
Fast Support Vector Machine Training and
Classification on Graphics Processors

Bryan Christopher Catanzaro
Narayanan Sundaram
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-11

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-11.html

February 8, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Fast Support Vector Machine Training and Classification on
Graphics Processors

Bryan Catanzaro catanzar@eecs.berkeley.edu
Narayanan Sundaram narayans@eecs.berkeley.edu
Kurt Keutzer keutzer@eecs.berkeley.edu

University of California, Berkeley, 545Q Cory Hall, Berkeley, CA 94720

Keywords: Support Vector Machines, Sequential Minimal Optimization, Graphics Processing Units

Abstract

Recent developments in programmable,
highly parallel Graphics Processing Units
(GPUs) have enabled high performance
implementations of machine learning algo-
rithms. We describe a solver for Support
Vector Machine training, using Platt’s
Sequential Minimal Optimization algorithm,
which achieves speedups of 5-32× over
LibSVM running on a high-end traditional
processor. We also present a system for
SVM classification which achieves speedups
of 120-150× over LibSVM.

1. Introduction

Driven by the capabilities and limitations of modern
semiconductor manufacturing, the computing indus-
try is currently undergoing a massive shift towards
parallel computing (Asanović et al., 2006). This shift
brings dramatically enhanced performance to those al-
gorithms which can be adapted to parallel computers.

One set of such algorithms are those used to imple-
ment Support Vector Machines (Cortes & Vapnik,
1995). Thanks to their robust generalization perfor-
mance, SVMs have found use in diverse classification
tasks, such as image recognition, bioinformatics, and
text processing. Yet, training Support Vector Ma-
chines and using them for classification remains very
computationally intensive. Much research has been
done to accelerate training time, such as Osuna’s de-
composition approach (Osuna et al., 1997), Joachims’
SV M light (Joachims, 1999), which introduced shrink-
ing and kernel caching, Platt’s Sequential Minimal Op-

timization (SMO) algorithm (Platt, 1999), and the
working set selection heuristics used in LibSVM (Fan
et al., 2005). Despite the extensive research that has
been done to accelerate SVM training, it is still very
significant for larger training sets.

In this paper, we show how Support Vector Machine
training and classification can be adapted to a highly
parallel, yet widely available and affordable computing
platform: the graphics processor, or more specifically,
the Nvidia GeForce 8800 GTX, and detail the perfor-
mance gains achieved.

The organization of the paper is as follows. Section 2
describes the SVM training and classification problems
briefly. Section 3 gives an overview of the architec-
tural and programming features of the GPU. Section
4 presents the details of implementation of the paral-
lel SMO approach on the GPU. Section 5 explains the
implementation details of the SVM classification prob-
lem. We present our results in Section 6 and conclude
in Section 7.

2. Support Vector Machines

We consider the standard two-class soft-margin SVM
classification problem (C-SVM), which classifies a
given data point x ∈ Rn by assigning a label y ∈
{−1, 1}.

2.1. SVM Training

Given a labeled training set consisting of a set of data
points xi, i ∈ {1, ..., l} with their accompanying la-
bels yi, i ∈ {1, ..., l}, the SVM training problem can

Fast Support Vector Machine Training and Classification on Graphics Processors

be written as the following Quadratic Program:

max
l∑

i=1

αi −
1
2
αT Qα

s.t. 0 ≤ αi ≤ C,∀i ∈ 1 . . . l

yT α = 0

(1)

where xi ∈ Rn is training data point i, yi ∈ {−1, 1}
is the label attached to point xi, and αi is a set of
weights, one for each training point, which are being
optimized to determine the SVM classifier. C is a pa-
rameter which trades classifier generality for accuracy
on the training set, and Qij = yiyjΦ(xi, xj), where
Φ(xi, xj) is a kernel function. We consider the stan-
dard kernel functions shown in table 1.

Table 1. Standard Kernel Functions

Linear Φ(xi, xj) = xi · xj

Polynomial Φ(xi, xj ; a, r, d) = (axi · xj + r)d

Gaussian Φ(xi, xj ; γ) = exp
˘
−γ||xi − xj ||2

¯
Sigmoid Φ(xi, xj ; a, r) = tanh(axi · xj + r)

2.1.1. SMO Algorithm

The SVM Training problem can be solved by many
methods, each with different parallelism implications.
We have implemented the Sequential Minimal Opti-
mization algorithm, first proposed by Platt (Platt,
1999), with the improved first-order variable selection
heuristic proposed by Keerthi (Keerthi et al., 2001).

The SMO algorithm is a specialized optimization ap-
proach for the SVM quadratic program. It takes ad-
vantage of the sparse nature of the support vector
problem and the simple nature of the constraints in
the SVM QP to reduce each optimization step to its
minimum form: updating two αi weights. The bulk of
the computation is then to update the Karush-Kuhn-
Tucker optimality conditions for the remaining set of
weights and then reduce to find the two maximally vi-
olating weights, which are then updated in the next
iteration until convergence.

The optimality conditions can be tracked through the
vector fi =

∑l
j=1 αjyjΦ(xi, xj) − yi, which is con-

structed iteratively as the algorithm progresses. Fol-
lowing (Keerthi et al., 2001), we partition the training
points into 5 sets, represented by their indices:

1. (Unbound SVs) I0 = {i : 0 < αi < C}
2. (Positive NonSVs) I1 = {i : yi > 0, αi = 0}
3. (Bound Negative SVs) I2 = {i : yi < 0, αi = C}
4. (Bound Positive SVs) I3 = {i : yi > 0, αi = C}
5. (Negative NonSVs) I4 = {i : yi < 0, αi = 0}

where C remains as defined in the SVM QP. We
then define bhigh = min{fi : i ∈ I0 ∪ I1 ∪ I2}, and
blow = max{fi : i ∈ I0 ∪ I3 ∪ I4}, with their ac-
companying indices Ihigh = arg mini∈I0∪I1∪I2 fi, and
Ilow = arg maxi∈I0∪I3∪I4 fi.

As outlined in algorithm 1, at each step we search for
bhigh and blow. We then then update their associated
α weights according to the following:

α′Ilow
= αIlow

+
yIlow

(bhigh − blow)
η

(2)

α′Ihigh
= αIhigh

+ yIlow
yIhigh

(αIlow
− α′Ilow

) (3)

where η = Φ(xIhigh
, xIhigh

) + Φ(xIlow
, xIlow

) −
2Φ(xIhigh

, xIlow
). To ensure that this update is fea-

sible, α′Ilow
and α′Ihigh

must be clipped to the valid
range 0 ≤ αi ≤ C.

After the α update, the optimality condition vector f
is updated for all points. This is done as follows:

f ′i = fi + (α′Ihigh
− αIhigh

)yIhigh
Φ(xIhigh

, xi)

+ (α′Ilow
− αIlow

)yIlow
Φ(xIlow

, xi)
(4)

This update step is where the majority of work is per-
formed in this algorithm.

2.2. SVM Classification

The SVM classification problem is as follows: for each
data point z which should be classified, compute

ẑ = sgn

{
b +

l∑
i=1

yiαiΦ(xi, z)

}
(5)

where z ∈ Rn is a point which needs to be classified,
b is an offset derived from the solution to the SVM
training problem (1), and all other variables remain as
previously defined.

From the classification problem definition, it follows
immediately that the decision surface is defined by ref-
erencing a subset of the training data, or more specif-

Algorithm 1 Sequential Minimal Optimization
Input: training data xi, labels yi, ∀i ∈ {1..l}
Initialize: αi = 0, fi = −yi, ∀i ∈ {1..l}
Compute: bhigh, Ihigh, blow, Ilow

Update αIhigh
and αIlow

repeat
Update fi, ∀i ∈ {1..l}
Compute: bhigh, Ihigh, blow, Ilow

Update αIhigh
and αIlow

until blow ≤ bhigh + 2τ

Fast Support Vector Machine Training and Classification on Graphics Processors

ically, those training data points for which the cor-
responding αi > 0. Such points are called support
vectors.

Generally, we classify not just one point, but a set of
points. This can also be exploited for better perfor-
mance, as explained in Section 5.

3. Graphics Processors

Graphics processors are currently transitioning from
their initial role as specialized accelerators for trian-
gle rasterization to general purpose engines for high
throughput floating-point computation. Because they
still service the large gaming industry, they are ubiq-
uitous and relatively inexpensive.

State of the art GPUs provide up to an order of mag-
nitude more peak IEEE single-precision floating-point
than their CPU counterparts. Additionally, GPUs
have much more aggressive memory subsystems, typ-
ically endowed with more than 10x higher memory
bandwidth than a CPU. Peak performance is usu-
ally impossible to achieve on general purpose appli-
cations, yet capturing even a fraction of peak perfor-
mance yields significant speedups.

GPU performance is dependent on finding high degrees
of parallelism: a typical computation running on the
GPU must express thousands of threads in order to
effectively use the hardware capabilities. As such, we
consider it an example of future ”many-core” process-
ing (Asanović et al., 2006). Algorithms for machine
learning applications will need to consider such par-
allelism in order to utilize many-core processors. Ap-
plications which do not express parallelism will not
continue improving their performance when run on
newer computing platforms at the rates we have en-
joyed in the past. Therefore, finding large scale par-
allelism is important for compute performance in the
future. Programming for GPUs is then indicative of
the future many-core programming experience.

In the past, GPUs have not provided sufficient
floating-point accuracy to be generally useful. This is
changing, now that Nvidia provides true round to near-
est even rounding on IEEE single precision datatypes,
and promises to implement IEEE double precision
datatypes in the near future. However, neither AMD
nor Nvidia currently supports the full set of IEEE
rounding modes, or denormalized numbers. Addition-
ally, accuracy on certain operations, such as division,
square root, and the transcendental functions is not
guaranteed to reach full IEEE standard accuracy. For
many machine learning applications, such as the SVM
training and classification applications that we present

in this paper, these caveats are not significant.

GPU architectures are specialized for compute-
intensive, highly-parallel computation, and therefore
are designed such that more resources are devoted to
data processing than caching or flow control. In their
current state GPUs are mainly used as accelerators
for specific parts of an application, and as such are
attached to a host CPU that performs most of the
control-dominant computation.

3.1. Nvidia GeForce 8800 GTX

In this project, we employ the NVIDIA GeForce 8800
GTX GPU, which is an instance of the G80 GPU ar-
chitecture, and is a standard GPU widely available
on the market. Pertinent facts about the GPU plat-
form can be found in table 2. We refer the reader to
the Nvidia CUDA reference manual for more details
(Nvidia, 2007).

Table 2. Nvidia GeForce 8800 GTX Parameters

Number of multiprocessors 16
Multiprocessor width 8
Multiprocessor local store size 16 kB
of stream processors 128
Peak general purpose IEEE SP 346 GFlops
Clock rate 1.35 GHz
Memory capacity 768 MB
Memory bandwidth 86.4 GB/s
CPU←→GPU bandwidth 3.2 Gbit/s

3.2. CUDA

Nvidia provides a programming environment for its
GPUs called the Compute Unified Device Architecture
(CUDA). The user codes in annotated C++, acceler-
ating compute intensive portions of the application by
executing them on the GPU.

Figure 1 illustrates how the GPU appears to the pro-
grammer. The programmer organizes the computa-
tion into grids, which are organized as a set of thread
blocks. The grids run sequentially on the GPU, mean-
ing that all computation in the grid must finish before
another grid is invoked. As mentioned, grids contain
thread blocks, which are batches of threads that exe-
cute together, sharing local memories and synchroniz-
ing at programmer specified barriers. A maximum of
512 threads can comprise a thread block, which puts a
limit on the scope of synchronization and communica-
tion in the computation. However, enormous numbers
of blocks can be launched in parallel in the grid, so
that the total number of threads that can be launched
in parallel is very high. In practice, we need a large

Fast Support Vector Machine Training and Classification on Graphics Processors

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread
(0, 0)

Register
s

Local
Memory

Thread
(1, 0)

Register
s

Block (1, 0)

Shared Memory

Thread
(0, 0)

Register
s

Thread
(1, 0)

Register
s

Host

Local
Memory

Local
Memory

Figure 1. Logical organization of the GeForce 8800

number of thread blocks to ensure that the compute
power of the GPU is efficiently utilized.

4. SVM Training Implementation

Since GPUs need a large number of threads to effi-
ciently exploit parallelism, we create one thread for
every data point in the training set. The task of each
thread is to compute f ′ in (4), which reflects the im-
pact of the optimization step on the optimality con-
ditions of the remaining data points. We then apply
the first order working set selection heuristic (Keerthi
et al., 2001) to select the points to optimize in the
next iteration. The details are explained in the follow-
ing section.

4.1. Map Reduce

At least since the LISP programming language, pro-
grammers have been mapping independent computa-
tions onto partitioned data sets, using reduce oper-
ations to summarize the results. Recently, Google
proposed a Map Reduce variant for processing large
datasets on compute clusters (Dean & Ghemawat,
2004). This algorithmic pattern is very useful for ex-
tracting parallelism, since it is simple to understand,
and maps well to parallel hardware, given the inherent
parallelism in the map stage of the computation.

The Map Reduce pattern has been shown to be useful
for many machine learning applications (Chu et al.,
2007), and is a natural fit for our SVM training al-
gorithm. The computation of f ′ in (4) is the map
function, and the search for blow, bhigh, Ilow and Ihigh

is the reduction operation. The parallelism needed for
extracting performance on the GPU comes from the

number of training points in the data set: for each
data point, an element of f ′ must be computed, which
is done by a dedicated thread. After the map func-
tion has been performed, the results are summarized
by the reduction to compute the final result. In order
to extract maximum parallelism, we structure the re-
duction as a tree, where the number of elements still
participating in the reduction halves at each level of
the reduction.

Map +

Local

Reduce

Global

Reduce

Figure 2. Structuring the Map Reduce

Because the CUDA programming model has strict lim-
itations on synchronization and communication be-
tween thread blocks, we have organized the reduction
in stages, as shown in figure 2. The first stage does the
map computation, as well as a local reduce within a
thread block. Subsequent stages implement the global
reduce. Each stage of this process is implemented as a
call to the GPU. For really large datasets, the global
reduce is done in stages, with more than one call to
the GPU.

4.2. Implementation Details

4.2.1. Caching

Since evaluating the kernel function Φ(·) is a dominant
part of the computation, it is useful to cache as much
as possible from the matrix of kernel function evalua-
tions Kij = Φ(xi, xj) (Joachims, 1999). We compute
rows of this matrix on the fly, as needed by the algo-
rithm, and cache them in the available memory on the
GPU.

When updating the vector f , we need access to two
rows of K, since we have changed exactly two entries
in α. In our system, the CPU checks to see which of
these two rows, if any, are present in the cache. If a row
is not present, the CPU voids the least recently used
row of the cache, and assigns it to the new row which
is needed. For the rows which hit in the cache, the
GPU avoids doing the kernel evaluations. Otherwise,
the GPU writes out the appropriate row or rows after
computing the kernel values.

Fast Support Vector Machine Training and Classification on Graphics Processors

4.2.2. Data Movement

Programming the GPU requires manually copying
data from the host computer to the GPU and vice
versa, and it also requires manually copying data from
the GPU’s global memory to the fast local stores. As
mentioned previously, if the cache does not contain a
particular row of K corresponding to the point xj , that
row will need to be generated, which means that we
need to compute Φ(xi, xj) ∀i ∈ 1..l. Since the vector
xj is shared between all computations, we load it into
the GPU’s local store. This is key to performance,
since accessing the local store is orders of magnitude
faster than accessing the global memory.

4.3. Related Work

There have been previous attempts to parallelize the
SVM training problem. The most similar to ours is
(Cao et al., 2006), which parallelizes the SMO algo-
rithm on a cluster of computers using MPI. Both our
approach and their approach use the parallelism inher-
ent in the KKT condition updates as the major source
of parallelism. However, in terms of implementation,
GPUs present a completely different model than clus-
ters, and hence the amount of parallelism exploited,
such as the number of threads, granularity of compu-
tation per thread, memory access patterns, and data
partitioning are very different.

Many other approaches for parallelizing SVM train-
ing have been presented. The cascade SVM (Graf
et al., 2005) is another proposed method for paralleliz-
ing SVM training on clusters. It uses a method of di-
vide and conquer to solve large SVM problems. (Zanni
et al., 2006) parallelize the underlying QP solver us-
ing Parallel Gradient Projection Technique. Work has
been done on using a parallel Interior Point Method for
solving the SVM training problem (Wu et al., 2006).
(Collobert et al., 2002) proposes a method where the
several smaller SVMs are trained in a parallel fashion
and their outputs weighted using a Artificial Neural
Network. (Ferreira et al., 2006) implement a gradi-
ent based solution for SVM training, which relies on
data parallelism in computing the gradient of the ob-
jective function for an unconstrained QP optimization
at its core. Some of these techniques, for example, the
training set decomposition approaches like the Cas-
cade SVM are orthogonal to the work we describe,
and could be applied to our solver. We implemented
the parallel SMO training algorithm because of its rel-
ative simplicity, yet high performance and robust con-
vergence characteristics.

5. SVM Classification Implementation

We approached the SVM classification problem by
making use of the Map Reduce computations as well
as vendor supplied Basic Linear Algebra Subroutines
- specifically, the Matrix Matrix Multiplication rou-
tine (SGEMM), which calculates C ′ = αAB + βC,
for matrices A, B, and C and scalars α and β. For
the Linear, Polynomial, and Sigmoid kernels, calcu-
lating the classification value involves finding the dot
product between all test points and the support vec-
tors, which is done through SGEMM. For the Gaus-
sian kernel, we use the simple identity ||x − y||2 =
x·x+y·y−2x·y to recast the computation into a Matrix
Matrix multiplication, where the SGEMM computes
Dij = −γ||zi − xj ||2 = 2γ(zi · xj)− γ(zi · zi + xj · xj),
for a set of unknown points z and a set of support vec-
tors x. We then apply a map reduce computation to
combine the computed D values to get the final result.

Continuing the Gaussian example, the map function
exponentiates Dij element wise, multiplies each col-
umn of the resulting matrix by the appropriate yjαj .
The reduce function sums the rows of the matrix and
adds b to obtain the final classification for each data
point as given by equation (5). Other kernels require
similar map reduce calculations to finish the classifica-
tion.

6. Results

The SMO implementation on the GPU is compared
with LibSVM, as LibSVM uses Sequential Minimal
Optimization for SVM training. We used the Gaus-
sian kernel in all of our experiments, since it is widely
employed.

6.1. Training

We tested the performance of our GPU implementa-
tion versus LibSVM on the following datasets:

Table 3. Dataset Size

Dataset # Points # Dimensions

Adult 32,561 123
Web 49,749 300

MNIST 60,000 784
USPS 7,291 256
Forest 561,012 54
Face 6,977 381

Adult dataset (Asuncion & Newman, 2007) presents
the task of classifying if a person’s income exceeds
$50000/year based on census data. Each data-

Fast Support Vector Machine Training and Classification on Graphics Processors

Table 4. Details from SVM training on the GPU and with LibSVM

GPU LibSVM
Dataset # SV Iterations # SV Iterations % difference

in b

Adult 18,666 115,838 19,058 43,735 0.006
Web 35,220 81,721 35,232 85,299 0.01
MNIST 43,731 68,008 43,756 76,385 0.04
USPS 684 7,062 684 4,614 0.02
Forest 270,373 2,064,502 270,311 275,516 0.08
Face 3,310 6,024 3,322 5,342 0.01

point has 123 binary attributes. For this dataset,
we used a value of C = 100 and γ=0.5.

Web dataset (Platt, 1999) has a set of 300 binary
attributes for every point in the dataset. These
correspond to the attributes of a web page and
the task is to decide if the web page belongs to a
particular category or not. C=64 and γ=7.8125
were used (Cao et al., 2006).

MNIST dataset (LeCun et al., 1998) has a set of
28×28 images, each of which has a handwritten
digit. The task is to be able to classify a digit
as one of the 10 categories. Since this is a multi-
class classification problem, we converted it into
a 2-class problem by doing a even-Vs-odd digit
classification. The values of C and γ used were 10
and 0.125 respectively.

USPS dataset (Hull, 1994) is also a handwritten
digit classification dataset on 12×12 images. An
even-Vs-odd classification was performed on the
dataset. C=10, γ = 2−8 were used.

Forest cover type (Asuncion & Newman, 2007) is
a dataset of cartographic variables from US Geo-
logical survey data. The task is to predict for-
est cover type from the information. It is a
multiclass classification problem. We have used
a class-2-versus-the-rest problem for our experi-
ments. C=10 and γ=0.125 were used.

Face detection dataset (Rowley et al., 1998) has a
set of 19×19 images of faces and non-faces, which
are histogram equalized and normalized. The task
is to separate the faces from the non-faces. The
training values used were C=10 and γ=0.125.

The sizes of the datasets are given in table 3.

We ran LibSVM on an Intel Core 2 Duo 2.66 GHz
processor, and gave LibSVM a cache size of 650 MB,
which is slightly larger than our GPU implementation
was allowed. File I/O time was not included in solver

runtime. Table 4 shows results from our solver. Since
any two solvers give slightly different answers on the
same optimization problem, due to the inexact nature
of the optimization process, we show the number of
support vectors returned by the two solvers as well as
how close the final values of b were for the GPU solver
and LibSVM, which were both run with the same tol-
erance value τ = 0.001. As shown in the table, the
deviation in number of support vectors between the
two solvers is less than 2%, and the deviation in the
offset b is always less than 0.1%. Our solver provides
equivalent accuracy to the LibSVM solver, which will
be shown again in the classification results section.

Table 5. Comparison of GPU vs LibSVM solve times

Dataset GPU LibSVM Speedup
(sec) (sec)

Adult 36.312 550.178 15.1
Web 181.334 2422.469 13.4
MNIST 525.783 16965.794 32.3
USPS 0.733 5.092 6.9
Forest 13360.785 66523.538 5.0
Face 2.57 27.61 10.7

Table 5 contains performance results for the two
solvers. We see speedups in all cases from 5× to 32×.
There is still room for improving these figures, since
we have not yet implemented all the optimizations pos-
sible for this problem. For example, LibSVM uses a
second order heuristic for picking the new points for
doing a single iteration of QP optimization, while our
GPU implementation uses a first order heuristic. In
most cases, this leads to the GPU solver running many
more iterations than LibSVM. Also, for large sparse
datasets, our solver is disadvantaged because we cur-
rently represent the data in a dense format. Further-
more, we haven’t yet implemented working set shrink-
ing. Despite the relative immaturity of our solver, we
still achieve significant performance gains. For prob-
lems with large dimensions and where the number of it-
erations are close to those of LibSVM, the GPU solver
achieves significant speedups.

Fast Support Vector Machine Training and Classification on Graphics Processors

Table 6. Performance and accuracy of GPU SVM classification vs. LibSVM

GPU LibSVM
Dataset Accuracy Time (s) Accuracy Time (s) Speedup

Adult 6619/8000 0.570 6619/8000 75.65 132.5
Web 3920/4000 1.069 3920/4000 144.53 135.2
MNIST 2400/2500 1.98 2400/2500 258.751 130.7
USPS 1948/2007 0.0097 1948/2007 1.194 123.2
Face 23664/24045 0.706 23665/24045 109.259 154.8

6.2. Classification

Results for our classifier are presented in table 6.
We achieve 120-150x speedup over LibSVM on the
datasets shown. As with the solver, file I/O times
were excluded from overall runtime.

When performing the classification tests, we used the
SVM classifier output by the GPU solver with the
GPU classifier, and used the SVM classifier provided
by LibSVM’s solver to perform classification with Lib-
SVM. Thus, the accuracy of the classification results
presented in table 6 reflect the overall accuracy of the
GPU solver and GPU classifier system. The results
are essentially identical. Only one out of 40552 test
points were classified differently between the two sys-
tems, which shows that our GPU based SVM system
is as accurate as traditional CPU based methods.

7. Conclusion

This work has demonstrated the utility of graphics
processors for SVM classification and training. Train-
ing time is reduced by 5− 32×, and classification time
is reduced by 120−150× compared to LibSVM. These
kinds of performance improvements can change the
scope of SVM problems which are routinely solved,
increasing the applicability of SVMs to difficult clas-
sification problems. For example, finding a classifier
for an input data set with 60000 data points and 784
dimensions takes less than ten minutes on the GPU,
compared with almost 5 hours on the CPU. Scanning
images for faces with SVMs can be done at a rate of
34200 Faces/second versus only 220 Faces/second on
the CPU.

The GPU is a very low cost way to achieve such high
performance: the GeForce 8800 GTX fits into any
modern desktop machine, and currently costs $500,
while the compatible GeForce 8800 GT provides 97%
of the floating-point performance for only $300. Prob-
lems which used to require a compute cluster can now
be solved on one’s own desktop. New machine learn-
ing algorithms that can take advantage of this kind
of performance, by expressing parallelism widely, will

provide compelling benefits on future many-core plat-
forms.

References

Asanović, K., Bodik, R., Catanzaro, B. C., Gebis,
J. J., Husbands, P., Keutzer, K., Patterson, D. A.,
Plishker, W. L., Shalf, J., Williams, S. W., & Yelick,
K. A. (2006). The Landscape of Parallel Computing
Research: A View from Berkeley (Technical Report
UCB/EECS-2006-183). EECS Department, Univer-
sity of California, Berkeley.

Asuncion, A., & Newman, D. (2007). UCI machine
learning repository.

Cao, L., Keerthi, S., Ong, C.-J., Zhang, J., Periy-
athamby, U., Fu, X. J., & Lee, H. (2006). Paral-
lel sequential minimal optimization for the training
of support vector machines. IEEE Transactions on
Neural Networks, 17, 1039–1049.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski,
G., Ng, A. Y., & Olukotun, K. (2007). Map-reduce
for machine learning on multicore. In B. Schölkopf,
J. Platt and T. Hoffman (Eds.), Advances in neural
information processing systems 19, 281–288. Cam-
bridge, MA: MIT Press.

Collobert, R., Bengio, S., & Bengio, Y. (2002). A par-
allel mixture of svms for very large scale problems.
Neural Computation, 14, 1105–1114.

Cortes, C., & Vapnik, V. (1995). Support-vector net-
works. Mach. Learn., 20, 273–297.

Dean, J., & Ghemawat, S. (2004). Mapreduce: sim-
plified data processing on large clusters. OSDI’04:
Proceedings of the 6th Symposium on Operating Sys-
tems Design & Implementation. Berkeley, CA, USA:
USENIX Association.

Fan, R.-E., Chen, P.-H., & Lin, C.-J. (2005). Work-
ing set selection using second order information for
training support vector machines. J. Mach. Learn.
Res., 6, 1889–1918.

Fast Support Vector Machine Training and Classification on Graphics Processors

Ferreira, L. V., Kaskurewicz, E., & Bhaya, A. (2006).
Parallel implementation of gradient-based neural
networks for svm training. International Joint Con-
ference on Neural Networks.

Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I.,
& Vapnik, V. (2005). Parallel support vector ma-
chines: The cascade svm. In L. K. Saul, Y. Weiss
and L. Bottou (Eds.), Advances in neural infor-
mation processing systems 17, 521–528. Cambridge,
MA: MIT Press.

Hull, J. J. (1994). A database for handwritten text
recognition research. IEEE Trans. Pattern Anal.
Mach. Intell., 16, 550–554.

Joachims, T. (1999). Making large-scale support vec-
tor machine learning practical. In Advances in ker-
nel methods: support vector learning. Cambridge,
MA, USA: MIT Press.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. (2001). Improvements to Platt’s
SMO Algorithm for SVM Classifier Design. Neural
Comput., 13, 637–649.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86,
2278–2324.

Nvidia (2007). Nvidia CUDA. http://nvidia.com/
cuda.

Osuna, E., Freund, R., & Girosi, F. (1997). An im-
proved training algorithm for support vector ma-
chines. Neural Networks for Signal Processing [1997]
VII. Proceedings of the 1997 IEEE Workshop, 276–
285.

Platt, J. C. (1999). Fast training of support vector
machines using sequential minimal optimization. In
Advances in kernel methods: support vector learn-
ing, 185–208. Cambridge, MA, USA: MIT Press.

Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neural
network-based face detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20,
23–38.

Wu, G., Chang, E., Chen, Y. K., & Hughes, C. (2006).
Incremental approximate matrix factorization for
speeding up support vector machines. KDD ’06:
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining
(pp. 760–766). New York, NY, USA: ACM Press.

Zanni, L., Serafini, T., & Zanghirati, G. (2006). Par-
allel software for training large scale support vec-
tor machines on multiprocessor systems. J. Mach.
Learn. Res., 7, 1467–1492.

