gset, then τ = l. The variable state is

updated by copying the module ports (read by task t) to the respective input task

ports, i.e., for all p ∈ rpset(t) : tippt,u′ = pu′ . The guard is removed from guard set,

i.e., gset′ = gset\{g}, and the task is added to the task set, i.e., tset′ = tset∪{t}.

62

Chapter 4. Operational Semantics

Program Trace

A trace of a program (or a program trace) is a sequence of configurations u0, u1, · · ·

where u0 is the starting configuration and for any two consecutive configurations

ui−1, ui (i ∈ N>0), configuration ui is a time-event, write, switch, read or release

successor of ui−1; the pair (ui−1, ui) is a time-event, write, switch, read or release

transition respectively. The starting configuration is as follows: module ports, in-

put task ports and communicators are assigned initial values, output task ports are

assigned default values of their types, the guard set consists of guards by invoking

modes in start set of start(mdl) for each root module mdl, and empty task set.

63

Chapter 5

Determinism

Communicators are the key to compose tasks in HTL. To ensure deterministic pro-

gram execution, one has to ensure that task composition is deterministic. The section

presents structural constraints on HTL program. An HTL program with the above

constraints is an well-formed HTL program. An well-formed program has certain

structural properties and execution behavior which in turn ensures deterministic task

composition. Section 5.1 presents the definition of well-formed HTL program. Sec-

tion 5.2 and Section 5.3 discusses the structural properties and execution behavior

of well-formed program respectively. The section concludes by a discussion on how

well-formedness of HTL program ensures determinism.

5.1 Well-Formed Program

A HTL program is well-formed if it conforms to the following restrictions on program,

communicators, task invocations and refinements:

1. Constraints on programs:

(a) There is only one root program.

64

Chapter 5. Determinism

(b) The root program must be a super program to all other programs.

(c) For each program (other than root program) there is only one immediate

super-program.

(d) For each module (other than root module) there is only one immediate

super-module.

(e) A program cannot refine more than one mode of a module; i.e., if there

exists two mode declarations (m1, ·, ·, P1) and (m2, ·, ·, P2) where m1, m2 ∈

mnames(mdl), then P1 6= P2.

(f) The start mode of a module should belong to the mode set of a module; i.e.,

if (mdl, ·, ·, ·, start) is a module declaration, then start ∈ mnames(mdl).

(g) The set of destination modes from mode switches should be from the set

of modes of the corresponding module; i.e., if m ∈ mnames(mdl), then

destmodes(m) ∈ mnames(mdl).

2. Constraints on communicators:

(a) If communicator c has been declared in program P, then it cannot be

redeclared in any sub-program other than P; i.e., if c ∈ cnames(P), then

c 6∈ cnames(P′) for all program P′ ∈ subset(P) \ {P}.

(b) If communicator c is accessed by a task invocation or a switch (in a mode)

of module mdl in program P, then the communicator must be declared

in one of the super-programs of P. In other words, read and write com-

municator set for a module mdl should be subset of accessible commu-

nicator set of the module mdl; i.e., rcset(mdl) ⊆ acccommset(mdl) and

wcset(mdl) ⊆ acccommset(mdl).

(c) If communicator c is written by any sub-module of module mdl, then

65

Chapter 5. Determinism

no sub-module of the sibling modules of mdl can write to c; i.e., if c ∈

hwcset(mdl), then for all mdl′ ∈ siblings(mdl), c 6∈ hwcset(mdl′).

3. Constraints on task invocations:

(a) The read time should be earlier than the write time for invocation of task

t in mode m, i.e., rtime(t, m) < ttime(t, m).

(b) The transitive read time should be earlier than the transitive write time

for invocation of task t in mode m, i.e., rtime∗(t, m) < ttime∗(t, m).

(c) Precedences between tasks in a mode m should be acyclic; i.e., if (ti, tj) ∈

prec(m), then ti 6= tj.

(d) If invocation of a task t in mode m reads or writes a port p, then the port p

must be declared in the module containing mode m; i.e., if p ∈ rpset(t, m)

or p ∈ wpset(t, m), then p ∈ pnames(mdl) where m ∈ mnames(mdl).

(e) In a mode m′, invocations of two tasks t and t′ cannot write to the same

port, i.e., wpset(t, m)∩wpset(t′, m) = φ. Similarly, invocations of two tasks

t and t′ in a mode m cannot write to the same instance of a communicator;

i.e., if (c, i) ∈ aouts(t), then (c, i) 6∈ aouts(t′).

(f) Invocation of a task cannot write to the same port more than once; i.e., if

∃j ∈ N s.t. aoutsj(t) = p, then @k ∈ N s.t. aoutsk(t) = p where k 6= j.

Similarly, invocation of a task t cannot write to the same instance of a

communicator multiple times; i.e., if ∃j ∈ N s.t. aoutsj(t) = (c, i), then

@k ∈ N s.t. aoutsk(t) = (c, i) where k 6= j.

(g) A task can be invoked in a mode m if it has a corresponding declaration in

the module mdl containing m, i.e., if t ∈ invnames(m) and m ∈ mnames(mdl),

then t ∈ tnames(mdl). The following constraints should be maintained by

the task invocation with respect to the corresponding task declaration:

66

Chapter 5. Determinism

• The size of the input and output parameter list for the invocation is

identical to that of the declaration, i.e., |fins(t)| = |ains(t)| and

|fouts(t)| = |aouts(t)|.

• If the j-th (where j ∈ N≥0) element of the input list of the task invoca-

tion is a communicator-instance pair (c, i), then the following should

hold: (1) mode period is multiple of communicator access period, i.e.,

mod(π(m)
π(c)

) = 0, (2) task invocation cannot read from an instance cor-

responding to the end of the period, i.e., 0 ≤ i < π(m)
π(c)

, and (3) type

of the communicator should match the corresponding element of the

input list of the task declaration, i.e., finsj(t) = type(c).

• If the j-th (where j ∈ N≥0) element of the output list of the task invo-

cation is a communicator-instance pair (c, i), then the following should

hold: (1) mode period is multiple of communicator access period, i.e.,

mod(π(m)
π(c)

) = 0, (2) task invocation cannot write to an communicator

instance at the start of the period, i.e., 0 < i ≤ π(m)
π(c)

, and (3) type

of the communicator should match the corresponding element of the

formal output list of the task declaration, i.e., foutsj(t) = type(c).

• If the j-th (where j ∈ N≥0) element of input list of the task invocation

is a port p, then the j-th element of the input list of the correspond-

ing task declaration should be type(p); i.e., if ainsj(t) = p, then

finsj(t) = type(p).

• If the j-th (where j ∈ N≥0) element of output list of a task invocation

is a port p, then the j-th element of the output list of the correspond-

ing task declaration should be type(p); i.e., if aoutsj(t) = p, then

foutsj(t) = type(p).

67

Chapter 5. Determinism

4. Constraints on refinement:

(a) Period of mode m and all modes in program P refining m should be iden-

tical; i.e., if there is a mode m with ref(m) = P, then for all modes

m′ ∈ mnames(mdl) where mdl ∈ mdlnames(P), π(m′) = π(m). Mode switches

of an HTL program are checked top-down and this constraint ensures that

there is no unsafe termination of tasks in refinement modes.

(b) Every task invocation of a mode m in a non-root module mdl should have

a parent invocation; i.e., for each task t ∈ invnames(m), ptask(t) 6= ∅ if

m ∈ mnames(mdl) and mdl is not a root module. The parent of task t should

be invoked in the parent of m and m should be declared in the immediate

super module; i.e., ptask(t) ∈ invnames(m′) where m′ ∈ mnames(mdl′),

m′ is parent of m and mdl′ is immediate super module of mdl. The par-

ent invocation should be abstract, i.e., ptask(t) ∈ tnames(mdl′) and

fn(ptask(t)) = ∅. The constraint ensures that the parent task is not

executed during the execution of the program but acts as placeholder for

the children during program analysis.

(c) Invocation of a task t (in a mode m of a module mdl) should have an

unique parent task relative to all tasks invoked in mode m and to all

tasks invoked in modes of sibling modules of mdl. Formally, for all tasks

t′ ∈ invnames(m) \ {t}, ptask(t′) 6= ptask(t); and, for all modules

mdl′′ ∈ siblings(mdl), for all mode m′′ ∈ mnames(mdl′′), for all tasks

t′′ ∈ invnames(m′′): ptask(t′′) 6= ptask(t). The constraint ensures that

all tasks that can potentially execute in parallel have unique root parents.

(d) Read time of a task invoked in mode m should be no later than the read

time of its parent and write time of a task invoked in mode m should be

no earlier than the write time of its parent. Formally, if ptask(t) = t′,

68

Chapter 5. Determinism

then rtime(t, m) ≤ rtime(t′, m′) and ttime(t, m) ≥ ttime(t′, m′) where

t ∈ invnames(m) and t′ ∈ invnames(m′). The constraint ensures that a

invocation of a task is less constrained in time than that of the invocation

of its parent.

(e) Every relation in precedence set of a mode m should be preserved in the

parent mode m′; i.e., for all pairs of tasks (t1, t2) ∈ prec(m), there should

be (t′1, t
′
2) ∈ prec(m′) where t′1 and t′2 are parents of t1 and t2 respec-

tively. The constraint ensures that the invocation of parent task is more

constrained in dependencies than the invocation of the child task.

5.2 Structural Properties

Property 1. Super-program relation is acyclic.

Proof. Consider n ∈ N≥2 programs P1, · · · , Pn such that, Pi is immediate super-

program of Pi+1 (for 1 ≤ i ≤ n−1). Assume there is a cycle, i.e., for some 1 ≤ i, j ≤ n

and i 6= j, Pi = Pj. The possible scenarios are as follows: (1) scenario i = 1 and

1 < j < n denotes that either there is no root program (violates Constraint 1a), or

no program in the above is a sub-program of the root program, assuming it exists

(violates Constraint 1b), or there must be one program which has more than one

immediate super program (violates Constraint 1c); (2) scenario 1 < i < n and j = n

denotes that at least one program has more than one immediate super programs (vi-

olates Constraint 1c); and (3) scenario i = 1 and j = n denotes that either there is no

root program (violates Constraint 1a), or there is a program with multiple immediate

super programs (violates Constraint 1c). Thus the initial assumption cannot hold.

The above can be proved for any two programs related by a super-program relation.

Thus super-program relation is acyclic.

69

Chapter 5. Determinism

Corollary 1. For a non-root program P, there is a unique path to root program P′.

Proof. Consider n ∈ N≥0 programs, where P′ is immediate super-program of P1, Pi is

immediate super-program of Pi+1 (1 ≤ i < n), and Pn is immediate super-program

of P′. If n = 0, then P′ must be the unique immediate super-program of P; for any

other scenarios Constraint 1a or Constraint 1b is violated. If n > 0, no program can

be repeated as that would violate Property 1. If n > 0, but there exists another path

to P′, then there must be at least one program with more than one immediate super

program which violates Constraint 1c.

Property 2. Parent mode of a mode m is different from m and is unique.

Proof. The mode m must belong to a non-root program as modes in root program

cannot have parents. The property is shown through contradiction. For the first part,

say mode m is parent to itself; in other words the containing program is immediate

super-program to itself which makes the relation cyclic and violates Property 1. For

the second part, consider a mode m ∈ mnames(mdl) where mdl ∈ mdlnames(P). Assume

there are two mode declarations (m1, ·, ·, P) and (m2, ·, ·, P) with m1 6= m2, i.e., program

P refines both m1 and m2. Program P cannot have more than one immediate super

program (Constraint 1c); so modes m1 and m2 cannot belong to two different programs.

Module mdl cannot have more than one immediate super module (Constraint 1d); so

modes m1 and m2 cannot be in different modules of same program. If modes m1 and m2

are in the same module, then P cannot refine both the modes (Constraint 1e). Hence

the initial assumption cannot hold.

Corollary 2. Every mode has a unique root parent.

Proof. The corollary holds from Corollary 1 and Property 2.

Corollary 3. Every mode m in a non-root program has a unique j-th transitive parent

for j ∈ N≥1.

70

Chapter 5. Determinism

Corollary 4. Every task invocation other than in the root program has a root parent.

Proof. Every mode m in a non-root program has a unique j-th transitive parent and

unique root parent (Corollary 3 and 4). Each task invocation t ∈ invnames(m), must

have a parent invoked in the parent of m (Constraint 4b). From the above two facts,

every task invocation (from a non-root program) must have a root parent.

Corollary 5. j-th transitive parents for all task invocations in a mode m belongs to

the same mode m′ for some j ∈ N>0.

Proof. Every task invocation of a mode m in a non-root program must have a parent

invocation in the parent of m (Constraint 4b). From Property 2 and Corollary 3,

parent of a mode is unique and so is the j-th transitive parent for j ∈ N≥1. The proof

follows from the above observation.

Corollary 6. Root parents for all task invocations in a mode m belongs to the same

mode m′ in root program.

Proof. Every task invocation in a non-root program has a root parent (Corollary 4)

which is also the j-th transitive parent for some j ∈ N>0 (definition), and the j-th

transitive parents for all task invocations in a mode m belongs to the same mode

(Corollary 5).

Property 3. Every task invocation has a unique root parent relative to all task invo-

cations, in non-root programs, that can be invoked in parallel.

Proof. Consider invocation of t ∈ invnames(m), where m ∈ mnames(mdl) and mdl is a

non-root module. The root parent be t′ ∈ invnames(m′) where m′ ∈ mnames(mdl′) and

mdl′ is a root module. Let P′ refines m′. Consider a task invocation t′′ ∈ invnames(m′′)

where m′′ ∈ mnames(mdl′′) and mdl′′ is a non-root module. The rest of the proof shows

that either t and t′′ have different root parents or they are identical.

71

Chapter 5. Determinism

Modules mdl and mdl′′ must be sub-modules of mdl′; otherwise t′ cannot be parent

for t′′ (from constraints on program structure). Modules mdl and mdl′′ must be sub-

modules of modules in P′; otherwise mdl′′ cannot execute in parallel.

There are four possible scenarios if mdl, mdl′′ ∈ mdlnames(P′): (1) if mdl 6= mdl′′,

then t and t′′ must have different parents (constraint 4c) which are also the root

parents in this case; (2) if mdl = mdl′′ but m 6= m′′, then t and t′′ cannot be invoked in

parallel; (3) if mdl = mdl′′ and m = m′ but t 6= t′′, then t and t′′ must have different

parents in m′ (constraint 4c) which are also the root parents in this case; and, (4) if

mdl = mdl′′, m = m′ and t = t′′. then the invocations are identical (there cannot be

two invocations with identical names). If P′ is a leaf program then no further analysis

is required.

The following are three special instances of the scenario 1 above:

• mdl ∈ mdlnames(P′) and mdl′′ is a sub-program for any sibling module mdl∗

of mdl → there exists some integer n such that n-th transitive parent of t′′ is

invoked in some mode of mdl∗

• mdl′′ ∈ mdlnames(P′) and mdl is a sub-module for any sibling module mdl∗ of

mdl′′ → there exists some integer m such that m-th transitive parent of t is

invoked in some mode of mdl∗

• mdl and mdl′′ are sub-modules of different modules of P′ → there exists some

integers m, n such that m-th and n-th transitive parents of t and t′′ respectively

are invoked in different modules of P′.

All of the above three situations are special instances of case (1) analyzed earlier

and thus the root parent must be different for the two task invocations.

If mdl ∈ mdlnames(P′) and mdl′′ is a sub-module of mdl (other than mdl), then

there are two possible scenarios: (1) there exists integer m such that t is m-th tran-

72

Chapter 5. Determinism

sitive parent of t′′, and (2) there exists integer m such that ti ∈ invnames(m) is the

m-th transitive parent of t′′. In the first case, t should have an abstract declaration

and does not get executed. In the second case, t and ti should have different parents

in m′ (which are also their root parents). This in turn implies different root parent of t

and t′′. The case where mdl′′ ∈ mdlnames(P′) and mdl is a sub-module of mdl′′ (other

than mdl′′) has a symmetric analysis as above (by interchanging mdl and mdl′′).

The last case deals with both mdl and mdl′′ being sub-module of a module mdli

in P′. Both the modules should belong to refinement program Pi of a mode mi in mdli

(otherwise the tasks cannot be invoked in parallel). The subsequent analysis can be

done in a similar way for P′ (by replacing P′ with Pi).

Property 4. If invocation of task t′ in mode m′ is parent to invocation of task t

in mode m, then the transitive read time of t should be no later than that of t′ and

the transitive write time of t should be no earlier than that of t′ i.e. rtime∗(t, m) ≤

rtime∗(t′, m′) and ttime∗(t, m) ≥ ttime∗(t′, m′).

Proof. Program being well-formed, m′ must be parent of m and periods of m and m′

are identical. Mode switches in HTL are checked only at period boundaries; i.e., if

the both modes m and m′ are active at any instance of execution, then their periods

overlap. In other words, comparing the release and termination times of the the

two tasks relative to the respective modes is sufficient. The property is proved by

induction.

From definition, rtime∗(t, m) = max(rtime(t, m), max
ti∈prec(t,m)

rtime∗(ti, m)) and

rtime∗(t′, m′) = max(rtime(t′, m′), max
t′

i∈prec(t′,m′)
rtime∗(t′i, m

′)). If a program is well-

formed, then precedences of m are contained in m′ i.e., parents of tasks in prec(t, m)

should be a subset of prec(t′, m′). If t′i ∈ prec(t′, m′) is the parent of ti ∈ prec(t, m),

then rtime∗(ti, m) ≤ rtime∗(t′i, m
′) (from inductive assumption) which implies that

max
ti∈prec(t,m)

rtime∗(ti, m)) ≤ max
t′

i∈prec(t′,m′)
rtime∗(t′i, m

′)). Program being well-formed

73

Chapter 5. Determinism

rtime(t, m) ≤ rtime(t′, m′). From last two conditions, rtime∗(t, m) ≤ rtime∗(t′, m′).

From definition, ttime∗(t, m) = min(ttime(t, m), min
ti∈foll(t,m)

ttime∗(ti, m)) and

ttime∗(t′, m′) = min(ttime(t′, m′), min
t′

i∈foll(t′,m′)
ttime∗(t′, m′)). If a program is well-

formed, then precedences of m are contained in m′, i.e., parents of tasks in foll(t, m)

should be a subset of foll(t′, m′). If t′i ∈ foll(t′, m′)) is parent of ti ∈ foll(tinv, m),

then ttime∗(ti, m) ≥ ttime∗(t′i, m
′) (from inductive assumption), which implies that

min
ti∈foll(t,m)

ttime∗(ti, m)) ≥ min
t′

i∈foll(t′,m′)
ttime∗(t′i, m

′)). Program being well-formed

ttime(t, m) ≥ ttime(t′, m′). From last two conditions, ttime∗(t, m) ≤ ttime∗(t′, m′).

Base Case: If invocation of t does not follow any task, then rtime∗(t, m) =

rtime(t, m). For parent task t′, rtime∗(t′, m′) = max(rtime(t′, m′), ·). From well-

formedness constraints, rtime(t, m) ≤ rtime(t′, m′). From the last two observations,

rtime∗(t, m) ≤ rtime∗(t′, m′). If invocation of t does not precede any task, then

ttime∗(t, m) = ttime(t, m). For parent task t′, ttime∗(t′, m′) = min(ttime(t′, m′), ·).

From well-formedness constraints, ttime(t, m) ≥ ttime(t′, m′). From the last two

observations, ttime∗(t, m) ≥ ttime∗(t′, m′).

5.3 Execution Properties

There are two key observations regarding the execution of well-formed HTL programs.

Observation 1. Mode switches for a mode and the respective ancestors and descen-

dant modes are enabled simultaneously.

Proof. Period of a mode m and its ancestors (Constraint 4a) are identical. When

the first time mode m is invoked, the start modes of the modules in the refinement

program of m are invoked. The periods being identical, the termination of modes

and the mode switch checks coincide. Even if mode switches occur in the refinement

program, the mode periods being identical, the invocation and termination of the

74

Chapter 5. Determinism

modes (in the refinement program) happen at identical (logical) time instance.

Observation 2. The switches in a mode m are prioritized over the switches in the

modes in the refinement of m.

Proof. Semantics on trigger handling constraints that switch triggers of m are handled

only if no switch triggers of ancestors is enabled. If switch of an ancestor of m evaluates

to true, then all switch triggers related to m are removed from the trigger set, thus

prioritizing the switches of parents over refinement modes.

Mode switching for an well-formed program is explained through the following

example (Fig. 5.1). Program P has a single module mdl; mdl has two modes m and

m′ switching between themselves. Modes m and m′ are refined by programs P1 and

P2 respectively. Program P1 has two modules: mdl1 (with two modes m11 and m12

switching between themselves) and mdl2 (with two modes m21 and m22 switching

between themselves). Program P2 has two modules: mdl1′ (with two modes m11′

and m12′ switching between themselves) and mdl2′ (with two modes m21′ and m22′

switching between themselves).

Consider a scenario when m, m11 and m21 are executing; from well-formedness

constraints periods of all three are identical. At the end of the period, mode switches

of all the three modes would be checked. There are five possible scenarios:

1. switch condition for m, m11 and m21 are false: modes m, m11 and m21 are reinvoked

2. switch condition for m and m21 are false and switch condition for m11 is true:

the new modes executing are m, m12 and m21

3. switch condition for m and m11 are false and switch condition for m21 is true:

the new modes executing are m, m11 and m22

75

Chapter 5. Determinism

4. switch condition for m is false and switch condition for m11 and m12 are true:

the new modes executing are m, m12 and m22

5. switch condition for m is true: the new modes executing are m′, m11′ and m21′

(m11′ and m21′ are start modes of respective modules in P′); switch conditions

of m11 and m21 are not checked

possible switches:

1. m || m11 || m21 → m || m11 || m21

2. m || m11 || m21 → m || m12 || m21

3. m || m11 || m21 → m || m11 || m22

4. m || m11 || m21 → m || m12 || m22

5. m || m11 || m21 → m' || m11' || m21'

mdl1

m m'
mdl
P

P1 P2

mdl2

m11 m12 m21 m22

mdl1' mdl2'

m11' m12' m21' m22'

Figure 5.1: Mode switching through hierarchy

Identical periods ensure that there is no unsafe termination of tasks (in the lower

level) even when higher level modes switch between themselves.

5.4 Determinism

The deterministic behavior for an well-formed HTL program is defined as follows:

assuming the give architecture is fast enough to complete execution of tasks within

respective LET (defined by the release and termination time), the real-time behavior

of a program is determined by the input (i.e., the value of the sensors), independent

of the CPU speed and utilization.

Observation 3. Any execution trace from a non-waiting configuration u with no

enabled write triggers will converge at a unique waiting configuration u′.

76

Chapter 5. Determinism

Proof. Once the write triggers have been handled, communicators and ports cannot be

modified before the next event transition. Mode switches being deterministic (at most

one switch can be enabled at a given instance) mode invocations are deterministic. In

other words, irrespective of the order of handling of switch triggers, the path would

lead to an unique configuration u1 without any enabled switch triggers. Handling of

read triggers do not add new triggers, modify existing triggers (other than removing

the trigger being handled) or update the variable states. This ensures that irrespective

of the order of handling read triggers from u1, there exists an unique configuration u2

without any enabled read triggers. Similarly handling of release triggers do not add

new triggers, modify existing triggers (other than removing the trigger being handled)

or update the variable states. This ensures that irrespective of the order of handling

release triggers from u2, there exists an unique configuration u3 without any enabled

release triggers. Configuration u3 being unique must be same as u′.

Definition 2. An HTL program is deterministic if the values of input communicators

in a program trace uniquely identifies the program trace.

Theorem 1. An well-formed HTL program is deterministic.

Proof. During execution, only the input communicators are updated by the envi-

ronment (through device drivers); rest of the communicators and all the ports are

updated by task invocations. For well-formed HTL program, task invocation of only

one module can write to a communicator; in a module if a task writes to a commu-

nicator instance then no other task in the module can write to the same instance

of the communicator. A task can be refined by another task and both refining and

refined task can have the same communicator instance in the output; however refined

task is always abstract and is not accounted for in the program execution. The above

ensures that communicator updated is race free. The ports are local to a module;

well-formedness ensures that no two tasks in a mode can write to the same port. Two

77

Chapter 5. Determinism

tasks in two different modes can write to the same port; however modes in a module

are sequential and thus cannot be executed in parallel. The above ensures that port

updates are race free. The value of a task evaluation is deterministic given the inputs

are fixed at release instance (LET model) and the assumption that task functions are

correct (i.e. given identical input always produces identical output). The semantics

ensures that port and communicator updates are done before mode switch checks,

communicator reads and task releases. The switch, read and release triggers can up-

date trigger sets and task sets but cannot modify the variable state; this ensures that

values of ports and communicators are consistent after all enabled write triggers have

been handled until a new event arrives.

78

Chapter 6

Schedulability Analysis

The chapter presents schedulability analysis of an HTL implementation. An imple-

mentation of an HTL program on an architecture is a mapping of root modules to

the hosts in the architecture. In the analysis framework presented in this work, an

architecture is a set of hosts connected over a broadcast network. The schedulability

analysis is performed with respect to the performance guarantee of the architecture

expressed as WCET and WCTT for tasks (of the HTL program) relative to the hosts

in the architecture. The analysis checks all possible traces generated by executing

an implementation. An implementation is schedulable if for all traces the following

holds: (1) a task writing to a communicator must have terminated before the com-

municator update, (2) two instances of the same task do not overlap, and (3) if a

host is transmitting all other hosts are listening (i.e., neither executing nor transmit-

ting). An implementation is schedulability-preserving if the program is well-formed,

and each task invocation uses less resources (i.e., WCET and WCTT) than the re-

spective parent. If a schedulability-preserving implementation is schedulable for the

root program without refinement, then the implementation is schedulable for the root

program (with refinement).

79

Chapter 6. Schedulability Analysis

6.1 HTL Implementation

An architecture A is a set of hosts hset connected over a broadcast network. Given

an HTL program P and an architecture A, architectural constraints C(A, P) is a tu-

ple (wemap, wtmap), where WCET map wemap maps each task to respective WCET

(relative to a host) and WCTT map wtmap maps each task to respective WCTT

(relative to a host). Given a task t, and a host h ∈ hset, wemap(t, h) ∈ N≥0 is the

WCET of the task t relative to the host h. Given a task t, and a host h ∈ hset,

wtmap(t, h) ∈ N≥0 is the WCTT of the task t to broadcast its evaluation from the

host h to all other hosts in hset \ {h}.

An implementation I is a tuple (P, A, C(A, P), mdlmap), where P is an HTL program,

A is an architecture, C(A, P) is architectural constraints and mdlmap is a total and

many-to-one function from root modules of program P to hosts hset of architecture

A. Given a root module mdl ∈ mdlnames(P), mdlmap(mdl) is the host to which module

mdl is mapped. Given a host h ∈ hset, I(h) is the set of root modules mapped to

host h. An implementation I is well-formed if program P is well-formed. For rest

of the discussion it is assumed that all implementations are well-formed and that all

communicators, module ports and task invocations have unique names. The set of

communicators, module ports and tasks mapped to a host h are cset(h), pset(h)

and tset(h) respectively.

All hosts in an architecture share the same global clock tick, i.e., clocks of all the

hosts are synchronized. The clock is harmonic to the program clock which is the min-

imum interval at which any communicator is accessed, i.e., the highest common factor

for all communicators and mode periods. The worst case execution and transmission

times for tasks are specified as multiple of clock ticks. Under this assumption, a task

always completes execution at some clock tick. In the analysis below, a time tick will

refer to clock advancement of the global clock.

80

Chapter 6. Schedulability Analysis

6.2 Semantics of Implementation

Given an implementation I = (P, A, C(A, P), mdlmap), all refinements of a root-module

mdl are mapped to the same host mdlmap(mdl), i.e., the module mdl and all subse-

quent refinements are executed on host mdlmap(mdl). To maintain accessibility, the

communicators of the root program are shared across all hosts. This is a semantic re-

quirement such that any part of a program can potentially access the communicators

of the root program regardless of the host on which it is being executed. When a task,

writing to a communicator of the root program, completes execution, the evaluation

is broadcast to all hosts such that local copies of the communicator across all hosts

are updated.

Replication

In an implementation, a communicator is referred through replication where a repli-

cation provides the information of the host on which the communicator is accessed.

For a communicator in the root program, there is one replication for each host. For

a communicator in a non-root program, a replication is maintained for the host to

which the root program is mapped. Formally, a communicator replication is a pair

(c, h) where c is a communicator and h is a host on which a copy of the communicator

is maintained. For a communicator c in a root program, there is a replication for

each host in the architecture. For a communicator c′ in a non-root program, there

is a single replication (c′, h′) if the non-root program is mapped to host h′. For an

well-formed implementation, a non-root program is mapped to one host.

Similar to communicator replication, a port replication provides the information

of the host on which the module (accessing the port) is mapped. A port replication

is a pair (p, h) where port p belongs to a module which is mapped to host h. For an

well-formed implementation there is only host on which the port p is accessed.

81

Chapter 6. Schedulability Analysis

A task replication provides the information of the host on which the task is exe-

cuted. With the assumption that all task invocations have unique names and imple-

mentation is well-formed, each task is executed on one host. A task replication is a

pair (t, h) where t belongs to a module which is mapped to host h.

The definition of task ports remain similar to as described earlier; however each

reference of a communicator, module port and task in a task port is replaced by

respective replication. If a task invocation writes to a communicator of the root pro-

gram, the evaluation is broadcast to all other hosts. So in addition to the output

task ports maintained on the host on which a task executes, output task ports are

maintained on other hosts to store the evaluation of the task. Each task invoca-

tion maintains a output task port on each host for each communicator (of the root

program) it updates. If task t (executing on host h) writes to i-th instance of com-

municator c (of root program), then output task port top
c,h′,i
t,h is maintained on all

hosts h′ ∈ hset\{h}. On completion of execution of t on h, the output is transmitted

to host h′ and stored in top
c,h′,i
t,h . When update is due, the communicator (c, h′) is

written from the output task port topc,h
′,i

t,h .

Implementation Trace

The execution of an implementation yields a (possibly infinite) sequence of config-

urations, called implementation trace. Each configuration tracks the values of the

variables (task ports, module port replications and communicator replications), a set

of guards, and a set of released (but not yet completed) task replications; in other

words, a configuration records the execution state of an implementation. A configu-

ration u is a triple (state, gset, tset), where state is variable state, gset is a set

of guards, and tset is a set of task replications.

The variable state is a valuation of all communicator replications, module port

82

Chapter 6. Schedulability Analysis

replications, and task ports. The set of communicator replications includes the repli-

cations of communicators of root-program and those of the non-root programs. The

first set is ∪c∈cnames(P){(c, h)|h ∈ hset}. The second set consists of all replications

of communicators (other than those in root program) accessed by the sub modules

of root modules. For a root module mdl mapped to host h, the set is {(c′, h)} for

all communicator c′ ∈
⋃

mdl′∈submdls(mdl){rcset(mdl′)∪wcset(mdl′)} \cnames(P). The

set of module port replications includes set of module port replications for each root

module. For a root module mdl mapped to host h, the set of module port replications

is {(p, h)} for all port p ∈
⋃

mdl′∈submdls(mdl) pnames(mdl
′). The set of task ports con-

sists of all the task ports for each sub module for all root modules. For a root module

mdl, the set of task ports in the sub modules of mdl is
⋃

mdl′∈submdls(mdl) tpset(mdl
′).

Replications are not used for task ports; for each task port the task, communicator

or module port information is replaced by respective replications which maintains the

identity of the host.

At a configuration u, (c, h)u (resp. (p, h)u) denotes the value of communicator

replication (c, h) (resp. port replication (p, h)), cndu denotes the boolean value of a

mode switch condition cnd, and p′u denotes the value of a task port p′.

The definition of event instance and actions (for guards) remain similar to that

presented in Chapter 4 except that all references to communicators, module ports and

tasks are replaced by respective replications. An event instance e is a pair (n, cmps)

where n ∈ N≥0 and cmps is a set of task replications whose completion event is

being awaited. The modified action definitions update the definitions of the guards

as follows:

• a write guard is a tuple (τ, e, a) where τ = w, e is an event instance and action

a is a tuple ((c, h), i, (t, h′)) with communicator c, i ∈ N≥0, task t and hosts

h, h′ ∈ hset. If the communicator c belongs to a non-root program, then

83

Chapter 6. Schedulability Analysis

h = h′. If the communicator c belongs to the root program, then either h = h′,

or h 6= h′; the first scenario denotes that task executes on the same host as the

communicator replication, and the second scenario denotes that task executes

on host h′ but transmits the evaluation to host h. When the write guard is

handled, the communicator replication (c, h) is updated from the output task

port topc,h,it,h′ .

• a switch guard is a tuple (τ, e, a) where τ = s, e is an event instance and

action a is a tuple (sw, m) with mode switch sw = (cnd, m′) ∈ switches(m). The

communicators and ports are replaced by respective replications for the host h

on which mode m executes.

• a read guard is a tuple (τ, e, a) where τ = d, e is an event instance and action

a is a tuple ((t, h), (c, h), i) with task t, communicator c, i ∈ N≥0, and host

h ∈ hset. When the read guard is handled, the value of the communicator

replication (c, h) is copied to the input task port tipc,h,it,h . The task replication

on a host always reads from a communicator replication on the same host.

• a release guard is a tuple (τ, e, a) where τ = l, e is an event instance and

action a is a task replication (t, h). When the release guard is handled, the task

replication (t, h) is released, i.e., (t, h) is added to the task replication set.

For well-formed implementations, cmps = ∅ for all write, switch and read guards.

The set may be non-empty for release guards. In an well-formed program, a task can

be preceded by other tasks only if they are invoked in the same mode; i.e., for an

well-formed implementation if a release guard action releases a task replication (t, h)

and has non-empty completion event set, then all task replications in the completion

event set belong to the same host h.

84

Chapter 6. Schedulability Analysis

A trace of an implementation (an implementation trace) is a sequence of configu-

rations u0, u1, . . . where u0 is the starting configuration, and for all i > 0, configuration

ui is a time-event, write, switch, read, or release successor of ui−1. For the following

successor definitions, u = (state, gset, tset) and u′ = (state′, gset′, tset′).

Time-event Successor

The configuration u′ is a time-event successor of configuration u if u is waiting and a

time tick event occur. Possibly some task replications in tset completes execution and

the completed task replications are removed from task set. Thus tset′ ⊂ tset, and

the set of completed task replications is tset′\tset. For all guards, time tick count is

reduced by one, and the completed task replications are removed from the completion

event set of event instances; i.e., if (·, (n, cmps), ·) ∈ gset, then (·, (n′, cmps′), ·) ∈

gset′, where n′ = n − 1 (if n > 0), n′ = n (if n ≯ 0) and cmps′ = cmps \ (tset \

tset′). The output task ports of the completed task replications are updated with

the evaluation of the task function on the value of input task ports at task release

instance; i.e., for all task replications (t, h) ∈ tset \ tset′: for all output task ports

p ∈ tops(t, h), pu′ = fn[Πp′∈tips(t,h)p
′
u′]. The task model being LET, the values of

input task ports remain identical from task release to task termination. Once the

output task ports have been updated, the module ports written by the completed

task replications are updated from respective output task ports. Formally, for all

task replications (t, h) ∈ tset \ tset′: for all module ports p ∈ wpset(t) : (p, h)u′ =

top
p,h
t,h,u′ . The input communicators are written by environment. Formally, for all

c ∈ icset(P), (c, h)u′ = ϑ(type(c)) for all hosts h ∈ hset, where ϑ(type(c)) non-

deterministically assigns a value from type(c). The environment writes identical

values to all replications of an input communicator.

85

Chapter 6. Schedulability Analysis

Write Successor

The configuration u′ is a write successor of the configuration u if an enabled write

guard g = (w, (0, ∅), ((c, h), i, (t, h′))) ∈ gset is handled at configuration u. The

value of output task port top
c,h,i
t,h′ is copied to the communicator replication (c, h),

i.e., (c, h)u′ = top
c,h,i
t,h′,u′ ; this updates the variable state from state to state′. The

guard g is removed from the guard set; i.e., gset′ = gset \ {g}. The task replication

set remains identical, i.e., tset′ = tset.

Switch Successor

The configuration u′ is a switch successor of configuration u if an enabled switch guard

is handled at configuration u. An enabled switch guard g = (s, (0, ∅), (sw, m)) ∈ gset,

where sw = (cnd, m1), can be handled if two conditions are met: (1) there are no

enabled write guards, and, (2) if the switch guard belongs to mode m, then there are

no enabled switch guards for any ancestors of m. There are three possible scenarios

depending on the evaluation of the switch condition cnd. The evaluation of the

condition and corresponding action remains identical to that discussed in Chapter 4.

The procedure to generate guards on mode invocation (Alg. 2) is modified as follows:

the guards generated on invoking the mode records the replications.

Read Successor

The configuration u′ is a read successor of configuration u if an enabled read guard is

handled at configuration u. An enabled read guard g = (d, (0, ∅), ((t, h), (c, h), i)) ∈

gset can be handled if no write or switch guard is enabled, The variable state is

updated by copying the value of the communicator to the respective input task port,

i.e., tipc,h,it,h,u′ = (c, h)u′ . The guard is removed from guard set, i.e., gset′ = gset\{g},

and the task replication set remains the same, i.e., tset′ = tset.

86

Chapter 6. Schedulability Analysis

Algorithm 2 Procedure Invoke Mode(m)

gseti(m) = ∅;
m is executed on host h
∀t = invnames(m) where t has a concrete invocation in mode m
∀k ∈ N s.t. ainsk(t) = (c, i)

add guard (d, (i · π(c), ∅), ((t, h), (c, h), i)) to gseti(m)
∀j ∈ N s.t. aoutsj(t) = (c, i)

add guard (w, (i · π(c), ∅), ((c, h), i, (t, h))) to gseti(m)
∀h′ ∈ hset \ {h}

add guard (w, (i · π(c), ∅), ((c, h′), i, (t, h))) to gseti(m)
add guard (l, (n, cmps), (t, h)) to gseti(m)

where n = rtime(t) and cmps = {(t, h)|t ∈ prec(t, m)}
∀sw ∈ switches(m)

add guard (s, (π(m), ∅), (sw, m)) to gseti(m)
return gseti(m)

Release Successor

The configuration u′ is a release successor of the configuration u if an enabled release

guard is handled at configuration u. An enabled release guard g = (l, (0, ∅), (t, h)) ∈

gset can be handled if no write, switch or read guard is enabled. The variable state

is updated by copying the value of the module ports (the task reads) to the respective

input task ports, i.e., for all p ∈ rpset(t) : tipp,ht,h,u′ = (p, h)u′ . The guard is removed

from guard set, i.e., gset′ = gset \ {g}, and the task replication is added to the task

set, i.e., tset′ = tset ∪ {(t, h)}.

Starting Configuration

The starting configuration of an implementation is as follows: input task ports, com-

municators replications, module port replications are assigned initial values as defined,

the output task ports are assigned default values of their types, the guard set consists

of guards by invoking modes in start set of start(mdl) for each root module mdl, and

an empty task set.

87

Chapter 6. Schedulability Analysis

Intuitively an implementation trace is an extended program trace where each vari-

able (resp. task) is associated with the information of the host on which it is accessed

(resp. executed). An well-formed implementation is deterministic; the reasoning is

similar to that presented in Section 5.4. For execution of well-formed implementa-

tion, all replications of a communicator (or port) has identical values at a waiting

configuration.

6.3 Schedulable Implementation

Scheduler

A scheduler decides which task to be executed on each host at each time tick i.e., at

each waiting configuration. The scheduler may decide to keep an host idle, execute

a task or transmit the output of a task. Let τ be a non-empty finite implementation

trace and last(τ) be the last configuration of τ . Given a trace τ such that last(τ) is

a waiting configuration, scheduler sch(τ) maps each host either to a task executing

(or transmitting the evaluation) on the host or to nothing (i.e., keep the host idle).

An infinite trace τ is said to be generated by scheduler sch if for every non-empty

finite prefixes τ ′ of τ where last(τ ′) is waiting, sch(τ ′) maps each host h to a task

executing (or transmitting) on host h, or ∅ (if the host is to remain idle).

Ready Set

Given a configuration u (on implementation trace), ready set ready(u) is a set of

task replications for which the corresponding release guards have been enabled, i.e.,

the task replications would be added to task replication set before the next waiting

configuration; formally, ready(u, h) = {(t, h)|(l, (0, φ), (t, h)) ∈ gset(u)}.

88

Chapter 6. Schedulability Analysis

Time-on-Host Set

Given a configuration u (on implementation trace), time-on-host set toh(u) is the

information of remaining execution and transmission time for each released task. For-

mally, set toh(u) consists of tuples ((t, h), ne, nr) where replication (t, h) ∈ tset(u),

ne ∈ N≥0 denotes the remaining execution time for t (on host h) and nr ∈ N≥0 denotes

the remaining transmission time for t.

A task t is executing on host h at configuration u, if ((t, h), ne, nr) ∈ toh(u) and

ne > 0. A task t is transmitting on host h at configuration u, if ((t, h), ne, nr) ∈

toh(u), ne = 0 and nr > 0. A task t is running on host h if t is either executing or

transmitting on host h. A task must execute before it can transmit, i.e., for all task

replications ((t, h), ne, nr) ∈ toh(u), the following cannot be true: ne > 0 and nr = 0

where wtmap(t, h) > 0. If ((t, h), 0, 1) ∈ toh(u) where u is waiting and scheduler

selects task t for host h, then the task replication (t, h) completes at the next time

tick event.

The time-on-host set is updated as follows. Let u and u′ be two configurations. If u′

is a write/read/switch successor of u, then toh(u′) = toh(u). If u′ is a release successor

and the release guard being handled is (l, (0, φ), (t, h)) then toh(u′) = toh(u) ∪

{((t, h), wemap(t, h), wtmap(t, h))}. If u′ is a time-event successor, then remaining

execution and transmission times for the following replications must be updated: all

replications (t, h) where the scheduler decides to schedule task t on host h; remaining

execution and transmission times for all other task replications remain unchanged.

The set of replications for which the times need to be updated be tset′′ = {(t, h)|∃h ∈

hset.sch(τ, h) = t} where last(τ) = u. The updated time-on-host set is

• for all tuples ((t′, h′), ne, nr) ∈ toh(u, h) where (t′, h′) 6∈ tset′′, there exists

tuple ((t′, h′), ne, nr) ∈ toh(u′).

• for all tuples ((t, h), ne, nr) ∈ toh(u), where (t, h) ∈ tset′′

89

Chapter 6. Schedulability Analysis

1. if ne > 0, then ((t, h), ne − 1, nr) ∈ toh(u′)

2. if ne = 0 and nr > 1, then ((t, h), ne, nr − 1) ∈ toh(u′)

3. if ne = 0 and nr = 1, then tuple ((t, h), ·, ·) 6∈ toh(u′).

Time Safety

An implementation trace is time safe if the following holds: (1) if a communicator is

being updated by the evaluation of a task then the task and all the predecessor tasks

must have completed execution, and, (2) if a task is being released then any other

instance of the task must have terminated. Formally, an implementation trace τ is

time safe if for any two configurations u and u′ on the trace:

• if u′ is a write successor of u and (w, (0, φ), ((c, h), i, (t, h′))) ∈ gset(u) is

the write guard being handled, then (t, h′) 6∈ tset(u) and for all tasks t ∈

prec(t, m), (t, h′) 6∈ ready(u), where t is invoked in mode m

• if u′ is a release successor of u and (l, (0, φ), (t, h)) ∈ gset(u) is the release

guard being handled, then (t, h) 6∈ tset(u)

A scheduler sch is time safe if all traces generated by the scheduler is time-safe.

Transmission Safety

A scheduler is transmission safe if every time it selects a task (on host h) for trans-

mission, then all hosts except h are idle, i.e., neither executing nor transmitting.

Formally, a scheduler sch is transmission safe, if for every non-empty finite imple-

mentation trace τ (generated by the scheduler) where last(τ) is waiting, the following

holds: if there exists host h such that sch(τ, h) = t and ((t, h), 0, nr) ∈ toh(u), then

sch(τ, h′) = ∅ for all hosts h′ ∈ hset \ {h}.

90

Chapter 6. Schedulability Analysis

Definition 3. A scheduler sch is safe if sch is time and transmission safe.

Definition 4. Given an well-formed implementation I, the schedulability problem

for I returns true if there exists a safe scheduler for I, false otherwise. If the

schedulability problem returns true, then the implementation I is schedulable.

6.4 Schedulability-Preserving Implementation

An well-formed implementation I = (P, A, mdlmap) is schedulability-preserving, if for

all tasks, WCET and WCTT for the task is not greater than the WCET and WCTT

of the parent, i.e., for all tasks t and hosts h, wemap(t, h) ≤ wemap(ptask(t), h) and

wtmap(t, h) ≤ wtmap(ptask(t), h). The condition ensures that resources used by a

task is no more than that used by the respective parent, which preserves schedulability

across refinement.

Abstract Implementation

An abstract program for an HTL program is the root program without any refine-

ment. An abstract implementation for an HTL program is the implementation for the

abstract program, i.e., given an implementation I = (P, A, C(A, P), mdlmap), abstract

implementation abstract(I) = (abstract(P), A, C(A, P), mdlmap), where abstract(P)

is abstract program of P. The module map remains the same as root modules are

identical both for P and abstract(P). For execution traces of an abstract imple-

mentation, both abstract and concrete tasks of the abstract program are considered.

Next it will be shown that if an abstract implementation abstract(I) is schedulable,

then the implementation I is schedulable if I is schedulability-preserving (Fig. 6.1);

in other words, refinement does not overload schedulability analysis.

91

Chapter 6. Schedulability Analysis

Abstract Program, abstract(P)
(root program without refinement)

Abstract Implementation, abstract(I)
(abstract(P),A,C(A,P),mdlmap)

HTL Program, P
(hierarchical program)

Implementation, I
(P,A,C(A,P),mdlmap)

refinement constraints Architecture A schedulability-preserving constraints

If
ab

st
ra

c t
 im

pl
em

en
ta

tio
n

i s
 s

ch
ed

ul
ab

le
,

th
en

 i
m

pl
em

en
ta

tio
n

i s
 s

ch
ed

ul
ab

le

Figure 6.1: Schedulability-preserving implementation

Input Matching Traces

A trace τ has time length n (where n ∈ N≥0) if last(τ) is waiting and there are n time-

event transitions between starting configuration and last(τ). Two configurations

u (in trace τ) and u′ (in trace τ ′), are matching if (1) u and u are waiting, (2)

there are n ∈ N≥0 time-event transitions between starting configuration of τ and

u, and (3) there are n time-event transitions between starting configuration of τ ′

and u′. Two traces τ and τ ′ of time length n are input matching if for all pairs of

matching configurations u (in trace τ) and u′ (in trace τ ′), the value of common input

communicators are identical; i.e., for all common input communicators c, (c, ·)u =

(c, ·)u′ .

Analysis for Preserving Schedulability

Consider a schedulability-preserving implementation I = (P, A, C(A, P), mdlmap). The

abstract implementation abstract(I) = (abstract(P), A, C(A, P), mdlmap) is schedu-

lable; a safe scheduler for the abstract implementation be sch′. A scheduler sch for I

is defined from sch′ as follows. For any two finite non-empty traces τ ′ (of abstract im-

92

Chapter 6. Schedulability Analysis

plementation) and τ (of implementation) where (1) τ and τ ′ has time length n ∈ N≥0,

and (2) τ and τ ′ are input matching:

1. if sch′(τ ′, h) = φ, then sch(τ, h) = φ

2. if sch′(τ ′, h) = t and task t is concrete, then sch(τ, h) = t

3. if sch′(τ ′, h) = t′, task t′ is abstract, there exists no task replication (t, h) ∈

tset(last(τ)) such that task t′ is root parent of task t, then sch(τ, h) = φ

4. if sch′(τ ′, h) = t′, task t′ is abstract and there exists task replication (t, h) ∈

tset(last(τ)) such that task t′ is root parent of task t, then sch(τ, h) = t

Observation 4. Given implementation trace τ of time length n, there is a unique

abstract implementation trace τ ′ of time length n, s.t. τ and τ ′ are input matching.

Proof. The set of input communicators in an abstract program is a subset of the input

communicators of the program, i.e., the value of the input communicators (of abstract

program) are identical in traces τ and τ ′. Abstract implementation is schedulable,

and for schedulable implementation execution is deterministic, i.e., given a sequence

of input communicators there is only one sequence of values for other communicators

(for traces generated by a safe scheduler). The value of input communicators being

determined by implementation trace τ , there can be only one abstract implementation

trace τ ′.

Let task t be invoked in a mode m; t must be concrete as only concrete tasks are

executed in an implementation. Given that all task invocations have unique names

and program is well-formed, invocation of t uniquely identifies mode m. Let the last

activation of mode m is at a configuration um (on trace τ) and there are no (where

no ∈ N and 0 ≤ no ≤ n) time-event transitions between um and last(τ) and switch

guards for current invocation of m are enabled after ns time transitions.

93

Chapter 6. Schedulability Analysis

Observation 5. Either mode m belongs to root program or the root parent of mode m

is active at last(τ ′).

Proof. If mode m belongs to root program and is active in last(τ), the identical input

communicators and deterministic behavior ensures that m must be active in last(τ ′).

For the second part, consider mode m is enabled at last(τ) while the corresponding

root parent mode m′ has not been enabled at last(τ ′). There are two possibilities.

First, root parent m′ is not in root program P. This is not possible as for well-formed

programs there is only one root program. Second, m′ has terminated while mode m

is active. This is also not feasible: (1) mode m has unique root parent, (2) when

mode m′ terminates all modes in subsequent refinements terminate, and (3) when m′

switches, switch guards for all modes in refinements are removed and thus eliminating

the possibility of modes in refinement programs switching between themselves when

the root parent in not active.

Thus if a mode m is active at last(τ), then there must be a mode m′ active at

last(τ ′), such that either (1) m = m′ and m belongs to root program, or (2) m belongs

to a non-root program and m′ is root parent of m. Let the last activation of m′ is at

a configuration u′m′ (on trace τ) and there are n′o (where n′o ∈ N and 0 ≤ n′o ≤ n)

time transitions between u′m′ and last(τ ′) (on trace τ) and switch guards for current

invocation of m′ are enabled after n′s time transitions.

Corollary 7. Invocation of mode m coincides with the invocation of mode m′.

Proof. From observation 5, if mode m is active at a waiting configuration, then the

root mode m′ must be active at the configuration. For well formed programs, the

period of a mode and the parent is identical. Thus the invocation of m and m′ must

coincide, i.e., no = n′o and n′s = ns. If m = m′, then their activation must coincide as

execution is deterministic, i.e., no = n′o and n′s = ns.

94

Chapter 6. Schedulability Analysis

As the mode periods coincide, the period of execution of tasks in m and m′ must

coincide. Consider a concrete task t ∈ invnames(m). From well-formedness of pro-

gram, the root parent of t must be invoked in the root parent of mode m. Let the

root parent be t′; the root parent is unique to all concrete tasks that can potentially

execute in parallel to t. Note t′ must be abstract and has been scheduled in abstract

implementation; but need not be scheduled in implementation.

Observation 6. If ((t, h), ne, nr) ∈ toh(last(τ)) and ((t′, h), ne
′, nr

′) ∈ toh(last(τ ′))

then ne ≤ ne
′ and nr ≤ nr

′.

Proof. Let t and t′ do not have preceding tasks, i.e., the release depends only on the

read time of t. Say t has been released nl time transitions earlier (where nl ∈ N≥0 and

nl ≤ no) in τ , and t′ has been released n′l′ time transitions earlier (where n′l′ ∈ N≥0

and n′l′ ≤ no) in τ ′. From well-formedness, rtime∗(t, m) ≤ rtime∗(t′, m′) which implies

(no − nl) ≤ (no − n′l′) or n′l′ ≤ nl. Implementation being schedulability-preserving

wemap(t, h) ≤ wemap(t′, h) and wtmap(t, h) ≤ wtmap(t′, h). The scheduler definition

ensures t is scheduled only when t′ is scheduled by sch′. The above ensures that the

observation holds.

If task t has preceding tasks, then the observation can be proved by induction.

The release events for t and t′ be (n, cmps) and (n′, cmps′). The program being well-

formed n ≤ n′. For each task ti ∈ cmps, there is a task t′i ∈ cmps′ where t′i is parent

of ti (refinement constraints). By inductive hypothesis, completion event for each ti

cannot be later than that of t′i (the base case of the argument has been discussed

above), i.e., completion events of all tasks in cmps′ should have occurred before the

completion events of tasks in cmps which implies that t′ must have been released later

than t.

The last observation implies the following for the period of invocation of mode m:

(1) t has been released but t′ has not been released; task t is not scheduled, (2) t

95

Chapter 6. Schedulability Analysis

and t′ are executing, (3) t′ is executing but t has completed execution, (4) t′ and t

are transmitting, (5) t′ is transmitting but t has completed transmission, (6) t and

t′ have completed execution and transmission.

Let t′ updates a communicator c′ at configuration u′p and task t updates a com-

municator c at uq. There are n′c′ ∈ N>0 time transitions between last(τ ′) and u′p;

and there are nc ∈ N>0 time transitions between last(τ) and uq.

Observation 7. Replication of task t or none of its preceding tasks are in tset(uq)

or ready(uq).

Proof. Let no other communicator be updated by t′ or no switch guard for mode

m′ is handled between last(τ ′) and u′p. Similarly, let no other communicator is up-

dated by t and no switch guard for mode m is handled in between last(τ) and

uq. Trace τ ′ is time safe; so replication of t′ or replication of any task preced-

ing t′ cannot be in tset(u′p) or ready(u′p). Without loss of generality, let t′ ter-

minates after n′t′ time transitions (n′t′ ∈ N≥0 and n′t′ ≤ n′c′). If t terminates af-

ter nt time transitions (nt ∈ N≥0) then nt ≤ n′t′ (from above observations). Also

n′c′ ≤ nc as ttime∗(t′, m′) ≤ ttime∗(t, m), i.e., nt ≤ n′t′ ≤ n′c′ ≤ nc which implies that

(t, ·) 6∈ tset(uq). If task t has been terminated all the preceding tasks must have

terminated. The communicator update precedes mode switch checks which implies

mode m cannot be reinvoked before uq, i.e., (t, ·) 6∈ ready(uq). There is a special case

when nt = n′t′ = n′c′ = nc = ns (i.e., the communicator update and mode switch check

would be enabled simultaneously). From operational semantics, the communicator

update would be handled before switch check; thus excluding the possibility of adding

t in task set by new mode invocations.

Observation 8. Two invocations of t cannot overlap.

Proof. The modes m and m′ can be reinvoked only after ns time transitions. Time-

safety of τ ′ ensures that execution of t′ (irrespective of whether it writes to a commu-

96

Chapter 6. Schedulability Analysis

nicator or not) is complete after n′t′ ≤ ns time-event transitions. We know nt ≤ n′t′ .

If nt = n′t′ = ns the operational semantics ensure that task is removed from task set

before mode m is invoked, i.e., another instance of t is invoked.

A concrete task in mode m′, is scheduled both in implementation and abstract im-

plementation. Scheduler sch is safe for the concrete task; definition of the schedulers

is identical for concrete tasks in modes of root program i.e., sch′ is safe for the task.

Claim 1. Scheduler sch is time safe.

Proof. The claim can be proved from observation 7 and observation 8.

Claim 2. Scheduler sch is transmission safe.

Proof. Let host h be transmitting the evaluation of task t′. So sch′(τ ′, h) = t′ where

((t′, h), 0, nr
′) ∈ toh(last(τ ′)). Scheduler sch′ being transmission safe, for all hosts

h′ ∈ hset\{h}, sch′(τ ′, h′) = φ; from definition of sch, sch(τ, h′) = φ for all hosts h′ ∈

hset\{h}. The previous observations show that the transmission for the tasks t and t′

start at the same time tick instance. From well-formedness constraints, wtmap(t, h) ≤

wtmap(t′, h). Thus either (t, h) 6∈ tset(last(τ)) or (t, 0, nr) ∈ toh(last(τ)) with

nr ≤ nr
′. In the first case, sch(last(τ), h) = φ, in the second case sch(last(τ), h) =

t. This implies that when t is being transmitted, all other hosts are idle. In other

words, sch is transmission safe.

Theorem 2. If abstract implementation abstract(I) of a schedulability-preserving

implementation I is schedulable, then I is schedulable.

Proof. Say the safe scheduler for abstract(I) is sch′. Claim 1 and Claim 2 shows

that a safe scheduler sch for I can be constructed from sch.

97

Chapter 6. Schedulability Analysis

The schedulability problem can be solved in time linear in the number of im-

plementation configurations [Henzinger et al., 2002]; however the check may be too

expensive. If an implementation is schedulability-preserving the efficiency of the check

can be increased by performing the analysis on the abstract implementation. The ab-

stract program (i.e. the program without refinement) may be exponentially smaller

than the hierarchical program. EDF scheduling algorithm [Buttazzo, 1997] can be

used for schedulability analysis on single host. To account for transmission times on

distributed architecture, techniques like [Tindel and Clark, 1994] can be used.

98

Chapter 7

Reliability Analysis

The chapter presents reliability analysis of an HTL implementation. The program

specifies a Logical (or long-term) Reliability Constraint (LRC) for each communica-

tor. LRC denotes the desired limit-average of the number of reliable values for a

communicator at waiting configurations along infinite implementation traces. Given

the reliability of hosts and sensors, the implementation is reliable if for all traces, for

all communicators: the limit average of the number of reliable values is at least equal

to the respective LRCs. For implementation with certain properties, one can compute

the singular (or short-term) reliability guarantee (SRG) of updating a communicator

with reliable values at each communicator instance. In this scenario, the implemen-

tation is reliable if SRG of each communicator is no less than the respective LRC;

i.e. the SRG ensures the LRC. An well-formed implementation is reliability-preserving

if the following refinement constraint holds: if a task refines another task, the refining

task must not write to a communicator with LRC larger than LRC of any communi-

cator written by the refined task. If a reliability-preserving implementation is reliable

for the root program without refinement, then the implementation is reliable for the

root program with refinement.

99

Chapter 7. Reliability Analysis

7.1 Extension of HTL Syntax

Communicator Declaration

A communicator declaration (c, type, init, π, µ) consists of a communicator name

c, a structured data type type, an initial value init (if different from the default

value of type), a period of access π ∈ N>0 and logical reliability constraint (LRC)

µ ∈(0,1]. The definition is similar to the definition in Section 3.2 except for the

LRC information. The LRC of a communicator c is µ(c). The range of values of

a communicator includes the values defined by the respective type, type(c) and a

special symbol, ⊥, denoting unreliable value.

Task Invocation

A task invocation (t, ains, aouts, fmodel, default, ptask) consists of a task name t,

a list of actual input parameters ains, a list of actual output parameters aouts, an

input failure model fmodel ∈ {1, 2, 3}, a list of default values default and an optional

task name ptask. The definition is similar to the one discussed in Section 3.2 except

for the input failure model and default value list. Given an invocation of task t, the

input failure model and the default list are fmodel(t) and default(t) respectively.

The input failure models 1, 2, and 3 denote the input models series, parallel, and

independent respectively (Section 2.5). The default value list is identical in size to

that of the input list, i.e., |default(t)| = |ains(t)|. The content of the default

value list matches the type of the corresponding element in actual input list; i.e.,

if k-th parameter of default list is defaultk(t), then defaultk(t) ∈ type(c) where

ainsk(t) = (c, ·).

100

Chapter 7. Reliability Analysis

Program Structure

The reliability analysis is performed on HTL programs with no ports, all modules

with one mode, and all modes with identical periods; i.e., for all modules mdl,

|mdlnames(mdl)| = 1 and pnames(mdl) = ∅; and for any two modes m, m′: π(m) = π(m′).

7.2 Implementation

An architecture A is a tuple (hset, sset) where hset is a set of hosts (connected over

a reliable broadcast network) and sset is a set of sensors.

Given an HTL program P and an architecture A, architectural constraints C(P, A) is

a tuple (wemap, wtmap, hrel, srel) where wemap is worst-case-execution-time (WCET)

map, wtmap is worst-case-transmission-time (WCTT) map, hrel is host reliability

map and srel is sensor reliability map. The WCET and WCTT maps are identical

to the definition in Section 6.1. The host reliability map hrel maps each host to a

real number between 0 and 1; i.e., hrel : hset → R(0,1]. The sensor reliability map

srel maps each sensor to a real number between 0 and 1; i.e., srel : sset→ R(0,1].

Implementation I is a tuple (P, A, C(P, A), mdlmap), where P is an HTL program, A

is an architecture, C(P, A) are architectural constraints, and mdlmap is a function from

root modules of program P to hosts hset of architecture A, mdlmap : mdlnames(P) →

2hset \ ∅. Given a root module mdl ∈ mdlnames(P), mdlmap(mdl) is the set of hosts to

which module mdl is mapped. Given a task t, I(t) be the set of hosts on which the

task is executed.

101

Chapter 7. Reliability Analysis

7.3 Semantics of Implementation

Replication

Communicators and tasks are referred through respective replications (Section 6.2).

All communicators are replicated on all hosts. Each task t is replicated to all hosts

in I(t) for implementation I. Refinement of a root module is executed on the hosts

to which the module is mapped. When a task completes execution, it broadcasts the

evaluation. As a task can be replicated on multiple hosts, a communicator replication

can be written by multiple task replications. The communicator is updated by voting

on the evaluation of each individual task replication.

Implementation Trace

The execution of an implementation yields a (possibly infinite) sequence of configura-

tions, called implementation trace (Section 6.2). Each configuration tracks the values

of the variables (communicator replications and task ports), a set of guards, and a set

of released task replications. Two consecutive configurations u, u′ in a trace are related

by successor relations: time-event, write, read, switch and release. The successor def-

initions remain same as earlier except for definition of write guard action. Consider a

write guard (w, e, ((c, h), i, t)) where w is guard type, e is event instance, c is a com-

municator, i ∈ N≥0 and t is a task. When the trigger is handled the communicator

replication (c, h) is updated from the output task ports (on host h) maintained by

each replication of task t on hosts in I(t). Formally, (c, h)u′ = mergeh′∈I(t)top
c,h,i
t,h′,u′ ,

where merge is a voting operation on the output task ports. If all the ports are ⊥,

then the merge operation returns ⊥. If at least one of the port is non-⊥, then the

operation returns the non-⊥ value. Given identical input to replications of a task,

identical output is generated if the underlying hosts do not fail to execute.

102

Chapter 7. Reliability Analysis

7.4 Reliable Implementation

Given a waiting configuration u and a communicator c, α(u, c) is reliable if there

exists at least one host h ∈ hset, such that (c, h)u is non-⊥. Given an infinite

trace τ ∗, we define the reliability based abstraction trace (Zj)j≥0 = ρ(τ ∗) as follows:

Zj : cset(P) → {0, 1}; Zj(c) = 1 if α(last(τ), c) is reliable, 0 otherwise, where τ is a

finite prefix (of trace τ ∗) of time length n, n = j ·π(c) and n, j ∈ N≥0. The set cset(P)

is the set of all communicators declared in the program, i.e., ∪P′∈subset(P)cnames(P). In

other words, the function ρ maps a trace τ ∗ to another trace (Zj)j≥0; the second trace

is referred as reliability-based abstract trace. The limit average value of a reliability-

based abstract trace for communicator c, τc = (Zj(c))j≥0, is the “long-run” average of

the number of 1’s in the abstract trace. Formally, the limit-average value limavg(τc)

of a reliability-based abstract trace for communicator c, τc = (Zi(c))i≥0 is defined as:

limavg(τc) = lim
n→∞

1

n

n−1∑
i=0

Zi(c). Given a communicator c, the set of reliable abstract

traces, denoted as tracesc, is the set of reliability-based abstract traces for c with

limit-average no less than µ(c), i.e., tracesc = {τc : limavg(τc) ≥ µ(c)}. Given

set of communicators cset(P), the set of reliable abstract traces is tracescset(P) =

{(Zj(c
′))j≥0 : ∀c′ ∈ cset(P).limavg((Zj(c

′))j≥0) ≥ µ(c′)}.

Definition 5. Given an implementation, I, the reliability problem returns true if

for each communicator, long-run average of the number of reliable values observed

at access points of the communicator is at least LRC of the communicator. If the

reliability problem returns true, then the implementation is reliable.

7.5 Reliability Analysis

Given the modified HTL structure, an HTL program is a set of periodic tasks over the

period of a mode. Similar to the specification graph (Section 2.5), a program graph is

103

Chapter 7. Reliability Analysis

defined on the concrete tasks invocations. Let tset(P) be the set of all concrete tasks

invoked in the the program i.e. tset(P) = ∪mdl∈mdlnames(P) ∪m∈mnames invnames(m). The

set of concrete tasks invoked is tsetc(P) ⊆ tset(P) and consists of concrete tasks only.

The set of all communicators declared is cset(P); the set of non-input non-output

communicators be csetnino(P). The modes being of identical period, the mode period

is denoted as π(P). A program graph GP = (VP, EP) with EP ⊆ VP × VP is defined as

follows. The set of vertices is VP = {(c, i) : c ∈ cset(P)∧i ∈ {0, · · · , π(P)/π(c)}∪{t :

t ∈ tsetc(P)}. The set of edges is EP = {((c, i), t) : (c, i) ∈ ains(t)} ∪ {(t, (c, i)) :

(c, i) ∈ aouts(t)} ∪ {((c, i), (c, i′)) : i < i′ ∧ ∀t ∈ tsetc(P).∀i < i′′ ≤ i′.(c, i′′) 6∈

aouts(t)} ∪ {((c, π(P)/π(c)), (c, 0)) : ∀c ∈ csetnino(P)}. A communicator cycle is

a path δ from (c, i) to (c, i′) such that the path δ contains at least one vertex

t ∈ tsetcP. A program P is memory free if the program graph GP contains no

communicator cycle. An implementation I = (P, ·, ·) is memory free if program P is

memory-free.

Task Reliability

Given the constraints on tasks and assumptions on architecture, environment and

semantics, the task replications can be assumed to be connected in parallel to each

other. Each block of such task replications are connected in series with parallel

blocks of replications of other tasks. Given an implementation I, reliability of a task

t, λ(t) = 1 −
∏

h∈I(t)(1 − hrel(h)), i.e., at every iteration the probability that the

task t executes is at least λ(t).

SRG of Communicator

SRG λ(c) of a communicator c is inductively defined as follows: (a) for an input

communicator c, λ(c) = srel(s) where c is updated by sensor s; (b) for a non-input

104

Chapter 7. Reliability Analysis

communicator c let t be the task that writes c and let SRGs of the communicators

in the set rcset(t) be defined, then λ(c) is defined as follows: (1) if fmodel(t) = 1,

then λ(c) = λ(t) ·
∏

c′∈rcset(t) λ(c′), (2) if fmodel(t) = 2, then λ(c) = λ(t) · (1 −∏
c′∈rcset(t)(1− λ(c′))), and (3) if fmodel(t) = 3, then λ(c) = λ(t).

Reliable Implementation

Given the structural constraints on program, a non-input communicator c can be

written by a single task. Given an implementation I, at every iteration the probability

that c has a reliable value is at least λ(c). From the definition of local (or one-step)

probabilities we obtain a probability space Pr I(·) on the set of infinite traces.

Definition 6. Given a memory-free well-formed implementation I reliability anal-

ysis returns true if the probability of the set of reliable abstract traces is 1, i.e.,

Pr I[tracescset(P)] = 1; false otherwise.

Theorem 3. Given a memory-free, well-formed implementation I, the reliability

analysis returns true if for all communicators c, λ(c) ≥ µ(c); no otherwise.

The proof is identical to that explained in Section 2.5.

Valid Implementation

The schedulability check remains similar to that discussed in the last chapter, with the

following modification on time-safety: if a communicator is being updated, then all

replications of the tasks writing to the communicator must have completed execution

and transmission; and if a task replication is being released, a previous invocation of

the task replication must not be in the ready set. The schedulability analysis checks

the existence of a safe scheduler.

Definition 7. An implementation I is valid if I is schedulable and reliable.

105

Chapter 7. Reliability Analysis

7.6 Reliability-Preserving Implementation

An implementation I = (P, A, C(P, A), mdlmap) is reliability-preserving if the imple-

mentation is schedulability-preserving and the following conditions hold for all task t

in non-root programs:

• if (c′, ·) ∈ aouts(t), then µ(c′) ≤ max(c,·)∈aouts(ptask(t)) µ(c), i.e., the LRC of

any communicator written by task t should be less than the maximum of the

LRCs of the communicators written by the parent ptask(t)

• fmodel(t) = fmodel(ptask(t)), i.e., fault model of the tasks t and ptask(t)

are identical

• if fmodel(t) = 1, then rcset(t) ⊆ rcset(ptask(t)), i.e., if task t′ has input

failure model 1, then the set of communicators read should be a subset of the

communicators read by parent task ptask(t)

• if fmodel(t) = 2, then rcset(t) ⊇ rcset(ptask(t)), i.e., if task t has input

failure model 2, the the set of communicators read should be a superset of the

communicators read by parent ptask(t).

Theorem 4. If abstract implementation abstract(I) for a reliability-preserving me-

mory-free implementation I is valid, then the implementation I is valid.

Proof. Reliability-preserving implementation is schedulability-preserving. If abstract

implementation is schedulable, then implementation is schedulable (Chapter 6). All

modes have identical periods and no mode switches which implies that abstract and

hierarchical program can be reduced to a set of periodic tasks. In case of abstract

program both abstract and concrete tasks are accounted for; in case of hierarchical

program only concrete tasks are accounted. The set of tasks in abstract program is the

106

Chapter 7. Reliability Analysis

Abstract Program, abstract(P)
(root program without refinement)

Abstract Implementation, abstract(I)
(abstract(P),A,C(A,P),mdlmap)

HTL Program, P
(hierarchical program)

Implementation, I
(P,A,C(A,P),mdlmap)

refinement constraints reliability-preserving constraintsArchitecture A

If
ab

st
ra

ct
 im

pl
em

en
ta

tio
n

i s
 s

ch
ed

ul
ab

le
an

d
r e

li a
bl

e,
 th

en
 i

m
pl

e m
en

ta
tio

n
is

sc

he
du

la
b l

e
an

d
re

lia
bl

e

Figure 7.1: Reliability-preserving implementation

refined set of tasks while set of tasks in hierarchical program is the refining set. There

is a total and one-to-one mapping from tasks in the refining set to those in refined set

(program is well-formed). From the above observation, if abstract implementation is

reliable, then the implementation is reliable (refer to Section 2.6 for details).

7.7 Extension of Program Structure

Specification with Memory

If the program graph has a cycle and the cycle consists of a task node such that the

input failure mode of the task is independent, then the reliability analysis described

above holds (Section 2.5).

Specification with Mode Switches

Mode switches can be accounted in the reliability analysis if the modes are identical

with respect to task invocation and interface i.e., there is no change in the modes with

respect to reliability. If a mode m switches to another mode m′ (or m is the destination

107

Chapter 7. Reliability Analysis

mode from m′), then each task t (in mode m) must map to a unique task t′ (in mode

m′) such that the tasks t and t′ read from identical communicator instances, write to

identical communicator instances and have identical parent; the task functions can be

different. As all modes connected by mode switches execute on the same hosts, the

above constraint ensures that a mode switch does not affect the program graph (which

can be constructed based on any representation mode among the switching modes).

Thus the result of reliability analysis holds even if the modes switch. The model is

expressive enough to implement real-time controllers as discussed in Chapter 9.

Modes with Non-Identical Periods

If the modes (across modules) in the root program differs in periods, then the reli-

ability analysis holds. Instead of the program graph spanning over a single period

(as described above), the program graph will span a hyper-period (lowest common

multiple of all the mode periods).

108

Chapter 8

Compiler

The chapter discusses a compiler for HTL programs. Given a well-formed HTL pro-

gram, the compiler generates so-called Hierarchical E code(HE code) [Ghosal et al.,

2007a] for the program targeting the E(mbedded) Machine. HE code is an extension

of the E code [Henzinger and Kirsch, 2002] to handle hierarchical program structure

like HTL. An overview of HE code is followed by a discussion of the expressive-

ness of HE code (specifically for HTL programs) and code generator for HTL. The

chapter concludes with a presentation of a possible design-flow that includes the

code-generator and analysis.

8.1 The Embedded Machine

E machine has a semantics that is designed to simplify code generation and can be

executed very efficiently [Kirsch et al., 2005]. The Embedded Machine or E Ma-

chine controls the release of tasks and the time when variable values are exchanged

(i.e. copied or initialized). The variables are accessed through so called drivers. A task

or a driver is implemented in any other language e.g. C. In the original E Machine defi-

nition there are six E code instructions. There are three non-control flow instructions:

109

Chapter 8. Compiler

call , release and future. The instruction call(d) executes a driver d . The instruction

release(t) releases a task t for execution. The task may not be immediately executed;

the actual execution of the task will depend on the real-time scheduler being used.

The instruction future(e, a) marks E code at address a for future execution when the

predicate e evaluates to true, i.e., when e is enabled. The pair (e, a) is a trigger: pred-

icate e observes events such as time tick events (raised by the real-time clock) and

completion events of tasks (raised by the executing platform) and is enabled when all

observed events have occurred. The E machine maintains a FIFO queue of triggers.

If multiple triggers in the queue are enabled at the same instant, the corresponding

E code is executed in FIFO order, i.e., in the order in which the future instructions

that created the triggers were executed. There are two control flow instructions: if

and jump. The conditional instruction if (cnd, a) branches to the E code at address

a if predicate cnd evaluates to true. A condition cnd observes variable states. The

non-conditional control flow instruction jump(a) executes an absolute jump to E code

address a. There is one termination instruction return.

The E machine is extended to execute code generated from a hierarchical program.

Each trigger in addition to an event predicate and address, tracks a parent trigger

and a set of children triggers. With the new trigger definition, a trigger queue is

an implicit tree (Fig. 8.1). Instead of one trigger queue, three trigger queues are

used. While one FIFO queue orders the actions of simultaneously ordered triggers,

parallel FIFO queues provide second ordering on simultaneously enabled triggers.

In case of code generated for HTL programs, the multiple queues are used to order

communicator updates, switch checks, communicator reads and task releases. Two

stacks are added to track the hierarchy: one stack is used to remember the position

of code (in the hierarchical program) being executed, and the other is used to add

parent and children to new triggers. Instructions are added to operate on the modified

E machine; the new instruction set is referred as hierarchical E code or HE code.

110

Chapter 8. Compiler

Children

1

2 3

4 5

6

7 8

Implicit Tree structure

1Trigger

Parent

2

3

2 3 4 5 6

1 1

4

5

2 2

7 8

7

8

3 3

6

4

Figure 8.1: Triggers, queue of triggers and implicit tree

8.2 Hierarchical E Code

The semantics of an HE code program is represented as a set of traces where each

trace is a sequence of configurations. Each configuration tracks the following: state

of program variables (state), set of release tasks (tset), three (FIFO) queues of

triggers (writeQ , switchQ , readQ), address of the current instruction being executed

(PC), four registers storing trigger names (R0 ,R1 ,R2 ,R3), a stack of trigger names

(parent stack) and a stack of addresses (address stack). For any two consecutive

configurations ui−1, ui where i > 0, ui is the result of time tick event, task completion

event or execution of an instruction at configuration ui−1.

The variable state state tracks the values of program variables; e.g. for HTL

programs the variables are communicators and ports. The task set tasks tracks the

set of tasks released for execution; once a task completes execution the task is removed

from tasks . The program counter PC is the address of the current instruction being

executed. The set of program addresses is adrset ∪{⊥}; PC = ⊥ signifies there is no

instruction being executed and the E machine is either checking for enabled triggers

or waiting for an event. The instruction at address a is ins(a) and the next address

following a is next(a).

111

Chapter 8. Compiler

A trigger trg is a tuple (e, a, par , clist), where e is an event, a is an address, par

is a trigger name, and clist is a list of trigger names. An event is a pair (n, cmps),

where n ∈ N≥0 and cmps is a set of task names. The positive integer n denotes the

number of time tick events being waited for. The set cmps denotes the tasks whose

completion event is being waited for. A trigger is enabled when n = 0 and cmps = ∅.

When a trigger is created, it is assigned an unique name until the trigger is removed.

A trigger name is the reference to a trigger; a trigger can be accessed through trigger

names. The registers store trigger names. A register can be copied and/or reset

without affecting the trigger unless the trigger is removed or modified by HE code

instructions. The triggers are unique identities and are not duplicated; however they

can be modified when events occur. A trigger may be modified by updating the

associated event, changing the parent, or by modifying the children list. A trigger

can be present in at most one queue.

The address stack tracks the hierarchical position of the program, mode and mod-

ule for which code is being executed. An HE code address can be pushed onto the

address stack. Popping the address stack returns the most recent address added, if

the stack in non-empty; ⊥ otherwise. The parent stack remembers the hierarchy of

the switch triggers. A trigger name can be pushed onto the parent stack. Popping the

parent stack returns the most recent trigger name added if the stack is non-empty;

⊥ otherwise.

The E machine is waiting if none of the triggers in any of the queues are enabled,

PC = ⊥ and address stack is empty. The machine is in state writing if there exists

at least one enabled trigger in the write queue. The machine is in state switching

if there exists no enabled trigger in the write queue but there exists at least one

enabled trigger in the switch queue. The machine is in state post-switch if there

exists no enabled trigger in the write and the switch queue but there exists at least

one enabled trigger in the read queue.

112

Chapter 8. Compiler

If the machine is waiting, a time tick or a task completion event updates the event

for the triggers. If a time tick event occurs, then time tick count for all triggers are

reduced by one (unless the count is already zero). If a completion event for task t

occurs, then the task t is removed from completion event set of all triggers. If the

E machine enters into non-waiting state (by enabling some triggers) after handling

an event, the write queue is traversed in FIFO order until an enabled trigger is found

and the trigger is handled. When a trigger (·, a, ·, ·) is handled, program counter PC

is set to a, the name of the trigger is stored in register R0 and the trigger is removed

from the queue. The E machine continues the execution at addresses following a until

a return instruction is executed. When a return execution is executed, the trigger

(which triggered the code execution) is deleted from the system and code execution

starts from the address popped from the address stack. This is continued until the

address stack is empty. At this point the control starts searching for other enabled

triggers in the write queue; if no other trigger is enabled, the machine enters into

switching state. If the E machine enters into switching state, the switch queue is

traversed in FIFO order (and enabled triggers are handled) until the machine is in

state post-switch. If the E machine enters into post-switch state, the read queue is

traversed in FIFO order (and enabled triggers are handled) until the machine is in

state waiting. The handling of triggers in all the three queues are identical.

Table 8.1, Table 8.2 Table 8.3 and Table 8.4 summarizes the effect of execution

HE code instructions. The current address of execution is assumed to be a; thus

ins(a) is the instruction being executed and next(a) is the next address. The in-

struction call(d) executes a driver [Henzinger and Kirsch, 2002] d and updates the

corresponding variable that is the output of the driver. The instruction release(t)

adds the task to the task set; in other words task t is released for execution.

There are three instructions for adding a new trigger: one for each trigger queue.

Instructions writeFuture(e, a), switchFuture(e, a), and readFuture(e, a), adds a trig-

113

Chapter 8. Compiler

instruction parameters action

call d driver d is executed which updates variable state

release t task t is added to set of released tasks

Table 8.1: Variable update and task release instructions

ger with event e, address a, empty parent and empty children list to writeQ , switchQ

and readQ respectively. Every time a new trigger is created, the name of the trigger

is stored in register R1 .

instruction parameters action

writeFuture e, a
trigger trg = (e, a,⊥, ∅) is added to
write queue writeQ
and name of the trigger trg is stored in register R1

switchFuture e, a
trigger trg = (e, a,⊥, ∅) is added to
switch queue switchQ
and name of the trigger trg is stored in register R1

readFuture e, a
trigger trg = (e, a,⊥, ∅) is added to
read queue readQ
and name of the trigger trg is stored in register R1

Table 8.2: New trigger instructions

There are four control flow instructions. Instruction jumpIf (cnd, a ′) makes the

program counter to jump to address a ′ (resp. next(a)) if the condition cnd is true

(resp. false). The instruction jumpSubroutine(a ′) sets the program counter to a ′ and

pushes the next address next(a) to the address stack. This is a subroutine-style call:

when HE code block at address a ′ is executed the execution call returns to the original

code block by popping the address stack. The instruction return() pops the address

stack and sets the program counter. If the address stack is empty, the machine starts

searching for other enabled triggers.

114

Chapter 8. Compiler

instruction parameters action

jumpIf cnd, a ′
if condition cnd is true, then program counter
PC is set to address a ′ else PC is set to next(a)

jumpAbsolute a ′ program counter PC is set to address a ′

jumpSubroutine a ′
program counter PC is set to address a ′ and
address next(a) is pushed on to address stack

return -
address stack is popped and program counter is set
to the popped address

Table 8.3: Control flow instructions

Rest of the instructions are used for accessing the registers. The instruction

copyRegister copies one register to the other. The instruction pushRegister pushes a

register name on the parent stack. The instruction popRegister pops the parent stack

and stores the popped trigger name in a register. The instruction getParent gets the

parent of a trigger and the instruction setParent sets the parent of a trigger. The

instruction copyChildren copies the children of one trigger to another. The instruc-

tion setParentOfChildren sets the parent of children of a trigger. The instruction

deleteChildren deletes the triggers in the children (and successive children triggers)

list. The instruction replaceChild replaces a trigger name in the children list (of a

trigger) by another trigger. The instruction cleanChildren deletes the children list of

a trigger.

Once a trigger is handled and removed from the queue, the trigger is deleted from

the system when the code block (started by the trigger) ends. For general HE code

program, a garbage collector may be necessary to properly remove all de-referenced

triggers and to ensure that there is no reference fault (trigger name is being used

but the trigger itself has been deleted). Code generated from an HTL program does

not create any such problem; so we avoid the definition of a formal garbage collector.

All of the above instructions except deleteChildren can be executed in constant time.

115

Chapter 8. Compiler

instruction parameters action

copyRegister
Rx,Ry
x 6= y

the content of register Rx is copied to register
Ry

pushRegister Rx

the content of register Rx is pushed on to parent
stack

popRegister Rx pop content from parent stack to register Rx

getParent
Rx,Ry
x 6= y

the name of parent of trigger pointed to by reg-
ister Rx is stored into register Ry

setParent
Rx,Ry
x 6= y

the trigger name in the register Ry is stored as
the parent of the trigger pointed to by the regis-
ter Rx

copyChildren
Rx,Ry
x 6= y

the children list of the trigger pointed to by Ry is
stored as the children list of the trigger pointed
to by register Rx

setParentOfChildren Rx,Ry
x 6= y

set the trigger name in Ry as the parent of all the
triggers in the children list of the trigger pointed
by register Rx

deleteChildren Rx

for all trigger names in children list of trigger
referred by register Rx: (recursively) delete the
triggers pointed by the children list and remove
the triggers from the queue Rx

replaceChild
Rx,Ry,Rz
x 6= y 6= z

in the children list of trigger pointed to by regis-
ter Rx, replace the trigger name identical to that
in Ry by the trigger name in Rz

cleanChildren Rx

delete the children list of trigger pointed by the
register Rx

x ∈ {0, 1, 2, 3}, y ∈ {0, 1, 2, 3}, z ∈ {0, 1, 2, 3}

Table 8.4: Instruction for handling registers

116

Chapter 8. Compiler

The execution of deleteChildren requires time linear in the size of the original HTL

description of the involved children.

The E machine starts with the following configuration: default values assigned to

variables, empty trigger queues, empty task set, PC = ⊥, all registers set to null,

and empty stacks.

8.3 HTL in HE Code

For handling HTL programs in HE code, one needs to track the current position

in the hierarchy (i.e. which program, module or mode is being executed) and to

maintain the hierarchical relation between modes. The first is done by subroutine-

like calls to initialize and execute programs, modules and modes; refer Section 8.4

for details. Intuitively, the address stack stores the addresses of programs, modules

and modes in a tree like fashion so that E Machine knows which program, module or

mode is to be initialized/executed once the current one has been initialized/executed.

Maintaining the hierarchical relation is more involved and is done through triggers and

HE code instructions. For HTL programs, the compiler generates triggers as follows:

all triggers associated with writing communicators are stored in the write queue, all

triggers associated with mode switch checks are stored in the switch queue and all

triggers associated with reading communicators (and subsequently releasing tasks)

are stored in the read queue. The writing of communicators in a module, reading of

communicators in a mode and releasing of tasks in a mode are independent of other

modes, modules and programs. The above holds if the HTL program is well-formed.

Checking switches (and subsequent actions) in a mode depend on other modes. For

code generated from HTL, triggers in the write and the read queue have no parent

and children information; i.e., they do not carry any hierarchy information. Only

triggers in the switch queue have hierarchy information.

117

Chapter 8. Compiler

In a well-formed HTL program, switches for a mode (and the respective ancestors

and descendant modes) are enabled simultaneously; the mode switch checks (and

subsequent mode switches) are handled in order from top-level modes and thus prior-

itizing switching of parent modes over children modes. Fig. 8.2 shows an example of

HTL mode switch (refer 5.3 for a detailed discussion). Mode m is refined by program

P1 which has two modes m11 and m12 switching between themselves. Mode m11 is

refined by program P2 which has two modes m21 and m22 switching between them-

selves. Consider a scenario where m, m11 and m21 are executing. The program being

well-formed, the switch of all three modes would be activated simultaneously. There

are three possible scenario: (1) none of the modes switches, (2) only m21 switches to

m22 i.e. the new combination is m, m11 and m22, and (3) mode m11 switches i.e. the

new combination is m and m12; the switch condition of mode m21 does not matter.

The switching action of HTL is reflected in the HE code as follows. The compiler

generates code in such a way that there is exactly one trigger per mode in the switch

queue i.e. the implicit tree in the switch queue is the hierarchy of the modes in the

program. When a trigger in the switch queue is enabled, the corresponding mode

switch is checked; if the mode switch is false then the mode is reinvoked, otherwise

all triggers (in the switch queue) related to the modes in the refinement program of

the mode are removed and the target mode is invoked.

Consider the situation in Figure 8.2 when modes m, m11 and m21 are executing

and the switch condition for m11 is true. Fig. 8.2.a shows the associated triggers in

the switch queue; instead of the queue, the implicit tree structure has been shown.

First, the triggers in the switch queue from refinement program of m11 are removed

(Fig. 8.2.b). A new trigger for the target mode m12 is generated (Fig. 8.2.c) and the

parent information is transferred to the new trigger(Fig. 8.2.d). Finally, the trigger

for mode m11 is removed. The trigger for mode m21 is removed without even checking

whether the switch condition is true or false.

118

Chapter 8. Compiler

m

m11

m21

(a)

m

m11

(b)

m

m11

(c)

m12

m

m11

(d)

m12

m

m12

(e)

mP

P1

P2

m11 m12
mdl1

m21 m22
mdl2

HTL program

Figure 8.2: Handling switch checks in HE code

Figure 8.3.a shows a similar situation; modes m, m11 and m21 are executing in

parallel but mode switch condition of m11 is false. According to HTL semantics

mode m11 should be reinvoked. First a new trigger is created for mode m11 in switch

queue (Figure 8.3.b) with no parent and children information. Next, the parent and

children information of the old trigger for m11 is redirected to the new trigger for m11

(Figure 8.3.c). Last, the old trigger for m11 is removed from the switch queue. The

E machine then traverses the queue to check mode switch for m21.

m

m11

m21

(a) (b)

m

m11

(c)

m11

m

m11

(d)

m11

m21 m21

m

m11

m21

mP

P1

P2

m11 m12
mdl1

m21 m22
mdl2

HTL program

Figure 8.3: Handling switch checks in HE code

119

Chapter 8. Compiler

8.4 HE Code Generator for HTL

HE code generator generates code for a distributed implementation. The code gen-

eration is done by compiling the whole program for each host. Each host runs its

own E machine and maintains its own copies of all task ports and communicators

of an HTL program, even if some task ports and communicators are never accessed

by tasks on that host. The compiler generates E code for each host separately. The

idea is to compile repeatedly the whole HTL program for each host and to generate

E code that implements the whole program on each host, except that the tasks of

the modules not mapped to a host are not invoked on that host. Thus the generated

E code is identical across all hosts except for the instructions that invoke tasks. Each

task invocation involves broadcasting the task’s output port values and storing the

values in the respective task output ports on all receiving hosts. As a result, each

host maintains a complete image of all port and communicator values of an HTL

program. All host-to-host transmission is done by the tasks, not by the E code.

The compiler generates code for program, module and mode by invoking Alg. 3,

Alg. 4 and Alg. 5 respectively. The compiler uses symbolic addresses to refer to

different parts of the code (Table 8.5). For each program (resp. module), symbolic

addresses are maintained for the HE code block that initializes and executes the pro-

gram (resp. module). For each mode, symbolic addresses are maintained for HE code

blocks that starts the mode, HE code block that is executed when another mode

switches to the above mode and HE code block that sets up the execution order

of communicator writes, switch checks, communicator reads and task releases for a

mode. HTL semantics constraints that at any instance, communicator writes, mode

switch checks, communicator reads and task releases should be done in the above

order to maintain consistency of communicator values across all modules. Each mode

m is divided in uniform units corresponding to the smallest period between two time

120

Chapter 8. Compiler

symbolic name address of the HE Code block that ...

program init address[P] initializes program P

program start address[P] executes program P

module init address[mdl] initializes module mdl

module start address[mdl] executes module mdl

mode start address[m] starts mode m

target mode address[m] is executed when another mode switches to mode m

mode body address[m]
sets up the execution order of communicator writes,
switch checks and communicator reads (and task re-
leases) for mode m

mode unit write[m, u] writes communicators for unit u of mode m

mode unit switch[m, u] checks switch conditions for unit u of mode m

mode unit read [m, u]
reads communicators and release tasks
for unit u of mode m

Table 8.5: Symbolic addresses and their significance

events (i.e., write of a communicator or read of a communicator) in m. Given a mode

m, the duration of an unit γ[m] is the gcd of all access periods of all communicators

accessed (i.e. read or written) in m and the total number of units is π[m]/γ[m], where

π[m] is the period of m. For each unit u of every mode m the compiler generates sepa-

rate code blocks for updating communicators, checking switches (and related actions)

and reading communicators (and releasing tasks); symbolic addresses are maintained

for each of the above code blocks. Instructions may forward reference to any of the

above symbolic addresses and therefore need fix up during compilation.

Alg. 3 generates code for a program P on a host h in two steps. The first step

generates code block (at address program init address [P]) that initializes all commu-

nicators declared in P by calling respective initialization drivers (init(·) denotes the

initialization driver for a communicator or a port) and then calls initialization sub-

121

Chapter 8. Compiler

routines for each of the modules. The second step generates code block (at address

program start address [P]) that calls the start subroutine for each module mdl in P.

Algorithm 3 GenerateHECodeForProgramOnHost(P, h)

set program init address [P] to PC and fix up
// initialize communicators
∀c ∈ cnames[P]:emit(call(init(c)))
// initialize all the modules in P

∀mdl ∈ mdlnames[P]:
emit(jumpSubroutine(module init address [mdl]))

// return from initialization subroutine of P
emit(return)
set program start address [P] to PC and fix up
// start all the modules in P

∀mdl ∈ mdlnames[P]:
emit(jumpSubroutine(module start address [mdl]))

// return from start subroutine of P
emit(return)

Alg. 4 generates code for a module mdl on host h in two steps. The first generates

code block (at address module init address [mdl] that initializes all task ports (denoted

by tpset(mdl)) of the tasks in mdl by calling respective initialization drivers. The

second step generate code block (at address module start address [mdl]) that calls the

execution code for the start mode, start[mdl], for the module mdl.

Alg. 5 uses the following auxiliary operators. The set readDrivers(m, u) contains

the drivers that load the tasks in mode m with values of the communicators that are

read by these tasks at unit u. The set writeDrivers(m, u) contains the drivers that

load the communicators with the output of the tasks in mode m that write to these

communicators at unit u. The set portDrivers(t) contains the drivers that load

task input ports of task t with the values of the ports on which t depends. The set

complete(t) contains the events that signal the completion of the tasks on which task

t depends, and that signal the read time of the task t. The set releasedTasks(m, u)

122

Chapter 8. Compiler

Algorithm 4 GenerateHECodeForModuleOnHost(P, h)

set module init address [mdl] to PC and fix up
// initialize task ports
∀p ∈ tpset(mdl):emit(call(init(p)))
// return from initialization subroutine of mdl
emit(return)
set module start address [mdl] to PC and fix up
//start the start mode of mdl
emit(jumpSubroutine(mode start address [start[mdl]]))
// return from start subroutine of mdl
emit(return)

contains the tasks in mode m, with no precedences, that are released at unit u. The

set precedenceTasks(m) contains the tasks in mode m that depend on other tasks.

Alg. 5 first emits code (at address mode start address [m]) for checking all the

mode switches (lines 1 - 3) in a mode m, so that they are tested first time m is in-

voked. Next, code is generated (at address target mode address [m]) to handle the case

when no switch is enabled: a call to code at mode body address [m] (Alg. 8), followed

by a call to the refinement program (Alg. 6). This sets the execution of a mode

before the execution of the refinement program. The code generation then calls pro-

cedures GneerateHECodeForWriteBlock, GneerateHECodeForWriteBlock ans Gneer-

ateHECodeForWriteBlock to generate code for writing communicators, checking mode

switches and reading communicators (and releasing tasks) respectively for the each

unit of the mode. Lines (15 - 19) emit code to jump from one unit to the next; the

codes add triggers to the write and the read queue only as switches are not possible

in the middle of HTL modes. In HTL modes, switches are checked only at period

boundaries.

Alg. 6 generates code if there is a refined program of the mode. Code emission

checks whether a refinement program exists and subsequently updates the hierarchy

information if there is one. Before the code generation for refinement program (line

123

Chapter 8. Compiler

Algorithm 5 GenerateHECodeForModeOnHost(m, h)

0 set mode start address [m] to PC and fix up
1 // check mode switches
2 ∀(cnd, m′) ∈ switches(m):
3 emit(jumpIf (cnd, target mode address [m′]))
4 set target mode address [m] to PC and fix up
5 emit(jumpSubroutine(mode body address [m]))
6 invoke GenerateHECodeIfRefined(m, h)
7 // return from start subroutine of m
8 OR wait for other triggers to become enabled
9 emit(return)
10 u := 0
11 while u < π[m]/γ[m] do
12 invoke GenerateHECodeForWriteBlock(m, h, u)
13 invoke GenerateHECodeForSwitchBlock(m, h, u)
14 invoke GenerateHECodeForReadBlock(m, h, u)
15 if(u < π[m]/γ[m]− 1)
16 // jump to the next unit of mode m

17 emit(writeFuture(γ[m],mode unit write[m, u + 1]))
18 emit(readFuture(γ[m],mode unit read [m, u + 1]))
19 end if
20 // wait for other triggers to become enabled
21 // OR return from body subroutine of m
22 emit(return)
23 u := u + 1
24 end while

7), the hierarchy is updated (lines 2 - 6) as refinement adds one level of hierarchy;

once the code generation of the refinement program completes the level is restored

(lines 8 - 11). The hierarchy is updated through register R0 . The parent of R0

is pushed onto the stack (lines 3 - 4); the parent of the trigger pointed by R0 is

changed to the trigger name in R2 (which contains a pointer to the last trigger added

to the switch queue) and children list is reset (code for refinement program has yet

to be generated and thus there is no children information). In effect, for the code

generation of the refinement program, parent of R0 points to the parent trigger of

124

Chapter 8. Compiler

all the triggers to be added in the switch queue for that program. To restore the

hierarchy level, the parent of R0 is updated by popping the parent stack and is used

by modes of parallel modules.

Algorithm 6 GenerateHECodeIfRefined(m, h)

1 if (program P refines m)
2 //increment the level
3 emit(getParent(R0 ,R3))
4 emit(pushRegister(R3))
5 emit(setParent(R0 ,R2))
6 emit(cleanChildren(R0))
7 emit(jumpSubroutine(program start address [program[m]]))
8 //decrement the level
9 emit(popRegister(R3))
10 emit(setParent(R0 ,R3))
11 emit(cleanChildren(R0))
12 end if

The code at mode unit write[m, u] (Alg. 7) calls the driver for each communicator

being written at the unit u of mode m.

Algorithm 7 GenerateHECodeForWriteBlock(m, h, u)

1 set mode unit write[m, u] to PC and fix up
2 // write communicators from task output ports
3 ∀d ∈ writeDrivers(m, u):emit(call(d))
4 // wait for other triggers to become enabled
5 emit(return)

Alg. 8 generates code at address mode unit switch[m, u] and mode body address [m].

The code at mode unit switch[m, u] (lines 2 - 12) checks the mode switches. In

HTL, modes can switch only at period boundaries; so the switches are checked

only for unit zero (line 1). If no mode switch occurs (line 6) the code jumps to

mode body address [m]. If a mode switch occurs, then all children of the last enabled

trigger in the switch queue (the name is stored in register R0) are removed (lines 7

125

Chapter 8. Compiler

- 10). The removal of children is recursive, thus all children of subsequent children

are also removed. Once the children are removed, the code jumps (lines 11 - 12) to

the target address of the destination mode target mode address [m′], where m′ is the

destination mode.

Algorithm 8 GenerateHECodeForSwitchBlock(m, h, u)

1 if (u = 0)
2 set mode unit switch[m, 0] to PC and fix up
3 // check mode switches
4 ∀(cnd, m′) ∈ switches(m):
5 emit(jumpIf (cnd,PC + 2))
6 emit(jumpAbsolute(PC + 4))
7 // cancel all triggers related to the refining
8 // program of m, and its subprograms
9 emit(deleteChildren(R0))
10 emit(cleanChildren(R0))
11 // switch to mode m’
12 emit(jumpAbsolute(target mode address [m′]))
13 set mode body address [m] to PC and fix up
14 emit(writeFuture(π[m],mode unit write[m, 0]))
15 emit(switchFuture(π[m],mode unit switch[m, 0]))
16 emit(getParent(R0 ,R3))
17 emit(replaceChild(R3 ,R0 ,R1))
18 emit(setParentOfChildren(R0 ,R1))
19 emit(setParent(R1 ,R3))
20 emit(copyChildren(R1 ,R0))
21 emit(copyRegister(R1 ,R2))
22 emit(readFuture(0,mode unit read [m, 0]))
23 emit(return)
24 end if

Code at mode body address [m] (lines 13 - 22) sequences the execution order of

communicator writes, switch checks and communication reads (and subsequent task

release), for unit zero of mode m. This is done by emitting a future instruction (line

14) for mode unit write[m, 0] (trigger added to writeQ), a future instruction (line 15)

for mode unit switch[m, 0] (trigger added to switchQ) and a future instruction (line

126

Chapter 8. Compiler

22) for mode unit read [m, 0] (trigger added to readQ). Whenever a trigger is created

and added to a queue, the relevant trigger pointer is stored in register R1 . Once a

trigger is added in the switch queue, the hierarchy information has to be updated

(lines 16 - 21). There are two scenarios: one, the code is invoked by handling an

enabled trigger in the switch queue i.e. a mode switch has occurred or a mode is being

reinvoked (lines 1 - 12) and two, the code is invoked when a mode is executed for

the first time (Alg. 5,line 5). In both the scenarios register R0 records the relevant

hierarchy information. In the first scenario it stores the name of the last trigger in

the switch queue that was handled (by semantics, if any trigger is handled the name

is stored in R0). In the second scenario, it stores the name of the last trigger in

the switch queue that was created. Code in lines 16 - 20 redirects the parent and

children of R0 to R1 . A copy of R1 needs to be stored in R2 (line 21), as a new

trigger for the read queue may remove the information of the last trigger added to

the switch queue from R1 .

The code at mode unit read [m, u] (Alg. 9) reads all communicators (by calling

drivers that copy from communicators into task input ports) that are to be read at

unit u, and releases all tasks (with no precedences), that should be released at unit

u. For unit zero (line 7), code is generated to release precedence tasks (lines 8 - 18).

For each task t with precedences, a trigger is added to readQ : the trigger is activated

at the completion of preceding tasks of t; and the subsequent code writes input ports

of t and releases t.

The code generation algorithm for a program/ module/ mode accesses other pro-

grams, modules or modes through symbolic addresses and does not influence the code

generation of other programs, modules and modes. Code generation algorithm for a

program (similarly for modules and modes) access other programs, modules or modes

through symbolic addresses and does not influence the code generation of other pro-

grams, modules and modes. For program P, Algorithm 1 emits code which access

127

Chapter 8. Compiler

Algorithm 9 GenerateHECodeForReadBlock(m, h, u)

1 set mode unit read [m, u] to PC and fix up
2 if (mode m is contained in a module on host h)
3 // read communicators into task input ports
4 ∀d ∈ readDrivers(m, u):emit(call(d))
5 // release tasks with no precedences
6 ∀t ∈ releasedTasks(m, u):emit(release(t))
7 if (u = 0)
8 // release tasks with precedences
9 ∀t ∈ precedenceTasks(m):
10 // wait for tasks on which t depends to complete
11 emit(readFuture(complete(t),PC + 2))
12 emit(jumpAbsolute(PC + 3 + |portDrivers(t)|))
13 // read ports of tasks on which t depends,
14 // then release t

15 ∀d ∈ portDrivers(t):emit(call(d))
16 emit(release(t))
17 // wait for other triggers to become enabled
18 emit(return)
19 end if
20 end if

symbolic addresses of modules of P but does not influence the code generation of the

modules. For module mdl, Algorithm 2 emits code which access symbolic address of

the start mode of mdl but does not influence the code generation of the mode. For

a mode m, Algorithm 3 emits code to access the refinement program of m through

symbolic address but the algorithm does not influence the code generation of the

refinement program. This makes it possible to generate code for programs, modules

and modes separately and in any order. However one has to make sure that the

symbolic addresses are fixed up before execution and that code has been generated

for all programs, modules and modes.

128

Chapter 8. Compiler

Accounting for Replication

To account for replication, the code generation technique is modified as follows. The

output of each (replication of a) task is sent to all other hosts. Each host then

performs a voting routine on the received data to determine, if possible, the correct

value, which is then stored in the local communicators.

8.5 Design Flow

Fig. 8.4 depicts the flow from the HTL program to implementation on target archi-

tecture. Given an HTL implementation, the reliability and schedulability analyses

is performed. The compiler presented earlier can be extended for performing the

analyses. The root modules of program are annotated with host information and the

tasks are annotated with respective WCET/WCTT. The reliability of the hosts and

execution metrics of the tasks can be supplied by an external tool. First, the composi-

tion and refinement constraints are checked to ensure well-formedness of the program.

Second, the compiler checks whether the HTL implementation is schedulability- and

reliability-preserving or not. If the above checks are done, then the reliability and

schedulability analyses are performed for abstract implementation. If the abstract

implementation is reliable, the code generator and schedule generator are used to

generate HE code and schedule for the execution of the implementation.

In the current implementation [HTLpage,], the compiler performs an EDF-

scheduling test on abstract implementation. This result also applies to distributed

HTL programs as long as the WCTT for broadcasting the output port values of each

task is added to the WCET of the task, and the WCTT includes the time it takes to

resolve any collisions even when all hosts try to broadcast at the same time. Transmis-

sion and scheduling techniques that may utilize the network more efficiently [Tindel

129

Chapter 8. Compiler

PLANT

Schedule Generator

HTL Program Reliability
of hosts/ sensors

HE Code Generator

Compiler

Controller

host 2

E Machine

HE Code Schedule

host 1

E Machine

Inter-host communication

Well-formed ?

Scheduler Scheduler

Task Code Task Code

Schedulable ? Reliable ?

WCET-WCTT
of tasks

sensors sensors

actuators actuators

HE CodeSchedule

Figure 8.4: Structure of compiler and runtime system

and Clark, 1994] can also be used but have not been implemented. Memory consump-

tion as well as transmission load may be minimized if necessary using, e.g., data-flow

analysis, which is, however, future work. In our experiments, the E machine has been

implemented in C running on Linux. Release tasks are dispatched for execution by an

external EDF scheduler. Tasks have been implemented in C. The reliability analysis

has not been integrated with the current compiler.

130

Chapter 9

Control Applications

The chapter presents example of three real-time controllers in HTL. The first one is

a controller for maintaining level of water in a three-tank system. The second case

study is a steer-by-wire controller model in HTL. The third one is a controller for an

unmanned helicopter.

9.1 Three-tank-system Controller

System Description

Fig. 9.1 shows an overview of a 3-tank system (3TS). There are three tanks tank1,

tank2, and tank2 each with an evacuation tap tap1, tap2 and tap3 respectively. The

tanks tank1 and tank3 are connected via tap tap13, and tanks tank2 and tank3 are

connected via tap tap23. The evacuation taps and interconnection taps are used to

simulate perturbations. There are two pumps, pump1 and pump2 for feeding water

in the tanks tank1 and tank2 respectively. The goal of the controller is to main-

tain the level of the water in the tanks tank1 and tank2 under perturbations. The

controller is designed for two scenarios depending on whether there is perturbation

131

Chapter 9. Control Applications

or not. If there is no perturbation a P (proportional) controller is used to control

the water level. Under perturbations, a PI (Proportional Integral) controller is used.

Refer [Iercan, 2005] for complete description of the mathematical modeling of the con-

trollers. The modeling generates four possible scenarios: (1) both pumps controlled

by P controllers, (2) pump1 and pump2 controlled by P and PI controllers respectively,

(3) pump1 and pump2 controlled by PI and P controllers respectively, and (4) both

pumps controlled by PI controllers.

tap1 tap3 tap2

tap13 tap23

P1 P2

T1 T3 T2

h3

h2

h1

Figure 9.1: Overview of 3 tank system

HTL Program

The root program (Fig. 9.2) consists of three modules: pumpOne, pumpTwo and interface.

Module pumpOne has one mode modeOne which is refined by program programOne.

Program programOne has a single module with two modes, oneP and onePI, switching

132

Chapter 9. Control Applications

between themselves; the switching is decided by perturbations in tank tank1. The

mode onePI is refined by a program with two switching modes oneSlow and oneFast.

Module pumpTwo has one mode modeTwo which is refined by program programTwo.

Program programTwo has a single module with two modes twoP and twoPI switch-

ing between themselves; the switching is decided by perturbation in tank tank2. The

mode twoPI is refined by a program with two switching modes twoSlow and twoFast.

The module interface has a single mode imode with no refinement. Periods of each

mode is 500 ms.

pumpOne interface pumpTwo

programOne programTwo

refOne refTwo

3TS_Controller

modeOne imode modeTwo

oneP onePI twoP twoPI

oneSlow oneFast twoSlow twoFast

Figure 9.2: HTL program for 3TS controller

There are eight communicators. The communicators s1 and s2 stores the sensor

readings for the tanks tank1 and tank2 respectively. The communicators l1 and

l2 denotes the level of water in the two tanks tank1 and tank2 respectively. The

133

Chapter 9. Control Applications

communicators r1 and r2 denotes the perturbation in the two tanks tank1 and tank2

respectively. The communicators u1 and u2 denotes the motor current for pumps

pump1 and pump2 respectively. The period of communicators s1, s2, r1 and r2 are

500 ms; the period of communicators l1, l2, u1 and u2 are 100 ms respectively.

The mode modeOne invokes control task t1 for pump pump1. The mode oneP

invokes the P control task t1P for pump pump1. The mode onePI invokes the PI

control task t1PI for pump pump1. The task t1 is parent to both t1P and t1PI. The

modes oneSlow and oneFast invoke slower and faster version of PI tasks respectively.

The modes oneSlow and oneFast invoke tasks t1PIs and t1PIf respectively. The

task t1PI is parent to tasks t1PIs and t1PIf. The tasks t1 and t1PI are abstract,

while tasks t1P, t1PIs and t1PIf are concrete.

The mode modeTwo invokes control task t2 for pump pump2. The mode twoP

invokes the P control task t2P for pump pump2. The mode twoPI invokes the PI

control task t2PI for pump pump2. The task t2 is parent to both t2P and t2PI.

The modes twoSlow and twoFast invoke slower (task t2PIs) and faster version (task

t2PIf) of PI task t2PI respectively. The modes twoSlow and twoFast invoke tasks

t2PIs and t2PIf respectively. The task t2PI is parent to both the tasks t2PIs and

t2PIf. The tasks t2 and t2PI are abstract, while tasks t2P, t2PIs and t2PIf are

concrete.

The mode imode invoked four task. The tasks read1 and read2 converts the

raw sensor values to compute level of water in the tanks. The tasks estimate1 and

estimate2 estimates the perturbation of in tanks tank1 and tank2 respectively. All

the tasks in mode imode are concrete.

134

Chapter 9. Control Applications

task t1

1000 200 400300 500

l1 l1 l1l1 l1 l1

reads l1 updates u1

u1 u1 u1u1 u1 u1

l2 l2 l2l2 l2 l2

reads l2 task t2 updates u2

u2 u2 u2u2 u2 u2

1000 200 400300 500

Figure 9.3: Timing behavior of the tasks t1 and t2

estimate1

read1

reads u1

0

l1 l1 l1 l1 l1 l1

l2 l2 l2 l2 l2 l2

r1 r1

r2 r2

updates r1

updates l1

100 200 400300 500

reads l1

estimate2reads u2 updates r2 reads l2

reads s1

read2 updates l2reads s2

s1 s1

s2 s2

Figure 9.4: Timing behavior of the tasks in mode imode

135

Chapter 9. Control Applications

Timing Behavior

Task t1 reads the fourth instance of l1 and updates the fifth instance of u1. The

timing behavior of t1P, t1P, t1PIs and t1PIf are identical to that of t1. In an

implementation, tasks t1 and t1PI will not execute; instead depending upon the

scenario t1P or t1PIs or t1PIf will execute. Task t2 reads the fourth instance of

l2 and updates the fifth instance of u2. The timing behavior of t2P, t2P, t2PIs and

t2PIf are identical to that of t2. In an implementation, tasks t2 and t2PI will not

execute; instead depending upon the scenario t1P or t2PIs or t2PIf will execute.

The task read1 reads the first instance of s1 and updates the fourth instance of

l1. The task read2 reads the first instance of s2 and updates the fourth instance of

l2. The task estimate1 reads the first instance of u1 and fourth instance of l1 and

updates the second instance of r1. The task estimate2 reads the first instance of u2

and fourth instance of l2 and updates the second instance of r2.

Reliability Analysis

Reliability analysis for three implementations of the 3TS controller is discussed.

Implementation 1

The architecture consists of three hosts h1, h2, and h3. There is no reliability data

for the experimental platform; however, for illustration purposes, all host and sensor

reliabilities are assumed to be 0.999. The implementation maps modules pumpOne,

pumpTwo and interface to hosts h1, h2 and h3 respectively. The tasks read1 and

read2 have input failure models 2; all other tasks have failure model 1. The LRCs for

communicators are as follows: µs1 = .999, µs2 = .999, µl1 = .99, µl2 = .99, µr1 = .99,

µr12 = .99, µu1 = .99 and µu2 = 0.99. The program graph is cycle free. Fig. 9.5 shows

the partial graph; the rest of the graph is symmetrical.

136

Chapter 9. Control Applications

r1,0 r1,1

s1,0 s1,1

u1,0 u1,1 u1,2 u1,3 u1,4 u1,5

l1,0 l1,1 l1,2 l1,3 l1,4 l1,5

t1

read1

estimate1

Figure 9.5: Program graph

As each module is mapped to one host, the reliabilities of the tasks (Table 9.1) is

same as the reliability of the respective hosts on which they execute.

implementations read1 read2 t1 t2 estimate1 estimate2
implementation 1 .999 .999 .999 .999 .999 .999
implementation 2 .999 .999 .999999 .999999 .999 .999
implementation 3 .999 .999 .999 .999 .999 .999

Table 9.1: Reliabilities of tasks for the implementations

The SRGs of the communicators are computed as follows. The SRGs λs1 and

λs2 are the same as the reliabilities of the sensors which update the communicators

s1 and s2 respectively; λs1 = 0.999 and λs1 = .999. From reliability analysis it

follows that λl1 = λread1 × λs1 = 0.998 and λu1 = λl1 × λt1 = 0.997. Similarly,

λl2 = λread2× λs2 = 0.998 and λu2 = λl2× λt2 = 0.997. The SRGs of communicators

r1 and r2 are as follows: λr1 = λread1×λu1×λl1 = .999× .997× .998 = .994; similarly

137

Chapter 9. Control Applications

λr2 = λread2 × λu2 × λl2 = .999× .997× .998 = .994. For all communicators, SRG is

not less than the respective LRCs. Hence the implementation is reliable.

In the example, there are mode switches in the refinement. However the switches

are always to tasks with identical reliability constraints, and the reliability analysis

applies.

Implementation 2

The LRCs of communicators are µu1 and µu2 are updated as follows: µu1 = .9975 and

µu2 = .9975; LRCs for rest of the communicators remain unchanged. Given the new

LRCs the last implementation is not reliable: while SRGs of communicators s1, s2,

l1, l2, r1, r2 meets the respective LRCs, the SRGs of u1 and u2 are less than the

respective LRCs. Let the new implementation modified the module to host mapping

as follows: modules pumpOne and pumpTwo are mapped to both hosts h1 and h2.

According to the reliability analysis λt1 = 1− (1−rel(h1))(−rel(h2)) = 1− (1−

.999)(1 − .999) = .999999. Similarly λt2 = .999999. Reliabilities of the other tasks

remains the same as in the previous case.

Under the new scenarios the reliabilities of tasks t1 and t2 is updated. The SRGs

of s1, s2, l1 and l2 remains unchanged, i.e., λs1 = 0.999, λs1 = .999, λl1 = .998

and λl2 = .998. However change in reliabilities of t1 and t2 changes the SRGs of

other communicators. The new SRGs of the communicators u1 and u2 are: λu1 =

λl1 × λt1 = 0.997999 and λu2 = λl2 × λt2 = 0.997999. The new SRGs of the

communicators r1 and r2 are: λr1 = λread1×λu1×λl1 = .999× .997999× .998 = .995;

similarly λr2 = λread2 × λu2 × λl2 = .999 × .997999 × .998 = .995. The SRGs of the

communicators are again greater than the respective LRCs and the implementation

is reliable.

138

Chapter 9. Control Applications

Implementation 3

The LRCs of communicators µu1 and µu2 are as follows: µu1 = .9975 and µu2 =

.9975. The implementation maps the three modules as in the first implementation

i.e., pumpOne, pumpTwo and interface are mapped to hosts h1, h2 and h3 respectively.

However the tasks read1 and read2 reads from two sensors each. Thus task read1

reads from two input communicators s11 and s12, each being updated by sensors

with reliabilities .999 each. Similarly task read2 reads from two input communicators

s21 and s22, each being updated by sensors with reliabilities .999 each. The LRCs

of communicators r1, r2, l1 and l2 remains unchanged. The LRCs of the new

communicators are as follows: µs11 = .999, µs12 = .999, µs21 = .999 and µs22 = .999.

Each of the task is mapped to a single host and the reliabilities of the tasks

remain identical to that of the first implementation (Table 9.1). The SRGs of the

input communicators are λs11 = .999, λs12 = .999, λs21 = .999 and λs22 = .999. The

SRGs of the communicators are l1 and l2 are updated as follows: λl1 = λread1× (1−

(1−λ(s11))(1−λ(s12))) = 0.998999 (fmodelread1 = 2); similarly λl2 = λread2× (1−

(1−λ(s21))(1−λ(s22))) = 0.998999 (fmodelread2 = 2). This changes the reliabilities

of communicators u1 and u1: λu1 = λl1 × λt1 = 0.998 and λu2 = λl2 × λt2 = 0.998.

The new SRGs of the communicators r1 and r2 are: λr1 = λread1×λu1×λl1 = .999×

.998×.998999 = .996; similarly λr2 = λread2×λu2×λl2 = .999×.998×.998999 = .996.

The SRGs of the communicators are again greater than the respective LRCs and the

implementation is reliable.

Implementation of 3TS controller

The 3TS controller has been implemented (Fig. 9.6) on Unix machine. The function-

ality code is written in C. The scheduler in the Unix machine is used for scheduling

the system. The 3TS plant communicates with the Unix machine via an DAC98 card

139

Chapter 9. Control Applications

Windows 98

Unix Machine 1

TCP/IP

P1 Controller
(E Code)

E Machine
Task Code

(C)

Height of water in tanks

DAC 98Command to motor P1 Command to motor P2

Schedule

Unix Machine 3

P2 Controller
(E Code)

E Machine Scheduler

Schedule

Scheduler
Task Code

(C)

Schedule

Unix Machine 3

Interface
Controller
(E Code)

E Machine Scheduler
Task Code

(C)

UDP UDP

Figure 9.6: Implementation

which seats on an Windows 98 PC. A TCP server has been implemented for com-

munication between the Windows and Unix machines. The real version of the 3TS

controller is extended for cases with multiple task replications. To validate the fault

tolerance assumptions used in the reliability analysis, one of the two hosts from the

network is unplugged and verified that there is no change in the control performance

of the system.

Figure 9.7: 3TS setup Figure 9.8: 3TS system while running

140

Chapter 9. Control Applications

9.2 Steer-by-Wire Controller

System Description

A steer-by-wire(SBW) control system replaces the mechanical linkage between steer-

ing wheel and car wheels by a set of steering wheel angle sensors, electric motors that

control the wheel angle, and a controller that computes the required wheel motor

actuation. To maintain a realistic road condition feel for the driver, a force feedback

actuator is placed on the steering wheel. The specific architecture that has been used

here is a simplified steer-by-wire model used by General Motors for their prototype

hydrogen fuel-cell car FX-3. The example is an imitation of the concerns and require-

ments and does not represent a real set of control algorithms for an actual product

or prototype.

Driver Feedback

Steer Feedback
Warning

Vehicle Interface
Wheel Angle
Motor Current
Motor Torque

Speed
Rolling Friction

Power
Pitch/ Yaw/ Roll

Driver Interface
Desired Steer

Desired Torque
Vehicle Actuation

Wheel Motor Actuators

Power Unit Coordinator

Motor Actuator Controller

Steer Feedback

Fault Handling

Supervisory Control

Sensors Functionalities Actuators

Figure 9.9: Data flow and functional blocks

The sensors (Fig. 9.9) read desired steer/ torque from driver and current vehicle

state (wheel angle, motor current, speed, friction, power, pitch, yaw etc). The system

functionality is divided into five parts: computation of wheel motor actuation and

steer feedback, supervisory control, fault handling and power coordinator. Supervi-

141

Chapter 9. Control Applications

sory control co-ordinates between steering, braking and suspension; for simplicity the

braking and suspension functionality is not modeled and assumed that the interface

is being provided as a set of sensor values. The supervisor typically runs in triple-

redundant mode (three copies are executed in three different processors). The fault

handling system detects, isolates and mitigates fault and warns the driver in case of

fault. Power coordinator handles the coordination of motor current computed by the

controller with rest of the power grid.

ECU4ECU3

ECU2ECU1MCU
FL

MCU
FR

MCU
FL

MCU
FR

sensors actuators

steering feedback

Figure 9.10: Implementation of SBW system

An architecture for SBW (Fig. 9.10) consists of eight hosts (or processors): four

motor control units (MCUs) and four electronic control units (ECUs). The MCUs

are placed near the wheels and detect sensor values related to wheels and send signals

to motor actuator. The ECUs implement rest of the functionalities. All hosts are

connected through a communication link that allows broadcast from any host.

142

Chapter 9. Control Applications

HTL Program

The root program consists of thirteen modules: one module for each functional unit of

the SBW system. The modules read-rearright, read-rearleft, read-frontright

and read-frontleft implement tasks to read sensors for rear right, rear left, front

right and front left wheels. The modules write-rearright, write-rearleft, write-

frontright and write-frontleft implement tasks to write motors of rear right, rear

left, front right and front left wheels. The modules control, feedback, diagnosis,

power and supervisor implements functionalities for motor current computation,

driver feedback, fault diagnosis, power management and supervisory control.

read-rearright

power

read-rearleft

read-frontright

read-frontleft

diagnosis

supervisor
control

feedback

write-rearright

write-rearleft

write-frontright

write-frontleft

Figure 9.11: Modules for the SBW implementation

Fig. 9.12 shows the modes of the root modules. The modules for reading wheel

sensors and writing motor actuators has modes to differentiate the tasks under varia-

tion of speeds. Each of the above modules consists of two modes: the mode with suffix

-lo (e.g., mode rrr-lo) invokes reading/ writing tasks at a speed below a critical

speed; the mode with suffix -ho (e.g., mode rrr-hi) invokes reading/ writing tasks

at a speed above a critical speed; The period of the modes active below a critical

speed is 6000 microsecond (µs) and the period of the modes active above a critical

speed is 4000 µs . The module control has three modes start (invokes tasks at

the start, period 6000 µs), lo (invokes tasks below a critical speed, period 6000 µs)

and �hi (invokes tasks above a critical speed, period 4000 µs). There are two modes

143

Chapter 9. Control Applications

in module feedback: mode fb-lo (invokes feedback computation every 6000 µs)

and mode fb-hi (invokes feedback computation every 4000 µs). The module power

has two modes: mode p-lo (invokes power management every 3000 µs) and mode

fb-hi (invokes power management every 4000 µs). The supervisor functions differ-

ently when the car is running under emergency conditions than when it is running

under standard conditions; i.e., there are two modes standard (period 5000 µs) and

emergency (period 3000 µs). The fault diagnosis uses a different set of computations

at normal driving conditions than when a fault is detected; the changes is reflected by

switches between modes normal (period 10000 µs) and degraded (period 5000 µs).

rrr-hi

read-rearright

control

hilostart

 feedback

diagnosis

degradednormal

supervisor

emergencystandard

power

rrr-lo p-hip-lofb-hifb-lo

rrl-hi

read-rearleft

rrl-lo

rfr-hi

read-frontright

rfr-lo

rfl-hi

read-frontleft

rfl-lo

wrr-hi

write-rearright

wrr-lo

wrl-hi

write-rearleft

wrl-lo

wfr-hi

write-frontright

wfr-lo

wfl-hi

write-frontleft

wfl-lo

Figure 9.12: Modes for the modules

Refinements help in differentiating scenario-specific functionalities (Fig. 9.13). For

example, at high speeds control law for computing the actuation signal differs on the

basis of whether the car is driven manually or under cruise, denoted by a program

refining mode hi with one module and two modes: manual and cruise. The refine-

ment of mode lo differentiates between idle state (mode idle) and the car under

144

Chapter 9. Control Applications

motion (mode motion). The mode motion is further differentiated in computation

for the car moving at very slowly (mode crawl) or at average speed (mode average).

The mode fb-hi differentiates tasks under manual ride (mode fb-manual) or cruise

control (mode fb-cruise). The mode emergency is refined a program with two

modes to denoted emergency conditions due to over-steering (mode oversteer) or

under-steering (mode understeer). The refinement for mode degraded differentiates

between two different faults (e.g. communication fault and processor fault).

Refinement helps in concise specification. For example, if the module control is

flattened (i.e. no refinement), then the resultant module has 6 modes and 17 mode

switches; this is not only inefficient but error prone. Refinement also helps in efficient

ordering. For example, refinement of mode degraded differentiates between two fault

scenarios: fault type 1 preceding fault type 2, and fault type 2 preceding fault type 1

(assuming that the two fault types cannot occur simultaneously).

control

hilostart

feedback diagnosis

degradednormal

supervisor

emergencystandard

fb-cruisefb-manual

averagecrawl

oversteer understeerfailure1 failure2

type21notype1

fb-hifb-lo

cruisemanualmotionidle

type12notype2

Figure 9.13: Refinement programs in the SBW description

A detailed description of the inter task communication and timing behavior is not

discussed here. The model reflects the functionality described in [Pinello, 2004] and

the corresponding HTL description is available at [HTLpage,].

145

Chapter 9. Control Applications

Implementation

The prototype controller is implemented on eight AMD Duron 1.4Ghz machines with

256MB RAM connected by a 100Mbps Ethernet network. The tasks are written

in C but do not actually implement any functionality, only bounded empty loops.

The sensing and actuating tasks for each wheel is executed on a separate host. The

modules control, feedback, diagnosis and power are distributed over the other

eight hosts. The module super shares the same host with control if a single copy

is used. If the supervisor needs to be run in triple-redundant mode, then a copy

of the module shares hosts with control, feedback and diagnosis modules. The

implementation simulates the controller in real time but at a frequency of 2Hz, which

is 1000 times slower than the actual system, and therefore only demonstrates the

correctness of the code generated for the HTL program of the controller.

Reliability Analysis

rearrightrearleftfrontrightfrontleft supervisorcontrol feedback

modefl modefr moderl moderr modec modef modes

Figure 9.14: SBW controller

The reliability analysis for the SBW controller is shown for a simpler version.

The root program (Fig. 9.14) consists of seven modules: rearright, rearleft,

frontright, frontleft, control, feedback and supervisor each with one mode

moderr, moderl, modefr, modefl, modec, modef and modes respectively. All modes

have period 5000 µs . The tasks and timing of the modes are shown in Fig. 9.15. The

146

Chapter 9. Control Applications

prefixes s , a , c and t denotes input communicator, output communicator, non-

input non-output communicator and task respectively; the upward and downward

arrows denote reading and writing respectively. Appendix E shows an HTL program

for the controller where the sensors are replicated.

t_angle_RLs_angle_RL

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t_act_RLc_RL a_RL

t_angle_RRs_angle_RR t_act_RRc_RR a_RR

t_angle_FLs_angle_FL t_act_FLc_FL a_FL

t_angle_FRs_angle_FR t_act_FRc_FR a_FR

c_angle_RL

c_angle_RR

c_angle_FL

c_angle_FR

t_speeds_speed

t_ctrl

c_FR
c_FL
c_RR
c_RL
c_ctrl

c_speed

c_angle_FR
c_angle_FL
c_angle_RR
c_angle_RL

c_super
c_speed
c_steer

t_steer

t_feedback a_feedback

c_steer

c_steer

s_steer

t_super_sensing

t_supervisor a_ctrl
c_super

c_brake
c_suspension

s_brake
s_suspension

c_brake
c_suspension
c_ctrl
c_steer

modefr

modefl

moderr

moderl

modec

modef

modes

s_angle[_RR,_RL,_FR,_FL] wheel angle sensors
s_speed speed sensor
s_steer steer angle sensors
s_brake output of brake control (for supervising purpose)
s_suspension output of suspension control (for supervising purpose)

a_FR front right motor actuator
a_FL front left motor actuator
a_RR rear right motor actuator
a_RL rear left motor actuator
a_feedback steer feedback actuator
a_ctrl output of steering control (for supervising purpose)

Figure 9.15: Timing and communication in the SBW controller

The program graph for the above definition contains a communicator cycle. The

reason is as follows. Task t ctrl reads third instance of communicator c super

147

Chapter 9. Control Applications

(among others) and writes to tenth instance of communicator c ctrl (among others).

Task t supervisor reads third instance of communicator c ctrl (among others)

and writes to eleventh instance of communicator c super. Thus each task reads the

computation of the other which is the reason for the cycle; the tasks being LET

tasks they read the evaluation of the other invoked in the previous invocation period.

The analysis for the above can be done only if the tasks have input failure model

independent. In fact this is intuitive: the tasks are critical and should not fail even if

the inputs have failed. On the other hand the task t feedback may be modeled with

input failure type series. The task fails if the input fails as the feedback to the driver

is less critical than no result for motor current and supervisor evaluation. Thus SRG

of communicator a ctrl is the SRG of task t supervisor. Assuming all hosts have

reliability .99, the SRG of a ctrl is .99. This can be increased by replicating the task

t supervisor in multiple hosts. If the task is replicated on three hosts (i.e. triple

redundancy mode), then SRG of the task is 1 − (1 − .99)3 = .999999. On the other

hand λa feedback = λt feedback×λc steer. If sensor s steer has reliability .99, then SRG

of a feedback is .99 × .99 × .99 = .97 (assuming all hosts have reliability .99). If

the tasks are executed on one host but three sensor replicas are used, then the SRG

improves to .98 without replicating any task.

9.3 Helicopter Controller

System Description

The JAviator project [Javiator,] at University of Salzburg focuses on implementing

real-time controllers (using high-level programming abstractions) on unmanned aerial

vehicles (UAV). One of the UAVs they are testing is a JAviator which is an electric

quad-rotor helicopter shaped like a cross with four rotors, one at each end. One

148

Chapter 9. Control Applications

pair of opposite rotors spins clockwise, the other counter-clockwise. The JAviator

is controlled merely by adjusting the rotors’ speed without changing the angle of its

rotor blades. The rest of the section presents an overview of an HTL controller for

controlling the flight of a JAviator.

attitude_control communication_control

attitude communication

x_control

xctrl

HeliControl

takeoff hover

land

xstandby

xspeedup

xmove

y_Control

yctrl

ystandby

yspeedup

ymove

ground

Figure 9.16: Helicopter control program

HTL Program

The program consists of four modules attitude control, communication control,

x control and y control with modes attitude, communication, xctrl and yctrl

respectively. The mode attitude invokes tasks to read the pitch, roll, yaw and height

information from the JAviator and the user input; the tasks compute required motor

currents to achieve desired attitude. The mode xctrl and yctrl invoke tasks to

compute the roll and pitch reference values so that the helicopter moves in a horizontal

plane to the desired x and y position. The mode communication communicates the

values between the user (on the ground) and JAviator. The mode attitude is refined

by a program with one module and four modes: ground, takeoff, hover and land

149

Chapter 9. Control Applications

with ground being the start mode. The modes invoke tasks at various positions of

the JAviator: at ground, during takeoff, while it is hovering and when it has landed.

The mode xctrl is refined by a program with one module containing three modes:

xstandby, xspeedup and xmove with xstandby being the start mode. The mode

yctrl is refined by a program with one module containing three modes: ystandby,

yspeedup and xmove with ystandby being the start mode.

3

4

5

0 10 20 30 40 50 60 70 80 90 100

ycontrol

xcontrol

1

roll

xctrl

yctrl

altitude

communication

22

2 14

pitch

yaw

z

6

splitNavigationData
mergeThrusts

computeState

processGroundReport

1
3

4

5

1618

2

splitJAviatorData2

computeThrusts6

Figure 9.17: Helicopter control tasks

Timing Behavior

Fig. 9.17 shows the tasks in modes of root modules. The tasks splitNavigationData

and splitJAviatorData (in mode communication) read the user input (from ground)

and the JAviator respectively; the inputs are processed to separate pitch, roll, yaw

and height information. The values are used by the tasks roll, pitch, yaw and z (in

mode attitude) to compute motor currents based on the values of roll, pitch, yaw and

150

Chapter 9. Control Applications

height respectively. Once the motor currents are computed, the task computeThrusts

(in mode attitude) evaluates the motor current for each motor and passes the in-

formation to task mergeThrusts (in mode communication) which communicates the

values to the helicopter. The task computeState updates the state of the JAviator,

and the task processGroundReport reports the new state to the user. The tasks

xcontrol and ycontrol compute the new roll and pitch reference values in order to

reach desired position (x,y). The modes xctrl and yctrl have period 100 millisecond

while the other modes have period 20 millisecond. The tasks in refinement programs

exactly matches the task pattern invoked in corresponding parent mode with changes

in the task functionality. Refer to Appendix F for the HTL program of the above

description.

151

Chapter 10

Related Work

The chapter compares and contrasts HTL to related work in real-time programming

languages and design platforms for embedded systems. Programming languages cover

timed languages (pioneered by Giotto), synchronous languages and languages for

specialized embedded applications. Design platforms include Metropolis, Ptolemy

and Simulink-RTW.

10.1 Giotto

HTL builds on the LET concept pioneered by the Giotto language [Henzinger et al.,

2003]. The basic block of Giotto is a mode which is a parallel composition of tasks.

A mode has a period and all tasks invoked in the mode have periods harmonic to the

mode period. The LET of a task is tied to the corresponding period of invocation.

A mode can switch to another mode. For Giotto programs (with certain constraints

on task invocations and mode switches), a sufficiency check for schedulability can be

performed in time linear to the size of the program.

HTL differs from Giotto by allowing flexibility of expressing LET, reduction of

delay associated with LET and conciseness of programs through the use of refine-

152

Chapter 10. Related Work

ment. HTL also extends the model to account for reliability and allows schedulability-

preserving refinement and reliability-preserving refinement. HTL is more expressive

than Giotto, i.e., any Giotto program can be expressed in HTL (Appendix C). The

difference between Giotto and HTL is discussed based on the following example.

Consider a real-time system with three sensors (s1, s2, s3), two actuators (a1, a2)

and four tasks (t1, t2, t4, t5). The intended execution is as follows. The system starts

with execution of tasks t1, t2 and t4. When certain predefined switching condition

is met, the task t4 is replaced by the task t5 (the reverse switch is also possible). The

dependencies between tasks, sensors, and actuators is as follows: task t1 reads from

sensor s1; task t2 reads the output of task t1 and sensor s2, and updates actuator

a1; task t4 (resp. t5) reads sensor s3 and updates actuator a2. Tasks t1 and t2 are

executed every 10 ms, while tasks t4 and t5 are executed with periodicity of 5 ms.

Figure 10.1 and Figure 10.2 shows (simplified) Giotto and HTL code.

mode mode1() period 10 {
actfreq 1 do a1(driver for a1);

actfreq 2 do a2(driver for a2);

exitfreq 2 do m2(switch driver);

taskfreq 1 do t1(driver for s1);

taskfreq 1 do t2(driver for s2);

taskfreq 2 do t4(driver for s3);

}

mode mode2() period 10 {
actfreq 1 do a1(driver for a1);

actfreq 2 do a2(driver for a2);

exitfreq 2 do m1(switch driver);

taskfreq 1 do t1(driver for s1);

taskfreq 1 do t2(driver for s2);

taskfreq 2 do t5(driver for s3);

}

Figure 10.1: Giotto modes

The difference between the Giotto and HTL programs:

• HTL implementation reduces latency than an equivalent Giotto implementation.

In Giotto code, t2 can read the output of t1 only at period boundaries (even if

t1 terminates earlier than the period), i.e., there is a delay of one period. On

the other hand, t2 reads the output of t1 in HTL as soon as t1 completes.

• HTL implementation reduces latency for sensor readings. In Giotto, the sensors

are read at the start of task periods; thus s1 is read once every 10 ms. In HTL,

153

Chapter 10. Related Work

program P {
communicator

s1, s2, s3, a1, a2

module M10 start m10 {
port p1

task t1 // concrete decl.

task t2 // concrete decl.

mode m10 period 10 {
invoke t1 input (s1,0) output (p1)

invoke t2 input (s2,0) output (a1,10)

}
}
module M5 start m5 {
task t3 // concrete decl.

mode m5 period 5 program refP {
invoke t3 input (s3,0) output (a2,5)

}
}
}

program refP {

module refM start refm1 {
task t4 // concrete decl.

task t5 // concrete decl.

mode refm1 period 5 {
invoke t4 input (s3,0) output (a2,5) parent t3;

switch (cond, refm2);

}

mode refm2 period 5 {
invoke t5 input (s3,0) output (a2,5) parent t3;

switch (cond, refm1);

}
}
}

Figure 10.2: HTL code fragments

the sensors can be read in the middle of task periods. For example, the read

instance of communicator s2, can be set to a number between 0 and 9 to indicate

which sensor instance should be read within the period. If need be, the task

can read multiple sensor instances within the period.

• HTL allows more structure than Giotto specification. The Giotto modes are

different by only one task; mode m2 invokes t5 in place of t4 (both of period 5).

In HTL, the tasks are partitioned for efficient handling; mode m10 invokes tasks

t1 and t2 and mode m5 invokes an abstract task t3 (to be used a placeholder for

both t4 and t5). Mode m5 is then refined by program refP which consists of two

modes switching between themselves; mode refm1 invokes t4 and mode refm2

invokes t5. This helps in code reduction and better structure with increase in

choices.

154

Chapter 10. Related Work

t1

t2

t1

t2

10

t4 t4 t4 t4

t1

t2

t1

t2

10

t5 t5 t5 t5

mode 1

Giotto implementation

t1
t2

10

m10

t3

refm1 refm2

mode 2
5

m5

t4

5

t5

5

HTL implementation

Figure 10.3: Schematic view of differences in Giotto and HTL implementations

10.2 Other Timed Languages

Timed languages have been pioneered by Giotto. Other LET-based languages include

Timing Definition Language (TDL), Timed Multitasking (TM), xGiotto and Timing

Specification Language (TSL).

Timing Definition Language

Timing Definition Language, TDL [Farcas et al., 2005], extends the Giotto structure

with the notion of modules. A TDL module is a Giotto-program like entity, and

consists of a set of modes switching between themselves with one being the start mode.

A TDL program consists of several modules running in parallel. New modules can be

added without modifying the LET of the existing tasks. The individual modules can

be distributed based on the distributed LET model of execution.

155

Chapter 10. Related Work

The TDL module is a similar concept to that of an HTL module. However,

like Giotto, TDL is restricted to one level of periodic tasks and the code generation

technique does not address hierarchical programs. HTL allows refinement of programs

and thus allowing a hierarchical program structure while preserving schedulability on

refinement. Instead of logical time units, LET is expressed through communicators,

in HTL.

xGiotto

xGiotto [Ghosal et al., 2004] is an event-triggered language based on the LET assump-

tion. While Giotto is purely time-triggered, xGiotto accommodates also asynchronous

events. xGiotto introduces a mechanism called event scoping through which events

are the main structuring principle of the language. Event scoping admits a variety of

ways for handling events within a hierarchical block structure: an out-of-scope event

may either be ignored, or it may be postponed until the event comes back into scope,

or it may cause the current scope to terminate as soon as all currently active tasks

are terminated.

The hierarchical structure in xGiotto is different from that of HTL. In xGiotto the

structure is centered around events, while in HTL the structure is centered around

tasks. Besides, xGiotto does not provide a scheduling preserving hierarchy which

increases the complexity of the schedulability check with hierarchy. HTL allows hi-

erarchy without necessarily increasing analyses overhead.

Timed Multitasking

Timed Multitasking, TM [Liu and Lee, 2003], uses an event-triggered approach by

expressing LET through deadlines. A task in TM is called an actor. A TM actor

communicates with other tasks only through the ports at its interface; no other task

156

Chapter 10. Related Work

can access the internal state of a TM actor. An actor is executed when there are input

events that satisfies certain trigger condition specified by the actor. Similar to the

Giotto model, program execution is deterministic by controlling the activation and

termination of tasks. Activation of a task depends on other tasks or on interrupts.

If the time of producing outputs of the tasks are controlled (and thereby controlling

release of other tasks), starting and stopping time of tasks can be controlled. TM can

express hierarchy by having actors defined in other actors.

HTL differs from TM in LET definition: in TM this is deadline based, while

in HTL the LET is implicit through communicator access. Though hierarchy can be

expressed in TM, HTL introduces the concept of schedulability preserving refinement.

Timing Specification Language

Timing Specification Language, TSL [Iercan and Ghosal, 2006], combines Giotto

with precedence constraints on tasks. Similar to Giotto modes, a TSL mode consists

of periodically activated sensors, actuators, tasks and mode switches. TSL, unlike

Giotto, allows non-zero offsets for sensors and actuators and LET of tasks is not

bound to period of invocation. Precedence between tasks can be expressed in TSL

modes.

A TSL mode is similar to a HTL mode. However HTL is more expressive than TSL

and can express any TSL program. Instead of explicit offsets, HTL uses communicator

based LET model of execution. While TSL is flat, HTL program express hierarchy

without necessarily increasing analyses overhead.

None of the above languages incorporates logical reliability model for real-time task

execution and does not provide reliability-preserving refinement rules.

157

Chapter 10. Related Work

10.3 Synchronous Languages

Esterel [Boussinot and de Simone, 1991], Lustre [Halbwachs et al., 1991], and Sig-

nal [Guernic et al., 1991] are based on the synchrony assumption that the execution

platform is sufficiently fast as to complete the execution before the arrival of the

next environment event occurs. Similar to timed languages, the resulting behavior of

synchronous languages is highly deterministic, and hence amenable to efficient formal

verification. HTL differs from synchronous languages in the program structure, which

supports the refinement of tasks into task groups with precedences. Synchronous

languages theoretically subsume HTL; however HTL offers an explicit hierarchical

program structure that supports refinement of tasks which preserves schedulability.

Synchronous languages do not explicitly allow expressing and analyzing system reli-

ability while HTL incorporates the logical reliability model proposed in this thesis.

Some specific differences between Esterel (resp. Lustre) and HTL are discussed below.

Esterel and HTL

Esterel [Boussinot and de Simone, 1991] uses the concept of signals; computations and

functions read from and write to signals. HTL uses the concept of communicators to

communicate between tasks and environment. In Esterel, a signal has both presence

and absence values while a communicator has a value at specified instances. Thus

Esterel has the concept of emit-ing and sustain-ing (a signal) while HTL does not have

any such concept. Esterel can specify release of tasks. While Esterel can stop the task

execution it cannot specify the termination point. In HTL, release and termination

can be specified through communicator access. In Esterel a scope may be terminated

preemptively (before its tasks have completed their execution). HTL ensures that

all tasks are time safe provided the implementation is schedulable. Tasks can be

terminated when a mode switches; however task invocation period being identical to

158

Chapter 10. Related Work

mode switches no unsafe termination may occur. In HTL, the termination is always

strong, i.e., when a mode terminates all modes in the refinement terminates. However

the refinement constraint ensures that this does not terminate tasks (in refinement

modes) preemptively and thus avoids time-safety violations. Programs in Esterel may

have causality cycle. In HTL, causality is not a problem as task computation takes

time and communicator can be updated only through tasks. Esterel uses the concept

of broadcasting so that all statement can check for a particular signal; HTL uses

the communicators which can be accessed by any tasks. Esterel uses the trap and

exit to define block of execution, HTL uses explicit modes to define scope and its

termination. Overall, Esterel is targeted towards event based systems as opposed to

HTL which targets time-triggered systems.

An extension of Esterel to include the computation time of tasks is Taxys [Bertin

et al., 2001]. Taxys, a tool chain, combines Esterel and model checker Kronos, and

generates an application specific scheduler that ensures timing commitment of tasks.

The tool chain generates code for specific RTOS for a given program; this implies

code needs to be generated for a program for each target RTOS. The code generation

technique for HTL is different from the above. In HTL the hierarchical structure is

explicitly accounted and code is generated for a virtual machine. The first ensures

compact code size and the second ensures better portability.

Lustre and HTL

Lustre nodes are similar to tasks in HTL. However HTL being a coordination lan-

guage allows the task functionality to be expressed in some foreign language; while

Lustre can express the node functionality. There can be hierarchy in nodes as one

node can call any other node (similar to a function call). The hierarchy concept is

different in HTL where tasks are replaced by task groups without necessarily changing

159

Chapter 10. Related Work

scheduling results. Signals (in Lustre) and communicators (in HTL) share a common

implication: periodic access to variables. Lustre imposes certain restrictions on ac-

cess to variables: if two variables do not share the same clock, then they cannot be

accessed. Two variables with two different clocks can only be accessed at a clock rate

which is multiple to the individual clocks. There is no such restrictions in HTL: a

task can access communicators with any periods. Lustre imposes acyclicity on pro-

gram variables: at any instance there must be a partial order on variables. In HTL,

acyclicity is imposed on task precedences.

There are differences in code generation scheme for Lustre and HTL. Simulink-to-

SCADE/Lustre-to-TTA [Caspi et al., 2003] is a tool chain that accepts discrete time

models written in Simulink, translates to Lustre models, verifies system properties

(e.g. schedulability) and generates code for a target time-triggered architecture. The

HTL compiler generates code for a virtual machine, the E Machine, which makes the

generated code portable across implementations. Simulink models are hierarchical

but Lustre is not which necessitates the code generator to flatten the structure; e.g.,

using naming conventions, such as suffixing by an index or using the name path along

the tree, to preserve the hierarchy information. The HTL code generation technique

explicitly accounts for the hierarchical structure.

10.4 Real Time Extensions

Ada95

Ada95 [Taft and Duff, 1997] is a language for programming real-time embedded appli-

cations and has been used in several large scale projects. However Ada does not allow

timing constraints to be specified explicitly; the temporal deadlines can be specified

using timeouts and delays. While timeouts can be used in implementing message

160

Chapter 10. Related Work

passing and synchronization in communication based system, they can only express

a fraction of the time constraints of significance [Burns and Wellings, 2001]. One

cannot specify deadlines for periodic or sporadic processes with timeouts and delays.

Real Time Java

Real-time Java (RT-Java) [Gosling et al., 2000] has many applications in soft and

mixed real-time systems; however it is not used in applications with hard real-time

constraints.

Real Time UML

Real Time UML [Douglass, 2004] extends the basic feature of UML for implementing

real-time applications but does not provide any support for modeling temporal con-

straints. It may be possible to add extensions to handle time issues like timeouts in

Real Time UML; however it is not sufficient for applications requiring hard real time

constraints.

Real Time Euclid

Real-Time Euclid [Kligerman and Stoyenko, 1986] is designed specifically to address

reliability and schedulability issues in time-constrained environments. The language

definition forces every construct in the language to be time- and space-bounded.

These restrictions make it easier to estimate the execution time of the program, and

they facilitate scheduling to meet all deadlines.

HTL is a coordination language for expressing interaction of real-time tasks. None

of the above languages supports a compositional communicator model and hierarchical

task refinement which preserves schedulability and reliability analyses.

161

Chapter 10. Related Work

10.5 Programming Languages for Specialized Domains

nesC

nesC [Gay et al., 2003] is a programming language targeted towards network based

applications for small, distributed sensor devices. nesC incorporates the paradigm of

component based event-driven programming for applications with limited resources

and ensures reliability (e.g. race condition detection). However it is catered toward

applications having soft real-time requirements. Also, the nesC programming model is

platform-independent but not value-deterministic. In particular, the same program

running on different platforms with the same input events may produce different

results. HTL is targeted towards hard real-time applications and program execution

is scheduled independent.

Erlang

Erlang [Armstrong et al., 1996] is a concurrent functional programming language for

real-time embedded systems, specifically for the telecommunication domain. Erlang,

like HTL, generates code for a virtual machine, and is therefore easily portable to dif-

ferent platforms. However Erlang is targeted towards soft real-time systems. Besides,

Erlang focuses on reliable communication and message passing than on scheduling

and determinism.

Flex

The programming language Flex [Kenny and Lin, 1991] extends C++ by introducing

explicit real-time constraints. The notion of Flex is based on the idea of the flexible

trade-offs between time, resources and precision. The two models of programming

used by Flex are performance polymorphism (using different version of the same action

162

Chapter 10. Related Work

to meet different performance criteria) and imprecise computation (releasing a less

precise result to meet real-time deadlines). HTL on the other hand either produces

precise results at desired time or else generates a run-time exception.

Timber

Timber [Carlsson et al., 2003] is a programming language for implementing event-

driven real-time systems. The language consists of three layers: inner functional

layer, middle reactive layer and the outermost scheduling layer. HTL is centered

around the notion of timed variables while Timber defines program behavior with

respect to message passing. Timber expresses time constraints on message passing

while HTL uses LET model to specify task termination. In Timber reactions to

events and actions on program variables are expressed simultaneously while in HTL

reaction to clocks and task definitions are separated. In HTL program variables are

updated only at specific events and with one particular value. Hence HTL execution is

deterministic with respect to program variables which is in sharp contrast to Timber.

None of the above languages supports a compositional communicator model and

hierarchical task refinement preserving schedulability and reliability.

10.6 Reliability Analysis for Embedded Systems

Extensive literature is available on fault tolerance, see for example [Cristian, 1991].

Quantitative Analysis

Works that combine traditional schedulability check with reliability analysis (through

reaction block diagram modeling) include [Assayad et al., 2004], [Girault et al., 2003],

[Girault et al., 2004b] and [Girault et al., 2004a]. The aim here is to generate dis-

163

Chapter 10. Related Work

tributed static schedule for a given periodic algorithm on a distributed architecture

trying to optimize reliability and length of the period; the analysis can handle quan-

titative variation of priority between reliability and length of schedule.

Priority-assigned Fault Analysis

Constraints can also be specified by assigning priorities to faults and tasks. Each fail-

ure pattern (a combination of faulty processors and channels) and tasks are assigned

a priority; a synthesis procedure determines the replication of tasks to ensure that

if a fault occurs then all tasks with priority higher than the fault execute. [Pinello

et al., 2004] combines the above approach with a mono-periodic data-flow model of

computation, and also targets heterogeneous input failure models.

Re-execution and Replication

Approaches presented in [Izosimov et al., 2005; Izosimov et al., 2006b; Izosimov et

al., 2006a] generates cyclic static schedules for platforms with transient faults and

time-triggered communication [Kopetz and Grunsteidl, 1994]. Re-execution (time

redundancy) and replication (space redundancy) are optimized automatically to im-

prove schedulability in [Izosimov et al., 2005]. Checkpointing (re-executing only the

parts of a process that were affected by transient faults, rather than the entire process)

is introduced in [Izosimov et al., 2006a]. A method to handle the trade-off between

higher schedulability and higher transparency, using only re-execution, is proposed

in [Izosimov et al., 2006b].

Approach to expressing and analyzing reliability in this thesis differs from the

above in the following aspects: a notion of logical reliability model integrated with LET

model of real-time tasks, and reduction of analysis overhead by introducing reliability-

preserving refinement of tasks.

164

Chapter 10. Related Work

10.7 Design Platforms

Metropolis

Metropolis [Balarin et al., 2003] is a design framework for embedded systems. It

allows to design heterogeneous systems at different levels of abstraction. A model

is described with the Metropolis Meta-Model (MMM) language which comprises a

set of building blocks for specifying computation, communication and coordination

among constituents of a complex system. The goal of the design framework is to ease

design tasks (specification, validation and implementation) by orthogonalization of

the computation, communication and coordination. The framework allows for the

following design activities: (1) design capture by specifying functionalities in models

of computations, and mapping between functionalities and architecture; (2) property

checking e.g. analyzing timing, deadlock, safety etc, and performing static analysis

for power, quality, latency etc; (3) platform exploration by abstracting different plat-

form characteristics (e.g. cache, address map, memory sizing etc); and, (4) synthesis

e.g. software code generation, RTL generation and implementation

The thesis presents an idea of coordination between tasks and the extension of

the idea to hierarchical layers of abstraction. The LET and LRC concepts reduces

the burden for schedulability and reliability analysis. The concepts presented in this

thesis can be used to extend the expressiveness and simplify verification of control

dominated time triggered applications in Metropolis.

Ptolemy

The Ptolemy [Ptolemy,] project studies modeling, simulation, and design of concur-

rent, real-time, embedded systems. In the center of the project is a toolbox, Ptolemy

II, which allows specification and analysis of concurrent components in heteroge-

165

Chapter 10. Related Work

neous model of computations. The toolbox allows systems modeling in continuous

time, dynamic data-flow, discrete-event, finite state machine, process networks, syn-

chronous data-flow, synchronous reactive models along with several experimental do-

mains (e.g. communicating sequential process, distributed discrete events, Giotto,

heterochronous data flow, and timed-multitasking to name a few).

The logical reliability model presented here can be extended into the Ptolemy

domain to perform reliability analysis for real-time applications. Ptolemy II provides

an excellent GUI (and associated visual techniques) to specify real-time applications

in different models of computations. It would be an interesting future work to extend

HTL with a visual semantics and implement an HTL domain in Ptolemy.

Simulink-RTW

The most popular approach to model-based design today uses Simulink [Simulink,

] (from MathWorks) as entry-level language and simulation mechanisms. Software

(e.g. C code) for real-time applications is derived from partitioned Simulink models

using Real-Time Workshop [RTW,] (RTW); [Matic and Henzinger, 2005] discusses

how LET model of computation is better for portability and composability than RTW

model. The lack of semantics in Simulink is also a major hindrance to introduce for-

mal verification for the application models. The task descriptions are hierarchical;

however the hierarchy is not exploited for reducing analysis overhead. An interesting

future work would be to introduce a design flow that merges the HTL with Simulink

model. The timing and reliability description are expressed in HTL while the func-

tionality description can be provided via Simulink (the most popular tool for designing

control applications). The resultant model can then be verified (for schedulability and

reliability) followed by code generation as discussed in Chapter 8.

166

Chapter 11

Conclusion

The chapter focuses on the main concepts presented in the dissertation followed by

the possible future directions.

11.1 Reflections

Communicator

The communicator model describes real-time task interfaces through reading and

writing of variables which can only be accessed periodically. Logical timing and

reliability are associated with communicators which indirectly implies the intended

timing and reliability of a task.

Extension of LET model

The LET model has been extended from a single task to a group of tasks, while

accounting for response to failure of inputs. The original LET model defines LET to be

equal to the period of task which introduces latency (in communication) and rigidity

(in expressing task dependency). The combination of LET model with communicator

167

Chapter 11. Conclusion

model reduces latency while introducing flexibility in defining IO timing of tasks. The

failure model accounts for behavior of task execution with respect to faulty behavior

of the inputs.

Reliability model

A reliability model of real-time tasks is presented. The model is based on the sepa-

ration of concern approach. A desired logical reliability expresses the intended fault

tolerance of the application. An architecture provides a reliability guarantee for the

application. The analysis ensures that the guarantee ensures the intended behavior.

Refinement

A task may refine another task. The refinement is not functional i.e., the function of

the refining and refined tasks are independent of each other. The refinement model

constraints IO behavior of the tasks i.e., the desired timing and reliability of refining

task must conform to that of the refined task. The model is further extended where

a single task can be potentially refined by multiple tasks.

Schedulability-preserving refinement

The refinement constraints are defined in such a way that if the refined task is schedu-

lable then the refining task is schedulable. The constraint is sufficient i.e. the refining

task may be schedulable even if the refined task is not. However the property reduces

repetitive schedulability check once a group of tasks has been scheduled; for any other

group of tasks that refines the earlier one, schedulability check need not be performed

if refinement constraints are maintained.

168

Chapter 11. Conclusion

Reliability-preserving refinement

The refinement constraints are defined in such a way that if the refined task is reliable

then the refining task is reliable. The constraint is sufficient i.e. the refining task may

be reliable even if the refined task is not. However the property reduces repetitive

reliability check once a group of tasks has been analyzed for reliability; for any other

group of tasks that refines the earlier one, reliability check need not be performed if

refinement constraints are maintained.

Hierarchical Timing Language

A coordination language based on the communicator model of communication and

LET model of task execution. The language incorporates schedulability-preserving

and reliability-preserving refinement. HTL allows mode switches and thus multiple

tasks refine a single task. The structural components of HTL and subsequent refine-

ment model allows concise representation without overloading analysis. In particular

the schedulability and reliability analysis is done for the root program (without re-

finement) instead of the whole program (with refinement). In case of multiple levels of

refinement, the schedulability- and reliability-preserving properties can significantly

reduce the effort in analyses.

Control Examples

Examples of automatic controller, automotive controller and avionics controller is

used to show modeling and analyses steps in HTL.

169

Chapter 11. Conclusion

11.2 Future Work

Synthesis

This work formalizes timing and reliability analysis for a given mapping of an HTL

program to an architecture. An interesting problem is to solve the mapping problem:

given an architecture and an HTL program, whether there exists a valid implemen-

tation or not. The naive but straightforward solution would be to check all possible

implementations; this is clearly a bad choice given that the number of possibilities

may be exponential to the size of the program and the architecture. An efficient

analysis would try to figure out the existence of a valid implementation by checking

a subset of the total number of possible implementations.

Imprecise Computation

There are extensions of LET model that can be accounted for in the HTL model.

One interesting property for control applications would be to introduce imprecise

computation i.e. to allow task to be terminated before their computation is complete.

Such pre-terminated task invocations should be able to deliver partial but valid out-

puts without raising exceptions. The relaxed LET model may use some intermediate

value if LET is not available. Execution efficiency may be increased by incorporating

techniques like computation reuse which builds a look-up table to save on repeated

computations.

Power

Other than timing and reliability, power is prime concern in the design of embedded

systems. Accounting for executing speed and power emissions can be accounted to

verify power requirements. Several platform-dependent optimizations like dynamic

170

Chapter 11. Conclusion

voltage scaling, using code which minimizes size or power, and computation reuse

can be used. Dynamic voltage scaling spread the execution of a task across LET to

lower voltage.

Input Failure Model

The input failure model can be made arbitrarily complex with different possibilities

in combination with others. Extensions may express complicated scenarios like (1)

k-out-of-n: if at least k out of n inputs are available the task may execute, (2) if an

input is absent the task considers a value based on history (possibly with discounting),

and (3) same input with different priorities under different failure scenarios.

Redundancy

In this work, space redundancy (i.e. a task is replicated on multiple hosts) has been

used to tolerate faults. This has a disadvantage of requiring more resources. A

probable way of avoiding this limitation is to modify the LET model itself where an

LET span multiple executions of a task.

Communication

We do not deal with a detailed model of the bus protocol. A broadcast mechanism is

used with the assumption that all hosts are connected. However in some situations

this may be an expensive and redundant proposition. In future, the analyses can be

extended to account for a communication network with one-to-one link. This would

certainly require a more elaborate replica determinism scheme.

171

Chapter 11. Conclusion

Event Driven Paradigm

There are real-time controllers which are better expressed in an event driven paradigm

than a time-triggered one. For example, an event-driven real-time language is a bet-

ter modeling approach for an air-fuel ratio nonlinear controller than a time triggered

one [Ghosal et al., 2005]. The event-driven approach allows for more flexibility to

account for the type of signals and requirements of automotive applications, specifi-

cally, handling of tasks which are not triggered periodically. An integration with HTL

model with event-driven paradigm will capture more real-time control applications.

Cost

While timing, reliability and power are the primary concerns of embedded systems

design, monetary cost is an essential element to design. One of the many challenges

facing electronic system architects is how to provide a cost estimate related to design

decisions: the cost estimation may include development cost (both software and hard-

ware), part fabrication cost, system integration cost and repair cost. In future the

formal analysis of system properties (like timing and reliability), would be integrated

with cost modeling [Ghosal et al., 2007b], [Ghosal et al., 2008].

172

Appendices

173

Appendix A

Reliability of Networks

Failure rate and reliability

Reliability of a host (or for a sensors) can be computed from failure rates. An

alternative to using failure rate is mean-time-to-failure. Failure rate, λ is deter-

mined from statistical analysis; a number of components is studied and failure rate is

computed as the average frequency of failure among the components. For example,

λ = 10/1000hours denote that the component has a failure rate of 10 in 1000 hours.

The failure rate may be more accurately [Abd-allah, 1997] described by λ = f · t ·u · s

where 1, f is the original measured failure rate, t is the actual time spent in computa-

tion with respect to overall execution time, u is the utilization or fraction of cpu cycles

consumed and s is relative speed of the underlying platform with respect to the plat-

form over which original failure rate is computed. The mean-time-to-failure(MTTF)

is the inverse of failure rate i.e. if the failure rate is λ, MTTF = 1
λ
. In the above case,

the MTTF is 100 hours. Assuming that all fault rates are constant, homogeneous,

independent of time and independent of other faults, reliability R of a component

over time T , is given by e−λT . A component with failure rate of 10 in 1000 hours, has

a reliability of 78.66% over 24 hour time period.

174

Chapter A. Reliability of Networks

Computing reliability for network

A common (and extensively studied) approach is to compute the reliability from

source to sink of a system network where reliability of each edge is specified (each node

has perfect reliability). The reliability of each edge is independent of the failure rate

of any other edge. For network of components, reliability is computed by accounting

for all possible paths from input to output [Dotson and Gobien, 1979]; the number

of paths being exponential the method is computationally intensive. To get better

performance [Deo and Medidi, 1992] modifies the path based approach with graph

reduction techniques from [Page and Perry, 1989]. A second approach is based on

analyzing minimal cuts on the network that disconnects the sink from the source;

all possible minimal cuts are disjoint and hence an upper bound on the reliability

of the network can be computed faster. The approach was proposed in [Rai and

Kumar, 1987] and was improved by using reduction techniques in [Chen and Yuang,

1996]. However, identifying all the disjoint paths in a network is difficult and is a

well-known NP-hard problem [Ball, 1986]. The path based and cut based methods

have been subsequently improved by using OBDD techniques in [Kuo et al., 1999]

and [Chang et al., 2003] respectively.

Reaction Block Diagrams

RBDs [Abd-allah, 1997] [Musa et al., 1990], [RBD,] are used to model systems as

networks AND/ OR junctions; OR junction signifies that any available edges can

be accounted for reliability while AND junction denotes that all edges (from the

junction) should be accounted in the reliability computation. RBDs and analytical

approaches have been discussed in details in [Kececioglu, 1991] and has been used

for reliability computation in [Assayad et al., 2004]. The two simplest reaction block

diagrams are series and parallel. For a chain of sub-systems composed in series

175

Chapter A. Reliability of Networks

(Figure A.1.a), reliability of the system RSys is product of reliabilities of individual

sub-systems i.e. R =
n∏

i=1

Ri. Reliability of a system with sub-systems connected in

parallel (Figure A.1.b) is the probability of at least one system working correctly.

Formally, the system reliability is 1 minus the product of probability with which

individual components can fail i.e. R = 1−
n∏

i=1

(1−Ri).

90%

80%

98% 95%
I O

T

T
98%98% 95%

I OT

(c) (d)

R
1

R
n

R
2

R
1

R
n

R
2

(a) (b)

h
1

h
2

h
3

h
1 h

3

h
21

h
22

Figure A.1: Series and parallel reaction block diagrams

Consider a system of three tasks connected in series(Figure A.1.c): one input task

I (computes sensor data from raw sensor input), one computation task T (computes

actuation signal from a given sensor data) and one output task O (computes raw

actuator output from actuation signal). If the three tasks are distributed on three

hosts, with reliability as shown in the figure, then the net reliability of the system

= .98 × .98 × .95 = 91.23%. For simplicity, the above computation assumes that

reliabilities of the communication channels are 100%. The above reliability may also

be achieved by other architecture configuration. For example, the computation task

can be replicated (Figure A.1.d) over two hosts with reliabilities 90% and 80%. The

reliability of a single replica is less that 98% (achieved in the earlier scenario); however

the reliability of the replication connected in parallel is 1−(1−.8)×(1−.9) = 1−.02 =

98%. The overall reliability of the system is again = .98 × .98 × .95 = 91.23%. The

analysis becomes considerably complicated when there are networks of hosts and

several tasks are replicated in various fashions.

176

Chapter A. Reliability of Networks

Fault Trees

Fault trees describes failure patterns. While a path in RBD signifies a success path, a

path in fault tree signifies a failure path. Fault trees [Kececioglu, 1991] [Fault-Trees,

] use different type of gates (AND, OR, voting, priority AND, Exclusive OR, Inhibit)

and events (basic, undeveloped, conditional, trigger, resultant, transfer-in, transfer-

out) for describing system failure conditions and uses minimal cut-sets for reliability

computation. [vs Fault-Trees,] compares RBDs and fault trees.

A
N

D O
R

fault tree reaction block diagram

A B A B

A

B
A B

(fault if both A and B fails)

fault tree reaction block diagram

(fault if either A or B fails)

Figure A.2: Comparison between RBDs and Fault trees

Fig. A.2 compares the RBDs and Fault trees. A parallel connections of blocks in

RBD is equivalent to an AND gate in fault tree; thus both blocks A and B need to

fail to make the systems unreliable. On the other hand, a series connection of blocks

in RBD is equivalent to an OR gate in fault tree; thus either A or B needs to fail to

make the system unreliable.

177

Appendix B

Flattening of HTL

A well-formed program P can be flattened into a semantically equivalent flat pro-

gram flat(P). Program flat(P) is different from abstract(P), which is the root

program without refinements and is not semantically equivalent to P. The flattening

is explained through the procedure FlattenRootProgram (Alg. 10). Without loss of

generality, all communicator names, port names and task invocation names are as-

sumed to be unique. If the root program is not flat, then each mode (with refinement)

in the root program is replaced by a flattened refinement program in two stages: the

refinement program is first flattened into a program with one module (procedure

FlattenAndConvertToSingleModule) and then the new refinement program is merged

with the parent mode (procedure MergeRefinementProgramWithParentMode).

Algorithm 10 FlattenRootProgram (P)

if P is flat
return

else
for each module mdl ∈ mdlnames(P)

for each m′ ∈ mnames(mdl) where ref(m) = P′

invoke FlattenAndConvertToSingleModule on P′

invoke MergeRefinementProgramWithParentMode on (P′, m′)

178

Chapter B. Flattening of HTL

Given program P′, Alg. 11 checks the type of the program and the number of

modules. If the program P′ is flat, then no further action is required. If the program

is flat but has multiple modules then a conversion to single module is required. If the

program is not flat then for each refinement program Alg. 11 and Alg. 12 are invoked.

Algorithm 11 FlattenAndConvertToSingleModule (P′)

if P′ is a leaf program and |mdlnames(P′)| = 1
return

if P′ is a leaf program and |mdlnames(P′)| = k > 1
let (mdl, ports, tasks, modes, start) be a new module declaration
// let mdl be an unique name with respect to all other declared module names
ports = union of ports of all modules in P
tasks = union of concrete task declarations of all modules in P
empty modes and empty start

forall combinations m1, · · · , mk of at most one mode
from each module mdl1, · · · , mdlk ∈ mdlnames(P′)

let (m, invocs, switches, ∅) be a new mode declaration
// let m be an unique name with respect to all other declared mode names
invocs(m) = invocs(m1) ∪ invocs(m2) ∪ · · · invocs(mk)
switches(m) := Power set of mode switches in switches, · · · , switchesk

modules = modules ∪ {(m, invocs, switches, ∅)}
start is the combination of all start modes of the modules in P′

replace all module declarations in P′ with the new module declaration
return

if P′ is a non-leaf program
forall module mdl′ ∈ mdlnames(P′)
forall each m′′ ∈ mnames(mdl) where ref(m) = P′′

invoke FlattenAndConvertToSingleModule on P′′

invoke MergeRefinementProgramWithParentMode on (P′′, m′′)
invoke FlattenAndConvertToSingleModule on P′

return

If program P′ is not leaf program and has multiple modules then modules in P′

can be replace by a single module. The conversion to single module is possible as all

modes have identical periods across the modules; such a conversion is not possible

for root program. For the conversion to single module, first a new module is declared

whose port set consists of all the ports declared in all modules in P′ and the task

179

Chapter B. Flattening of HTL

declarations consists of all the task declarations in all modules in P′. The set of

modes in the new module is defined from all possible mode combination: one mode

for each combination. Modules execute in parallel; so any combination of modes

(with at most one mode from each module) can be active at any instance. The mode

switch of such a mode is the power set of all mode switches in the modes of that

combination. The start mode of the new modules is the one which represents the

combination of all start modes in the modules of P′. Once the new module is defined,

the modules in P′ are replaced by the new module.

An example is shown in Fig. B.1. A program has two modules. One module has

two modes a and b switching between themselves; the switch from a to b is named

1, and the reverse switch is named 2. The second module has two modes c and d

switching between themselves; the switch from c to d is named 3, and the reverse

switch is named 4. Modes a and c are the start modes of the respective modules.

The single module has all port declarations and task declarations of the two modules.

There are four modes in the single module, one for each possible mode combination:

a and c, a and d, b and c, and b and d. Each mode in the single module consists

of the task invocations of the constituent modes. The mode switches includes all

possible switching action. For example, for mode combination a and c there are

three switches: 1 (a switches but not c), 3 (c switches but not a) and 13 (both a and

c). The start mode of the new module is the mode defined from the combination of a

and c. The conversion can be done only for programs where periods of modes across

modules are identical.

The procedure MergeRefinementProgramWithParentMode (Alg. 12) merges pro-

gram P′ (with single module mdl) with the respective parent m′ where m′ ∈ mnames(mdl).

All modes in mdl′ are updated: by adding concrete tasks invocations in m′ and then

updating the mode switches. Updating mode switches in done in two stages. First, all

mode switch condition (in modes of mdl′) is appended with negation of mode switch

180

Chapter B. Flattening of HTL

1a b2
3c d4

ac

bc ad

bd

1

1

3

3

2

2

4

4

2413

Program with two modules

Program with one module

Figure B.1:

m

1 2
43

1' 2'
4'3'

Program with refinement

Program with no refinement

Figure B.2:

m

1
a b2

m'x
y

1'a' b'2'
3'c' d'4'

x
x

y
y

3
c d4

Program with refinement

Program with no refinement

Figure B.3:

conditions of m′. Second, mode switches of m′ are added to all modes in m′. The above

steps are required to satisfy HTL semantics that switches of parent has higher priority

than that of children. The task and port declarations of mdl′ are added to respective

declarations of mdl. The mode switches from all modes (except m′) are updated such

that if the destination mode is m, then the destination mode is replaced by the start

mode of mdl′. Finally, the mode m′ is removed from the mode set of mdl.

Fig. B.2 shows an example of merging where the parent mode is the only mode in

the respective module. The merging consists of adding all port and task declaration

in the refinement module to module in the parent. Then each invocation set of all

the modes in the refinement is added with the concrete task invocations in the parent

mode. Finally, the parent mode is replaced by the modes in the refinement program.

Fig. B.2 shows an example of merging where mode switches have to properly updated.

There are two modes m and m′ switching between themselves. Each of the modes is

refined by a program with single module each having two modes switching between

themselves. Let the switch from m to m′ is x, and the switch from a to b is 1. The

181

Chapter B. Flattening of HTL

Algorithm 12 MergeRefinementProgramWithParentMode (P′, m′)

let mdl′ ∈ mdlnames(P′) and m′ ∈ mnames(mdl)

forall mode m ∈ mnames(mdl′)
// modify task invocations

copy all concrete task invocations of m′ to m
// modify mode switches
the switch conditions are added with negation of the conditions of switches in m′

all mode switches of m′ are added to m

// modify module mdl
add all task declarations in mdl′ to mdl
add all port declarations in mdl′ to mdl

// modify switches from modes in mdl other than m′

forall switches with destination mode m′

replace destination mode by start(mdl′)

mode declaration (m′, ·, ·, P′) is removed from modes(mdl)

mode a’ consists of all task invocations from a and all concrete invocations from m.

There are two switches: x and 1’. The first one is a mode switch with destination

mode as the start mode of refinement module of m′ (which is c). The second one is a

mode switch with switch condition as a conjunction of negation of condition of x and

condition of 1. The switch definition ensures that if x is enabled then mode switch of

m will be given higher priority; and the switch 1 is checked only if x is not enabled.

E code vs. HE Code

[Ghosal et al., 2006a] discusses an HTL compiler that flattens the program before

code generation while [Ghosal et al., 2007a] presents an HTL compiler that generates

code without flattening. The first compiler generates E code while the second one

generates HE code. The main difference between the two approaches is the code size:

the first may generate code exponentially larger than that of the second one.

182

Chapter B. Flattening of HTL

Figure B.4: Number of E code instructions
Figure B.5: Number of HE code instruc-
tions

The code size is compared for HTL descriptions with m programs (one root pro-

gram and m − 1 refinement programs) and n modules (ruling out empty programs

m ≤ n) with each module having two modes switching between themselves. For each

such scenario there are a number of possible HTL descriptions. For example, if m = 2

and n = 3, there are two possibilities: root program with two modules and a refine-

ment program with one module; and root program with one module and a refinement

program with two modules. For each m and n, the worst-case code size for E code

and HE code are compared. The number of HE code instructions depends upon the

number of programs and modules and is thus fixed for any description for given m and

n. The number of E code instructions depends upon the flattening and thus widely

varies across the different descriptions for given m and n. Fig. B.4 and Fig. B.5

compares the code size for the E code and the HE code respectively for 1 ≤ m ≤ 10

and 1 ≤ n ≤ 10. The worst case E program (7177 E code instructions) is an order of

magnitude larger than that of the HE program (555 HE code instructions).

183

Appendix C

Giotto to HTL

HTL is more expressive than Giotto, i.e., any Giotto program has an equivalent

expression in HTL. Instead of a formal translation algorithm, the conversion of Giotto

program to HTL is explained through the following examples.

Fig. C.1 shows a Giotto program with two modes, mode1 and mode2 switching

between themselves. Mode mode1 (period 6) invokes tasks t6 (frequency 1) and t2

(frequency 3); the switch sw12 (to mode mode2) is checked with frequency 3. Mode

mode2 (period 6) invokes tasks t6 (frequency 1) and t3 (frequency 2); the switch sw21

(to mode mode1) is checked with frequency 2. Giotto being flat, the equivalent Giotto

program is flat. The HTL program has three modules, mdl6, mdl3, and mdl2, one for

each task. Module mdl6 has one mode (period 6) which invokes task t6, i.e., task t6

is repeatedly invoked every 6 time units. This is similar to the Giotto program as

t6 is invoked independent of the mode. Module mdl2 is more complex. Intuitively

it represents all possible states that task t2 can exist in either Giotto modes mode1

or mode2. Mode m21, m22 and m23 have period 2 and invoke task t2; they represent

the three consecutive invocations of t2 in mode mode1. The modes m221, m222, m223,

m224, m225 and m226, represent the each time unit of mode mode2 with respect to task

184

Chapter C. Giotto to HTL

m6

m21

mode m6 period 6
 invokes task t6

Giotto Program

m221

sw12

sw21

sw12

 mode mode1 period 6
 task t6 frequency 1
 task t2 frequency 3
 switch sw12 frequency 3

m21, m22, m23:
 modes with period 2
 each invokes task t2
m221, m222, m223
m224, m225, m226:
 empty modes with period 1
 denotes current
 Giotto mode is mode2
m211:
 empty mode with period 1
 denotes current
 Giotto mode is mode1

!sw21

m22 m23
!sw12 !sw12

sw12

sw12

!sw12

!sw12 !sw21

sw21

sw21

sw12

!sw12

!sw21

sw12

!sw21

!sw21

!sw12

sw12
!sw12

sw12

sw21

!sw21

sw21

module mdl6

module mdl2

 mode mode2 period 6
 task t6 frequency 1
 task t3 frequency 2
 switch sw21 frequency 2

m222

m211

m223 m226m225m224

m31, m32:
 modes with period 3
 each invokes task t3
m311, m312, m313
m314, m315, m316:
 empty modes with period 1
 denotes current
 Giotto mode is mode1
m321, m322, m323:
 empty mode with period 1
 denotes current
 Giotto mode is mode2

module mdl3

m32m31

m311 m312 m313 m316m315m314

m321
m322

m323

Figure C.1: Example 1

185

Chapter C. Giotto to HTL

t2; the task is not invoked and hence the modes are empty. The possible switches

shown denotes all possible status of t2 in one period of either mode mode1 or mode2.

Another empty mode m211 denotes the situation when mode mode2 has switched in

the middle of the period and the next invocation of t2 is one time unit away. The

modes in module mdl3 can be similarly constructed based on the invocation of t3 in

mode mode2 (modes m31, m32), idle state of t3 in mode mode1 (modes m311, m312,

m313, m314, m315 and m316), and waiting state of t3 when mode1 is switching to mode2

(modes m321, m322, m323).

In the second example (Fig. C.2), the Giotto program has two modes mode1

and mode2 switching between themselves. Mode mode1 (period 12) invokes tasks t6

(frequency 2), t2 (frequency 6) and t3 (frequency 4); the switch sw12 (to mode mode2)

is checked with frequency 4. Mode mode2 (period 12) invokes tasks t6 (frequency 2),

t2 (frequency 6) and t4 (frequency 3); the switch sw21 (to mode mode1) is checked

with frequency 3. Similar to the last example one module is defined for each task.

There are four modules: mdl6, mdl2, mdl3 and mdl4. Modules mdl6 and mdl2 are

simple and has one mode each. The mode in the first module invokes task t6 and has

period 6. The mode in the second module invokes task t2 and has period 2. Modules

mdl3 and mdl4 are more complicated. The modes in module mdl3 tracks invocations

of t3 in mode mode1, idle state in mode mode2, and waiting states in mode mode1.

The modes in module mdl4 tracks invocations of t4 in mode mode2, idle state in mode

mode1, and waiting states in mode mode2.

186

Chapter C. Giotto to HTL

m32

e4

sw12

sw12

e7 e9 e10 e11 e12

m33 m34
!sw12 !sw12

sw12

!sw12

!sw21

sw21

e1 e2 e3 e5 e6 e8

m31
sw12

!sw12

module mdl3

m42

h4

sw21

h7 h9 h10 h11 h12
!sw12

m43
!sw21

sw21

!sw21

!sw12

sw12

h1 h2 h3 h5 h6 h8
!sw12

m41
sw21

!sw21

!sw12

module mdl4

f1

f2

!sw21 !sw21

sw21

sw12

!sw12 f3

sw21 !sw12

sw12

k1

sw12

sw21

!sw21

k2

k3

sw12

sw21

!sw21 k4

k5

sw12

k6
sw21

!sw21

Giotto Program
 mode mode1 period 12
 task t6 frequency 2
 task t2 frequency 6
 task t3 frequency 4
 switch sw12 frequency 4

 mode mode2 period 12
 task t6 frequency 2
 task t2 frequency 6
 task t4 frequency 3
 switch sw21 frequency 3

m6
mode m6 period 6
 invokes task t6 module mdl6 m2

mode m2 period 2
 invokes task t2 module mdl2

m31, m32, m33, m34: modes with period 3, each invokes task t3
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12: empty modes with period 1, denotes current Giotto mode is mode2

f1, f2, f3: empty modes with period 1, denotes current Giotto mode is mode1

m41, m42, m43: modes with period 4, each invokes task t4
h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12: empty modes with period 1, denotes current Giotto mode is mode1

k1, k2, k3, k4, k5, k6: empty modes with period 1, denotes current Giotto mode is mode2

Figure C.2: Example 2

187

Chapter C. Giotto to HTL

In the last two examples each task in invoked in at most one Giotto mode. In

the next example a task is invoked in two Giotto modes. In the third example

(Figure C.3), the Giotto program has three modes mode1, mode2 and mode3. The

mode mode1 is identical to the mode mode1 in the first example. The mode mode2 is

similar to that of mode mode2 in the first example; however there is an extra mode

switch, sw23 with mode mode3 as the destination mode. Mode mode3 (period 6)

invokes task t1 (frequency 1), task t3 (frequency 2) and task t4 (frequency 6). There

is one mode switch sw31 with destination mode mode1. There are four modules in

the equivalent HTL program: mdl6, mdl2, mdl3 and mdl4. Module mdl6 remains the

same as discussed in the previous examples. Module mdl2 is similar to that explained

in the first example. However the idle state of task t2 in mode mode3 is captured

by additional modes (m231, m232, m233, m234, m235, m236) which are empty. Module

mdl3 captures the invocation, idle state and waiting state of task t3. The task t3 in

invoked in two Giotto modes and has four modes for the invocation: modes m31 and

m32 denotes the two invocations in mode mode2, and modes m33 and m34 denotes the

two invocations in mode mode3.

In conclusion when converting a Giotto program to an equivalent HTL program, a

module is generated for each task in Giotto program. Without loss of generality it is

assumed that each task has unique period of invocation irrespective of which Giotto

mode the task in invoked. For each task, the following modes are generated. A

mode is generated for each invocation in each Giotto mode. An empty mode (a mode

without any task invocation) is generated for each time unit of each Giotto mode in

which the task is not invoked. Empty modes are also generated for each time unit

the task can potentially wait (in modes where it is invoked) due to mode switches.

The mode switches are generated by tracking the state of the task for invocation of

each mode.

188

Chapter C. Giotto to HTL

 mode mode1 period 6
 task t6 frequency 1
 task t2 frequency 3
 switch sw12 frequency 3

 mode mode2 period 6
 task t6 frequency 1
 task t3 frequency 2
 switch sw21 frequency 2
 switch sw23 frequency 2

 mode mode3 period 6
 task t6 frequency 1
 task t3 frequency 2
 task t4 frequency 6
 switch sw31 frequency 2

 mode1

m6
mode m6 period 6
 invokes task t6 module mdl6

m21

m221

sw12

sw21

sw12

m21, m22, m23:
 modes with period 2
 each invokes task t2
m221, m222, m223
m224, m225, m226:
 empty modes with period 1
 denotes current
 Giotto mode is mode2
m211:
 empty mode with period 1
 denotes current
 Giotto mode is mode1
m231, m232, m233
m234, m235, m236:
 empty modes with period 1
 denotes current
 Giotto mode is mode3

!sw21

m22 m23
!sw12 !sw12

sw12

sw12

!sw12

!sw12 !sw21

sw21

module mdl2

m222

m211

m223 m226m225m224

m231 m232 m233 m236m235m234
!sw31

!sw31

sw31

sw21

sw12

!sw12

!sw21

sw12

!sw21

!sw21,
!sw23

!sw12

sw12
!sw12

sw12

sw21

!sw21,
!sw23

sw21

m31, m32, m33, m34:
 modes with period 3
 each invokes task t3
m311, m312, m313
m314, m315, m316:
 empty modes with period 1
 denotes current
 Giotto mode is mode1
m321, m322, m323:
 empty mode with period 1
 denotes current
 Giotto mode is mode2

module mdl3
m32m31

m311 m312 m313 m316m315m314

m321

m322

m323

!sw31
!sw31 m34m33

sw23

sw23
sw31

sw31

Figure C.3: Example 3

189

Appendix D

HTL Program for 3TS Controller

program controller_3TS {

communicator

double s1 period 500 init 0;

double s2 period 500 init 0;

double l1 period 100 init 0;

double l2 period 100 init 0;

double r1 period 500 init 0;

double r2 period 500 init 0;

double u1 period 100 init 0;

double u2 period 100 init 0;

module interface start imode {

task read1 input(double p_s1) state() output(double p_l1) function fread1;

task read2 input(double p_s2) state() output(double p_l2) function fread2;

task estimate1 input(double p_u1, double p_l1) state() output(double p_r1) function festimatel1;

task estimate2 input(double p_u2, double p_l2) state() output(double p_r2) function festimatel2;

mode imode period 500 {

invoke read1 input((s1,0)) output((l1,3));

invoke read2 input((s2,0)) output((l2,3));

invoke estimate1 input((u1,0),(l1,3)) output((r1,1));

invoke estimate2 input((u2,0),(u2,4)) output((r2,1));

}

}

190

Chapter D. HTL Program for 3TS Controller

module pumpOne start modeOne {

task t1 input(double p_l1) state() output(double p_u1);

mode modeOne period 500 program programOne

{ invoke t1 input((l1,3)) output((u1,4)); }

}

module pumpTwo start modeTwo {

task t2 input(double v_l2) state() output(double v_u2);

mode modeTwo period 500 program programTwo

{ invoke t2 input((l2,3)) output((u2,4)); }

}

}

program programOne {

module moduleOne start oneP {

task t1P input(double v_l1) state() output(double v_u1) function f1P;

task t1PI input(double v_l1) state() output(double v_u1);

mode oneP period 500

{ invoke t1P input((l1,3)) output((u1,4)) parent t1;

switch(withPerturbation(r1)) onePI; }

mode onePI period 500 program refOne

{ invoke t1PI input((l1,3)) output((u1,4)) parent t1;

switch(withoutPerturbation(r1)) oneP; }

}

}

program programTwo {

module moduleTwo start twoP {

task t2P input(double v_l2) state() output(double v_u2) function f2P;

task t2PI input(double v_l2) state() output(double v_u2);

mode twoP period 500

{ invoke t2P input((l2,3)) output((u2,4)) parent t2;

switch(withPerturbation(r2)) twoPI; }

mode twoPI period 500 program refTwo

{ invoke t2PI input((l2,3)) output((u2,4)) parent t2;

switch(withoutPerturbation(r2)) twoP; }

}

}

191

Chapter D. HTL Program for 3TS Controller

program refOne {

module mdlOne start oneSlow {

task t1PIs input(double v_l1) state() output(double v_u1) function f1PIs;

task t1PIf input(double v_l1) state() output(double v_u1) function f1PIf;

mode oneSlow period 500

{ invoke t1PIs input((l1,3)) output((u1,4)) parent t1PI;

switch(PIRapid(r1)) oneFast; }

mode oneFast period 500

{ invoke t1PIf input((l1,3)) output((u1,4)) parent t1PI;

switch(PILent(r1)) oneSlow; }

}

}

program refTwo { module mdlTwo start twoSlow {

task t2PIs input(double v_l2) state() output(double v_u2) function f2PIs;

task t2PIf input(double v_l2) state() output(double v_u2) function f2PIf;

mode twoSlow period 500

{ invoke t2PIs input((l2,3)) output((u2,4)) parent t2PI;

switch(PIRapid(r2)) twoFast; }

mode twoFast period 500

{ invoke t2PIf input((l2,3)) output((u2,4)) parent t2PI;

switch(PILent(r2)) twoSlow; }

}

}

192

Appendix E

HTL Program for SBW Controller

program sbw_controller {

communicator

//input communicators

float s_angle1 period 500 init 0;

float s_angle2 period 500 init 0;

float s_angle3 period 500 init 0;

float s_angle4 period 500 init 0;

float s_angle5 period 500 init 0;

float s_angle6 period 500 init 0;

float s_angle7 period 500 init 0;

float s_angle8 period 500 init 0;

float s_angle9 period 500 init 0;

float s_angle10 period 500 init 0;

float s_steer1 period 500 init 0;

float s_steer2 period 500 init 0;

float s_steer3 period 500 init 0;

float s_speed period 500 init 0;

float s_break period 500 init 0;

float s_suspension period 500 init 0;

//output communicators

float a_FR period 500 init 0;

193

Chapter E. HTL Program for SBW Controller

float a_FL period 500 init 0;

float a_RL period 500 init 0;

float a_RR period 500 init 0;

float a_feedback period 500 init 0;

float a_ctrl period 500 init 0;

//non-input non-output communicators

float c_FL period 500 init 0;

float c_FR period 500 init 0;

float c_RL period 500 init 0;

float c_RR period 500 init 0;

float c_angle_RR period 500 init 0;

float c_angle_RL period 500 init 0;

float c_angle_FR period 500 init 0;

float c_angle_FL period 500 init 0;

float c_speed period 500 init 0;

float c_steer period 500 init 0;

float c_super period 500 init 0;

float c_ctrl period 500 init 0;

float c_brake period 500 init 0;

float c_suspension period 500 init 0;

module frontleft start modefl {

task t_angle_FL input(float s_angle9, float s_angle10) state()

output(float c_angle_FL) function f_angle_FL;

task t_actuation_FL input(float c_FL) state() output(float a_FL) function f_actuation_FL;

mode modefl period 5000 {

invoke t_angle_FL input((s_angle7,0),(s_angle8,0)) output((c_angle_FL,2));

invoke t_actuation_FL input((c_FL, 9)) output((a_FL, 10));

}

}

module frontright start modefr {

task t_angle_FR input(float s_angle7, float s_angle8) state()

output(float c_angle_FR) function f_angle_FR ;

task t_actuation_FR input(float c_FR) state() output(float a_FR) function f_actuation_FR ;

194

Chapter E. HTL Program for SBW Controller

mode modefr period 5000 {

invoke t_angle_FR input((s_angle7,0),(s_angle8,0)) output((c_angle_FR,2));

invoke t_actuation_FR input((c_FR, 9)) output((a_FR, 10));

}

}

module rearleft start moderl {

task t_angle_RL input(float s_angle3, float s_angle4, float s_angle5) state()

output(float c_angle_RL) function f_angle_RL ;

task t_actuation_RL input(float c_RL) state() output(float a_RL) function f_actuation_RL ;

mode moderl period 5000 {

invoke t_angle_RL input((s_angle3,0),(s_angle4,0),(s_angle5,0)) output((c_angle_RL,2));

invoke t_actuation_RL input((c_RL, 9)) output((a_RL, 10));

}

}

module rearright start moderr {

task t_speed_RR input(float s_angle1, float s_angle2, float s_angle6) state()

output(float c_angle_RR) function f_speed_RR ;

task t_actuation_RR input(float c_RR) state() output(float a_RR) function f_actuation_RR ;

mode moderr period 5000 {

invoke t_speed_RR input((s_angle1,0),(s_angle2,0),(s_angle6,0)) output((c_angle_RR,2));

invoke t_actuation_RR input((c_RR,9)) output((a_RR,10));

}

}

module control start modec {

task t_speed input (float in_speed) state() output (float out_speed) function f_speed;

task t_ctrl input(float out_angleRR, float out_angle_RL, float out_angleFR, float out_angleFL,

float out_c_super, float c_speed, float c_steer) state()

output(float a_FL, float a_FR, float a_RR, float a_RL, float c_ctrl) function f_ctrl;

mode modec period 5000 {

invoke t_speed input ((s_speed,0)) output ((c_speed,2));

invoke t_ctrl input((c_angle_RR,2),(c_angle_RL,2),(c_angle_FR,2),(c_angle_FL,2),(c_super,2),

(c_speed,2),(c_steer,2)) output((c_FL,9),(c_FR,9),(c_RR,9),(c_RL,9),(c_ctrl,9));

}

}

195

Chapter E. HTL Program for SBW Controller

module feedback start modef {

task t_steer input(float s_steer1, float s_steer2, float s_steer3) state()

output(float c_steer) function f_steer ;

task t_feedback input(float c_steer) state() output(float commActSteerFb) function f_feedback;

mode modef period 5000 {

invoke t_steer input((s_steer1,0), (s_steer2,0),(s_steer3,0)) output((c_steer,1));

invoke t_feedback input((c_steer,2)) output((a_feedback,10));

}

}

module supervisor start modes {

task t_supervisor_sensing input(float s_break, float s_suspension) state()

output(float c_brake, float c_suspension) function f_supervisor_sensing ;

task t_supervisor input (float c_brake, float c_suspension, float c_ctrl, float c_steer) state()

output(float c_super, float a_ctrl) function f_supervisor ;

mode modes period 5000 {

invoke t_supervisor_sensing input ((s_break,0),(s_suspension,0))

output ((c_brake,2),(c_suspension,2));

invoke t_supervisor input((c_brake,2),(c_suspension,2),(c_ctrl,2),(c_steer, 2))

output((c_super,8),(a_ctrl,10));

}

}

}

196

Appendix F

HTL Program for Heli Controller

program Heli_control {

communicator

c_double fromGroundStation period 20 init c_zero;

c_double drefPitch period 1 init c_zero;

c_double drefRoll period 1 init c_zero;

c_double refx period 1 init c_zero;

c_double refy period 1 init c_zero;

c_double refz period 1 init c_zero;

c_double refRoll period 1 init c_zero;

c_double refPitch period 1 init c_zero;

c_double refYaw period 1 init c_zero;

c_double fromJaviator period 1 init c_zero;

c_double x period 1 init c_zero;

c_double y period 1 init c_zero;

c_double z period 1 init c_zero;

c_double roll period 1 init c_zero;

c_double pitch period 1 init c_zero;

c_double yaw period 1 init c_zero;

c_double zt period 10 init c_zero;

c_double rollt period 10 init c_zero;

c_double pitcht period 10 init c_zero;

c_double yawt period 10 init c_zero;

c_double front period 1 init c_zero;

c_double rear period 1 init c_zero;

197

Chapter F. HTL Program for Heli Controller

c_double left period 1 init c_zero;

c_double right period 1 init c_zero;

c_double toJaviator period 1 init c_zero;

c_double shutDown period 20 init c_zero;

c_double requestedState period 20 init c_zero;

c_double attitudeState period 1 init c_zero;

c_double newAttitudeState period 1 init c_zero;

c_double toGroundStation period 20 init c_zero;

module commmunication_Control start communication {

task t_splitNavigationData

input (c_double v_fromGroundStation,c_double v_drefPitch,c_double v_dRefRoll) state()

output (c_double v_refX, c_double v_refY, c_double v_refZ, c_double v_refRoll,

c_double v_refPitch, c_double v_refYaw) function splitNavigationData;

task t_splitJaviatorData input (c_double v_fromJaviator) state()

output (c_double v_x,c_double v_y,c_double v_z,c_double v_roll,

c_double v_pitch,c_double v_yaw) function splitJaviatorData;

task t_mergeThrusts input (c_double v_front,c_double v_rear,c_double v_left,c_double v_right)

state() output (c_double v_toJaviator) function mergeThrusts;

task t_computeState input (c_double v_toJaviator,c_double v_hutDown,c_double v_requestedState)

state() output (c_double v_attitudeState,c_double v_newAttitudeState) function computeState;

task t_processGroundReport input (c_double v_fromGroundState,c_double v_fromJaviator, c_double

v_toJaviator, c_double v_attitudeState) state() output (c_double v_toGroundStation)

function processGroundReport;

mode communication period 20 {

invoke t_splitNavigationData input ((fromGroundStation,0),(drefPitch,0),(drefRoll,0))

output ((refx,2),(refy,2),(refz,2),(refRoll,2),(refPitch,2),(refYaw,2));

invoke t_splitJaviatorData input ((fromJaviator,0))

output ((x,2),(y,2),(z,2),(roll,2),(pitch,2),(yaw,2));

invoke t_mergeThrusts input ((front,14),(rear,14),(left,14),(right,14)) output ((toJaviator,16));

invoke t_computeState input ((toJaviator,16),(shutDown,0),(requestedState,0))

output ((attitudeState,18),(newAttitudeState,18));

invoke t_processGroundReport input ((fromGroundStation,0),(fromJaviator,0), (toJaviator,16),

(attitudeState,18)) output ((toGroundStation,1));}

}

module attitude_Control start attitude {

task t_z input (c_double v_refz, c_double v_toJaviator,c_double v_z,c_double v_newAttitudeState)

state() output (c_double v_zt);

198

Chapter F. HTL Program for Heli Controller

task t_roll input (c_double v_refRoll, c_double v_toJaviator, c_double v_roll)

state() output (c_double v_rollt);

task t_pitch input (c_double v_refPitch, c_double v_toJaviator, c_double v_pitch)

state() output (c_double v_pitcht);

task t_yaw input (c_double v_refYaw,c_double v_toJaviator,c_double v_yaw)

state() output (c_double v_yawt);

task t_computeThrusts input (c_double v_zt,c_double v_rollt,c_double v_pitcht,c_double v_yawt)

state() output (c_double v_right,c_double v_left,c_double v_rear,c_double v_front);

mode attitude period 20 program attitude_Control_ref {

invoke t_z input ((refz,2),(toJaviator,0),(z,2),(newAttitudeState,0)) output ((zt,1));

invoke t_roll input ((refRoll,2), (toJaviator,0), (roll,2)) output ((rollt,1));

invoke t_pitch input ((refPitch,2), (toJaviator,0), (pitch,2)) output ((pitcht,1));

invoke t_yaw input ((refYaw,2), (toJaviator,0), (yaw,2)) output ((yawt,1));

invoke t_computeThrusts input ((zt,1),(rollt,1),(pitcht,1),(yawt,1))

output ((right,14),(left,14),(rear,14),(front,14)); }

}

module x_Control start xctrl {

task t_xctrl input(c_double v_refx, c_double v_x) state() output (c_double v_drefPitch);

mode xctrl period 100 program x_Control_ref {

invoke t_xctrl input((refx,22),(x,22)) output ((drefPitch, 100)); }

}

module y_Control start yctrl {

task t_yctrl input(c_double v_refy, c_double v_y) state() output (c_double v_drefRoll);

mode yctrl period 100 program y_Control_ref {

invoke t_yctrl input((refy,22),(y,22)) output ((drefRoll, 100)); }

}

}

program x_Control_ref {

module xctrl_ref start xstandby {

task t_xctrl_standby input(c_double v_refx, c_double v_x) state()

output (c_double v_drefPitch) function f_xstandby;

task t_xctrl_move input(c_double v_refx, c_double v_x) state()

output (c_double v_drefPitch) function f_xmove;

task t_xctrl_speedup input(c_double v_refx, c_double v_x) state()

output (c_double v_drefPitch) function f_xspeedup;

199

Chapter F. HTL Program for Heli Controller

mode xstandby period 100 {

invoke t_xctrl_standby input((refx,22),(x,22)) output ((drefPitch, 100)) parent t_xctrl;

switch(check(drefPitch)) xspeedup; }

mode xspeedup period 100 {

invoke t_xctrl_speedup input((refx,22),(x,22)) output ((drefPitch, 100)) parent t_xctrl;

switch(check(drefPitch)) xmove; }

mode xmove period 100 {

invoke t_xctrl_move input((refx,22),(x,22)) output ((drefPitch, 100)) parent t_xctrl;

switch(check(drefPitch)) xstandby; }

}

}

program y_Control_ref {

module yctrl_ref start ystandby {

task t_yctrl_standby input(c_double v_refy, c_double v_y) state()

output (c_double v_drefRoll) function f_ystandby;

task t_yctrl_move input(c_double v_refy, c_double v_y) state()

output (c_double v_drefRoll) function f_ymove;

task t_yctrl_speedup input(c_double v_refy, c_double v_y) state()

output (c_double v_drefRoll) function f_yspeedup;

mode ystandby period 100 {

invoke t_yctrl_standby input((refy,22),(y,22)) output((drefRoll,100)) parent t_yctrl;

switch(check(drefRoll)) yspeedup; }

mode yspeedup period 100 {

invoke t_yctrl_speedup input((refy,22),(y,22)) output ((drefRoll, 100)) parent t_yctrl;

switch(check(drefRoll)) ymove; }

mode ymove period 100 {

invoke t_yctrl_move input((refy,22),(y,22)) output ((drefRoll, 100)) parent t_yctrl;

switch(check(drefRoll)) ystandby; }

}

}

program attitude_Control_ref {

module attitude_ref start ground {

task t_z_ground input (c_double v_refz, c_double v_toJaviator,c_double v_z,c_double

v_newAttitudeState) state() output (c_double v_zt) function z_ground;

task t_roll_ground input (c_double v_refRoll, c_double v_toJaviator, c_double v_roll)

state() output (c_double v_rollt) function roll_ground;

task t_pitch_ground input (c_double v_refPitch, c_double v_toJaviator, c_double v_pitch)

200

Chapter F. HTL Program for Heli Controller

state() output (c_double v_pitcht) function pitch_ground;

task t_yaw_ground input (c_double v_refYaw,c_double v_toJaviator,c_double v_yaw)

state() output (c_double v_yawt) function yaw_ground;

task t_computeThrusts_ground

input(c_double v_zt,c_double v_rollt,c_double v_pitcht,c_double v_yawt)

state() output (c_double v_right,c_double v_left,c_double v_rear,c_double v_front)

function computeThrusts_ground;

task t_z_takeoff input (c_double v_refz, c_double v_toJaviator,c_double v_z,c_double

v_newAttitudeState) state() output (c_double v_zt) function z_takeoff;

task t_roll_takeoff input (c_double v_refRoll, c_double v_toJaviator, c_double v_roll)

state() output (c_double v_rollt) function roll_takeoff;

task t_pitch_takeoff input (c_double v_refPitch, c_double v_toJaviator, c_double v_pitch)

state() output (c_double v_pitcht) function pitch_takeoff;

task t_yaw_takeoff input (c_double v_refYaw,c_double v_toJaviator,c_double v_yaw)

state() output (c_double v_yawt) function yaw_takeoff;

task t_computeThrusts_takeoff

input(c_double v_zt,c_double v_rollt,c_double v_pitcht,c_double v_yawt)

state() output (c_double v_right,c_double v_left,c_double v_rear,c_double v_front)

function computeThrusts_takeoff;

task t_z_hover

input (c_double v_refz, c_double v_toJaviator,c_double v_z,c_double v_newAttitudeState)

state() output (c_double v_zt) function z_hover;

task t_roll_hover input (c_double v_refRoll, c_double v_toJaviator, c_double v_roll)

state() output (c_double v_rollt) function roll_hover;

task t_pitch_hover input (c_double v_refPitch, c_double v_toJaviator, c_double v_pitch)

state() output (c_double v_pitcht) function pitch_hover;

task t_yaw_hover input (c_double v_refYaw,c_double v_toJaviator,c_double v_yaw)

state() output (c_double v_yawt) function yaw_hover;

task t_computeThrusts_hover

input(c_double v_zt,c_double v_rollt,c_double v_pitcht,c_double v_yawt)

state() output (c_double v_right,c_double v_left,c_double v_rear,c_double v_front)

function computeThrusts_hover;

task t_z_land

input (c_double v_refz, c_double v_toJaviator,c_double v_z,c_double v_newAttitudeState)

state() output (c_double v_zt) function z_land;

task t_roll_land input (c_double v_refRoll, c_double v_toJaviator, c_double v_roll)

state() output (c_double v_rollt) function roll_land;

201

Chapter F. HTL Program for Heli Controller

task t_pitch_land input (c_double v_refPitch, c_double v_toJaviator, c_double v_pitch)

state() output (c_double v_pitcht) function pitch_land;

task t_yaw_land input (c_double v_refYaw,c_double v_toJaviator,c_double v_yaw)

state() output (c_double v_yawt) function yaw_land;

task t_computeThrusts_land

input(c_double v_zt,c_double v_rollt,c_double v_pitcht,c_double v_yawt)

state() output (c_double v_right,c_double v_left,c_double v_rear,c_double v_front)

function computeThrusts_land;

mode ground period 20 {

invoke t_z_ground

input((refz,2),(toJaviator,0),(z,2),(newAttitudeState,0)) output((zt,1)) parent t_z;

invoke t_roll_ground input((refRoll,2),(toJaviator,0),(roll,2)) output((rollt,1)) parent t_roll;

invoke t_pitch_ground

input((refPitch,2),(toJaviator,0),(pitch,2)) output((pitcht,1)) parent t_pitch;

invoke t_yaw_ground input((refYaw,2),(toJaviator,0),(yaw,2)) output((yawt,1)) parent t_yaw;

invoke t_computeThrusts_ground input ((zt,1),(rollt,1),(pitcht,1),(yawt,1))

output ((right,14),(left,14),(rear,14),(front,14)) parent t_computeThrusts;

switch(checkattitude()) takeoff; }

mode takeoff period 20 {

invoke t_z_takeoff

input((refz,2),(toJaviator,0),(z,2),(newAttitudeState,0)) output((zt,1)) parent t_z;

invoke t_roll_takeoff input((refRoll,2),(toJaviator,0),(roll,2)) output((rollt,1)) parent t_roll;

invoke t_pitch_takeoff

input((refPitch,2),(toJaviator,0),(pitch,2)) output((pitcht,1)) parent t_pitch;

invoke t_yaw_takeoff input((refYaw,2),(toJaviator,0),(yaw,2)) output((yawt,1)) parent t_yaw;

invoke t_computeThrusts_takeoff input ((zt,1),(rollt,1),(pitcht,1),(yawt,1))

output ((right,14),(left,14),(rear,14),(front,14)) parent t_computeThrusts;

switch(checkattitude()) hover; }

mode hover period 20 {

invoke t_z_hover

input((refz,2),(toJaviator,0),(z,2),(newAttitudeState,0)) output((zt,1)) parent t_z;

invoke t_roll_hover input((refRoll,2), (toJaviator,0), (roll,2)) output((rollt,1)) parent t_roll;

invoke t_pitch_hover

input((refPitch,2),(toJaviator,0),(pitch,2)) output((pitcht,1)) parent t_pitch;

invoke t_yaw_hover input ((refYaw,2),(toJaviator,0),(yaw,2)) output((yawt,1)) parent t_yaw;

invoke t_computeThrusts_hover input ((zt,1),(rollt,1),(pitcht,1),(yawt,1))

output ((right,14),(left,14),(rear,14),(front,14)) parent t_computeThrusts;

202

Chapter F. HTL Program for Heli Controller

switch(checkattitude()) land; }

mode land period 20 {

invoke t_z_land

input((refz,2),(toJaviator,0),(z,2),(newAttitudeState,0)) output((zt,1)) parent t_z;

invoke t_roll_land input((refRoll,2), (toJaviator,0), (roll,2)) output ((rollt,1)) parent t_roll;

invoke t_pitch_land input((refPitch,2),(toJaviator,0),(pitch,2)) output((pitcht,1)) parent t_pitch;

invoke t_yaw_land input((refYaw,2),(toJaviator,0),(yaw,2)) output((yawt,1)) parent t_yaw;

invoke t_computeThrusts_land input ((zt,1),(rollt,1),(pitcht,1),(yawt,1))

output ((right,14),(left,14),(rear,14),(front,14)) parent t_computeThrusts;

switch(checkattitude()) ground;}

}

}

203

Bibliography

[Abd-allah, 1997] Ahmed Abd-allah. Extending reliability block diagrams to software
architectures. Technical report, Center for Software Engineering, Computer Science
Department, University of Southern California, Los Angeles, 1997.

[Armstrong et al., 1996] Joe Armstrong, Robert Virding, Claes Wikström, and Mike
Williams. Concurrent Programming in Erlang. Prentice-Hall, second edition, 1996.

[Assayad et al., 2004] Ismail Assayad, Alain Girault, and Hamoudi Kalla. A bi-
criteria scheduling heuristics for distributed embedded systems under reliability
and real-time constraints. In International Conference on Dependable Systems and
Networks. IEEE, 2004.

[Balarin et al., 2003] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano
Lavagno, Claudio Passerone, and Alberto Sangiovanni-Vincentelli. Metropolis: An
integrated electronic system design environment. IEEE Computer, 36:45–52, 2003.

[Baleani et al., 2003] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Mau-
rizio Peri, Saverio Pezzini, and Alberto Sangiovanni-Vincentelli. Fault-tolerant
platforms for automotive safety-critical applications. In International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems. ACM, 2003.

[Ball, 1986] Michael O. Ball. Computational complexity of network reliability analy-
sis: An overview. IEEE Transactions on Reliability, 35:230–239, 1986.

[Bertin et al., 2001] Valerie Bertin, Eric Closse, Marc Poize, Jacques Pulou, Joseph
Sifakis, Paul Venier, Daniel Weil, and Sergio Yovine. Taxys = Esterel + Kronos.
A tool for verifying real-time properties of embedded systems. In Conference on
Decision and Control. IEEE Control Systems Society, 2001.

[Boussinot and de Simone, 1991] Frederic Boussinot and Robert de Simone. The ES-
TEREL language. Proceedings of the IEEE, 79(9):1293–1304, 1991.

204

BIBLIOGRAPHY

[Bouyssounouse and Sifakis, 2005] Bruno Bouyssounouse and Joseph Sifakis. Em-
bedded Systems Design. The ARTIST Roadmap for Research and Development.
Springer, 2005.

[Burns and Wellings, 2001] Alan Burns and Andy Wellings. Real-Time Systems and
Programming Languages. Addison Wesley, 3rd edition, 2001.

[Buttazzo, 1997] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publisher, 1997.

[Carlsson et al., 2003] Magnus Carlsson, Johan Nordlander, and Dick Kieburtz. The
semantic layers of timber. In The First Asian Symposium on Programming Lan-
gauges and Systems. Springer Verlag, 2003.

[Caspi et al., 2003] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis,
Stavros Tripakis, and Peter Niebert. From simulink to scade/lustre to tta: a layered
approach for distributed embedded applications. SIGPLAN Not., 38(7):153–162,
2003.

[Chang et al., 2003] Yung-Ruei Chang, Hung-Yau Lin, Ing-Yi Chen, and Sy yen Kuo.
A cut-based algorithm for reliability analysis of terminal-pair network using OBDD.
In Computer Software and Applications Conference, pages 368– 373, 2003.

[Chatterjee et al., 2008] Krishnendu Chatterjee, Arkadeb Ghosal, Thomas A. Hen-
zinger, Daniel Iercan, Christoph M. Kirsch, Claudio Pinello, and Alberto
Sangiovanni-Vincentelli. Logical reliability of interacting real-time tasks. In Pro-
ceedings of International Conference on Design, Automation and Test in Europe,
2008.

[Chen and Yuang, 1996] Yu G. Chen and Maria C. Yuang. A cut-based method for
terminal-pair reliability. IEEE Transactions on Reliability, 45:413–416, 1996.

[Ciancarini, 1996] Paolo Ciancarini. Coordination models and languages as software
integrators. ACM Computing Surveys, 28(2):300–302, 1996.

[Cristian, 1991] Flaviu Cristian. Understanding fault-tolerant distributed systems.
Communications of the ACM, 34(2):56–78, 1991.

[Deo and Medidi, 1992] Narsingh Deo and Muralidhar Medidi. Parallel algorithms
for terminal-pair reliability. IEEE Transactions on Reliability, 41:201–209, 1992.

[Dotson and Gobien, 1979] William P. Dotson and Jurgen O. Gobien. A new analysis
technique for probabilistic graphs. IEEE Transactions on Circuits and systems,
10:855–865, 1979.

205

BIBLIOGRAPHY

[Douglass, 2004] Bruce P. Douglass. Real Time UML: Advances in the UML for
Real-Time Systems. Addison-Wesley, 3rd edition, 2004.

[Durrett, 1995] Richard Durrett. Probability: Theory and Examples. Duxbury Press,
1995.

[Edwards, 2000] Stephen A. Edwards. Languages for Digital Embedded Systems.
Kluwer, Boston, Massachusetts, 2000.

[Farcas et al., 2005] Emilia Farcas, Claudiu Farcas, Wolfgang Pree, and Josef Templ.
Transparent distribution of real-time components based on logical execution time.
SIGPLAN Not., 40(7):31–39, 2005.

[Fault-Trees,] Fault-Trees. http://www.weibull.com/systemrelweb/
fault tree diagrams and system analysis.htm.

[Gay et al., 2003] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC language: A holistic approach to networked
embedded systems. In Proceedings of Programming Languages Design and Imple-
mentation, pages 1–11. ACM Press, 2003.

[Gelernter and Carriero, 1992] David Gelernter and Nicholas Carriero. Coordination
languages and their significance. Communications of the ACM, 35(2):97–107, 1992.

[Ghosal et al., 2004] Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch,
and Marco A. A. Sanvido. Event-driven programming with logical execution times.
In Proceedings of Hybrid Systems Computation and Control, LNCS 2993. Springer-
Verlag, 2004.

[Ghosal et al., 2005] Arkadeb Ghosal, Carlos Zavala, Marco A. A. Sanvido, and
J. Karl Hedrick. Implementation of afr controller in an event-driven real-time
language. In Proceedings of American Control Conference, 2005.

[Ghosal et al., 2006a] Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan,
Christoph M. Kirsch, and Alberto Sangiovanni-Vincentelli. A hierarchical coor-
dination language for interacting real-time tasks. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software, pages 132–141. ACM Press,
2006.

[Ghosal et al., 2006b] Arkadeb Ghosal, Thomas A. Henzinger, Daniel Iercan,
Christoph M. Kirsch, and Alberto Sangiovanni-Vincentelli. Hierarchical timing
language. Technical report, University of California, Berkeley, 2006.

206

BIBLIOGRAPHY

[Ghosal et al., 2007a] Arkadeb Ghosal, Daniel Iercan, Christoph M. Kirsch,
Thomas A. Henzinger, and Alberto Sangiovanni-Vincentelli. Separate compilation
of hierarchical real-time programs into linear-bounded embedded machine code. In
In Online Proceedings of Workshop on Automatic Program Generation for Embed-
ded Systems, 2007.

[Ghosal et al., 2007b] Arkadeb Ghosal, Sri Kanajan, Randall Urbance, and Alberto
Sangiovanni-Vincentelli. An initial study on monetary cost evaluation for the design
of automotive electrical architectures. In Society of Automotive Engineers World
Congress, 2007.

[Ghosal et al., 2008] Arkadeb Ghosal, Sri Kanajan, and Alberto Sangiovanni-
Vincentelli. A study on monetary cost analysis for product line architectures.
In Society of Automotive Engineers World Congress, 2008.

[Girault et al., 2003] Alain Girault, Hamoudi Kalla, Mihaela Sighireanu, and Yves
Sorel. An algorithm for automatically obtaining distributed and fault-tolerant
static schedules. In International Conference on Dependable Systems and Networks.
IEEE, 2003.

[Girault et al., 2004a] Alain Girault, Hamoudi Kalla, and Yves Sorel. An active repli-
cation scheme that tolerates failures in distributed embedded real-time systems. In
IFIP Working Conference on Distributed and Parallel Embedded Systems. Kluwer
Academic Publishers, 2004.

[Girault et al., 2004b] Alain Girault, Hamoudi Kalla, and Yves Sorel. A schedul-
ing heuristics for distributed real-time embedded systems tolerant to processor
and communication media failures. International Journal of Production Research,
42(14):2877–2898, 2004.

[Gosling et al., 2000] James Gosling, Greg Bollella, Benjamin Brosgol, Peter Dibble,
Steve Furr, and Mark Turnbull. The Real-Time Specification for Java. Addison-
Wesley, 2000.

[Guernic et al., 1991] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and
Claude Le Maire. Programming real time applications with SIGNAL. Proceed-
ings of the IEEE, 79:1321–1336, 1991.

[Halbwachs et al., 1991] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud. The synchronous data-flow programming language LUSTRE. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

207

BIBLIOGRAPHY

[Halbwachs, 1993] Nicolas Halbwachs. Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publisher, 1993.

[Henzinger and Kirsch, 2002] Thomas A. Henzinger and Christoph M. Kirsch. The
Embedded Machine: Predictable, portable real-time code. In Proceedings of Pro-
gramming Language Design and Implementation, pages 315–326. ACM Press, 2002.

[Henzinger et al., 2002] Thomas A. Henzinger, Christoph M. Kirsch, Rupak Majum-
dar, and Slobodan Matic. Time-safety checking for embedded programs. In EM-
SOFT 02: Embedded Software, LNCS 2491, pages 76–92. Springer-Verlag, 2002.

[Henzinger et al., 2003] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M.
Kirsch. Giotto: A time-triggered language for embedded programming. Proceed-
ings of the IEEE, 91:84–99, 2003.

[HTLpage,] HTLpage. http://htl.cs.unisalzburg.at.

[Iercan and Ghosal, 2006] Daniel Iercan and Arkadeb Ghosal. Timed input/output
determinacy for tasks with precedence constraints. In Proceedings of the 7th Inter-
national Conference On Tehnical Informatics, volume 2, pages 149–154. Editura
Politehnica, 2006.

[Iercan, 2005] Daniel Iercan. Tsl compiler. Technical report, ’Politehnica’ University
of Timisoara, 2005.

[Izosimov et al., 2005] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng.
Design optimization of time-and cost-constrained fault-tolerant distributed em-
bedded systems. In Proceedings of Conference on Design, Automation and Test in
Europe, pages 864–869, 2005.

[Izosimov et al., 2006a] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng.
Synthesis of fault-tolerant embedded systems with checkpointing and replication.
In Proceedings of the 3rd IEEE International Workshop on Electronic Design, Test
and Applications, pages 440–447, 2006.

[Izosimov et al., 2006b] Viacheslav Izosimov, Paul Pop, Petru Eles, and Zebo Peng.
Synthesis of fault-tolerant schedules with transparency/performance trade-offs for
distributed embedded systems. In Proceedings of Conference on Design, Automa-
tion and Test in Europe, pages 706–711, 2006.

[Javiator,] Javiator. http://javiator.cs.unisalzburg.at.

[Kececioglu, 1991] D. Kececioglu. Reliability Engineering Handbook, volume 2. Pren-
tice Hall, Inc., New Jersey, 1991.

208

BIBLIOGRAPHY

[Kenny and Lin, 1991] Kevin B. Kenny and Kwei-Jay Lin. Building flexible real-time
systems using the FLEX language. IEEE Computer, 24(5):70–78, 1991.

[Kirsch et al., 2005] Christoph M. Kirsch, Marco A. A. Sanvido, and Thomas A. Hen-
zinger. A programmable microkernel for real-time systems. In Proc. ACM/USENIX
Conference on Virtual Execution Environments, pages 35–45. ACM Press, 2005.

[Kligerman and Stoyenko, 1986] Eugene Kligerman and Alexander D. Stoyenko.
Real-time Euclid: A language for reliable real-time systems. IEEE Transaction
on Software Engineering, 12(9):941–949, 1986.

[Kopetz and Grunsteidl, 1994] Hermann Kopetz and Gunter Grunsteidl. TTP: A
protocol for fault-tolerant real-time systems. IEEE Computer, 27(1):14–23, 1994.

[Kuo et al., 1999] Sy-Yen Kuo, Shyue-Kung Lu, and Fu-Min Yeh. Determining
terminal-pair reliability based on edge expansion diagrams using OBDD. IEEE
Transactions on Reliability, 48:234–246, 1999.

[Liu and Lee, 2003] Jie Liu and Edward A. Lee. Timed multitasking for real-time
embedded software. IEEE Control Systems Magazine, 23(1):65–75, 2003.

[Matic and Henzinger, 2005] Slobodan Matic and Thomas A. Henzinger. Trading
end-to-end latency for composability. In Proceedings of Real-Time Systems Sym-
posium, pages 99–110, 2005.

[Musa et al., 1990] John D. Musa, Anthony Iannino, and Kazuhira Okumuto. Soft-
ware Reliability: Measurement, Prediction, Application. McGraw-Hill, second edi-
tion, 1990.

[Page and Perry, 1989] Lavon B. Page and Jo E. Perry. Reliability of directed net-
works using the factoring theorem. IEEE Transactions on Reliability, 38:556–562,
1989.

[Papadopoulos and Arbab, 1998] George A. Papadopoulos and Farhad Arbab. Co-
ordination models and languages. In 761, page 55. Centrum voor Wiskunde en
Informatica (CWI), ISSN 1386-369X, 31 1998.

[Pinello et al., 2004] Claudio Pinello, Luca Carloni, and Alberto Sangiovanni-
Vincentelli. Fault-tolerant deployment of embedded software for cost-sensitive
real-time feedback-control applications. In Design Automation and Test in Eu-
rope conference, 2004.

209

BIBLIOGRAPHY

[Pinello, 2004] Claudio Pinello. Design of Safety-Critical Applications, a Synthesis
Approach. PhD thesis, Electrical Engineering and Computer Sciences, University
of California, Berkeley, California, 2004.

[Ptolemy,] Ptolemy. http://ptolemy.eecs.berkeley.edu/.

[Rai and Kumar, 1987] S. Rai and A. Kumar. Recursive technique for computing
system reliability. IEEE Transactions on Reliability, 36:38–44, 1987.

[RBD,] RBD. http://www.weibull.com/systemrelweb/
rbds and analytical system reliability.htm.

[RTW,] RTW. http://www.mathworks.com/products/rtw/.

[Sangiovanni-Vincentelli et al., 2004] Alberto Sangiovanni-Vincentelli, Luca Carloni,
Fernando De Bernardinis, and Marco Sgroi. Benefits and challenges for platform-
based design. In Proceedings of Design Automation Conference, volume 91, pages
409–414. ACM Press, 2004.

[Simulink,] Simulink. http://www.mathworks.com/products/simulink/.

[Taft and Duff, 1997] S. Tucker Taft and Robert A. Duff. Ada 95 Reference Manual:
Language and Standard Libraries. Springer-Verlag, 1997.

[Tindel and Clark, 1994] Ken Tindel and John Clark. Holistic schedulability for dis-
tributed hard real-time systems. Microprocessing and Microprogramming - Euromi-
cro Journal, 40:117–134, 1994.

[vs Fault-Trees,] RBD vs Fault-Trees. http://www.weibull.com/systemrelweb/
comparing fault trees and rbds.htm.

210

	List of Figures
	List of Tables
	Introduction
	Automotive Industry
	Separation of Concerns
	Logical Execution Time
	Logical Reliability Model
	Refinement
	Hierarchical Timing Language
	Overview

	Programming Model
	Logical Execution Time Model
	Extension of LET Model
	Communicators and Logical Execution Time
	Logical Reliability Model
	Reliability Analysis
	Refinement

	Hierarchical Timing Language
	Overview of HTL
	Abstract Syntax
	Hierarchy and Relation between Components
	Task Invocation and Relation with Input/Output

	Operational Semantics
	Execution State
	Execution Trace

	Determinism
	Well-Formed Program
	Structural Properties
	Execution Properties
	Determinism

	Schedulability Analysis
	HTL Implementation
	Semantics of Implementation
	Schedulable Implementation
	Schedulability-Preserving Implementation

	Reliability Analysis
	Extension of HTL Syntax
	Implementation
	Semantics of Implementation
	Reliable Implementation
	Reliability Analysis
	Reliability-Preserving Implementation
	Extension of Program Structure

	Compiler
	The Embedded Machine
	Hierarchical E Code
	HTL in HE Code
	HE Code Generator for HTL
	Design Flow

	Control Applications
	Three-tank-system Controller
	Steer-by-Wire Controller
	Helicopter Controller

	Related Work
	Giotto
	Other Timed Languages
	Synchronous Languages
	Real Time Extensions
	Programming Languages for Specialized Domains
	Reliability Analysis for Embedded Systems
	Design Platforms

	Conclusion
	Reflections
	Future Work

	Appendices
	Appendix Reliability of Networks
	Appendix Flattening of HTL
	Appendix Giotto to HTL
	Appendix HTL Program for 3TS Controller
	Appendix HTL Program for SBW Controller
	Appendix HTL Program for Heli Controller
	Bibliography

