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Abstract

In this paper, we examine the spatiotemporal dynamics of
wireless links and evaluate their effect on routing. We ran
several experiments using a testbed consisting of 57 MicaZ
motes, and collected data on link behavior over one entire
day. We use this data to observe the overall network con-
nectivity over time and space. We are able to examine in
detail the choice of neighbors and routes using several link-
selection mechanisms, both statically and over time.

We are able to verify the hairy-edge hypothesis, which
states that the most important links for routing are the most
difficult to predict. In order to do so, we develop precise def-
initions of important and unpredictable links. We also find
it possible to remove these intermediate links from consid-
eration and still have a very rich set of links to route over,
while suffering from fewer difficult-to-predict links. Also,
we explore the tradeoff between statically defining routes as
opposed to a dynamic protocol. We find that while it is not
possible to remove all temporal variations from the network,
their impact can be significantly reduced through the use of
local redundancy. Finally, we present a survey of how several
existing routing protocols fit into the framework developed
in the body of the paper.

1 Introduction

A fundamental difference between routing for wireless
sensor networks and routing in conventional settings is the
absence of an a priori connectivity graph to define “the net-
work”. Instead, logical links between nodes are discovered
by a process of observation, termed topology formation[9].
In its simplest form, nodes broadcast a packet and collect re-
sponses to build a neighbor table, which is essentially a dis-
tributed adjacency list representation of the network graph.
Or, in many ad-hoc routing protocols, a flood is initiated
from the source to build a tree and upon reaching the des-
tination links are reversed to form a route. Of course, experi-
ence has shown that the receiver set for a particular transmit-
ter varies from packet to packet due to fading, attenuation,
obstructions, interference, and multipath effect[16} 130, [32]].
In addition, responses and retransmissions from neighbors
may collide, introducing further variation in the observed
connectivity[[11]. Thus, in most robust wireless sensor net-
work routing protocols topology formation is a continuous
process with active or passive probes that feed into an es-
timator. A threshold determines whether or not a link is
present between a pair of nodes at points in time. The con-
nectivity graph may be directed, to express link asymme-

try, and may contain weights, to express link quality char-
acteristics such as packet reception rate (PRR) or received
signal strength indicators (RSSI). Routing is the process of
determining which paths in the connectivity graph are used
when forwarding packets from their source to their destina-
tion. The routing subgraph may be represented by routing
tables, “parent” lists, and the like.

Because topology formation is observational, rather than
a fixed property of the network, the underlying link dynam-
ics may have a critical impact on what routing algorithms
have to work with. Conversely, the role of a potential link
in the routing subgraph has tremendous import on how well
its dynamics need to be captured. This inter-relationship of
link dynamics and routing is all the more important because
routing is fundamentally used to traverse space. The place-
ment of nodes is determined primarily by the physical sense
points of interest, rather than the need to achieve a particu-
lar network topology, possibly with additional nodes to im-
prove connectivity. Packets are forwarded across a sequence
of links because range is limited and because of obstructions
and attenuation in the environment.

It has been asserted that the nodes that are most valuable
to route through are the ones right on edge of the connectiv-
ity threshold and hence are precisely the ones that are hardest
to estimate [3]]. Closer nodes are likely to have strong, stable
links, but they do not take the packet as far toward the desti-
nation, so more hops are required. Nodes much farther away
are easy to estimate because connectivity is so poor. In the
region that is close to the edge, links may come and go due
to external factors. However, estimates are based on histori-
cal behavior, so transmissions across a link determined to be
above threshold may fail, while transmissions may succeed
where no link is judged to be present.

While many link estimators and routing protocols have
been developed, our goal is to characterize the underlying
impact of link dynamics on routing protocol design in prac-
tice. We begin the study by trying to established the validity
of the “hairy edge” hypothesis described above. This leads
to an analysis methodology that allows us to answer a set
of basic questions about topology formation and routing. If
the link quality threshold is more stringent, are links more
or less stable? Are the resulting shortest path routes more
or less stable? If we allow suboptimal routes do we increase
stability? How much routing redundancy permits local re-
pair, rather than rerouting. To what extent does topology
formation need to be a continuous process, or can it be done
off-line?



To answer these questions, we first obtain a detailed
record of link behavior throughout a large testbed over an
extended period. A summary of our findings from a close
analysis of this data follows. To greater or lesser extents,
all of these conclusions reflect either common sense or the
anecdotal evidence of practitioners in the field. However, we
believe this is the first study to subject these ideas to a rigor-
ous analysis using a real data set.

e We experimentally measure the size of the “grey” re-
gion of the CC2420 radio, and find it to be approxi-
mately 25% of the size of the “good” region.

e We propose a single-number metric for wireless sensor
networks, the fraction of possible links which are ac-
tive in the network. Our study is conducted on a 30%
network.

e The hairy edge hypothesis, that intermediate links are
important for routing, is substantially borne out when
the topology formation criteria is very lenient.

o Considering slightly suboptimal routes provides routing
with a rich set of reasonable candidates. These routes
are only slightly longer then the best possible routes.

e The amount of dynamic activity (or churn) in link tables
of routing protocols can be reduced through the use of
local redundancy to permit local repair; however, it can
not be entirely eliminated.
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Figure 1. Positions and coarse connectivity of 57 MicaZ
motes in the testbed distributed over a 120x150 foot re-
gion

2 Experimental Methodology

The experimental methodology we employ to answer
these questions is a two stage process, as shown in figure 2]
First, we collect detailed traces of connectivity between all
pairs of nodes in a large testbed in a realistic setting over
an extended period of time. Then we analyze these traces
by emulating potential topology formation and routing algo-
rithms upon this body of physical data.

2.1 Connectivity data collection

The connectivity data is obtained using 57 MicaZ motes
distributed over a 120x150 feet region of an actively used of-
fice building, as shown in Figure (I} The building contains
numerous sources of potential interference, including com-
puting devices and multiple WiFi networks. Many of the
nodes are attached to the ceiling. They span offices, corri-
dors, open spaces, and laboratories.

Ideally, we want to know the connectivity between every
pair of nodes at every instant over a 24 hour period. How-
ever, the only way to determine if there is connectivity at a
point in time is to send a packet and see whether it is re-
ceived. Inferring connectivity from a single transmission is
problematic because the interference and environmental fac-
tors at the instant may not be representative, so multiple such
probes are required. If more than one node sends at a time,
the observed connectivity is influenced by the simultaneous
transmissions.

In light of these concerns, we collect connectivity data in
“slices”. During each slice, each node transmits a burst of
100 broadcast packets with 20ms between consecutive pack-
ets. Nodes are scheduled to transmit one at a time in round-
robin so that transmissions do not overlap. While a node is
not transmitting, it listens and logs any received probes to its
flash memory, along with signal strength indicators reported
by the CC2420 radio. Once every node has transmitted its
packet burst, the network is switched into a download mode
where MultiHopLQI is enabled and data is retrieved from
flash and sent to the base station. This process forms a slice
and takes approximately 1/2 hour. Once the download from
each node has completed, we repeat the process for the next
slice. The results in this paper are developed from running
this sample—download cycle for one day, generating 48 slices
approximately 1/2 hour apart and containing approximately
300,000 measurements. This process gets very close to a
snapshot of the network connectivity at any given point in
time.

To provide richness of topology and reasonable network
diameter the radio power used when sending probe mes-
sages is set to —7dBm. Obviously, increasing the power
increases the connectivity and reduces the depth, while re-
ducing the power makes connectivity sparser. At this set-
ting, the network is reasonably well connected and the most
distant nodes are 5 to 7 hops apart.

Following data collection, the raw traces are filtered and
analyzed. First, the traces are parsed and processed into a
connectivity graph G, a directed graph where edge weights
are the observed packet reception rates (PRRs). This can
be done either for a single slice of data, or in aggregate for
the entire experiment. To get a basic sense of the network
we study, Figure [T] shows the most basic topology formation
analysis over the entire lifetime of the connectivity trace. An
edge is present if there is at least one packet received in each
direction over the life of the trace. This very basic analysis
with essentially a zero quality threshold is overlaid on the
spatial relationship of the nodes. The region on the left has

'Upon publication, our data set will become freely available for
download by any interested parties.
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Figure 2. Graph Formation filter graph.

dense connectivity in a large open lab area; the region on the
right more uniform connectivity throughout office areas, and
there is a braid of a modest number of links connecting these.

In the studies below, this connectivity graph is further fil-
tered, for example by applying a threshold T, where links
with PRR < T are removed, or taking various temporal slices
to isolate important aspects of link dynamics and to show
how they interact with routing algorithms.

2.2 Link quality distribution

To establish the baseline connectivity of the testbed, con-
sider the PRR on each of the 57x56 potential links over the
entire lifetime of the trace. Figure [3] shows a scatter plot
of PRR vs. distance for all of these links in the manner of
Woo[30] and Zhao[32]. To our knowledge this is the first
published record of the ‘three regions’ behavior for IEEE
802.154 radios with its OQPSK modulation, and the analysis
is performed in a realistic setting. Prior studies utilized RFM
radios with a proprietary ASK modulation and CC1000 ra-
dios with FSK modulation, but which are extremely narrow
band, and the nodes were placed in a line. Here we have a
more or less arbitrary arrangement of links with a wide vari-
ety of distances, orientations, and node pairs.
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Figure 3. Distance vs. PRR. The observed grey region
is smaller then what was previously observed when us-
ing the CC1000 radio; it is only 25% the size of the good
region.

As expected, we see that the vast majority of short dis-
tance links are of high quality and for links beyond a certain
distance there is no connectivity whatsoever. As compared to
previous studies, we see much more variation in the quality
of short distance links. This is consistent with the presence
of obstacles, such as walls and equipment, in the actively

used indoor setting. If we define the end of the good region
to be the distance at which 90% of the candidate links are
above 90% PRR, the good region ends at 42 feet. It is indi-
cated by upper-left perpendicular line crossing in Figure [3]
Similarly, if we define the start of the bad region to be the
distance at which 90% of the candidate links are below 10%
PRR, the bad region begins at 55.5 feet. The intermediate
“transitional” or “grey” region shows wide variation in link
quality, as in previous studies. However, this region is much
narrower than in prior studies with their more primitive cod-
ing schemes. It is roughly 25% of the width of the good
region, where prior results showed a value close to 100%.
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Figure 4. CDF of link quality in our testbed. Only 30%
possible links in the network are connected. The set of
candidate links in the network is dominated by very good
links with PRR greater then 0.85.

The scatter plot in Figure [3| provides a good sense of the
variation in behavior with distance, but it is difficult to see
how prevalent links from the three regions are. Figure [
shows the cumulative density function of PRR for links in
the network. 70% of the potential links show no connectivity.
This figure is essentially a reflection of the physical extent of
the network relative to the radio range. If one enlarged the
physical extent, adding nodes but retaining the same node
density and radio range this value would rise. Similarly, this
value would rise at the same factor as node density if the
range were reduced, for instance by reducing the transmit
power. However, the network becomes disconnected if that
is pushed very far. Alternatively, increasing the physical den-
sity of the nodes at the same range or increasing the range at
the same density decreases this value. Thus, we have use-
ful single number figure of merit for wireless sensor network
organization. Our study is conducted on a 30% connected



network.

The sharp transition to good links reflects the point where
the signal-to-noise ratio at the receiver exceeds the receiver
sensitivity. With the rich symbol coding of IEEE 802.15.4
radios, once the signal can be obtained the packets come
through clearly, Less than 15% of the potential links fall be-
tween PRR = 0.10 and PRR = 0.90. This would appear to
be good news for routing protocols. It suggests that the con-
nectivity graph is largely insensitive to the threshold used to
determine where a link is present or absent. Even though
connectivity is a continuous time-varying property that is in-
fluenced by a wide variety of physical effects, the conven-
tional notion of routing by selecting paths in a derived con-
nectivity graph is reasonable. However, caution should be
exercised, as we are drawing this conclusion from the PRR
over a full day. There may be substantial temporal variation
at the timescales that link estimators and routing protocols
operate.

2.3 Degree and diameter
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Figure 5. The connectivity of the network varies as the
PRR threshold used in topology formation is changed.

Having established the connectivity graph can be derived
by applying a threshold to the PRR over a long interval, we
can analyze properties of this connectivity graph, such as its
degree and its diameter. The degree is essentially the size of
the neighbor set while the diameter is a bound on the num-
ber of routing hops. Figure [5] shows the effect of the PRR
threshold, T, on the mean degree and the maximum depth
for the network. If the link quality threshold is extremely le-
nient, i.e., essentially zero, some very long links appear, sub-
stantially reducing the diameter. While one or more of these
serendipitous links are likely to show up in a topology-free
flooding algorithm, they are too unreliable to use in routing.
Fortunately, even a very modest threshold filters them out.
The value of the threshold hardly matters until it becomes
close to the mean value in the good region, whereupon the
graph becomes disconnected and the diameter explodes.

The threshold has a more continuous effect on the mean

node degree. As it is increases, the connectivity graph be-
comes sparser and sparser. As nodes have varying links to
various neighbors, some drop out as the threshold increases.
From this simple analysis of overall all connectivity, we
have our first important results on the interaction of topol-
ogy formation and routing. The more stringent the criteria
for determining that a link exists between a pair of nodes
the sparser the connectivity graph that is available for rout-
ing. The threshold choice has little impact on the network
diameter, unless it is very extreme, but it is likely to have
a substantial impact on the number of choices at each hop,
and on the storage complexity of the neighbor table. As the
threshold approaches the mean PRR of good links, the con-
nectivity graph collapses and routing becomes impractical.

3 The Hairy Edge Hypothesis

We turn now to a more subtle interaction of variations
in link quality and routing. The figures above suggest that
link estimation for the purpose of topology formation should
be easy. The vast majority of potential links are either non-
existent or of high quality. However, it has been asserted that
the minority of intermediate links are likely to be the ones
that are most important to use for routing. They are not just
of intermediate quality, but they may be highly variable and
possible hard to estimate.

To make the “hairy edge hypothesis” more precise, we
can formulate the assertion in terms of basic communication
theory. The signal strength from a transmitter fades with dis-
tance due to increasing spatial coverage, absorption, atten-
uation, obstructions, and multipath effects. Typically it is
neither radially symmetric nor simple along the normal be-
cause of antenna anisotropy, device mechanical construction,
and variations in the spatial environment. A packet is re-
ceived, with high probability, if the resulting signal-to-noise
ratio at the receiver sufficiently exceeds the receiver sensi-
tivity. However, the noise is also a varying function of space
and time, due to varying sources of interference. Therefore,
the points in space where the SNR is adequate also move
around. So, the amoeboid “cells” of coverage that have been
witnessed in empirical studies are not surprising [16].

O

Figure 6. Illustration of the important of nodes at the
edge of connectivity in wireless routing



This variation is especially important for wireless rout-
ing, as illustrated in Figure[6] If multihop communication is
used to route from a source A to a destination B, which node
should A choose for the first hop? Nodes that are in close
proximity tend to have very high quality links, but they do
not move the packer much closer to its destination, so many
more hops may be required. Nodes far along towards the
destination but outside the range of connectivity are useless.
The node that offers a good link and reduces the number of
remaining hops is likely to be at the very edge of the cell
of connectivity. However, this suggests that the quality of
that link may vary with time above and below the selection
threshold. In other words, it is likely that topology forma-
tion may alternatively accept and reject this important link.
In addition, if the selection threshold is raised, a different
node on the edge of the new selection criteria will take on
the same role. Links that are not in the connectivity graph
are more likely to receive packets, but the set of known good
links that are also good for routing may be just as unstable,
or even more so.

So, in essence the hairy-edge hypothesis says that the
links that are most important for routing are the most un-
predictable. We can attempt to validate this hypothesis using
our dense, sliced connectivity data set. First, we must define
precisely what it means to be important for routing. Then we
must get a handle on unpredictability. To do this, we look at
the population of links and various sub-populations. While
the scenario in picture in Figure [6] can be expected to occur,
it could possibly be rare because of other constraints in the
forming of the shortest path.

3.1 Sets of important links

A link is important for routing if it is likely to be chosen
by a routing protocol. Obviously, for routing to nearby nodes
the direct link is used, so we are most interested in routing
among fairly distant nodes over multiple hops. Most routing
protocols seek to find a minimum cost path according to a
cost metric. The most common are shortest path algorithms
using hop count as the metric. In some cases, the expected
number of retransmissions is used as a weight on each of
the links. We focus first on min hop routing. With this as-
sumption, in routing from source S to destination D a link
is important if it is on some shortest path from S to D. For
each pair of nodes, this defines a relatively narrow braid of
links that are the ones that could be chosen by a shortest path
algorithm on the specific connectivity graph.

Specifically, to pick out a set of important links, we
choose a set of sources S, and destinations D from the topol-
ogy graph TG. We then form all paths between the sources
and destinations to form the set MINy. In some of the anal-
ysis to follow, we consider nearly optimal routing protocols
as well. To capture the behavior of these algorithms, we may
form the set of all links on a path of the minimum length plus
one, called (MIN;). An example of this formation is shown
in Figure MIN, is the set of solid links, while MIN; is the
remaining dashed links.
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Figure 7. An example of “important” links when routing
from node 170 to node 112. Solid lines are links on a
shortest, 4-hop path. Dashed lines are on a 5-hop path.

3.2 Link unpredictability

The unpredictability of a link is a more subtle phenomena.
Clearly, links that have very high PRR or very low PRR are
very predictable, whereas links of intermediate PRR have,
by definition, greater opportunity for variation. Still, it may
be that a link that is good most of the time has significant
epochs where it is bad, and vice versa for poor links. Simi-
larly a link of intermediate quality may behave essentially as
a set of independent random events, or it may be highly cor-
related and predictable. We examine several distinct notions
of predictability and look at how links that are important for
routing fair compared to the rest of the links.

We begin with a lenient topology formation criteria to de-
fine the connectivity graph, a threshold of essentially zero.
Figure [8a) shows in solid lines the probability distribution
of links according to the physical distance between the trans-
mitter and receiver for the entire population of links in the
connectivity graph. The dashed line shows the correspond-
ing distribution of lengths for a ‘important’ set constructed
by taking MINy for eight sources on the far left of the net-
work and eight destinations on the far right. We see that
these populations are indeed quite different. Comparatively,
MIN includes few short links and an abundance of fairly
long ones. Although the mode is of similar length to the
general population, the mean length is considerably greater.
(We discuss the third curve in this graph below.)

Figure [§[b) compares the distribution of packet reception
rate (PRR) between the population and the links in MINj.
Indeed, the mean PRR for links in MIN,, at 62% (dotted
vertical line) is considerably less than the average PRR of
the population (solid vertical line) at 74detail, we find that a
fairly high fraction of low quality links are present in MINy
with this lenient criteria. This make sense, since long links
are so attractive to shortest path route. Interesting, even with
a link threshold near zero, the mean PRR for links used for
routing is 62%. Often, very good links are utilized.

While being of intermediate quality is an indicator of vari-
ation, we also look at the actual variation in link quality from
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Figure 8. Four characteristics of important links versus the general population for a lenient topology formation thresh-

old (T = 0).

slice to slice. This is shown for the two populations in Fig-
ure [8[c). The standard deviation of links in MINy are 30%
higher than the general population.

Perhaps a more fundamental notion of the unpredictabil-
ity of a link is the entropy observed in the sequence of
probes. We define the entropy of a link as follows.

H(X)=— ) p(xi)log, p(xi) )

-

i=1

Where X is a binary random variable of packet delivery
and x; is a value of the random variable. Figure [8[d) shows
that the entropy is, on average, high for minhop links than
for the general population.

Of course, entropy and PRR are closely related. Figure ]
shows in a scatter plot the relationship average entropy of
each link over the lifetime of our experiment and the aver-
age PRR measured for that link. As expected, the most pre-
dictable links are those with high PRR and low PRR. How-
ever, it is interesting to see that links of intermediate PRR
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Figure 9. Above is the packet reception rate for each link
and its relation to entropy. The higher the entropy, the
more unpredictable the sequence (packet delivery success
and failures). The most predictable links are the ends
(near 0 and 1), while the medium links show the largest
values and variance in predictability.

exhibit a wide range of behavior, from very low entropy to
very high. Even links of 90% PRR have substantial entropy.

3.3 Stringent link threshold

So the hairy-edge hypothesis appears to be substantially
borne out in a realistic network when the topology formation
criteria is very lenient. This corresponds to the case where
any packet arrival causes a node to be placed in the neighbor
table and the associated link considered for routing. Most
topology formation algorithms apply link estimation with a
threshold to determine whether a link is good enough to be
considered for routing. We model this behavior in our analy-
sis by filtering out links with a PRR below the threshold. Fig-
ure[I0]shows the link distributions after applying a PRR=0.5
filter.

With this more stringent criteria, the lengths of the links
used for routing closely track the overall population. In Fig-
ure [I0[b) we see that all of the low quality links have been
eliminated; many of these were long links. Even though the
threshold is set at 50%, the mean link PPR in the routing set
is 0.9. Thus, the set of important links for routing are ac-
tually more reliable, on average than the general population
(0.72).

Similarly, in Figure [I0[c), the standard deviation of links
in MINj is lower than that of links in the general population,
presumably as a result of choosing links with higher PRRs
that are more predictable. Interestingly, the entropy of links
in MIN, is somewhat higher than the general population.

Thus, it appears that setting even a modest threshold for
link quality in topology formation is sufficient to eliminate
most nodes on the edge of the cell. Minimum hop routes can
be found that utilize a slightly larger number of quite reliable
and quite predictable hops.

3.4 Suboptimal routing

This population perspective on the set of candidate links
considered by routing protocols leads to another interesting
question. What if the routing protocols considered slightly
suboptimal routes, say routes that are only one hop longer
than the shortest path? Would this bit of leniency in the pro-
tocol provide more robustness and ease of estimation. Does
it back us away from the edge to where simple estimators are
sufficient and little effort is expended in route repair?

The additional lines in in Figure [§] and Figure [10] show
the length, PRR, standard deviations, and Entropy for this
broader (MIN;) set of links that are important for routing.
Even with a near zero threshold, this broader set of candi-
dates is similar to the general population in length and vari-
ation, and yet is even more reliable on average than either
the general population or the strict minhop set. Raising the
link threshold makes only a small difference in path lengths,
mostly be eliminating the small minority of long, low quality
links from consideration.

3.5 Discussion of ETX

Our analysis up to this point has been performed by mea-
suring cost with hops. A natural question is the effect of
choosing routes using Expected Transmission Count (ETX)
on our conclusions. To address this, we repeated the analy-
sis summarized by figures[§]and [[0]using ETX as the metric
used in path formation. The topology graph described ear-
lier is converted to an ETX graph where edges are labeled
by the number of expected transmissions, and all paths are
found between a set of sources and destinations. Since the
paths now are weighted on a continuous scale, we pick out
the minimum cost path with cost m, and consider sets of links
on paths with cost m+ ke, fork =1,2,...

Although we have omitted a lengthly discussion in con-
sideration of space, the results are quite interesting. The re-
sult of using ETX with no topology formation threshold (T
results in a distribution of links in a pattern very similar to
that shown in figure @} Thus, ETX functions as both a rout-
ing metric and a topology formation criterion, since it will
not use links which are of too low a quality. Using ETX, we
found that only 1% of the links present in our important sets
had PRR < 0.55. This is not surprising, since in order to
choose a link with ETX greater then 2, the link must reduce
the length of the path by more then 2 hops, and this is rarely
possible in this data set.

This is itself an interesting result: for this particular net-
work size, forming paths based on ETX shows results very
similar to picking paths by hop count after applying a thresh-
old to the connectivity graph. This may provide additional
flexibility to protocol designers since in some cases they may
be able to forgo a complicated link estimation approach for a
simpler threshold. However, there is some evidence from
other studies which indicates that a static threshold leads
to poor performance in the face of congestion; our study
does not attempt to address the dynamics encountered due
to workload.
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Figure 10. The links which make up the shortest paths between source and destination have properties which diverge
from the population. The best routes avoid links with the highest PRR’s, but variances are closer to the population.

T=0.5

3.6 Discussion

The goodness of a link with respect to routing reflects an
inherent tension. One the one hand, we prefer links that go
a long ways towards the destination because the number of
hops are few, but long links tend to have low reliability. On
the other hand, we prefer links with high reliability and pre-
dictability, but these tend to be short. Some routing protocols
attempt to capture the trade-offs between these two concerns
by accounting for retransmissions in the cost function.

In our analysis, we find that with a lenient topology for-
mation criteria and a stringent routing criteria, shortest path
routing indeed tends to pick links that are on the hairy edge.
It incorporates long links, even if they are weak, and allows
few alternatives. With a more stringent topology formation
criteria, the weak links are eliminated and the remaining set
is of high quality. The mean link quality is far above the
threshold. Considering slightly suboptimal routes dilutes the
few long links, providing routing with a rich set of reason-



able candidates. The two approaches together appear to be
better than either alone.

4 Route Stability

As we have seen in the previous section, a simple PRR
filter can dramatically increasing the quality and predictabil-
ity of links. A natural question becomes: what happens if
we increase T to 0.7 or even 0.9; and to what extend does
topology formation criteria affect routing?

Because routes are established on top of topology graphs,
the topology formation criteria inevitably plays a big role in
the dynamics of routes. In this section, we step back from a
microscopic view of individual links to see the behavior of
routes over time.

4.1 Route lifetime
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Figure 11. The average amount of time a route between a
source and destination will last. “Broken’” means having
a link which falls under the PRR threshold. Increasing
the stretch factor results in generally less reliable routes,
since there are more opportunities for links in the path
to fail. Also, increasing the the threshold decreases path
longevity

Considering link dynamics over the entire day, we ob-
served that even a modest topology formation criteria elim-
inated much of the link variation. Can we extrapolate that
increasing the threshold results in more stable routes? To
answer this question we look at the slice-by-slice dynamics.
Surprisingly, the answer is no.

One metric of a route’s performance is its lifetime. We
define route lifetime as the amount of time between the ini-
tial formation of the route and the first time any link in the
route is dropped from the topology graph. Once some link
is no longer in the graph, the route is considered broken.
One might expect that as the topology formation criteria gets
more stringent, the route lifetime would increase as a result
of higher quality links. But to the contrary, as we can see
in Figure [T} the average route lifetime actually decreases
as we increase the PRR threshold. This is an artifact of our

binary topology formation criteria. Using a stringent binary
formation criteria such as high PRR threshold, a link may be
considered bad at times, and therefore drop out of the topol-
ogy graph, when it’s good a majority of the time. This tells
us that sometimes it’s better to have a more lenient topology
formation criteria to avoid frequent route repair and recov-
ery. Figure[TT|also shows that routes using links from MIN;
have longer lifetime than routes using links from MINy. This
suggests that allowing more flexibility in route selection also
improves route stability. This is understandable since MIN
has more links with better quality on average.
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Figure 12. The average path length between a set of 8
senders sending to 8 destinations.

One consequence of the hairy edge hypothesis is that by
using more stringent topology formation criteria, we trade
off link length for link quality and predictability. Simple ge-
ometry indicates that as we become more stringent on link
quality and predictability and link length decreases, it will
take more hops to connect two points in space. We explore
this effect in Figure[I2] As we expect, the mean route length
does increase as PRR threshold increase. This is another rea-
son to be more lenient on topology formation.

4.2 Route choices over time

One outstanding question is whether it is necessary that
topology formation be a dynamic process reacting to chang-
ing conditions, or if it is possible to develop a static set of
routes which then remain unchanged. Figure [I3]shows the
size of each important set and how those sets change between
each time-slice. The lowest section of the bars correspond
to links in MINy and the highest to links in MINs. We see
strong evidence here for the statement that route choices do
change over time and are affected by our topology formation
criteria.

Increasing the topology formation threshold filters out the
subset of the population of links in the route sets that fluctu-
ate more often, so the route-sets do not change as frequently.
This is seen in figure[I3(b)] To quantify the amount of varia-
tion observed we defined the churn of the route sets as shown



in equation |ZL where churn is I', MINg is the link route-set,
and 7 is time (or time-slice). Table [I] shows the difference in
observed changes in each set of route choices.
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Figure 13. Change in the size of important sets over time.
The bars are stacked so that the lowest piece of bar is
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The key feature of figure [T3]is the significant variation in
time of the size of route sets. This indicates that even in the
case of where a threshold results in a significant damp-
ing of the dynamic activity, there is still a dynamic compo-
nent to the network link state, and this variation occurs in a
way that will affect routing protocols. This is a strong indi-

r

T [[ MIN, | MIN; | MIN, | MIN;
0 6.1 | 484 | 73.6 | 104.1
0.50 - 59 | 219 | 263

Table 1. Churn of route sets shown in figure 13}

cation that there must be some dynamic component to route
formation, but it is not sufficient.

4.3 Route redundancy

We continue our discussion of the need for dynamism in
topology formation here by addressing a possible means of
stabilizing the shifting topology present in[I3] It is plausible
that if each node in the network maintains a list of next hops
for a path, rather then a single parent, much of the dynamics
will be hidden by the redundancy. In order to evaluate this,
we construct multitrees in our topology graph. For a given
destination, we construct a k-tree with k parent pointers at
each node pointing to possible next hops.

Figure [T4] shows network connectivity over time using a
tree topology. Network connectivity is the fraction of nodes
which have some path to the destination within the routing
multitree and topology graph. For the single parent case,
we see that the higher the topology formation criteria, the
higher the average network connectivity over time. A higher
selection criteria improves the average links quality, so you
would expect links to fluctuate less and routing paths to be
up longer.

As expected, even a small amount of redundancy (two
parents) shows a nearly 50% improvement in coverage over
a single parent, and added redundancy in the form of more
parents helps slightly more. This suggests that while there
are dynamic events which require a routing response, they
are relatively infrequent in a static network utilizing redun-
dancy.

Redundancy is good for improving average network con-
nectivity and robustness and is unaffected by our topology
formation criteria. Furthermore, and perhaps more impor-
tantly, for all cases, the network coverage is always below
100%. This means that adaptive route repair is still neces-
sary and should not be done offline.

5 Related Work

Routing protocol design in wireless sensor networks has
been motivated by the lessons learned from network-layer
design in internet research. Early on, OSI-model layering
was incorporated to provide a strict layering abstraction be-
tween the network layer (layer 3) and the link layer (layer
2). However, unlike internet system, sensornets are heavily
resource constrained. Energy consumption is of highest im-
portance for optimization. As such, work in the area began
to diverge for the standard networking approach with a rear-
rangement of the design goals.

Routing design is primarily interested in finding the
“best” routes while minimizing energy consumption. Data
transmission is an expensive activity [21} [13] so increasing
message-delivery efficiency becomes a top priority. Many
applications have stringent reliability constraints [21} [18}
20], so maximizing reliability is also of highest priority. Both
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Figure 14. Local redundancy improves the degree of con-
nectivity and thus reliability in a tree-based protocol.

incur a latency and throughput tradeoff, however, most appli-
cations operate at low duty cycle with low sensing and data-
send frequency [21} 128]], so low latency and high throughput
are not as important.

There have been many wireless routing protocols intro-
duced in the literature 7,18}, 115} 17,122,124, 2,120, 23|]. Each of
them is interested in minimizing the hop-count to the destina-
tion in comparison to the minimum hop-count (stretch) and
maximizing the stability of route selection. Consequently,
each maintains a list of available neighbors and uses a met-

ric for expelling neighbors that do not meet the minimum
threshold. The main metrics used are per-link packet recep-
tion rate (PRR) or the expected transmission count metric
(ETX) [12] along a path. These metrics are agnostic to link
dynamics and look to adaptively adjust their link ratings so
that the selections can adapt the behavior of the links in the
current environment. Our work generalizes the selection cri-
teria by comparing the impact of local decisions (neighbor
selection through link filtering) on route behavior on traces
taken from a real wireless testbed setting that experiences a
wide range in link dynamics.

Several studies have focused on characterizing the dy-
namics of wireless links in the context of low-power ra-
dios [34} 27,133,129, 130, [10]. In [34] Zuniga et al. examine
the root causes of link asymmetry and formulate an analyt-
ical model of link behavior. They also highlight the causes
for the transition region, where link behavior varies substan-
tially, and incorporate this observation into the formulation
of their model. They compare their model to experiments
using the mica2 [4] mote that uses a CC1000 [[1] radio and
show how the model closely fits the results of the data. In
our work, we also examine the extent of the transition region,
however we used micaZ [5] motes which use the CC2420 ra-
dio. We also examine the transition region in a real testbed
environment. Prior studies use a linear topology to observe
the behavior of the transition region.

The authors of [33]] formulate a radio model using both
the CC1000 and CC2420 called the radio irregularity model
(RIM). However, their experimental setting was an empty
parking lot with a pair of mica2 and micaZ motes whereas
we measured the transition region on a real wireless sensor-
net testbed in an office building. The paper also shows how
radio irregularity affects the link layer and network layer
through experiments using a CSMA-based MACs and sev-
eral routing protocols. They show that radio irregularity has
almost no effect on the link-layer, but that some routing pro-
tocols — mainly proactive protocols that try to do routing
through localization — are more more susceptible to radio ir-
regularity than reactive protocols like AODV. We are agnos-
tic to the link-layer protocol and distill routing mechanisms
to examine their impact on the goals for wireless routing.

This study also includes recommendations to improve
routing, which include a link-asymmetry detection compo-
nent that filters out links that do not have two-way commu-
nication. They propose a learning function approach to link
estimation that tracks the behavior of links over time and
filters out links that are not well-behaved. We also make rec-
ommendations to improve routing, however, our recommen-
dations general and can be applied to the parameters in most
routing schemes, whereas theirs are more focused on new
mechanisms that should exist within the family of protocols
they examined.

In the interest of maximizing message-delivery efficiency,
routing protocols want to minimize the number of retrans-
missions. Several studies examine the decoupling of the link-
selection mechanism into its own component called the link
estimator (25, [14]. In [14] Fonseca et al. propose the use of
a cross-layer link estimator that uses four bits of information
for 3 layers (physical layer, link layer, and the network layer)



to estimate the quality of a link over time. Again, our work is
agnostic to the mechanisms in the link-layer and instead fo-
cuses on making decisions based on the dynamics observed
by the network layer. Links are inherently dynamic and can
be very unpredictable regardless of the link-estimation met-
ric, as such, link estimation cannot hide the fundamental be-
havior of link and our study still stands to improve routing
protocol design decisions.

In 802.11 wireless networking link behavior [6] and link
estimation has also been examined [31} [19], however since
802.11 devices are usually plugged in to a power source,
there has not been as much work in the area of explicit link
estimation.

6 Conclusion

We began our study with the goal to characterize the un-
derlying impact of link dynamics on wireless routing and to
answer a set of questions, including the validity of the “hairy
edge” hypothesis.

Using a connectivity graph built from emperical link re-
ception data on a relatively deep testbed, we are able to ob-
tain a rich set of topology graphs using various formation
criterias; and from which we base our analysis of routing al-
gorithm design trade-offs. This methodology allows us to
draw conclusions that are relevant to a wide range of wire-
less routing protocols and are not specific to any particular
mechanism.

Using shortest path as a metric for importance and vari-
ance and entropy as metrics for unpredicatability, we observe
that the “hairy edge” phenomenon is in fact pronounced
when the topology formation criteria is lenient. When com-
bined with a stringent routing criteria, shortest path routing
indeed tend to pick links that are on the hairy edge. On
the other hand, a more stringent topology formation crite-
ria weeds out poor and unpredictable links, leaving a set of
high quality links.

However, link churn is not the same as route churn. When
we look at the stability of routes (in the form of route life-
times), a more stringent topology formation criteria actually
reduces the route lifetime. A link is often considered bad
at times by the stringent selection criteria when it is actu-
ally usable. A more strigent topology criteria also results in
deletion of long links. This leads to routes with longer hop
counts, decreasing the stability of the overall routes. If we
relax our route selection criteria, we gain significantly more
links. While the inidividual links may not be as well directed,
we find that having the extra links available for immediate lo-
cal repair significantly increase the overall network coverage
and robustness.

Many existing routing protocols incorporate mechanisms
that perform the topology formation and route selection dis-
cussed in this study. Our findings can directly guide the
design choices of existing and future protocols. For exam-
ple, CTP, like many protocols, decouples link estimation
from routing. Our results suggest that a lenient link esti-
mator should be used to maintain stable routes. CTP’s use
of multiple parents is highly recommended, however eight
candidates is excessive. Two is sufficient in most environ-
ments. CTP’s adaptive beaconing will help maintain a fresh

topology, which is important when links fluctuate. Currently
CTP only uses links on the minhop route, but it may benefit
from relaxing this constraint and allowing routing through
links in the minhop+1 routes. AODV, on the other hand, per-
forms topology formation by putting all received nodes in the
neighor set. It is likely to benefit from using a low threshold
filter that takes out the obvious bad links. AODV might also
benefit from allowing suboptimal entries in its routing table,
such as maintaining multiple entries for a particular destina-
tion.

Starting from a comprehensive trace of the dynamics on
all links in a large, realistic testbed, we are able to isolate the
fundamental interactions between topology formation and
routing algorithm. This provides a means of assessing de-
sign trade-offs and optimizations for specific algorithms or
for entire classes of algorithms in graph theoretic terms.
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