
A Scratchpad Memory Allocation Scheme for Dataflow
Models

Shamik Bandyopadhyay
Thomas Huining Feng
Hiren D. Patel
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-104

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-104.html

August 25, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards \#0720882 (CSR-EHS:
PRET) and \#0720841 (CSR-CPS)), the U. S. Army Research Office (ARO
\#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI \#FA9550-06-0312), the Air Force Research Lab (AFRL), the
State of California Micro Program, and the following companies: Agilent,
Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota.

A Scratchpad Memory Allocation Scheme for

Dataflow Models

Shamik Bandyopadhyay
EECS, UC Berkeley

shamikba@microsoft.com

Thomas Huining Feng
EECS, UC Berkeley

tfeng@eecs.berkeley.edu

Hiren D. Patel
EECS, UC Berkeley

hiren@eecs.berkeley.edu

Edward A. Lee
EECS, UC Berkeley
eal@eecs.berkeley.edu

August 25, 2008

Abstract

Scratchpad memories are alternatives to caches in real-time embedded
processors. They provide better timing predictability and lower energy
consumption. However, program code and data must be explicitly moved
in the memory hierarchy. Current practice either leaves it up to the
programmer to manually manage the memory or to use low-level compiler
techniques to create an allocation schedule. In this paper, we show how to
leverage the structure and semantics of a dataflow model to make optimal
use of scratchpads. We assume the heterochronous dataflow model of
computation (or its special cases). To show feasibility of the approach,
we formulate an ILP problem to minimize the memory access times. We
provide performance comparisons between our memory allocation scheme
and caches with LRU replacement policy.

1 Introduction

The use of on-chip memory in a processor’s memory hierarchy is critical in bridg-
ing the processor-memory gap. Caches are the common on-chip memory solution
for traditional architectures. However, for real-time embedded processors, on-
chip memories in the form of scratchpad memories are often favored over caches.
The reasons to opt for scratchpads are low power and energy consumption, and
a higher degree of predictability in program execution times [4, 35, 22, 30].
These advantages are in part because unlike caches, scratchpads do not require
hardware policies for determining when and what data needs to be moved in
and evicted from the on-chip memory. Instead, scratchpads offer a software
managed on-chip memory solution. This reduces the comparator logic thus re-
ducing energy and power consumption. It also provides better analyzability of

1

a program’s execution times, thus improving the predictability of its execution
times. But at the same time, scratchpads put the burden on the programmer
to schedule memory transfers from/to the off-chip. In efforts to reduce this bur-
den, automated memory allocation schemes are typically employed to schedule
transfers to/from scratchpads.

There are already many such allocation schemes for scratchpads [2, 24, 33, 23,
37, 26]. Most existing memory allocation schemes use compiler-based analysis
on C/C++ programs to develop the allocation strategy. This has the advan-
tages of reducing the programmer’s burden, better managing large programs,
and easier porting to different target architectures. However, extracting the
semantics of C/C++ programs through static analysis is in general a very dif-
ficult problem. This results in strict programming guidelines and conservative
estimations during static analysis. We find this to be a notable limitation in
most compiler-based memory allocation schemes.

Instead of using low-level compiler-based analysis to extract the structure
and semantics of a program, we propose using a higher-level dataflow model of
computation (MoC) that exposes the structure and semantics of a model for
analysis, which is difficult to perform via static analysis of C/C++. We use
the heterochronous dataflow (HDF) model of computation [16, 39] in Ptolemy
II [11] as a means to specify the program. The HDF MoC is an extension to
the synchronous dataflow (SDF) MoC [20, 5] with finite state machines (FSM).
It is well suited for implementing control protocols and adaptive algorithms
that require dataflow rate variation during execution [39]. In HDF semantics,
changes in the FSM’s state correspond to changes in the dataflow network and
the dataflow rates of the SDF. These state changes only occur at the end of an
iteration. We use these points of state changes to direct our memory allocation
scheme.

Certain special cases of HDF are used in domain-specific scenarios for em-
bedded systems development. LabVIEW (from National Instruments), for ex-
ample, uses structured dataflow, and is widely used in instrumentation systems.
SDF [20, 5] and cyclo-static dataflow (CSDF) [10] are used for signal process-
ing applications, for example in the products Advanced Design Systems (ADS)
from Agilent, SPW from CoWare, and its successor, Signal Processing Designer,
as well as several applications aimed at audio, image, and video processing.
Structured dataflow and SDF have recently been elaborated into the language
StreamIT, used for programming multicore systems [31]. Because HDF is a
generalization of these MoCs, our methods could apply in principle to all with
minimal adaptation.

Our dataflow specification uses actor-oriented [19] design principles, where
“actors” (components that are in charge of their own actions) communicate by
exchanging messages. The streams of messages in the form of data tokens are
called signals in the dataflow. Actors execute in response to the available data
in their input signals. These actors and signals connecting them define the
structure of the HDF model.

We exploit the structure and semantics of HDF models to gather information
about the temporal pattern and access frequencies of memory references and

2

requirements of the computation blocks. Our memory allocation scheme uses
this information to create a schedule for program code and data.

For us, program code and data are synonymous to actor code and data
buffers in an HDF model.1 Our memory allocation scheme uses an integer linear
programming approach for both the actor code and data buffer memory for the
HDF model to schedule transfers to the scratchpad memory. Our optimization
criterion is to minimize the memory access time cost. However, we also show
the flexibility of our formulation by changing the optimization criterion to low
energy consumption. As a bonus, we show that our memory allocation scheme
has a higher degree of timing predictability when compared to caches. We
compare our memory allocation scheme with the use of caches with least recently
used (LRU) replacement policy.

1.1 Main Contributions

Our contributions in this paper are: 1) to present a scratchpad memory al-
location scheme that uses the structure and semantics of an HDF model to
make optimal use of the scratchpads, 2) to show the flexibility of this allocation
scheme by extending it to support multiple levels of memory in the memory
hierarchy, 3) to easily change the optimization metric between memory access
time and energy consumption and 4) to perform memory allocations based on
history information. We also present experimental results obtained from using
our memory allocation scheme.

1.2 Organization

We present background on the synchronous dataflow and heterochronous dataflow
models of computation and brief descriptions of caches and scratchpad memories
in Section 2. Section 3 discusses related work in using scratchpads and alloca-
tion algorithms. We formulate our problem by describing our assumptions and
observations in Section 4. In Section 5, we describe our dynamic scratchpad al-
location scheme. We explore this scheme to show optimization strategies based
on the actor and data code memory access time and energy costs. In addition,
we extend our optimizations to take multiple allocations based on execution his-
tory for each HDF state into account in Section 5.4. Our experimental results
are presented in Section 6 and in Section 7 we conclude.

2 Background

2.1 Synchronous Dataflow

A dataflow model of computation [21] represents concurrent programs through
interconnected blocks called actors. Each such block represents a function or

1Without loss of generality, we assume that actor state is modeled as buffers in a feedback
loop.

3

A

B

D

C

E

1
2 13

1
3

1 2

Figure 1: An SDF model shown as a directed graph

a set of functions that maps the inputs to the outputs of the actor. Actors
receive data on their input ports and produce data on their output ports. The
basic behavior of an actor is to perform its specified computation upon every
invocation or firing, and communicate data tokens with other actors over the
interconnecting channels. To model actors with state, we assume an input port
and an output port for the state, where the output is connected directly back
to the input via a buffer that is initialized with the initial state.

Synchronous dataflow (SDF) [20], is a dataflow model of computation where
actors communicate through FIFO queues and the number of data tokens pro-
duced and consumed by each actor on each invocation is specified a priori.
These numbers are known as the production rate and the consumption rate,
separately. They together give the rate signature of an actor. The memory
required by executing an SDF model consists of the memory for actor code and
that for data buffers. An example of SDF model is shown in Figure 1 [39].

Each data buffer can contain initial tokens or delays. The number of initial
tokens on an edge is equal to the initial production rate of the source actor for
that edge. Figure 1 shows two units of delay on the buffer connecting actors D
and E. An iteration of an SDF model is a sequence of firings of the actors that
returns the FIFO buffers to their original sizes. A periodic admissible schedule or
valid schedule for an SDF model is a sequence of actor firings such that deadlock
does not occur and no net change in the number of tokens present on the edges
is produced [20]. The set of firings fi for each actor ai in a schedule is called
the firing vector and is computed using balance equations on each of the edges
of the SDF model.

2.2 Heterochronous Dataflow (HDF)

SDF is a very robust and well studied model of computation that allows for
static schedule and deadlock-free execution. However, one key limitation of
SDF models is that the rate signatures of actors must be fixed and defined a
priori. For this reason, SDF models prove unsuitable for implementing control
protocols and adaptive algorithms that require dataflow rate variation during
execution [39]. Heterochronous dataflow (HDF) is a model of computation that
significantly increases the expressiveness of SDF and makes it suitable for im-
plementing variable rate models.

4

HDF1

A B C
3,1 1,22 1

FSM1

B1 B2
A&A1

A

D

SDF1

3 1
E

SDF2

1 2

Figure 2: A simple HDF model

The HDF model of computation was originally introduced by Girault et
al in [16]. In simple terms, HDF is a heterogeneous composition of finite state
machines (FSM) and SDF, in which the state changes correspond to the changes
in dataflow networks and dataflow rates. An actor in HDF has a finite number
of rate signatures, where each rate signature specifies the number of tokens
produced and consumed in one firing [16]. A composite actor (a composition of
other actors) in HDF is composed of an FSM, whose individual states refine into
SDF or HDF models. The current state of the FSM determines the current SDF
or HDF refinement of the particular actor. The local schedule for the SDF or
HDF refinement determines the current rate signature of the composite actor.
Refinements in states other than the current state are considered disconnected
from the system.

Each state of HDF is identified by a unique combination of the current states
of the constituent actors. The state of the HDF model specifies particular rate
signatures for its constituent actors, which can be used to solve the balance
equations and compute the schedule for that state. Hence, each state of the
HDF model corresponds to a different schedule for the system. Changes in rate
signatures or state changes are restricted to occur only at the end of an iteration
of the HDF model.

Figure 2 [16] shows a simple HDF model. Actor B has two possible states
B1 and B2. The states B1 and B2, refine into simple SDF models. Thus there

5

are two possible (global) states:

S1 = AB1C

S2 = AB2C

In state S1, B consumes three tokens and produces one. This leads to the sched-
ule [A,A,A,B,B,C,C]. In state S2, B consumes one and produces 2, leading to
the schedule [A,B,B,C,C,C,C]. In general, HDF models can contain multiple
composite actors at the same level and can have an arbitrary depth of hierar-
chy [39]. It is possible to statically pre-compute all schedules for all reachable
states of the HDF model, assuming all state machines are finite. This avoids
the overhead of computing a schedule every time after a state transition.

Structured dataflow, as used in LabVIEW and StreamIT, borrows ideas from
structured programming to create nested constructs that be modeled by HDF.
Specifically, these nested constructs express conditional processing of tokens and
iteration (both manifest and data dependent). CSDF can also be modeled by
HDF by constraining the guards on mode transitions so that the state machines
cycle periodically. Parameterized SDF [8] can also be modeled by HDF, but the
state machines are no longer finite state, so the usefulness of this is questionable.

2.3 Caches

A cache is a fast on-chip memory, in which frequently used data elements are
stored to make program execution faster. It takes advantage of the principle of
locality [18], which states that an average computer program at any particular
time tends to execute the same instructions and access the same blocks of data
repeatedly. In order to fully exploit the memory hierarchy and locality of mem-
ory references, the highest levels of memory must attempt to store the most
frequently accessed subset of memory references. Each location in the cache
contains a datum and a tag, which is the index of the datum in main memory
and serves to identify the datum. When the processor wishes to read or write a
location in main memory, it first checks whether that memory location is in the
cache. This is accomplished by comparing the address of the memory location
to all tags in the cache that might contain that address. If the processor finds
that the memory location is in the cache, we say that a cache hit has occurred;
otherwise we speak of a cache miss. In the case of a cache hit, the processor
immediately reads or writes the data in the cache line. In the case of a cache
miss, most caches allocate a new entry, which comprises the tag just missed
and a copy of the data from memory, and replace an existing entry in the cache
with this new entry. It is to be noted that the entire operation of the cache,
described above, is controlled by hardware.

The total power consumption of a cache is the sum of the power consumption
of the tag array hardware, the data array hardware, comparators, multiplexers
and output drivers. Similarly, the total area of the cache is also the sum of the
areas of each of the aforementioned components. On-chip caches account for
25% of the total power consumption of the DEC Alpha 21164, and 43% of the

6

total power consumption of the Strong Arm 1110 [12]. In the embedded space,
caches are present in most ARM processors, the Motorola ColdFire MCF5 and
the Intel PXA series processors.

2.4 Scratchpad Memories (SPMs)

A scratchpad memory (SPM) is a fast software-managed on-chip SRAM mem-
ory. The SPM is mapped into an address space disjoint from the off-chip main
memory but connected to the same address and data buses. The actual place-
ment of data objects into the SPM address space is performed by software and
is generally done in the last stage of the compiler. Thus, there is no need to
check for the availability of the data/instruction in the SPM. From a hardware
standpoint, this greatly reduces the hardware complexity of the SPM. There is
no need for the comparators, multiplexers, the hit/miss acknowledge logic and
the tag array as for caches. The simplicity of the hardware architecture also
greatly lowers the power consumption and area of a SPM [4].

There are three types of schemes for scratchpad memory allocation. These
are runtime allocation, dynamic allocation and static allocation. The key point
differentiating the types of schemes is the length of program execution for which
the scratchpad memory allocation stays unchanged.

Runtime allocation refers to memory allocation schemes that continuously
track the changing memory access profile by altering the scratchpad memory
allocation at run time. The frequency of alteration might be as high as on every
memory access. A runtime scheme would generate the best memory allocation
given that the actual execution path of an HDF model is not known a pri-
ori, but only at runtime. However, a runtime allocation technique is infeasible
in the context of embedded software generated from HDF models. A runtime
allocation technique would require the actual allocation algorithm to be imple-
mented in embedded software, and executed at each stage to determine the next
memory allocation. It is commonly the case that memory allocation algorithms
are based on Linear Programming or Dynamic Programming solutions to NP-
Hard and NP-Complete problems. The overhead for such an implementation,
in embedded code, shall prove prohibitively expensive in both added code size
and in execution speed. Moreover, the implementation of the allocation algo-
rithm in embedded code would make the actual execution time less predictable.
This would prove detrimental since predictability is often more important than
optimality for many embedded applications.

Static allocation refers to a memory allocation scheme that remains un-
changed for the entire length of program execution. In static allocation schemes,
the memory allocation for the entire program is made a priori and left constant
throughout program execution. Thus, static allocation schemes can be imple-
mented prior to the code generation stage for HDF models and no significant
overhead is incurred in the generated code. A key drawback of a fully static
allocation is that it is often unable to capture the temporal changes in memory
accesses. The restriction that the memory allocation is constant for the entire
program makes it suboptimal for programs with wide variations in temporal

7

localities of memory access.
Dynamic allocation refers to a memory allocation scheme that can be altered

at specific pre-identified program points but remains constant and unchanged in
between these program points. Dynamic allocation schemes serve as a compro-
mise between static and runtime allocation schemes. By allowing the memory
allocation to change, it allows temporal localities of memory accesses to be
tracked. On the other hand, by allowing changes to occur only at pre-identified
points, it ensures that the allocations can still be generated a priori without
incurring significant overheads in the generated code. The key factor for the
success of a dynamic allocation is the proper identification of the program points
at which allocation changes can take place. The chosen program points should
mark the boundaries between regions of varying memory access patterns. It
should be noted that HDF exposes such boundaries at each point of transition
from one state to another. This is one of the key reasons for choosing HDF as
the model of computation for this work. In the case of HDF models, a dynamic
allocation scheme would ensure predictable performance for any particular ex-
ecution path through the Trellis, as in Figure 3. A dynamic allocation scheme
provides the benefits of both static and runtime allocation schemes and hence
is the scheme of choice for our memory allocation algorithm for HDF models.

3 Related Work

In the context of embedded systems, SPMs have proven to be the better choice
for on-chip memory architecture in terms of predictability, but with the increase
in the use of embedded processors for mobile applications, power and energy
consumption has become a critical limiting factor. The power and energy con-
sumption of SPMs are significantly lower than that of caches [6]. Scratchpad
memories are also significantly smaller in area than caches of similar capacity.
In [3], Banakar et al show that on average a scratchpad memory has 34% smaller
area and 40% lower power consumption than a cache of the same capacity [28].

Since SPMs are managed by the program, the responsibility of scheduling
the memory allocation is often passed onto the programmers. This however, is
cumbersome and thus, several automatic scratchpad allocation algorithms have
been developed to address this issue. For example, Panda et al [25] present a
partition algorithm that uses an intersecting lifetime time criterion for deciding
which arrays to allocate on SPMs and off-chip. This metric exposes the possi-
ble cache conflicts between accesses to arrays and aims to minimize the cache
conflict penalties. Steinke et al [29], Avissar et al [2] and Xue et al [38] address
similar problems but focusing on energy reduction. Puaut et al compare locked
caches to scratchpad memories [27] with respect to instruction code. Their ex-
periments show that SPMs suffer from fragmentation and propose splitting of
the basic blocks.

Software caching [17] is another method, which emulates the workings of a
hardware cache in software by maintaining software cache tags and hit/miss
functions. Other methods aim at an energy optimized or latency optimized

8

static allocation of variables by modeling the problem as an Integer Linear
Programming (ILP) or Dynamic Programming problem [28, 34, 1, 2]. Yet, other
methods attempt to capture some of the dynamism in the program behavior and
locality of references, by generating flow graphs and running graph partitioning
algorithms on them [32, 15, 14].

Whitham and Audsley [36, 37] use trace instruction scratchpads to reduce
execution times for real-time architectures. They propose algorithms to identify
traces that minimize the average case execution by parallelizing the frequently
executed code blocks. Their approach uses a static allocation scheme where
input programs are specified in C. Furthermore, trace scratchpads are only used
for the instruction memory.

Milidonis et al describe a decoupled processor architecture that only uses
SPMs in its memory hierarchy [23]. They dedicate an Access processor to
perform transfers between various levels of the memory hierarchy and from the
L1 SPM to directly the register file. The memory allocation is supported via
the compiler that requires a certain amount of static analysis to be done. The
Execute processor is the traditional integer and floating unit, which interacts
with the Access processor via interrupts and handshake protocol.

In order to make good use of scratchpad memories, there is great need for
efficient algorithms for scratchpad memory mapping and allocation. While low
level algorithms already exist as mentioned above, these algorithms are ham-
pered by incomplete semantic information about program structure and dy-
namic behavior. HDF models have much more exploitable information than
C/C++ programs. We show here how to exploit that information.

4 Problem Definition

We address the problem of formulating an automatic allocation scheme for map-
ping the key memory requirements of HDF models to the scratchpad memory.
This scheme presents a high level, coarse granularity scratchpad allocation for
HDF models. Since the HDF model of computation is an extension to the SDF
model of computation, we consider code memory (actor code) and data memory
(buffer data) as the key memory requirements [9].

4.1 Structure of an HDF Model

We use Ptolemy II’s graphical interface and the HDF domain to specify an
HDF model. In this domain, actors are connected via signals. This makes it
straightforward to identify actor code and the corresponding data buffers in the
HDF model. We assume that actors and data buffers are atomic units so that
an actor is entirely allocated to the scratchpad or not at all. This is true for
data buffers as well.

9

Current

State

Iterations

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

S2

S3

S4

S5

S6

S7

S8

S9

Iter0 Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 Iter9 Iter10 Iter11 Iter12 Iter13 Iter14

Initial

State

Figure 3: Trellis Diagram for the Execution of an HDF Model

4.2 Temporal Characteristics of Memory Accesses in an
HDF Model

As mentioned earlier, HDF models can potentially change state at the end of
a global iteration. For the duration of a particular iteration, the state, the
rate signatures and the schedule remain fixed. Thus the entire execution of an
HDF model can be viewed as a path through a Trellis diagram. For example,
Figure 3 shows the first 14 iterations of an HDF model with 9 possible states.
The model starts in initial state S2 and then transitions to the shaded state
at the end of each iteration. For the duration of any particular iteration, the
model stays in the shaded state. The Trellis diagram can also be embellished
with all potential state changes at each iteration point. It would then depict
all theoretically possible execution paths. All potential changes for the first two
iterations are shown using dotted lines. By virtue of the semantics of HDF, the
actual path of execution is data dependent and not known a priori.

An important observation here is that changes in memory access patterns
follow the changes in state. Memory access patterns for a particular state with
its particular schedule and rate signatures are usually different from the access
patterns for another state. Thus, memory accesses follow a particular trend for
the duration of one iteration and then potentially change to a different trend at
the next iteration.

10

Memory Allocation
List

Memory Allocation
Algorithm

HDF Model

Processor Core

Compiler

Data
Scratchpad

Instruction
Scratchpad

Data
Memory

Program
Memory

Instruction
Data Bus

Instruction
Address Bus

Data
Data Bus

Data
Address Bus

Figure 4: Modified memory architecture: the instruction and data scratchpad
are controlled by the compiler based on the allocations generated by the memory
allocation algorithm

4.3 Assumptions

Assumption 1: Memory architecture

We assume a Harvard architecture for the memory system. We consider the code
memory and data memory to be present in separate independent memory banks
with independent buses, as depicted in Figure 4. Since the scratchpad memory
is completely controlled by software, the memory allocations determined by our
allocation algorithm are pre-computed and stored in a memory allocation list.
The software controller accesses this list between iterations to decide whether
the items of code memory and data memory should be stored in the scratchpad
for the next iteration.

Assumption 2: The off-chip memory is large enough to contain all
actor code and data buffers.

We assume a memory model where each lower level of memory contains all the
contents of a higher memory level. In our case, this implies that the off-chip
memory contains all the contents of the scratchpad in it. We also assume that
the off-chip memory is large enough to accommodate the entire code and data
memory requirements of the HDF model.

11

Assumption 3: Actors are black-boxes.

Atomic actors are considered opaque. Opaque actors do not have any refine-
ments within them. We treat these actors solely as computational blocks and do
not attempt to explore the implementation specifics of the actor itself. In other
words, we are not concerned with any optimizations of memory requirements
that are specific to the implementation of an actor.

Assumption 4: Actors and data buffers are atomic units with respect
to memory allocation.

We consider atomic actors and data buffers to be atomic entities for the purposes
of memory allocation. The code block for an actor is either allocated entirely
in the scratchpad or is not allocated in the scratchpad at all. The same applies
for data buffers.

Assumption 5: The code size of an actor is representative of the
number of accesses to code memory in a single invocation of an actor.

In order to make allocation decisions, we need to know the total number of
accesses to code memory made during the execution of an actor. However, the
actor code may contain branches that cause the actual number of accesses to
differ. Extensive profiling or static analysis of the actor code could be used
(imprecisely) to guage the number of accesses per invocation. Instead, we sim-
plify the scenario by assuming the code size of an actor to be representative
of the number of accesses to its code memory in an invocation. The code size
is a parameter in our algorithms and can be easily replaced by the results of
profiling.

Assumption 6: An allocation scheme remains fixed in each state of the
HDF model; allocation schemes are switched only at state changes.

Our algorithm computes an optimal allocation scheme for each reachable state
of the HDF model. Based on this assumption, we claim our schemes to be
optimal.

An improvement that we will explore in the near future is to relax this
assumption by allowing changes of allocation schemes within a state. This
potential improvement on the one hand opens up opportunities for further op-
timization, but on the other hand complicates the allocation algorithm. Its
effectiveness heavily depends on the applications. For HDF models in which
state changes are frequent and the overhead of moving data in and out of the
scratchpad is relatively high, allowing changes of allocation scheme in a state
may even degrade performance.

12

Assumption 7: Firing schedule

We further assume for any reachable state of the HDF model, a single appear-
ance firing schedule [20], which includes the firing count and firing order of ac-
tors. The firing order does not affect the performance of our memory allocation
scheme. However, a single appearance schedule supplies caches with the best
possible schedule. This allows us to compare the performance between caches
with best possible schedules and SPMs with our memory allocation scheme.

4.4 Observations

Observation 1: The total number of code memory accesses for an
actor in a particular state’s schedule is the product of its code size
and firings.

Given Assumption 5, for an actor Ai, code size Ci represents the number of
code memory accesses for a single invocation of an actor. In a given state, if Ai

is scheduled to fire fi times, then

Number of code memory accesses = fi · Ci

Observation 2: The code memory is read-only.

The actor code is not self-modifiable. Hence, the accesses to it is read-only.

Observation 3: The cost of moving an actor to the scratchpad mem-
ory is the product of the unit migration cost from off-chip to the
scratchpad and the code size of the actor.

In order to move the code block of an actor from off-chip memory to the scratch-
pad, we need to move the number of memory elements equal to the code size
Ci of the actor Ai. If the migration cost (time) for a single memory element is
Tmigration then the cost of moving an actor to scratchpad is:

Cost of migration = Tmigration · Ci

Observation 4: The cost of evicting an actor from scratchpad memory
is nil.

Because the off-chip memory contains all contents of the scratchpad, there is no
need to write back the code when an actor is evicted from the scratchpad.

Observation 5: The total number of write accesses to the data mem-
ory for a data buffer in a particular schedule is the product of the
production rate and the number of firings of the source actor.

A single invocation of a source actor Ai produces pi tokens on its outgoing
channel, where pi is the production rate of the actor. Storing each token results

13

in a memory write. Hence, for a given schedule,

Number of data memory writes for a buffer = pi · fi

Observation 6: The total number of read accesses to the data mem-
ory for a data buffer in a particular schedule is the product of the
consumption rate and the number of firings of the destination actor.

A single invocation of a destination actor Ai consumes ci tokens on its incoming
channel, where ci is the consumption rate of the actor. Consuming each token
results in a memory read. Hence, for a given schedule,

Number of data memory reads for a buffer = ci · fi

Observation 7: The cost of moving a data buffer to the scratchpad
memory is the product of the unit migration cost from off-chip to the
scratchpad and the number of tokens present in the data buffer.

The preserved state of a data buffer is the number of tokens Ii in it prior to the
beginning of an iteration. Hence, when assigning a data buffer to the scratchpad,
this state must be copied into the scratchpad.

Cost of moving a data buffer to scratchpad
= TOffchip→SPW · Ii

Observation 8: The cost of removing a data buffer from scratchpad
memory is the product of the unit migration cost from the scratchpad
memory to the off-chip memory and the number of tokens in the data
buffer.

Given that a single iteration returns the number of tokens in a data buffer to
its initial number, the remaining tokens must be written back to the off-chip
memory upon evicting a data buffer from scratchpad.

Cost of evicting a data buffer from scratchpad
= TSPW→Offchip · Ii

5 Dynamic Scratchpad Allocation Scheme

In this section we develop an allocation technique to map the actor code and
data buffers of HDF models to the scratchpad memory. We select state changes
as the points at which allocations of the scratchpad memory are altered. An
allocation is fixed for the duration of a state. For each state, we statically
compute an optimal allocation scheme.

14

G enerate Schedules
and Buffer

Requirem ents for All
States

G enerate M em ory
Allocation M aps for All

States

State
Schedule and
M em ory M ap

List

Dynam ic M em ory
Allocation Algorithm

Pre
Execution

Stage

Begin M odel
Execution

Load SPM based
on M em ory M ap
for Current State

Execute single
global iteration

Iterations
Left?

End

State
Changed ?

No

Ye
s

Yes

No

 Execution
Stage

Figure 5: Overall structure of memory allocation scheme

15

5.1 Overall Structure of Allocation Scheme

Figure 5 shows the overall organization of the dynamic allocation scheme. The
scheme is separated into two phases, a pre-execution stage completed prior to
model execution and a memory mapping stage during execution.

In the pre-execution stage, the schedules and memory requirements for all
states are generated. They are supplied as inputs to the memory allocation
algorithm. The algorithm generates a memory map for each state that identifies
the actors and buffers to be placed in the scratchpad.

During the execution of the HDF model, state transitions are identified at
the end of each iteration. Immediately after a state transition, the scratchpad
memory is loaded with the actor code and data buffers specified by the memory
map for the new state. Only those actor code and data buffers that are not
already in the scratchpad memory are loaded. If necessary, tokens residing in
buffers in the old state are evicted.

5.2 Memory Allocation Algorithm

The memory allocation algorithm generates the list of actors and data buffers
to be placed in the scratchpad for each state based on the supplied schedule,
rate signatures and memory requirements. The general problem of optimal data
allocation is known to be NP-complete. We formulate this problem as an integer
linear programming (ILP) problem.

5.2.1 Formulation of Variables

We formulate the variables for the ILP problem in Table 1. Among them, the
following are the 0/1 Boolean variables formulated to represent the locations of
actor code and data buffers.

MOffchip(ai) =
{

1 if actor ai is in off-chip only
0 otherwise

MSPW (ai) =
{

1 if actor ai is in scratchpad
0 otherwise

MOffchip(di) =
{

1 if data buffer di is in off-chip only
0 otherwise

MSPW (di) =
{

1 if data buffer di is in scratchpad
0 otherwise

Note that the above are two pairs of complementary variables.

MOffchip(ai) = 1−MSPW (ai)

MOffchip(di) = 1−MSPW (di)

16

Variable Meaning
U Number of memory units
A Number of actors in the current

state
ai i-th actor (i ∈ [1, A])
S(ai) Code size of ai in bytes
F (ai) Number of firings of ai

D Number of data buffers
di i-th data buffer (i ∈ [1, D])
S(di) Size of di in bytes
Stoken Size of a token in bytes
I(di) Number of initial tokens on di

prod(di) Production rate of source actor for
di

cons(di) Consumption rate of destination ac-
tor for di

Fsource(di) Number of firings of the source actor
of di

Fdest(di) Number of firings of the destination
actor of di

SizeDataSPM Size of scratchpad for data in bytes
SizeInstrSPM Size of scratchpad for actor code in

bytes
TOffchipRd

Time to read a byte from off-chip
memory in cycles

TOffchipWr
Time to write a byte to off-chip
memory in cycles

TSPW Rd
Time to read a byte from scratchpad
in cycles

TSPW Wr
Time to write a byte to scratchpad
in cycles

TOffchip→SPW Time to move a byte from off-chip
to scratchpad in cycles

TSPW→Offchip Time to move a byte from scratch-
pad to off-chip in cycles

MOffchip(ai) Whether ai is in off-chip only
MSPW (ai) Whether ai is in scratchpad
MOffchip(di) Whether di is in off-chip only
MSPW (di) Whether di is in scratchpad

Table 1: Variables in the integer linear programming formulation

17

5.2.2 Objective Function and Constraints for Actor Allocation

The objective of our allocation algorithm is to generate a cost-optimal allocation.
We consider memory access time as the cost criterion. We will therefore seek
to find the allocation that minimizes the total access time in each state.

We formulate two separate ILP problems: one to optimize allocation of
actor code and the other to optimize allocation of data buffers. Because we
have assumed that the scratchpad memory for actor code and data buffers is
separated, these two problems can be solved independently. (Combining the
two problems into one helps to remove this assumption.)

The access time for accessing actor code can be computed with the following
formula:

Obj1 =
A∑

i=1

(
MOffchip(ai)

(
TOffchipRd

· F (ai) · S(ai)
)

+MSPW (ai)
(
TSPW Rd

· F (ai) · S(ai)

+TOffchip→SPW · S(ai)
))

(1)

Obj1 is the objective function that we minimize in the first ILP problem.
The first term specifies the time spent in memory reads from off-chip memory.
(Observation 1, 2) The first part of the second term specifies the time spent in
memory reads from scratchpad while the second part specifies the time spent in
moving the code block from off-chip memory to scratchpad. (Observation 1, 3)

The constraints are: ∀i ∈ [1, A],

MOffchip(ai) +MSPW (ai) = 1

A∑
i−1

(
MSPW (ai) · S(ai)

)
≤ SizeInstrSPM

The first set of constraints ensures that each actor is located either in both
the scratchpad and off-chip memory, or in off-chip memory only. The second
set of constraints ensures that the sum of the sizes of all the actors assigned to
the scratchpad does not exceed the size of the scratchpad. (Due to Assumption
2, there is no limit on off-chip memory.)

5.2.3 Objective Function and Constraints for Data Buffer Allocation

The objective function for data buffers is more complicated for two reasons:

• Data buffers are both read from and written to. (Observation 5, 6)

• Initial tokens in data buffer need to be considered. (Observation 7, 8)

18

However, the objective is similar, which is to minimize the memory access
time. The total memory access time for all accesses to data buffers in one
complete iteration of a state is:

Obj2 =
D∑

i=1

(
MOffchip(di)

(
TOffchipWr

· prod(di) · Fsource(di)

+TOffchipRd
· cons(di) · Fdest(di)

)
+MSPW (di)

(
TSPW Wr

· prod(di) · Fsource(di)

+TSPW Rd
· cons(di) · Fdest(di)

+TOffchip→SPW · I(di) + TSPW→Offchip · I(di)
))

Obj2 is the objective function we minimize for the second ILP problem. It
should be noted that the entire function should be multiplied by Stoken in order
for it to be an accurate expression. However, since an overall multiplicative
factor does not alter the solution of the ILP problem, we decide to eliminate it
from the expression. The first term specifies the time spent in memory accesses
from off-chip memory. (Observation 5, 6) The first part of the second term
computes the corresponding access time for buffers placed in the scratchpad.
The second part of the second term specifies the time spent in moving the
number of initial tokens from off-chip memory to scratchpad and the time spent
in moving the tokens left in the buffer at the completion of the iteration to
off-chip memory. (Observation 7, 8) The summation ensures that the memory
access times for all data buffers are taken into consideration.

The constraints for data buffers are similar to constraints for actor code
allocation: ∀i ∈ [1, D],

MOffchip(di) +MSPW (di) = 1

A∑
i=1

MSPW (di) · S(di) ≤ SizeDataSPM

5.2.4 Extension to the ILP Formulation for Multiple Memories in
the Hierarchies

The ILP problems can be extended to allow optimization for multiple memories
in the hierarchy. The current formulation considers a two-level hierarchy with a
scratchpad and an off-chip memory only. However, various embedded processors
have more than one level of scratchpad memory with variable access times and
energy consumptions. In that case, certain variables would have to be modified
as in Table 2.

19

Variable Number of memory units
Sizej Size of the j-th memory unit in bytes

(j ∈ [1, U])
TjRd Time to read a byte from the j-th mem-

ory unit in cycles (j ∈ [1, U])
TjWr Time to write a byte to the j-th mem-

ory unit in cycles (j ∈ [1, U])
Tj→Main Time to move a byte from the j-th

memory unit to main memory unit in
cycles (j ∈ [1, U])

TMain→j Time to move a byte from main mem-
ory unit to the j-th memory unit in cy-
cles (j ∈ [1, U])

Table 2: Modified variables for memory hierarchies

There have to be Boolean variables for every memory unit:

Mj(ai) =

 1 if actor ai is in the j-th memory unit
(j ∈ [1, U])

0 otherwise

Mj(di) =

 1 if data buffer di is in the j-th memory
unit (j ∈ [1, U])

0 otherwise

The objective functions would now have to include a double summation to
account for all memory units.

Obj′1 =
U∑

j=1

A∑
i=1

(
Mj(ai)

(
TjRd · F (ai) · S(ai)

+TMain→j · S(ai)
))

Obj′2 =
U∑

j=1

D∑
i=1

(
Mj(di)

(
TjWr · prod(di) · Fsource(di)

+TjRd · cons(di) · Fdest(di) + TMain→j · I(di)

+Tj→Main · I(di)
))

The constraints are also modified as follows: ∀ai ∈ [1, A],

U∑
j=1

Mj(ai) = 1 (∀i ∈ [1, A])

20

Variable Meaning
EOffchipRd

Energy consumed to read a byte
from off-chip memory in cycles

EOffchipWr
Energy consumed to write a byte to
off-chip memory in cycles

ESPW Rd
Energy consumed to read a byte
from scratchpad in cycles

ESPW Rd
Energy consumed to write a byte to
scratchpad in cycles

EOffchip→SPW Energy consumed to move a byte
from off-chip to scratchpad in cycles

ESPW→Offchip Energy consumed to move a byte
from scratchpad to off-chip in cycles

Table 3: Energy cost variables

A∑
i=1

Mj(ai) · S(ai) ≤ Sizej (∀j ∈ [1, U])

5.2.5 Extension to the ILP Formulation for Energy Consumption

The ILP problem can also be extended to minimize the energy consumed for
migrating code or data from off-chip memory to scratchpad and back. We
replace the time variables in Table 1 with the corresponding energy consumption
variables, as shown in Table 3. The constraint functions remain unchanged. The
objective functions become:

Obj′′1 =
A∑

i=1

(
MOffchip(ai)

(
EOffchipRd

· F (ai) · S(ai)
)

+MSPW (ai)
(
ESPW Rd

· F (ai) · S(ai)

+EOffchip→SPW · S(ai)
))

Obj′′2 =
D∑

i=1

(
MOffchip(di)

(
EOffchipWr

· prod(di) · Fsource(di)

+EOffchipRd
· cons(di) · Fdest(di)

)
+MSPW (di)

(
ESPW Wr

· prod(di) · Fsource(di)

+ESPW Rd
· cons(di) · Fdest(di)

+EOffchip→SPW · I(di)

+ESPW→Offchip · I(di)
))

21

For a combined optimization on both energy consumption and access time
discussed previously, the energy or time variables can be replaced with cost
variables. The cost variables are defined as weighted products of energy and
time values to proportionally account for both energy consumption and access
time.

5.3 Limitations and Improvements of the Allocation Al-
gorithm

The quality of optimization results is dependent on the memory requirements of
the actor code and data buffers. These memory requirements can be improved
by performing schedule based optimizations as discussed in [9]. The size of data
buffers can also be reduced by using techniques such as modulo addressing [9].
Hence, one could envision using these optimizations as a pre-processing step to
our memory allocation algorithm in order to improve the quality of the results.

We make a simplification in our approach by not considering the actor code
and data buffers that are in the scratchpad prior to a state change. Therefore,
our formulation of the optimization problem includes in the cost the time to
load all the values needed by the next iteration. An improved version would
take into account the data that are already in the scratchpad and not require
to load them again. However, to come up with such a solution, we need to
consider the execution history of the HDF model, which is not know a priori.
This requires a run-time algorithm that gives rise to expensive overhead, and
hence is not practical.

Considering execution history in the allocation, as compared to the current
allocation considering only the state itself, should improve the overall perfor-
mance. In the next section we present a modification to the original scheme for
generating allocations for a particular state taking into account a finite number
of states in the execution history before that state is entered. The primary pur-
pose of this modification is that it might be possible to improve performance by
allowing multiple allocations per state based on different factors such as prob-
ability of reaching each state, path based criteria as observed from a Trellis
diagram (such as Figure 3), etc. While a complete exploration of multiple al-
locations per state is beyond the scope of this paper, it definitely serves as a
promising direction for future work in this field.

5.4 Memory Allocation with Execution History

In the previous section, we consider memory allocation for each state separately.
According to our experiment in the next section, that mechanism based on
individual states yields satisfactory result and outperforms the approach based
on caches.

In this section we present a modification of the original allocation algorithm,
which allows us to generate allocations based on finite execution histories. This
modification is aimed specifically for the allocation of actor code. This is because
in the case of actors, a significant amount of code has to be moved to and from

22

Variable Meaning
S Number of valid states in the

HDF model
si i-th state (i ∈ [1, S])
I(si) Number of states with transi-

tions into state si

Pj(si) The j-th state with a tran-
sition into state si (j ∈
[1, I(si)])

α(si) Number of memory alloca-
tions for state si

α1(si) The initial memory allocation
for state si

αj(si) The j-th memory allocation
for state si (j ∈ [2, α(si)])

MPredecessor
Offchip (ai, Pj(si)) Whether ai was in off-chip in

the predecessor state Pj(si)

Table 4: Additional variables for multiple allocations

the off-chip memory to the scratchpad, every time an actor is brought into or
evicted from the scratchpad. By taking into account the execution histories, we
seek to lower this migration cost.

The reason for considering execution history is that the cost of migrating
actor code between states can be reduced if the code is in the scratchpad memory
in the predecessor state. In that case, there is no need to evict the code and to
load it again. This, of course, requires considering the predecessor state in the
optimization of the current state. If there are S states in the HDF model, then
the possible number of combinations of predecessor state and current state is at
most S × S.

We could further extend this by considering history of at most k steps before
the current state is entered. We call this the k-lookback optimization, where
k ≥ 0. The number of combinations is Sk+1 in general. We will illustrate this
approach in this section for k = 1.

5.4.1 Formulation of Additional Variables

For this modification, we preserve all the variables and parameters introduced
in Section 5.2.1. The additional variables are shown in Table 4.

MPredecessor
Offchip (ai, Pj(si)) is a Boolean variable that identifies whether a par-

ticular actor was in off-chip memory in the predecessor state. Note that this is
not a variable for solution by the linear program, but rather a variable that is

23

set to the appropriate 0 or 1 value when composing the objective function.

MPredecessor
Offchip (ai, Pj(si)) =

 1 if actor ai was in off-chip in the
predecessor state Pj(si)

0 otherwise

5.4.2 Objective Function and Constraints for Actor Allocation

For any state si and predecessor state Pj(si), we optimize the allocation with
this modified objective function:

Obj′′′ =
A∑

i=1

(
MOffchip(ai)

(
TOffchip · F (ai) · S(ai)

)
+MSPW (ai)

(
TSPW Rd

· F (ai) · S(ai)

+MPredecessor
Offchip (ai, Pj(si)) · TOffchip→SPW

· S(ai)
))

(2)

The only change is that the migration cost of moving an actor from off-chip
to scratchpad has been augmented by MPredecessor

Offchip (ai, Pj(si)). This ensures
that we account for the migration cost only if an actor was not present in the
scratchpad in the predecessor state and actually needed to be moved in from off-
chip for the current state transition. The constraints for the objective function
remain same as in Section 5.2.2.

5.4.3 Procedure for Generating Allocations for All Predecessors

This allocation scheme generates α(si) = 1+I(si) allocations for state si. These
include an allocation for that state without considering any predecessor (initial
allocation), and I(si) allocations for the I(si) predecessor states. The procedure
for generating these allocations is as follows:

1. For each state si, generate initial allocation using the original objective
function (Eq. 1), and obtain the optimal allocation α1(si).

2. For each state si and each Pj(si) (where 1 ≤ j ≤ I(si)), generate the
(j + 1)-th allocation for si, αj+1(si), using the modified objective func-
tion (Eq. 2) and setting MPredecessor

Offchip (ai, Pj(si)) according to α1(Pj(si)),
which was computed in step 1.

With this procedure, we generate all the α(si) = 1+I(si) allocation schemes
for each state si statically. These allocation schemes are stored in a table that
can be looked up at run time. The indices are numbers in [1, α(si)] that refer
to the predecessor states, and the entries are the allocation to take effect on
a transition into si. For example, when the system transitions into si from
predecessor state Pj(si), the entry associated with index j + 1 in si’s allocation

24

MEMORY CHARACTERISTIC SPECIFICATION

SPW
Read Latency 1 cycle
Write Latency 1 cycle
Transfer Time (to or
from off-chip)

2.5 cycles

Cache

Hit Latency 1 cycle
Miss Latency 12 cycle
Associativity Fully Associative
Replacement Strategy Least Recently Used

Table 5: Memory specification used for experiments

table is fetched. According to that allocation, the actor code is loaded only if
it is not in the scratchpad previously.

5.5 Observations and Analysis of the Modified Allocation
Algorithm

The modified allocation algorithm is a first step to motivate further exploration
of generating multiple allocations per state in HDF models. The algorithm is
considerably more expensive both in terms of computation time and storage
space requirements. For a worst case analysis, let us assume a fully connected
Trellis diagram in which one can transition from one state to any state. Let the
number of states in the system be S. There are at most S2 valid predecessor-
successor state pairs. There are at most S possible input paths into each state,
i.e. S + 1 memory allocations per state. Thus the total number of allocations
that need to be generated is no more than S · (S + 1). Also, the total number
of allocations that need to be stored is Sk+1 · S · (S + 1) in general, since one
allocation is generated for each possible allocation for the predecessor state.
This worst case scenario can prove prohibitively expensive. Fortunately, it is
unlikely to have a fully connected HDF model in practice. Hence, it is arguable
that the above algorithm is still feasible.

6 Performance Analysis

We evaluate the performance of our allocation algorithm and compare it with a
cache with respect to various parameters that affect its results. We also assess
the scalability of the algorithm. The allocation algorithm was implemented in
Ptolemy II [11], a Java-based framework for studying modeling, simulation and
design of concurrent real-time systems. The open-source linear programming
system, LP Solve [7], was used as the solver for the ILP problems. We applied
our algorithm to the adaptive coding model [39], as well as a set of randomly
generated HDF models.

25

Table 5 summarizes the memory characteristics considered for our exper-
iments. The scratchpad memory forms the first level, which has a 1-cycle
read/write latency. We assume a two-level memory hierarchy in our experi-
ments. The second level off-chip memory has a 10-cycle read/write latency.
Direct memory access (DMA) and pseudo-DMA mechanisms greatly speed up
data transfer between the scratchpad and the off-chip memory, as in the Mo-
torola MCORE processor [13]. Transfer times assuming DMA and pseudo-DMA
mechanisms, have been analyzed by Udayakumaran et al. in [32]. Basing on
this result, the time for data transfer between the scratchpad and the off-chip
memory is assumed to be 2.5 cycles. We use cache with LRU as the comparison
case. The cache is assumed to be a fully-associative cache, with a 1-cycle hit
and a 12-cycle miss latency. An LRU replacement strategy is assumed for the
cache. The cache is assumed to be a write-back cache with a write-allocate miss
policy [18]. In order to better analyze the true performance of our algorithm,
the sizes of the cache and the scratchpad were assumed to be varying percent-
ages of the total code and data size of the model, rather than considering an
absolute size. The off-chip memory is assumed to be large enough to hold all
program code and data.

6.1 Adaptive Coding Example

The adaptive coding model [39] demonstrates a wireless communication scenario
in which the dataflow is switched between two encoders and decoders with
different consumption and production rates. Such a scenario can occur when
one aims to preserve data quality in spite of varying levels of channel loss.
A sophisticated coding scheme is chosen to reduce channel loss when signal
strength is low and a simple scheme is used when signal strength is high. In
the example, the model has two modes of Hamming coding-decoding, a (7,4)
Hamming code and a (3,1) Hamming code. Switch, which produces the signal
that chooses the coding scheme to be used, can be assumed to be the input
from a performance detector, or a signal strength sensor. There are 4 possible
states in this model of which only 2 states, the (7,4) codec and the (3,1) codec
are relevant. The states in which a (7,4) coder is paired with the (3,1) decoder
and vice-versa are invalid and cannot be reached. The model is shown in Figure
6(a) and 6(b) in all its levels of hierarchy. Figure 6(b) shows the inside of the
CountErrors actor. The details of the adaptive coding model that are relevant
to the allocation algorithm are summarized in Table 6.

6.1.1 Restricting to Single Appearance Schedules

Note that the total memory access time for cache is highly dependent on the
firing schedule of the actors in a state. We use a single appearance schedule
for each state, in which each actor is fired in succession its required number of
times. Consider the single appearance and an alternative schedule for State 1:

For the alternative schedule, the actor firings are not always in succession.
Dependent on the size of the cache there might be significant conflict misses

26

(a) Expanded toplevel model

(b) Expanded view of the CountErrors actor

Figure 6: Adaptive Coding Model

27

CHARACTERISTICS VALUE

Actor Number of Actors 15
Total Size 112

Data Buffer
Number of Buffers 15
Total Size in (7,4)
State

63

Total Size in (3,1)
State

21

State

Total Number of
States

4

Number of Reachable
States

2

State 1 (7,4) Ham-
ming Code-
Decode

State 2 (3,1) Ham-
ming Code-
Decode

Table 6: Relevant characteristics of adaptive coding HDF model

Single Appearance Schedule: (4A) (B) (G) (7C)
(7D) (I) (4K) (4L)
(4M) (4N) (4O) (4E)
(4F)

Alternative Valid Schedule: (2A) (B) (3C) (A)
(3C) (A) (C) (7D) (I)
(4(KLMNOEF))

when executing this schedule. Consider the following portion of the schedule
(4(KLMNOEF)) with a cache large enough to store 4 actors at a time. Actors
K, L, M, N, O, E, and F shall encounter compulsory misses on their first firing.
By the time actor F completes its first firing, the actors present in the cache will
be N, O, E, and F, assuming a LRU replacement policy. Hence, when actor K is
fired a second time, it will cause a cache miss. The same shall happen for all the
above actors for all four firings, leading to a large cache miss penalty. Thus we
would encounter a cache trashing situation, in which a particular cache block
is repeatedly evicted and then brought back into the cache again. It can also
be seen that the single appearance schedule provides the best case access time
for the use of a cache. Hence our choice of using single appearance schedules
for performance comparison. The total memory access time for the scratchpad
allocation algorithm is completely independent of the firing schedule. The time
would be the same for both the schedules given above. Therefore, the scratchpad
allocation algorithm provides us with better predictability than the use of a

28

A

C

Coder

B

Decoder Count
Errors

E

F

D

1

1
1

1
1
1

1

4,1
1

1
1 4,1

17,3

1 1
1

1
1

(7,4) (3,1)

G4
7 H1

3

(7,4) (3,1)

 I7
4 J3

1

K

N

L M

O
1

1
1 1

1
1

1 1
1

1 1
1

Figure 7: Adaptive Coding Model with Consumption and Production rates and
Actor labels

cache.

6.1.2 Performance Analysis for Actor Allocation for the Adaptive
Coding Model

We first analyze the performance of the allocation algorithm for actor code.
Figure 6 shows the adaptive coding model’s implementation in Ptolemy II as an
HDF graph. The same model is shown in Figure 7 with actors alphabetically la-
beled (Actor A, Actor B, and so on) and the production and consumption rates.
In both State 1 and State 2, there are a total of thirteen actors. The schedules for

the states are as follows:

State 1: (4A) (B) (G) (7C) (7D) (I) (4K) (4L) (4M)
(4N) (4O) (4E) (4F)

State 2: (A) (B) (H) (3C) (3D) (J) (K) (L) (M) (N)
(O) (E) (F)

The sizes of the actors A through O are 5, 5, 5, 10, 2, 2, 10, 10, 11, 11, 10,
6, 7, 10 and 8 units, respectively.

Figure 8 shows the number of actors, out of the total 13, allocated to the
scratchpad memory for varying scratchpad sizes. As expected, the number of
actors allocated to the scratchpad increases with increasing scratchpad sizes.

Figure 9 shows the percentage of memory accesses that hit the scratchpad
with increasing scratchpad sizes. The number of accesses to the scratchpad
increases sharply with increase in scratchpad sizes. This shows that the op-
timization achieves its desired purpose in allocating only such actors to the
scratchpad that maximize the number of accesses to the scratchpad while min-
imizing net memory access time. At a reasonable scratchpad size of 35-45% of
total actor size, over 60-65% of all memory accesses hit the scratchpad.

Figure 10 shows the total actor code memory access time for a single iteration
of a particular state for both cache and scratchpad. The memory access time
for cache remains constant irrespective of the cache size. This is due to the

29

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

of

 A
ct

or
s

SPM Size (as % of Total Actor Code Size)

State1
State2

Figure 8: Number of actors allocated to scratchpad for each state

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

%
 o

f M
em

or
y

A
cc

es
se

s

SPM Size (as % of Total Actor Code Size)

State1
State2

Figure 9: Percentage of Memory Accesses to Scratchpad for State 1 and State
2

30

10 20 30 40 50 60 70 80 90 100
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300

To
ta

l M
em

or
y

A
cc

es
s

Ti
m

e
(in

 c
yc

le
s)

SPM/Cache Size (as % of Total Actor Code Size)

SPM for State1
SPM for State2
Cache for State1
Cache for State2

Figure 10: Total Memory Access Time for a Single Iteration of a Particular
State for Scratchpad and Cache Configurations

fact that the only cache misses are compulsory misses, i.e. the first reference
to an actor code causes a cache miss. Since we do not encounter any conflict
or capacity misses the total access time for cache remains constant irrespective
of the actual cache size. While every byte access of the actor code results
in a compulsory miss for the cache, our allocation algorithm minimizes the
access time costs by preloading the SPM from the memory allocation map.
The precomputed memory map algorithm performs significantly better than
the hardware policy implemented by the cache. The memory access time for
scratchpad in State 2 is lower than the cache for all memory sizes. However, for
State 1 the scratchpad shows improvements over cache for sizes of about 40%
and higher. This is because all actors except I are fired multiple times in State
1; hence, the penalty for not being able to allocate such actors to the scratchpad
is significantly higher.

We generate 25 execution traces of the adaptive coding model with the
Ptolemy II environment [11]. Each of these traces is 15 iterations long. The
total memory access times for actor code access for these traces are computed
and are averaged over the executions to generate the average memory access
time for a fifteen iteration long execution of this model. Figure 11 shows the
comparative graph for the average memory access times using cache, the basic
allocation algorithm and the multiple allocations per state modification to the
original algorithm. Both the scratchpad allocation algorithms outperform the
cache for all memory sizes above 25%.

31

10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 104

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
(in

 c
yc

le
s)

SPM/Cache Size (as % of Total Actor Code Size)

SPM
SPM with Modified Algorithm
Cache

Figure 11: Average Memory Access Time for Actor Code for a Fifteen Iteration
Execution of the Adaptive Coding Model

6.1.3 Performance Analysis for Data Buffer Allocation for the Adap-
tive Coding Model

The performance results for the allocation of data buffers show a trend sim-
ilar to that seen for actor code (Figures 8 and 9). For brevity, we omit the
corresponding graphs for data allocation.

The allocation of data buffers however, involves no migration overhead dur-
ing state transition. This is because there are no delay tokens to be preserved
across state transitions in this case study. More generally, the total number of
delay tokens present in an HDF model is often quite small and hence migration
costs are considered negligible in comparison with the migration costs of actor
allocation.

Figure 12 shows the comparative graph for average memory access times for
data buffer access for a 15-iteration execution of the adaptive coding model for
both cache and scratchpad allocation. It can be observed that the scratchpad
allocation scheme performs consistently better than cache for all memory sizes,
again providing evidence that the algorithm does minimize memory access time
as intended. Since there is no migration cost involved, the total memory access
time for data buffer access for N iterations of an HDF model is essentially the
sum of the per state memory access times of each state encountered during the
iterations. This is also true for the cache since there is no preserved state to be
maintained across state transitions, in the absence of delay tokens.

32

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
(in

 c
yc

le
s)

SPM/Cache Size (as % of Total Actor Code Size)

SPM
Cache

Figure 12: Average Memory Access Time for Data Buffer for a fifteen iteration
execution of the Adaptive Coding Model

6.2 Randomly Generated HDF Graphs

To further analyze the performance of our algorithm, we apply our allocation
scheme to a set of 50 randomly generated HDF graphs, and compare its per-
formance to using a cache. In order to randomly generate the HDF graphs,
we use several basic model templates including the adaptive coding model and
the models shown in Figure 2. The production and consumption rates of the
actors are chosen randomly from an interval of 1 to 10. Actor sizes are ran-
domly chosen between 5 and 40. We consider single appearance schedules for
our analysis, since this provides the best cache performance for a LRU replace-
ment policy. Memory sizes for both scratchpad and cache are set at 35% of the
total actor/data buffer sizes. The procedure used to generate the average mem-
ory access times for comparison is identical to the procedure used for Figures
11 and 12.

For the actor allocation algorithm, the modified actor allocation algorithm
and the data allocation algorithm, we calculated the percentage improvement in
memory access time, i.e. the percentage reduction in memory access time as a
result of selecting our algorithm over cache. The percentages for improvements
were computed over the memory access times provided by our algorithm. The
percentages for deterioration were calculated over the memory access times for
caches.

Figure 13 shows the performance improvement or deterioration for use of our
algorithm for actor allocation, the modified algorithm for actor allocation and
our algorithm for data allocation, respectively. The average performance im-

33

0

1

2

3

4

5

6

7

8

% Improvement or Deterioration

,−
90

−9
0,
−8
0

−8
0,
−7
0

−7
0,
−6
0

−6
0,
−5
0

−5
0,
−4
0

−4
0,
−3
0

−3
0,
−2
0

−2
0,
−1
0

−1
0,
0

0,
10

10
,2

0
20

,3
0

30
,4

0
40

,5
0

50
,6

0
60

,7
0

70
,8

0
80
,9
0

90
,

of

 H
D

F
M

od
el

s

Actor Allocation
Actor Allocation
with Modified Algorithm
Data Buffer

Figure 13: Performance of actor allocation, actor allocation with modified al-
gorithm, and data buffer allocation to scratchpad versus cache for 50 randomly
generated HDF graphs

provement for actor allocation is 13.43%. Using the modified algorithm result in
a 15.64% average performance improvement. The data buffer allocation shows
an average performance improvement of 17.24%. The fact that data buffer allo-
cation performs better than actor allocation can be attributed to the potential
for both capacity and compulsory cache misses.

6.3 ILP Runtime Analysis

The most computationally expensive stage of our allocation algorithm is the
integer linear program. In order to perform the execution time analysis for the
ILP solver, problems of different sizes are randomly generated. The objective
function and constraints are set up to represent actor and data buffer allocation
problems of varying sizes. The generated ILP problems are solved using the
open-source LP Solve package [7]. The computer used for the generating the
execution times has a 1.86GHz Intel Pentium M processor with 1.49GB of RAM.
Figure 14 shows the execution time graph for increasing linear program size on
a per state basis.

As shown in Figure 14, even for models with 850 total actors and data
buffers, the execution time of the ILP solver is well below 0.5 seconds. A sharp
exponential growth is observed only when we reach about 1000 actors and data
buffers. We consider that many HDF models in practice would be limited to
at most a couple of hundred actors/data buffers. For those HDF models, our
allocation algorithm returns optimal results in a very short time.

34

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ti
m

e
(in

 s
ec

on
ds

)

Number of actors/buffers

Runtime of ILP per state

Figure 14: Execution Times for ILPs of Increasing Sizes

6.4 Worst Case Access Time

As stated earlier, the memory access time for the scratchpad allocation algo-
rithm is independent of the scheduling algorithm used to generate the firing
schedule for the HDF models. This lends a high degree of predictably to the
scratchpad allocation scheme as compared to caches. In spite of the fact that
the exact sequence of state transitions in the execution of an HDF model is
not known a priori, it is possible to compute a strict upper bound on the total
memory access time for the execution of a HDF model for a finite number of it-
erations. Given that the allocation for each state is generated by our algorithm,
the memory access time for accessing the actor code for a particular state sk is:

T (sk) =MOffchip(ai)
(
TOffchipRd

· F (ai) · S(ai)
)

+MSPW (ai)
(
TSPW Rd

· F (ai) · S(ai)
)

For some l ∈ [1, S], let T (S)′ be the greatest per state memory access time
amongst all the states of the HDF model such that:

∀k ∈ [1, S], T (S)′ = T (sl) where T (sl) ≥ T (sk)

The migration cost of moving an actor block into the scratchpad during
a state transition can be similarly computed by using Observation 3, on all
the actors that need to be moved for that particular state transition. Let
Tmigration(S)′ be the greatest migration cost for a single state transition amongst
all possible state transitions. For an N iteration execution of a HDF model there

35

are N states and (N−1) state transitions. Then clearly the upper bound on the
total actor memory access time for an N iteration execution of an HDF model
is:

N · T (S)′ + (N − 1) · Tmigration(S)′

This is a strict upper bound that is not reachable. The reason is that if an HDF
model stays in the state with the most expensive memory access time for its
entire execution, then the migration cost would be zero at each state transition
since the predecessor and successor states would always be the same. Thus the
total actor memory access time is strictly less than the above expression.

The upper bound on the memory access time for data buffers can be com-
puted in a similar fashion. Let the access time for data memory for a particular
state sk be:

B(sk) =
(
MOffchip(di)

(
TOffchipWr

· prod(di) · Fsource(di)

+TOffchipRd
· cons(di) · Fdest(di)

)
+MSPW (di)

(
TSPW Wr

· prod(di) · Fsource(di)

+TSPW Rd
· cons(di) · Fdest(di)

)
Now, let B(S)′ be the greatest per state access time for data memory and

Bmigration(S)′ be the greatest migration cost for a single state transition. The
two bounds can be combined to form the upper bound for the overall memory
access time of the model:

N ·
(
T (S)′ +B(S)′

)
+ (N − 1) ·

(
Tmigration(S)′ +Bmigration(S)′

)
.

7 Conclusion and Future Work

We have shown that by using a dataflow model for constructing programs, we
gain statically analyzable information about the application that can be ex-
ploited to get effective use of scratchpad memories. In embedded systems, this
will lead to lower cost and better predictability and repeatability of the execu-
tion. To show feasibility of this approach, we developed an ILP based allocation
algorithm that makes use of the coarse grained structure and semantics present
in the HDF block diagram programs to generate a state-wise optimal memory
allocation for scratchpad memories. We also provided generalizations of our
allocation algorithm to allow for multiple memory hierarchies and energy based
optimization. We have shown our method to perform better than cache with
LRU in total memory access time. We have also shown that our method and
the use of scratchpad memories offers greater predictability, independence from
scheduling algorithms, and the ability to compute an upper bound on the mem-
ory access times, all of which are difficult to obtain for caches. We have also
provided a modification to our algorithm that generates multiple allocations per

36

state by looking at a history of one state. The modification also serves as a bea-
con for revealing a whole field of possible multiple allocations per state schemes
that provide better performance. This memory allocation scheme is an impor-
tant step toward using information from higher-level models of computation
that is otherwise difficult to extract from C/C++ programs.

Many elaborations are possible to further exploit the static information in
the actor-oriented dataflow model. Specifically, we can 1) explore energy and
area tradeoffs along with memory access times, 2) use profiling in computing the
probabilities of the possible state transitions so that a multiple allocation algo-
rithm can utilize the probability information, 3) extend the history of one state
to a sequence of states using the probability transitions and then optimize over
probable sequences of the HDF execution and 4) optimize data buffer alloca-
tion, while accounting for the dependence of data buffer sizes on the scheduling
algorithm and firing schedule.

References

[1] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A post-
compiler approach to scratchpad mapping of code. In Proceedings of International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
September 2004.

[2] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for
scratch-pad-based embedded systems. ACM Transactions on Embedded Comput-
ing Systems, 1(1):6–26, November 2002.

[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: A design alternative for cache on-chip memory in embedded systems.
In Proceedings of CODES, pages 73–78, Estes Park, Colorado, May 2002.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratch-
pad memory: design alternative for cache on-chip memory in embedded sys-
tems. In CODES ’02: Proceedings of the tenth international symposium on Hard-
ware/software codesign, pages 73–78, New York, NY, USA, 2002. ACM.

[5] S. Battacharyya, P. Murthy, and E. Lee. Software Synthesis from Dataflow
Graphs. Springer, 1996.

[6] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy efficiency of
embedded systems by application-specific memory hierarchy generation. Design
& Test of Computers, IEEE, 17(2):74–85, Apr-Jun 2000.

[7] M. Berkelaar, K. Eikland, and P. Notebaert. lp solve: Open source (mixed-
integer) linear programming system, May 2004. Version 5.1.0.0.

[8] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling
of dsp systems. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 1948–1951, Istanbul, Turkey, June 2000.

[9] S. S. Bhattacharyya. Compiling Dataflow Programs for Digital Signal Processing.
PhD thesis, University of California, Berkeley, July 1994. Technical Memorandum
UCB/ERL 94/52.

[10] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Static scheduling
of multi-rate and cyclo-static dsp applications. In Workshop on VLSI Signal
Processing. IEEE Press, 1994.

37

[11] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Z. (eds.). Hetero-
geneous concurrent modeling and design in Java: Ptolemy II. Technical Report
Technical Memorandum UCB/ERL M05/21-M05/23, University of California,
July 15 2005.

[12] Y. J. Chang, S. J. Ruan, and F. Lai. Design and analysis of low-power cache
using two-level filter scheme. IEEE Trans. Very Large Scale Integrated Systems,
11(4):568–580, 2003.

[13] M. Corporation. M-core - mmc2001 reference manual, 1998.
[14] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation in em-

bedded systems. Journal of Embedded Computing, 1(4), 2005.
[15] H. Falk and M. Verma. Combined data partitioning and loop nest splitting for

energy consumption minimization. In Proceedings of Software and Compilers
for Embedded Systems, 8th International Workshop, SCOPES 2004, Amsterdam,
The Netherlands, September 2004.

[16] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with mul-
tiple concurrency models. IEEE Transactions On Computer-aided Design Of
Integrated Circuits And Systems, 18(6):742–760, 1999.

[17] G. Hallnor and S. K. Reinhardt. A fully associative software-managed cache
design. In Proceedings of the 27th International Symposium on Computer Archi-
tecture, June 2000.

[18] J. L. Henessey and D. J. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 3rd edition, 2003.

[19] E. Lee, S. Neuendorffer, and M. Wirthlin. Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers,
12(3):231–260, 2003.

[20] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Transactions on Computers,
36(1):24–35, Jan. 1987.

[21] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the IEEE,
83(5):773–801, 1995.

[22] P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, pre-
dictable and low energy memory references through architecture-aware compila-
tion. In ASP-DAC ’04: Proceedings of the 2004 conference on Asia South Pacific
design automation, Piscataway, NJ, USA, 2004. IEEE Press.

[23] A. Milidonis, N. Alachiotis, V. Porpodas, H. Michail, A. Kakarountas, and
C. Goutis. A decoupled architecture of processors with scratch-pad memory
hierarchy. pages 1–6, 16-20 April 2007.

[24] N. Nguyen, A. Dominguez, and R. Barua. Memory allocation for embedded
systems with a compile-time-unknown scratch-pad size. Proceedings of the 2005
international conference on Compilers, architectures and synthesis for embedded
systems, pages 115–125, 2005.

[25] P. Panda, N. Dutt, and A. Nicolau. Efficient utilization of scratch-pad memory in
embedded processor applications. European Design and Test Conference, 1997.
ED&TC 97. Proceedings, pages 7–11, 17-20 Mar 1997.

[26] I. Puaut. WCET-centric software-controlled instruction caches for hard real-time
systems. Proceedings of the 18th Euromicro Conference on Real-Time Systems,
pages 217–226, 2006.

[27] I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard real-time
systems: a quantitative comparison. Design, Automation & Test in Europe Con-
ference & Exhibition, 2007. DATE ’07, pages 1–6, 16-20 April 2007.

38

[28] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, March 2002.

[29] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. Design, Automation and Test
in Europe Conference and Exhibition, 2002. Proceedings, pages 409–415, 2002.

[30] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Syst.,
28(2-3):157–177, 2004.

[31] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-
ing applications. In 11th International Conference on Compiler Construction,
volume LNCS 2304, Grenoble, France, April 8-12, 2002 2002. Springer-Verlag.

[32] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory allocation
for scratch-pad based embedded systems. In Proceedings of International Confer-
ence on Compilers, Architecture, and Synthesis for Embedded Systems, October
2003.

[33] S. Udayakumaran and R. Barua. An integrated scratch-pad allocator for affine
and non-affine code. Proceedings of the conference on Design, automation and
test in Europe: Proceedings, pages 925–930, 2006.

[34] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation
algorithm. In Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, February 2004.

[35] L. Wehmeyer and P. Marwedel. Influence of onchip Scratchpad Memories on
WCET Prediction. Proceedings of the 4th International Workshop on Worst-
Case Execution Time (WCET) Analysis, 2004.

[36] J. Whitham and N. Audsley. MCGREP–A Predictable Architecture for Embed-
ded Real-Time Systems. Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pages 13–24, 2006.

[37] J. Whitham and N. Audsley. Using Trace Scratchpads to Reduce Execution
Times in Predictable Real-Time Architectures. IEEE Real-Time and Embedded
Technology and Applications Symposium, 2008.

[38] L. Xue, M. Kandemir, G. Chen, and T. Yemliha. Spm conscious loop scheduling
for embedded chip multiprocessors. pages 391–400, 2006.

[39] Y. Zhou. Communication systems modeling in Ptolemy II. Master’s thesis,
University of California, Berkeley, December 18 2003. Technical Memorandum
No. UCB/ERL M03/53.

39

