
The Complexity of Nash Equilibria

Constantinos Daskalakis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-107

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-107.html

August 28, 2008



Copyright  2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



The Complexity of Nash Equilibria

by

Constantinos Daskalakis

Diploma (National Technical University of Athens) 2004

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christos H. Papadimitriou, Chair
Professor Alistair J. Sinclair

Professor Satish Rao
Professor Ilan Adler

Fall 2008



The dissertation of Constantinos Daskalakis is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Fall 2008



The Complexity of Nash Equilibria

Copyright 2008

by

Constantinos Daskalakis



Abstract

The Complexity of Nash Equilibria

by

Constantinos Daskalakis

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos H. Papadimitriou, Chair

The Internet owes much of its complexity to the large number of entities that run it

and use it. These entities have different and potentially conflicting interests, so their

interactions are strategic in nature. Therefore, to understand these interactions,

concepts from Economics and, most importantly, Game Theory are necessary. An

important such concept is the notion of Nash equilibrium, which provides us with a

rigorous way of predicting the behavior of strategic agents in situations of conflict. But

the credibility of the Nash equilibrium as a framework for behavior-prediction depends

on whether such equilibria are efficiently computable. After all, why should we expect

a group of rational agents to behave in a fashion that requires exponential time to

be computed? Motivated by this question, we study the computational complexity of

the Nash equilibrium.

We show that computing a Nash equilibrium is an intractable problem. Since by

Nash’s theorem a Nash equilibrium always exists, the problem belongs to the family

of total search problems in NP, and previous work establishes that it is unlikely

that such problems are NP-complete. We show instead that the problem is as hard

as solving any Brouwer fixed point computation problem, in a precise complexity-

theoretic sense. The corresponding complexity class is called PPAD, for Polynomial

Parity Argument in Directed graphs, and our precise result is that computing a Nash
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equilibrium is a PPAD-complete problem.

In view of this hardness result, we are motivated to study the complexity of com-

puting approximate Nash equilibria, with arbitrarily close approximation. In this

regard, we consider a very natural and important class of games, called anonymous

games. These are games in which every player is oblivious to the identities of the

other players; examples arise in auction settings, congestion games, and social inter-

actions. We give a polynomial time approximation scheme for anonymous games with

a bounded number of strategies.

Professor Christos H. Papadimitriou

Dissertation Committee Chair
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Chapter 1

Introduction

Do we understand the Internet? One possible response to this question is “Of course

we do, since it is an engineered system”. Indeed, at the very least, we do understand

the design of its basic components and the very basic processes running on them. On

the other hand, we are often surprised by singular events that occur on the Internet: in

February 2008, for example, a mere Border Gateway Protocol (BGP) table update in

a network in Pakistan resulted in a two-hour outage of YouTube accesses throughout

the globe. . .

What we certainly understand is that the Internet is a remarkably complex system.

And it owes much of its complexity to the large number of entities that run it and

use it, through such familiar applications as routing, file sharing, online advertising,

and social networking. These interactions occurring in the Internet, much like those

happening in social and biological systems, are often strategic in nature, since the

participating entities have different and potentially conflicting interests. Hence, to

understand the Internet, it makes sense to use concepts and ideas from Economics

and, most importantly, Game Theory.

One of Game Theory’s most basic and influential concepts, which provides us with

a rigorous way of describing the behaviors that may arise in a system of interacting
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agents, is the concept of the Nash equilibrium. And this dissertation is devoted to

the study of the computational complexity of the Nash equilibrium. But why consider

computational complexity? First, it is a very natural and useful question to answer.

Second, because of the computational nature of the motivating application, it is

natural to study the computational aspects of the concepts we introduce for its study.

But the main justification for this question is philosophical: Equilibria are models of

behavior of rational agents, and, as such, they should be efficiently computable. After

all, it is doubtful that groups of rational agents are computationally more powerful

than computers; and, if they were, it would be really remarkable. Hence, whether

equilibria are efficiently computable is a question of fundamental significance for Game

Theory, the field for which equilibrium is perhaps the most central concept.

1.1 Games and the Theory of Games

Game Theory is one of the most important and vibrant mathematical fields estab-

lished in the 20th century. It studies the behavior of strategic agents in situations of

conflict, called games; these, e.g., include markets, transportation networks, and the

Internet.

• But how is a game modeled mathematically?

A game can be described by naming its players and specifying the strategies

available to them. Then, for every selection of strategies by the players, each of

them gets some (potentially negative) utility, called payoff. The payoffs can be given

implicitly as functions of the players’ strategies; or, if the number of strategies is

finite, they can be given explicitly by tables.

For example, Figure 1.1 depicts a variant of the Chicken Game [OR94], called

the Railroad Crossing Game: A car and a train approach an unprotected railroad

crossing at collision speed. If both the car driver and the train operator choose to
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stop, or “chicken”, then both of them lose time and fuel; if one of them stops, and

the other goes, or “dares”, the latter is happier than if he had “chickened”; but, if

both of them decide to go, the car gets destroyed, and the train has severe damages.

The table representation of the game given in Figure 1.1 assigns numerical payoffs to

train’s
strategies

car’s
strategies

chicken dare
chicken -1, -10 -1, 10

dare 1,-10 -10000,-100

Figure 1.1: The Railroad Crossing Game

the different outcomes of the game; in every box of the table the first payoff value

corresponds to the car driver and the second to the train operator. The following

question arises.

• What should we expect the behavior of the players of a game to be?

In the Railroad Crossing Game, it is reasonable to expect that not both the car

driver and the train operator will “dare”: in a world in which train operators always

“dare”, it is in the best interest of car drivers to always “chicken”; if the car drivers

always “dare”, then the train operators should always “chicken”. Similarly, it is not

reasonable to expect that they will both “chicken”; because it would then be in the

best interest of either party to switch to the “dare” strategy. The following outcomes

are, however, plausible: the car drivers “dare” and the train operators “chicken”, or

the train operators “dare” and the car drivers “chicken”; in any of these outcomes,

neither player can improve her payoff by changing her strategy. In actual unprotected

railroad crossings, the second outcome is what normally happens. Incidentally, this

outcome also maximizes the social welfare, that is, the sum of players’ payoffs.

The plausible outcomes of the Railroad Crossing Game discussed above are in-

stances of an important equilibrium concept, called pure Nash equilibrium. This is

defined as any collection of strategies, with one strategy per player of the game, such
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that, given the strategies of the other players, none of them can improve their payoff

by switching to a different strategy. Hence, it is reasonable for every player to stick

to the strategy prescribed to her.

To understand the pure Nash equilibrium as a concept of behavior prediction,

let us adopt the following interpretation of a game, called the steady state interpre-

tation: 1 We view a game as a model designed to explain some regularity observed

in a family of similar situations. A player of the game forms her expectation about

the other players’ behavior on the basis of the information about how the game or a

similar game was played in the past. That is, every player “knows” the equilibrium of

the game that she is about to play and only tests the optimality of her behavior given

this knowledge; and the pure Nash equilibrium specifies exactly the conditions that

need to hold so that she does not need to adopt a different behavior. Observe that

the steady state interpretation is what we used to argue about the equilibria of the

Railroad Crossing Game: we viewed the game as a model of the interaction between

two populations, the train operators and the car drivers, and each instance of the

game took place when two members of these populations met at a railroad crossing.

It is important to note that the pure Nash equilibrium is a convincing method of

behavior-prediction only in the absence of strategic links between the different plays

of the game. If there are inter-temporal strategic links between occurrences of the

game, different equilibrium concepts are necessary.

The pure Nash equilibrium is a simple and convincing equilibrium concept. Alas,

it does not exist in every game. Let us consider, for example, the Penalty Shot Game

described in Figure 1.2. The numerical values in the table specify the following rules:

if the goalkeeper and the penalty kicker choose the same strategy, then the goalkeeper

wins a point, and the penalty kicker loses a point; if they choose different strategies,

then the goalie loses, and the penalty kicker wins. Observe that there is no pure Nash

1See, e.g., Osborne and Rubinstein [OR94] for a more detailed discussion of the subject.
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penalty kicker’s
strategies

goalkeeper’s
strategies

left right
left 1,-1 -1, 1

right -1, 1 1,-1

Figure 1.2: The Penalty Shot Game

equilibrium in this game.

• In the absence of a pure Nash equilibrium, what behavior should we expect from

the players of a game?

Here is a suggestion: let us assume that the players of the game may choose to

randomize by selecting a probability distribution over their strategies, called a mixed

strategy. We will discuss shortly the meaning of randomization for a decision maker.

Before that, let us revisit the penalty shot game given in Figure 1.2. Suppose that

the goalkeeper chooses to randomize uniformly over ‘left’ and ‘right’, and so does the

penalty kicker. Suppose also that the two players have information about each other’s

mixed strategies. If this is the case, then none of them would be able to increase their

expected payoff by switching to a different mixed strategy, so they might as well keep

their strategy.

The pair of uniform strategies for the Penalty Shot Game is an instance of an

important equilibrium concept, called mixed Nash equilibrium, or simply Nash equi-

librium. Formally, this is defined as a collection of mixed strategies, one for every

player of the game, such that none of the players can improve their expected payoff

by switching to a different mixed strategy; hence, it is reasonable for every player to

stick to the mixed strategy prescribed to her. The plausibility of the concept of the

Nash equilibrium depends, of course, on the answer to the following question.

• What does it mean for decision makers to randomize?

This question could be the beginning of a long and interesting discussion — see,
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e.g., Osborne and Rubinstein [OR94] for a detailed analysis. So, we only attempt

an explanation here. To do this we revisit the steady state interpretation of a game,

according to which a game models an environment in which players act repeatedly and

ignore strategic links between different plays. By the same token, we can interpret

the Nash equilibrium as a stochastic steady state as follows: Each player of the

game collects statistical data about the frequencies with which different actions were

taken in the previous plays of the game. And she chooses an action according to the

beliefs she forms about the other players’ strategies from these statistics. The Nash

equilibrium then describes the frequencies with which different actions are played by

the players of the game in the long run. Coming back to the Penalty Shot Game, it is

reasonable to expect that in half of the penalty shots played in this year’s EuroCup

the penalty kicker shot right and in half of them the goalkeeper dived left.

The pure Nash equilibrium is of course more attractive than the mixed Nash

equilibrium, since it does not require the players to randomize. However, as noted

above, it does not exist in every game, and this makes its value as a framework for

behavior prediction rather questionable. For the same reason, the usefulness and

plausibility of the mixed Nash equilibrium is contingent upon a positive answer to

the following question.

• Is there a mixed Nash equilibrium in every game?

1.2 The History of the Nash Equilibrium

In 1928, John von Neumann, extending work by Emile Borel, showed that any two-

player zero-sum game — that is, a game in which every outcome has zero payoff-sum,

such as the Penalty Shot Game of Figure 1.2 — has a mixed equilibrium [Neu28].

Two decades after von Neumann’s result it was understood that the existence of an

equilibrium in zero-sum games is equivalent to Linear Programming duality [AR86,
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Dan63], and, as was established another three decades later [Kha79], finding such an

equilibrium is computationally tractable. In other words, computationally speaking,

the state of affairs of equilibria in zero-sum games is quite satisfactory.

However, as it became clear with the seminal book by von Neumann and Morgen-

stern [NM44], zero-sum games are too specialized and fail to capture most interesting

situations of conflict between rational strategic players. Hence, the following question

became important.

• Is there a Nash equilibrium in non-zero-sum multi-player games?

The answer to this question came in 1951 with John Nash’s important and deeply

influential result: every game, independent of the number of players and strategies

available to them (provided only that these numbers are finite) and of the proper-

ties of the players’ payoffs, has an equilibrium in randomized strategies, henceforth

called a Nash equilibrium [Nas51]. Nash’s proof, based on Brouwer’s fixed point the-

orem [KKM29] is mathematically beautiful, but non-constructive. Even the more re-

cent combinatorial proofs of Brouwer’s fixed point theorem based on Sperner’s lemma

(see, e.g., Papadimitriou [Pap94b]) result in exponential time algorithms. Due to the

importance of the Nash equilibrium concept, soon after Nash’s result the following

question emerged.

• Are there efficient algorithms for computing a Nash equilibrium?

We will consider this question in the centralized model of computation. Of course,

the computations performed by strategic agents during game-play are modeled more

faithfully by distributed protocols; and these protocols should be of a very special

kind, since they correspond to rational behavior of strategic agents. 2 Hence, it is

not clear a priori whether an efficient centralized algorithm for computing a Nash

equilibrium would imply a natural and efficient distributed protocol for the same

2The reader is referred to Fudenberg and Levine [FL99] for an extensive discussion of natural
protocols for game-play.
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task. However, it is true — and will be of central importance for the philosophical

implications of our results discussed in Section 1.3 — that an intractability result for

centralized algorithms implies a similar result for distributed algorithms. After all,

the computational parallelism, inherent in the interaction of players during game-play,

can only result in polynomial-time speedups.

Whether Nash equilibria can be computed efficiently has been studied extensively

in the Economics and Optimization literature. At least for the two-player case, the

hope for a positive answer was supported by a remarkable similarity of the problem

to linear programming: there always exist rational solutions, and the Lemke-Howson

algorithm [LH64], a simplex-like technique for solving two-player games, appears to be

very efficient in practice. There are generalizations of the Lemke-Howson algorithm

applying to the multi-player case [Ros71, Wil71]; however, as noted by Nash in his

original paper [Nas51], there are three-player games with only irrational equilibria.

This gives rise to the following question.

• What does it mean to compute a Nash equilibrium in the presence of irrational

equilibria?

There are two obvious ways to define the problem: One is to ask for a collection of

mixed strategies within a specified distance from a Nash equilibrium. And the other

is to ask for mixed strategies such that no player has more than some (small) specified

incentive to change her strategy; that is, a collection of mixed strategies such that

every player is playing an approximate best response to the other players’ strategies.

The latter notion of approximation is arguably more natural for applications (since

the players’ goal in a game is to optimize their payoffs rather than the distance of their

strategies from an equilibrium strategy), and we are going to adopt this notion in this

dissertation. This is also the standard notion used in the literature of algorithms for

equilibria, e.g., those based on the computation of fixed points [Sca67, Eav72, GLL73,

8



LT79]. For the former notion of approximation, the reader is referred to the recent

work of Etessami and Yannakakis [EY07].

Despite extensive research on the subject, none of the existing algorithms for

computing Nash equilibria are known to be efficient. There are instead negative

results [HPV89], most notably for the Lemke-Howson algorithm [SS04]. This brings

about the following question.

• Is computing a Nash equilibrium an inherently hard computational problem?

Besides Game Theory, the 20th century saw the development of another great

mathematical field of tremendous growth and impact, whose concepts enable us to

answer questions of this sort: Computational Complexity. However, the mainstream

concepts and techniques developed by complexity theorists — chief among them NP-

completeness — are not directly applicable for fathoming the complexity of the Nash

equilibrium. There are versions of the problem which are NP-complete, for example

counting the number of equilibria, or deciding whether there are equilibria with certain

properties [GZ89, CS03]. But answering these questions appears computationally

harder than finding a (single) Nash equilibrium. So, it seems quite plausible that the

Nash equilibrium problem could be easier than an NP-complete problem.

The heart of the complication in characterizing the complexity of the Nash equi-

librium is ironically Nash’s Theorem: NP-complete problems seem to draw much of

their difficulty from the possibility that a solution may not exist; and, since a Nash

equilibrium is always guaranteed to exist, NP-completeness does not seem useful in

characterizing the complexity of finding one. What would a reduction from Satisfi-

ability to Nash (the problem of finding a Nash equilibrium) look like? Any obvious

attempt to define such a reduction quickly leads to NP = coNP [MP91]. Hence, the

following question arises.

• If not NP-hard, exactly how hard is it to compute a Nash equilibrium?

9



Motivated mainly by this question for the Nash equilibrium, Meggido and Pa-

padimitriou [MP91] defined in the 1980s the complexity class TFNP (for “NP total

functions”), consisting exactly of all search problems in NP for which every instance is

guaranteed to have a solution. Nash of course belongs there, and so do many other

important and natural problems, finitary versions of Brouwer’s problem included.

But here there is a difficulty of a different sort: TFNP is a “semantic class” [Pap94a],

meaning that there is no easy way of recognizing nondeterministic Turing machines

which define problems in TFNP — in fact the problem is undecidable; such classes

are known to be devoid of complete problems.

To capture the complexity of Nash and other important problems in TFNP,

another step is needed: One has to group together into subclasses of TFNP total

functions whose proofs of totality are similar. Most of these proofs work by essentially

constructing an exponentially large graph on the solution space (with edges that are

computed by some algorithm), and then applying a simple graph-theoretic lemma

establishing the existence of a particular kind of node. The node whose existence is

guaranteed by the lemma is the desired solution of the given instance. Interestingly,

essentially all known problems in TFNP can be shown total by one of the following

arguments:

- In any dag there must be a sink. The corresponding class, PLS for “Polyno-

mial Local Search”, had already been defined in [JPY88] and contains many

important complete problems.

- In any directed graph with outdegree one and with one node with indegree zero,

there must be a node with indegree at least two. The corresponding class is PPP

(for “Polynomial Pigeonhole Principle”).

- In any undirected graph with one odd-degree node, there must be another odd-

degree node. This defines a class called PPA for “Polynomial Parity Argu-
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ment” [Pap94b], containing many important combinatorial problems (unfortu-

nately none of them known to be complete).

- In any directed graph with one unbalanced node (node with outdegree different

from its indegree), there must be another unbalanced node. The corresponding

class is called PPAD for “Polynomial Parity Argument for Directed graphs,”

and it contains Nash, Brouwer, and Borsuk-Ulam (finding approximate

fixed points of the kind guaranteed by Brouwer’s Theorem and the Borsuk-Ulam

Theorem, respectively, see [Pap94b]). The latter two were among the problems

proven PPAD-complete in [Pap94b]. Unfortunately, Nash — the one problem

which had motivated this line of research — was not shown PPAD-complete; it

was conjectured that it is.

The central question arising from this line of research, and the starting point of this

dissertation, is the following.

• Is computing a Nash equilibrium PPAD-complete?

1.3 Overview of Results

Our main result is that Nash, the problem of computing a Nash equilibrium, is PPAD-

complete. Hence, we settle the questions about the computational complexity of the

Nash equilibrium problem discussed in Section 1.2.

The proof of our main result is presented in Chapter 4. Our original argument

(Section 4.1) works for games with three players or more, leaving open the question

for two-player games. This case was thought to be computationally easier, since, as

discussed in Section 1.2, linear programming-like techniques come into play, and solu-

tions consisting of rational numbers are guaranteed to exist [LH64]; on the contrary,

as exhibited in Nash’s original paper [Nas51], there are three-player games with only
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irrational equilibria. Surprisingly, a few months after our result was circulated, Chen

and Deng extended our hardness result to the two-player case [CD05, CD06]. In

Section 4.2, we present a simple modification of our argument which also establishes

the hardness of two-player games.

• So, what is the implication of our PPAD-hardness result for Nash equilibria?

First of all, a polynomial-time algorithm for computing Nash equilibria would im-

ply a polynomial-time algorithm for computing Brouwer fixed points of (succinctly de-

scribed) continuous and piece-wise linear functions, a problem for which quite strong

lower bounds for large classes of algorithms are known [HPV89]. Moreover, there are

oracles — that is, computational universes [Pap94a] — relative to which PPAD is

different from P [BCE+98]. Hence, a polynomial-time algorithm for computing Nash

equilibria would have to fail to relativize with respect to these oracles, which seems

unlikely.

Our result gives an affirmative answer to another important question arising from

Nash’s Theorem, namely, whether the reliance of its proof on Brouwer’s fixed point

theorem is inherent. Our proof is essentially a reduction in the opposite direc-

tion to Nash’s: an appropriately discretized and stylized PPAD-complete version

of Brouwer’s fixed point problem in 3 dimensions is reduced to Nash.

In fact, it is possible to eliminate the computational ingredient in this reduction

to obtain a purely mathematical statement, establishing the equivalence between the

existence of a Nash equilibrium in 2- and 3-player games and the existence of fixed

points in continuous piecewise-linear and polynomial maps respectively. This im-

portant point is discussed briefly in Section 4.3 and explored in detail by Etessami

and Yannakakis [EY07]. Mainly due to this realization, we have been able to show

that a large class of equilibrium-computation problems belongs to the class PPAD; in

particular, we can show this for all games for which, loosely speaking, the expected
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utility of a player can be computed by an arithmetic circuit3 given the other play-

ers’ mixed strategies [DFP06]. In the same spirit, Etessami and Yannakakis [EY07]

relate the computation of Nash equilibria to computational problems, such as the

square-root-sum problem (see, e.g., [GGJ76, Pap77]) and the value of simple stochas-

tic games [Con92], the complexity of which is largely unknown.

But perhaps the most important implication of our result is a critique of the Nash

equilibrium as a framework of behavior prediction — contingent, of course, upon the

hardness of the class PPAD: Should we expect that the players of a game behave in a

fashion which is too expensive computationally? Or, relative also to the steady state

interpretation of a game, is it interesting to study a notion of player behavior which

could only arise after a prohibitively large number of game-plays? In view of these

objections, the following question becomes important.

• In the absence of efficient algorithms for computing a Nash equilibrium, are there

efficient algorithms for computing an approximate Nash equilibrium?

As discussed in the previous section, we are interested in collections of mixed

strategies such that no player has more than some small, say ǫ, incentive to change her

strategy. Let us call such a collection an ǫ-approximate Nash equilibrium. From our

result on the hardness of computing a Nash equilibrium, it follows that, if ǫ is inverse

exponential in the size of the game, computing an ǫ-approximate Nash equilibrium

is PPAD-complete. In fact, this hardness result was extended to the case where

ǫ is inverse polynomial in the size of the game by Chen, Deng and Teng [CDT06a].

Hence, a fully polynomial-time approximation scheme seems unlikely. 4 The following

question then emerges at the boundary of intractability.

3Arithmetic Circuits are analogous to Boolean Circuits, but instead of the Boolean operators
∧,∨,¬, they use the arithmetic operators +,−,×.

4A polynomial-time approximation scheme, or PTAS, is a family of approximation algorithms,
running in time polynomial in the problem size, for every fixed value of the approximation ǫ. If the
running time is also polynomial in 1/ǫ, the family is called a fully polynomial-time approximation

scheme, or FPTAS.
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• Is there a polynomial-time approximation scheme for the Nash equilibrium prob-

lem? And, in any case, what would the existence of such a PTAS imply for the

predictive power of the Nash equilibrium?

In view of our hardness result for the Nash equilibrium problem, a PTAS would

be rather important, since it would support the following interpretation of the Nash

equilibrium as a framework for behavior prediction: Although it might take a long

time to approach an exact Nash equilibrium, the game-play could converge — after

a polynomial number of iterations — to a state where all players’ regret is no more

than ǫ, for any desired ǫ. If that ǫ is smaller than the numerical error (e.g., the

quantization of the currency used by the players), then ǫ-regret might not even be

visible to the players.

There has been a significant body of research devoted to the computation of

approximate Nash equilibria [LMM03, KPS06, DMP06, FNS07, DMP07, BBM07,

TS07], however no PTAS is known to date. We discuss the known results in detail in

Chapter 5. Let us only note here that, even for the case of 2-player games, we only

know how to efficiently compute ǫ-approximate Nash equilibria for finite values of ǫ.

Motivated by this challenge we consider an important class of multi-player games,

called anonymous games. These are games in which each player’s payoff depends on

the strategy that she chooses and only the number of other players choosing each of

the available strategies. That is, the payoff of a player does not differentiate among

the identities of the other players. As an example, let us consider the decision faced by

a driver when choosing a route between two towns: the travel time to her destination

depends on her own choice of a route and the routes chosen by the other drivers, but

not on the identities of these drivers. Anonymous games capture important aspects

of congestion, as well as auctions and markets, and comprise a broad and well-studied

class of games (see, e.g., [Mil96, Blo99, Blo05, Kal05] for recent work on the subject

by economists).
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In Chapter 5, we present a polynomial-time approximation scheme for anonymous

games with many players and a constant number of strategies per player. Our algo-

rithm, reported in [DP07, DP08a], extends to several generalizations of anonymous

games, for example the case in which there are a few types of players, and the util-

ities depend on how many players of each type play each strategy; and to the case

in which we have extended families (disjoint subsets of up to logarithmically many

players, each with a utility depending in arbitrary — possibly non-anonymous —

ways on the other members of the family, in addition to their anonymous — possibly

typed — interest on everybody else).

Our PTAS for anonymous games shows that this broad and important class of

games is free of the complications posed by our PPAD-completeness result. Moreover,

it could be the precursor of practical algorithms for the problem; after all, it is not

known if the Nash equilibrium problem for multi-player anonymous games with a

constant number of strategies is PPAD-complete. 5 Towards this goal, in recent

work we have developed an efficient PTAS6 for the case of two-strategy anonymous

games [Das08]; we discuss this algorithm in Section 5.9.

1.4 Discussion of Techniques

The starting point for our PPAD-completeness result is the definition of a PPAD-

complete version of the computational problem related to the Brouwer fixed point

theorem. The resulting problem, described in Section 2.4, asks for the computation

of fixed points of continuous and piecewise-linear maps of a very special kind from

the unit 3-dimensional cube to itself. These maps are described by circuits, which

compute their values at the points of the discrete 3-dimensional grid of a certain size;

5On the other hand, the Nash equilibrium problem in anonymous games with a constant number
of players is PPAD-complete (see Chapter 5).

6An efficient PTAS is a PTAS with running time whose dependence on the problem size is a
polynomial of degree independent of the approximation ǫ.
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the values at the other points of the cube are then specified by interpolation. An

obvious algorithm for finding fixed points of such maps would be to enumerate over

all cubelets defined by the discrete grid and check if there is a fixed point within each

cubelet. However, the number of cubelets may be exponential in the size of the circuit

which could make the problem more challenging. We call this problem Brouwer

and show that it is PPAD-complete. (See Section 2.4 for details.)

The next step in our reduction would be to reduce Brouwer to Nash. Indeed,

this is what we do, but, instead of reducing it to Nash for games with a constant

number of players, we reduce it to Nash for a class of multi-player games with sparse

player interactions, called graphical games [KLS01]: these are specified by giving a

graph of player interactions, so that the payoff of a player depends only on her strategy

and the strategies of her neighbors in the graph. We define graphical games formally

in Chapter 2 and present our reduction from Brouwer to Nash for graphical games

in Chapter 4.

The reduction goes roughly as follows. We represent a point in the three-dimensional

unit cube by three players each of which has two strategies. Thus, every combination

of mixed strategies for these players corresponds naturally to a point in the cube.

Now, suppose we are given a function from the cube to itself represented by circuit.

We construct a graphical game in which the best responses of the three players repre-

senting a point in the cube implement the given function, so that the Nash equilibria

of the game must correspond to Brouwer fixed points. This is done by decoding the

coordinates of the point in order to find the binary representation of the grid-points

that surround it. Then the value of the function at these grid-points is computed by

simulating the circuit computations with a graphical game. This part of the construc-

tion relies on certain “gadgets,” small graphical games acting as arithmetical gates

and comparators. The graphical game thus “computes” (in the sense of a mixed

strategy over two strategies representing a real number) the values of the function
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at the grid points surrounding the point represented by the mixed strategies of the

original three players; these values are used to compute (by interpolation) the value

of the function at the original point, and the three players are then induced to add

appropriate increments to their mixed strategy to shift to that value. This estab-

lishes a one-to-one correspondence between the fixed points of the given function and

the Nash equilibria of the constructed graphical game, and it shows that Nash for

graphical games is PPAD-complete.

One difficulty in this part of the reduction is related to brittle comparators. Our

comparator gadget sets its output to 0 if the input players play mixed strategies x, y

that satisfy x < y, to 1 if x > y, and to anything if x = y; moreover, it is not hard to

see that no “robust” comparator gadget is possible, one that outputs a specific fixed

value if the input is x = y. This in turn implies that no robust decoder from real

to binary can be constructed; decoding will always be flaky for a non-empty subset

of the unit cube, and, on that set, arbitrary values can be output by the decoder.

On the other hand, real to binary decoding would be really useful since the circuit

representing the given Brouwer function should be simulated in binary arithmetic.

We take care of this difficulty by computing the Brouwer function on a “microlattice”

around the point of interest and averaging the results, thus smoothing out any effects

from boundaries of measure zero.

To continue to our main result for three-player games, we establish certain reduc-

tions between equilibrium problems. In particular, we show by reductions that the

following three problems are polynomial-time equivalent:

• Nash for r-player (normal-form) games, for any constant r > 3.

• Nash for three-player games.

• Nash for graphical games with two strategies per player and maximum degree

three (that is, of the exact type used in the simulation of Brouwer functions
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given above).

These reductions are presented in Chapter 3. It follows that all the above problems

and their generalizations are PPAD-complete (since the third one was already shown

to be PPAD-complete).

Our techniques for anonymous games are entirely different. The PTAS for approx-

imate Nash equilibria follows from a deep understanding of the probabilistic nature

of the decision faced by a player, given that her payoff does not differentiate among

the identities of the other players: we show that, for any ǫ, there is an ǫ-approximate

Nash equilibrium in which the players’ mixed strategies only assign to the strategies

in their support probability mass which is an integer multiple of 1/z, for some z

which depends polynomially in 1/ǫ and exponentially in the number of strategies,

but does not depend on the number of players. To appreciate this, note that for

general (non-anonymous) games a linear dependency on the number of players would

be necessary.

At the heart of our argument, e.g., for the case of two strategies per player, we

need to approximate the sum of a set of independent Bernoulli random variables with

the sum of another set of independent Bernoulli random variables, restricted to have

means which are integer multiples of 1/z, so that the two sums are within ǫ = O(1/z)

in total variation distance. To achieve this we appeal to results from the literature

on Poisson and Normal approximations [BC05], providing us with finitary versions

of the Law of Rare Events and the Central Limit Theorem respectively. Using these

results, we can approximate the sums of Bernoulli random variables with Poisson or

Normal distributions, as appropriate, and compare those instead. See Chapter 5 for

more details.
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1.5 Organization of the Dissertation

In Chapter 2, we provide the required background of Game Theory, including the

formal definition of games and of the concept of the Nash equilibrium, as well as of a

few notions of approximate Nash equilibrium. We then review the complexity theory

of total search problems, define the complexity class PPAD, and show that computing

a Nash equilibrium is in that class. We also define the problem Brouwer, a canonical

version of the Brouwer fixed point computation problem, which is PPAD-complete

and will be the starting point for our main reduction in Chapter 4. We conclude with

a survey of related work on computing Nash equilibria and Brouwer fixed points in

general.

In Chapter 3, we present the game-gadget machinery needed for our main reduc-

tion and establish the computational equivalence of various Nash equilibrium com-

putation problems. In particular, we describe a polynomial-time reduction from the

problem of computing a Nash equilibrium in games of any constant number of players

or in graphical games of any constant degree to that of computing a Nash equilibrium

of a 3-player game.

In Chapter 4, we show our main result that computing a Nash equilibrium of a

3-player game is PPAD-hard. We also present a simple modification of our argument,

extending the result to 2-player games. We conclude with extensions of our techniques

to other classes of games, as well as to other fixed point computation problems.

In Chapter 5, we turn to the computation of approximate Nash equilibria and

review recent work on the subject. This leads us to the introduction of the class of

anonymous games, for which we develop a polynomial-time approximation scheme

for the case of a bounded number of strategies. We conclude with extensions of our

algorithm to broader classes of games and a discussion of more efficient polynomial-

time approximation schemes.
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The results of Chapters 3 and 4 are joint work with Paul Goldberg and Chris-

tos Papadimitriou [GP06, DGP06, DP05], and those of Chapter 5 are joint work with

Christos Papadimitriou [DP07, DP08a, Das08].
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Chapter 2

Background

We start with the required background of Game Theory, in Section 2.1. We define

games, mixed strategies, and the concept of the Nash equilibrium, and we discuss

various notions of approximate Nash equilibria. We also define graphical games,

which play a central role in our results.

In Section 2.2, we turn to Computational Complexity. We review the complex-

ity theory of total search problems and define the complexity class PPAD. We also

define the problems Nash and graphical Nash, corresponding to the problem of

computing a Nash equilibrium in normal-form and graphical games respectively.

In Section 2.3, we show that Nash is in PPAD. Our reduction is motivated by

previous work on simplicial approximation algorithms for Brouwer fixed points.

In Section 2.4, we define the problem Brouwer, a canonical version of the compu-

tational problem related to Brouwer’s fixed point theorem for continuous and piece-

wise linear functions, which will be the starting point for showing that Nash is

PPAD-hard in Chapter 4. Here, we show that Brouwer is PPAD-hard.

We conclude the chapter with a review of related work on computing Nash equi-

libria and other fixed points in Section 2.5.
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2.1 Basic Definitions from Game Theory

A game in normal form, or normal-form game, has r ≥ 2 players, 1, . . . , r, and for

each player p ≤ r a finite set Sp of pure strategies. The set S of pure strategy profiles

is the Cartesian product of the Sp’s. We denote the set of pure strategy profiles of all

players other than p by S−p. Also, for a subset T of the players we denote by ST the

set of pure strategy profiles of the players in T . Finally, for each p and s ∈ S we have

a payoff or utility up
s ≥ 0 — also occasionally denoted up

js for j ∈ Sp and s ∈ S−p.

We refer to the set {up
s}s∈S as the payoff table of player p. If all payoffs lie in [0, 1]

the game is called normalized. Also, for notational convenience and unless otherwise

specified, we will denote by [t] the set {1, . . . , t}, for all t ∈ N.

A mixed strategy for player p is a distribution on Sp, that is, real numbers xp
j ≥ 0 for

each strategy j ∈ Sp such that
∑

j∈Sp
xp

j = 1. A set of r mixed strategies {xp
j}j∈Sp, p ∈

[r], is called a (mixed) Nash equilibrium if, for each p,
∑

s∈S up
sxs is maximized over

all mixed strategies of p —where for a strategy profile s = (s1, . . . , sr) ∈ S, we denote

by xs the product x1
s1

· x2
s2
· · ·xr

sr
. That is, a Nash equilibrium is a set of mixed

strategies from which no player has a unilateral incentive to deviate. It is well-known

(see, e.g., [OR94]) that the following is an equivalent condition for a set of mixed

strategies to be a Nash equilibrium:

∀p ∈ [r], j, j′ ∈ Sp :
∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs =⇒ xp

j′ = 0. (2.1)

The summation
∑

s∈S−p
up

jsxs in the above equation is the expected utility of player

p if p plays pure strategy j ∈ Sp and the other players use the mixed strategies

{xq
j}j∈Sq , q 6= p. Nash’s theorem [Nas51] asserts that every normal-form game has a

Nash equilibrium.

We next turn to approximate notions of equilibrium. We say that a set of mixed

22



strategies x is an ǫ-approximately well supported Nash equilibrium, or ǫ-Nash equilib-

rium for short, if the following holds:

∀p ∈ [r], j, j′ ∈ Sp :
∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs + ǫ =⇒ xp

j′ = 0. (2.2)

Condition (2.2) relaxes (2.1) in that it allows a strategy to have positive probability

in the presence of another strategy whose expected payoff is better by at most ǫ.

This is the notion of approximate Nash equilibrium that we use. There is an

alternative, and arguably more natural, notion, called ǫ-approximate Nash equilibrium

[LMM03], in which the expected utility of each player is required to be within ǫ of the

optimum response to the other players’ strategies. This notion is less restrictive than

that of an approximately well supported one. More precisely, for any ǫ, an ǫ-Nash

equilibrium is also an ǫ-approximate Nash equilibrium, whereas the opposite need

not be true. Nevertheless, the following lemma, proved in Section 3.7, establishes

that the two concepts are computationally related (a weaker version of this fact was

pointed out in [CDT06a]).

Lemma 2.1. Given an ǫ-approximate Nash equilibrium {xp
j}j,p of a game G we can

compute in polynomial time a
√

ǫ·(√ǫ+1+4(r−1)umax)-approximately well supported

Nash equilibrium {x̂p
j}j,p, where r is the number of players and umax is the maximum

entry in the payoff tables of G.

In the sequel we shall focus on the notion of approximately well-supported Nash

equilibrium, but all our results will also hold for the notion of approximate Nash equi-

librium. Notice that Nash’s theorem ensures the existence of an ǫ-Nash equilibrium

—and hence of an ǫ-approximate Nash equilibrium— for every ǫ ≥ 0; in particular,

for every ǫ there exists an ǫ-Nash equilibrium whose probabilities are integer multiples

of ǫ/(2r×umaxsum), where umaxsum is the maximum, over all players p, of the sum

of all entries in the payoff table of p. This can be established by rounding a Nash
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equilibrium {xp
j}j,p to a nearby (in total variation distance) set of mixed strategies

{x̂p
j}j,p all the entries of which are integer multiples of ǫ/(2r × umaxsum). Note,

however, that a ǫ-Nash equilibrium may not be close to an exact Nash equilibrium;

see [EY07] for much more on this important distinction.

A game in normal form requires r|S| numbers for its description, an amount of

information that is exponential in the number of players. A graphical game [KLS01] is

defined in terms of an undirected graph G = (V, E) together with a set of strategies

Sv for each v ∈ V . We denote by N (v) the set consisting of v and v’s neighbors

in G, and by SN (v) the set of all |N (v)|-tuples of strategies, one from each vertex

in N (v). In a graphical game, the utility of a vertex v ∈ V only depends on the

strategies of the vertices in N (v) so it can be represented by just |SN (v)| numbers.

In other words, a graphical game is a succinct representation of a multiplayer game,

advantageous when it so happens that the utility of each player only depends on a few

other players. A generalization of graphical games are the directed graphical games,

where G is directed and N (v) consists of v and the predecessors of v. The two notions

are almost identical; of course, the directed graphical games are more general than

the undirected ones, but any directed graphical game can be represented, albeit less

concisely, as an undirected game whose graph is the same except with no direction on

the edges. We will not be very careful in distinguishing the two notions; our results

will apply to both. The following is a useful definition.

Definition 2.2. Suppose that GG is a graphical game with underlying graph G =

(V, E). The affects-graph G′ = (V, E ′) of GG is a directed graph with edge (v1, v2) ∈ E ′

if the payoff to v2 depends on the action of v1, that is, the payoff to v2 is a non-constant

function of the action of v1.

In the above definition, an edge (v1, v2) in G′ represents the relationship “v1 affects

v2”. Notice that if (v1, v2) ∈ E ′ then {v1, v2} ∈ E, but the opposite need not be true
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—it could very well be that some vertex v2 is affected by another vertex v1, but vertex

v1 is not affected by v2.

Since graphical games are representations of multi-player games, it follows by

Nash’s theorem that every graphical game has a mixed Nash equilibrium. It can be

checked that a set of mixed strategies {xv
j}j∈Sv , v ∈ V , is a mixed Nash equilibrium

if and only if

∀v ∈ V, j, j′ ∈ Sv :
∑

s∈SN (v)\{v}

uv
jsxs >

∑

s∈SN (v)\{v}

uv
j′sxs =⇒ xv

j′ = 0.

Similarly, the condition for an approximately well supported Nash equilibrium can

be derived.

2.2 The Complexity Theory of Total Search Prob-

lems and the Class PPAD

A search problem S is a set of inputs IS ⊆ Σ∗ on some alphabet Σ such that for each

x ∈ IS there is an associated set of solutions Sx ⊆ Σ|x|k for some integer k, such that

for each x ∈ IS and y ∈ Σ|x|k whether y ∈ Sx is decidable in polynomial time. Notice

that this is precisely NP with an added emphasis on finding a witness.

For example, let us define r-Nash to be the search problem S in which each

x ∈ IS is an r-player game in normal form together with a binary integer A (the

accuracy specification), and Sx is the set of 1
A

-Nash equilibria of the game (where

the probabilities are rational numbers of bounded size as discussed). Similarly, d-

graphical Nash is the search problem with inputs the set of all graphical games

with degree at most d, plus an accuracy specification A, and solutions the set of all 1
A

-

Nash equilibria. (For r > 2 it is important to specify the problem in terms of a search

for approximate Nash equilibrium — exact solutions may need to be high-degree
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algebraic numbers, raising the question of how to represent them as bit strings.)

A search problem is total if Sx 6= ∅ for all x ∈ IS . For example, Nash’s 1951

theorem [Nas51] implies that r-Nash is total. Obviously, the same is true for d-

graphical Nash. The set of all total search problems is denoted TFNP. A polynomial-

time reduction from total search problem S to total search problem T is a pair f, g of

polynomial-time computable functions such that, for every input x of S, f(x) is an

input of T , and furthermore for every y ∈ Tf(x), g(y) ∈ Sx.

TFNP is what in Complexity is sometimes called a “semantic” class [Pap94a], i.e.,

it has no generic complete problem. Therefore, the complexity of total functions is

typically explored via “syntactic” subclasses of TFNP, such as PLS [JPY88], PPP,

PPA and PPAD [Pap94b]. We focus on PPAD.

PPAD can be defined in many ways. As mentioned in the introduction, it is,

informally, the set of all total functions whose totality is established by invoking

the following simple lemma on a graph whose vertex set is the solution space of the

instance:

In any directed graph with one unbalanced node (node with outdegree dif-

ferent from its indegree), there is another unbalanced node.

This general principle can be specialized, without loss of generality or computa-

tional power, to the case in which every node has both indegree and outdegree at

most one. In this case the lemma becomes:

In any directed graph in which all vertices have indegree and outdegree at

most one, if there is a source (a node with indegree zero), then there must

be a sink (a node with outdegree zero).

Formally, we shall define PPAD as the class of all total search problems polynomial-

time reducible to the following problem:
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end of the line: Given two circuits S and P , each with n input bits and n

output bits, such that P (0n) = 0n 6= S(0n), find an input x ∈ {0, 1}n such that

P (S(x)) 6= x or S(P (x)) 6= x 6= 0n.

Intuitively, end of the line creates a directed graph GS,P with vertex set {0, 1}n

and an edge from x to y whenever both y = S(x) and x = P (y); S and P stand

for “successor candidate” and “predecessor candidate”. All vertices in GS,P have

indegree and outdegree at most one, and there is at least one source, namely 0n, so

there must be a sink. We seek either a sink, or a source other than 0n. Notice that in

this problem a sink or a source other than 0n is sought; if we insist on a sink, another

complexity class called PPADS, apparently larger than PPAD, results.

The other important classes PLS, PPP and PPA, and others, are defined in a

similar fashion based on other elementary properties of finite graphs. These classes

are of no relevance to our analysis so their definition will be skipped; the interested

reader is referred to [Pap94b].

A search problem S in PPAD is called PPAD-complete if all problems in PPAD

reduce to it. Obviously, end of the line is PPAD-complete; furthermore, it was

shown in [Pap94b] that several problems related to topological fixed points and their

combinatorial underpinnings are PPAD-complete: Brouwer, Sperner, Borsuk-

Ulam, Tucker. Our main result (Theorem 4.1) states that so are the problems

3-Nash and 3-graphical Nash.

2.3 Computing a Nash Equilibrium is in PPAD

We establish that computing an approximate Nash equilibrium in an r-player game

is in PPAD. The r = 2 case was shown in [Pap94b].

Theorem 2.3. r-Nash is in PPAD, for r ≥ 2.
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Proof. We reduce r-Nash to end of the line. Note that Nash’s original proof

[Nas51] utilizes Brouwer’s fixed point theorem — it is essentially a reduction from

the problem of finding a Nash equilibrium to that of finding a Brouwer fixed point

of a continuous function; the latter problem can be reduced, under certain continuity

conditions, to end of the line, and is therefore in PPAD. The, rather elaborate,

proof below makes this simple intuition precise.

Let G be a normal-form game with r players, 1, . . . , r, and strategy sets Sp = [n],

for all p ∈ [r], and let {up
s : p ∈ [r], s ∈ S} be the utilities of the players. Also let

ǫ < 1. In time polynomial in |G| + log(1/ǫ), we will specify two circuits S and P

each with N = poly(|G|, log(1/ǫ)) input and output bits and P (0N) = 0N 6= S(0N),

so that, given any solution to end of the line on input S, P , one can construct

in polynomial time an ǫ-approximate Nash equilibrium of G. This is enough for

reducing r-Nash to end of the line by virtue of Lemma 2.1. Our construction of

S, P builds heavily upon the simplicial approximation algorithm of Laan and Talman

[LT82] for computing fixed points of continuous functions from the product space of

unit simplices to itself.

Let ∆n = {x ∈ Rn
+|
∑n

k=1 xk = 1} be the (n − 1)-dimensional unit simplex. Then

the space of mixed strategy profiles of the game is ∆r
n := ×r

p=1∆n. For notational

convenience we embed ∆r
n in Rn·r, and represent the elements of ∆r

n as vectors in

Rn·r. That is, if (x1, x2, . . . , xr) ∈ ∆r
n is a mixed strategy profile of the game, we

identify this strategy profile with a vector x = (x1; x2; . . . ; xr) ∈ Rn·r resulting from

the concatenation of the mixed strategies. For p ∈ [r] and j ∈ [n] we denote by x(p, j)

the ((p − 1)n + j)-th coordinate of x, that is x(p, j) := x(p−1)n+j .

We are about to describe our reduction from finding an ǫ-approximate Nash equi-

librium to end of the line. The nodes of the end of the line graph will corre-

spond to the simplices of a triangulation of ∆r
n which we describe next.
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Triangulation of the Product Space of Unit Simplices. For some d, to be

specified later, we describe the triangulation of ∆r
n induced by the regular grid of size

d. For this purpose, let us denote by ∆n(d) the set of points of ∆n induced by the

grid of size d, i.e.

∆n(d) =

{
x ∈ Rn

+ x =
(y1

d
,
y2

d
, . . . ,

yn

d

)
, yj ∈ N0 and

∑

j

yj = d

}
,

and, similarly, define ∆r
n(d) = ×r

p=1∆n(d). Moreover, let us define the block diagonal

matrix Q by

Q =




Q1 0 . . . 0 0

0 Q2 0 0

0

...
. . .

...

Qr−1 0

0 0 . . . 0 Qr




,

where, for all p ∈ [r], Qp is the n × n matrix defined by

Qp =




−1 0 . . . 0 1

1 −1 0 0

0 1

...
. . .

...

−1 0

0 0 . . . 1 −1




.

Let us denote by q(p, j) the ((p − 1)n + j)-th column of Q. It is clear that adding

q(p, j)T/d to a mixed strategy profile corresponds to shifting probability mass of 1/d
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from strategy j of player p to strategy (j mod n) + 1 of player p.

For all p ∈ [r] and k ∈ [n], let us define the set of indices Ip,k := {(p, j)}j≤k. Also,

let us define a collection T of sets of indices as follows

T :=



T ⊆

⋃

p∈[r]

Ip,n ∀p ∈ [r], ∃k ∈ [n − 1] : T ∩ Ip,n = Ip,k



 .

Suppose, now, that q0 is a mixed strategy profile in which every player plays strategy

1 with probability 1, that is q0(p, 1) = 1, for all p ∈ [r], and for T ∈ T define the set

A(T ) :=


x ∈ ∆r

n

∣∣x = q0 +
∑

(p,j)∈T

a(p, j)q(p, j)T/d for non-negative reals a(p, j) ≥ 0



 .

Defining T ∗ := ∪p∈[r]Ip,n−1, it is not hard to verify that

A (T ∗) = ∆r
n.

Moreover, if, for T ∈ T , we define B(T ) := A(T ) \ ∪T ′∈T ,T ′⊂T A(T ′), the collection

{B(T )}T∈T partitions the set ∆r
n.

To define the triangulation of ∆r
n let us fix some set T ∈ T , some permutation

π : [|T |] → T of the elements of T , and some x0 ∈ A(T ) ∩ ∆r
n(d). Let us then denote

by σ(x0, π) the |T |-simplex which is the convex hull of the points x0, . . . , x|T | defined

as follows

xt = xt−1 + q(π(t))T/d, for all t = 1, . . . , |T |.

The following lemmas, whose proof can be found in [LT82], describe the trian-

gulation of ∆r
n. We define A(T, d) := A(T ) ∩ ∆r

n(d), we denote by PT the set of all
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permutations π : [|T |] → T , and set

ΣT := {σ(x0, π) x0 ∈ A(T, d), π ∈ PT , σ(x0, π) ⊆ A(T )} .

Lemma 2.4 ([LT82]). For all T ∈ T , the collection of |T |-simplices ΣT triangulates

A(T ).

Corollary 2.5 ([LT82]). ∆r
n is triangulated by the collection of simplices ΣT ∗.

The Vertices of the end of the line Graph. The vertices of the graph in our

construction will correspond to the elements of the set

Σ :=
⋃

T∈T
ΣT .

Let us encode the elements of Σ with strings {0, 1}N ; choosing N polynomial in |G|,

the description size of G, and log d is sufficient.

We proceed to define the edges of the end of the line graph in terms of a

labeling of the points of the set ∆r
n(d), which we describe next.

Labeling Rule. Recall the function f : ∆r
n → ∆r

n defined by Nash to establish the

existence of an equilibrium [Nas51]. To describe f , let Up
j (x) :=

∑
s∈S−p

up
jsxs be the

expected utility of player p, if p plays pure strategy j ∈ [n] and the other players use

the mixed strategies {xq
j}j∈[n], q 6= p; let also Up(x) :=

∑
s∈S up

sxs be the expected

utility of player p if every player q ∈ [r] uses mixed strategy {xq
j}j∈[n]. Then, the

function f is described as follows:

f(x1, x2, . . . , xr) = (y1, y2, . . . , yr),
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where, for each p ∈ [r], j ∈ [n],

yp
j =

xp
j + max (0, Up

j (x) − Up(x))

1 +
∑

k∈[n] max (0, Up
k (x) − Up(x))

.

It is not hard to see that f is continuous, and that f(x) can be computed in time

polynomial in the binary encoding size of x and G. Moreover, it can be verified that

any point x ∈ ∆r
n such that f(x) = x is a Nash equilibrium [Nas51]. The following

lemma establishes that f is λ-Lipschitz for λ := [1 + 2Umaxrn(n + 1)], where Umax is

the maximum entry in the payoff tables of the game.

Lemma 2.6. For all x, x′ ∈ ∆r
n ⊆ Rn·r such that ||x − x′||∞ ≤ δ,

||f(x) − f(x′)||∞ ≤ [1 + 2Umaxrn(n + 1)]δ.

Proof. We use the following bound shown in Section 3.6, Lemma 3.32.

Lemma 2.7. For any game G, for all p ≤ r, j ∈ Sp,

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsx

′
s

∣∣∣∣∣∣
≤ max

s∈S−p

{up
js}
∑

q 6=p

∑

i∈Sq

|xq
i − x′q

i |.

It follows that for all p ∈ [r], j ∈ [n],

|Up
j (x) − Up

j (x′)| ≤ Umaxrnδ

and |Up(x) − Up(x′)| ≤ Umaxrnδ.

Denoting Bp
j (x) := max (0, Up

j (x) − Up(x)), for all p ∈ [r], j ∈ [n], the above bounds
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imply that

|Bp
j (x) − Bp

j (x′)| ≤ 2Umaxrnδ,
∣∣∣∣∣∣

∑

k∈[n]

Bp
k(x) −

∑

k∈[n]

Bp
k(x′)

∣∣∣∣∣∣
≤ 2Umaxrnδ · n.

Combining the above bounds we get that, for all p ∈ [r], j ∈ [n],

|yp
j (x) − yp

j (x′)| ≤ |xp
j − x′p

j | + |Bp
j (x) − Bp

j (x′)| +

∣∣∣∣∣∣

∑

k∈[n]

Bp
k(x) −

∑

k∈[n]

Bp
k(x′)

∣∣∣∣∣∣

≤ δ + 2Umaxrnδ + 2Umaxrnδ · n

≤ [1 + 2Umaxrn(n + 1)]δ,

where we made use of the following lemma:

Lemma 2.8. For any x, x′, y, y′, z, z′ ≥ 0 such that x+y
1+z

≤ 1,

∣∣∣∣
x + y

1 + z
− x′ + y′

1 + z′

∣∣∣∣ ≤ |x − x′| + |y − y′| + |z − z′|.

Proof.

∣∣∣∣
x + y

1 + z
− x′ + y′

1 + z′

∣∣∣∣ =

∣∣∣∣
(x + y)(1 + z′) − (x′ + y′)(1 + z)

(1 + z)(1 + z′)

∣∣∣∣

=

∣∣∣∣
(x + y)(1 + z′) − (x + y)(1 + z) − ((x′ − x) + (y′ − y))(1 + z)

(1 + z)(1 + z′)

∣∣∣∣

≤
∣∣∣∣
(x + y)(1 + z′) − (x + y)(1 + z)

(1 + z)(1 + z′)

∣∣∣∣ +

∣∣∣∣
((x′ − x) + (y′ − y))(1 + z)

(1 + z)(1 + z′)

∣∣∣∣

≤
∣∣∣∣
(x + y)(z′ − z)

(1 + z)(1 + z′)

∣∣∣∣+ |x′ − x| + |y′ − y|

≤ x + y

1 + z
|z′ − z| + |x′ − x| + |y′ − y| ≤ |z′ − z| + |x′ − x| + |y′ − y|.
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We describe a labeling of the points of the set ∆r
n(d) in terms of the function f .

The labels that we are going to use are the elements of the set L := ∪p∈[r]Ip,n. In

particular,

We assign to a point x ∈ ∆r
n the label (p, j) iff (p, j) is the lexicographically least

index such that xp
j > 0 and f(x)p

j − xp
j ≤ f(x)q

k − xq
k, for all q ∈ [r], k ∈ [n].

This labeling rule satisfies the following properties:

• Completeness: Every point x is assigned a label; hence, we can define a labeling

function ℓ : ∆r
n → L.

• Properness: xp
j = 0 implies ℓ(x) 6= (p, j).

• Efficiency: ℓ(x) is computable in time polynomial in the binary encoding size

of x and G.

A simplex σ ∈ Σ is called completely labeled if all its vertices have different labels;

a simplex σ ∈ Σ is called p-stopping if it is completely labeled and, moreover, for all

j ∈ [n], there exists a vertex of σ with label (p, j). Our labeling satisfies the following

important property.

Theorem 2.9 ([LT82]). Suppose a simplex σ ∈ Σ is p-stopping for some p ∈ [r].

Then all points x ∈ σ ⊆ Rn·r satisfy

||f(x) − x||∞ ≤ 1

d
(λ + 1)n(n − 1).

Proof. It is not hard to verify that, for any simplex σ ∈ Σ and for all pairs of points

x, x′ ∈ σ,

||x − x′||∞ ≤ 1

d
.
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Suppose now that a simplex σ ∈ Σ is p-stopping, for some p ∈ [r], and that, for all

j ∈ [n], z(j) is the vertex of σ with label (p, j). Since, for any x,
∑

i∈[n] x
p
i = 1 =

∑
i∈[n] f(x)p

i , it follows from the labeling rule that

f(z(j))p
j − z(j)p

j ≤ 0, ∀j ∈ [n].

Hence, for all x ∈ σ, j ∈ [n],

f(x)p
j − xp

j ≤ f(z(j))p
j − z(j)p

j + (λ + 1)
1

d
≤ (λ + 1)

1

d
,

where we used the fact that the diameter of σ is 1
d

(in the infinity norm) and the

function f is λ-Lipschitz. Hence, in the opposite direction, for all x ∈ σ, j ∈ [n], we

have

f(x)p
j − xp

j = −
∑

i∈[n]\{j}
(f(x)p

i − xp
i ) ≥ −(n − 1)(λ + 1)

1

d
.

Now, by the definition of the labeling rule, we have, for all x ∈ σ, q ∈ [r], j ∈ [n],

f(x)q
j − xq

j ≥ f(z(1))q
j − z(1)q

j − (λ + 1)
1

d

≥ f(z(1))p
1 − z(1)p

1 − (λ + 1)
1

d

≥ −(n − 1)(λ + 1)
1

d
− (λ + 1)

1

d
= −n(λ + 1)

1

d
,

whereas

f(x)q
j − xq

j = −
∑

i∈[n]\{j}
(f(x)q

i − xq
i )

≤ (n − 1)n(λ + 1)
1

d
.
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Combining the above, it follows that, for all x ∈ σ,

||f(x) − x||∞ ≤ 1

d
(λ + 1)n(n − 1).

The Approximation Guarantee. By virtue of Theorem 2.9, if we choose

d :=
1

ǫ′
[2 + 2Umaxrn(n + 1)]n(n − 1),

then a p-stopping simplex σ ∈ Σ, for any p ∈ [r], satisfies that, for all x ∈ σ,

||f(x) − x||∞ ≤ ǫ′,

which, by Lemma 2.10 below, implies that x is an approximate Nash equilibrium

achieving approximation

n
√

ǫ′(1 + nUmax)
(

1 +
√

ǫ′(1 + nUmax)
)

max{Umax, 1}.

Choosing

ǫ′ :=
1

1 + nUmax

(
ǫ

2n max{Umax, 1}

)2

,

we have that x is an ǫ-approximate Nash equilibrium.

Lemma 2.10. If a vector x = (x1; x2; . . . ; xr) ∈ Rn·r satisfies

||f(x) − x||∞ ≤ ǫ′,

then x is a n
√

ǫ′(1 + nUmax)
(

1 +
√

ǫ′(1 + nUmax)
)

max{Umax, 1}-approximate Nash
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equilibrium.

Proof. Let us fix some player p ∈ [r], and assume, without loss of generality, that

Up
1 (x) ≥ Up

2 (x) ≥ . . . ≥ Up
k (x) ≥ Up(x) ≥ Up

k+1(x) ≥ . . . ≥ Up
n(x).

For all j ∈ [n], observe that |f(x)p
j − xp

j | ≤ ǫ′ implies

xp
j

∑

i∈[n]

Bp
i (x) ≤ Bp

j (x) + ǫ′


1 +

∑

i∈[n]

Bp
i (x)


 .

Setting ǫ′′ := ǫ′(1 + nUmax), the above inequality implies

xp
j

∑

i∈[n]

Bp
i (x) ≤ Bp

j (x) + ǫ′′. (2.3)

Let us define t := xp
k+1 + xp

k+2 + . . . + xp
n, and let us distinguish the following cases

• If t ≥
√

ǫ′′

Umax
, then summing Equation (2.3) for j = k + 1, . . . , n implies

t
∑

i∈[n]

Bp
i (x) ≤ (n − k)ǫ′′,

which gives

Bp
1 ≤

∑

i∈[n]

Bp
i (x) ≤ n

√
ǫ′′Umax. (2.4)

• If t ≤
√

ǫ′′

Umax
, then multiplying Equation (2.3) by xp

j and summing over j =

1, . . . , n gives

∑

j∈[n]

(xp
j )2
∑

i∈[n]

Bp
i (x) ≤

∑

j∈[n]

xp
jB

p
j (x) + ǫ′′. (2.5)
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Now observe that for any setting of the probabilities xp
j , j ∈ [n], it holds that

∑

j∈[n]

(xp
j )2 ≥ 1

n
. (2.6)

Moreover, observe that, since Up(x) =
∑

j∈[n] x
p
jU

p
j (x), it follows that

∑

j∈[n]

xp
j (Up

j (x) − Up(x)) = 0,

which implies that

∑

j∈[n]

xp
jB

p
j (x) +

∑

j≥k+1

xp
j (Up

j (x) − Up(x)) = 0.

Plugging this into (2.5) implies

∑

j∈[n]

(xp
j )2
∑

i∈[n]

Bp
i (x) ≤

∑

j≥k+1

xp
j (Up(x) − Up

j (x)) + ǫ′′.

Further, using (2.6) gives

1

n

∑

i∈[n]

Bp
i (x) ≤

∑

j≥k+1

xp
j (Up(x) − Up

j (x)) + ǫ′′,

which implies
∑

i∈[n]

Bp
i (x) ≤ n(tUmax + ǫ′′).

The last inequality then implies

Bp
1(x) ≤ n(

√
ǫ′′ + ǫ′′). (2.7)
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Combining (2.4) and (2.7), we have the following uniform bound

Bp
1(x) ≤ n(

√
ǫ′′ + ǫ′′) max{Umax, 1} =: ǫ′′′. (2.8)

Since Bp
1(x) = Up

1 (x) − U(x), it follows that player p cannot improve her payoff by

more that ǫ′′′ by changing her strategy. This is true for every player, hence x is a

ǫ′′′-approximate Nash equilibrium.

The Edges of the end of the line Graph. Laan and Talman [LT82] describe a

pivoting algorithm which operates on the set Σ, by specifying the following:

• a simplex σ0 ∈ Σ, which is the starting simplex; σ0 contains the point q0 and is

uniquely determined by the labeling rule;

• a partial one-to-one function h : Σ → Σ, mapping a simplex to a neighboring

simplex, which defines a pivoting rule; h has the following properties: 1

– σ0 has no pre-image;

– any simplex σ ∈ Σ that has no image is a p-stopping simplex for some

p; and, any simplex σ ∈ Σ \ {σ0} that has no pre-image is a p-stopping

simplex for some p;

– both h(σ) and h−1(σ) are computable in time polynomial in the binary

encoding size of σ, that is N , and G —given that the labeling function ℓ

is efficiently computable;

The algorithm of Laan and Talman starts off with the simplex σ0 and employs the

pivoting rule h until a simplex σ with no image is encountered. By the properties

1More precisely, the pivoting rule h of Laan and Talman is defined on a subset Σ′ of Σ. For our
purposes, let us extend their pivoting rule h to the set Σ by setting h(σ) = σ for all σ ∈ Σ \ Σ′.
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of h, σ must be p-stopping for some p ∈ [r] and, by the discussion above, any point

x ∈ σ is an ǫ-approximate Nash equilibrium.

In our construction, the edges of the end of the line graph are defined in terms

of the function h: if h(σ) = σ′, then there is a directed edge from σ to σ′. Moreover,

the string 0N is identified with the simplex σ0. Any solution to the end of the

line problem thus defined corresponds by the above discussion to a simplex σ such

that any point x ∈ σ is an ǫ-approximate Nash equilibrium of G. This concludes the

construction.

2.4 Brouwer: a PPAD-Complete Fixed Point Com-

putation Problem

To show that Nash is PPAD-hard, we use a problem we call Brouwer, which is a

discrete and simplified version of the search problem associated with Brouwer’s fixed

point theorem. We are given a continuous function φ from the 3-dimensional unit

cube to itself, defined in terms of its values at the centers of 23n cubelets with side

2−n, for some n ≥ 0. 2 At the center cijk of the cubelet Kijk defined as

Kijk = {(x, y, z) : i · 2−n ≤ x ≤ (i + 1) · 2−n,

j · 2−n ≤ y ≤ (j + 1) · 2−n,

k · 2−n ≤ z ≤ (k + 1) · 2−n},

where i, j, k are integers in {0, 1, . . . , 2n − 1}, the value of φ is φ(cijk) = cijk + δijk,

where δijk is one of the following four vectors (also referred to as colors):

2The value of the function near the boundaries of the cubelets could be determined by interpo-
lation —there are many simple ways to do this, and the precise method is of no importance to our
discussion.
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• δ1 = (α, 0, 0)

• δ2 = (0, α, 0)

• δ3 = (0, 0, α)

• δ0 = (−α,−α,−α)

Here α > 0 is much smaller than the cubelet side, say 2−2n.

Thus, to compute φ at the center of the cubelet Kijk we only need to know which

of the four displacements to add. This is computed by a circuit C (which is the only

input to the problem) with 3n input bits and 2 output bits; C(i, j, k) is the index r

such that, if c is the center of cubelet Kijk, φ(c) = c+δr. C is such that C(0, j, k) = 1,

C(i, 0, k) = 2, C(i, j, 0) = 3, and C(2n − 1, j, k) = C(i, 2n − 1, k) = C(i, j, 2n − 1) = 0

(with conflicts resolved arbitrarily), so that the function φ maps the boundary to

the interior of the cube. A vertex of a cubelet is called panchromatic if among the

cubelets adjacent to it there are four that have all four displacements δ0, δ1, δ2, δ3.

Sperner’s Lemma guarantees that, for any circuit C satisfying the above properties,

a panchromatic vertex exists, see, e.g., [Pap94b]. An alternative proof of this fact

follows as a consequence of Theorem 2.11 below.

Brouwer is thus the following total problem: Given a circuit C as described

above, find a panchromatic vertex. The relationship with Brouwer fixed points is

that fixed points of φ only ever occur in the vicinity of a panchromatic vertex. We

next show:

Theorem 2.11. Brouwer is PPAD-complete.

Proof. That Brouwer is in PPAD follows from Theorem 4.1, which is a reduction

from Brouwer to r-Nash, which has been shown to be in PPAD in Theorem 2.3.

To show hardness, we shall reduce end of the line to Brouwer. Given circuits

S and P with n inputs and outputs, as prescribed in that problem, we shall construct
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an “equivalent” instance of Brouwer, that is, another circuit C with 3m = 3(n+ 4)

inputs and two outputs that computes the color of each cubelet of side 2−m, that is

to say, the index i such that δi is the correct displacement of the Brouwer function

at the center of the cubelet encoded into the 3m bits of the input. We shall first

describe the Brouwer function φ explicitly, and then argue that it can be computed

by a circuit.

Our description of φ proceeds as follows: We shall first describe a 1-dimensional

subset L of the 3-dimensional unit cube, intuitively an embedding of the path-like

directed graph GS,P implicitly given by S and P . Then we shall describe the 4-

coloring of the 23m cubelets based on the description of L. Finally, we shall argue

that colors are easy to compute locally, and that panchromatic vertices correspond

to endpoints other than the standard source 0n of GS,P .

We assume that the graph GS,P is such that for each edge (u, v), one of the vertices

is even (ends in 0) and the other is odd; this is easy to guarantee by duplicating the

vertices of GS,P .

L will be orthonormal, that is, each of its segments will be parallel to one of the

axes; all coordinates of endpoints of segments are integer multiples of 2−m, a factor

that we omit in the discussion below. Let u ∈ {0, 1}n be a vertex of GS,P . By

〈u〉 we denote the integer between 0 and 2n − 1 whose binary representation is u.

Associated with u there are two line segments of length 4 of L. The first, called the

principal segment of u, has endpoints u1 = (8〈u〉 + 2, 3, 3) and u′
1 = (8〈u〉 + 6, 3, 3).

The other auxiliary segment has endpoints u2 = (3, 8〈u〉 + 6, 2m − 3) and u′
2 =

(3, 8〈u〉+10, 2m−3). Informally, these segments form two dashed lines (each segment

being a dash) that run along two edges of the cube and slightly in its interior (see

Figure 2.1).

Now, for every vertex u of GS,P , we connect u′
1 to u2 by a line with three straight

segments, with joints u3 = (8〈u〉+ 6, 8〈u〉+ 6, 3) and u4 = (8〈u〉+ 6, 8〈u〉+ 6, 2m−3).
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Figure 2.1: The orthonormal path connecting vertices (u,v); the arrows indicate the
orientation of colors surrounding the path.

Finally, if there is an edge (u, v) in GS,P , we connect u′
2 to v1 by a jointed line with

breakpoints u5 = (8〈v〉 + 2, 8〈u〉 + 10, 2m − 3) and u6 = (8〈v〉 + 2, 8〈u〉 + 10, 3).

This completes the description of the line L if we do the following perturbation:

exceptionally, the principal segment of u = 0n has endpoints 01 = (2, 2, 2) and 0′
1 =

(6, 2, 2) and the corresponding joint is 03 = (6, 6, 2).

It is easy to see that L traverses the interior of the cube without ever “nearly

crossing itself”; that is, two points p, p′ of L are closer than 3 · 2−m in Euclidean

distance only if they are connected by a part of L that has length 8 ·2−m or less. (This

is important in order for the coloring described below of the cubelets surrounding L

to be well-defined.) To check this, just notice that segments of different types (e.g.,
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[u3, u4] and [u′
2, u5]) come closer than 3 ·2−m only if they share an endpoint; segments

of the same type on the z = 3 or the z = 2m − 3 plane are parallel and at least 4

apart; and segments parallel to the z axis differ by at least 4 in either their x or y

coordinates.

We now describe the coloring of the 23m cubelets by four colors corresponding to

the four displacements. Consistent with the requirements for a Brouwer circuit,

we color any cubelet Kijk where any one of i, j, k is 2m − 1, with 0. Given that, any

other cubelet with i = 0 gets color 1; with this fixed, any other cubelet with j = 0

gets color 2, while the remaining cubelets with k = 0 get color 3. Having colored the

boundaries, we now have to color the interior cubelets. An interior cubelet is always

colored 0 unless one of its vertices is a point of the interior of line L, in which case

it is colored by one of the three other colors in a manner to be explained shortly.

Intuitively, at each point of the line L, starting from (2, 2, 2) (the beginning of the

principle segment of the string u = 0n) the line L is “protected” from color 0 from

all 4 sides. As a result, the only place where the four colors can meet is vertex u′
2 or

u1, u 6= 0n, where u is an end of the line. . .

In particular, near the beginning of L at (2, 2, 2) the 27 cubelets Kijk with i, j, k ≤

2 are colored as shown in Figure 2.2. From then on, for any length-1 segment of L of

the form [(x, y, z), (x′, y′, z′)] consider the four cubelets containing this segment. Two

of these cubelets are colored 3, and the other two are colored 1 and 2, in this order

clockwise (from the point of view of an observer at (x, y, z)). The remaining cubelets

touching L are the ones at the joints where L turns. Each of these cubelets, a total

of two per turn, takes the color of the two other cubelets adjacent to L with which it

shares a face.

Now it only remains to describe, for each line segment [a, b] of L, the direction d

in which the two cubelets that are colored 3 lie. The rules are these (in Figure 2.1

the directions d are shown as arrows):
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Figure 2.2: The 27 cubelets around the beginning of line L.

• If [a, b] = [u1, u
′
1] then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u′
1, u3] then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u3, u4] then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.

• If [a, b] = [u4, u2] then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.

• If [a, b] = [u2, u
′
2] then d = (1, 0, 0) if u is even and d = (−1, 0, 0) if u is odd.

• If [a, b] = [u′
2, u5] then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.

• If [a, b] = [u5, u6] then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.

• If [a, b] = [u6, v1] then d = (0, 0, 1) if u is even and d = (0, 0,−1) if u is odd.

This completes the description of the construction. Notice that, for this to work,

we need our assumption that edges in GS,P go between odd and even vertices. Regard-
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ing the alternating orientation of colored cubelets around L, note that we could not

simply introduce “twists” to make them always point in (say) direction d = (0, 0,−1)

for all [u1, u
′
1]. That would create a panchromatic vertex at the location of a twist.

The result now follows from the following two claims:

1. A point in the cube is panchromatic in the described coloring if and only if it is

(a) an endpoint u′
2 of a sink vertex u of GS,P , or

(b) an endpoint u1 of a source vertex u 6= 0n of GS,P

2. A circuit C can be constructed in time polynomial in |S|+ |P |, which computes,

for each triple of binary integers i, j, k < 2m, the color of cubelet Kijk.

Regarding the first claim, the endpoint u′
2 of a sink vertex u, or the endpoint u1

of a source vertex u other than 0n, will be a point where L meets color 0, hence a

panchromatic vertex. There is no alternative way that L can meet color 0 and no

other way a panchromatic vertex can occur.

Regarding the second claim, circuit C is doing the following. C(0, j, k) = 1, for

j, k < 2m − 1, C(i, 0, k) = 2 for i > 0, i, k < 2m − 1, C(i, j, 0) = 3 for i, j > 0,

i, j < 2m − 1. Then by default, C(i, j, k) = 0. However the following tests yield

alternative values for C(i, j, k), for cubelets adjacent to L. LSB(x) denotes the least

significant bit of x, equal to 1 if x is odd, 0 if x is even, and undefined if x is not an

integer. For example, a [u′
1, u3], u 6= 0n segment is given by (letting x = 〈u〉):

1. If k = 2 and i = 8x + 5 and LSB(x) = 1 and j ∈ {3, . . . , 8x + 6} then

C(i, j, k) = 2.

2. If k = 2 and i = 8x + 6 and LSB(x) = 1 and j ∈ {2, . . . , 8x + 6} then

C(i, j, k) = 1.
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3. If k = 3 and (i = 8x+ 5 or i = 8x+ 6) and LSB(x) = 1 and j ∈ {2, . . . , 8x+ 5}

then C(i, j, k) = 3.

4. If k = 2 and (i = 8x+ 5 or i = 8x+ 6) and LSB(x) = 0 and j ∈ {2, . . . , 8x+ 6}

then C(i, j, k) = 3.

5. If k = 3 and i = 8x + 5 and LSB(x) = 0 and j ∈ {3, . . . , 8x + 5} then

C(i, j, k) = 1.

6. If k = 3 and i = 8x + 6 and LSB(x) = 0 and j ∈ {2, . . . , 8x + 5} then

C(i, j, k) = 2.

A [u′
2, u5] segment uses the circuits P and S, and, in the case LSB(x) = 1, x = 〈u〉,

is given by:

1. If (k = 2m − 3 or k = 2m − 4) and j = 8x + 10 and S(x) = x′ and P (x′) = x

and i ∈ {2, . . . , 8x′ + 2} then C(i, j, k) = 3.

2. If k = 2m − 3 and and j = 8x + 9 and S(x) = x′ and P (x′) = x and i ∈

{3, . . . , 8x′ + 2} then C(i, j, k) = 1.

3. If k = 2m−4 and j = 8x+9 and S(x) = x′ and P (x′) = x and i ∈ {3, . . . , 8x′+1}

then C(i, j, k) = 2.

The other segments are done in a similar way, and so the second claim follows. This

completes the proof of hardness.
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2.5 Related Work on Computing Nash Equilibria

and Other Fixed Points

Over the past fifty years, a wealth of studies in the Economics, Optimization, and

Computer Science literature address the problem of computing Nash equilibria. A

celebrated algorithm for the case of two-player games is the Lemke-Howson algo-

rithm [LH64], which is remarkably similar to the simplex method, and appears to

be very efficient in practice. Rosenmüller [Ros71] and Wilson [Wil71] generalize the

Lemke-Howson algorithm to the multi-player case; however, this generalization re-

sults in significant loss in efficiency. More practical algorithms for the multi-player

case are based on general purpose methods for approximating Brouwer fixed points,

most notably on algorithms that walk on simplicial subdivisions of the space where

the equilibria lie, so-called simplicial algorithms [Sca67, GLL73, LT79, LT82, Eav72].

Despite much research on the subject, none of the existing methods for comput-

ing Nash equilibria are known to run in polynomial time, and there are negative

results [HPV89], even for the Lemke-Howson algorithm [SS04].

Lipton and Markakis [LM04] study the algebraic properties of Nash equilibria and

point out that standard quantifier elimination algorithms can be used to solve them,

but these do not run in polynomial time in general. Papadimitriou and Roughgarden

[PR05] show that, in the case of symmetric games, quantifier elimination results in

polynomial-time algorithms for a broad range of parameters. Lipton, Markakis and

Mehta [LMM03] show that, if we only require an ǫ-approximate Nash equilibrium,

then a subexponential algorithm is possible. If the Nash equilibria sought are required

to have any special properties, for example optimize total utility, the problem typically

becomes NP-complete [GZ89, CS03].

In addition to our results in Chapter 3, other researchers have explored reductions

between alternative types of games (see, e.g., [Bub79, AKV05, CSVY06, SV06]). In
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particular, the reductions by Bubelis [Bub79] in the 1970s comprise a remarkable early

precursor of our work; it is astonishing that these important results had not been

pursued for three decades. Bubelis established that the Nash equilibrium problem

for 3 players captures the computational complexity of the same problem with any

number of players. In Chapter 3, we show the same result in an indirect way, via

the Nash equilibrium problem for graphical games — a connection that is crucial

for our PPAD-completeness reduction. Bubelis also demonstrated in [Bub79] that

any algebraic number can be the basis of a Nash equilibrium, something that follows

easily from our results (see Theorem 4.14).

Etessami and Yannakakis study in [EY07] the problem of computing a Nash equi-

librium exactly (a problem that is well-motivated in the context of stochastic games)

and provide an interesting characterization of its complexity (considerably higher

than PPAD), along with that of several other problems. In Section 4.3, we mention

certain interesting results at the interface of their approach with ours.

Finally, Adler and Verma show that several important sub-classes of the Linear

Complementarity Problem (LCP) belong to the class PPAD [AV07]. Using our results

from Chapter 4, they also establish that some of these classes, e.g., the LCP for strictly

co-positive and for strictly semi-monotone matrices, are PPAD-complete.
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Chapter 3

Reductions Among Equilibrium

Problems

In Chapter 4, we show that r-Nash is PPAD-hard by reducing Brouwer to it.

Rather than r-Nash, it will be more convenient to first reduce Brouwer to d-

graphical Nash, the problem of computing a Nash equilibrium in graphical games

of degree d, defined in Section 2.2. Therefore, we need to show that the latter reduces

to r-Nash. This will be the purpose of the present chapter; in fact, we will establish

something stronger, namely that

Theorem 3.1. For every fixed d, r ≥ 3,

• Every r-player normal-form game and every graphical game of degree d can

be mapped in polynomial time to (a) a 3-player normal-form game and (b) a

graphical game with degree 3 and 2 strategies per player, such that there is a

polynomial-time computable surjective mapping from the set of Nash equilibria

of the latter to the set of Nash equilibria of the former.

• There are polynomial-time reductions from r-Nash and d-graphical Nash to

both 3-Nash and 3-graphical Nash.
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Note that the first part of the theorem establishes mappings of exact equilibrium

points among different games, whereas the second asserts that computing approximate

equilibrium points in all these games is polynomial-time equivalent. The proof, which

is quite involved, is presented in the following sections. In Section 3.1, we present

some useful ideas that enable the reductions described in Theorem 3.1, as well as

prepare the necessary machinery for the reduction from Brouwer to d-graphical

Nash in Section 4.1. Sections 3.2 through 3.6 provide the proof of the theorem. We

note that a mapping from r-player games to 3-player games was already known by

Bubelis [Bub79].

In Section 3.7, we establish the computational equivalence of the two notions of

approximation discussed in Section 2.1. In particular, we give a polynomial-time

reduction from the problem of computing an approximately well supported Nash

equilibrium to the problem of computing an approximate Nash equilibrium. The

opposite reduction is trivial, as discussed in Section 2.1.

3.1 Preliminaries: Game Gadgets

We describe the building blocks of our constructions. As we have observed earlier, if a

player v has two pure strategies, say 0 and 1, then every mixed strategy of that player

corresponds to a real number p[v] ∈ [0, 1] which is precisely the probability that the

player plays strategy 1. Identifying players with these numbers, we are interested in

constructing games that perform simple arithmetical operations on mixed strategies;

for example, we are interested in constructing a game with two “input” players v1

and v2 and another “output” player v3 so that in any Nash equilibrium the latter

plays the sum of the former, i.e., p[v3] = min{p[v1] + p[v2], 1}. Such constructions

are considered below.
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Notation: We use x = y ± ǫ to denote y − ǫ ≤ x ≤ y + ǫ.

Proposition 3.2. Let α be a non-negative real number. Let v1, v2, w be players in a

graphical game GG with two strategies per player, and suppose that the payoffs to v2

and w are as follows.

Payoffs to v2 :

w plays 0 w plays 1

v2 plays 0 0 1

v2 plays 1 1 0

Payoffs to w:

w plays 0

v2 plays 0 v2 plays 1

v1 plays 0 0 0

v1 plays 1 α α

w plays 1

v2 plays 0 v2 plays 1

v1 plays 0 0 1

v1 plays 1 0 1

Then, for ǫ < 1, in every ǫ-Nash equilibrium of game GG, p[v2] = min(αp[v1], 1) ± ǫ.

In particular, in every Nash equilibrium of game GG, p[v2] = min(αp[v1], 1).

Proof. If w plays 1, then the expected payoff to w is p[v2], and, if w plays 0, the

expected payoff to w is αp[v1]. Therefore, in an ǫ-Nash equilibrium of GG, if p[v2] >

αp[v1] + ǫ then p[w] = 1. However, note also that if p[w] = 1 then p[v2] = 0.

(Payoffs to v2 make it prefer to disagree with w.) Consequently, p[v2] cannot be

larger than αp[v1] + ǫ, so it cannot be larger than min(αp[v1], 1) + ǫ. Similarly,

if p[v2] < min(αp[v1], 1) − ǫ, then p[v2] < αp[v1] − ǫ, so p[w] = 0, which implies

—again since v2 has the biggest payoff by disagreeing with w— that p[v2] = 1 ≥
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1 − ǫ, a contradiction to p[v2] < min(αp[v1], 1) − ǫ. Hence p[v2] cannot be less than

min(αp[v1], 1) − ǫ.

We will denote by G×α the (directed) graphical game shown in Figure 3.1, where

the payoffs to players v2 and w are specified as in Proposition 3.2 and the payoff of

player v1 is completely unconstrained: v1 could have any dependence on other players

of a larger graphical game GG that contains G×α or even depend on the strategies of

v2 and w; as long as the payoffs of v2 and w are specified as above the conclusion

of the proposition will be true. Note in particular that using the above construction

with α = 1, v2 becomes a “copy” of v1; we denote the corresponding graphical game

by G=. These graphical games will be used as building blocks in our constructions;

the way to incorporate them into some larger graphical game is to make player v1

depend (incoming edges) on other players of the game and make v2 affect (outgoing

edges) other players of the game. For example, we can make a sequence of copies

of any vertex, which form a path in the graph. The copies will then alternate with

distinct w vertices.

Proposition 3.3. Let α, β, γ be non-negative real numbers. Let v1, v2, v3, w be

players in a graphical game GG with two strategies per player, and suppose that the
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payoffs to v3 and w are as follows.

Payoffs to v3 :

w plays 0 w plays 1

v3 plays 0 0 1

v3 plays 1 1 0

Payoffs to w:

w plays 0

v2 plays 0 v2 plays 1

v1 plays 0 0 β

v1 plays 1 α α + β + γ

w plays 1 v3 plays 0 0

v3 plays 1 1

Then, for ǫ < 1, in any ǫ-Nash equilibrium of GG, p[v3] = min(αp[v1] + βp[v2] +

γp[v1]p[v2], 1)±ǫ. In particular, in every Nash equilibrium of GG, p[v3] = min(αp[v1]+

βp[v2] + γp[v1]p[v2], 1).

Proof. If w plays 1, then the expected payoff to w is p[v3], and if w plays 0 then

the expected payoff to w is αp[v1] + βp[v2] + γp[v1]p[v2]. Therefore, in an ǫ-Nash

equilibrium of GG, if p[v3] > αp[v1]+βp[v2]+γp[v1]p[v2]+ǫ then p[w] = 1. However,

note from the payoffs to v3 that if p[w] = 1 then p[v3] = 0. Consequently, p[v3]

cannot be strictly larger than αp[v1] + βp[v2] + γp[v1]p[v2] + ǫ. Similarly, if p[v3] <

min(αp[v1]+βp[v2]+γp[v1]p[v2], 1)−ǫ, then p[v3] < αp[v1]+βp[v2]+γp[v1]p[v2]−ǫ

and, due to the payoffs to w, p[w] = 0. This in turn implies —since v3 has the

biggest payoff by disagreeing with w— that p[v3] = 1 ≥ 1 − ǫ, a contradiction to

p[v3] < min(αp[v1] + βp[v2] + γp[v1]p[v2], 1) − ǫ. Hence p[v3] cannot be less than

min(αp[v1] + βp[v2] + γp[v1]p[v2], 1) − ǫ.
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Remark 3.4. It is not hard to verify that, if v1, v2, v3, w are players of a graphical

game GG and the payoffs to v3, w are specified as in Proposition 3.3 with α = 1,

β = −1 and γ = 0, then, in every ǫ-Nash equilibrium of the game GG, p[v3] =

max(0,p[v1]−p[v2])±ǫ; in particular, in every Nash equilibrium, p[v3] = max(0,p[v1]−

p[v2]).

Let us denote by G+ and G∗ the (directed) graphical game shown in Figure 3.3,

where the payoffs to players v3 and w are specified as in Proposition 3.3 taking (α, β, γ)

equal to (1, 1, 0) (addition) and (0, 0, 1) (multiplication) respectively. Also, let G− be

the game when the payoffs of v3 and w are specified as in Remark 3.4.

Proposition 3.5. Let v1, v2, v3, v4, v5, v6, w1, w2, w3, w4 be vertices in a graphical

game GG with two strategies per player, and suppose that the payoffs to vertices other

than v1 and v2 are as follows.

Payoffs to w1:

w1 plays 0

v2 plays 0 v2 plays 1

v1 plays 0 0 0

v1 plays 1 1 1

w1 plays 1

v2 plays 0 v2 plays 1

v1 plays 0 0 1

v1 plays 1 0 1

Payoffs to v5 :

w1 plays 0 w1 plays 1

v5 plays 0 1 0

v5 plays 1 0 1

Payoffs to w2 and v3 are chosen using Proposition 3.3 to ensure p[v3] = p[v1](1−
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v6

v1

v2

w1 v5

w3

w2 v3

v4

w4

Figure 3.4: Gmax

p[v5]) ± ǫ, 1 in every ǫ-Nash equilibrium of game GG.

Payoffs to w3 and v4 are chosen using Proposition 3.3 to ensure p[v4] = p[v2]p[v5]±

ǫ, in every ǫ-Nash equilibrium of game GG.

Payoffs to w4 and v6 are chosen using Proposition 3.3 to ensure that, in every

ǫ-Nash equilibrium of game GG, p[v6] = min(1,p[v3] + p[v4]) ± ǫ.

Then, for ǫ < 1, in every ǫ-Nash equilibrium of game GG, p[v6] = max(p[v1],p[v2])±

4ǫ. In particular, in every Nash equilibrium, p[v6] = max(p[v1],p[v2]).

The graph of the game looks as in Figure 3.4. It is actually possible to “merge”

w1 and v5, but we prefer to keep the game as is in order to maintain the bipartite

structure of the graph in which one side of the partition contains all the vertices

corresponding to arithmetic expressions (the vi vertices) and the other side all the

intermediate wi vertices.

Proof. If, in an ǫ-Nash equilibrium, we have p[v1] < p[v2]−ǫ, then it follows from w1’s

payoffs that p[w1] = 1. It then follows that p[v5] = 1 since v5’s payoffs induce it to

imitate w1. Hence, p[v3] = ±ǫ and p[v4] = p[v2]±ǫ, and, consequently, p[v3]+p[v4] =

p[v2] ± 2ǫ. This implies p[v6] = p[v2] ± 3ǫ, as required. A similar argument shows

that, if p[v1] > p[v2] + ǫ, then p[v6] = p[v1] ± 3ǫ.

1We can use Proposition 3.3 to multiply by (1−p[v5]) in a similar way to multiplication by p[v5];
the payoffs to w2 have v5’s strategies reversed.
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If |p[v1] − p[v2]| ≤ ǫ, then p[w1] and, consequently, p[v5] may take any value.

Assuming, without loss of generality that p[v1] ≥ p[v2], we have

p[v3] = p[v1](1 − p[v5]) ± ǫ

p[v4] = p[v2]p[v5] ± ǫ = p[v1]p[v5] ± 2ǫ,

which implies

p[v3] + p[v4] = p[v1] ± 3ǫ,

and, therefore,

p[v6] = p[v1] ± 4ǫ, as required.

We conclude the section with the simple construction of a graphical game Gα, depicted

in Figure 3.2, which performs the assignment of some fixed value α ≥ 0 to a player.

The proof is similar in spirit to our proof of Propositions 3.2 and 3.3 and will be

skipped.

Proposition 3.6. Let α be a non-negative real number. Let w, v1 be players in

a graphical game GG with two strategies per player and let the payoffs to w, v1 be

specified as follows.

Payoffs to v1 :

w plays 0 w plays 1

v1 plays 0 0 1

v1 plays 1 1 0

Payoffs to w :

v1 plays 0 v1 plays 1

w plays 0 α α

w plays 1 0 1
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Then, for ǫ < 1, in every ǫ-Nash equilibrium of game GG, p[v1] = min(α, 1) ± ǫ. In

particular, in every Nash equilibrium of GG, p[v1] = min(α, 1).

Before concluding the section we give a useful definition.

Definition 3.7. Let v1, v2, . . . , vk, v be players of a graphical game Gf such that, in ev-

ery Nash equilibrium, it holds that p[v] = f(p[v1], . . . ,p[vk]), where f is some function

with k arguments and range [0, 1]. We say that the game Gf has error amplification

at most c if, in every ǫ-Nash equilibrium, it holds that p[v] = f(p[v1], . . . ,p[vk])± cǫ.

In particular, the games G=, G+, G−, G∗, Gα described above have error amplifications

at most 1, whereas the game Gmax has error amplification at most 4.

3.2 Reducing Graphical Games to Normal-Form

Games

We establish a mapping from graphical games to normal-form games as specified by

the following theorem.

Theorem 3.8. For every d > 1, a graphical game (directed or undirected) GG of

maximum degree d can be mapped in polynomial time to a (d2 + 1)-player normal-

form game G so that there is a polynomial-time computable surjective mapping g from

the Nash equilibria of the latter to the Nash equilibria of the former.

Proof.

Overview:

Figure 3.5 shows the construction of G = f(GG). We will explain the construction

in detail as well as show that it can be computed in polynomial time. We will also

establish that there is a surjective mapping from the Nash equilibria of G to the

Nash equilibria of GG. In the following discussion we will refer to the players of the
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graphical game as “vertices” to distinguish them from the players of the normal-form

game.

Input: Degree d graphical game GG: vertices V , |V | = n′, |Sv| = t for all v ∈ V .
Output: Normal-form game G.

1. If needed, rescale the entries in the payoff tables of GG so that they lie in
the range [0, 1]. One way to do so is to divide all payoff entries by max{u},
where max{u} is the largest entry in the payoff tables of GG.

2. Let r = d2 or r = d2 + 1; r chosen to be even.

3. Let c : V −→ {1, . . . , r} be a r-coloring of GG such that no two adjacent
vertices have the same color, and, furthermore, no two vertices having a
common successor —in the affects graph of the game— have the same color.
Assume that each color is assigned to the same number of vertices, adding
to V extra isolated vertices to make up any shortfall; extend mapping c to
these vertices. Let {v(i)

1 , . . . , v
(i)
n/r} denote {v : c(v) = i}, where n ≥ n′.

4. For each p ∈ [r], game G will have a player, labeled p, with strategy set Sp;
Sp will be the union (assumed disjoint) of all Sv with c(v) = p, i.e.,

Sp = {(v, a) : c(v) = p, a ∈ Sv}, |Sp| = t n
r
.

5. Taking S to be the cartesian product of the Sp’s, let s ∈ S be a strategy
profile of game G. For p ∈ [r], up

s is defined as follows:

(a) Initially, all utilities are 0.

(b) For v0 ∈ V having predecessors v1, . . . , vd′ in the affects graph of GG,

if c(v0) = p (that is, v0 = v
(p)
j for some j) and, for i = 0, . . . , d′, s

contains (vi, ai), then up
s = uv0

s′ for s′ a strategy profile of GG in which
vi plays ai for i = 0, . . . , d′.

(c) Let M > 2 n
r
.

(d) For odd number p < r, if player p plays (v
(p)
i , a) and p + 1 plays

(v
(p+1)
i , a′), for any i, a, a′, then add M to up

s and subtract M from
up+1

s .

Figure 3.5: Reduction from the graphical game GG to the normal-form game G

We first rescale all payoffs so that they are nonnegative and at most 1 (Step 1); it

is easy to see that the set of Nash equilibria is preserved under this transformation.

Also, without loss of generality, we assume that all vertices v ∈ V have the same
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number of strategies, |Sv| = t. We color the vertices of G, where G = (V, E) is the

affects graph of GG, so that any two adjacent vertices have different colors, but also

any two vertices with a common successor have different colors (Step 3). Since this

type of coloring will be important for our discussion we will define it formally.

Definition 3.9. Let GG be a graphical game with affects graph G = (V, E). We

say that GG can be legally colored with k colors if there exists a mapping c : V →

{1, 2, . . . , k} such that, for all e = (v, u) ∈ E, c(v) 6= c(u) and, moreover, for all

e1 = (v, w), e2 = (u, w) ∈ E with v 6= u, c(v) 6= c(u). We call such coloring a legal

k-coloring of GG.

To get such coloring, it is sufficient to color the union of the underlying undirected

graph G′ with its square (with self-loops removed) so that no adjacent vertices have

the same color; this can be done with at most d2 colors —see, e.g., [CKK+00]— since

G′ has degree d by assumption; we are going to use r = d2 or r = d2 + 1 colors,

whichever is even, for reasons to become clear shortly. We assume for simplicity that

each color class has the same number of vertices, adding dummy vertices if needed

to satisfy this property. Henceforth, we assume that n is an integer multiple of r so

that every color class has n
r

vertices.

We construct a normal-form game G with r ≤ d2 + 1 players. Each of them

corresponds to a color and has tn
r

strategies, the t strategies of each of the n
r

vertices

in its color class (Step 4). Since r is even, we can divide the r players into pairs and

make each pair play a generalized Matching Pennies game (see Definition 3.10 below)

at very high stakes, so as to ensure that all players will randomize uniformly over the

vertices assigned to them. 2 Within the set of strategies associated with each vertex,

the Matching Pennies game expresses no preference, and payoffs are augmented to

correspond to the payoffs that would arise in the original graphical game GG (see

2A similar trick is used in Theorem 7.3 of [SV06], a hardness result for a class of circuit games.
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Step 5 for the exact specification of the payoffs).

Definition 3.10. The (2-player) game Generalized Matching Pennies is defined as

follows. Call the 2 players the pursuer and the evader, and let [n] denote their strate-

gies. If for any i ∈ [n] both players play i, then the pursuer receives a positive payoff

u > 0 and the evader receives a payoff of −u. Otherwise both players receive 0. It is

not hard to check that the game has a unique Nash equilibrium in which both players

use the uniform distribution.

Polynomial size of G = f(GG):

The input size is |GG| = Θ(n′ · td+1 · q), where n′ is the number of vertices in GG

and q the size of the values in the payoff matrices in the logarithmic cost model. The

normal-form game G has r ∈ {d2, d2 + 1} players, each having tn/r strategies, where

n ≤ rn′ is the number of vertices in GG after the possible addition of dummy vertices

to make sure that all color classes have the same number of vertices. Hence, there are

r ·
(
tn/r

)r

≤
(

(d2 + 1)
(
tn′
)d2+1

)
payoff entries in G. This is polynomial in |GG| so

long as d is constant. Moreover, each payoff entry will be of polynomial size since M

is of polynomial size and each payoff entry of the game G is the sum of 0 or M and

a payoff entry of GG.

Construction of the mapping g:

Given a Nash equilibrium NG = {xp
(v,a)}p,v,a of G = f(GG), we claim that we can

recover a Nash equilibrium {xv
a}v,a of GG, NGG = g(NG), as follows:

xv
a := x

c(v)
(v,a)

/∑

j∈Sv

x
c(v)
(v,j), ∀a ∈ Sv, v ∈ V. (3.1)

Clearly g is computable in polynomial time.

Proof that g maps Nash equilibria of G to Nash equilibria of GG:

Call GG′ the graphical game resulting from GG by rescaling the utilities so that
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they lie in the range [0, 1]. It is easy to see that any Nash equilibrium of game GG

is, also, a Nash equilibrium of game GG′ and vice versa. Therefore, it is enough

to establish that the mapping g maps every Nash equilibrium of game G to a Nash

equilibrium of game GG′.

For v ∈ V , c(v) = p, let “p plays v” denote the event that p plays (v, a) for some

a ∈ Sv. We show that in a Nash equilibrium NG of game G, for every player p and

every v ∈ V with c(v) = p, Pr[p plays v] ∈ [λ − 1
M

, λ + 1
M

], where λ =
(

n
r

)−1
. Note

that the “fair share” for v is λ.

Lemma 3.11. For all v ∈ V , in a Nash equilibrium of G, Pr[c(v) plays v] ∈ [λ −
1
M

, λ + 1
M

].

Proof. Suppose, for a contradiction, that in a Nash equilibrium of G, Pr
[
p plays v

(p)
i

]
<

λ− 1
M

for some i, p. Then there exists some j such that Pr
[
p plays v

(p)
j

]
> λ + 1

M
λ.

If p is odd (a pursuer) then p+1 (the evader) will have utility of at least −λM+1 for

playing any strategy
(
v

(p+1)
i , a

)
, a ∈ S

v
(p+1)
i

, whereas utility of at most −λM−λ+1 for

playing any strategy (v
(p+1)
j , a), a ∈ S

v
(p+1)
j

. Since −λM +1 > −λM−λ+1, in a Nash

equilibrium, Pr
[
p + 1 plays v

(p+1)
j

]
= 0. Therefore, there exists some k such that

Pr
[
p + 1 plays v

(p+1)
k

]
> λ. Now the payoff of p for playing any strategy

(
v

(p)
j , a

)
,

a ∈ S
v
(p)
j

, is at most 1, whereas the payoff for playing any strategy
(
v

(p)
k , a

)
, a ∈ S

v
(p)
k

is at least λM . Thus, in a Nash equilibrium, player p should not include any strategy
(
v

(p)
j , a

)
, a ∈ S

v
(p)
j

, in her support; hence Pr
[
p plays v

(p)
j

]
= 0, a contradiction.

If p is even, then p−1 will have utility of at most (λ− 1
M

)M+1 for playing any strat-

egy
(
v

(p−1)
i , a

)
, a ∈ S

v
(p−1)
i

, whereas utility of at least (λ+ 1
M

λ)M for playing any strat-

egy (v
(p−1)
j , a), a ∈ S

v
(p−1)
j

. Hence, in a Nash equilibrium Pr
[
p − 1 plays v

(p−1)
i

]
= 0,

which implies that there exists some k such that Pr
[
p − 1 plays v

(p−1)
k

]
> λ. But,

p will then have utility of at least 0 for playing any strategy
(
v

(p)
i , a

)
, a ∈ S

v
(p)
i

,

whereas utility of at most −λM + 1 for playing any strategy (v
(p)
k , a), a ∈ S

v
(p)
k

. Since
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0 > −λM + 1, in a Nash equilibrium, Pr
[
p plays v

(p)
k

]
= 0. Therefore, there exists

some k′ such that Pr
[
p plays v

(p)
k′

]
> λ. Now the payoff of p − 1 for playing any

strategy
(
v

(p−1)
k , a

)
, a ∈ S

v
(p−1)
k

, is at most 1, whereas the payoff for playing any

strategy
(
v

(p−1)
k′ , a

)
, a ∈ S

v
(p−1)

k′
is at least λM . Thus, in a Nash equilibrium, player

p − 1 should not include any strategy
(
v

(p−1)
k , a

)
, a ∈ S

v
(p−1)
k

, in her support; hence

Pr
[
p − 1 plays v

(p−1)
k

]
= 0, a contradiction.

From the above discussion, it follows that every vertex is chosen with probability

at least λ− 1
M

by the player that represents its color class. A similar argument shows

that no vertex is chosen with probability greater than λ + 1
M

. Indeed, suppose, for

a contradiction, that in a Nash equilibrium of G, Pr
[
p plays v

(p)
j

]
> λ + 1

M
for some

j, p; then there exists some i such that Pr
[
p plays v

(p)
i

]
< λ − 1

M
λ; now, distinguish

two cases depending on whether p is even or odd and proceed in the same fashion as

in the argument used above to show that no vertex is chosen with probability smaller

than λ − 1/M .

To see that {xv
a}v,a, defined by (3.1), corresponds to a Nash equilibrium of GG′

note that, for any player p and vertex v ∈ V such that c(v) = p, the division of

Pr[p plays v] into Pr[p plays (v, a)], for various values of a ∈ Sv, is driven entirely

by the same payoffs as in GG′; moreover, note that there is some positive probability

p(v) ≥ (λ − 1
M

)d > 0 that the predecessors of v are chosen by the other players of

G and the additional expected payoff to p resulting from choosing (v, a), for some

a ∈ Sv, is p(v) times the expected payoff of v in GG′ if v chooses action a and all

other vertices play as specified by (3.1). More formally, suppose that p = c(v) for

some vertex v of the graphical game GG′ and, without loss of generality, assume that

p is odd (pursuer) and that v is the vertex v
(p)
i in the notation of Figure 3.5. Then, in

a Nash equilibrium of the game G, we have, by the definition of a Nash equilibrium,
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that for all strategies a, a′ ∈ Sv of vertex v:

E [payoff to p for playing (v, a)] > E [payoff to p for playing (v, a′)] ⇒ xp
(v,a′) = 0.

(3.2)

But

E [payoff to p for playing (v, a)] =

M · Pr
[
p + 1 plays v

(p+1)
i

]
+

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
x

c(u)
(u,su)

and, similarly, for a′. Therefore, (3.2) implies

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
x

c(u)
(u,su) >

∑

s∈SN (v)\{v}

uv
a′s

∏

u∈N (v)\{v}
x

c(u)
(u,su) ⇒ xp

(v,a′) = 0.

Dividing by
∏

u∈N (v)\{v}
∑

j∈Su
x

c(u)
(u,j) =

∏
u∈N (v)\{v} Pr [c(u) plays u] = p(v) and in-

voking (3.1) gives

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
xu

su
>

∑

s∈SN (v)\{v}

uv
a′s

∏

u∈N (v)\{v}
xu

su
⇒ xv

a′ = 0,

where we used that p(v) ≥ (λ − 1
M

)d > 0, which follows by Lemma 3.11.

Mapping g is surjective on the Nash equilibria of GG′ and, therefore, GG:

We will show that, for every Nash equilibrium NGG′ = {xv
a}v,a of GG′, there exists

a Nash equilibrium NG = {xp
(v,a)}p,v,a of G such that (3.1) holds. The existence can

be easily established via the existence of a Nash equilibrium in a game G′ defined as

follows. Suppose that, in NGG′, every vertex v ∈ V receives an expected payoff of

uv from every strategy in the support of {xv
a}a. Define the following game G′ whose

structure results from G by merging the strategies {(v, a)}a of player p = c(v) into
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one strategy sp
v, for every v such that c(v) = p. So the strategy set of player p in G′

will be {sp
v | c(v) = p} also denoted as {s(p)

1 , . . . , s
(p)
n/r} for ease of notation. Define

now the payoffs to the players as follows. Initialize the payoff matrices with all entries

equal to 0. For every strategy profile s,

• for v0 ∈ V having predecessors v1, . . . , vd′ in the affects graph of GG′, if, for

i = 0, . . . , d′, s contains s
c(vi)
vi , then add uv0 to u

c(v0)
s .

• for odd number p < r if player p plays strategy s
(p)
i and player p+1 plays strategy

s
(p+1)
i then add M to up

s and subtract M from up+1
s (Generalized Matching

Pennies).

Note the similarity between the definitions of the payoff matrices of G and G′. From

Nash’s theorem, game G′ has a Nash equilibrium {yp
sp
v
}p,v and it is not hard to verify

that {xp
(v,a)}p,v,a is a Nash equilibrium of game G, where xp

(v,a) := yp
sp
v
· xv

a, for all p,

v ∈ V such that c(v) = p, and a ∈ Sv.

3.3 Reducing Normal-Form Games to Graphical

Games

We establish the following mapping from normal-form games to graphical games.

Theorem 3.12. For every r > 1, a normal-form game with r players can be mapped

in polynomial time to an undirected graphical game of maximum degree 3 and two

strategies per player so that there is a polynomial-time computable surjective mapping

g from the Nash equilibria of the latter to the Nash equilibria of the former.
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Given a normal-form game G having r players, 1, . . . , r, and n strategies per player,

say Sp = [n] for all p ∈ [r], we will construct a graphical game GG, with a bipartite

graph of maximum degree 3, and 2 strategies per player, say {0, 1}, with description

length polynomial in the description length of G, so that from every Nash equilibrium

of GG we can recover a Nash equilibrium of G. In the following discussion we will

refer to the players of the graphical game as “vertices” to distinguish them from the

players of the normal-form game. It will be easy to check that the graph of GG is

bipartite and has degree 3; this graph will be denoted G = (V ∪W, E), where W and

V are disjoint, and each edge in E goes between V and W . For every vertex v of the

graphical game, we will denote by p[v] the probability that v plays pure strategy 1.

Recall that G is specified by the quantities {up
s : p ∈ [r], s ∈ S}. A mixed strategy

profile of G is given by probabilities {xp
j : p ∈ [r], j ∈ Sp}. GG will contain a vertex

v(xp
j ) ∈ V for each player p and strategy j ∈ Sp, and the construction of GG will

ensure that in any Nash equilibrium of GG, the quantities {p[v(xp
j )] : p ∈ [r], j ∈ Sp},

if interpreted as values {xp
j}p,j, will constitute a Nash equilibrium of G. Extending

this notation, for various arithmetic expressions A involving any xp
j and up

s, vertex

v(A) ∈ V will be used, and be constructed such that in any Nash equilibrium of GG,

p[v(A)] is equal to A evaluated at the given values of up
s and with xp

j equal to p[v(xp
j )].

Elements of W are used to mediate between elements of V , so that the latter ones

obey the intended arithmetic relationships.

We use Propositions 3.2-3.6 as building blocks of GG, starting with r subgraphs

that represent mixed strategies for the players of G. In the following, we construct

a graphical game containing vertices {v(xp
j)}j∈[n], whose probabilities sum to 1, and

internal vertices vp
j , which control the distribution of the one unit of probability mass

among the vertices v(xp
j ). See Figure 3.6 for an illustration.

Proposition 3.13. Consider a graphical game that contains
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• for j ∈ [n] a vertex v(xp
j )

• for j ∈ [n − 1] a vertex vp
j

• for j ∈ [n] a vertex v(
∑j

i=1 xp
i )

• for j ∈ [n−1] a vertex wj(p) used to ensure p[v(
∑j

i=1 xp
i )] = p[v(

∑j+1
i=1 xp

i )](1−

p[vp
j ])

• for j ∈ [n − 1] a vertex w′
j(p) used to ensure p[v(xp

j+1)] = p[v(
∑j+1

i=1 xp
i )]p[vp

j ]

• a vertex w′
0(p) used to ensure p[v(xp

1)] = p[v(
∑1

i=1 xp
i )]

Also, let v(
∑n

i=1 xp
i ) have payoff of 1 when it plays 1 and 0 otherwise. Then, in any

Nash equilibrium of the graphical game,
∑n

i=1 p[v(xp
i )] = 1 and moreover p[v(

∑j
i=1 xp

i )] =
∑j

i=1 p[v(xp
i )], and the graph is bipartite and of degree 3.

Proof. It is not hard to verify that the graph has degree 3. Most of the degree

3 vertices are the w vertices used in Propositions 3.2 and 3.3 to connect the pairs

or triples of graph players whose probabilities are supposed to obey an arithmetic

relationship. In a Nash equilibrium, v(
∑n

i=1 xp
i ) plays 1. The vertices vp

j split the

probability p[v(
∑j+1

i=1 xp
i )] between p[v(

∑j
i=1 xp

i )] and p[v(xp
j+1)].

Comment. The values p[vp
j ] control the distribution of probability (summing to 1)

amongst the n vertices v(xp
j). These vertices can set to zero any proper subset of the

probabilities p[v(xp
j )].

Notation. For s ∈ S−p let xs = x1
s1

· x2
s2
· · ·xp−1

sp−1
· xp+1

sp+1
· · ·xr

sr
. Also, let Up

j =
∑

s∈S−p
up

jsxs be the utility to p for playing j in the context of a given mixed profile

{xs}s∈S−p.

Lemma 3.14. Suppose all utilities up
s (of G) lie in the range [0, 1] for some p ∈ [r].

We can construct a degree 3 bipartite graph having a total of O(rnr) vertices, including
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The vertices whose labels include U do not form part of Proposition 3.13; they
have been included to show how the gadget fits into the rest of the construction,
as described in Figure 3.7. Unshaded vertices belong to V , shaded vertices belong
to W (V and W being the two parts of the bipartite graph). A directed edge
from u to v indicates that u’s choice can affect v’s payoff.

v(
∑n

i=1 xp
i ) w′

n−1(p) v(xp
n)

v(Up
n)

wn−1(p) vp
n−1 w(Up

n−1)

v(Up
≤n−1)

v(
∑n−1

i=1 xp
i )

v(
∑3

i=1 xp
i ) w′

2(p) v(xp
3)

v(Up
3 )

w2(p) vp
2 w(Up

2 )

v(Up
≤2)

v(
∑2

i=1 xp
i ) w′

1(p) v(xp
2)

v(Up
2 )

w1(p) vp
1 w(Up

1 )

v(Up
≤1)

v(
∑1

i=1 xp
i ) w′

0(p) v(xp
1)

Figure 3.6: Diagram of Proposition 3.13
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vertices v(xp
j ), v(Up

j ), v(Up
≤j), for all j ∈ [n], such that in any Nash equilibrium,

p[v(Up
j )] =

∑

s∈S−p

up
js

∏

q 6=p

p[v(xq
sq

)], (3.3)

p[v(Up
≤j)] = max

i≤j

∑

s∈S−p

up
is

∏

q 6=p

p[v(xq
sq

)]. (3.4)

The general idea is to note that the expressions for p[v(Up
j )] and p[v(Up

≤j)] are

constructed from arithmetic subexpressions using the operations of addition, multi-

plication and maximization. If each subexpression A has a vertex v(A), then using

Propositions 3.2 through 3.6 we can assemble them into a graphical game such that in

any Nash equilibrium, p[v(A)] is equal to the value of A with input p[v(xp
j )], p ∈ [r],

j ∈ [n]. We just need to limit our usage to O(rnr) subexpressions and ensure that

their values all lie in [0, 1].

Proof. Note that

Up
≤j = max{Up

j , Up
≤j−1}, Up

j =
∑

s∈S−p

up
jsxs =

∑

s∈S−p

up
jsx

1
s1
· · ·xp−1

sp−1
xp+1

sp+1
· · ·xr

sr
.

Let S−p = {S−p(1), . . . , S−p(nr−1)}, so that

∑

s∈S−p

up
jsxs =

nr−1∑

ℓ=1

up
jS−p(ℓ)xS−p(ℓ).

Include vertex v(
∑z

ℓ=1 up
jS−p(ℓ)xS−p(ℓ)), for each partial sum

∑z
ℓ=1 up

jS−p(ℓ)xS−p(ℓ), 1 ≤

z ≤ nr−1. Similarly, include vertex v(up
js

∏
p 6=q≤z xq

sq
), for each partial product of the

summands up
js

∏
p 6=q≤z xq

sq
, 0 ≤ z ≤ r. So, for each strategy j ∈ Sp, there are nr−1

partial sums and r + 1 partial products for each summand. Then, there are n partial

sequences over which we have to maximize. Note that, since all utilities are assumed
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to lie in the set [0, 1], all partial sums and products must also lie in [0, 1], so the

truncation at 1 in the computations of Propositions 3.2, 3.3, 3.5 and 3.6 is not a

problem. So using a vertex for each of the 2n + (r + 1)nr arithmetic subexpressions,

a Nash equilibrium will compute the desired quantities.

We repeat the construction specified by Lemma 3.14 for all p ∈ [r]. Note that, to

avoid large degrees in the resulting graphical game, each time we need to make use

of a value xq
sq

we create a new copy of the vertex v(xq
sq

) using the gadget G= and,

then, use the new copy for the computation of the desired partial product; an easy

calculation shows that we have to make (r − 1)nr−1 copies of v(xq
sq

), for all q ≤ r,

sq ∈ Sq. To limit the degree of each vertex to 3 we create a binary tree of copies of

v(xq
sq

) with (r − 1)nr−1 leaves and use each leaf once.

Proof of Theorem 3.12: Let G be a r-player normal-form game with n strategies

per player and construct GG = f(G) as shown in Figure 3.7. The graph of GG has

degree 3, by the graph structure of our gadgets from Propositions 3.2 through 3.6 and

the fact that we use separate copies of the v(xp
j ) vertices to influence different v(Up

j )

vertices (see Step 4 and discussion after Lemma 3.14).

Polynomial size of GG = f(G):

The size of GG is polynomial in the description length r · nrq of G, where q is the

size of the values in the payoff tables in the logarithmic cost model.

Construction of g(NGG) (where NGG denotes a Nash equilibrium of GG):

Given a Nash equilibrium g(NGG) of GG, we claim that we can recover a Nash

equilibrium {xp
j}p,j of G by taking xp

j = p[v(xp
j )]. This is clearly computable in

polynomial time.

Proof that the reduction preserves Nash equilibria:

Call G′ the game resulting from G by rescaling the utilities so that they lie in the
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Input: Normal-form game G with r players, n strategies per player, utilities
{up

s : p ∈ [r], s ∈ S}.
Output: Graphical game GG with bipartite graph (V ∪ W, E).

1. If needed, rescale the utilities up
s so that they lie in the range [0, 1]. One

way to do so is to divide all utilities by max{up
s}.

2. For each player/strategy pair (p, j) let v(xp
j ) ∈ V be a vertex in GG.

3. For each p ∈ [r] construct a subgraph as described in Proposition 3.13 so
that in a Nash equilibrium of GG, we have

∑
j p[v(xp

j )] = 1.

4. Use the construction of Proposition 3.2 with α = 1 to make (r − 1)nr−1

copies of the v(xp
j ) vertices (which are added to V ). More precisely, create

a binary tree with copies of v(xp
j ) which has (r − 1)nr−1 leaves.

5. Use the construction of Lemma 3.14 to introduce (add to V ) vertices v(Up
j ),

v(Up
≤j), for all p ∈ [r], j ∈ [n]. Each v(Up

j ) uses its own set of copies of the
vertices v(xp

j ). For p ∈ [r], j ∈ [n] introduce (add to W ) w(Up
j ) with

(a) If w(Up
j ) plays 0 then w(Up

j ) gets payoff 1 whenever v(Up
≤j) plays 1,

else 0.

(b) If w(Up
j ) plays 1 then w(Up

j ) gets payoff 1 whenever v(Up
j+1) plays 1,

else 0.

6. Give the following payoffs to the vertices vp
j (the additional vertices used in

Proposition 3.13 whose payoffs were not specified).

(a) If vp
j plays 0 then vp

j has a payoff of 1 whenever w(Up
j ) plays 0, otherwise

0.

(b) If vp
j plays 1 then vp

j has a payoff of 1 whenever w(Up
j ) plays 1, otherwise

0.

7. Return the underlying undirected graphical game GG.

Figure 3.7: Reduction from normal-form game G to graphical game GG
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range [0, 1]. It is easy to see that any Nash equilibrium of game G is, also, a Nash

equilibrium of game G′ and vice versa. Therefore, it is enough to establish that the

mapping g(·) maps every Nash equilibrium of game GG to a Nash equilibrium of game

G′. By Proposition 3.13, we have that
∑

j xp
j = 1, for all p ∈ [r]. It remains to show

that, for all p, j, j′,

∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs =⇒ xp

j′ = 0.

We distinguish the cases:

• If there exists some j′′ < j′ such that
∑

s∈S−p
up

j′′sxs >
∑

s∈S−p
up

j′sxs, then, by

Lemma 3.14, p[v(Up
≤j′−1)] > p[v(Up

j′)]. Thus, p[vp
j′−1] = 0 and, consequently,

v(xp
j′) plays 0 as required, since

p[v(xp
j′)] = p[vp

j′−1]p

[
v

(
j′∑

i=1

xp
i

)]
.

• The case j < j′ reduces trivially to the previous case.

• It remains to deal with the case j > j′, under the assumption that, for all

j′′ < j′,
∑

s∈S−p
up

j′′sxs ≤
∑

s∈S−p
up

j′sxs, or, equivalently,

p[v(Up
j′′)] ≤ p[v(Up

j′)],

which in turn implies that

p[v(Up
≤j′)] ≤ p[v(Up

j′)].

It follows that there exists some k, j′ + 1 ≤ k ≤ j, such that p[v(Up
k )] >

p[v(Up
≤k−1)]. Otherwise, p[v(Up

≤j′)] ≥ p[v(Up
≤j′+1)] ≥ . . . ≥ p[v(Up

≤j)] ≥ p[v(Up
j )] >
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p[v(Up
j′)], which is a contradiction to p[v(Up

≤j′)] ≤ p[v(Up
j′)]. Since p[v(Up

k )] >

p[v(Up
≤k−1)], it follows that p[w(Up

k−1)] = 1 ⇒ p[vp
k−1] = 1 and, therefore,

p

[
v

(
k−1∑

i=1

xp
i

)]
= p

[
v

(
k∑

i=1

xp
i

)]
(1 − p[vp

k−1]) = 0

⇒ p

[
v

(
j′∑

i=1

xp
i

)]
= 0 ⇒ p

[
v(xp

j′)
]

= 0.

Mapping g is surjective on the Nash equilibria of G′ and, therefore, G:

We will show that given a Nash equilibrium NG′ of G′ there is a Nash equilibrium

NGG of GG such that g(NGG) = NG′. Let NG′ = {xp
j : p ≤ r, j ∈ Sp}. In NGG, let

p[v(xp
j )] = xp

j . Lemma 3.14 shows that the values p[v(Up
j )] are the expected utilities

to player p for playing strategy j, given that all other players use the mixed strategy

{xp
j : p ≤ r, j ∈ Sp}. We identify values for p[vp

j ] that complete a Nash equilibrium

for GG.

Based on the payoffs to vp
j described in Figure 3.7 we have

• If p[v(Up
≤j)] > p[v(Up

j+1)] then p[w(Up
j )] = 0; p[vp

j ] = 0;

• If p[v(Up
≤j)] < p[v(Up

j+1)] then p[w(Up
j )] = 1; p[vp

j ] = 1;

• If p[v(Up
≤j)] = p[v(Up

j+1)] then choose p[w(Up
j )] = 1

2
; p[vp

j ] is arbitrary (we may

assign it any value)

Given the above constraints on the values p[vp
j ] we must check that we can choose

them (and there is a unique choice) so as to make them consistent with the prob-

abilities p[v(xp
j )]. We use the fact the values xp

j form a Nash equilibrium of G. In

particular, we know that p[v(xp
j )] = 0 if there exists j′ with Up

j′ > Up
j . We claim that
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for j satisfying p[v(Up
≤j)] = p[v(Up

j+1)], if we choose

p[vp
j ] = p[v(xp

j+1)]/

j+1∑

i=1

p[v(xp
i )],

then the values p[v(xp
j )] are consistent. 2

3.4 Combining the Reductions

Suppose that we take either a graphical or a normal-form game, and apply to it both

of the reductions described in the previous sections. Then we obtain a game of the

same type and a surjective mapping from the Nash equilibria of the latter to the Nash

equilibria of the former.

Corollary 3.15. For any fixed d, a (directed or undirected) graphical game of maxi-

mum degree d can be mapped in polynomial time to an undirected graphical game of

maximum degree 3 so that there is a polynomial-time computable surjective mapping

g from the Nash equilibria of the latter to the Nash equilibria of the former.

The following also follows directly from Theorems 3.12 and 3.8, but is not as

strong as Theorem 3.17 below.

Corollary 3.16. For any fixed r > 1, a r-player normal-form game can be mapped in

polynomial time to a 10-player normal-form game so that there is a polynomial-time

computable surjective mapping g from the Nash equilibria of the latter to the Nash

equilibria of the former.

Proof. Theorem 3.12 converts a r-player game G into a graphical game GG based on

a graph of degree 3. Theorem 3.8 converts GG to a 10-player game G′, whose Nash

equilibria encode the Nash equilibria of GG and hence of G. (Note that for d an odd
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number, the proof of Theorem 3.8 implies a reduction to a (d2+1)-player normal-form

game.)

We next prove a stronger result, by exploiting in more detail the structure of the

graphical games GG constructed in the proof of Theorem 3.12. The technique used

here will be used in Section 3.5 to strengthen the result even further.

Theorem 3.17. For any fixed r > 1, a r-player normal-form game can be mapped in

polynomial time to a 4-player normal-form game so that there is a polynomial-time

computable surjective mapping g from the Nash equilibria of the latter to the Nash

equilibria of the former.

Proof. Construct G′ from G as shown in Figure 3.8.

Polynomial size of G′ = f(G).

By Theorem 3.12, GG (as constructed in Figure 3.8) is of polynomial size. The size

of GG′ is at most 3 times the size of GG since we do not need to apply Step 3 to any

edges that are themselves constructed by an earlier iteration of Step 3. Finally, the

size of G′ is polynomial in the size of GG′ from Theorem 3.8.

Construction of g(NG′) (for NG′ a Nash equilibrium of G′).

Let g1 be a surjective mapping from the Nash equilibria of GG to the Nash equilibria

of G, which is guaranteed to exist by Theorem 3.12. It is trivial to construct a

surjective mapping g2 from the Nash equilibria of GG′ to the Nash equilibria of GG.

By Theorem 3.8, there exists a surjective mapping g3 from the Nash equilibria of G′

to the Nash equilibria of GG′. Therefore, g3 ◦ g2 ◦ g1 is a surjective mapping from the

Nash equilibria of G′ to the Nash equilibria of G.
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Input: Normal-form game G with r players, n strategies per player, utilities
{up

s : p ≤ r, s ∈ S}.
Output: 4-player Normal-form game G′.

1. Let GG be the graphical game constructed from G according to Figure 3.7.
Recall that the affects graph G = (V ∪ W, E) of GG has the following
properties:

• Every edge e ∈ E is from a vertex of set V to a vertex of set W or
vice versa.

• Every vertex of set W has indegree at most 3 and outdegree at most
1 and every vertex of set V has indegree at most 1 and outdegree at
most 2.

2. Color the graph (V ∪W, E) of GG as follows: let c(w) = 1 for all W -vertices
w and c(v) = 2 for all V -vertices v.

3. Construct a new graphical game GG′ from GG as follows. While there exist
v1, v2 ∈ V , w ∈ W , (v1, w), (v2, w) ∈ E with c(v1) = c(v2):

(a) Every W -vertex has at most 1 outgoing edge, so assume (w, v1) 6∈ E.

(b) Add v(v1) to V , add w(v1) to W .

(c) Replace (v1, w) with (v1, w(v1)), (w(v1), v(v1)), (v(v1), w(v1)),
(v(v1), w). Let c(w(v1)) = 1, choose c(v(v1)) ∈ {2, 3, 4} 6= c(v′) for
any v′ with (v′, w) ∈ E. Payoffs for w(v1) and v(v1) are chosen us-
ing Proposition 3.2 with α = 1 such that in any Nash equilibrium,
p[v(v1)] = p[v1].

4. The coloring c : V ∪ W → {1, 2, 3, 4} has the property that, for every
vertex v of GG′, its neighborhood N (v) in the affects graph of the game
—recall it consists of v and all its predecessors— is colored with |N (v)|
distinct colors. Rescale all utilities of GG′ to [0,1] and map game GG′ to a
4-player normal-form game G′ following the steps 3 through 5 of figure 3.5.

Figure 3.8: Reduction from normal-form game G to 4-player game G′
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3.5 Reducing to Three Players

We will strengthen Theorem 3.17 to reduce a r-player normal-form game to a 3-player

normal-form game. The following theorem together with Theorems 3.8 and 3.12 imply

the first part of Theorem 3.1.

Theorem 3.18. For any fixed r > 1, a r-player normal-form game can be mapped in

polynomial time to a 3-player normal-form game so that there is a polynomial-time

computable surjective mapping g from the Nash equilibria of the latter to the Nash

equilibria of the former.

Proof. The bottleneck of the construction of Figure 3.8 in terms of the number k

of players of the resulting normal-form game G′ lies entirely on the ability or lack

thereof to color the vertices of the affects graphs of GG with k colors so that, for

every vertex v, its neighborhood N (v) in the affects graph is colored with |N (v)|

distinct colors, i.e. on whether there exists a legal k coloring. In Figure 3.8, we show

how to design a graphical game GG′ which is equivalent to GG —in the sense that

there exists a surjective mapping from the Nash equilibria of the former to the Nash

equilibria of the latter— and can be legally colored using 4 colors. However, this

cannot be improved to 3 colors since the addition game G+ and the multiplication

game G∗, which are essential building blocks of GG, have vertices with indegree 3 (see

Figure 3.3) and, therefore, need at least 4 colors to be legally colored. Therefore, to

improve our result we need to redesign addition and multiplication games which can

be legally colored using 3 colors.

Notation: In the following,

• x = y ± ǫ denotes y − ǫ ≤ x ≤ y + ǫ

• v : s denotes “player v plays strategy s”
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Figure 3.9: The new addition/multiplication game and its legal 3-coloring.

Proposition 3.19. Let α, β, γ be non-negative integers such that α+β+γ ≤ 3. There

is a graphical game G+,∗ with two “input players” v1 and v2, one “output player” v3

and several intermediate players, with the following properties:

• the graph of the game can be legally colored using 3 colors

• for any ǫ ∈ [0, 0.01], at any ǫ-Nash equilibrium of game G+,∗ it holds that p[v3] =

min{1, αp[v1]+βp[v2]+γp[v1]p[v2]}±81ǫ; in particular at any Nash equilibrium

p[v3] = min{1, αp[v1] + βp[v2] + γp[v1]p[v2]}.

Proof. The graph of the game and the labeling of the vertices is shown in Figure 3.9.

All players of G+,∗ have strategy set {0, 1} except for player v′
2 who has three strategies

{0, 1, ∗}. Below we give the payoff tables of all the players of the game. For ease of

understanding we partition the game G+,∗ into four subgames:

1. Game played by players v1, w1, v
′
1:

Payoffs to v′
1 :

w1 : 0 w1 : 1

v1
′ : 0 0 1

v1
′ : 1 1 0
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Payoffs to w1:

w1 : 0 :

v1
′ : 0 v1

′ : 1

v1 : 0 0 0

v1 : 1 1/8 1/8

w1 : 1 :

v1
′ : 0 v1

′ : 1

v1 : 0 0 1

v1 : 1 0 1

2. Game played by players v2
′, w3, v3:

Payoffs to v3 :

w3 : 0 w3 : 1

v3 : 0 0 1

v3 : 1 1 0

Payoffs to w3:

w3 : 0 :

v3 : 0 v3 : 1

v′
2 : 0 0 0

v′
2 : 1 0 0

v′
2 : ∗ 8 8

w3 : 1 :

v3 : 0 v3 : 1

v′
2 : 0 0 1

v′
2 : 1 0 1

v′
2 : ∗ 0 1

3. Game played by players v2, w2, v
′
2:

Payoffs to w2:

w2 : 0 :

v2 : 0 v2 : 1

v′
2 : 0 0 1/8

v′
2 : 1 0 1/8

v′
2 : ∗ 0 1/8

w2 : 1 :

v2 : 0 v2 : 1

v′
2 : 0 0 0

v′
2 : 1 1 1

v′
2 : ∗ 0 0
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Payoffs to v′
2:

v′
2 : 0 :

w2 : 0 w2 : 1

u : 0 0 1

u : 1 0 0

v′
2 : 1 :

w2 : 0 w2 : 1

u : 0 1 0

u : 1 1 0

v′
2 : ∗ :

w2 : 0 w2 : 1

u : 0 0 0

u : 1 0 1

4. Game played by players v′
1, v

′
2, w, u:

Payoffs to w:

w : 0 :

v′
1 : 0 v′

1 : 1

v′
2 : 0 0 α

v′
2 : 1 1 + β 1 + α + β + 8γ

v′
2 : ∗ 0 α

w : 1 :

v′
1 : 0 v′

1 : 1

v′
2 : 0 0 0

v′
2 : 1 1 1

v′
2 : ∗ 1 1

Payoffs to u:

w : 0 w : 1

u : 0 0 1

u : 1 1 0

Claim 3.20. At any ǫ-Nash equilibrium of G+,∗: p[v′
1] = 1

8
p[v1] ± ǫ.

Proof. If w1 plays 0, then the expected payoff to w1 is 1
8
p[v1], whereas if w1 plays 1,

the expected payoff to w1 is p[v′
1]. Therefore, in an ǫ-Nash equilibrium, if 1

8
p[v1] >

p[v′
1] + ǫ, then p[w1] = 0. However, note also that if p[w1] = 0 then p[v′

1] = 1,

which is a contradiction to 1
8
p[v1] > p[v′

1]+ ǫ. Consequently, 1
8
p[v1] cannot be strictly
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larger than p[v′
1] + ǫ. On the other hand, if p[v′

1] > 1
8
p[v1] + ǫ, then p[w1] = 1

and consequently p[v′
1] = 0, a contradiction. The claim follows from the above

observations.

Claim 3.21. At any ǫ-Nash equilibrium of G+,∗: p[v′
2 : 1] = 1

8
p[v2] ± ǫ.

Proof. If w2 plays 0, then the expected payoff to w2 is 1
8
p[v2], whereas, if w2 plays 1,

the expected payoff to w2 is p[v′
2 : 1].

If, in an ǫ-Nash equilibrium, 1
8
p[v2] > p[v′

2 : 1] + ǫ, then p[w2] = 0. In this regime,

the payoff to player v′
2 is 0 if v′

2 plays 0, 1 if v′
2 plays 1 and 0 if v′

2 plays ∗. Therefore,

p[v′
2 : 1] = 1 and this contradicts the hypothesis that 1

8
p[v2] > p[v′

2 : 1] + ǫ.

On the other hand, if, in an ǫ-Nash equilibrium, p[v′
2 : 1] > 1

8
p[v2] + ǫ, then

p[w2] = 1. In this regime, the payoff to player v′
2 is p[u : 0] if v′

2 plays 0, 0 if v′
2

plays 1 and p[u : 1] if v′
2 plays ∗. Since p[u : 0] + p[u : 1] = 1, it follows that

p[v′
2 : 1] = 0 because at least one of p[u : 0], p[u : 1] will be greater than ǫ. This

contradicts the hypothesis that p[v′
2 : 1] > 1

8
p[v2] + ǫ and the claim follows from the

above observations.

Claim 3.22. At any ǫ-Nash equilibrium of G+,∗: p[v′
2 : ∗] = α

8
p[v1] + β

8
p[v2] +

γ
8
p[v1]p[v2] ± 10ǫ.

Proof. If w plays 0, then the expected payoff to w is αp[v′
1] + (1 + β)p[v′

2 : 1] +

8γp[v′
1]p[v′

2 : 1], whereas, if w plays 1, the expected payoff to w is p[v′
2 : 1] +p[v′

2 : ∗].

If, in a ǫ-Nash equilibrium, αp[v′
1] + (1 + β)p[v′

2 : 1] + 8γp[v′
1]p[v′

2 : 1] > p[v′
2 :

1] + p[v′
2 : ∗] + ǫ, then p[w] = 0 and, consequently, p[u] = 1. In this regime, the

payoff to player v′
2 is 0 if v′

2 plays 0, p[w2 : 0] if v′
2 plays 1 and p[w2 : 1] if v′

2 plays

∗. Since p[w2 : 0] + p[w2 : 1] = 1, it follows that at least one of p[w2 : 0], p[w2 : 1]

will be larger than ǫ so that p[v′
2 : 0] = 0 or, equivalently, that p[v′

2 : 1] + p[v′
2 : ∗] =

1. So the hypothesis can be rewritten as αp[v′
1] + (1 + β)p[v′

2 : 1] + 8γp[v′
1]p[v′

2 :
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1] > 1 + ǫ. Using Claims 3.20 and 3.21 and the fact that ǫ ≤ 0.01 this inequality

implies α
8
p[v1] + 1+β

8
p[v2] + γ

8
p[v1]p[v2] + (α + 1 + β + 3γ)ǫ > 1 + ǫ and further that

α+1+β+γ
8

+(α+1+β +3γ)ǫ > 1+ǫ. We supposed α+β +γ ≤ 3 therefore the previous

inequality implies 1
2

+ 10ǫ > 1 + ǫ, a contradiction since we assumed ǫ ≤ 0.01.

On the other hand, if, in a ǫ-Nash equilibrium, p[v′
2 : 1] +p[v′

2 : ∗] > αp[v′
1] + (1 +

β)p[v′
2 : 1] + 8γp[v′

1]p[v′
2 : 1] + ǫ, then p[w] = 1 and consequently p[u] = 0. In this

regime, the payoff to player v′
2 is p[w2 : 1] if v′

2 plays 0, p[w2 : 0] if v′
2 plays 1 and

0 if v′
2 plays ∗. Since p[w2 : 0] + p[w2 : 1] = 1, it follows that p[v′

2 : ∗] = 0. So the

hypothesis can be rewritten as 0 > αp[v′
1] + βp[v′

2 : 1] + 8γp[v′
1]p[v′

2 : 1] + ǫ which is

a contradiction.

Therefore, in any ǫ-Nash equilibrium, p[v′
2 : 1] + p[v′

2 : ∗] = αp[v′
1] + (1 + β)p[v′

2 :

1] + 8γp[v′
1]p[v′

2 : 1]± ǫ, or, equivalently, p[v′
2 : ∗] = αp[v′

1] +βp[v′
2 : 1] + 8γp[v′

1]p[v′
2 :

1]±ǫ. Using Claims 3.20 and 3.21 this can be restated as p[v′
2 : ∗] = α

8
p[v1]+ β

8
p[v2]+

γ
8
p[v1]p[v2] ± 10ǫ

Claim 3.23. At any ǫ-Nash equilibrium of G+,∗: p[v3] = min{1, αp[v1] + βp[v2] +

γp[v1]p[v2]} ± 81ǫ.

Proof. If w3 plays 0, the expected payoff to w3 is 8p[v′
2 : ∗], whereas, if w3 plays

1, the expected payoff to w3 is p[v3]. Therefore, in a ǫ-Nash equilibrium, if p[v3] >

8p[v′
2 : ∗] + ǫ, then p[w3] = 1 and, consequently, p[v3] = 0, which is a contradiction

to p[v3] > 8p[v′
2 : ∗] + ǫ.

On the other hand, if 8p[v′
2 : ∗] > p[v3] + ǫ, then p[w3] = 0 and consequently

p[v3] = 1. Hence, p[v3] cannot be less than min{1, 8p[v′
2 : ∗] − ǫ}.

From the above observations it follows that p[v3] = min{1, 8p[v′
2 : ∗]} ± ǫ and,

using Claim 3.22, p[v3] = min{1, αp[v1] + βp[v2] + γp[v1]p[v2]} ± 81ǫ.

It remains to show that the graph of the game can be legally colored using 3

colors. The coloring is shown in Figure 3.9.

82



���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���Gadget Gadget

���
���
���
���
���

���
���
���
���
���

G1

a b c d e

G2

Input node of

Output node of
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G= gameG= game

Figure 3.10: The interposition of two G= games between gadgets G1 and G2 does not
change the game.

Now that we have our hands on the game G+,∗ of Proposition 3.19, we can reduce

r-player games to 3-player games, for any fixed r, using the algorithm of Figure 3.8

with the following tweak: in the construction of game GG at Step 1 of the algorithm,

instead of using the addition and multiplication gadgets G+, G∗ of Section 3.1, we use

our more elaborate G+,∗ gadget. Let us call the resulting game GG. We will show that

we can construct a graphical game GG′ which is equivalent to GG in the sense that

there is a surjective mapping from the Nash equilibria of GG′ to the Nash equilibria

of GG and which, moreover, can be legally colored using three colors. Then we can

proceed as in Step 4 of Figure 3.8 to get the desired 3-player normal-form game G′.

The construction of GG′ and its coloring can be done as follows: Recall that all

our gadgets have some distinguished vertices which are the inputs and one distin-

guished vertex which is the output. The gadgets are put together to construct GG by

identifying the output vertices of some gadgets as the input vertices of other gadgets.

It is easy to see that we get a graphical game with the same functionality if, instead

of identifying the output vertex of some gadget with the input of another gadget,

we interpose a sequence of two G= games between the two gadgets to be connected,

as shown in Figure 3.10. If we “glue” our gadgets in this way then the resulting

graphical game GG ′ can be legally colored using 3 colors:

i. (stage 1) legally color the vertices inside the “initial gadgets” using 3 colors
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ii. (stage 2) extend the coloring to the vertices that serve as “connections” between

gadgets; any 3-coloring of the initial gadgets can be extended to a 3-coloring of

GG′ because, for any pair of gadgets G1, G2 which are connected (Figure 3.10)

and for any colors assigned to the output vertex a of gadget G1 and the input

vertex e of gadget G2, the intermediate vertices b, c and d can be also colored

legally. For example, if vertex a gets color 1 and vertex e color 2 at stage 1,

then, at stage 2, b can be colored 2, c can be colored 3 and d can be colored 1.

This completes the proof of the theorem.

3.6 Preservation of Approximate equilibria

Our reductions so far map exact equilibrium points. In this section we generalize

to approximate equilibria and prove the second part of Theorem 3.1. We claim

that the reductions of the previous sections translate the problem of finding an ǫ-

Nash equilibrium of a game to the problem of finding an ǫ′-Nash equilibrium of its

image, for ǫ′ polynomial in ǫ and inverse polynomial in the size of the game. As

a consequence, we obtain polynomial-time equivalence results for the problems r-

Nash and d-graphical-Nash. To prove the second part of Theorem 3.1, we extend

Theorems 3.8, 3.12 and 3.18 of the previous sections.

Theorem 3.24. For every fixed d > 1, there is a polynomial-time reduction from

d-graphical-Nash to (d2 + 1)-Nash.

Proof. Let G̃G be a graphical game of maximum degree d and GG the resulting graph-

ical game after rescaling all utilities by 1/ max {ũ}, where max {ũ} is the largest entry

in the utility tables of game G̃G, so that they lie in the set [0, 1], as in the first step of

Figure 3.5. Assume that ǫ < 1. In time polynomial in |GG|+ log(1/ǫ), we will specify

a normal-form game G and an accuracy ǫ′ with the property that, given an ǫ′-Nash
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equilibrium of G, one can recover in polynomial time an ǫ-Nash equilibrium of GG.

This will be enough, since an ǫ-Nash equilibrium of GG is trivially an ǫ ·max {ũ}-Nash

equilibrium of game G̃G and, moreover, |GG| is polynomial in |G̃G|.

We construct G using the algorithm of Figure 3.5; recall that M ≥ 2n
r
, where r

is the number of color classes specified in Figure 3.5 and n is the number of vertices

in GG after the possible addition of dummy vertices to make sure that all color

classes have the same number of vertices (as in Step 3 of Figure 3.5). Let us choose

ǫ′ ≤ ǫ( r
n
− 1

M
)d; we will argue that from any ǫ′-Nash equilibrium of game G one can

construct in polynomial time an ǫ-Nash equilibrium of game GG.

Suppose that p = c(v) for some vertex v of the graphical game GG. As in the

proof of Theorem 3.8, Lemma 3.11, it can be shown that in any ǫ′-Nash equilibrium

of the game G,

Pr[p plays v] ∈
[

r

n
− 1

M
,
r

n
+

1

M

]
.

Now, without loss of generality, assume that p is odd (pursuer) and suppose that v is

vertex v
(p)
i in the notation of Figure 3.5. Then, in an ǫ′-Nash equilibrium of the game

G, we have, by the definition of a Nash equilibrium, that for all strategies a, a′ ∈ Sv

of vertex v:

E [payoff to p for playing (v, a)] > E [payoff to p for playing (v, a′)] + ǫ′ ⇒ xp
(v,a′) = 0.

But

E [payoff to p for playing (v, a)]

= M · Pr
[
p + 1 plays v

(p+1)
i

]
+

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
x

c(u)
(u,su)
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and, similarly, for a′. Therefore, the previous inequality implies

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
x

c(u)
(u,su) >

∑

s∈SN (v)\{v}

uv
a′s

∏

u∈N (v)\{v}
x

c(u)
(u,su) + ǫ′ ⇒ xp

(v,a′) = 0

So letting

xv
a = x

c(v)
(v,a)

/∑

j∈Sv

x
c(v)
(v,j), ∀v ∈ V, a ∈ Sv,

as we did in the proof of Theorem 3.8, we get that, for all v ∈ V , a, a′ ∈ Sv,

∑

s∈SN (v)\{v}

uv
as

∏

u∈N (v)\{v}
xu

su
>

∑

s∈SN (v)\{v}

uv
a′s

∏

u∈N (v)\{v}
xu

su
+ ǫ′/T ⇒ xv

a′ = 0, (3.5)

where T =
∏

u∈N (v)\{v}
∑

j∈Su
x

c(u)
(u,j) =

∏
u∈N (v)\{v} Pr[c(u) plays u] ≥ ( r

n
− 1

M
)d. By

the definition of ǫ′ it follows that ǫ′/T ≤ ǫ. Hence, from (3.5) it follows that {xv
a}v,a

is an ǫ-Nash equilibrium of the game GG.

We have the following extension of Theorem 3.12.

Theorem 3.25. For every fixed r > 1, there is a polynomial-time reduction from

r-Nash to 3-graphical Nash with two strategies per vertex.

Proof. Let G̃ be a normal-form game with r players, 1, 2, . . . , r, and strategy sets

Sp = [n], for all p ∈ [r], and let {ũp
s : p ∈ [r], s ∈ S} be the utilities of the players.

Denote by G the game constructed at the first step of Figure 3.7 which results from G̃

after rescaling all utilities by 1/ max {ũp
s} so that they lie in [0, 1]; let {up

s : p ∈ [r], s ∈

S} be the utilities of the players in game G. Also, let ǫ < 1. In time polynomial

in |G| + log(1/ǫ), we will specify a graphical game GG and an accuracy ǫ′ with the

property that, given an ǫ′-Nash equilibrium of GG, one can recover in polynomial time

an ǫ-Nash equilibrium of G. This will be enough, since an ǫ-Nash equilibrium of G is
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trivially an ǫ ·max {ũp
s}-Nash equilibrium of game G̃ and, moreover, |G| is polynomial

in |G̃|. In our reduction, the graphical game GG will be the same as the one described

in the proof of Theorem 3.12 (Figure 3.7), while the accuracy specification will be of

the form ǫ′ = ǫ/p(|G|), where p(·) is a polynomial that will be be specified later. We

will use the same labels for the vertices of the game GG that we used in the proof

Theorem 3.12.

Suppose NGG is some ǫ′-Nash equilibrium of the game GG and let {p[v(xp
j )]}j,p

denote the probabilities with which the vertices v(xp
j ) of GG play strategy 1. In the

proof of Theorem 3.12 we considered the following mapping from the Nash equilibria

of game GG to the Nash equilibria of game G:

xp
j := p[v(xp

j )], for all p and j. (3.6)

Although (3.6) succeeds in mapping exact equilibrium points, it fails for approximate

equilibria, as specified by the following remark —its justification follows from the

proof of Lemma 3.27.

Remark 3.26. For any ǫ′ > 0, there exists an ǫ′-Nash equilibrium of game GG such

that
∑

j p[v(xp
j )] 6= 1, for some player p ≤ r, and, moreover, p[v(Up

j )] > p[v(Up
j′)]+ǫ′,

for some p ≤ r, j and j′, and, yet, p[v(xp
j′)] > 0.

Recall from Section 3.3, that, for all p, j, the probability p[v(Up
j )] represents the

utility of player p for playing pure strategy j, when the other players play according to

{xq
j := p[v(xq

j)]}j,q 6=p.
3 Therefore, not only the {xp

j := p[v(xp
j )]}j do not necessarily

constitute a distribution —this could be easily fixed by rescaling— but, also, the

defining property of an approximate equilibrium (2.2) is in question. The following

lemma bounds the deviation from the approximate equilibrium conditions.

3Note, however, that, since we are considering an ǫ′-Nash equilibrium of game GG, Equation (3.3)
of Section 3.3 will be only satisfied approximately as specified by Lemma 3.29.
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Lemma 3.27. In any ǫ′-Nash equilibrium of the game GG,

(i) for all p ∈ [r], |∑j p[v(xp
j )] − 1| ≤ 2cnǫ′, and,

(ii) for all p ∈ [r], j, j′ ∈ [n], p[v(Up
j )] > p[v(Up

j′)] + 5cnǫ′ ⇒ p[v(xp
j′)] ∈ [0, cnǫ′],

where c ≥ 1 is the maximum error amplification of the gadgets used in the construction

of GG.

Proof. Note that at an ǫ′-Nash equilibrium of game GG the following properties are

satisfied for all p ∈ [r] by the vertices of game GG, since the error amplification of the

gadgets is at most c:

p

[
v

(
n∑

i=1

xp
i

)]
= 1 (3.7)

p

[
v

(
j∑

i=1

xp
i

)]
= p

[
v

(
j+1∑

i=1

xp
i

)]
· (1 − p[vp

j ]) ± cǫ′, ∀j < n (3.8)

p
[
v(xp

j+1)
]

= p

[
v

(
j+1∑

i=1

xp
i

)]
· p[vp

j ] ± cǫ′, ∀j < n (3.9)

p [v(xp
1)] = p

[
v

(
1∑

i=1

xp
i

)]
± cǫ′ (3.10)
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Proof of (i): By successive applications of (3.8) and (3.9), we deduce

n∑

j=1

p[v(xp
j )] =

n∑

j=2

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}
+ p

[
v

(
1∑

i=1

xp
i

)]
± cnǫ′

=
n∑

j=2

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}
+

(
p

[
v

(
2∑

i=1

xp
i

)]
· (1 − p[vp

1 ]) ± cǫ′
)

± cnǫ′

=

n∑

j=3

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}
+ p

[
v

(
2∑

i=1

xp
i

)]
± c(n + 1)ǫ′

= . . .

= p

[
v

(
n∑

i=1

xp
i

)]
± c(2n − 1)ǫ′

= 1 ± c(2n − 1)ǫ′

Proof of (ii): Let us first observe the behavior of vertices w(Up
j ) and vp

j in an ǫ′-Nash

equilibrium.

• Behavior of w(Up
j ) vertices: The utility of vertex w(Up

j ) for playing strategy

0 is p[v(Up
≤j)], whereas for playing 1 it is p[v(Up

j+1)]. Therefore,

p[v(Up
≤j)] > p[v(Up

j+1)] + ǫ′ ⇒ p[w(Up
j )] = 0

p[v(Up
j+1)] > p[v(Up

≤j)] + ǫ′ ⇒ p[w(Up
j )] = 1

|p[v(Up
j+1)] − p[v(Up

≤j)]| ≤ ǫ′ ⇒ p[w(Up
j )] can be anything

• Behavior of vp
j vertices: The utility of vertex vp

j for playing strategy 0 is

1 − p[w(Up
j )], whereas for playing 1 it is p[w(Up

j )]. Therefore,

p[w(Up
j )] < 1−ǫ′

2
⇒ p[vp

j ] = 0

p[w(Up
j )] > 1+ǫ′

2
⇒ p[vp

j ] = 1

|p[w(Up
j )] − 1

2
| ≤ ǫ′

2
⇒ p[vp

j ] can be anything
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Note that, since the error amplification of the gadget Gmax is at most c and computing

p[v(Up
≤j)], for all j, requires j applications of Gmax,

p[v(Up
≤j)] = max

i≤j
p[v(Up

i )] ± cǫ′j. (3.11)

To establish the second part of the claim, we need to show that, for all p, j, j′,

p[v(Up
j )] > p[v(Up

j′)] + 5cnǫ′ ⇒ p[v(xp
j′)] ∈ [0, ncǫ′].

1. Note that, if there exists some j′′ < j′ such that p[v(Up
j′′)] > p[v(Up

j′)] + cǫ′n,

then

p[v(Up
≤j′−1)] = max

i≤j′−1
p[v(Up

i )] ± cǫ′(j′ − 1)

≥ p[v(Up
j′′)] − cǫ′(j′ − 1)

> p[v(Up
j′)] + cnǫ′ − cǫ′(j′ − 1) ≥ p[v(Up

j′)] + ǫ′.

Then, because p[v(Up
≤j′−1)] > p[v(Up

j′)] + ǫ′, it follows that p[w(Up
j′−1)] = 0 and

p[vp
j′−1] = 0. Therefore,

p[v(xp
j′)] = p

[
v

(
j′∑

i=1

xp
i

)]
· p[vp

j′−1] ± cǫ′ = ±cǫ′.

2. The case j < j′ reduces to the previous for j′′ = j.

3. It remains to deal with the case j > j′, under the assumption that, for all

j′′ < j′,

p[v(Up
j′′)] ≤ p[v(Up

j′)] + cǫ′n.

90



which, in turn, implies

p[v(Up
≤j′)] < p[v(Up

j′)] + 2cǫ′n. (by (3.11))

Let us further distinguish the following subcases

(a) If there exists some k, j′+1 ≤ k ≤ j, such that p[v(Up
k )] > p[v(Up

≤k−1)]+ǫ′,

then

p[w(Up
k−1)] = 1 ⇒ p[vp

k−1] = 1

⇒ p

[
v

(
k−1∑

i=1

xp
i

)]
= p

[
v

(
k∑

i=1

xp
i

)]
(1 − p[vp

k−1]) ± cǫ′ = ±cǫ′

⇒ p

[
v

(
j′∑

i=1

xp
i

)]
= ±(k − j′)cǫ′

(
by successive applications

of equation (3.8)

)

⇒ p
[
v(xp

j′)
]

= ±ncǫ′. (by (3.9), (3.10))

(b) If, for all k, j′ + 1 ≤ k ≤ j, it holds that p[v(Up
k )] ≤ p[v(Up

≤k−1)] + ǫ′, we

will show a contradiction; hence, only the previous case can hold. Towards

a contradiction,we argue first that

p[v(Up
≤j′+1)] ≥ p[v(Up

j )] − 2cnǫ′.

To show this, we distinguish the cases j = j′ + 1, j > j′ + 1.

• In the case j = j′ + 1, we have

p[v(Up
≤j′+1)] ≥ max {p[v(Up

j′+1)],p[v(Up
≤j′)]} − cǫ′

≥ p[v(Up
j′+1)] − cǫ′ = p[v(Up

j )] − cǫ′.
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• In the case j > j′ + 1, we have for all k, j′ + 2 ≤ k ≤ j,

p[v(Up
≤k−1)] ≥ max {p[v(Up

≤k−1)],p[v(Up
k )]}− ǫ′ ≥ p[v(Up

≤k)]− cǫ′ − ǫ′,

where the last inequality holds since the game Gmax has error amplifi-

cation at most c. Summing these inequalities for j′ + 2 ≤ k ≤ j, we

deduce that

p[v(Up
≤j′+1)] ≥ p[v(Up

≤j)] − (cǫ′ + ǫ′)(n − 2)

≥ max {p[v(Up
j )],p[v(Up

≤j−1)]} − cǫ′ − (cǫ′ + ǫ′)(n − 2)

≥ p[v(Up
j )] − 2cǫ′n.

It follows that

p[v(Up
≤j′+1)] > p[v(Up

j′)] + 3cnǫ′.

But,

p[v(Up
≤j′+1)] ≤ max {p[v(Up

j′+1)],p[v(Up
≤j′)]} + cǫ′

and recall that

p[v(Up
≤j′)] < p[v(Up

j′)] + 2cǫ′n.

We can deduce that

max {p[v(Up
j′+1)],p[v(Up

≤j′)]} = p[v(Up
j′+1)],

which combined with the above implies

p[v(Up
j′+1)] ≥ p[v(Up

j′)] + 3cnǫ′ − cǫ′ > p[v(Up
≤j′)] + ǫ′.
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From Lemma 3.27, it follows that the extraction of an ǫ-Nash equilibrium of game

G from an ǫ′-Nash equilibrium of game GG cannot be done by just interpreting the

values {xp
j := p[v(xp

j )]}j as the mixed strategy of player p. What we show next is

that, for the right choice of ǫ′, a trim and renormalize transformation succeeds in

deriving an ǫ-Nash equilibrium of game G from an ǫ′-Nash equilibrium of game GG.

Indeed, for all p ≤ r, suppose that {x̂p
j}j are the values derived from {xp

j}j by setting

x̂p
j =





0, if xp
j ≤ cnǫ′

xp
j , otherwise

and then renormalizing the resulting values {x̂p
j}j so that

∑
j x̂p

j = 1.

Lemma 3.28. There exists a polynomial p(·) such that, if {{xp
j}j}p is an ǫ/p(|G|)-

Nash equilibrium of game GG, then the trimmed and renormalized values {{x̂p
j}j}p

constitute an ǫ-Nash equilibrium of game G.

Proof. We first establish the following useful lemma

Lemma 3.29. At an ǫ′-Nash equilibrium of game GG, for all p, j, it holds that

p[v(Up
j )] =

∑

s∈S−p

up
jsx

1
s1
· · ·xp−1

sp−1
xp+1

sp+1
· · ·xr

sr
± 2nr−1ζr,

where c is the maximum error amplification of the gadgets used in the construction of

GG, ζr = cǫ′ + ((1 + ζ)r − 1)(cǫ′ + 1), ζ = 2r log n cǫ′.

Proof. Using the same notation as in Section 3.3, let S−p = {S−p(1), . . . , S−p(n
r−1)},

so that
∑

s∈S−p

up
jsxs =

nr−1∑

ℓ=1

up
jS−p(ℓ)xS−p(ℓ).
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Recall that in GG, for each partial sum
∑z

ℓ=1 up
jS−p(ℓ)xS−p(ℓ), 1 ≤ z ≤ nr−1, we have

included vertex v(
∑z

ℓ=1 up
jS−p(ℓ)xS−p(ℓ)). Similarly, for each partial product of the

summands up
js

∏
p 6=q≤z xq

sq
, 0 ≤ z ≤ r, we have included vertex v(up

js

∏
p 6=q≤z xq

sq
).

Note that, since we have rescaled the utilities to the set [0, 1], all partial sums and

products must also lie in [0, 1]. Note, moreover, that, to avoid large degrees in the

resulting graphical game, each time we need to make use of a value xq
sq

we create a

new copy of the vertex v(xq
sq

) using the gadget G= and, then, use the new copy for the

computation of the desired partial product; an easy calculation shows that we have

to make (r−1)nr−1 copies of v(xq
sq

), for all q ≤ r, sq ∈ Sq. To limit the degree of each

vertex to 3 we create a binary tree of copies of v(xq
sq

) with (r − 1)nr−1 leaves and use

each leaf once. Then, because of the error amplification of G=, this already induces

an error of ±⌈log (r − 1)nr−1⌉cǫ′ to each of the factors of the partial products. The

following lemma characterizes the error that results from the error amplification of

our gadgets in the computation of the partial products and can be proved easily by

induction.

Lemma 3.30. For all p ≤ r, j ∈ Sp, s ∈ S−p and z ≤ r,

p

[
v

(
up

js

∏

p 6=ℓ≤z

xℓ
sℓ

)]
= up

js

∏

p 6=ℓ≤z

xℓ
sℓ
± ζz, (3.12)

where ζz = cǫ′ + ((1 + ζ)z − 1)(cǫ′ + 1), ζ = 2r log n cǫ′.

The following lemma characterizes the error in the computation of the partial

sums and can be proved by induction using the previous lemma for the base case.

Lemma 3.31. For all p ≤ r, j ∈ Sp and z ≤ nr−1,

p

[
v

(
z∑

ℓ=1

up
jS−p(ℓ)xS−p(ℓ)

)]
=

z∑

ℓ=1

up
jS−p(ℓ)xS−p(ℓ) ± (zζr + (z − 1)cǫ′), (3.13)
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where ζr is defined as in Lemma 3.30.

From Lemma 3.31 we can deduce, in particular, that for all p ≤ r, j ∈ Sp,

p[v(Up
j )] =

∑

s∈S−p

up
jsxs ± 2nr−1ζr.

Lemma 3.32. For all p ≤ r, j ∈ Sp,

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsys

∣∣∣∣∣∣
≤ max

s∈S−p

{up
js}
∑

q 6=p

∑

i∈Sq

|xq
i − yq

i |.

Proof. We have

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsys

∣∣∣∣∣∣
≤
∑

s∈S−p

up
js |xs − ys| ≤ max

s∈S−p

{up
js}

∑

s∈S−p

|xs − ys| . (3.14)

Let us denote by X q the random variable, ranging over the set Sq, which represents

the mixed strategy {xq
i}i∈Sq , q ≤ r. Similarly, define the random variable Yq from the

mixed strategy {yq
i }i∈Sq , q ≤ r. Note, then, that 1

2

∑
s∈S−p

|xs − ys| is precisely the

total variation distance between the vector random variable (X q)q 6=p and the vector

random variable (Yq)q 6=p. That is,

1

2

∑

s∈S−p

|xs − ys| = ||(X q)q 6=p − (Yq)q 6=p||TV . (3.15)

By the coupling lemma, we have that

||(X q)q 6=p − (Yq)q 6=p||TV ≤ Pr [(X q)q 6=p 6= (Yq)q 6=p] ,

for any coupling of (X q)q 6=p and (Yq)q 6=p. Applying a union bound to the right hand
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side of the above implies

||(X q)q 6=p − (Yq)q 6=p||TV ≤
∑

q 6=p

Pr [X q 6= Yq] . (3.16)

Now let us fix a coupling between (X q)q 6=p and (Yq)q 6=p so that, for all q 6= p,

Pr [X q 6= Yq] = ||X q − Yq||TV .

Such a coupling exists by the coupling lemma for each q 6= p individually, and for the

whole vectors (X q)q 6=p and (Yq)q 6=p it exists because also the X q’s are independent

and so are the Yq’s. Then (3.16) implies that

||(X q)q 6=p − (Yq)q 6=p||TV ≤
∑

q 6=p

||X q −Yq||TV ,

so that from (3.14), (3.15) we get

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsys

∣∣∣∣∣∣
≤ max

s∈S−p

{up
js}2

∑

q 6=p

||X q −Yq||TV . (3.17)

Now, note that, for all q,

||X q −Yq||TV =
1

2

∑

i∈Sq

|xq
i − yq

i |.

Hence, (3.17) implies

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsys

∣∣∣∣∣∣
≤ max

s∈S−p

{up
js}
∑

q 6=p

∑

i∈Sq

|xq
i − yq

i |.
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We can conclude the proof of Lemma 3.28, by invoking Lemmas 3.29 and 3.32.

Indeed, by the definition of the {x̂p
j}, it follows that for all p, j ∈ Sp,

x̂p
j =





xp
j

Λp , xp
j > cnǫ′

0, xp
j ≤ cnǫ′

,

where

1 ≥ Λp =
∑

j∈Sp

xp
jX{xp

j >cnǫ′} = 1 −
∑

j∈Sp

xp
jX{xp

j≤cnǫ′} ≥ 1 − n · cnǫ′,

where X{·} is the indicator function. Therefore,

|x̂p
j − xp

j | =





xp
j

Λp − xp
j , xp

j > cnǫ′

xp
j , xp

j ≤ cnǫ′
,

which implies

|x̂p
j − xp

j | ≤





1
Λp − 1, xp

j > cnǫ′

cnǫ′, xp
j ≤ cnǫ′

.

So,

|x̂p
j − xp

j | ≤ max

{
cnǫ′,

n2cǫ′

1 − n2cǫ′

}
=: δ1,

which by Lemma 3.32 implies that

∣∣∣∣∣∣

∑

s∈S−p

up
jsxs −

∑

s∈S−p

up
jsx̂s

∣∣∣∣∣∣
≤ max

s∈S−p

{up
js}(r − 1)nδ1 ≤ (r − 1)nδ1 =: δ2, (3.18)

where the second inequality follows from the fact that we have rescaled the utilities

so that they lie in [0, 1].
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Choosing ǫ′ = ǫ
40cr2nr+1 , we will argue that the conditions of an ǫ-Nash equilibrium

are satisfied by the mixed strategies {x̂p
j}p,j. First, note that:

(1 + 2r log n cǫ′)r − 1 ≤
(

1 +
ǫ

20rnr

)r

− 1 ≤ exp
{ ǫ

20nr

}
− 1 ≤ ǫ

10nr
,

which implies that

2nr−1ζr ≤ 2nr−1
(
cǫ′ +

ǫ

10nr
(cǫ′ + 1)

)
≤ 2nr−1 1.5ǫ

10nr
=

3ǫ

10n
≤ 0.3ǫ

n
.

Also, note that

δ1 = max

{
cnǫ′,

n2cǫ′

1 − n2cǫ′

}
≤ 2n2cǫ′,

which gives

δ2 = (r − 1)nδ1 ≤ rn2n2c
ǫ

40cr2nr+1
≤ ǫ

20r
.

Thus, for all p ≤ r, j, j′ ∈ Sp, we have that

∑

s∈S−p

up
jsx̂s >

∑

s∈S−p

up
j′sx̂s + ǫ

⇒
∑

s∈S−p

up
jsxs + δ2 >

∑

s∈S−p

up
j′sxs − δ2 + ǫ (using (3.18))

⇒
∑

s∈S−p

up
jsxs >

∑

s∈S−p

up
j′sxs + ǫ − 2δ2

⇒ p[v(Up
j )] + 2nr−1ζr > p[v(Up

j′)] − 2nr−1ζr + ǫ − 2δ2 (using Lemma 3.29)

⇒ p[v(Up
j )] > p[v(Up

j′)] − 4nr−1ζr + ǫ − 2δ2

⇒ p[v(Up
j )] > p[v(Up

j′)] + 5cnǫ′

⇒ xp
j′ ≤ cnǫ′ (using Lemma 3.27)

⇒ x̂p
j′ = 0.

98



Therefore, {x̂p
j} is indeed an ǫ-Nash equilibrium of game G, which concludes the proof

of the lemma.

We have the following extension of Theorem 3.18.

Theorem 3.33. For every fixed r > 1, there is a polynomial-time reduction from

r-Nash to 3-Nash.

Proof. The proof follows immediately from the proofs of Theorems 3.24 and 3.25. In-

deed, observe that the reduction of Theorem 3.25 still holds when we use the gadget

G+,∗ of Section 3.5 for the construction our graphical games, since the gadget G+,∗ has

constant error amplification. Therefore, the problem of computing an ǫ-Nash equi-

librium of a r-player normal-form game G can be polynomially reduced to computing

an ǫ′-Nash equilibrium of a graphical game GG′ which can be legally colored with 3

colors (after performing the “glueing” step described in the end of the proof of The-

orem 3.18 and appropriately adjusting the ǫ′ specified in the proof of Theorem 3.25).

Observe, further, that the reduction of Theorem 3.24 can be used to map the latter

to computing an ǫ′′-Nash equilibrium of a 3-player normal-form game G′′, since the

number of players that are required for G′′ is equal to the minimum number of colors

needed for a legal coloring of GG′. The claim follows by combining the reductions.

3.7 Reductions Between Different Notions of Ap-

proximation

We establish a polynomial-time reduction from the problem of computing an approxi-

mately well supported Nash equilibrium to the problem of computing an approximate
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Nash equilibrium. As pointed out in Section 2.1, the reduction in the opposite direc-

tion is trivial, since an ǫ-approximately well supported Nash equilibrium is also an

ǫ-approximate Nash equilibrium.

Lemma 3.34. Given an ǫ-approximate Nash equilibrium {xp
j}j,p of a game G we can

compute in polynomial time a
√

ǫ · (
√

ǫ + 1 + 4(r − 1) max {u})-approximately well

supported Nash equilibrium {x̂p
j}j,p, where r is the number of players in G and max {u}

is the maximum entry in the payoff tables of G.

Proof. Since {xp
j}j,p is an ǫ-approximate Nash equilibrium, it follows that for every

player p ≤ r and every mixed strategy {yp
j}j for that player

∑

s∈S

up
s · xs−p · xp

sp
≥
∑

s∈S

up
s · xs−p · yp

sp
− ǫ.

Equivalently,

∀p ≤ r, ∀ {yp
j}j∈Sp :

∑

j∈Sp


 ∑

s−p∈S−p

up
js−p

xs−p


xp

j ≥
∑

j∈Sp


 ∑

s−p∈S−p

up
js−p

xs−p


 yp

j − ǫ.

(3.19)

For all p ≤ r, denote Up
j =

∑
s−p∈S−p

up
js−p

xs−p, for all j ∈ Sp, and Up
max = maxj Up

j .

Then, if we choose {yp
j}j to be some pure strategy from the set arg maxj Up

j , (3.19)

implies

∀p ≤ r :
∑

j∈Sp

Up
j xp

j ≥ Up
max − ǫ. (3.20)

Now, let us fix some player p ≤ r. We want to upper bound the probability mass

that the distribution {xp
j}j assigns to pure strategies j ∈ Sp which give expected

utility Up
j more than an additive ǫk smaller than Up

max, for some k to be specified

later. The following bound is easy to derive using (3.20).
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Claim 3.35. For all p, set

zp =
∑

j∈Sp

xp
j · X{Up

j <Up
max−ǫk},

where XA is the characteristic function of the event A. Then

zp ≤ 1

k
.

Let us then consider the strategy profile {x̂p
j}j,p defined as follows

∀p, j ∈ Sp : x̂p
j =





xp
j

1−zp , Up
j ≥ Up

max − ǫk

0, otherwise

We establish the following bound on the L1 distance between the strategy profiles

{xp
j}j and {x̂p

j}j .

Claim 3.36. For all p,
∑

j∈Sp
|xp

j − x̂p
j | ≤ 2

k−1
.

Proof. Denote Sp,1 := {j | j ∈ Sp,Up
j ≥ Up

max − ǫk} and Sp,2 := Sp \ Sp,1. Then

∑

j∈Sp

|xp
j − x̂p

j | =
∑

j∈Sp,1

|xp
j − x̂p

j | +
∑

j∈Sp,2

|xp
j − x̂p

j |

=
∑

j∈Sp,1

∣∣∣∣x
p
j −

xp
j

1 − zp

∣∣∣∣ +
∑

j∈Sp,2

|xp
j |

=
∑

j∈Sp,1

∣∣∣∣x
p
j −

xp
j

1 − zp

∣∣∣∣ + zp

≤ zp

1 − zp

∑

j∈Sp,1

xp
j + zp

≤ 1

k − 1
+

1

k
≤ 2

k − 1
.
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Now, for all players p, let Ûp
j and Ûp

max be defined similarly to Up
j and Up

max. Recall

Lemma 3.32 from Section 3.6.

Lemma 3.37. For all p, j ∈ Sp,

|Up
j − Ûp

j | ≤ max
s∈S−p

{up
js}
∑

p′ 6=p

∑

j∈Sp′

|xp′

j − x̂p′

j |.

Let us then take ∆2 = 2 r−1
k−1

maxp,j∈Sp,s∈S−p {up
js}. Claim 3.36 and Lemma 3.37

imply that the strategy profile {x̂p
j}j,p satisfies

∀p, ∀j ∈ Sp : |Up
j − Ûp

j | ≤ ∆2.

We will establish that {x̂p
j}j,p is a (ǫk+2∆2)-Nash equilibrium. Equivalently, we shall

establish that

∀p, ∀i, j ∈ Sp : Ûp
j < Ûp

i − (ǫk + 2∆2) ⇒ x̂p
j = 0.

Indeed,

Ûp
j < Ûp

i − (ǫk + 2∆2) ⇒ Up
j − ∆2 < Up

i + ∆2 − (ǫk + 2∆2)

⇒ Up
j < Up

i − (ǫk + 2∆2 − 2∆2)

⇒ Up
j < Up

max − ǫk

⇒ x̂p
j = 0.

Taking k = 1 + 1√
ǫ
, it follows that {x̂p

j}j,p is a
√

ǫ · (√ǫ + 1 + 4(r− 1) max{up
js})-Nash

equilibrium.
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Chapter 4

The Complexity of Computing a

Nash Equilibrium

In Section 4.1, we present our main result that 3-Nash, the problem of computing

a Nash equilibrium of a 3-player normal-form game, is PPAD-complete. Since by

Theorem 3.1 r-Nash and d-graphical Nash are polynomial-time reducible to 3-

Nash, for all r, d ≥ 3, the same hardness holds for graphical games of degree 3 or

larger and normal-form games with more than 3 players. This leaves open the com-

plexity of 2-player games which were also shown to be PPAD-complete by Chen and

Deng [CD06], by modifying our construction. In Section 4.2, we present an alternative

small modification of our argument establishing the PPAD-completeness of 2-Nash.

In Section 4.3, we discuss the application of our techniques for establishing that the

Nash equilibrium problem of other important classes of games, such as congestion

games [Ros73, FPT04] and extensive form games [OR94], is in PPAD. We also argue

that solving simple stochastic games [Con92] is in PPAD. Finally, we establish that

computing exact Nash equilibria and exact fixed points of polynomial functions are

polynomial-time equivalent.
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4.1 The Complexity of Games with Three or More

Players

We show that computing a Nash equilibrium is a hard computational problem for

normal-form games of at least 3 players and graphical games of degree at least 3,

namely

Theorem 4.1. Both 3-Nash and 3-graphical Nash are PPAD-complete.

Proof. That 3-Nash is in PPAD follows from Theorem 2.3. That 3-graphical

Nash is in PPAD follows by reducing it to 3-Nash, by Theorem 3.1, and then

invoking Theorem 2.3. We hence focus on establishing the PPAD-hardness of the

problems.

The reduction is from the problem Brouwer defined in Section 2.4. Given an

instance of Brouwer, that is a circuit C with 3n input bits and 2 output bits

describing a Brouwer function as specified in Section 2.4, we construct a graphical

game G, with maximum degree three, that simulates the circuit C, and specify an

accuracy ǫ, so that, given an ǫ-Nash equilibrium of G, one can find in polynomial

time a panchromatic vertex of the Brouwer instance. Then, since, by Theorem 3.1,

3-graphical Nash reduces to 3-Nash, this completes the proof.

The graphical game G that we construct will be binary, in that each vertex v in

it will have two strategies, and thus, at equilibrium, will represent a real number in

[0, 1], denoted p[v]. (Letting 0 and 1 denote the strategies, p[v] is the probability

that v plays 1.) There will be three distinguished vertices vx, vy, and vz which will

represent the coordinates of a point in the three dimensional cube and the construction

will guarantee that in any Nash equilibrium of game G this point will be close to a

panchromatic vertex of the given Brouwer instance.

The building blocks of G will be the game-gadgets Gα,G×α,G=,G+,G−,G∗ that we
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constructed in Section 3.1 plus a few new gadgets. Recall from Propositions 3.2, 3.3

and 3.6, Figures 3.2, 3.1 and 3.3, that

Lemma 4.2. There exist binary graphical games Gα, where α is any rational in [0, 1],

G×α, where α is any non-negative rational, G=,G+,G−,G∗, with at most four players

a, b, c, d each, such that, in all games, the payoffs of a and b do not depend on the

choices of the other vertices c, d, and, for ǫ < 1,

1. in every ǫ-Nash equilibrium of game Gα, we have p[d] = α ± ǫ;

2. in every ǫ-Nash equilibrium of game G×α, we have p[d] = min(1, αp[a]) ± ǫ;

3. in every ǫ-Nash equilibrium of game G=, we have p[d] = p[a] ± ǫ;

4. in every ǫ-Nash equilibrium of game G+, we have p[d] = min{1,p[a] +p[b]}± ǫ;

5. in every ǫ-Nash equilibrium of game G−, we have p[d] = max{0,p[a]−p[b]}±ǫ;

6. in every ǫ-Nash equilibrium of game G∗, we have p[d] = p[a] · p[b] ± ǫ;

where by x = y ± ǫ we denote y − ǫ ≤ x ≤ y + ǫ.

Let us, further, define a comparator game G<.

Lemma 4.3. There exists a binary graphical game G< with three players a, b and

d such that the payoffs of a and b do not depend on the choices of d and, in every

ǫ-Nash equilibrium of the game, with ǫ < 1, it holds that p[d] = 1, if p[a] < p[b] − ǫ,

and p[d] = 0, if p[a] > p[b] + ǫ.

Proof. Let us define the payoff table of player d as follows: d receives a payoff of 1

if d plays 0 and a plays 1, and d receives a payoff of 1 if d plays 1 and b plays 1,

otherwise d receives a payoff of 0. Equivalently, d receives an expected payoff of p[a],

if d plays 0, and an expected payoff of p[b], if d plays 1. It immediately follows that,
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b

<

d

f

a

e

=

1

Figure 4.1: Brittleness of Comparator Games.

if in an ǫ-Nash equilibrium p[a] < p[b] − ǫ, then p[d] = 1, whereas, if p[a] > p[b] + ǫ,

p[d] = 0.

Notice that, in G<, p[d] is arbitrary if |p[a]−p[b]| ≤ ǫ; hence we call it the brittle

comparator. As an aside, it is not hard to see that a robust comparator, one in which

d is guaranteed, in an exact Nash equilibrium, to be, say, 0 if p[a] = p[b], cannot exist,

since it could be used to produce a simple graphical game with no Nash equilibrium,

contradicting Nash’s theorem. For completeness we present such a game in Figure

4.1, where vertices e and b constitute a G1 game so that, in any Nash equilibrium,

p[b] = 1, vertices d, f , a constitute a G= game so that, in any Nash equilibrium,

p[a] = p[d] and vertices a, b, d constitute a comparator game with the hypothetical

behavior that p[d] = 1, if p[a] < p[b] and p[d] = 0, if p[a] ≥ p[b]. Then it is not

hard to argue that the game of Figure 4.1 does not have a Nash equilibrium contrary

to Nash’s theorem: indeed if, in a Nash equilibrium, p[a] = 1, then p[d] = 0, since

p[a] = 1 = p[b], and so p[a] = p[d] = 0, by G=, a contradiction; on the other hand,

if, in a Nash equilibrium, p[a] < 1, then p[d] = 1, since p[a] < 1 = p[b], and so

p[a] = p[d] = 1, by G=, again a contradiction.

To continue with our reduction from Brouwer to 3-graphical nash, we include

the following vertices to the graphical game G.

• the three coordinate vertices vx, vy, vz,
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• for i ∈ {1, 2, . . . , n}, vertices vbi(x), vbi(y) and vbi(z), whose p-values correspond

to the i-th most significant bit of p[vx], p[vy], p[vz],

• for i ∈ {1, 2, . . . , n}, vertices vxi
, vyi

and vzi
, whose p-values correspond to

the fractional number resulting from subtracting from p[vx], p[vy], p[vz] the

fractional numbers corresponding to the i − 1 most significant bits of p[vx],

p[vy], p[vz] respectively.

We can extract these values by computing the binary representation of ⌊p[vx]2n⌋

and, similarly, for vy and vz, that is, the binary representations of the integers i, j, k

such that (x, y, z) = (p[vx],p[vy],p[vz]) lies in the cubelet Kijk. This is done by a

graphical game that simulates, using the arithmetical gadgets of Lemmas 4.2 and 4.3,

the following algorithm (< (a, b) is 1 if a ≤ b and 0 if a > b):

x1 = x;

for i = 1, . . . , n do:

{bi(x) :=< (2−i, xi); xi+1 := xi − bi(x) · 2−i};

similarly, for y and z;

This is accomplished in G by connecting these vertices as prescribed by Lemmas 4.2

and 4.3, so that p[vxi
],p[vbi(x)], etc. approximate the value of xi, bi(x) etc. as computed

by the above algorithm. The following lemma (when applied with m = n) shows that

this device properly decodes the first n bits of the binary expansion of x = p[vx], as

long as x is not too close to a multiple of 2−n (suppose ǫ << 2−n to be fixed later).

Lemma 4.4. For m ≤ n, if
∑m

i=1 bi2
−i + 3mǫ < p[vx] <

∑m
i=1 bi2

−i + 2−m − 3mǫ

for some b1, . . . , bm ∈ {0, 1}, then, in every ǫ-Nash equilibrium of G, p[vbj(x)] = bj,

and p[vxj+1
] = p[vx] −∑j

i=1 bi2
−i ± 3jǫ, for all j ≤ m.

Proof. The proof is by induction on j. For j = 1, the hypothesis
∑m

i=1 bi2
−i + 3mǫ <
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p[vx] <
∑m

i=1 bi2
−i + 2−m − 3mǫ implies, in particular, that

b1

2
+ 3ǫ ≤

m∑

i=1

bi2
−i + 3mǫ < p[vx] <

m∑

i=1

bi2
−i + 2−m − 3mǫ ≤ b1

2
+

1

2
− 3ǫ

and, since p[vx1 ] = p[vx] ± ǫ, it follows that

b1

2
+ 2ǫ < p[vx1 ] <

b1

2
+

1

2
− 2ǫ.

By Lemma 4.3, this implies that p[vb1(x)] = b1; note that the preparation of the

constant 1
2

—against which a comparator game compares the value p[vx1 ]— is done

via a G 1
2

game which introduces an error of ±ǫ. For the computation of p[vx2 ],

the multiplication of p[vb1(x)] by 1
2

and the subtraction of the product from p[vx1 ]

introduce an error of ±ǫ each and, therefore, p[vx2 ] = p[vx1 ] − b1
1
2
± 2ǫ. And, since

p[vx1 ] = p[vx] ± ǫ, it follows that p[vx2 ] = p[vx] − b1
1
2
± 3ǫ, as required.

Supposing that the claim holds up to j−1 ≤ m−1, we will show that it holds for

j. By the induction hypothesis, we have that p[vxj
] = p[vx]−∑j−1

i=1 bi2
−i ± 3(j − 1)ǫ.

Combining this with
∑m

i=1 bi2
−i + 3mǫ < p[vx] <

∑m
i=1 bi2

−i + 2−m − 3mǫ, it follows

that

m∑

i=j

bi2
−i + 3(m − (j − 1))ǫ < p[vxj

] <
m∑

i=j

bi2
−i + 2−m − 3(m − (j − 1))ǫ

which implies

bj

2j
+ 2ǫ < p[vxj

] <
bj

2j
+

1

2j
− 2ǫ.

Continue as in the base case.

Assuming that x = p[vx], y = p[vy], z = p[vz] are all at distance greater than

3nǫ from any multiple of 2−n, the part of G that implements the above algorithm

computes i, j, k such that the point (x, y, z) lies in the cubelet Kijk; that is, there
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are 3n vertices of the game G whose p values are equal to the n bits of the binary

representation of i, j, k. Once we have the binary representations of i, j, k, we can

feed them into another part of G that simulates the circuit C. We could simulate

the circuit by having vertices that represent gates, using addition (with ceiling 1)

to simulate or, multiplication for and, and 1 − x for negation. However, there is

a simpler way, one that avoids the complications related to accuracy, to simulate

Boolean functions under the assumption that the inputs are 0 or 1:

Lemma 4.5. There are binary graphical games G∨,G∧,G¬ with two input players a, b

(one input player a for G¬) and an output player c such that the payoffs of a and b

do not depend on the choices of c, and, at any ǫ-Nash equilibrium with ǫ < 1/4 in

which p[a],p[b] ∈ {0, 1}, p[c] is also in {0, 1}, and is in fact the result of applying the

corresponding Boolean function to the inputs.

Proof. These games are in the same spirit as G<. In G∨, for example, the payoff to

c is 1/2 if it plays 0; if c plays 1 its payoff is 1 if at least one of a, b plays 1, and it is

0 if they both play 0. Similarly, for G∧ and G¬.

It would seem that all we have to do now is to close the loop as follows: in addition

to the part of G that computes the bits of i, j, k, we could have a part that simulates

circuit C in the neighborhood of Kijk and decides whether among the vertices of the

cubelet Kijk there is a panchromatic one; if not, the vertices vx, vy and vz could be

incentivized to change their p values, say in the direction δC(i,j,k), otherwise stay put.

To simulate a circuit evaluation in G we could have one vertex for each gate of the

circuit so that, in any ǫ-Nash equilibrium in which all the p[vbi(x)]’s are 0 − 1, the

vertices corresponding to the outputs of the circuit also play pure strategies, and,

furthermore, these strategies correspond correctly to the outputs of the circuit.

But, as we mentioned above, there is a problem: Because of the brittle compara-

tors, at the boundaries of the cubelets the vertices that should represent the values
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of the bits of i, j, k hold in fact arbitrary reals and, therefore, so do the vertices

that represent the outputs of the circuit, and this noise in the calculation can create

spurious Nash equilibria. Suppose for example that (x, y, z) lies on the boundary

between two cubelets that have color 1, i.e. their centers are assigned vector δ1 by C,

and none of these cubelets have a panchromatic vertex. Then there ought not to be

a Nash equilibrium with p[vx] = x, p[vy] = y, p[vz] = z. We would want that, when

p[vx] = x, p[vy] = y, p[vz ] = z, the vertices vx, vy, vz have the incentive to shift their

p values in direction δ1, so that vx prefers to increase p[vx]. However, on a boundary

between two cubelets, some of the “bit values” that get loaded into the vertices vbi(x),

could be other than 0 and 1, and then there is nothing we can say about the output

of the circuit that processes these values.

To overcome this difficulty, we resort to the following averaging maneuver: We

repeat the above computation not just for the point (x, y, z), but also for all M =

(2m+1)3 points of the form (x+p·α, y+q ·α, z+s·α), for −m ≤ p, q, s ≤ m, where m

is a large enough constant to be fixed later (we show below that m = 20 is sufficient).

The vertices vx, vy, vz are then incentivized to update their values according to the

consensus of the results of these computations, most of which are reliable, as we shall

show next.

Let us first describe this averaging in more detail. It will be convenient to assume

that the output of C is a little more explicit than 3 bits: let us say that C computes

six bits ∆x+, ∆x−, ∆y+, ∆y−, ∆z+, ∆z−, such that at most one of ∆x+, ∆x− is 1,

at most one of ∆y+, ∆y− is 1, and, similarly, for z, and the increment of the Brouwer

function at the center of Kijk is α · (∆x+ − ∆x−, ∆y+ − ∆y−, ∆z+ − ∆z−), equal to

one of the vectors δ0, δ1, δ2, δ3 specified in the definition of Brouwer, where recall

α = 2−2n.

The game G has the following structure: Starting from (x, y, z), some part of the
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game is devoted to calculating the points (x+p·α, y+q·α, z+s·α), −m ≤ p, q, s ≤ m.

Then, another part evaluates the circuit C on the binary representation of each of

these points yielding 6M output bits, ∆x+
1 , . . . , ∆z−M . A final part calculates the

following averages

(δx+, δy+, δz+) =
α

M

M∑

t=1

(∆x+
t , ∆y+

t , ∆z+
t ), (4.1)

(δx−, δy−, δz−) =
α

M

M∑

t=1

(∆x−
t , ∆y−

t , ∆z−t ), (4.2)

which correspond to the average positive, respectively negative, shift of all M points.

We have already described above how to implement the bit extraction and the

evaluation of a circuit using the gadgets of Lemmas 4.2, 4.3 and 4.5. The computation

of points (x + p · α, y + q · α, z + s · α), for all −m ≤ p, q, s ≤ m, is also easy to

implement by preparing the values α|p|, α|q|, α|s|, using gadgets Gα|p|, Gα|q|, Gα|s|,

and then adding or subtracting the results to x, y and z respectively, depending on

whether p is positive or not and, similarly, for q and s. Of course, these computations

are subject to truncations at 0 and 1 (see Lemma 4.2).

To implement the averaging of Equations (4.1) and (4.2) we must be careful on

the order of operations. Specifically, we first have to multiply the 6 outputs, ∆x+
t ,

∆x−
t , ∆y+

t , ∆y−
t , ∆z+

t , ∆z−t , of each circuit evaluation by α
M

using the G× α
M

gadget

and, having done so, we then implement the additions (4.1) and (4.2). Since α will

be a very small constant, by doing so we avoid undesired truncations at 0 and 1.

We can now close the loop by inserting equality, addition and subtraction gadgets,

G=, G+, G−, that force, at equilibrium, x to be equal to (x′ + δx+)−δx−, where x′ is a

copy of x created using G=, and, similarly, for y and z. Note that in G we respect the

order of operations when implementing (x′+δx+)−δx− to avoid undesired truncations

at 0 or 1 as we shall see next. This concludes the reduction; it is clear that it can be
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carried out in polynomial time.

Our proof is concluded by the following claim. For the following lemma we choose

ǫ = α2. Recall from our definition of Brouwer that α = 2−2n.

Lemma 4.6. In any ǫ-Nash equilibrium of the game G, one of the vertices of the

cubelet(s) that contain (p[vx],p[vy],p[vz]) is panchromatic.

Proof. We start by pointing out a simple property of the increments δ0, . . . , δ3:

Lemma 4.7. Suppose that for nonnegative integers k0, . . . , k3 all three coordinates of

∑3
i=0 kiδi are smaller in absolute value than αK

5
where K =

∑3
i=0 ki. Then all four

ki are positive.

Proof. For the sake of contradiction, suppose that k1 = 0. It follows that k0 < K/5

(otherwise the negative x coordinate of
∑3

i=0 kiδi would be too large), and thus one

of k2, k3 is larger than 2K/5, which makes the corresponding coordinate of
∑3

i=0 kiδi

too large, a contradiction. Similarly, if k2 = 0 or k3 = 0. Finally, if k0 = 0 then one

of k1, k2, k3 is at least K/3 and the associated coordinate of
∑3

i=0 kiδi at least αK/3,

again a contradiction.

Let us denote by vδx+ , {v∆x+
t
}1≤t≤M the vertices of G that represent the values δx+,

{∆x+
t }1≤t≤M . To implement the averaging

δx+ =
α

M

M∑

t=1

∆x+
t

inside G, we first multiply each p[v∆x+
t

] by α
M

using a G α
M

gadget, and then sum the

results by a sequence of addition gadgets. Since each of these operations induces an

error of ±ǫ and there are 2M − 1 operations it follows that

p[vδx+ ] =
α

M

M∑

t=1

p[v∆x+
t

] ± (2M − 1)ǫ. (4.3)
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Similarly, denoting by vδx− , {v∆x−
t
}1≤t≤M the vertices of G that represent the values

δx−, {∆x−
t }1≤t≤M , it follows that

p[vδx− ] =
α

M

M∑

t=1

p[v∆x−
t

] ± (2M − 1)ǫ, (4.4)

and, similarly, for directions y and z.

We continue the proof by distinguishing two subcases for the location of (x, y, z) =

(p[vx],p[vy],p[vz])

(a) the point (p[vx],p[vy],p[vz]) is further than (m + 1)α from every face of the

cube [0, 1]3,

(b) the point (p[vx],p[vy],p[vz]) is at distance at most (m + 1)α from some face of

the cube [0, 1]3.

Case (a): Denoting by vx+p·α the player of G that represents x+p ·α, the small value

of ǫ relative to α implies that at most one of the values p[vx+p·α], −m ≤ p ≤ m, can

be 3nǫ-close to a multiple of 2−n, and, similarly, for the directions y and z. Indeed,

recall that x + p · α is computed from x by first preparing the value |p|α via a G|p|α

gadget and then adding or subtracting the result to x —depending on whether p is

positive or not— using G+ or G−. It follows that

p[vx+p·α] = p[vx] + p · α ± 2ǫ, (4.5)

since each gadget introduces an error of ±ǫ, where note that there are no truncations

at 0 or 1, because, by assumption, (m + 1)α < p[vx] < 1 − (m + 1)α. Consequently,

for p > p′,

p[vx+p·α] − p[vx+p′·α] ≥ (p − p′) · α − 4ǫ > 6nǫ,

113



and, moreover,

p[vx+m·α] − p[vx−m·α] ≤ 2m · α + 4ǫ << 2−n, (4.6)

since m is a constant, α = 2−2n, ǫ = α2, and n is assumed to be large enough. Hence,

from among the M = (2m + 1)3 circuit evaluations, all but at most 3(2m + 1)2, or at

least K = (2m − 2)(2m + 1)2, compute legitimate, i.e. binary, ∆x+ etc. values.

Let us denote by K ⊆ {−m, . . . , m}3, |K| ≥ K, the set of values (p, q, r) for which

the bit extraction from (p[vx+p·α],p[vy+q·α],p[vz+r·α]) results in binary outputs and,

consequently, so does the circuit evaluation. Let

SK =
α

M

∑

t∈K
(p[v∆x+

t
] − p[v∆x−

t
],p[v∆y+

t
] − p[v∆y−

t
],p[v∆z+

t
] − p[v∆z−t

]), (4.7)

SKc =
α

M

∑

t/∈K
(p[v∆x+

t
] − p[v∆x−

t
],p[v∆y+

t
] − p[v∆y−

t
],p[v∆z+

t
] − p[v∆z−t

]). (4.8)

Recall that we have inserted gadgets G+, G− and G= in G to enforce that in a Nash

equilibrium x = x′ + δx+ − δx−, where x′ is a copy of x. Because of the defection of

the gadgets this will not be exactly tight in an ǫ-Nash equilibrium. More precisely,

denoting by vx′ the player of G corresponding to x′, the following are true in an ǫ-Nash

equilibrium

p[vx′ ] = p[vx] ± ǫ

p[vx] = p[v′
x] + p[vδx+ ] − p[vδx− ] ± 2ǫ,

where for the second observe that both p[vδx+ ] and p[vδx− ] are bounded above by

α + (2M − 1)ǫ so there will be no truncations at 0 or 1 when adding p[vδx+ ] to p[v′
x]
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and then subtracting p[vδx− ]. By combining the above we get

p[vδx+ ] − p[vδx− ] = ±3ǫ

and, similarly, for y and z

p[vδy+ ] − p[vδy− ] = ±3ǫ

p[vδz+ ] − p[vδz− ] = ±3ǫ.

Now, if we use (4.3), (4.4), (4.7), (4.8) we derive

∣∣SKℓ
+ SKc

ℓ

∣∣ ≤ (4M + 1)ǫ, for ℓ = x, y, z,

where SKℓ
, SKc

ℓ
is the ℓ coordinate of SK, SKc . Moreover, since |K| ≥ K, the sum-

mation SKc
ℓ

has at most M − K summands and because each of them is at most α
M

in absolute value it follows that |SKc
ℓ
| ≤ α

M
(M − K), for all ℓ = x, y, z. Therefore,

we have that

∣∣SKℓ

∣∣ ≤ (4M + 1)ǫ +
M − K

M
α, for ℓ = x, y, z.

Finally, note by the definition of the set K that, for all (p, q, r) ∈ K, the bit extraction

from (p[vx+p·α],p[vy+q·α],p[vz+r·α]) and the following circuit evaluation result in bi-

nary outputs. Therefore, SK = 1
M

∑3
i=0 kiδi for some nonnegative integers k0, . . . , k3

adding up to |K|. From the above we get that

∣∣∣
3∑

i=0

kiδi

∣∣∣
∞

≤ (4M + 1)Mǫ + (M − K)α ≤ (4M + 1)Mǫ + 3(2m + 1)2α.

By choosing m = 20, the bound becomes less than αK/5, and so Lemma 4.7 applies.

It follows that, among the results of the |K| circuit computations, all four δ0, . . . , δ3
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appeared. And, since every point on which the circuit C is evaluated is within ℓ1 dis-

tance at most 3mα + 6ǫ << 2−n from the point (x, y, z), as Equation (4.5) dictates,

this implies that among the corners of the cubelet(s) containing (x, y, z) there must

be one panchromatic corner, completing the proof of Lemma 4.6 for case (a).

Case (b): We will show that there is no ǫ-Nash equilibrium in which (p[vx],p[vy],p[vz])

is within distance (m + 1)α from a face of [0, 1]3. We will argue so only for the case

p[vx] ≤ (m + 1)α,

(m + 1)α < p[vy] < 1 − (m + 1)α,

(m + 1)α < p[vz ] < 1 − (m + 1)α;

the other cases follow similarly.

First, we show that, for all −m ≤ p ≤ m, the bit extraction from p[vx+p·α] results

in binary outputs. From the proof of Lemma 4.4 it follows that, to show this, it is

enough to establish that p[vx+pα] < 2−n − 3nǫ, for all p. Indeed, for p ≥ 0, Equation

(4.5) applies because there are no truncations at 1 at the addition gadget. So for

p ≥ 0 we get

p[vx+p·α] ≤ p[vx] + p · α + 2ǫ ≤ (m + 1)α + mα + 2ǫ << 2−n − 3nǫ

On the other hand, for p < 0, there might be a truncation at 0 when we subtract the

value |p|α from p[vx]. Nevertheless, we have that

p[vx+p·α] = max{ 0 , p[vx] − (|p|α ± ǫ) } ± ǫ ≤ p[vx] + 2ǫ

≤ (m + 1)α + 2ǫ << 2−n − 3nǫ.
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Therefore, for all −m ≤ p ≤ m, the bit extraction from p[vx+p·α] is successful, i.e.

results in binary outputs.

For the directions y and z the picture is exactly the same as in case (a) and,

therefore, there exists at most one q,−m ≤ q ≤ m, and at most one r, −m ≤ r ≤ m,

for which the bit extraction from p[vy+q·α] and p[vz+r·α] fails. Therefore, from among

the M = (2m+1)3 points of the form (p[vx+p·α],p[vy+q·α],p[vz+r·α]) the bit extraction

succeeds in all but at most 2(2m + 1)2 of them.

Therefore, at least K ′ = (2m − 1)(2m + 1)2 circuit evaluations are successful,

i.e. in binary arithmetic, and, moreover, they correspond to points inside cubelets

of the form Kijk with i = 0. In particular, from Equation (4.6) and the analogous

equations for the y and z coordinates, it follows that the successful circuit evaluations

correspond to points inside at most 4 neighboring cubelets of the form K0jk. Since

these cubelets are adjacent to the x = 0 face of the cube, from the properties of

the circuit C in the definition of the problem Brouwer, it follows that, among the

outputs of these evaluations, one of the vectors δ0, δ1, δ2, δ3 is missing. Without loss

of generality, let us assume that δ0 is missing. Then, since there are K ′ successful

evaluations, one of δ1, δ2, δ3 appears at least K ′/3 times.

If this is vector δ1 (a similar argument applies for the cases δ2, δ3), then denoting

by vx′+δx+ the player corresponding to x′ + δx+, the following should be true in an

ǫ-Nash equilibrium.

p[vx] + ǫ ≥ p[vx′ ] ≥ p[vx] − ǫ,

α + (2M − 1)ǫ ≥ p[vδx+ ] ≥ K ′

3M
α − (2M − 1)ǫ,

p[vx′+δx+ ] ≥ min(1,p[vx′] + p[vδx+ ]) − ǫ ≥ p[vx′ ] + p[vδx+ ] − ǫ,

M − K ′

M
α + (2M − 1)ǫ ≥ p[vδx− ],

p[vx] ≥ max(0,p[vx′+δx+ ] − p[vδx− ]) − ǫ ≥ p[vx′+δx+ ] − p[vδx− ] − ǫ;
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in the second inequality of the third line above, we used that p[vx] ≤ (m + 1)α.

Combining the above we get

p[vx] ≥ p[vx′] + p[vδx+ ] − p[vδx− ] − 2ǫ

≥ p[vx] + p[vδx+ ] − p[vδx− ] − 3ǫ

or equivalently that

p[vδx− ] ≥ p[vδx+ ] − 3ǫ,

which implies

M − K ′

M
α + (4M + 1)ǫ ≥ K ′

3M
α,

which is not satisfied by our selection of parameters.

To conclude the proof of Theorem 4.1, if we find any ǫ-Nash equilibrium of G,

Lemma 4.6 has shown that by reading off the first n binary digits of p[vx], p[vy] and

p[vz] we obtain a solution to the corresponding instance of Brouwer.

4.2 Two-Player Games

Soon after our proof became available, Chen and Deng [CD06] showed that our PPAD-

completeness result can be extended to the important two-player case. Here we

present a rather simple modification of our proof from the previous section establishing

this result.

Theorem 4.8 ([CD06]). 2-Nash is PPAD-complete.

Proof. Let us define d-additive graphical Nash to be the problem d-graphical

Nash restricted to bipartite graphical games with additive utility functions defined

next.
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Definition 4.9. Let GG be a graphical game with underlying graph G = (V, E). We

call GG a bipartite graphical game with additive utility functions if G is a bipartite

graph and, moreover, for each vertex v ∈ V and for every pure strategy sv ∈ Sv of that

player, the expected payoff of v for playing the pure strategy sv is a linear function

of the mixed strategies of the vertices in Nv \ {v} with rational coefficients; that is,

there exist rational numbers {αsv
u,su

}u∈Nv\{v},su∈Su, αsv
u,su

∈ [0, 1] for all u ∈ N (v)\{v},

su ∈ Su, such that the expected payoff to vertex v for playing pure strategy sv is

∑

u∈Nv\{v},su∈Su

αsv
u,su

p[u : su],

where p[u : su] denotes the probability that vertex u plays pure strategy su.

The proof is based on the following lemmas.

Lemma 4.10. Brouwer is poly-time reducible to 3-additive graphical Nash.

Lemma 4.11. 3-additive graphical Nash is poly-time reducible to 2-Nash.

Proof of Lemma 4.10: The reduction is almost identical to the one in the proof

of Theorem 4.1. Recall that given an instance of Brouwer a graphical game was

constructed using the gadgets Gα,G×α,G=,G+,G−,G∗, G∨,G∧,G¬, and G>. In fact,

gadget G∗ is not required, since only multiplication by a constant is needed which can

be accomplished via the use of gadget G×α. Moreover, it is not hard to see by looking

at the payoff tables of the gadgets defined in Section 3.1 and Lemma 4.3 that, in

gadgets Gα, G×α, G=, G+, G−, and G>, the non-input vertices have the additive utility

functions property of Definition 4.9. Let us further modify the games G∨,G∧,G¬ so

that their output vertices have the additive utility functions property.

Lemma 4.12. There are binary graphical games G∨,G∧,G¬ with two input players

a, b (one input player a for G¬) and an output player c such that the payoffs of a and

b do not depend on the choices of c, c’s payoff satisfies the additive utility functions
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property, and, in any ǫ-Nash equilibrium with ǫ < 1/4 in which p[a],p[b] ∈ {0, 1},

p[c] is also in {0, 1}, and is in fact the result of applying the corresponding Boolean

function to the inputs.

Proof. For G∨, the payoff of player c is 0.5p[a]+0.5p[b] for playing 1 and 1
4

for playing

0. For G∧, the payoff of player c is 0.5p[a] + 0.5p[b] for playing 1 and 3
4

for playing 0.

For G¬, the payoff of player c is p[a] for playing 0 and p[a : 0] for playing 1.

If the modified gadgets G∨,G∧,G¬ specified by Lemma 4.12 are used in the con-

struction of Theorem 4.1, all vertices of the resulting graphical game satisfy the

additive utility functions property of Definition 4.9. To make sure that the graphical

game is also bipartite we modify the gadgets G∨,G∧,G¬, and G> with the insertion of

an extra output vertex. The modification is the same for all 4 gadgets: let c be the

output vertex of any of these gadgets; we introduce a new output vertex e, whose pay-

off only depends on the strategy of c, but c’s payoff does not depend on the strategy

of e, and such that the payoff of e is p[c] for playing 1 and p[c : 0] for playing 0 (i.e.

e “copies” c, if c’s strategy is pure). It is not hard to see that, for every gadget, the

new output vertex has the same behavior with regards to the strategies of the input

vertices as the old output vertex, as specified by Lemmas 4.3 and 4.12. Moreover,

it is not hard to verify that the graphical game resulting from the construction of

Theorem 4.1 with the use of the modified gadgets G∨,G∧,G¬, and G> is bipartite;

indeed, it is sufficient to color blue the input and output vertices of all G×α, G=, G+,

G−, G∨, G∧, G¬, and G> gadgets used in the construction, blue the output vertices of

all Gα gadgets used, and red the remaining vertices. 2

Proof of Lemma 4.11: Let G̃G be a bipartite graphical game of maximum degree 3

with additive utility functions and GG the graphical game resulting after rescaling all

utilities to the set [0, 1], e.g. by dividing all utilities by max {ũ}, where max {ũ} is the

largest entry in the payoff tables of game G̃G. Also, let ǫ < 1. In time polynomial in
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|GG|+log(1/ǫ), we will specify a 2-player normal-form game G and an accuracy ǫ′ with

the property that, given an ǫ′-Nash equilibrium of G, one can recover in polynomial

time an ǫ-Nash equilibrium of GG. This will be enough, since an ǫ-Nash equilibrium

of GG is trivially an ǫ · max {ũ}-Nash equilibrium of game G̃G and, moreover, |GG| is

polynomial in |G̃G|.

The construction of G from GG is almost identical to the one described in Fig-

ure 3.5. Let V = V1⊔V2 be the bipartition of the vertices of set V so that all edges are

between a vertex in V1 and a vertex in V2. Let us define c : V → {1, 2} as c(v) = 1 iff

v ∈ V1 and let us assume, without loss of generality, that |v : c(v) = 1| = |v : c(v) = 2|;

otherwise, we can add to GG isolated vertices to make up any shortfall. Suppose that

n is the number of vertices in GG (after the possible addition of isolated vertices) and

t the cardinality of the strategy sets of the vertices in V , and let ǫ′ = ǫ/n. Let us then

employ the Steps 4 and 5 of the algorithm in Figure 3.5 to construct the normal-form

game G from the graphical game GG; however, we choose M = 6tn
ǫ

, and modify Step

5b to read as follows

(b)’ for v ∈ V and sv ∈ Sv, if c(v) = p and s contains (v, sv) and (u, su) for some

u ∈ N (v) \ {v}, su ∈ Su, then up
s = αsv

u,su
,

where we used the notation from Definition 4.9.

We argue next that, given an ǫ′-Nash equilibrium {xp
(v,a)}p,v,a of G, {xv

a}v,a is an

ǫ-Nash equilibrium of GG, where

xv
a = x

c(v)
(v,a)

/∑

j∈Sv

x
c(v)
(v,j), ∀v ∈ V, a ∈ Sv.

Suppose that p = c(v) for some vertex v of the graphical game GG. As in the proof

of Theorem 3.8, Lemma 3.11, it can be shown that in any ǫ′-Nash equilibrium of the

121



game G,

Pr[p plays v] ∈
[

2

n
− 1

M
,

2

n
+

1

M

]
.

Now, without loss of generality assume that p = 1 (the pursuer) and suppose v is

vertex v
(p)
i , in the notation of Figure 3.5. Then, in an ǫ′-Nash equilibrium of the game

G, we have, by the definition of a Nash equilibrium, that for all strategies sv, s
′
v ∈ Sv

of vertex v:

E [payoff to p for playing (v, sv)] > E [payoff to p for playing (v, s′v)] + ǫ′ ⇒ xp
(v,s′v) = 0.

(4.9)

But

E [payoff to p for playing (v, sv)] = M ·Pr
[
p + 1 plays v

(p+1)
i

]
+

∑

u∈Nv\{v},su∈Su

αsv
u,su

x
c(u)
(u,su)

and, similarly, for s′v. Therefore, (4.9) implies

∑

u∈Nv\{v},su∈Su

αsv
u,su

x
c(u)
(u,su) >

∑

u∈Nv\{v},su∈Su

αs′v
u,su

x
c(u)
(u,su) + ǫ′ ⇒ xp

(v,s′v) = 0. (4.10)

Lemma 4.13. For all v, a ∈ Sv,

∣∣∣∣∣x
v
a −

x
c(v)
(v,a)

2/n

∣∣∣∣∣ ≤
n

2M
.

Proof. We have

∣∣∣∣∣x
v
a −

x
c(v)
(v,a)

2/n

∣∣∣∣∣ =

∣∣∣∣∣
x

c(v)
(v,a)

Pr[c(v) plays v]
−

x
c(v)
(v,a)

2/n

∣∣∣∣∣

=
x

c(v)
(v,a)

Pr[c(v) plays v]

|Pr[c(v) plays v] − 2/n|
2/n

≤ n

2M
,
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where we used that
∑

j∈Sv
x

c(v)
(v,j) = Pr[c(v) plays v] and |Pr[c(v) plays v] − 2/n| ≤

1
M

.

By (4.10) and Lemma 4.13, we get that, for all v ∈ V , sv, s
′
v ∈ Sv,

∑

u∈Nv\{v},su∈Su

αsv
u,su

xu
su

>
∑

u∈Nv\{v},su∈Su

αs′v
u,su

xu
su

+
n

2
ǫ′ + |Nv \ {v}|t

n

M
⇒ xv

s′v
= 0.

Since n
2
ǫ′ + |Nv \ {v}|t n

M
≤ ǫ, it follows that {xv

a}v,a is an ǫ-Nash equilibrium of the

game GG. 2

4.3 Other Classes of Games and Fixed Points

There are several special cases of the Nash equilibrium problem for which PPAD-

hardness persists. It has been shown, for example, that finding a Nash equilibrium of

two-player normal-form games in which all utilities are restricted to take values 0 or 1

(the so-called win-lose case) remains PPAD-complete [AKV05, CTV07]. The Nash

equilibrium problem in two-player symmetric games — that is, games in which the

two players have the same strategy sets, and their utility is the same function of their

own and the other player’s strategy — is also PPAD-complete. 1 Moreover, rather

surprisingly, it is essentially PPAD-complete to even play repeated games [BCI+08]

(the so-called “Folk Theorem for repeated games” [Rub79] notwithstanding).

And, what is known about the complexity of the Nash Equilibrium problem in

other classes of succinctly representable games with many players (besides the graphi-

cal games which we have resolved)? For example, are these problems even in PPAD? 2

In [DFP06], we provide a general sufficient condition, satisfied by all known succinct

1This follows from a symmetrization argument of von Neumann [BN50] providing a reduction
from the Nash equilibrium problem in general two-player games to that in symmetric games (see,
also, the construction of Gale, Kuhn, Tucker [GKT50]).

2It is typically easy to see that they cannot be easier than the normal-form case.
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representations of games, such as congestion games [Ros73, FPT04] and extensive-

form games [OR94], for membership of the Nash equilibrium problem in the class

PPAD. The basic idea is using the “arithmetical” gadgets in our present proof to

simulate the calculation of utilities in these succinct games.

Our techniques can be used to treat two other open problems in complexity. One

is that of the complexity of simple stochastic games defined in [Con92], heretofore

known to be in TFNP, but not in any of the more specialized classes like PPAD or

PLS. Now, it is known that this problem is equivalent to evaluating combinational

circuits with max, min, and average gates. Since all three kinds of gates can be

implemented by the graphical games in our construction, it follows that solving simple

stochastic games is in PPAD. 3

Similarly, by an explicit construction we can show the following.

Theorem 4.14. Let p : [0, 1] → R be any polynomial function such that p(0) < 0 and

p(1) > 0. Then there exists a graphical game in which all vertices have two strategies,

0 and 1, and in which the mixed Nash equilibria correspond to a particular vertex v

playing strategy 1 with probability equal to the roots of p(x) between 0 and 1.

Proof Sketch. Let p be described by its coefficients α0, α1, . . . , αn, so that

p(x) := αnx
n + αn−1x

n−1 + . . . + α1x + α0.

Taking A := (
∑n

i=0 |αi|)−1, it is easy to see that the range of the polynomial q(x) :=

1
2
Ap(x) + 1

2
is [0, 1], that q(0) < 1

2
, q(1) > 1/2, and that every point r ∈ [0, 1] such

that q(r) = 1
2

is a root of p. We define next a graphical game GG in which all vertices

have two strategies, 0 and 1, and a designated vertex v of GG satisfies the following

(i) in any mixed Nash equilibrium of GG the probability xv
1 by which v plays strat-

egy 1 satisfies q(xv
1) = 1/2;

3One has to pay attention to the approximation; see [EY07] for details.
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(ii) for any root r of p in [0, 1], there exists a mixed Nash equilibrium of GG in

which xv
1 = r;

The graphical game has the following structure:

• there is a component graphical game GGq with an “input vertex” v and an

“output vertex” u such that, in any Nash equilibrium of GG, the mixed strategies

of u and v satisfy xu
1 = q(xv

1); a graphical game which progressively performs the

computations required for the evaluation of q(·) on xv
1 can be easily constructed

using our game-gadgets; note that the computations can be arranged in such

an order that no truncations at 0 or 1 happen (recall the rescaling by 1
2
A and

the shifting around 1/2 done above);

• a comparator game G> (see Lemma 4.3) compares the mixed strategy of u with

the value 1
2
, prepared by a G1/2 gadget (see Section 3.1), so that the output

vertex of the comparator game plays 0 if xu
1 > 1

2
, 1 if xu

1 < 1
2
, and anything if

xu
1 = 1

2
;

• we identify the output player of G> with player v;

It is not hard to see that GG satisfies Properties (i) and (ii).

As a corollary of Theorem 4.14, it follows that fixed points of polynomials can be

computed by computing (exact) Nash equilibria of graphical games. Computing fixed

points of polynomials via exact Nash equilibria in graphical games can be extended

to the multi-variate case again via the use of game gadgets to evaluate the polynomial

and the use of a series of G= gadgets to set the output equal to the input.

Both this result and the result about simple stochastic games noted above were

shown independently by [EY07], while Theorem 4.14 was already shown by Bubelis

[Bub79].

125



Chapter 5

Computing Approximate

Equilibria

In the previous chapters, we establish that r-Nash is PPAD-complete, for r ≥ 2.

This result implies that it is PPAD-complete to compute an ǫ-Nash equilibrium of a

normal-form game with at least two players, for any approximation ǫ scaling as an

inverse exponential function of the size of game. The same is true for graphical games

of degree 3 or larger, since d-graphical Nash was also shown to be PPAD-complete,

for all d ≥ 3. This brings about the following question.

• Is computing an ǫ-Nash equilibrium easier, if ǫ is larger?

It turns out that, for any ǫ which is inverse polynomial in n, computing an ǫ-

Nash equilibrium of a 2-player n-strategy game remains PPAD-complete. This result,

established by Chen, Deng and Teng [CDT06a], follows from a modification of our

reduction in which the starting Brouwer problem is defined not on the 3-dimensional

cube, but on the n-dimensional hypercube. Intuitively, the difference is this: In order

to create the exponentially many cells needed to embed the “line” of the end of the

line problem, our construction had to resort to exponentially small cell size. On the

other hand, the n-dimensional hypercube contains exponentially many cells, all of
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reasonably large size. This observation implies that approximation which is inverse

polynomial in n is sufficient to encode the end of the line instance into a 2-player

n-strategy game. In fact, the same negative result can be extended to graphical

games: For any ǫ which is inverse polynomial in n, computing an ǫ-Nash equilibrium

of a n-player graphical game of degree 3 is PPAD-complete. So, for both normal-form

and graphical games, a fully polynomial-time approximation scheme seems unlikely.

The following important question emerges at the boundary of intractability.

• Is there a polynomial-time approximation scheme for the Nash equilibrium problem?

We discuss this question in its full generality in Section 5.1. We also present special

classes of two-player games for which there exists a polynomial-time approximation

scheme, and we conclude the section with a discussion of challenges towards ob-

taining a polynomial-time approximation scheme for general two-player games. In

Sections 5.2 through 5.9, we consider a broad and important class of games, called

anonymous games, for which we present a polynomial-time approximation scheme.

5.1 General Games and Special Classes

The problem of computing approximate equilibria was considered by Lipton, Markakis

and Mehta in [LMM03], where a quasi-polynomial-time algorithm was given for nor-

malized normal-form games. 1 This algorithm is based upon the realization that,

in every r-player game, there exists an ǫ-approximate Nash equilibrium in which all

players’ mixed strategies have support of size O
(

r2 log(r2n)
ǫ2

)
. Hence, an ǫ-approximate

equilibrium can be found by exhaustive search over all mixed strategy profiles with

this support size. Despite extensive research on the subject, no improvement of this

result is known for general values of ǫ. For fixed values of ǫ, we have seen a se-

1Most of the research on computing approximate Nash equilibria has focused on normalized
games; since the approximation is defined in the additive sense this decision is a reasonable one.
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quence of results, computing ǫ-Nash equilibria of normalized 2-player games with

ǫ = .5 [DMP06], .39 [DMP07], .37 [BBM07]; the best known ǫ at the time of writing

is .34 [TS07].

Our knowledge for multiplayer games is also quite limited. In [DP08a], we show

that an ǫ-Nash equilibrium of a normalized normal-form game with two strategies

per player can be computed in time nO(log log n+log 1
ǫ
), where n is the size of the game.

For graphical games of constant degree, where our hardness result from Chapter 4

comes in the picture, a similar algorithm is unlikely, since it would imply that PPAD

has quasi-polynomial-time algorithms. 2 On the positive side, Elkind, Goldberg and

Goldberg show that a Nash equilibrium of graphical games with maximum degree 2

and 2 strategies per player can be computed in polynomial time [EGG06]. And what is

known about larger degrees? In [DP06], we describe a polynomial-time approximation

scheme for normalized graphical games with a constant number of strategies per

player, bounded degree, and treewidth which is at most logarithmic in the number

of players. Whether this result can be extended to graphical games with super-

logarithmic treewidth remains an important open problem.

Since our knowledge for general games is limited, it is natural to ask the following.

• Are there special classes of games for which approximate equilibria can be computed

efficiently?

Recall that two-player zero-sum games are solvable exactly in polynomial time

by Linear Programming [Neu28, Dan63, Kha79]. Kannan and Theobald extend this

tractability result by providing a polynomial-time approximation scheme for a gen-

eralization of two-player zero-sum games, called low-rank games [KT07]. These are

games in which the sum of the players’ payoff matrices3 is a matrix of fixed rank.

2Recall that, as noted before, finding an ǫ-Nash equilibrium of bounded degree graphical games
remains PPAD-complete for values of ǫ scaling inverse polynomially with the number of players.

3In two-player games, the payoffs of the players can be described by specifying two n×n matrices
R and C, where n is the number of strategies of the players, so that Rij and Cij is respectively the

128



In [DP08b], we observe that a PTAS exists for another class of two-player games,

called bounded-norm games, in which every player’s payoff matrix is the sum of a

constant matrix and a matrix with bounded infinity norm. These games have been

shown to be PPAD-complete [CDT06b]. Hence, our tractability result exhibits a

rare class of games which are PPAD-complete to solve exactly, yet a polynomial-time

approximation scheme exists for solving them approximately.

In view of these positive results for special classes of two-player games, the fol-

lowing question arises.

• Is there a polynomial-time approximation scheme for general two-player games?

It is well-known that, if a two-player game has a Nash equilibrium in which both

players’ strategies have support of some fixed size, then that equilibrium can be re-

covered in polynomial time. Indeed, all we need to do is to perform an exhaustive

search over all possible supports for the two players. For the right choice of sup-

ports, the Nash equilibrium can be found by solving a linear program. However, this

straightforward approach does not extend beyond fixed size supports, since in this

case the number of possible supports becomes super-polynomial.

• Is it then the case that supports of size linear in the number of strategies are hard?

Surprisingly, we show that this not always the case [DP08b]: If a two-player

game has a Nash equilibrium in which both players’ strategies spread non-trivially

(that is, with significant probability mass) over a linear-size subset of the strategies,

then an ǫ-Nash equilibrium can be recovered in randomized polynomial time, for

any ǫ. Observe that the PPAD-hard instances of two-player games constructed in

Section 4.2 only have equilibria of (non-trivial) linear support. Hence, our positive

result for linear supports is another case of a problem which is PPAD-complete to

payoff of the first and the second player, if the first player chooses her i-th strategy and the second
player chooses her j-th strategy.
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solve exactly, yet a randomized polynomial-time approximation scheme exists for

solving it approximately. It also brings about the following question.

• If neither fixed nor linear, what support sizes are hard?

The following discussion seems to suggest that logarithmic size supports are hard.

It turns out that our PTAS for both the case of linear size support and the class of

bounded-norm games, discussed previously, is of a very special kind, called oblivious.

This means that it looks at a fixed set of pairs of mixed strategies, by sampling a

distribution over that set, and uses the input game only to determine whether the

sampled pair of mixed strategies constitutes an approximate Nash equilibrium. The

guarantee in our algorithms is that an approximate Nash equilibrium is sampled with

inverse polynomial probability, so that only a polynomial number of samples is needed

in expectation.

We show, however, that an oblivious PTAS does not exist for general two-player

games [DP08b]. And here is how logarithmic support comes into play. In our proof,

we define a family of 2-player n-strategy games, indexed by all subsets of strategies

of about logarithmic size, with the following property: The game indexed by a subset

S satisfies that, in any ǫ-Nash equilibrium, the mixed strategy of one of the players is

within total variation distance O(ǫ) from the uniform distribution over S. Since there

are nΘ(log n) subsets of size log n, it is not hard to deduce that any oblivious algorithm

should have expected running time nΩǫ(log n), that is super-polynomial. Incidentally,

note that the (also oblivious) algorithm of Lipton, Markakis and Mehta [LMM03]

runs in time nΘ(log n/ǫ2), and it works by exhaustively searching over all multisets of

strategies of size Θ(log n/ǫ2).

It is natural to conjecture that an important step towards obtaining a polynomial-

time approximation scheme for two-player games is to understand how an approxi-

mate Nash equilibrium can be computed in the presence of an exact Nash equilibrium
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of logarithmic support.

5.2 Anonymous Games

In the rest of this chapter, we consider algorithms for computing approximate equilib-

ria in a very broad and important class of games, called anonymous games. These are

games in which the players’ payoff functions, although potentially different, do not

differentiate among the identities of the other players. That is, each player’s payoff

depends on the strategy that she chooses and only the number of the other players

choosing each of the available strategies. An immediate example is traffic: The delay

incurred by a driver depends on the number of cars on her route, but not on the identi-

ties of the drivers. Another example arises in certain auction settings where the utility

of a bidder is affected by the distribution of the other bids, but not on the identities

of the other bidders. In fact, many problems of interest for algorithmic game theory,

such as congestion games, participation games, voting games, and certain markets

and auctions, are anonymous. The reader is referred to [Mil96, Blo99, Blo05, Kal05]

for recent work on the subject by economists.

Note that anonymous games are much more general than symmetric games, in

which all players are identical. In fact, any normal-form game can be represented

by an anonymous game as follows. Two-player games are obviously anonymous for

trivial reasons. To encode a multi-player non-anonymous game into an anonymous

game, we can give to each player the option of choosing a strategy belonging to any

player of the original game, but, at the same time, punish a player who chooses

a strategy belonging to another player. Observe that this encoding incurs only a

polynomial blowup in description complexity if the starting game has a constant

number of players. Hence, all hardness results from the previous chapters apply to

this case.
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We are going to focus instead on anonymous games with many players and a

few strategies per player. Observe that, if n is the number of players and k the

number of strategies, only O(nk) numbers are needed to specify the game. Hence,

anonymous games are a rare case of multiplayer games that have a polynomially

succinct representation — as long as the number k of strategies is fixed. Our main

result is a polynomial-time approximation scheme for such games.

Our PTAS extends to several generalizations of anonymous games, for example the

case in which there are a few types of players, and the utilities depend on how many

players of each type play each strategy; and to the case in which we have extended

families (disjoint graphical games of constant degree and with logarithmically many

players, each with a utility depending in arbitrary (possibly non-anonymous) ways

on their neighbors in the graph, in addition to their anonymous —possibly typed—

interest on everybody else). This generalizations are discussed in Section 5.8. Observe

that, if we allowed larger extended families, we would be able to embed in the game

graphical games with super-logarithmic size, for which the intractability result of the

previous chapters comes into play.

Let us conclude our introduction to anonymous games with a discussion resonating

the introduction to this dissertation in Chapter 1. Algorithmic Game Theory aspires

to understand the Internet and the markets it encompasses and creates, hence the

study of multiplayer games is of central importance. We believe that our PTAS is

a positive algorithmic result spanning a vast expanse in this space. Because of the

tremendous analytical difficulties detailed in Sections 5.5 through 5.7, our algorithm

is not practical (as we shall see, the number of strategies and the accuracy appear

in the exponent of the running time). It could be, of course, the precursor of more

practical algorithms; in fact, we discuss a rather efficient algorithm for the case of

two strategies in Section 5.9. But, more importantly, our algorithm should be seen

as compelling computational evidence that there are very extensive and important
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classes of common games which are free of the negative implications of our complexity

result from the previous chapters.

The structure of the remaining of this chapter is the following: In Section 5.3, we

define anonymous games formally and introduce some useful notation. In Section 5.4,

we state our main result and discuss our proof techniques. In Section 5.5, we state

our main technical lemma and show how it implies the PTAS, and, in Section 5.6, we

discuss its proof, which we give in Section 5.7. In Section 5.8, we discuss extensions of

our PTAS to broader classes of games, and, in Section 5.9, we discuss more efficient

PTAS’s.

5.3 Definitions and Notation

A (normalized) anonymous game is a triple G = (n, k, {up
i }) where [n] = {1, . . . , n},

n ≥ 2, is a set of players, [k] = {1, . . . , k}, k ≥ 2, is a set of strategies, and up
i

with p ∈ [n] and i ∈ [k] is the utility of player p when she plays strategy i, a

function mapping the set of partitions Πk
n−1 = {(x1, . . . , xk) : xi ∈ N0 for all i ∈

[k],
∑k

i=1 xi = n−1} to the interval [0, 1]. 4 This means that the payoff of each player

depends on her own strategy and only the number of the other players choosing each

of the k strategies. Let us denote by ∆k
n−1 the convex hull of the set Πk

n−1. That is,

∆k
n−1 = {(x1, . . . , xk) : xi ≥ 0 for all i ∈ [k],

∑k
i=1 xi = n − 1}.

A mixed strategy profile is a set of n distributions {δp ∈ ∆k}p∈[n], where by ∆k

we denote the (k − 1)-dimensional simplex, or, equivalently, the set of distributions

over [k]. In this notation, a mixed strategy profile is an ǫ-Nash equilibrium if, for all

p ∈ [n] and j, j′ ∈ [k],

Eδ1,...,δnup
j (x) > Eδ1,...,δnup

j′(x) + ǫ ⇒ δp(j′) = 0,

4As we noted in Section 5.1, the literature on Nash approximation studies normalized games so
that the approximation error is additive.
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where x is drawn from Πk
n−1 by drawing n−1 random samples from [k] independently

according to the distributions δq, q 6= p, and forming the induced partition. Notice

the similarity to (2.2) in Chapter 2.

Similarly, a mixed strategy profile is an ǫ-approximate Nash equilibrium if, for

all p ∈ [n] and j ∈ [k], Eδ1,...,δnup
i (x) + ǫ ≥ Eδ1,...,δnup

j(x), where i is drawn from

[k] according to δp and x is drawn from Πk
n−1 as above, by drawing n − 1 random

samples from [k] independently according to the distributions δq, q 6= p, and forming

the induced partition.

Our working assumptions are that n is large and k is fixed; notice that, in this

case, anonymous games are succinctly representable [PR05], in the sense that their

representation requires specifying O(nk) numbers, as opposed to the nkn numbers

required for general games. Arguably, succinct games are the only multiplayer games

that are computationally meaningful; see [PR05] for an extensive discussion of this

point.

5.4 A Polynomial-Time Approximation Scheme for

Anonymous Games

Our main result is a PTAS for anonymous games with a few strategies, namely

Theorem 5.1. There is a PTAS for the mixed Nash equilibrium problem for normal-

ized anonymous games with a constant number of strategies.

We provide the proof of the theorem in the next section, where we also describe the

basic technical lemma needed for the proof. Let us give here instead some intuition

about our proof techniques. The basic idea of our algorithm is extremely simple

and intuitive: Instead of performing the search for an approximate Nash equilibrium

over the full set of mixed strategy profiles, we restrict our attention to mixed strate-
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gies assigning to each strategy in their support probability mass which is an integer

multiple of 1
z
, where z is a large enough natural number. We call this process dis-

cretization. Searching the space of discretized mixed strategy profiles can be done

efficiently with dynamic programming. Indeed, there are less than (z + 1)k−1 dis-

cretized mixed strategies available to each player, so at most n(z+1)k−1−1 partitions

of the number n of players into these discretized mixed strategies. And checking if

there is an approximate Nash equilibrium consistent with such a partition can be

done efficiently using a max-flow argument (see details in the proof of Theorem 5.1

given in Section 5.5).

The challenge, however, lies somewhere else: We need to establish that any mixed

Nash equilibrium of the original game is close to a discretized mixed strategy profile.

And this requires the following non-trivial approximation lemma for multinomial dis-

tributions: The distribution of the sum of n independent random unit vectors with

values ranging over {e1, . . . , ek}, where ei is the unit vector along dimension i of the

k-dimensional Euclidean space, can be approximated by the distribution of the sum

of another set of independent unit vectors whose probabilities of obtaining each value

are multiples of 1
z
, and so that the variational distance of the two distributions de-

pends only on z (in fact, a decreasing function of z) and the dimension k, but not

on the number of vectors n. In our setting, the original random vectors correspond

to the strategies of the players in a Nash equilibrium, and the discretized ones to the

discretized mixed strategy profile. The total variation distance bounds the approxi-

mation error incurred by replacing the Nash equilibrium with the discretized mixed

strategy profile.

The approximation lemma needed in our proof can be interpreted as constructing

a surprisingly sparse cover of the set of multinomial-sum distributions under the

total variation distance. Covers have been considered extensively in the literature of

approximation algorithms, but we know of no non-trivial result working in the set of
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multinomial-sum distributions or producing a cover of the required sparsity to achieve

a polynomial-time approximation scheme for the Nash equilibrium in anonymous

games. In the next section, we state the precise approximation result that we need

and show how it can be used to derive a PTAS for anonymous games with a constant

number of strategies. In Section 5.6, we discuss the challenges in establishing this

result, and the full proof is given in Section 5.7.

5.5 An Approximation Theorem for Multinomial

Distributions

Before stating our result, let us define the total variation distance between two dis-

tributions P and Q over a finite set A as

||P − Q||TV =
1

2

∑

α∈A
|P(α) − Q(α)|.

Similarly, if X and Y are two random variables ranging over a finite set, their total

variation distance, denoted

||X − Y ||TV ,

is defined to be the total variation distance between their distributions. Our approx-

imation result is the following.

Theorem 5.2. Let {pi ∈ ∆k}i∈[n], and let {Xi ∈ Rk}i∈[n] be a set of independent k-

dimensional random unit vectors such that, for all i ∈ [n], ℓ ∈ [k], Pr[Xi = eℓ] = pi,ℓ,

where eℓ is the unit vector along dimension ℓ; also, let z > 0 be an integer. Then

there exists another set of probability vectors {p̂i ∈ ∆k}i∈[n] such that

1. |p̂i,ℓ − pi,ℓ| = O
(

1
z

)
, for all i ∈ [n], ℓ ∈ [k];

2. p̂i,ℓ is an integer multiple of 1
2k

1
z
, for all i ∈ [n], ℓ ∈ [k];
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3. if pi,ℓ = 0, then p̂i,ℓ = 0, for all i ∈ [n], ℓ ∈ [k];

4. if {X̂i ∈ Rk}i∈[n] is a set of independent random unit vectors such that Pr[X̂i =

eℓ] = p̂i,ℓ, for all i ∈ [n], ℓ ∈ [k], then

∣∣∣∣∣

∣∣∣∣∣
∑

i

Xi −
∑

i

X̂i

∣∣∣∣∣

∣∣∣∣∣
TV

= O

(
f(k)

log z

z1/5

)
(5.1)

and, moreover, for all j ∈ [n],

∣∣∣∣∣

∣∣∣∣∣
∑

i6=j

Xi −
∑

i6=j

X̂i

∣∣∣∣∣

∣∣∣∣∣
TV

= O

(
f(k)

log z

z1/5

)
, (5.2)

where f(k) is an exponential function of k estimated in the proof.

In other words, there is a way to quantize any set of n independent random vectors

into another set of n independent random vectors, whose probabilities of obtaining

each value are integer multiples of ǫ ∈ [0, 1], so that the total variation distance be-

tween the distribution of the sum of the vectors before and after the quantization is

bounded by O(f(k)2k/6ǫ1/6). The important, and perhaps surprising, property of this

bound is the lack of dependence on the number n of random vectors. From this, the

proof of Theorem 5.1 follows.

Proof of Theorem 5.1: Consider a mixed Nash equilibrium (p1, . . . , pn) of the

game. We claim that the mixed strategy profile (p̂1, . . . , p̂n) specified by Theorem 5.2

constitutes a O(f(k)z−
1
6 )-Nash equilibrium. Indeed, for every player i ∈ [n] and

every pure strategy m ∈ [k] for that player, let us track down the change in the

expected utility of the player for playing strategy m when the distribution over Πk
n−1

defined by the {pj}j 6=i is replaced by the distribution defined by the {p̂j}j 6=i. It is

not hard to see that the absolute change is bounded by the total variation distance

between the distributions of the random vectors
∑

j 6=i Xj and
∑

j 6=i X̂j , where {Xj}j 6=i
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are independent random vectors distributed according to the distributions {pj}j 6=i

and, similarly, {X̂j}j 6=i are independent random vectors distributed according to the

distributions {p̂j}j 6=i.
5 Hence, by Theorem 5.2, the change in the utility of the player

is at most O(f(k)z−
1
6 ), which implies that the p̂i’s constitute an O(f(k)z−

1
6 )-Nash

equilibrium of the game. If we take z =
(

f(k)
ǫ

)6

, this is a δ-Nash equilibrium, for

δ = O(ǫ).

From the previous discussion it follows that there exists a mixed strategy profile

{p̂i}i which is of the very special kind described by Property 2 in the statement of

Theorem 5.2 and constitutes a δ-Nash equilibrium of the given game, if we choose

z =
(

f(k)
ǫ

)6

. The problem is, of course, that we do not know such a mixed strategy

profile and, moreover, we cannot afford to do exhaustive search over all mixed strategy

profiles satisfying Property 2, since there is an exponential number of those. We do

instead the following search which is guaranteed to find a δ-Nash equilibrium.

Notice first that there are at most (2kz)k = 2k2
(

f(k)
ǫ

)6k

=: K “quantized” mixed

strategies with each probability being a multiple of 1
2k

1
z
, z =

(
f(k)

ǫ

)6

. Let K be

the set of such quantized mixed strategies. We start our algorithm by guessing the

partition of the number n of players into quantized mixed strategies; let θ = {θσ}σ∈K

be the partition, where θσ represents the number of players choosing the discretized

mixed strategy σ ∈ K. Now we only need to determine if there exists an assignment

of mixed strategies to the players in [n], with θσ of them playing mixed strategy

σ ∈ K, so that the corresponding mixed strategy profile is a δ-Nash equilibrium. To

answer this question it is enough to solve the following max-flow problem. Let us

consider the bipartite graph ([n],K, E) with edge set E defined as follows: (i, σ) ∈ E,

for i ∈ [n] and σ ∈ K, if θσ > 0 and σ is a δ-best response for player i, if the

partition of the other players into the mixed strategies in K is the partition θ, with

5The proof of this bound is similar to the derivation of the bound (3.14) in the proof of
Lemma 3.32, using also that the game is anonymous and normalized, i.e., all utilities lie in [0, 1].
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one unit subtracted from θσ. 6 Note that to define E expected payoff computations are

required. By straightforward dynamic programming, the expected utility of player

i for playing pure strategy s ∈ [k] given the mixed strategies of the other players

can be computed with O(knk) operations on numbers with at most b(n, z, k) :=

⌈1 + n(k + log2 z) + log2(1/umin)⌉ bits, where umin is the smallest non-zero payoff

value of the game. 7 To conclude the construction of the max-flow instance we add a

source node u connected to all the left hand side nodes and a sink node v connected

to all the right hand side nodes. We set the capacity of the edge (σ, v) equal to θσ, for

all σ ∈ K, and the capacity of all other edges equal to 1. If the max-flow from u to v

has value n then there is a way to assign discretized mixed strategies to the players so

that θσ of them play mixed strategy σ ∈ K and the resulting mixed strategy profile is

a δ-Nash equilibrium (details omitted). There are at most (n+1)K−1 possible guesses

for θ; hence, the search takes overall time

O
(
(nKk2nkb(n, z, k) + p(n + K + 2)) · (n + 1)K−1

)
,

where p(n + K + 2) is the time needed to find an integral maximum flow in a graph

with n + K + 2 nodes and edge-weights encoded with at most ⌈log2 n⌉ bits. Hence,

the overall time is

n
O

„

2k2
( f(k)

ǫ )
6k

«

· log2(1/umin).

2

6For our discussion, a mixed strategy σ of player i is a δ-best response to a set of mixed strategies
for the other players iff the expected payoff of player i for playing any pure strategy s in the support
of σ is no more than δ worse than her expected payoff for playing any pure strategy s′.

7To compute a bound on the number of bits required for the expected utility computations, note
that the expected utility is positive, cannot exceed 1, and its smallest possible non-zero value is at
least ( 1

2k

1

z
)numin, since the mixed strategies of all players are from the set K.
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5.6 Discussion of Proof Techniques

Observe first that, from a technical perspective, the k = 2 case of Theorem 5.2 is

inherently different than the k > 2 case. Indeed, when k = 2, knowledge of the number

of players who selected their first strategy determines the whole partition of the

number of players into strategies; therefore, in this case the probabilistic experiment

is in some sense one-dimensional. On the other hand, when k > 2, knowledge of the

number of “balls in a bin”, that is, the number of players who selected a particular

strategy, does not provide full information about the number of balls in the other bins.

This complication would be quite benign if the vectors Xi were identically distributed,

since in this case the number of balls in a bin would at least characterize precisely

the probability distribution of the number of balls in the other bins (as a multinomial

distribution with one bin less and the bin-probabilities appropriately renormalized).

But, in our case, the vectors Xi are not identically distributed. Hence, already for

k = 3 the problem is fundamentally different than the k = 2 case.

Indeed, it turns out that obtaining the result for the k = 2 case is easier. Here

is the intuition: If the expectation of every Xi at the first bin was small, their sum

would be distributed like a Poisson distribution (marginally at that bin); if the expec-

tation of every Xi was large, the sum would be distributed like a (discretized) Normal

distribution. 8 So, to establish the result we can do the following (see [DP07] for

details): First, we cluster the Xi’s into those with small and those with large expec-

tation at the first bin, and then we discretize the Xi’s separately in the two clusters

in such a way that the sum of their expectations (within each cluster) is preserved to

within the discretization accuracy. To show the closeness in total variation distance

between the sum of the Xi’s before and after the discretization, we compare instead

8Comparing, in terms of variational distance, a sum of independent Bernoulli random variables
to a Poisson or a Normal distribution is an important problem in probability theory. The approxi-
mations we use are obtained by applications of Stein’s method [BC05, BHJ92, R0̈7].
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the Poisson or Normal distributions (depending on the cluster) which approximate

the sum of the Xi’s: For the “small cluster”, we compare the Poisson distributions

approximating the sum of the Xi’s before and after the discretization. For the “large

cluster”, we compare the Normals approximating the sum of the Xi’s before and after

the discretization.

One would imagine that a similar technique, i.e., approximating by a multidimen-

sional Poisson or Normal distribution, would work for the k > 2 case. Comparing a

sum of multinomial random variables to a multidimensional Poisson or Normal distri-

bution is a little harder in many dimensions (see the discussion in [Bar05]), but almost

optimal bounds are known for both the multidimensional Poisson [Bar05, Roo98] and

the multidimensional Normal [Bha75, G9̈1] approximations. Nevertheless, these re-

sults by themselves are not sufficient for our setting: Approximating by a multidi-

mensional Normal performs very poorly at the coordinates where the vectors have

small expectations, and approximating by a multidimensional Poisson fails at the

coordinates where the vectors have large expectations. And in our case, it could

very well be that the sum of the Xi’s is distributed like a multidimensional Poisson

distribution in a subset of the coordinates and like a multidimensional Normal in the

complement (those coordinates where the Xi’s have respectively small or large expec-

tations). What we really need, instead, is a multidimensional approximation result

that combines the multidimensional Poisson and Normal approximations in the same

picture; and such a result is not known.

Our approach instead is very indirect. We define an alternative way of sampling

the vectors Xi which consists of performing a random walk on a binary decision tree

and performing a probabilistic choice between two strategies at the leaves of the tree

(Sections 5.7.1 and 5.7.2). The random vectors are then clustered so that, within

a cluster, all vectors share the same decision tree (Section 5.7.3), and the rounding,

performed separately for every cluster, consists of discretizing the probabilities for the
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probabilistic experiments at the leaves of the tree (Section 5.7.4). The rounding is

done in such a way that, if all vectors Xi were to end up at the same leaf after walking

on the decision tree, then the one-dimensional result described above would apply for

the (binary) probabilistic choice that the vectors are facing at the leaf. However, the

random walks will not all end up at the same leaf with high probability. To remedy

this, we define a coupling between the random walks of the original and the discretized

vectors for which, in the typical case, the probabilistic experiments that the original

vectors are running at every leaf of the tree are very “similar” to the experiments that

the discretized vectors are running. That is, our coupling guarantees that, with high

probability over the random walks, the total variation distance between the choices

(as random variables) that are to be made by the original vectors at every leaf of

the decision tree and the choices (again as random variables) that are to be made by

the discretized vectors is very small. The coupling of the random walks is defined in

Section 5.7.5, and a quantification of the similarity of the leaf experiments under this

coupling is given in Section 5.7.6.

For a discussion about why naive approaches such as rounding to the closest dis-

crete distribution or randomized rounding do not appear useful, even for the k = 2

case, see Section 3.1 of [DP07].

5.7 Proof of the Multinomial Approximation The-

orem

5.7.1 The Trickle-Down Process

Consider the mixed strategy pi of player i. The crux of our argument is an alternative

way to sample from this distribution, based on the so-called trickle-down process,

defined next.
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TDP — Trickle-Down Process

Input: (S, p), where S = {i1, . . . , im} ⊆ [k] is a set of strategies and p a probability

distribution p(ij) > 0 : j = 1, . . . , m. We assume that the elements of S are ordered

i1, . . . , im in such a way that (a) p(i2) is the largest of the p(ij)’s and (b) for 2 6= j <

j′ 6= 2, p(ij) ≤ p(ij′). That is, the largest probability is second, and, other than that,

the probabilities are sorted in non-decreasing order (ties broken lexicographically).

if |S| ≤ 2 stop; else apply the partition and double operation:

1. let ℓ∗ < m be the (unique) index such that
∑

ℓ<ℓ∗ p(iℓ) ≤ 1
2

and
∑

ℓ>ℓ∗ p(iℓ) < 1
2
;

2. Define the two sets SL = {iℓ : ℓ ≤ ℓ∗} and SR = {iℓ : ℓ ≥ ℓ∗}

3. Define the probability distribution pL such that, for all ℓ < ℓ∗, pL(iℓ) = 2p(iℓ).

Also, let t := 1 −∑ℓ∗−1
ℓ=1 pL(iℓ); if t = 0, then remove ℓ∗ from SL, otherwise

set pL(iℓ∗) = t. Similarly, define the probability distribution pR such that

pR(iℓ) = 2p(iℓ), for all ℓ > ℓ∗ and pR(iℓ∗) = 1 −∑m
ℓ∗+1 pR(iℓ). Notice that,

because of the way we have ordered the strategies in S, iℓ∗ is neither the first

nor the last element of S in our ordering, and hence 2 ≤ |SL|, |SR| < |S|.

4. call TDP(SL, pL); call TDP(SR, pR);

That is, TDP splits the support of the mixed strategy of a player into a tree of

finer and finer sets of strategies, with all leaves having just two strategies. At each

level the two sets in which the set of strategies is split overlap in at most one strategy

(whose probability mass is divided between its two copies). The two sets then have

probabilities adding up to 1/2, but then the probabilities are multiplied by 2, so that

each node of the tree represents a distribution.
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5.7.2 An Alternative Sampling of the Random Vectors

Let pi be the mixed strategy of player i, and Si be its support. 9 The execution

of TDP(Si, pi) defines a rooted binary tree Ti with node set Vi and set of leaves

∂Ti. Each node v ∈ Vi is identified with a pair (Sv, pi,v), where Sv ⊆ [k] is a set of

strategies and pi,v is a distribution over Sv. Based on this tree, we define the following

alternative way to sample Xi:

Sampling Xi

1. (Stage 1) Perform a random walk from the root of the tree Ti to the leaves,

where, at every non-leaf node, the left or right child is chosen with probability

1/2; let Φi ∈ ∂Ti be the (random) leaf chosen by the random walk;

2. (Stage 2) Let (S, p) be the label assigned to the leaf Φi, where S = {ℓ1, ℓ2}; set

Xi = eℓ1 , with probability p(ℓ1), and Xi = eℓ2 , with probability p(ℓ2).

The following lemma, whose straightforward proof we omit, states that this is

indeed an alternative sampling of the mixed strategy of player i.

Lemma 5.3. For all i ∈ [n], the process Sampling Xi outputs Xi = eℓ with proba-

bility pi,ℓ, for all ℓ ∈ [k].

5.7.3 Clustering the Random Vectors

We use the process TDP to cluster the random vectors of the set {Xi}i∈[n], by defining

a cell for every possible tree structure. More formally, for some α > 0 to be determined

later in the proof,

Definition 5.4 (Cell Definition). Two vectors Xi and Xj belong to the same cell if

9In this section and the following two sections we assume that |Si| > 1; if not, we set p̂i = pi,
and all claims we make in Sections 5.7.5 and 5.7.6 are trivially satisfied.
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• there exists a tree isomorphism fi,j : Vi → Vj between the trees Ti and Tj such

that, for all u ∈ Vi, v ∈ Vj, if fi,j(u) = v, then Su = Sv, and in fact the elements

of Su and Sv are ordered the same way by pi,u and pj,v.

• if u ∈ ∂Ti, v = fi,j(u) ∈ ∂Tj , and ℓ∗ ∈ Su = Sv is the strategy with the smallest

probability mass for both pi,u and pj,v, then either pi,u(ℓ∗), pj,v(ℓ
∗) ≤ ⌊zα⌋

z
or

pi,u(ℓ∗), pj,v(ℓ
∗) > ⌊zα⌋

z
; the leaf is called Type A leaf in the first case, Type B

leaf in the second case.

It is easy to see that the total number of cells is bounded by a function of k only,

call it g(k). The following claim provides an estimate of g(k).

Claim 5.5. Any tree resulting from TDP has at most k − 1 leaves, and the total

number of cells is bounded by g(k) = kk2
2k−12kk!.

5.7.4 Discretization within a Cell of the Clustering

Recall that our goal is to “discretize” the probabilities in the distribution of the Xi’s.

We will do this separately in every cell of our clustering. In particular, supposing

that {Xi}i∈I is the set of vectors falling in a particular cell, for some index set I, we

will define a set of “discretized” vectors {X̂i}i∈I in such a way that, for h(k) = k2k,

and for all j ∈ I,

∣∣∣∣∣

∣∣∣∣∣
∑

i∈I
Xi −

∑

i∈I
X̂i

∣∣∣∣∣

∣∣∣∣∣
TV

= O(h(k) log z · z−1/5); (5.3)

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈I\{j}
Xi −

∑

i∈I\{j}
X̂i

∣∣∣∣∣∣

∣∣∣∣∣∣
TV

= O(h(k) log z · z−1/5). (5.4)

We establish these bounds in Section 5.7.5. Using the bound on the number of cells

in Claim 5.5, an easy application of the coupling lemma implies the bounds shown

in (5.1) and (5.2) for f(k) := h(k) · g(k), thus concluding the proof of Theorem 5.2.
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We shall henceforth concentrate on a particular cell containing the vectors {Xi}i∈I ,

for some I ⊆ [n]. Since the trees {Ti}i∈I are isomorphic, for notational convenience

we shall denote all those trees by T . To define the vectors {X̂i}i∈I we must provide,

for all i ∈ I, a distribution p̂i : [k] → [0, 1] such that Pr[X̂i = eℓ] = p̂i(ℓ), for all

ℓ ∈ [k]. To do this, we assign to all {X̂i}i∈I the tree T and then, for every leaf

v ∈ ∂T and i ∈ I, define a distribution p̂i,v over the two-element ordered set Sv,

by the Rounding process below. Then the distribution p̂i is implicitly defined as

p̂i(ℓ) =
∑

v∈∂T :ℓ∈Sv
2−depthT (v)p̂i,v(ℓ).

Rounding: for all v ∈ ∂T with Sv = {ℓ1, ℓ2}, ℓ1, ℓ2 ∈ [k] do the following

1. find a set of probabilities {pi,ℓ1}i∈I with the following properties

• for all i ∈ I, |pi,ℓ1 − pi,v(ℓ1)| ≤ 1
z
;

• for all i ∈ I, pi,ℓ1 is an integer multiple of 1
z
;

•
∣∣∑

i∈I pi,ℓ1 −
∑

i∈I pi,v(ℓ1)
∣∣ ≤ 1

z
;

2. for all i ∈ I, set p̂i,v(ℓ1) := pi,ℓ1, p̂i,v(ℓ2) := 1 − pi,ℓ1;

Finding the set of probabilities required by Step 1 of the Rounding process is

straightforward and the details are omitted (see [DP07], Section 3.3 for a way to

do so). It is now easy to check that the set of probability vectors {p̂i}i∈I satisfies

Properties 1, 2 and 3 of Theorem 5.2.

5.7.5 Coupling within a Cell of the Clustering

We are now coming to the main part of the proof: Showing that the variational

distance between the original and the discretized distribution within a cell depends

only on z and k. We will only argue that our discretization satisfies (5.3); the proof

of (5.4) is identical.

Before proceeding let us introduce some notation. Specifically,
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• let Φi ∈ ∂T be the leaf chosen by Stage 1 of the process Sampling Xi and

Φ̂i ∈ ∂T the leaf chosen by Stage 1 of Sampling X̂i;

• let Φ = (Φi)i∈I and let G denote the distribution of Φ; similarly, let Φ̂ = (Φ̂i)i∈I

and let Ĝ denote the distribution of Φ̂.

Moreover, for all v ∈ ∂T , with Sv = {ℓ1, ℓ2} and ordering (ℓ1, ℓ2),

• let Iv ⊆ I be the (random) index set such that i ∈ Iv iff i ∈ I ∧ Φi = v and,

similarly, let Îv ⊆ I be the (random) index set such that i ∈ Îv iff i ∈ I∧Φ̂i = v;

• let Jv,1,Jv,2 ⊆ Iv be the (random) index sets such i ∈ Jv,1 iff i ∈ Iv ∧ Xi = eℓ1

and i ∈ Jv,2 iff i ∈ Iv ∧ Xi = eℓ2 ;

• let Tv,1 = |Jv,1|, Tv,2 = |Jv,2| and let Fv denote the distribution of Tv,1;

• let T := ((Tv,1, Tv,2))v∈∂T and let F denote the distribution of T ;

• let Ĵv,1, Ĵv,2, T̂v,1, T̂v,2, T̂ , F̂v, F̂ be defined similarly.

The following is easy to see, so we postpone its proof to the appendix.

Claim 5.6. For all θ ∈ (∂T )I , G(θ) = Ĝ(θ).

Since G and Ĝ are the same distribution we will henceforth denote that distri-

bution by G. The following lemma is sufficient to conclude the proof of Theorem

5.2.

Lemma 5.7. There exists a value of α, used in the definition of the cells, such that,

for all v ∈ ∂T ,

G

(
θ : ||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

))
≥ 1 − 4

z1/3
,

where Fv(·|Φ) denotes the conditional probability distribution of Tv,1 given Φ and,

similarly, F̂v(·|Φ̂) denotes the conditional probability distribution of T̂v,1 given Φ̂.
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Lemma 5.7 states roughly that, for all v ∈ ∂T , with probability at least 1 − 4
z1/3

over the choices made by Stage 1 of processes {Sampling Xi}i∈I and {Sampling

X̂i}i∈I — assuming that these processes are coupled to make the same decisions in

Stage 1 — the total variation distance between the conditional distribution of Tv,1

and T̂v,1 is bounded by O
(

2k log z
z1/5

)
.

To complete the proof, note first that Lemma 5.7 implies via a union bound that

G

(
θ : ∀v ∈ ∂T, ||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

))
≥ 1 − O(kz−1/3),

(5.5)

since by Claim 5.5 the number of leaves is at most k − 1. Now suppose that for a

given value of θ ∈ (∂T )I it holds that

∀v ∈ ∂T, ||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

)
. (5.6)

Note that the variables {Tv,1}v∈∂T are conditionally independent given Φ, and, sim-

ilarly, the variables {T̂v,1}v∈∂T are conditionally independent given Φ̂. This by the

coupling lemma, Claim 5.5 and (5.6) implies that

||F (·|Φ = θ) − F̂ (·|Φ̂ = θ)||TV ≤ O

(
k

2k log z

z1/5

)
,

where we also used the fact that, if Φ = Φ̂ = θ, then |Iv| = |Îv|, for all v ∈ ∂T .

Hence, (5.5) implies that

G

(
θ : ||F (·|Φ = θ) − F̂ (·|Φ̂ = θ)||TV ≤ O

(
k

2k log z

z1/5

))
≥ 1 − O(kz−1/3). (5.7)

All that remains is to shift the bound (5.7) to the unconditional space. The

following lemma establishes this reduction. Its proof is postponed to the appendix.
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Lemma 5.8. (5.7) implies

||F − F̂ ||TV ≤ O

(
k

2k log z

z1/5

)
. (5.8)

Note that (5.8) implies easily (5.3), which completes the proof of our main result.

5.7.6 Total Variation Distance within a Leaf

To conclude the proof of Theorem 5.2, it remains to show Lemma 5.7. Roughly

speaking, the proof consists of showing that, with high probability over the random

walks performed in Stage 1 of Sampling, the one-dimensional experiment occurring

at a particular leaf v of the tree is similar in both the original and the discretized

distribution. The similarity is quantified by Lemmas 5.12 and 5.13 for leaves of

type A and B respectively. Then, Lemmas 5.9, 5.10 and 5.11 establish that, if the

experiments are sufficiently similar, they can be coupled so that their outcomes agree

with high probability.

More precisely, let v ∈ ∂T , Sv = {ℓ1, ℓ2}, and suppose the ordering (ℓ1, ℓ2). Also,

let us denote ℓ∗v = ℓ1 and define the following functions

• µv(θ) :=
∑

i:θi=v pi,v(ℓ∗v);

• µ̂v(θ̂) :=
∑

i:θ̂i=v p̂i,v(ℓ∗v).

Note that the random variable µv(Φ) represents the total probability mass that is

placed on the strategy ℓ∗v after the Stage 1 of the Sampling process is completed for

all vectors Xi, i ∈ I. Conditioned on the outcome of Stage 1 of Sampling for the

vectors {Xi}i∈I , µv(Φ) is the expected number of the vectors from Iv that will select

strategy ℓ∗v in Stage 2 of Sampling. Similarly, conditioned on the outcome of Stage

1 of Sampling for the vectors {X̂i}i∈I , µ̂v(Φ̂) is the expected number of the vectors

from Îv that will select strategy ℓ∗v in Stage 2 of Sampling.
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Intuitively, if we can couple the choices made by the random vectors Xi, i ∈ I,

in Stage 1 of Sampling with the choices made by the random vectors X̂i, i ∈ I,

in Stage 1 of Sampling in such a way that, with overwhelming probability, µv(Φ)

and µ̂v(Φ̂) are close, then also the conditional distributions Fv(·|Φ), F̂v(·|Φ̂) should

be close in total variation distance. The goal of this section is to make this intuition

rigorous. We do this in 2 steps by showing the following.

1. The choices made in Stage 1 of Sampling can be coupled so that the absolute

difference |µv(Φ) − µ̂v(Φ̂)| is small with high probability. (Lemmas 5.12 and

5.13.)

2. If the absolute difference |µv(θ)− µ̂v(θ̂)| is sufficiently small, then so is the total

variation distance ||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV . (Lemmas 5.9, 5.10, and

5.11.)

We start with Step 2 of the above program. We use different arguments depending

on whether v is a Type A or Type B leaf. Let ∂T =  LA ⊔  LB, where  LA is the set of

type A leaves of the cell and  LB the set of type B leaves of the cell. For some constant

β to be decided later, we show the following lemmas.

Lemma 5.9. For some θ ∈ (∂T )I and v ∈  LA suppose that

|µv(θ) − E [µv(Φ)]| ≤ z(α−1)/2
√

E [µv(Φ)] log z (5.9)
∣∣∣µ̂v(θ) − E [µ̂v(Φ̂)]

∣∣∣ ≤ z(α−1)/2

√
E [µ̂v(Φ̂)] log z (5.10)

then

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
.

150



Lemma 5.10. For some θ ∈ (∂T )I and v ∈  LB suppose that

nv(θ) := |{i : θi = v}| ≥ zβ , (5.11)

|µv(θ) − µ̂v(θ)| ≤ 1

z
+

√
log z

z

√
|I| (5.12)

and

|nv(θ) − 2−depthT (v)|I|| ≤
√

3 log z
√

2−depthT (v)|I| (5.13)

then

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV

≤ O

(
2

depthT (v)

2

√
log z

z
1+α

2

)
+ O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+ O(z−α) + O(z−(α+β−1

2
)).

Lemma 5.11. For some θ ∈ (∂T )I and v ∈  LB suppose that

nv(θ) := |{i : θi = v}| ≤ zβ (5.14)

then

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O(z−(1−β)).

The proof of Lemma 5.11 follows from a coupling argument similar to that used in

the proof of Lemma 3.13 in [DP07] and is omitted. The proofs of Lemmas 5.9 and

5.10 can be found respectively in Sections A.1 and A.2 of the appendix.

Lemma 5.9 provides conditions which, if satisfied by some θ at a leaf of Type A,

then the conditional distributions Fv(·|Φ = θ) and F̂v(·|Φ̂ = θ) are close in total
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variation distance. Similarly, Lemmas 5.10 and 5.11 provide conditions for the leaves

of Type B. The following lemmas state that these conditions are satisfied with high

probability. Their proof is given in Section A.3 of the appendix.

Lemma 5.12. Let v ∈  LA. Then

G




θ : |µv(θ) − E [µv(Φ)]| ≤
√

log z
z(1−α)/2

√
E [µv(Φ)]

∧
∣∣∣µ̂v(θ) − E [µ̂v(Φ̂)]

∣∣∣ ≤
√

log z
z(1−α)/2

√
E [µ̂v(Φ̂)]


 ≥ 1 − 4z−1/3. (5.15)

Lemma 5.13. Let v ∈  LB. Then

G


θ : |µv(θ) − µ̂v(θ)| ≤ 1+

√
|I| log z

z

∧ |nv(θ) − 2−depthT (v)|I|| ≤ √
3 log z

√
2−depthT (v)|I|


 ≥ 1 − 4

z1/2
. (5.16)

Setting α = 3
5

and β = 4
5

and combining the above, we have that, regardless of

whether v ∈  LA or v ∈  LB,

G

(
θ : ||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

(
2k log z

z1/5

))
≥ 1 − 4

z1/3
,

where we used that depthT (v) ≤ k as implied by Claim 5.5.

5.8 Extensions

Returning to our algorithm (Theorem 5.1), there are several directions in which it

can be immediately generalized. To give an idea of the possibilities, let us define a

semi-anonymous game to be a game in which

• the players are partitioned into a fixed number of types;

• there is another partition of the players into an arbitrary number of disjoint

graphical games of size O(log n), where n is the total number of players, and

bounded degree called extended families;
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and the utility of each player depends on (a) his/her own strategy; (b) the overall

number of other players of each type playing each strategy; and (c) it also depends,

in an arbitrary way, on the strategy choices of neighboring nodes in his/her own

extended family. The following result, which is only indicative of the applicability

of our approach, can be shown by extending the discretization method via dynamic

programming (details omitted):

Theorem 5.14. There is a PTAS for semi-anonymous games with a fixed number of

strategies.

5.9 Towards Efficient Polynomial-Time Approxi-

mation Schemes

The polynomial-time approximation scheme presented in the previous sections com-

putes an ǫ-Nash equilibrium of an anonymous game with n players and k strategies

in time

O
(
nf(k,ǫ)

)
,

where f is polynomial in 1
ǫ
, but super-exponential in k. Hence, despite its theoretical

efficiency for bounded ǫ and k, the algorithm is not efficient in practice. Even for

the simpler case of 2 strategies per player, a more efficient implementation of our

algorithm, given in [DP07], runs in time

O
(
nO(1/ǫ2)

)
,

which is still not practical.

So, are there more efficient algorithms for computing Nash equilibria in anonymous

games? In recent work [Das08], we present an efficient polynomial-time approximation
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scheme for the case of two strategies per player, with running time

poly(n) · (1/ǫ)O(1/ǫ2) .

This scales with the number of players as a polynomial of fixed degree, independent

of ǫ. The improved running time is based on a better understanding of certain struc-

tural properties of approximate Nash equilibria. In particular, we show that, for any

integer z, there exists an ǫ-approximate Nash equilibrium with ǫ = O(1/z), in which

(a) either, at most z3 = O((1/ǫ)3) players use randomized strategies, and their

strategies are integer multiples of 1/z2; 10

(b) or, all players who randomize choose the same mixed strategy which is an integer

multiple of 1
zn

.

To derive the above characterization, we study mixed strategy profiles in the neigh-

borhood of a Nash equilibrium. We establish that there always exists a mixed strategy

profile in this neighborhood which is of one of the types (a) or (b) described above

and, moreover, satisfies the Nash equilibrium conditions to within an additive ǫ,

hence corresponding to an ǫ-approximate equilibrium. Given this structural result,

an ǫ-approximate equilibrium can be found by dynamic programming.

We feel that a more sophisticated analysis could establish similar structural prop-

erties for the approximate equilibria of multi-strategy anonymous games, thus ex-

tending our efficient PTAS to anonymous games with any fixed number of strategies.

Also, a more refined structural characterization of approximate Nash equilibria could

give more efficient algorithms, even a fully polynomial-time approximation scheme.

10Note that, since every player has 2 strategies, a mixed strategy is just a number in [0, 1].

154



Chapter 6

Conclusions and Open Problems

Motivated by the importance of Game Theory for the study of large systems of

strategic agents, such as the Internet, as well as social and biological systems, we

investigated whether Nash equilibria are efficiently computable. The significance of

this question is the following: The concept of the Nash equilibrium is one of Game

Theory’s most important frameworks for behavior prediction. For its predictions then

to be plausible it is crucial that it is efficiently computable; because, if it is not, it

would not be reasonable to expect that a group of strategic agents would be able to

discover it in every situation and behave as it prescribes.

Since by Nash’s theorem a Nash equilibrium is guaranteed to exist, to character-

ize the complexity of finding an equilibrium, we turned to the complexity theory of

total search problems in NP. For the case of two-player games, the Nash equilibrium

problem was known to belong to PPAD, defined to be the class of total search prob-

lems whose totality is certified by a parity argument in directed graphs [Pap94b].

We extended this result to all games; however, because in multi-player games all

equilibria may be irrational, we analyzed the problem of finding an ǫ-Nash equilib-

rium (for ǫ specified in the input), which we called Nash. Our main result was

that Nash is PPAD-complete. Since finding Brouwer fixed points of continuous and
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piecewise-linear functions is also PPAD-complete [Pap94b], our result implies the

polynomial-time equivalence of these problems.

The class PPAD is not known to be inside P. Hence, our result raises questions

about the plausibility of the Nash equilibrium as a concept of behavior prediction.

To make this critique more solid, it is important to answer the following question.

• What is the true complexity of the class PPAD?

Showing P6=PPAD would imply that P6=NP, since PPAD is a subset of the search

problems in NP. Hence, a proof of this statement should involve major breakthroughs

in complexity theory. Therefore, a less ambitious goal would be to provide condi-

tional hardness results for the complexity of PPAD, possibly under cryptographic

assumptions such as the hardness of factoring an integer. In view of Shor’s algorithm

for factoring [Sho97] a reduction in the opposite direction would imply an interesting

(conditional) separation between deterministic and quantum polynomial time. In the

same spirit, it is interesting to investigate the following.

• What is the relation of PPAD to other classes at the boundary of P and NP and

to problems in cryptography?

Apart from the parity argument in directed graphs giving rise to the class PPAD, there

are several other (non-constructive) arguments for showing existence in combinatorics.

And, as discussed in Chapter 1, each of these arguments naturally defines a class

of total search problems in NP. The ones considered by Papadimitriou in [Pap94b]

include the existence of sinks in DAGs (which corresponds to the class PLS), the

pigeonhole principle (which gives rise to the class PPP), and the parity argument

on undirected graphs (which defines the class PPA). The complexity classes thus

defined provide a rich framework for characterizing the computational hardness of

total search problems in NP and may also be helpful for the systematic classification of

cryptographic problems. After all, most cryptographic primitives, such as the prime
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factorization, the discrete logarithm, and the existence of short vectors in lattices,

correspond to total search problems. Evidence of hardness for these problems could

be of great significance for cryptography. For an extensive discussion of this point,

see, e.g., the work of Ajtai [Ajt96], where also lattice problems are defined from non-

constructive existence arguments in PPP; unfortunately, none of these arguments are

known to be PPP-complete.

Our PPAD-completeness result for the Nash equilibrium problem is a worst-case

result. But it could be the case that it does not apply for “situations arising in

practice.” To understand whether this is the case, we should investigate the following.

• Are there broad and important classes of games for which Nash equilibria can be

computed efficiently?

• Are there natural random ensembles of games for which the Nash equilibrium

problem is tractable with high probability?

As discussed in previous chapters, two-player zero-sum games are solvable exactly

in polynomial time [Neu28, Dan63, Kha79], and these are essentially the only in-

teresting games for which strong tractability results are known. For several other

special classes of games, such as win-lose games and two-player symmetric games,

intractability persists (see Section 4.3). An intriguing open problem at the boundary

of intractability is the following.

• What is the complexity of three-player symmetric games?

In the realm of random ensembles, Bárány, Vempala and Vetta describe a simple

distribution over two-player games that can be solved exactly in polynomial time

with high probability [BVV07]. However, their ensemble — assuming that every

utility value is independently and identically distributed with respect to the others —

is rather special. On the other hand, finding a Nash equilibrium in the smoothed
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complexity model (whereby every entry of the input game is perturbed with random

noise) is still PPAD-complete [CDT06a]. Whether there are natural and practically

appealing random ensembles of games for which the Nash equilibrium problem is

tractable remains an important open problem.

Shifting away from exact computation, we discussed in Chapter 5 that comput-

ing ǫ-Nash equilibria for values of ǫ scaling inverse-polynomially in the size of the

game remains PPAD-complete [CDT06a]; hence a fully polynomial-time approxima-

tion scheme is out of the question unless PPAD is equal to P. At the boundary of

intractability, the following emerges as an important open problem.

• Is there a polynomial-time approximation scheme for the Nash equilibrium problem?

Despite much research on the subject, the question remains open even for the case

of two-player games. In Chapter 5, we discussed special classes of two-player games for

which a PTAS exists, such as low-rank games and bounded-norm games. It is impor-

tant to consider the general case, as well as special classes for which a polynomial-time

approximation scheme exists. It is also important to consider whether polynomial-

time approximation schemes exist for graphical games. In [DP06], we describe a

polynomial-time approximation scheme for normalized graphical games with a con-

stant number of strategies per player, bounded degree, and treewidth which is at most

logarithmic in the number of players. Going beyond logarithmic treewidth would be

rather important.

• Is there a polynomial-time approximation scheme for graphical games of bounded

degree, but super-logarithmic treewidth?

Another case worth studying is when the degree is super-logarithmic. In this

case, our PPAD-completeness result for graphical games does not apply. Is it then

the case that the problem is easier? In [DP08a], we show that an ǫ-Nash equilibrium

of a normalized normal-form game with two strategies per player can be computed
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in time nO(log log n+log 1
ǫ
), where n is the size of the game. It is intriguing to examine if

this result can be improved.

• Is there a polynomial-time approximation scheme for multi-player normal-form

games with two strategies per player?

Finally, it is important to study other broad and important classes of games which

can be approximated efficiently. In Chapter 5, we considered anonymous games and

presented a polynomial-time approximation scheme for the case of many players and

a constant number of strategies per player. If the number of players is constant, and

the number of strategies scales, the problem becomes PPAD-complete. The following

questions arise.

• Is the Nash equilibrium problem in multi-player anonymous games with a constant

number of strategies per player PPAD-complete? More generally, what tradeoff be-

tween number of strategies and players renders the problem PPAD-complete?

• Does our PTAS for multi-player anonymous games extend to a super-constant

number of strategies per player?

• Is there a fully polynomial-time approximation scheme for multi-player anonymous

games with a constant number of strategies per player? If not, is there an efficient

PTAS?

In [Das08], we make progress towards answering the last question by providing an

efficient PTAS for the case of two-strategy anonymous games. We believe that our

techniques should extend to any constant number of strategies and could possibly also

provide a fully polynomial-time approximation scheme. Regarding the first couple of

questions, let us note that Papadimitriou and Roughgarden provide in [PR05] an

algorithm for multi-player symmetric games — a special case of anonymous games —

which remains efficient up to about a logarithmic number of strategies per player. We

believe that a similar result should be possible for anonymous games.
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Appendix A

Skipped Proofs

Proof of Claim 5.5: That a tree resulting from TDP has k − 1 leaves follows by

induction: It is true when k = 2, and for general k, the left subtree has j strategies

and thus, by induction, j − 1 leaves, and the right subtree has at most k + 1 − j

strategies and k − j leaves; adding we get the result.

To estimate the number of cells, let us fix the set of strategies and their ordering

at the root of the tree (thus the result of the calculation will have to be multiplied

by 2kk!) and then count the number of trees that could be output by TDP. Suppose

that the root has cardinality m and that the children of the root are assigned sets of

sizes j and m+1− j (or, in the event of no duplication, m− j), respectively. If j = 2,

then a duplication has to have happened and, for the ordering of the strategies at

the left child of the root, there are at most 2 possibilities depending on whether the

“divided strategy” is still the largest at the left side; similarly, for the right side there

are m−1 possibilities: either the divided strategy is still the largest at the right side,

or it is not in which case it has to be inserted at the correct place in the ordering

and the last strategy of the right side must be moved to the second place. If j > 2,

similar considerations show that there are at most j − 1 possibilities for the left side

and 1 possibility for the right side. It follows that the number of trees is bounded
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from above by the solution T (k) of the recurrence

T (n) = 2 T (2) · (n − 1)T (n − 1)

+

n−1∑

j=3

(j − 1)T (j) · max{T (n − j), T (n + 1 − j)}.

with T(2)=1. It follows that the total number of trees can be upper-bounded by the

function kk2
. Taking into account that there are 2kk! choices for the set of strategies

and their ordering at the root of the tree, and that each leaf can be of either Type A, or

of Type B, it follows that the total number of cells is bounded by g(k) = kk2
2k−12kk!.

2

Proof of Claim 5.6: The proof follows by a straightforward coupling argument.

Indeed, for all i ∈ I, let us couple the choices made by Stage 1 of Sampling Xi

and Sampling X̂i so that the random leaf Φi ∈ ∂T chosen by Sampling Xi and

the random leaf Φ̂i ∈ ∂T chosen by Sampling X̂i are equal, that is, for all i ∈ I,

in the joint probability space Pr[Φi = Φ̂i] = 1; the existence of such a coupling is

straightforward since Stage 1 of both Sampling Xi and Sampling X̂i is the same

random walk on T . 2

Proof of Lemma 5.8: Let us denote by

Good = {θ|θ ∈ (∂T )I : ||F (·|Φ = θ) − F̂ (·|Φ̂ = θ)||TV ≤ O

(
k

2k log z

z1/5

)
,

and let Bad = (∂T )I −Good. By Equation (5.7) if follows that G(Bad) ≤ O(kz−1/3).
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||T − T̂ ||TV =
1

2

∑

t

|F (t) − F̂ (t)|

=
1

2

∑

t

∣∣∣∣∣
∑

θ

F (t|Φ = θ)G(Φ = θ) −
∑

θ

F̂ (t|Φ̂ = θ)Ĝ(Φ̂ = θ)

∣∣∣∣∣

=
1

2

∑

t

∣∣∣∣∣
∑

θ

(F (t|Φ = θ) − F̂ (t|Φ̂ = θ))G(θ)

∣∣∣∣∣
(

using G(θ) = Ĝ(θ), ∀θ
)

≤ 1

2

∑

t

∑

θ

∣∣∣F (t|Φ = θ) − F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

=
1

2

∑

t

∑

θ∈Good

∣∣∣F (t|Φ = θ) − F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

+
1

2

∑

t

∑

θ∈Bad

∣∣∣F (t|Φ = θ) − F̂ (t|Φ̂ = θ)
∣∣∣G(θ)

≤
∑

θ∈Good

G(θ)

(
1

2

∑

t

∣∣∣F (t|Φ = θ) − F̂ (t|Φ̂ = θ)
∣∣∣
)

+
∑

θ∈Bad

G(θ)

(
1

2

∑

t

∣∣∣F (t|Φ = θ) − F̂ (t|Φ̂ = θ)
∣∣∣
)

≤
∑

θ∈Good

G(θ) · O
(

k
2k log z

z1/5

)
+
∑

θ∈Bad

G(θ)

≤ O

(
k

2k log z

z1/5

)
+ O(kz−1/3).

2

A.1 Proof of Lemma 5.9

Proof. By the assumption it follows that

|µv(θ) − µ̂v(θ)| ≤
∣∣∣E [µv(Φ)] − E [µ̂v(Φ̂)]

∣∣∣ + z(α−1)/2
√
E [µv(Φ)] log z + z(α−1)/2

√
E [µ̂v(Φ̂)] log z.
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Moreover, note that

E [µv(Φ)] = 2−depthT (v)
∑

i∈I
pi,v(ℓ∗v)

and, similarly,

E [µ̂v(Φ̂)] = 2−depthT (v)
∑

i∈I
p̂i,v(ℓ∗v).

By the definition of the Rounding procedure it follows that

|E [µv(Φ)] − E [µ̂v(Φ̂)]| ≤ 2−depthT (v) 1

z
.

Hence it follows that

|µv(θ) − µ̂v(θ)| ≤ 2−depthT (v) 1

z
+

2
√

log z

z(1−α)/2

√
max {E [µv(Φ), E [µ̂v(Φ̂)]}]. (A.1)

Let Nv(θ) := {i : θi = v}, nv = |Nv|. Conditioned on Φ = θ, the distribution of

Tv,1 is the sum of nv independent Bernoulli random variables {Zi}i∈Nv with expecta-

tions E [Zi] = pi,v(ℓ∗v) ≤ ⌊zα⌋
z

. Similarly, conditioned on Φ̂ = θ, the distribution of T̂v,1

is the sum of nv independent Bernoulli random variables {Ẑi}i∈Nv with expectations

E [Ẑi] = p̂i,v(ℓ∗v) ≤ ⌊zα⌋
z

. Note that

E
[
∑

i∈Nv

Zi

]
= µv(θ)

and, similarly,

E
[
∑

i∈Nv

Ẑi

]
= µ̂v(θ).

Without loss of generality, let us assume that E [µv(Φ)] ≥ E [µ̂v(Φ̂)]. Let us further
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distinguish two cases for some constant τ < 1 − α to be decided later

Case 1: E [µv(Φ)] ≤ 1
zτ .

From (5.9) it follows that,

µv(θ) ≤ E [µv(Φ)] + z(α−1)/2
√
E [µv(Φ)] log z ≤ 1

zτ
+

√
log z

z(τ+1−α)/2
=: g(z).

Similarly, because E [µ̂v(Φ̂)] ≤ E [µv(Φ)] ≤ 1
zτ , µ̂v(θ) ≤ g(z).

By Markov’s inequality, PrΦ=θ[
∑

i∈Nv
Zi ≥ 1] ≤ µv(θ)

1
≤ g(z) and, similarly,

PrΦ̂=θ[
∑

i∈Nv
Ẑi ≥ 1] ≤ g(z). Hence,

∣∣∣∣∣Pr Φ=θ

[
∑

i∈Nv

Zi = 0

]
− Pr Φ̂=θ

[
∑

i∈Nv

Ẑi = 0

]∣∣∣∣∣

=

∣∣∣∣∣Pr Φ=θ

[
∑

i∈Nv

Zi ≥ 1

]
− Pr Φ̂=θ

[
∑

i∈Nv

Ẑi ≥ 1

]∣∣∣∣∣ ≤ 2g(z).

It then follows easily that

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ 4g(z) = 4 ·
(

1

zτ
+

√
log z

z(τ+1−α)/2

)
. (A.2)

Case 2: E [µv(Φ)] ≥ 1
zτ .

The following claim was proven in [DP07] (Lemma 3.9).

Claim A.1. For any set of independent Bernoulli random variables {Zi}i with ex-

pectations E [Zi] ≤ ⌊zα⌋
z

,

∥∥∥∥∥
∑

i

Zi − Poisson

(
E
(
∑

i

Zi

))∥∥∥∥∥
TV

≤ 1

z1−α
.
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By application of this lemma it follows that

∥∥∥∥∥
∑

i∈Nv

Zi − Poisson(µv(θ))

∥∥∥∥∥
TV

≤ 1

z1−α
, (A.3)

∥∥∥∥∥
∑

i∈Nv

Ẑi − Poisson(µ̂v(θ))

∥∥∥∥∥
TV

≤ 1

z1−α
. (A.4)

We study next the distance between the two Poisson distributions. We use the fol-

lowing lemma whose proof is postponed till later in this section.

Lemma A.2. If λ = λ0 + D for some D > 0, λ0 > 0,

‖Poisson(λ) − Poisson(λ0)‖TV ≤ D

√
2

λ0

.

An application of Lemma A.2 gives

‖Poisson(µv(θ)) − Poisson(µ̂v(θ))‖TV ≤ |µv(θ) − µ̂v(θ)|
√

2

min {µv(θ), µ̂v(θ)} .

(A.5)

We conclude with the following lemma proved in the end of this section.

Lemma A.3. From (5.9), (5.10), (A.1) and the assumption E [µv(Φ)] ≥ 1
zτ , it follows

that

|µv(θ) − µ̂v(θ)|
√

2

min {µv(θ), µ̂v(θ)} ≤
√

72
log z

z1−α
.

Combining (A.3), (A.4), (A.5) and Lemma A.3 we get

∥∥∥∥∥
∑

i∈Nv

Zi −
∑

i∈Nv

Ẑi

∥∥∥∥∥
TV

≤ 2

z1−α
+

√
72

log z

z1−α
= O

( √
log z

z(1−α)/2

)
,
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which implies

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
. (A.6)

Taking τ > (1 − α)/2, we get from (A.2), (A.6) that in both cases

||Fv(·|Φ = θ) − F̂v(·|Φ̂ = θ)||TV ≤ O

( √
log z

z(1−α)/2

)
. (A.7)

Proof of lemma A.2: We make use of the following lemmas.

Lemma A.4. If λ, λ0 > 0, the Kullback-Leibler divergence between Poisson(λ0) and

Poisson(λ) is given by

∆KL(Poisson(λ)||Poisson(λ0)) = λ

(
1 − λ0

λ
+

λ0

λ
log

λ0

λ

)
.

Lemma A.5 (e.g. [CT06]). If P and Q are probability measures on the same measure

space and P is absolutely continuous with respect to Q then

‖P − Q‖TV ≤
√

2∆KL(P ||Q).

By simple calculus we have that

∆KL(Poisson(λ)||Poisson(λ0)) = λ

(
1 − λ0

λ
+

λ0

λ
log

λ0

λ

)
≤ D2

λ0

.

Then by Lemma A.5 it follows that

‖Poisson(λ) − Poisson(λ0)‖TV ≤ D

√
2

λ0
.
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2

Proof of lemma A.3: From (A.1) and the assumption E [µv(Φ)] ≥ E [µ̂v(Φ̂)] we

have

|µv(θ) − µ̂v(θ)|2 ≤ 1

z2
+

4 log z

z1−α
E [µv(Φ)] + 4

1

z

√
log z

z(1−α)/2

√
E [µv(Φ)].

From the assumption E [µv(Φ)] ≥ 1
zτ it follows

E [µv(Φ)] =
√

E [µv(Φ)]
√

E [µv(Φ)] (A.8)

≥ 1

zτ/2

√
E [µv(Φ)]. (A.9)

Since τ < 1 − α, it follows that, for sufficiently large z which only depends on α and

τ , 1
zτ/2 ≥ 2

√
log z

z(1−α)/2 . Hence,

E [µv(Φ)] ≥ 2
√

log z

z(1−α)/2

√
E [µv(Φ)],

which together with (5.9) implies

µv(θ) ≥ E [µv(Φ)] − z(α−1)/2
√
E [µv(Φ)] log z ≥ 1

2
E [µv(Φ)] (A.10)

Similarly, starting from E [µ̂v(Φ̂)] ≥ E [µv(Φ)] − 1
z
≥ 1

zτ − 1
z
, it can be shown that for

sufficiently large z

µ̂v(θ) ≥ 1

2
E [µ̂v(Φ̂)]. (A.11)

From (A.10), (A.11) it follows that

min{µv(θ), µ̂v(θ)} ≥ 1

2
min{E [µv(Φ)], E [µ̂v(Φ̂)]} =

1

2
E [µ̂v(Φ)] ≥ 1

2
E [µv(Φ)] − 1

2z
≥ 1

4
E [µv(Φ)],
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where we used that E [µv(Φ)] ≥ 1
zτ ≥ 2

z
for sufficiently large z, since τ < 1 − α.

Combining the above we get

2|µv(θ) − µ̂v(θ)|2
min {µv(θ), µ̂v(θ)} ≤ 2

1
z2 + 4 log z

z1−α E [µv(Φ)] + 41
z

√
log z

z(1−α)/2

√
E [µv(Φ)]

1
4
E [µv(Φ)]

≤ 8
1

z2E [µv(Φ)]
+ 32

log z

z1−α
+ 32

√
log z

z1+(1−α)/2
√
E [µv(Φ)]

≤ 8
zτ

z2
+ 32

log z

z1−α
+ 32

zτ/2
√

log z

z1+(1−α)/2

≤ 8
1

z2−τ
+ 32

log z

z1−α
+ 32

√
log z

z(3−α−τ)/2

≤ 72
log z

z1−α
,

since 2 − τ > 1 − α and (3 − α − τ)/2 > 1 − α, assuming sufficiently large z. 2

A.2 Proof of Lemma 5.10

Proof. We will derive our bound by approximating with the translated Poisson dis-

tribution, which is defined next.

Definition A.6 ([R0̈7]). We say that an integer random variable Y has a translated

Poisson distribution with paremeters µ and σ2 and write

 L(Y ) = TP (µ, σ2)

if  L(Y −⌊µ−σ2⌋) = Poisson(σ2 +{µ−σ2}), where {µ−σ2} represents the fractional

part of µ − σ2.

The following lemma provides a bound for the total variation distance between two

translated Poisson distributions with different parameters.
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Lemma A.7 ([BL06]). Let µ1, µ2 ∈ R and σ2
1 , σ

2
2 ∈ R+ \{0} be such that ⌊µ1−σ2

1⌋ ≤

⌊µ2 − σ2
2⌋. Then

∣∣∣∣TP (µ1, σ
2
1) − TP (µ2, σ

2
2)
∣∣∣∣

TV
≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2| + 1

σ2
1

.

The following lemma was proven in [DP07] (Lemma 3.14).

Lemma A.8. Let z > 0 be some integer and {Zi}m
i=1, where m ≥ zβ, be any set

of independent Bernoulli random variables with expectations E [Zi] ∈
[
⌊zα⌋

z
, 1

2

]
. Let

µ1 =
∑m

i=1 E [Zi] and σ2
1 =

∑m
i=1 E [Zi](1 − E [Zi]). Then

∥∥∥∥∥

m∑

i=1

Zi − TP
(
µ1, σ

2
1

)
∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
.

Let Nv(θ) := {i : θi = v}, nv(θ) = |Nv(θ)|. Conditioned on Φ = θ, the distribution

of Tv,1 is the sum of nv(θ) independent Bernoulli random variables {Zi}i∈Nv(θ) with

expectations E [Zi] = pi,v(ℓ∗v). Similarly, conditioned on Φ̂ = θ, the distribution of

T̂v,1 is the sum of nv(θ) independent Bernoulli random variables {Ẑi}i∈Nv(θ) with

expectations E [Ẑi] = p̂i,v(ℓ∗v). Note that

∑

i∈Nv(θ)

E [Zi] = µv(θ)

and, similarly,
∑

i∈Nv(θ)

E
[
Ẑi

]
= µ̂v(θ).

Setting µ1 := µv(θ), µ2 := µ̂v(θ) and

σ2
1 =

∑

i∈Nv(θ)

E [Zi] (1 − E [Zi]),
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σ2
2 =

∑

i∈Nv(θ)

E
[
Ẑi

]
(1 − E

[
Ẑi

]
),

we have from Lemma A.8 that

∥∥∥∥∥∥

∑

i∈Nv(θ)

Zi − TP
(
µ1, σ

2
1

)
∥∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
. (A.12)

∥∥∥∥∥∥

∑

i∈Nv(θ)

Ẑi − TP
(
µ2, σ

2
2

)
∥∥∥∥∥∥

TV

≤ O
(
z−

α+β−1
2

)
. (A.13)

It remains to bound the total variation distance between the translated poisson dis-

tributions using Lemma A.7. Without loss of generality let us assume ⌊µ1 − σ2
1⌋ ≤

⌊µ2 − σ2
2⌋. Note that

σ2
1 =

∑

i∈Nv(θ)

E [Zi] (1 − E [Zi]) ≥ nv(θ)
⌊zα⌋

z

(
1 − ⌊zα⌋

z

)
≥ 1

2
nv(θ)

⌊zα⌋
z

,

where the last inequality holds for values of z which are larger than some function of

constant α. Also,

|σ2
1 − σ2

2 | ≤
∑

i∈Nv(θ)

∣∣∣E [Zi] (1 − E [Zi]) − E
[
Ẑi

]
(1 − E

[
Ẑi

]
)
∣∣∣

=
∑

i∈Nv(θ)

|pi,v(ℓ∗v)(1 − pi,v(ℓ∗v)) − p̂i,v(ℓ∗v)(1 − p̂i,v(ℓ∗v))|

=
∑

i∈Nv(θ)

(|pi,v(ℓ∗v) − p̂i,v(ℓ∗v)| +
∣∣p2

i,v(ℓ∗v) − p̂2
i,v(ℓ∗v)

∣∣)

≤
∑

i∈Nv(θ)

3

z

(
using |pi,v(ℓ∗v) − p̂i,v(ℓ∗v)| ≤ 1

z

)

≤ 3nv(θ)

z
.
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Using the above and Lemma A.7 we have that

∣∣∣∣TP (µ1, σ
2
1) − TP (µ2, σ

2
2)
∣∣∣∣ ≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2|
σ2

1

+
1

σ2
1

≤ |µ1 − µ2|
σ1

+
3nv(θ)

z

1
2
nv(θ) ⌊z

α⌋
z

+
1

1
2
nv(θ) ⌊z

α⌋
z

≤ |µ1 − µ2|
σ1

+ O(z−α) +
1

1
2
zβ ⌊zα⌋

z

≤ |µ1 − µ2|
σ1

+ O(z−α) + O(z−(α+β−1)).

To bound the ratio |µ1−µ2|
σ1

we distinguish the following cases:

• √
3 log z

√
2−depthT (v)

√
|I| ≤ 1

2
2−depthT (v)|I|: Combining this inequality with (5.13)

we get that

|I| ≤ 21+depthT (v)nv(θ).

Hence,

|µ1 − µ2|
σ1

≤
1
z

+
√

log z
z

√
|I|√

1
2
nv(θ) ⌊z

α⌋
z

≤
1
z

+
√

log z
z

√
21+depthT (v)nv(θ)√

1
2
nv(θ) ⌊z

α⌋
z

= O

(
1

z
α+β+1

2

)
+ O

(
2

depthT (v)

2

√
log z

z
1+α

2

)

• √
3 log z

√
2−depthT (v)

√
|I| > 1

2
2−depthT (v)|I|: It follows that

|I| < 12 2depthT (v) log z.
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Hence,

|µ1 − µ2|
σ1

≤
1
z

+
√

log z
z

√
|I|√

1
2
nv(θ) ⌊z

α⌋
z

≤
1
z

+
√

log z
z

√
12 2depthT (v) log z√

1
2
nv(θ) ⌊z

α⌋
z

= O

(
1

z
α+β+1

2

)
+ O

(
2

depthT (v)

2 log z

z
α+β+1

2

)

Combining the above, it follows that

∣∣∣∣TP (µ1, σ
2
1) − TP (µ2, σ

2
2)
∣∣∣∣ ≤ |µ1 − µ2|

σ1
+

|σ2
1 − σ2

2 | + 1

σ2
1

≤ O

(
1

z
α+β+1

2

)
+ O

(
2

depthT (v)

2

√
log z

z
1+α

2

)

+ O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+ O(z−α) + O(z−(α+β−1))

≤ O

(
2

depthT (v)

2

√
log z

z
1+α

2

)

+ O

(
2

depthT (v)

2 log z

z
α+β+1

2

)
+ O(z−α) + O(z−(α+β−1)).

Combining the above with (A.12) and (A.13) we get

∥∥∥∥∥∥

∑

i∈Nv(θ)

Zi −
∑

i∈Nv(θ)

Ẑi

∥∥∥∥∥∥
TV

≤ O

(
2

depthT (v)

2

√
log z

z
1+α

2

)
+ O

(
2

depthT (v)

2 log z

z
α+β+1

2

)

+ O(z−α) + O(z−(α+β−1
2

)).

183



A.3 Concentration of the Leaf Experiments

The following lemmas constitute the last piece of the puzzle and complete the proof

of Lemma 5.7. They roughly state that, after the random walk in Stage 1 of the

processes Sampling is performed, the experiments that will take place in Stage 2 of

the processes Sampling are similar with high probability.

Proof of Lemma 5.12: Note that

µv(Φ) =
∑

i∈I
Ωi =: Ω,

where {Ωi}i are independent random variables defined as

Ωi =





pi,v(ℓ∗v), with probability 2−depthT (v)

0, with probability 1 − 2−depthT (v).

We apply the following version of Chernoff/Hoeffding bounds to the random variables

Ω
′

i := z1−αΩi ∈ [0, 1].

Lemma A.9 (Chernoff/Hoeffding). Let Z1, . . . , Zm be independent random variables

with Zi ∈ [0, 1], for all i. Then, if Z =
∑n

i=1 Zi and γ ∈ (0, 1),

Pr[|Z − E [Z]| ≥ γE [Z]] ≤ 2 exp(−γ2E [Z]/3).

Letting Ω
′

=
∑

i∈I Ω
′

i and applying the above lemma with γ :=
√

1
E[Ω′ ]

log z, it

follows that

Pr
[∣∣∣Ω′ − E [Ω

′
]
∣∣∣ ≥

√
E [Ω′ ] log z

]
≤ 2z−1/3,

which in turn implies

Pr
[
|Ω − E [Ω]| ≥ z(α−1)/2

√
E [Ω] log z

]
≤ 2z−1/3,
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or, equivalently,

Pr
[
|µv(Φ) − E [µv(Φ)]| ≥ z(α−1)/2

√
E [µv(Φ)] log z

]
≤ 2z−1/3.

Similarly, it can be derived that

Pr

[∣∣∣µ̂v(Φ̂) − E [µ̂v(Φ̂)]
∣∣∣ ≥ z(α−1)/2

√
E [µ̂v(Φ̂)] log z

]
≤ 2z−1/3.

Let us consider the joint probability space which makes Φ = Φ̂ with probability 1;

this space exists since as we observed above G(θ) = Ĝ(θ), ∀θ. By a union bound for

this space

Pr



|µv(Φ) − E [µv(Φ)]| ≥

√
log z

z(1−α)/2

√
E [µv(Φ)]

∨
∣∣∣µ̂v(Φ̂) − E [µ̂v(Φ̂)]

∣∣∣ ≥
√

log z
z(1−α)/2

√
E [µ̂v(Φ̂)]


 ≤ 4z−1/3.

which implies

G




θ : |µv(θ) − E [µv(Φ)]| ≤
√

log z
z(1−α)/2

√
E [µv(Φ)]

∧
∣∣∣µ̂v(θ) − E [µ̂v(Φ̂)]

∣∣∣ ≤
√

log z
z(1−α)/2

√
E [µ̂v(Φ̂)]


 ≥ 1 − 4z−1/3.

2

Proof of Lemma 5.13: Suppose that the random variables Φ and Φ̂ are coupled

so that, with probability 1, Φ = Φ̂. Then

µv(Φ) − µ̂v(Φ̂) =
∑

i∈I
Ωi =: Ω,

where {Ωi}i are independent random variables defined as

Ωi =





pi,v(ℓ∗v) − p̂i,v(ℓ∗v), with probability 2−depthT (v)

0, with probability 1 − 2−depthT (v).

185



We apply Hoeffding’s inequality to the random variables Ωi.

Lemma A.10 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random vari-

ables. Assume that, for all i, Pr[Xi ∈ [ai, bi]] = 1. Then, for t > 0:

Pr

[
∑

i

Xi − E
[
∑

i

Xi

]
≥ t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Applying the above lemma we get

Pr [|Ω − E [Ω]| ≥ t] ≤ 2 exp

(
− 2t2

|I| 4
z2

)
,

since, for all i ∈ I, |pi,v(ℓ∗v) − p̂i,v(ℓ∗v)| ≤ 1
z
. Setting t =

√
log z

√
|I|1

z
we get

Pr

[
|Ω − E [Ω]| ≥

√
log z

√
|I|1

z

]
≤ 2

1

z1/2
.

Note that

|E [Ω]| = |
∑

i∈I
E [Ωi]| = |2−depthT (v)

∑

i∈I
(pi,v(ℓ∗v) − p̂i,v(ℓ∗v))| ≤ 1

z
.

It follows from the above that

Pr

[
|Ω| ≤ 1

z
+
√

log z
√

|I|1
z

]
≥ 1 − 2

1

z1/2
,

which gives immediately that

G

(
θ : |µv(θ) − µ̂v(θ)| ≤ 1

z
+

√
log z

z

√
|I|
)

≥ 1 − 2

z1/2
.
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Moreover, an easy application of Lemma A.9 gives

G

(
θ : |nv(θ) − 2−depthT (v)|I|| ≤

√
3 log z

√
2−depthT (v)|I|

)
≥ 1 − 2

z
. (A.14)

Indeed, let Ti = 1Φi=v. Then nv(Φ) =
∑

i∈I Ti and E [
∑

i∈I Ti] = 2−depthT (v)|I|.

Applying Lemma A.9 with γ =
√

3 log z

2−depthT (v)|I| we get

Pr

[∣∣∣∣∣
∑

i∈I
Ti − E

[
∑

i∈I
Ti

]∣∣∣∣∣ ≥
√

3 log z
√

2−depthT (v)|I|
]
≤ 2

z
,

which implies

Pr

[
|nv(Φ) − 2−depthT (v)|I|| ≤

√
3 log z

√
2−depthT (v)|I|

]
≥ 1 − 2

z
.

2
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