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Abstract

Complexity of Game Dynamics

by

Alexander Fabrikant

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Christos H. Papadimitriou, Chair

What happens when independent agents interact based on their selfish interests? Game

theory’s earliest and most natural simple model of such interaction is the best-response

Nash dynamics, the process of agents making unilateral moves that are their best response

to the actions of others. Pure Nash equilibria, when they do exist, arise naturally as the

steady states of this process. When they don’t exist, behavioral predictions can be made

from ”sink equilibria”, a universal (guaranteed to exist) generalization of Nash equilibria to

”steady clusters of states.”

We now know that it is vital for a model of naturally-occuring behavior to be

computationally tractable, not only for simulations, but also to check how realistic the

model is, since we expect that nature (aside maybe from quantum physics) cannot produce

systems with fundamentally more computational power than computers as we know them.

In this dissertation, I show several results about the tractability of analyzing a

game’s best-response dynamics. If the game payoff tables are given explicitly (in normal

form), searching for pure Nash or sink equilibria is trivial. However, most interesting games

are represented more succinctly. For pure Nash equilibria, I show that in potential games,

a well-studied class of succinct games guaranteed to have pure equilibria, finding pure Nash

equilibria is PLS-complete, and the best-response dynamics takes an exponentially long

time to converge in the worst case, even when the games are restricted to network routing

games, or to symmetric games. For sink equilbria, I prove that it is PSPACE-complete to

analyze them in graphical games.

On the practical side, I resolve a decade-old well-known open problem in network-
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ing by establishing that it is PSPACE-complete to predict whether Internet inter-domain

routing may be destabilized by large-scale oscillations; that is, whether a system of path

preferences in the BGP protocol may lead to flapping. This turns out to be a question

about the best-response dynamics in a special kind of game.

Lastly, I propose several enhanced equilibrium concepts inspired by game

dynamics that allow for higher rationality by the players while mostly retain-

ing the tractability and universality of sink equilibria in normal-form games.

Professor Christos H. Papadimitriou
Dissertation Committee Chair
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Chapter 1

Introduction

Games, that is, interactions between self-interested parties, are everywhere. Be-

yond their original and natural domain in economics, they appear in political science and

military strategy, ecology and animal behavior, and now, in the era of global networking,

in Internet-scale computer systems, among various other domains. Game theory, the study

of such systems, has sought to model the interests of the “players” and the interactions

between them, and to forecast the outcomes.

As with any modeling endeavour, game theory has had to balance between the du-

elling objectives of realism and tractability — the more realistic sophistication is added to a

model, the more difficult is it to analyze it and make predictions based on it. Traditionally,

these two objectives have been fundamentally separate, both in game theory and elsewhere.

The arguments defending a game-theoretic model’s realism were based on economics, psy-

chology, or other aspects of the application domain. On the other hand, the tractability of

analyzing the model and of making predictions depended on available mathematical tools.

With the rise of computer modeling, the computational tractability of simulating

the model, or of otherwise computing its predicted outcome, has become an important

consideration. But, beyond simulation as such, computational complexity can, via lower

bounds, also offer a window on the other side of the above trade-off. The strong version

of the Church-Turing Thesis, believed widely enough by modern computer science to be

considered all but axiomatic1, states that effectively that no physical system can perform

computation asymptotically much more efficiently than a (probabilistic) Turing Machine, or

a computer as we know it. So, if a model looks like a prima facie reasonable representation

1except perhaps for a still-controversial caveat about quantum computation
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of its intended application domain, but is then found to be computationally intractable to

simulate, how can we claim it to be realistic? For if the real world (in our case, the market,

or the network of autonomous entities) is indeed behaving like the model predicts, it is then

“computing” a problem more efficiently than a computer. Thus, the Church-Turing Thesis

casts immediate doubt on just how well this model represents the real system.

It is with this two-pronged motivation that theoretical computer scientists have

recently turned their attention to game theory, in hope of either discovering algorithms for

analyzing game theoretical models, for both games that arise in other areas of computer

science and games at large; or of proving lower bounds on their tractability, as a tool for

critiquing the plausibility of the models.

Game theory’s earliest and simplest model is the normal-form game. Each of m

players has a finite set of actions (or strategies), Si. When every player selects an action

from his set, each player i’s utility (or payoff ) is a function of everyone’s choice of action. A

strategy profile (combination of everyone’s strategies) where no one player can unilaterally

change his strategy and improve his payoff is called a pure Nash equilibrium. While pure

Nash equilibria aren’t guaranteed to exist, extending the model to allow mixed strategies

— each player picks a distribution over his strategy set rather than a single strategy, and

“improvement” is measured based on expected payoff — produces mixed Nash equilibria.

Pure and mixed Nash equilibria are game theory’s earliest and most prominent

solution concepts, that is, predictions of game outcome. Nash’s seminal 1950 paper [Nas50],

the first major study of normal-form games in full generality, a model that by far subsumed

the prior study of the restricted case of zero-sum games [NM44] and specific economic models

[Cou38], proved that mixed Nash equilibria exist in all games. This paper is now considered

one of the founding works of modern game theory [Mye99], and Nash equilibria, both mixed

and pure, are the standard against which new solution concepts are first compared. They are

thus the natural place to begin the study of computational complexity of selfish behavior.

While heuristics for computing mixed Nash in practice date back to the Lemke-

Howson algorithm from 1964 [vS02], they come without a good upper bound on the running

time, with Lemke-Howson in particular even proven to have exponential worst-case behavior

[SvS03]. The first major result in understanding the worst-case complexity of games was a

pair of recent breakthroughs [DGP06; CD06], where finding a mixed Nash equilibrum has

been shown to be PPAD-complete [Pap94], with the subsequent research thus directed at

approximation algorithms [LMM03; DMP06; KPS06; CDT06; DMP06; FNS]. Pure Nash
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equilibria do not present a computational problem if the utilities are given as explicit tables,

which are exponential in the number of players, since evaluating each cell in the table (each

strategy profile) to see if it’s a pure Nash is easy. On the other hand, in most games

encountered in practice, the utilities are represented succinctly. In succinct games, even

under reasonable constraints, it becomes intractable to even detect whether a pure Nash

exists (see, e.g., [GGS03]). Interestingly, succinct representations don’t make mixed Nash

equilibria any harder to find — for all major classes of succinct games, finding a mixed

Nash is still in PPAD [DFP06], and thus no harder than in explicit normal form games.

With equilibrium states intractable to find, or even absent, as with pure Nash, the

question of “what actually happens when the game is played?” looms large, since the agents

consistently and quickly reaching equilibrium would violate the Church-Turing Thesis.

In this dissertation, we consider complexity issues pertaining to the dynamics

of agent behavior, limiting ourselves to pure strategies for simplicity. Hereafter, “Nash

equilibria”, “strategies”, and the like are, when unqualified, used as shorthand for pure

Nash equilibria, pure strategies, etc. The natural starting point is the Nash best response

dynamics, the state space of strategy profiles, which the system traverses by agents, one at

a time, making unilateral moves to their current optimal strategy. This model is the “native

habitat” of Pure Nash equilibria, which arise naturally as the fixed points, i.e. sink nodes, of

the resulting directed graph. The restriction to sequential moves is reasonable not only for

the sake of simplicity, but also because quick changes in strategy and instant propagation

of information about the changes made by others are the reality in many modern economic

and computer systems.

In Chapter 2, we consider what happens when there’s a guarantee of eventual

convergence of the best-response dynamics to pure Nash equilibria. There is a famous and

S T

2/3/5

1/2/8

2/3/6

1/5/6

Y

X

A,B,C

A,B,C
4/6/7

Figure 1.1: A network congestion game: three players are picking paths from S to T . Each

edge is labeled with per-player delays when used by 1, 2, and 3 players.
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well-studied class of games (and, in fact, one with obvious affinity to computer networks)

that are not only guaranteed to have pure Nash equilibria, but are guaranteed to eventually

converge to them: the congestion games. Figure 1.1 shows a congestion game in the setting

of networks: three players want to move one unit of flow between designated endpoints of

a network by choosing one path each. The cost of each combination of path choices to

each player is calculated by adding the delays of the edges of the path chosen, where the

delay of an edge depends on the number of players using this edge (given here as an explicit

function). In the present example, if Player A chooses the path SXY T , B chooses SXT ,

and C chooses SY T , then the costs to the players are 9, 5, and 9 respectively. This is not

a Nash equilibrium, because C can defect profitably to path SXT .

In a classical paper [Ros73], Rosenthal proves that, in any such game, the Nash

dynamics converges, and hence the game has pure Nash equilibria. The proof, outlined in

Section 2.1, is based on a simple potential function. This existence theorem, however, again

leaves open the question, does a polynomial-time algorithm for finding pure Nash equilibria

in congestion games exist, and are the best-response dynamics guaranteed to converge to

one in polynomial time?

We show that the answer is positive when all players have the same origin and

destination (the so-called symmetric case, Theorem 2); a pure Nash equilibrium is found by

computing the optimum of Rosenthal’s potential function, through a reduction to min-cost

flow. However, we show (Theorem 3) that computing a pure Nash equilibrium in the general

network case is PLS-complete [JPY88], which means intuitively “as hard to compute as any

object whose existence is guaranteed by a potential function” (see Section 2.1 for the precise

definition).

Our proof has, as a corollary, strong consequences for the convergence of the Nash

dynamics. It guarantees the existence of examples with exponentially long convergence

times to the nearest pure Nash, as well as the PSPACE-completeness of finding some pure

Nash equilibrium that the dynamics might converge to from a specified starting state. The

completeness proof is complicated, as it requires the reworking of the reduction, due to

[SY91], to the problem of finding local optima of weighted MAX2SAT instances (possibly

the most complex reduction in the literature, if one excludes PCP). When congestion games

are posed in the abstract (in terms of sets of resources instead of paths in a network,

this being the original formulation), the lower bounds on the dynamics hold even in the

symmetric case.
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What other games can be guaranteed to converge to Nash equilibria by potential

functions? Monderer and Shapley [MS96] provided an early and devastating answer: only

for (inconsequential generalizations of) congestion games can we have a function φ(s) of

the state such that for each defection by a player from s to s′ the improvement to the

payoff of this player is precisely φ(s′) − φ(s). However, the requirement that the two

differences be the same is far too strict, as they need only have the same sign for φ to

be a valid potential function for the purposes of local search. We will refer to this as

an ordinal potential function. In Section 2.3, we establish a different kind of a connection

between computational complexity and this game theoretic concept. It turns out that, under

this relaxed definition, the space of “ordinal potential games” is much richer, essentially

encompassing all of the complexity class PLS: any problem in PLS can be represented as a

game whose pure equilibria are guaranteed to exist by a potential function argument.

Since pure Nash equilibria are not universally present, any general solution concept

claiming to be a behavioral prediction must also account for games which don’t have any.

In Chapter 3, we consider sink equilibria, an interesting approach to analyzing the dynamics

of games without Nash equilibria, proposed and pursued recently [GMV05] in the context

of the “price of anarchy”. These are an extension of pure Nash equilibria, in cases where

they do not exist, to their natural dynamic generalization: the ergodic states of the Nash

dynamics. That is, if the Nash dynamics graph has no sink nodes, i.e. pure Nash equilibria,

we consider other, larger sink connected components of this graph, and postulate that a

distribution on them is the desired solution. Two alternatives emerge: (1) We could focus on

one sink component and consider its steady-state distribution of the corresponding Markov

chain, assuming that the chain starts there, or (2) consider the steady-state distribution of

the Markov chain associated with the Nash dynamics, perhaps assuming a uniform initial

distribution (a natural alternative which, to our knowledge, has not been pursued explicitly).

We find that the sink equilibria approach is hindered by devastating complexity-

theoretic obstacles. Even though the distribution (and the expected payoffs) of sink equi-

libria are easy to calculate for normal-form games, it is PSPACE-complete to say anything

nontrivial about them in succinct games (Theorem 6). Our proof for the case of graphical

games is a novel simulation of a space-bounded Turing machine by the Nash dynamics of

such a game.

Next, in Chapter 4, we examine a very practical application domain where the

best-response Nash dynamics are a particularly realistic model of actual agent behavior.
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Using tools similar to those developed for sink equilibria, we derive an important (and

unexpected) applied result related to BGP oscillations in Internet inter-domain routing.

Autonomous systems (ASes) comprising the Internet route traffic originating in their do-

main or in the domains of other ASes using a proverbially complex protocol called the

Border Gateway Protocol (BGP) [RL95; Ste98]. BGP allows each AS to specify arbitrary

preferences on the paths to a destination, and to selectively offer such paths to others.

Possibly because of the complexity of these preferences and offers (reflecting obscure agree-

ments and opaque interests), BGP is known to occasionally cause oscillations in the In-

ternet, that is, lengthy, drawn-out sequences of route reassignments by many AS’s. This

is a very disruptive, and consequently well-studied, phenomenon [GW97; LMJ98; VGE96;

MGWR01]. A formal approach to BGP oscillations was initiated by [GW97]; they defined

the stable paths problem as an abstraction of the phenomenon. They defined safety as the

absence of oscillatory possibilities, and gave a necessary condition for safety (the presence of

a stable path configuration, known to be NP-complete to test) and a sufficient condition for

safety (the absence of a dispute wheel, a set of circular preferences), which is coNP-complete

to test. But no necessary and sufficient condition had been known.

We point out that the BGP oscillation problem is in fact also a problem of Nash

dynamics in a new kind of succinct game. The ASes are players, strategies correspond to

choice of a next hop, and BGP preferences define (in a succinct way) the utility of the

resulting graph for each of the players. Safety is tantamount to the game having only

pure Nash equilibria, and no other sink components with two or more states. Our major

practical contribution is that BGP safety is PSPACE-complete (Theorem 7), which resolves

the complexity of this important question in networking. The reduction is involved and

novel (and has to be quite different from that of Theorem 6).

Incidentally, on an aesthetic level, it is amusing to note that the observed BGP

oscillations among a few ASes are known to often go on for hours or days. Exponentially

long computation confined in a limited space is the hallmark of PSPACE-completeness,

so this is a hint that the formal worst-case intractability proven here may occasionally be

echoed in actual observed behavior.

Are sink equilibria and other variants of steady states in Nash dynamics natural

and compelling solution concepts? The main shortcoming of such concepts is that they

postulate complete lack of strategic behavior by the players, beyond a desire for local

improvement. In the last part of this dissertation, we take a step back from best-response
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dynamics, and explore several models of higher-level strategies where the players are aware

of the game’s dynamics beyond their immediate payoffs. Our objective here is to find models

which allow higher player rationality, without detracting from the benefits sink equilibria

have to offer — their tractability in normal form games, and their universality.

A game will have many sink components, and the payoffs will differ wildly from

one component to the other. It would make perfect sense for a player to be strategic in the

beginning (transient phase) of the game, sacrificing short-term gains so as to land on her

favorite sink. How can we model such strategic behavior?

Allowing full strategic behavior brings us to the time-honored and well-studied —

if somewhat inconclusively so — area of repeated games [Sor97; PY94; LS03], historically

the first domain of interaction between complexity and game theory. The basic problem

with this is that repeated games allow and predict strategic behavior that can be extremely

sophisticated ([PY94]; see [FS98] for an insightful discussion of the kinds of strategic be-

havior one should expect on the Internet). In the interest of exploring the effect of limited

strategic behavior in Nash dynamics, we consider unit recall games. In such games, players

move simultaneously, and each player’s next strategy choice depends only on the current

state (strategy choices by everybody). A player’s strategy is thus a finite automaton whose

states are the player’s own strategies, and whose transitions are labeled by the strategy

combinations of everybody else. Once everyone adopts such a strategy, the Nash dynamics

becomes deterministic and ends up in a cycle; the payoff is the time-average payoff of the

states on the cycle.

Does the unit recall version of every game (that is, the game in which the available

strategies are all possible unit recall automata) have a pure Nash equilibrium? The answer,

at least for bimatrix games, is “almost”: we show (Theorem 8) that a random bimatrix

game has such an equilibrium with probability approaching 1 as the number of strategies

grows. Furthermore, w.h.p., such an equilibrium is easy to find in polynomial time.

However, somewhat surprisingly, these equilibria aren’t completely universal: even

the extremely simple matching pennies game has no such equilibrium (Proposition 4, proven

by a computer analysis of the 32× 32 game). Then, how hard is it to tell whether a game

has a unit-recall equilibrium in the worst case? The problem is, a priori, in the complexity

class Σ2P (it asks whether there exists a combination of automata such that all defection-

automata are unfavorable). We conjecture that it is in P. And we are half-way there: we

can prove, by a reduction to the problem of finding in a graph the cycle with the smallest
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average edge length, that the best-response problem for such games is in P, and therefore

the overall problem is in NP.

Another cause for optimism is the behavior of a relaxation of the unit recall equi-

librium obtained from the following observation: Going from one strategy of a unit recall

game to another requires changing a large number of transitions in the automaton/strategy;

what if we allow changing just one transition at a time?

This yields a novel kind of equilibrium that we call componentwise equilibrium, a

generalization of pure Nash.2 Thinking of the strategies/automata as vectors of transitions,

we can define an equilibrium concept by only allowing defections that change a single com-

ponent. We show that every multi-player game has a componentwise unit recall equilibrium

(CURE). That is, in any game there are finite automata with the strategies of each player

as state space such that no player can increase her long-term expected payoff by changing

one transition (Theorem 10). In fact, we can find such an equilibrium in polynomial time,

which puts it into the rarefied club of equilibria that are both guaranteed to exist and

easy to find in normal-form games, sink equilibria and correlated equilibria [Pap05] being

the only other members we’re aware of. In view of our stated goal of seeking tractable,

universal characterizations of game dynamics, these results suggest that the CURE concept

may merit further theoretical attention, and that its more appealing subset, the unit-recall

equilibrium, may also be tractable.

Lastly, in section 5.3 we consider what happens when, instead of committing to

their full “strategy automata” as above, the players can look ahead into the future, decide

that the Nash dynamics cycle that lies ahead won’t be better for them on average than the

state they are at right now, and stop early, instead of continuing to make best-response

moves. The same reasoning can then be applied recursively by the players, one at a time,

to “roll back” the original, potentially non-terminating, walk through the best-response

dynamics to a single fixed state from where no one wants to make best-response moves

due to what lies ahead for them if they do. This equilibrium concept, which we call lasso

equilibrium after the shape of the walk in the 2-player case, may turn out to be a useful

tool for analyzing games where several other moves must happen before the player feels the

2It is also an instance of a more general, and very promising, idea that extends the pure Nash equilibrium:
Suppose that the strategies of each player are equipped with a cost matrix, and the player defects from a
strategy to another only if the payoff difference is bigger than the cost; this is an idea also treated in
[BSKK06]. In the case of componentwise equilibria, the cost is zero if the two strategies differ in one
component, and infinity otherwise.
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actual impact of the move he just made. As with unit recall equilibria, we show that, with

high probability lasso equilibria exist and are easy to find in random two-player normal-form

games.
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Chapter 2

Convergence to Pure Nash:

Congestion Games

2.1 Definitions and Notation

Games. A game with n ≥ 2 players is a finite set of actions Si for each player, and a

payoff function ui for each player mapping S1 × · · · × Sn to the integers. The elements of

S1 × · · · × Sn will be called action combinations or states. A (pure) Nash equilibrium is a

state s = (s1, . . . , sn) such that for each i ui(s1, . . . , si, . . . , sn) ≥ ui(s1, . . . , s
′
i, . . . , sn) for

any s′i ∈ Si. In general a game may not have pure Nash equilibria. (However, Nash proved

[Nas50] that if we extend the game to include as strategies for i all possible distributions

on Si, with the obvious extension of the ui’s to capture expectation, then an equilibrium is

guaranteed to exist.)

A game is symmetric if all Si’s are the same, and all ui’s, considered as a function

of the choices of the other players, are identical symmetric functions of n− 1 variables.

Consider a graph with node set S1 × · · · × Sn and an edge (s, s′) whenever s and

s′ differ only in one component, say the ith, and ui(s
′) > ui(s). If this graph is acyclic then

we say that, for this game, the Nash dynamics converges.

Proposition 1 If the Nash dynamics converges, then there is a pure Nash equilibrium.

Proof sketch: The sinks of the graph are precisely the Nash equilibria of the game.

Congestion Games. We shall consider games in which the ui’s are given implicitly in
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terms of efficient algorithms computing the utilities based on the input and the state. For

example, in a congestion game the input is a set of n players, a finite set E of resources, and

the action sets are Si ⊆ 2E ; we are also given the delay function d mapping E × {1, . . . , n}

to the integers. de(j) is nondecreasing in j. The payoffs are computed as follows. Let s =

(s1, . . . , sn) be a state, and let fs(e) = |{i : e ∈ si}|. Then ci(s) = −ui(s) =
∑

e∈si
de(fs(e)).

Intuitively, each player chooses a set of resources (from among the sets available to her),

and to compute the cost incurred by i (the negative of her payoff) we add the delay of each

resource used by i, where the delay of a resource e depends on the congestion fs(e), the

total number of players using e.

In a network congestion game the families of sets Si are presented implicitly as

paths in a network. We are given a network (V,E), two nodes ai, bi ∈ V for each player i

and again a delay function with the edges playing the role of the resources. The subset of

E available as actions to the player i is the set of all paths from ai to bi. We shall assume

the network is directed.

Theorem 1 (Rosenthal, [Ros73]) Every congestion game has a pure Nash equilibrium.

Proof: The potential function establishing the result is φ(s) =
∑

e

∑fs(e)
j=1 de(j). For the

proof, reverse the summations: φ(s) =
∑n

i=1

∑

e∈si
de(f

≤i
s (e)), where by f≤i

s (e)) we denote

the total number of players j ≤ i using e. Suppose now that (s, s′) is an improving defection,

and suppose (without loss of generality, since players were ordered arbitrarily) that the

defecting player is n. Then:

φ(s′)− φ(s) =
∑

e∈si

de(f
≤n
s′ (e))−

∑

e∈si

de(f
≤n
s (e))

=
∑

e∈si

de(fs′(e))−
∑

e∈si

de(fs(e))

= ci(s
′)− ci(s)

Hence, φ decreases along all edges of the Nash dynamics graph, and hence the Nash dy-

namics converges.

Notice that φ(s) has no intuitive interpretation as “social welfare” or as any related

notion; it just accurately absorbs progress, as a potential function should.

PLS. A problem in PLS [JPY88] is given by (a) a set of instances I = Σ∗; (b) for each

instance x ∈ I a set of feasible solutions Fx ⊆ Σp(|x|); (c) a polynomial oracle c which, given
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x ∈ I and s ∈ Σp(|x|) determines whether s ∈ Fx and, if so, computes an integer c(x, s) —

the cost of s (to simplify matters we assume minimization); and (d) for each x ∈ I, s ∈ Fx

a neighborhood Nx(s) ⊆ Fx; and a polynomial function g which, on input x ∈ I and s ∈ Fx

returns an s′ ∈ Nx(s) with c(s′) < c(s), or, if no such s′ exists, returns “no”. An instance

of the PLS problem is this: “Given x ∈ I, find a local optimum, that is, an s ∈ Fx such

that g(s) = “no”.”

Since the introduction of this class in [JPY88], many local search problems were

shown PLS-complete, including weighted versions of satisfiability, aspects of graph bisection,

and the traveling salesman problem [Kre89; SY91; Pap92]. PLS-completeness results are

proved in terms of PLS reductions, providing also a mapping from local optima of the

target problem to local optima of the original. Let us immediately note that, by the proof

of Rosenthal’s Theorem above, finding a pure Nash equilibrium for a congestion game is in

PLS, as it is equivalent to finding a local optimum of φ, where the feasible solutions are all

states. Notice that this does not imply a polynomial algorithm, since improvements of φ

can be small and exponentially many. It is shown in [OPS04] that problems in PLS have

a PTAS (by appropriately rounding the potential function, and re-rounding after enough

steps if necessary to retain accuracy, the improvements become coarse enough, and thus

guaranteed to end before too long). However, this does not immediately imply a PTAS for

finding ǫ-Nash equilibria, as approximation of the potential does not imply approximation

of the individual player’s cost.

In the next section we characterize the complexity of computing pure Nash equi-

libria in congestion games.

2.2 The Complexity of Congestion Games

The Algorithm

A network potential game is symmetric if all players have the same endpoints a

and b (and thus they all have the same set of paths/strategies).

Theorem 2 There is a polynomial algorithm for finding a pure Nash equilibrium in sym-

metric network congestion games.

Proof: The algorithm computes the optimum of φ(s); since the optimum is also a local

optimum, the resulting state ŝ is a pure Nash equilibrium.
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The algorithm is a reduction to min-cost flow. Given the network N = (V,E, a, b)

and the delay functions de, we replace in N each edge e with n parallel edges between the

same nodes, each with capacity 1, and with costs de(1), . . . , de(n). It is easy to see that any

(integer) min-cost flow in the new network is a state of the game that minimizes φ(s).

PLS-completeness

In contrast, all three other cases of congestion games are PLS-complete:

Theorem 3 It is PLS-complete to find a pure Nash equilibrium in network congestion

games of the following sorts:

(i) General congestion games.

(ii) Symmetric congestion games.

(iii) Asymmetric network congestion games.

Proof sketch: We explain the simple reduction for (i) because it is the basic framework

for the much harder proof for case (iii). We reduce from the following problem: given an

instance of not-all-equal-3SAT with weights on its clauses and containing positive literals

only, find a truth assignment satisfying clauses whose total weight cannot be improved by

flipping a variable. Call this problem posnae3flip; it is known to be PLS-complete [SY91].

Given an instance of posnae3flip, we construct a congestion game as follows.

For each 3-clause c of weight w we have two resources ec and e′c, with delay that is 0 if

there are two or fewer players, and w otherwise. The players are variables. Player x has

two strategies: one strategy contains all ec’s for clauses that contain x, and another that

contains all e′c’s for the same clauses. Smaller clauses are implemented similarly. It is not

hard to see that any Nash equilibrium of the congestion game is a local optimum of the

posnae3flip instance.

The proof of (ii) is by a reduction of the non-symmetric case to the symmetric case.

Given a congestion game with action sets S1, . . . , Sn, we construct the following symmetric

game. Let S′
i = {s∪ {ei} : s ∈ Si} for each i, where the ei’s are distinct new resources with

delay function dei(j) = 0 if j = 1, and dei(j) = M , a very large number, if j ≥ 2. Consider

the symmetric game with the same edges and common strategy set
⋃

i S
′
i. It is easy to see
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that any equilibrium of this game will have one player using a strategy from S′
i, and hence

will correspond to (by omitting the ei’s) a specific equilibrium of the original game.

It should be noted that, since the publication of this result in [FPT04], a followup

paper by Ackermann, et al, [ARV06] gave a much more elegant and general proof of part

(iii) of the theorem, based on matroid theory. We thus only present an outline of our

original proof of (iii) here. In order to make the idea in (i) work in a concrete network, we

need several modifications and extensions of the original construction of [SY91]. We need

three new kinds of clauses besides posnae3flip to replace clusters of posnae3flip clauses

of [SY91] that are incompatible with our proof: a single clause over m variables which is

satisfied if exactly one of its arguments is true and whose penalty scales linearly with the

number of extraneous true arguments; 2SAT clauses with positive literals; and 2SAT clauses

with negative literals. We call this problem extended posnae3flip, or xpnae3flip. For

each such instance we have “network gadgets” for variables and clauses of each type, and

we can put them together in a network congestion game where the players are the variables

and any truth assignment can be simulated by a state of the game.

The hard part is proving that all Nash equilibria of the resulting game are of this

“standard” form and not hybrids that correspond to no truth assignment. The property of

the xpnae3flip instance needed for our proof to go through can be stated in terms of a

weighted directed graph, called the witness graph of the instance, which we define next.

Consider an instance F of xpnae3flip with a set of variables X and a set of

clauses C, where C = C0∪C1∪C2∪C
′
2∪Cs, with C0 being the 2- or 3-literal NAE clauses,

C1 being {c1}, where c1 is the single “one-out-of-m” clause over some set of variables X1,

C2 and C ′
2 — the positive and negative 2-SAT clauses, and Cs — all the other clauses, all

of which are single-variable (i.e. of form x 6= 0 or x 6= 1). Define the set of nodes V to be

V = (X × {s, t}) ∪ (C0 × {0, 1}) ∪ (C1 × {X1 ∪ {1}}) ∪ C2 ∪ C
′
2.

Suppose now that, for every variable x ∈ X, we arrange the nodes corresponding

to the clauses in which x appears in two ordered lists. The list L1(x) starts with (c1, 1) if

x ∈ X1, and also contains (c, 1) for all clauses c ∈ C0 in which x appears, and c for each

clause c in C2 in which x appears. The list L0(x) starts with (c1, x) if x ∈ X1, and also

contains (c, 0) for all clauses c ∈ C0 in which x appears, and c for each clause c in C ′
2 in

which x appears. Suppose then that we are given, besides F , this set of 2|X| lists, call

them L. The witness graph WG(F,L) is a directed graph (V,EL), whose edges are defined
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as follows: for every variable x, if L1(x) is (v1
1, . . . , v

1
k1

) and L0(x) is (v0
1, . . . , v

1
k0

), then

the witness graph contains the edges (xs, v
1
1), (v

1
1, v

1
2), . . . , (v

1
k1
, xt), and (xs, v

0
1), (v

0
1, v

0
2), . . . ,

(v0
k1
, xt). The paths from xs to xt consisting of these edges are called the two standard paths

of variable x. This definition references some edges multiple times, but we are not defining

a multi-graph; only one edge between any 2 nodes is added, independently of the number

of times it’s referenced by the above expression. In particular, there are multiple references

to edges connecting two C0 clauses which share 2 variables (or, inconsequentially, identical

clauses in any class), since they appear in the list for each repeated variable. Note that Cs

clauses are not involved in the construction of the witness.

Consider now an instance F of xpnae3flip, a set of lists L, and the witness graph

(V,EL) with non-negative integer weights y on EL. We say that the weighted witness graph

(V,EL, y) is valid for F if the following holds: for any variable x ∈ X, the two standard

paths for x have the same length (under y), and are strictly the shortest paths from xs to xt.

The witnessed xpnae3flip problem is the following: given an instance F of xpnae3flip,

and a valid weighted witness graph for F , find a truth assignment whose total weight is

maximal.

The proof now follows from two results:

Lemma 1 There is a PLS reduction from witnessed xpnae3flip to network conges-

tion game.

Proof sketch: The construction of the network uses the witness graph as a blueprint. Each

clause-related node is expanded to an edge between two nodes, with all the incoming edges

attached to its source, and all the outgoing edges attached to its destination. The weights

(delay functions) of these “clause edges” are chosen to reflect the exact penalties1 for more

than 1 variable being true in the case of C1, and, in case of the other clauses, the penalty for

the clause being violated by all variables being equal. The delays of the other edges, those

specific to the variables, are set to be incomparably larger than the clause weights at the

“proper load”, and to be incomparably larger than even that if they are used by too many

variables (2 in most cases, 3 if the edge is in the standard path of 2 variables). This ensures

that the standard paths are the only ones taken by Nash defectors, and thus there are no

spurious Nash equilibria. Any clauses containing 2 variables and a literal are forced to be

1It is here that the symmetry of the penalty function for C1 clauses is needed — the penalty has to be
independent of which variables are true



CHAPTER 2. CONVERGENCE TO PURE NASH: CONGESTION GAMES 16

in C2 or C ′
2, and any clauses containing just 1 variable and a literal are accommodated by

charging their weight to the penalty of an arbitrary private edge of that variable (chosen

from L0(x) or L1(x) depending on the literal).

Lemma 2 witnessed xpnae3flip is PLS-complete.

Proof sketch:

We show that the reduction in [SY91] from circuitflip to posnae3flip yields

instances of the latter which, once cast as xpnae3flip, always have a valid witness.

The reduction in [SY91] produces, given a circuit with n gates (without loss of

generality, all gates are NORs, with 2 inputs and a fan-out of at most 3), m outputs, and

p inputs, a posnae3flip instance with the following variables:

Numbering gates from 2 to 2n, we have, for each gate i = 2h (and separately, for

each pair (input,gate), with index i replaced with k, i): gi, y2h−1, y2h, z2h−1, z2h, and

“local variables” (α1
i , α

2
i , β

1
i , β2

i , β3
i , γ1

i , γ2
i , γ3

i , δ1i , δ
2
i , ωi, ρi, ψ

1
i , ψ

2
i , ψ

3
i , ψ

4
i , ψ

5
i , ψ

6
i ,

ζ1
i , ζ2

i , ζ3
i , ζ4

i , ζ5
i )

Implicitly, each output gate is also labeled cj , tk,j , ĉj , or t̂k,j (the existence of negatives

of outputs is guaranteed, i.e. built into the circuit beforehand); the cj ’s correspond

to gi’s, and tk,j ’s — to gk,i’s

For each input k: dk, d̂k, ek, êk, vk, wk, and “local variables” (θ1
k, θ

2
k, ηk, µ

1
k, µ

2
k, µ̂

2
k)

1 + p extra variables: y2n+1, and yk,2n+1 for each input k.

Figure 2.1 lists all the clauses produced in the reduction; all indexes k and k′ range

over inputs, indexes i range over “real” gates (even numbers from 2 to 2n), indexes h range

over all numbers between 1 and 2n+ 1, and indexes j range over all outputs. The notation

I1(gi) refers to the first input to gate i, whether it’s the output of some other gate or an

input to the circuit (respectively, either a gi′ or a vk/wk variable). See [SY91] for the full

treatment of the original reduction.

To translate this into the necessary xpnae3flip form, note that (a) any pos-

nae3flip clause that contains 2 variables and a literal can be put into C2 or C ′
2, and (b)

the sole C1 clause arises from clauses in the “clique” in group 1.c1.
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Then, the witness is constructed according to the per-variable ordered lists shown

in Figure 2.2. Notation of the form {(sequence of clauses with k as an argument)}k=1...p

means “that sequence for k = 1, then that sequence for k = 2, etc.” Since some of the

g, v, w, c, and t̂ variables are “aliased” to each other2, the table indicates where, e.g., a

sequence of clauses for a c variable may actually be preceded by a sequence of clauses for

the g variable that this c is synonymous with. Both C2 and C ′
2 clauses are included in

the lists, even though they appear in only 1 of the lists. Clauses in parentheses are the

single-variable clauses; these do not affect the witness. Lastly, translating from the per-gate

variables (those indexed with i) to the per-(input,gate) variables (those indexed with k, i)

is just a matter of replacing “2” with “3” as the “clause class.”

The full proof that this witness is valid proceeds roughly by:

1. Showing that most “local variables” (both per-gate and per-input) and g’s, v’s, w’s,

c’s, and d̂’s do not interact with variables outside their respective gate or input —

that is, there is no way for the path of, e.g., α1
1 to diverge to areas of the witness

corresponding to variables unrelated to gate 1, and then come back to the node (α1
1)t.

2. Inspecting all exceptions to the above (γ, ψ, and ζ variables) and all the local inter-

actions to verify that all alternate paths are longer.

3. Showing that, in most cases, the d, d̂, e, ê, y, and z variables do not permit paths to a

variable in the same group but with a lower index. This way, any diversion by a lower-

numbered variable is bound to cause prohibitive congestion for some higher-numbered

variable in the same group.

4. Inspecting all the exceptions to this (d’s in the C1 clause, and y/z variables going

back by 1 index in 2B/3B), and connections between variable groups to verify that

all alternate paths are longer.

We omit the remaining details of the proof of the lemma, and this completes our

outline of the proof of theorem 3.

Corollary 1 For the three cases in the theorem, (a) there are examples of game instances

states from which all Nash equilibria/sinks are exponentially far in the Nash dynamics graph,

2We assume the circuit is preprocessed to not have any inputs feeding directly to outputs, so the only
aliased groupings can be {v, g}, {w, g}, {g, c}, and {g, t̂}
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1. ∀k 6= k′:

c1. dk, dk′ , 1

2A. ∀i (i.e. even):

c1. I1(gi), α
1
i , 1

c2. α1
i , β

1
i , 0

c3. β1
i , γ1

i , gi

c4. γ1
i , zi, 0

c5. I1(gi), δ
1
i , 0

c6. I2(gi), α
2
i , 1

c7. α2
i , β

2
i , 0

c8. β2
i , γ2

i , gi

c9. γ2
i , zi, 0

c10. I2(gi), δ
2
i , 0

c11. δ1i , δ
2
i , ωi

c12. δ1i , δ
2
i , β

3
i

c13. β3
i , γ3

i , gi

c14. yi, γ
3
i , 1

2B. ∀h 6= 2n+ 1:

c1. yh, zh, 0

c2. zh, yh+1, 1

(h < 2n)

2C. c1. z2n, y2n+1, 1

c2. y2n+1, 1

c3. ∀k, y2n+1, dk, 0

2D. ∀i:

c1. ψ1
i , α

1
i

c2. ψ2
i , α

2
i

c3. ψ3
i , γ

1
i

c4. ψ4
i , γ

2
i

c5. ψ5
i , β

3
i

c6. ψ6
i , ωi

c7. ψ1
i , yi−1

c8. ψ2
i , yi−1

c9. ψ3
i , yi−1

c10. ψ4
i , yi−1

c11. ψ5
i , yi−1

c12. ψ6
i , yi−1

c13. ζ1
i , β1

i

c14. ζ2
i , β2

i

c15. ζ3
i , δ1i

c16. ζ4
i , δ2i

c17. ζ5
i , γ3

i

c18. ζ1
i , zi−1

c19. ζ2
i , zi−1

c20. ζ3
i , zi−1

c21. ζ4
i , zi−1

c22. ζ5
i , zi−1

2E. ∀i:

c1. ρi, α
1
i

c2. ρi, α
2
i

c3. ρi, gi

c4. ρi, 0

3A. ∀k, i (i.e. even):

c1. I1(gk,i), α
1
k,i, 1

c2. α1
k,i, β

1
k,i, 0

c3. β1
k,i, γ

1
k,i, gk,i

c4. γ1
k,i, zk,i, 0

c5. I1(gk,i), δ
1
k,i, 0

c6. I2(gk,i), α
2
k,i, 1

c7. α2
k,i, β

2
k,i, 0

c8. β2
k,i, γ

2
k,i, gk,i

c9. γ2
k,i, zk,i, 0

c10. I2(gk,i), δ
2
k,i, 0

c11. δ1k,i, δ
2
k,i, ωk,i

c12. δ1k,i, δ
2
k,i, β

3
k,i

c13. β3
k,i, γ

3
k,i, gk,i

c14. yk,i, γ
3
k,i, 1

3B. ∀k, h 6= 2n+ 1:

c1. yk,h, zk,h, 0

c2. zk,h, yk,h+1, 1

(h < 2n)

3C. ∀k:

c1. yk,2n+1, dk, 0

Figure 2.1: Clauses in the PLS-reduction from circuitflip to posnae3sat in [SY91].
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3D. ∀k, i:

c1. ψ1
k,i, α

1
k,i

c2. ψ2
k,i, α

2
k,i

c3. ψ3
k,i, γ

1
k,i

c4. ψ4
k,i, γ

2
k,i

c5. ψ5
k,i, β

3
k,i

c6. ψ6
k,i, ωk,i

c7. ψ1
k,i, yk,i−1

c8. ψ2
k,i, yk,i−1

c9. ψ3
k,i, yk,i−1

c10. ψ4
k,i, yk,i−1

c11. ψ5
k,i, yk,i−1

c12. ψ6
k,i, yk,i−1

c13. ζ1
k,i, β

1
k,i

c14. ζ2
k,i, β

2
k,i

c15. ζ3
k,i, δ

1
k,i

c16. ζ4
k,i, δ

2
k,i

c17. ζ5
k,i, γ

3
k,i

c18. ζ1
k,i, zk,i−1

c19. ζ2
k,i, zk,i−1

c20. ζ3
k,i, zk,i−1

c21. ζ4
k,i, zk,i−1

c22. ζ5
k,i, zk,i−1

3E. ∀k, i:

c1. ρk,i, α
1
k,i

c2. ρk,i, α
2
k,i

c3. ρk,i, gk,i

c4. ρk,i, 0

4. ∀k, j

c1. dk, cj , 0

c2. dk, t̂k,j , 1

5. ∀k

c1. dk, d̂k, 1

c2. d̂k, 0

6. ∀k

c1. dk, θ
1
k, 1

c2. d̂k, θ
2
k, 0

c3. wk, θ
1
k, ηk

c4. wk, θ
2
k, ηk

c5. vk, ηk

c6. θ1
k, ηk

c7. θ2
k, ηk

7. ∀k

c1. µ1
k, vk, wk

c2. µ̂2
k, vk, wk

c3. µ2
k, µ̂

2
k

c4. µ1
k, µ

2
k, ek

c5. ek, êk

c6. ek, 0

c7. µ1
k, 0

c8. µ̂2
k, 1

8. ∀k, h 6= 2n+ 1

c1. ek, yk,h, 1

c2. êk, zk,h, 0

9. ∀k 6= k′, ∀h

c1. ek, zh, 1

c2. ek, zk′,h, 1

c3. êk, yh, 0

c4. êk, yk′,h, 0

10. ∀k 6= k′, ∀h

c1. dk, yh, 1

c2. dk, yk′,h, 1

c3. d̂k, zh, 0

c4. d̂k, zk′,h, 0

11. ∀k, h

c1. vk, wk

c2. dk, 1

c3. zh, 1

c4. zk,h, 1

c5. yh, 0

c6. yk,h, 0

Figure 2.1: Clauses in the PLS-reduction from circuitflip to posnae3sat in [SY91]

(continued)
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gi {2E.c3, 2A.c3, 2A.c8, 2A.c13} as output, or the v/w sequence; then, {2A.c1,
2A.c5} or {2A.c6, 2A.c10} as 1-3 inputs, in gate order, or the c/t̂ sequence

α1
i 2A.c2, 2A.c1, 2D.c1, 2E.c1
α2

i 2A.c7, 2A.c6, 2D.c2, 2E.c2
β1

i 2A.c2, 2A.c3, 2D.c13
β2

i 2A.c7, 2A.c8, 2D.c14
β3

i 2A.c12, 2A.c13, 2D.c5
γ1

i 2A.c3, 2D.c3, 2A.c4
γ2

i 2A.c8, 2D.c4, 2A.c9
γ3

i 2A.c13, 2D.c17, 2A.c14
δ1i 2A.c11, 2A.c12, 2A.c5, 2D.c15
δ2i 2A.c11, 2A.c12, 2A.c10, 2D.c16
ωi 2A.c11, 2D.c6
ρi 2E.c3, 2E.c1, 2E.c2, (2E.c4)
ψ1

i 2D.c1, 2D.c7
ψ2

i 2D.c2, 2D.c8
ψ3

i 2D.c3, 2D.c9
ψ4

i 2D.c4, 2D.c10
ψ5

i 2D.c5, 2D.c11
ψ6

i 2D.c6, 2D.c12
ζ1
i 2D.c13, 2D.c18
ζ2
i 2D.c14, 2D.c19
ζ3
i 2D.c15, 2D.c20
ζ4
i 2D.c16, 2D.c21
ζ5
i 2D.c17, 2D.c22

y2h−1 2D.c7, 2D.c8, 2D.c9, 2D.c10, 2D.c11, 2D.c12; 2B.c2, 2B.c1; 9.c3k=1...p;
10.c1k=1...p; (11.c5)

y2h 2A.c14; 2B.c2, 2B.c1; 9.c3k=1...p; 10.c1k=1...p; (11.c5)
z2h−1 2D.c18, 2D.c19, 2D.c20, 2D.c21, 2D.c22; 2B.c1, 2B.c2; 9.c1k=1...p;

10.c3k=1...p; (11.c3)
z2h 2A.c4, 2A.c9; 2B.c1, {2B.c2 or 2C.c1 for 2n}; 9.c1k=1...p; 10.c3k=1...p; (11.c3)

for 2n
y2n+1 2C.c1; 9.c3k=1...p; {2C.c3, 10.c1}k=1...p; (2C.c2, 11.c5)

yk,2h−1 3D.c7, 3D.c8, 3D.c9, 3D.c10, 3D.c11, 3D.c12; 3B.c2, 3B.c1; {8.c1 if k′ = k,
9.c4 else}k′=1...p; 10.c2k′=1...p, (11.c6)

yk,2h 3A.c14; 3B.c2, 3B.c1; {8.c1 if k′ = k, 9.c4 else}k′=1...p; 10.c2k=1...p; (11.c6)
zk,2h−1 3D.c18, 3D.c19, 3D.c20, 3D.c21, 3D.c22; 3B.c1, 3B.c2; {8.c2 if k′ = k, 9.c2

else}k′=1...p; 10.c4k′=1...p, (11.c4)
zk,2h 3A.c4, 3A.c9; 3B.c1, 3B.c2; {8.c2 if k′ = k, 9.c2 else}k′=1...p; 10.c4k′=1...p;

(11.c4)
yk,2n+1 9.c4k′=1...p; {3C.c1 if k′ = k, 10.c2 else}k′=1...p; (11.c6)

Figure 2.2: Per-variable ordered lists that comprise the valid witness.
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cj g output sequence, then 4.c1k=1...p

tk,j (not used)
ĉj (not used)

t̂k,j g output sequence, then the single 4.c2

dk The 1.c1 clique; 6.c1; 5.c1; 4.c1j=1...m, 4.c2j=1...m; 10.c1h=1...2n+1, 2C.c3;
{3C.c1 if k′ = k, else 10.c2h=1...2n+1}k′=1...p; (11.c2)

d̂k 6.c2; 5.c1; 10.c3h=1...2n+1; 10.c4h=1...2n+1; (5.c2)
ek 7.c4, 7.c5; 9.c1, {8.c1h=1...2n+1 if k′ = k, else 9.c2h=1...2n}k′=1...p; (7.c6)
êk 7.c5; 9.c3, {8.c2h=1...2n if k′ = k, else 9.c4h=1...2n+1}k′=1...p

vk 11.c1, 7.c1, 7.c2, 6.c5; then g input sequences
wk 11.c1, 7.c1, 7.c2, 6.c3, 6.c4; then g input sequences
θ1
k 6.c6, 6.c3, 6.c1
θ2
k 6.c4, 6.c7, 6.c2
ηk 6.c6, 6.c3, 6.c4, 6.c7, 6.c5
µ1

k 7.c1, 7.c4, (7.c7)
µ2

k 7.c3, 7.c4
µ̂2

k 7.c3, 7.c2

Figure 2.2: Per-variable ordered lists that comprise the valid witness (continued)

and (b) the problem, given a state s, find a Nash equilibrium reachable from s is PSPACE-

complete.

Proof sketch: Our reductions preserve these properties of posnae3flip [SY91].

2.3 Ordinal Potential Games

We have seen that potential functions are valuable for proving the existence of

pure Nash equilibria. What is the precise scope of this method?

Call a game a cardinal potential game if there is a function φ such that for any

edge of the Nash dynamics graph (s, s′) with defector i we have φ(s′)−φ(s) = ui(s
′)−ui(s).

A result of Monderer and Shapley [MS96] establishes the following disappointing fact (as

restated in [VBvM+99]):

Theorem 4 ([MS96]) Any cardinal potential game is isomorphic to a congestion game.

Hence, the applicability of the potential function method is limited essentially to

Rosenthal’s theorem.
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Consider, however, the party affiliation game: n players have two actions (“par-

ties”) {−1, 1} to choose from and the payoff for i of choices (s1, . . . , sn) is sgn(
∑

j si ·sj ·wij),

where wij are given symmetric integer weights (positive or negative). Intuitively, people

are happy when they are in the same party as their friends, and at different parties than

their enemies, and the weights capture the warmth of the relationship between two peo-

ple. It is easy to see that in this game the Nash dynamics converges, and the function

φ(s) =
∑

i,j si · sj · wij can serve as a potential function in a sense. And still, this game

is definitely not a congestion game (it is easy to see that it is a local optimality version

of the max cut problem, and related to the convergence of Hopfield neural networks), in

apparent contradiction with the negative result of [MS96]. What is going on?

For any edge (s, s′) of the Nash dynamics graph with defector i we have ui(s
′) −

ui(s) = 2, whereas φ(s′)−φ(s) can be any positive number. The potential function argument

for convergence actually requires only that sgn(φ(s′) − φ(s)) = sgn(ui(s
′) − ui(s)). Let

ordinal potential games be games that have ordinal potential functions, i.e. ones satisfying

this inequality. The question now becomes, how rich is this class of games? We note

immediately that if a family of games has polynomially computable ordinal potentials, then

the problem of finding a pure Nash equilibrium is in PLS. Our next result is a converse

statement: the class of general potential games essentially comprises all of PLS.

Theorem 5 For any problem in PLS with instances I there is a family of general potential

games indexed by I such that, for problem instance x, the game Gx has poly(|x|) players

each with strategy set that includes the alphabet Σ, and such that the set of pure Nash

equilibria of Gx is precisely the set of local optima of x.

Proof sketch: By generalizing the construction that took us from the max cut local

optimality under the natural neighborhood for the party affiliation game. The players

are dimensions of the solution space, and a local search improvement is translated into a

sequence of Nash defections (first by a lead player, then by others) leading to a new feasible

solution.

2.4 Discussion and Open Problems

What other games are guaranteed to have pure Nash equilibria? Vetta identifies

in [Vet02] the “basic utility games” as another class of games where the Nash dynamics



CHAPTER 2. CONVERGENCE TO PURE NASH: CONGESTION GAMES 23

converges, as proven by a general potential function. The network creation games [FLM+03]

are another example, and so are congestion games with subjective delays played on a network

of parallel edges [Mil96]. In these cases, however, some equilibrium can be produced in

polynomial time by an inductive argument.

Consider yet another variant of congestion games, the one with player-specific

delays. We have n players and m parallel edges (strategies), each with a delay function

de(S), a non-decreasing function of the specific set of the players choosing e (as opposed to

their number). Generalizing slightly a result in [FKK+02] we can show:

Proposition 2 In any congestion game with player-specific delays the Nash dynamics con-

verges.

Proof: Consider a state s, inducing a partition S1, . . . , Sm of the set of players to the m

edges, and consider the multi-set of numbers µ(s) = {de1(S1), . . . , dem(Sm)}. Suppose that

a player defects from Si to Sj to form a state s′; it is easy to see that µ(s′) is lexicographically

smaller than µ(s).

The above argument shows that a quite large class of games has pure equilibria,

with the corresponding problem in PLS. However, the potential function used here is rather

novel (sort the components and weigh them by the powers of a large number), and we have

no idea if such problems can be PLS-complete. Incidentally, counter-examples show that

such games in more general networks fail to have pure Nash equilibria.

Are potential functions (the discrete analog of Lyapunov functions) the only way

to establish convergence of the Nash dynamics? If the dynamics is acyclic, then there is

always an awkward potential function (the topological ordering of the state), but it seems

to require exponential time to compute. Are there examples of convergent games that do

not have polynomial-time computable potential functions?

Finally, yet another genre of pure equilibrium existence argument, in fact one of

an algebraic, combining nature, seems to be this: If two games are known to have pure

equilibria, and their payoff functions are (in some precise sense not defined here) cross-

monotonic, then their union (same players, the union of the strategy spaces, and the same

payoffs) is also guaranteed to have pure Nash equilibria, by a continuity argument. Facility

location-related games are an example where this type of argument applies.
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Chapter 3

Sink Equilibria

3.1 Definitions

In a normal form game G we have n ≥ 2 players 1, 2, . . . , n; for each player i we

have a finite set of strategies Si. We denote by S the set of pure strategy profiles, or states,

the Cartesian product S1×S2× · · · ×Sn; by S−i we denote the product of all strategy sets

except Si. Finally, for each player i we have a utility function ui mapping S to the integers.

Formally, we define the Nash (best-response) dynamics of a game as a directed

graph with S as its set of vertices, and an edge (s, s′) if s and s′ agree on all components

except for one, say the ith, and ui(s′) > ui(s). The strict Nash dynamics is a subgraph of

the Nash dynamics, where an edge s, s′ signifies, in addition, that i’s strategy in s′ is i’s best

response to s, that is, one of the strategies in Si which, if substituted for the ith component

of s, yields the largest possible utility. (We shall henceforth specify strict or not strict Nash

dynamics only in cases that do not apply to both kinds.) A pure Nash equilibrium of a

game is a state that is a sink of the Nash dynamics.

Consider now the strongly connected components of the Nash dynamics, and

among those, one that has no outgoing edges. Such a component is called a sink equi-

librium of the game. The Nash dynamics of a graph define a Markov chain, by assigning

equal probabilities to all outgoing edges.
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3.1.1 Normal form versus graphical games

The following are then computational problems1 of interest:

best (worst) sink: Given a game, what is the highest (or lowest) expected utility

for a given player in the steady-state distribution of a sink equilibrium?

in a sink: Does a given state s belong to any sink equilibrium?

The following result only involves depth-first search and matrix inversion:

Proposition 3 Given a game in normal form, the problems best (worst) sink and in a

sink can be solved in polynomial time

An n-player game requires an exponential, in n, number of bits to be represented;

hence, the only computationally meaningful ways of representing multi-player games must

be succinct. A graphical game is a particularly useful succinct way of representing a game.

It is defined in terms of a graph G = ([n], E) whose set of vertices is the set of players.

The utility function ui is now a function mapping SN(i) to the integers, where SN(i) is the

Cartesian product of the strategy sets of player i and of all players that are adjacent to i

in G.

Our main result in this chapter is this:

Theorem 6 in a sink for graphical games is PSPACE-complete.

Here and in the BGP result in Chapter 4, we seek to use sink equilibria of a

graphical game to capture the halting behavior of a special space-bounded Turing machine.

We set up the intermediate problem in section 3.2 and present the main reduction in 3.3.

3.2 Intermediate automaton problem

We define an intermediate construction, a local-dependence resetting cycle machine

(LRCM), which moves continously and unidirectionally around a circular tape, and updates

tape cells based on its internal state and the state of nearby cells, but not the current

one. This mirrors the game constraint that a player cannot decide on its new strategy

1More precisely, these are families of problems, parametrized by one’s choice of game representation
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based on its current strategy. The reduction to a graphical game then creates a graph

which locally models the tape with two players per cell (a “tape cell” player and a “state”

player), and O(1) edges to players modeling nearby cells. We design the utilities so that

the Nash dynamics, starting at the canonical starting state, have a “ripple” of activity

move around the cycle until the corresponding computation halts. To guarantee that the

canonical starting state of a game is in a large sink equilibrium iff the machine does not halt,

we have the LRCM reset to its starting state after it takes enough steps to have exhausted

all possible computation states and looped somewhere.

Formally, let an LRCM be a tuple of a state space, a designated starting state,

a tape alphabet, the length of its circular tape, and a transition function mapping the

machine state and the contents of tape cells i − 2, i − 1, and i + 2, where i is the current

tape cell, to the new state and the new content of the current cell, or a “halt” command:

C = (Q, q0 ∈ Q,Γ, t, f : Q × Γ3 → (Q × Γ) ∪ {halt}) (we’ll use (fq, fT ) for components of

f ’s output). We require LRCMs to obey two additional semantic constraints:

1. (Resetting constraint) When started on a blank tape, it must either halt or return to

the same configuration (state q0 and a blank tape) in finite time.

2. (Self-loop-free constraint) There may not be any self-loops in the finite-state control,

i.e. whenever f(q, . . .) = (q′, . . .), q 6= q′.

C is said to halt on starting tape state (T0, . . . , Tt) ∈ Γt if the following loop halts

(using TN(i) as shorthand for (Ti−2, Ti−1, Ti+2)):

1: i← 0

2: while f(q, TN(i)) 6= halt do

3: (q, Ti)← f(q, TN(i))

4: i← i+ 1

5: end while

Lemma 3 It is PSPACE-complete to tell whether an LRCM C will halt on a starting tape

state.

Proof:
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We start with the generic PSPACE-complete problem, the space-bounded halt-

ing problem for TMs. We first reduce an instance of this problem (a Turing ma-

chine M , an input x, and a tape bound t), to the halting problem for a TM variant

M ′ = (Q′,Σ′,Γ′, δ′, q′0, q
′
a, q

′
r), with a circular tape of length t′ which, independently of

its own input, simulates M on x with space bound t and halts iff M accepts. Additionally,

we use t log |Q| extra cells of the tape to store a step counter that counts up to the total

number of possible configurations of M , and, when the counter overflows, have the machine

enter a special state which forces the entire tape, including the counter, to be reset to blank,

moves the tape head to the starting position, and sets the control to q0.

To map M ′ to a LRCM, we:

simulate bidirectional movement by making the CM do an “idle round” around the

tape after each step of M ′

store the direction of tape movement in the state during the idle round

remove the transition function’s dependence on the current tape cell by storing a copy

of cell i’s contents in cell i+ 2

double the state space by adding a “flip-flop” component which flips at each step to

ensure the absence of control self-loops

Formally, let Γ′′ = Γ′ × Γ′ × {0, 1} × {0, 1} and Q′′ = Q′ × {±1} × {active, idle} ×

{0, 1}. Use Ti = (T t
i , T

c
i , T

l
i , T

cl
i ) for the “this cell”, “copy of cell i − 2”, “last-change bit”,

and “copy of i − 2’s last-change bit” components of Ti; and q = (qq, qd, qi, qf ) for “state”,

“direction of movement”, “idle indicator”, and “flip-flop” components of the state q.

Then, let f be the following:

As above, we claim that if we start LRCM C = (Q′′, (q′0, active,+1, 0),Γ′′, t′ ≥ 3, f)

on tape Ti = ( , 0, , 0) ∀i, it will halt iff M ′ halts, and otherwise will eventually return to

state q0 and the starting tape state, with each step of M ′ getting simulated by an action

step of C.

An induction on the steps of C shows that, at the beginning of any step of C at

cell i:

T c,cl
k+2 = T t,l

k for at least all k other than i− 1 and i− 2.

C’s state is one of the following 4 configurations:
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1: if qi = active then

2: (q̃q, T̃ t, q̃d)← δ′t(q
q, T c

i+2) // “action step”

3: if q̃q ∈ {q′a, q
′
r} then

4: return halt

5: end if

6: T̃ l ← 1 ; q̃i = idle

7: else

8: T̃ l ← 0 ; T̃ t ← T c
i+2 ; q̃q,d ← qq,d // “idle step”

9: if T l
i+2 = 1 ∧ qd = −1 or T cl

i+2 = 1 ∧ qd = +1 then

10: q̃i = active // prepare to write in next cell

11: end if

12: end if

13: T̃ c,cl ← T t,l
i−2 ; q̃f ← ¬qf

14: return (q̃, T̃ )

1. Exactly 1 last-change bit T l
k is on, qi = idle. If k = i + 1 or k = i, qd may only

be +1. Corresponds to M ′ having just written to tape cell k, switched the state

to qq, and about to move in direction qd

2. Only T l
i+1 is on, qi = active, qd = −1. Same M ′ state as in 1 above.

3. Only T l
i−1 and T l

i are on, qi = idle. Corresponds to M ′ having just written to

i − 1, switched to state qq, about to move by qd (having moved by −1 on the

previous step).

4. No last-change bit T l
k is on, qi = active, qd = +1. Corresponds to M ′ having just

written to i− 1, switched to state qq, and about to move by +1.

Each step of C which starts with qi = active changes the state qq and the sequence

{T t
j } to match the state and tape contents of the next step of M ′’s computation, hence

causing C to halt iff M ′ halts.

Allowing a succinct representation of f as above, the reduction is clearly polyno-

mial, hence yielding PSPACE-completeness.



CHAPTER 3. SINK EQUILIBRIA 29

Figure 3.1: A segment of a graphical game gadget to simulate an LRCM.

3.3 From LRCMs to sink equilibria

Our reduction from an LRCM C = (Q, q0,Γ, t, f) and starting tape T will create

a game G which, for each tape cell i, has a “cell” player Ci and a “state” player Si, with the

utilities of both depending on several nearby Cj and Sj players. We will arrange G so that

its Nash dynamics follow the computation of C, with no players ever given an incentive to

deviate from “canonical” game states, i.e. those that directly correspond to a configuration

of C. Thus, the game state corresponding to the starting state of the LRCM will be in a

sink equilibrium if and only if the LRCM does not halt.

The dependencies in the game follow the pattern in Figure 3.1. Ci players are

shown as circles and Si — as diamonds. The black links show the dependencies for a one

pair of Ci and Si nodes. The same pattern of links repeats for all t pairs of players (Cj , Sj),

which are arranged in a closed loop.

The strategy set for each Ci is just Γ; the strategy set for Si is Q∪{∅}. The utility

function for Si depends on the strategies of Ci−3, Ci−2, Ci−1, Ci+1, Ci+2, Si−3, Si−2, Si−1,

Si+1, Si+2, and itself; and that for Ci — on Ci−2, Ci−1, Ci+2, Si−2, Si−1, Si, and itself. We

set the utility function for Si according to the rules in Table 3.1.

For Ci, we set uCi(Ci−2, Ci−1, Ci, Ci+2, Si−2, Si−1, Si) to 1 iff Si−2 = ∅, ∅ 6= Si 6=

Si−1 6= ∅, and Ci = fT (Si−1, Ci−2, Ci−1, Ci+2). For any other configuration of strategies, we

set it to 0.

We start the game G with the tape players Ci playing the contents of the C’s
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Ci−3 Ci−2 Ci−1 Ci+1 Ci+2 Si−3 Si−2 Si−1 Si+1 Si+2 Si uSi

* * * * * ∅ ∅ q1 q2 ∅
q2 1

else 0

V W fT (q1, V, W, Y ) Y * ∅ q1 q2 6= q1 ∅ ∅
q2 1

else 0

* W X * Z ∅ ∅ q1 ∅ ∅
fq(q1, W, X, Z) 6= halt 1

else 0

* * * * * ∅ ∅ ∅ q1 ∅ * 0

else
∅ 1

else 0

Table 3.1: The utility function for Si. Asterisks indicate don’t-cares, q1 and q2 are arbitrary

elements of Q (i.e. not ∅), and V,W,X, Y, Z are arbitrary elements of Γ.

starting tape, S0 and S−1 playing q0, and all the other Si’s playing ∅. This puts the game

state in “phase” (iv) as shown in Table 3.2. By induction, it can be seen that, given that

starting configuration:

at each step of the Nash dynamics, the game state is in one of the four phases listed

in the table,

only the player whose strategy is marked by a square may have an incentive to deviate,

and

the game will cycle through states in phases (i)-(iv), simulating the computation of C,

unless and until C halts, at which point the game will be in a pure Nash equilibrium.

Due to the resetting constraint on C, if C does not halt, G must return to its

starting state after a finite number of steps. Since no other players have an incentive to

deviate at any step, this cycle in G’s state space forms a sink equilibrium. Conversely, if

C does halt, there is a path from the starting configuration to the pure Nash equilibrium

corresponding to the halted computation of C, thus assuring that the starting state of G is

not part of a sink equilibrium.

Since the degree of G’s graph is 10, we thus have that in a sink is PSPACE-

complete. This concludes the proof of theorem 6.

As an easy corollary, by taking liberties with the scale of the utility functions, we

get that the problems best (worst) sink for graphical games cannot be approximated at

all.
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phase C... Ci−3Ci−2 Ci−1 Ci Ci+1 Ci+2 Ci+3 C...

S... Si−3 Si−2 Si−1 Si Si+1 Si+2 Si+3 S...

(i)
· · · A B C D E F G · · ·
∅ ∅ ∅ a b ∅ ∅ ∅ ∅

(ii)
· · · A B C H E F G · · ·

∅ ∅ ∅ a b ∅ ∅ ∅ ∅

(iii)
· · · A B C H E F G · · ·
∅ ∅ ∅ a b b ∅ ∅ ∅

(iv)
· · · A B C H E F G · · ·

∅ ∅ ∅ ∅ b b ∅ ∅ ∅

(i)
· · · A B C H E F G · · ·
∅ ∅ ∅ ∅ b c ∅ ∅ ∅

Table 3.2: Canonical states of G. Capital letters are tape symbols in Γ, lower-case letters

are states in Q. H = fT (a,B,C,E), c = fq(b, C,H, F )

3.4 Open Problems

We believe that sink equilibria are intractable in other general situations as well,

for example in congestion games (with large, splitable flows).

The sink equilibria concept remains one important direction to explore in our

search for characterizations of game dynamics. It would be interesting to consider strategic

enhancements of this concept, besides the unit recall idea offered in section 5.1, in line with

the realities of the Internet: Asynchronous players with different reaction speeds whose

move depends not on the state, but on a rough (and perhaps delayed. . .) estimate of their

utility.
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Chapter 4

Stability in BGP Inter-Domain

Routing

4.1 Modelling BGP dynamics: the Stable Paths Problem

We now turn our attention to a concrete and important engineering application

of the Nash best-response dynamics: Internet inter-domain routing with the BGP protocol.

While the real BGP is, by necessity, a complex, practical protocol, we restrict discussion to

a mathematical model of it based on [GW97], which actually does not stray far from the

true protocol while abstracting away many engineering details which are irrelevant to our

results.

In our abstraction, a BGP system B is a directed graph G = (V,E) whose nodes are

called autonomous systems or ASes, except for v0 ∈ V , called the target node (we assume

all traffic is directed to it). Also, for each v ∈ V − {v0} there is a function λv, represented

as a Boolean circuit, say, mapping all simple paths between v and v0 to the integers. λv

also assigns an integer preference value to ⊥, the absence of a path (in which case all paths

whose utility is less than that of ⊥ can be considered “disallowed paths”).

The BGP system’s state is a path assignment π(u) mapping node u to a path from

u to v0 (or the absence thereof). Given a state, let us define C(π, u) = {(u, π(v))|(u, v) ∈

E} to be the list of paths u can choose from, starting with a link to a neighbor v, and

continuing with the current path for v. A path assignment π is stable if, for all u, π(u) =

arg maxP∈C(π,u) λ
u(P ). We’ll abbreviate path assignments by showing just ν(u), the next
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hop of the paths from u to v0, i.e. π(u) = (u, ν(u), ν(ν(u)) . . . , νk(u) = v0).

From a given state π, a node a ∈ V can be activated, in which case a’s path is

updated with π′(a) = arg maxP∈C(π,a) λ
a(P ). That is, if there is a better option for a (a is

“dissatisfied”) then the best such option is adopted, otherwise, π′ = π. We then say π
a
−→ π′.

An infinite activation sequence is fair ([GW97]), if, for all v ∈ V and i ∈ Z, there is a j > i

such that aj = v. A system is said to be convergent if for all fair sequences (a1, a2, . . .),

there exists an x such that π0
a1−→ π1

a2−→ . . .
ax−→ πx and πx is stable.

Our BGP model follows closely the stable paths problem (SPP) model of [GW97],

see also [GSW02]. One exception is that they provide an explicit list of ordered paths,

instead of an algorithm for comparing paths. Our version is closer to the realities of both

the formal BGP protocol specification, in which ASes are allowed to implement arbitrary

preference functions, and real BGP implementations in routers, which somewhat limit the

preference functions, but allow more freedom than just an explicit ordering of paths. An-

other important difference is that our model allows ties between paths; the real BGP actually

does not (this is BGP’s “Phase 2” tie-breaking as described in Sec. 9.1.2.1 of [RL95]). Our

main lower bound proof below uses this possibility of ties. However, we can extend the result

to not require ties; a sketch of this is given at the end of this section. A final difference is

that the model of [GW97] is explicit about the asynchronous nature of the communication

between the ASes by introducing message queues to the state, something that we view as an

unnecessary complication that obscures the finitary, combinatorial nature of the problem.

4.2 The complexity of BGP safety

We are interested a computational problem which we call

BGP safety: given a BGP system as above, is it convergent?

Characterizing safety has been the main goal of the literature on BGP oscillations

([GW97; LMJ98; VGE96; MGWR01], inter alia). In [GSW02] only a necessary condition,

and another sufficient one, for safety are given, both NP-hard. We show below that the

problem is PSPACE-complete.

One key observation is that the BGP convergence problem is actually one about

Nash dynamics. Starting with a BGP system B = ((G,E), λ), consider a game G[B] with a

set V − {v0} of players, each with a strategy set equal to the set of outgoing edges from it.
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Every pure strategy profile s defines now a subgraph Gs of G with outdegree one for each

player. The utility of v is then defined as uv(s) = λv(π[v,Gs]), the value of the unique path

from v to v0 in Gs, if such a path exists, and λv(⊥) otherwise.

BGP safety is hence just the question of whether the strict Nash dynamics

of G[B] is completely acyclic. Though the problem is similar in spirit to those about sink

equilibria considered in Chapter 3, the situation here is much more specialized than with the

graphical games result, and the proof of the following result is quite a bit more sophisticated

(and very different) than the proof of Theorem 6.

Theorem 7 BGP safety is PSPACE-complete.

Proof sketch: We start from the following computational problem:

String-Oscillationproblem: Given a function f : Γt−2 7→ Γ ∪ {halt} for some alphabet

Γ and integer t > 2 (assume that the function is given as a Boolean circuit), is there an

initial string T1 · · ·Tt ∈ ΓT such that the following program does not halt? (Indices of T

are understood modulo t, and T−(i,i+1) means Ti+2Ti+3 · · ·Ti−1.)

1: i← 0

2: while f(T−(i,i+1)) 6= halt do

3: Ti ← f(T−(i,i+1))

4: i← i+ 1

5: end while

To show the String-Oscillationproblem PSPACE-complete, we start, as in

Theorem 6, from the problem of telling whether a linear-bounded Turing machine will

halt if started on n blanks. We modify the Turing machine (in a way reminiscent of the

construction in [GKMP06]) so that (1) it has a clock that is “syntactically integrated” in its

operation (meaning, it is easy to check whether a configuration contains a legitimate clock

state); (2) when the clock overflows, or if the machine is about to accept, it erases the tape,

zeroes the clock, and restarts; (3) if it rejects, it halts; (4) therefore, the machine cycles if

and only if it accepts the empty string. The details are messy and have to be done exactly

right (and are omitted here).

We conclude that it is PSPACE-complete to tell if a Turing machine (with em-

bedded clock) will cycle. The reduction from the cycling problem to String-Oscillation
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Figure 4.1: A BGP gadget to simulate String-Oscillation.

is not difficult, once it is clear that f can recognize legitimate configurations (and halt in

every other case).

Starting from such a function f , we use the BGP system shown in Figure 4.1 to

simulate the operation of the program above in such a way that, at any step, no more than

2 nodes are interested in changing their path in a way that keeps the system “alive”, i.e.

in a state from which it might still loop (oscillate) indefinitely. The system can oscillate iff

there exists a starting configuration from which f never halts.

Given an instance I = (Γ, n, f), with |Γ| = s of String-Oscillation, we define

the BGP system B(I) = ((V,E), {λi}, where V = {d,Ai, Bi, Ci,j |i ∈ N = {1, . . . , n}, j ∈

S = {1, . . . , s}} and E = {(Ai, d), (Ai, Bi), (Bi, Ci,j), (Ci,j , Ai−1)|i ∈ N, j ∈ S} (operations

on “tape” indices are implicitly modulo n). d = v0 is the target node. Since Ci,j ’s have only

one outgoing link, they never update. Bi’s path choices, i.e. its preference function, λBi ,

implements f , while λAi is set up to assure that updates happen in clockwise (increasing i)

order.

Let T (tx, . . . , ty) be shorthand for the path segment:

(Cx,tx , Ax−1, Bx−1, Cx−1,tx−1 , . . . , By, Cy,ty−1)

Note the reverse order of the tape indices. We can now define the preference functions by:



CHAPTER 4. STABILITY IN BGP INTER-DOMAIN ROUTING 36

λBi(P ) =
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4 if P = (Bi, T (ti, . . . , ti+1), Ai, d)

and f(ti+2, . . . , ti−1) = ti

1 if P = (Bi, T (ti, . . . , ti+1), Ai, d)

and f(ti+2, . . . , ti−1) 6= ti

0 if P = ⊥

2 else

λAi(P ) =
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3 if P = (Ai, d)

1 if P = (Ai, Bi, Ci,j , Ai−1, d)

1 if P = (Ai, Bi, T (ti, . . . , ti+2), Ai+1, d)

and f(ti+2, . . . , ti−1) ∈ {tj 6=i,halt}

4 if P = (Ai, Bi, T (ti, . . . , ti+2), Ai+1, d)

and f(ti+2, . . . , ti−1) = ti

0 if P = ⊥

2 else

We call a state “alive” if either (a) exactly one Ai has ν(Ai) = d, or (b) only

ν(Ai+1) and ν(Ai) are d and ν(Bi) = Ci,f(T
−(i,i+1)), with f not returning “halt”.

If a state is not alive, we can inductively show that no Bj will ever again have an

incentive to switch (since it will never have a “clear view” to Ai) and no Aj will ever have

an incentive to switch from d to Bj , so any fair activation sequence will lead to all Aj ’s

switching to d, creating a stable configuration.

If a state is alive, its ν(Bj)’s correspond to a configuration of f ’s tape, with the

loop at cell i.

Inductively, after any activation sequence (a1, . . . , ax), we see that the system can

only be in one of these types of live states as it simulates f :

1. For all j 6= i, ν(Aj) = Bj , ν(Bj) = Ci,Tj ; ν(Ai) = d, and ν(Bi) = Ci,f(T
−(i,i+1)). Only

Aj for j 6∈ {i, i− 1} are dissatisfied. Updating Ai+1 yields state type 3; updating any

of the others creates a dead state.
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2. For all j 6= i, ν(Aj) = Bj , ν(Bj) = Ci,Tj ; ν(Ai) = d, and ν(Bi) 6= Ci,f(T
−(i,i+1)). Only

Aj for j 6∈ {i, i−1} and Bi are dissatisfied. Updating Bi yields state type 1. Updating

any of the Aj ’s yields a dead state.

3. For all j 6∈ {i, i + 1}, ν(Aj) = Bj , ν(Bj) = Ci,Tj ; ν(Ai) = ν(Ai+1) = d, and ν(Bi) =

Ci,f(T
−(i,i+1)), with f not returning “halt”. OnlyAj , j 6= i+1 are dissatisfied. Updating

Ai “advances” the simulation of C to the next step, and updates to state type 2, or,

if the next step of C doesn’t change the cell value, 1. Updating any of the other Aj ’s

yields a dead state.

Thus, if I does not halt, the activation sequence (B1, A2, A1, B2, A3, . . .) will make

this system cycle between states 2, 1, and 3 (perhaps occasionally skipping 2 in the sequence

when a type-3 state updates directly to type-1). If I does halt, a fair activation sequence

will force the system to enter a dead and then reach a stable state in finite time. With the

λ’s clearly succinctly representable, we have that BGP safety is PSPACE-complete.

The above setup relies on Bj ’s maintaining their state by having their preference

function remain “indifferent” when the “tape head” (the Ai-to-d link) is elsewhere; this is

the sole element above that ever requires “ties for first place” in the preference functions,

which BGP disallows. We can eliminate this by introducing an extra state Di for each Bi,

with links from Bi to Di and from Di directly to d. By setting Bi’s preference function

to 3 for (Bi, Di, d), and making Ai and Bj 6=i dislike paths through Di, we would introduce

another category of dead states, with the same implications of forthcoming termination as

above. We omit here the details of the proof that the reduction still works.

4.3 BGP open problems

Can our complexity result on BGP oscillations be extended to the case in which

the utilities are given explicitly as a preference order of paths, as in the model of [GW97]?

We cannot see how to prove this, but we expect that this problem is, indeed, also PSPACE-

complete.

There is also the question of how to model more complex real-world incentives

behind the actions of ISPs, which, externally to the protocol-mandated local preferences, are

actually driven by revenue from their potential customers and payments to their upstream

[GHJ+08]. In section 5.3, we propose a new equilibrium concept that may be a good
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approach for modelling such a system.
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Chapter 5

Strategizing About Dynamics

5.1 Unit Recall Equilibria

Sink equilibria restrict the strategic behavior by players to myopic local improve-

ment. On the other hand, unrestricted strategic play on the states is a very involved

subject [Sor97]. The following is an interesting compromise between the two extremes, a

minimal instance of bounded-recall games as studied by the game theory community [Ney85;

Aum00]:

Fix a game. A unit recall strategy by player i is a finite state automaton that has

Si as its state space and S−i as its alphabet. It specifies a starting strategy, and a next

strategy for every combination of plays by the other players. Notice that, assuming that

the players act synchronously, a set of unit recall strategies, one for each player, defines a

function from S to itself, as well as a start state, and thus an infinite walk from the start

state ending up in a cycle. The payoff of this combination of automata is then the average

utility in this cycle.

Notice that the above concepts allow us to define, for each game, a game by the

same players whose strategies are unit recall strategies. We call the pure Nash equilibria

of this game unit recall equilibria (UREs). It would be very exciting if every game had a

unit recall equilibrium. Unfortunately, this is not the case. The following can be proved by

exhaustion:

Proposition 4 The game of matching pennies (with n = 2, S1 = S2 = {0, 1}, and

ui(a, b) = (−1)i+a+b mod 2) has no unit recall equilibria.
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However, unit-recall equilibria are still common. Take a random 2-player m ×m

normal-form game. Pure Nash equilibria are known to exist with probability approaching

1 − 1/e as the number of strategies tends to infinity [GGN68]. The probability of a URE

existing, however, approaches 1:

Theorem 8 In an m×m bimatrix game with payoffs chosen independently from an arbi-

trary distribution, the probability that a unit recall equilibrium exists and can be found in

polynomial time is 1− 1/Ω(m1−ε), for all ε > 0.

Proof: We show that a particular kind of URE exists w.h.p.: a simple URE in a bimatrix

game with payoff matrices (R,C) is a pair of starting strategies (r, c) and a pair of a

“punishment column” cp 6= c and “punishment row” rp 6= r for the row and the column

player, respectively, such that Rk,cp ≤ Rr,c and Crp,k ≤ Cr,c for all k. The unit-recall

strategies are set so that, from (r, c), both players continue playing the same strategy, and

from any other state, the row player defects to rp to punish the column player, and vice

versa. Such equilibria can be found in polynomial time by exhaustion.

Set, with foresight, f(m) = ε(m − 1) log3m, and pick the top f(m) entries from

all of R, and the top f(m) entries from all of C (break ties uniformly at random). Let

IR and IC be 0-1 matrices which have 1’s wherever those top f(m) entries occur, and 0

elsewhere. For a simple URE to exist, it is sufficient to have (i) event M : there exist (r, c)

such IR
r,c = IC

r,c = 1, and (ii) event P : there exist some rp and cp such that IR
k,cp

and IC
rp,k

are 0 for all k.

Since the entries of R and C are chosen independently, IR and IC are chosen

uniformly at random from the set of 0-1 m ×m matrices with exactly f(m) 1’s. We will

also use the fact that (1− 1/x)x monotonically approaches 1/e from below as x grows, and

thus, for all x ≥ 6, 1/3 < (1− 1/x)x < 1/e.

We bound the probability of M via a birthday-paradox argument:
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Pr[M ] =

(m2−f(m)
f(m)

)

(

m2

f(m)

)
(5.1)

=

f(m)−1
∏

i=0

(

1−
f(m)

m2 − i

)

(5.2)

≤

(

1−
f(m)

m2

)f(m)

(5.3)

≤ e−f(m)2/m2
(5.4)

≤ m−Θ(1)(log m)((m−1)2/m2) ≤ m−Θ(log m) (5.5)

The more involved part is the following lemma:

Lemma 4 The probability that R has no empty columns is at most 1
m1−ε .

The same lemma applies, by symmetry, for C.

Proof: Let Xi be the indicator of column i of R being empty, with X =
∑

iXi. For each

i, we have:

Pr[Xi = 1] =

(

m2−m
f(m)

)

(

m2

f(m)

)
(5.6)

By linearity, we have:

E[X] = m

(

m2−m
f(m)

)

(

m2

f(m)

)
(5.7)

= m
m−1
∏

i=0

(

1−
f(m)

m2 − i

)

(5.8)

≥ m

(

1−
f(m)

m2 −m

)m

(5.9)

≥ m

(

1

3

)f(m)/(m−1)

(5.10)

≥ m1−c (5.11)

(5.12)

Since Xi ·Xj is just the indicator that columns i and j are empty, the variance is bounded
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by:

Var[X] =
∑

i

E[X2
i ] +

∑

i,j

E[XiXj ]− E[X]2 (5.13)

= E[X] +m(m− 1)

(

m2−2m
f(m)

)

(

m2

f(m)

)
−m2

(

m2−m
f(m)

)2

(

m2

f(m)

)2 (5.14)

≤ E[X] +
m2

(

m2

f(m)

)2

(

(

(m2 −m)−m

f(m)

)(

(m2 −m) +m

f(m)

)

−

(

m2 −m

f(m)

)2
)

(5.15)

Now observe that:
(

A

B

)2

=
1

B!2

B−1
∏

i=0

(A− i)2 ≥
1

B!2

B−1
∏

i=0

(A− i+ C)(A− i− C) =

(

A− C

B

)(

A+ C

B

)

(5.16)

. Thus, Var[X] ≤ E[X], and the Chebyshev inequality gives us:

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]] (5.17)

≤
Var[X]

E[X]2
≤

1

E[X]
≤

1

m1−ε
(5.18)

Thus, asymptotically, the union bound guarantees that Pr[simple URE exists] ≥

1− 1/Θ(m1−ε). We expect that a tighter analysis of Pr[P ] as an occupancy problem with

nearly-negligible dependencies will tighten the result to 1− 1/superpoly(m).

How difficult is then the problem unit recall equilibrium (given a game, find

a unit recall equilibrium)? Though the problem is prima facie a non-trivial member of Σ2P ,

the answer is, “not quite that difficult”:

Theorem 9 There is a polynomial algorithm which, given an n-player game and unit recall

strategies for n− 1 players, calculates the best response by the nth player. Therefore, unit

recall equilibrium is in NP.

Proof sketch: The n − 1 given unit recall strategies specify a function φ from S to S−i.

Define a graph with vertex set S and edges {(s, (φ(s), a)) : s ∈ S, a ∈ Si}, and assign to each

state s the weight ui(s). It is not hard to see that the best response is determined by the

cycle in this graph that has the highest average weight, a problem solvable in polynomial

time [Kar78].

Conjecture 5.1.1 Unit recall equilibrium is in P.



CHAPTER 5. STRATEGIZING ABOUT DYNAMICS 43

5.2 CURE: URE with slow strategy updates

Let us now weaken this equilibrium concept. A unit recall equilibrium requires

that, for each player, there be no way to change some subset of its transitions so that an

improvement results. But suppose now that we only require that no improvement result by

changing any one of the transitions. This could be a reasonable relaxation, if one assumes

that transitions in the automaton get changed slowly and sequentially, and that lower utility

will prevent a player from even starting the defection process. We call this weaker notion

componentwise unit recall equilibrium, or CURE.

Theorem 10 Every game has a CURE, which can be found in polynomial time, given a

normal-form game.

Proof sketch: Discard any players with only one choice of strategy. Let m = mini |Si| ≥ 2

and M = maxi |Si|. We’ll give the proof that works when n ≥ 7 or m ≥ 3.

Consider an n-player game (n ≥ 2), and a state s. We say that s is i-punishable if

there is another state s(i), differing from s in the strategy of two or more players, such that

ui(s(i)) ≤ ui(s). We call a state s punishable if it is i-punishable for all players i.

Lemma 5 Every game with 7 or more players, or with every player having 3 or more

strategies, has a punishable state.

Proof: The proof proceeds by a counting argument. For each player i, pick any s from the

set arg mins ui(s) to be s(i). For each such state, there are
∑

i |Si| − n+ 1 states that differ

from it in at most one player’s strategy. Via the union bound, the number of punishable

states must be at least:

∏

i

|Si| − n
(

∑

i

|Si| − n+ 1
)

>
∏

i

|Si| − n
∑

i

|Si| (5.19)

≥Mmn−1 − n2M (5.20)

Since M > 0, this is non-negative (guaranteeing at least one punishable state) whenever

n ≥ 2 and m ≥ 7 and whenever n ≥ 3 and m ≥ 3. For n = 2 and m = 3, just set

si 6∈ {s
(1)
i , s

(2)
i }.

Now, given a punishable state s, we shall construct n unit recall strategies, one

for each player, which, we shall argue, form a CURE. We shall describe these strategies
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implicitly, by the function ψ from S to itself that they induce. This function starts at s,

and it maps s to itself. For each player i, any state s′ such that s−i = s′−i is mapped to the

state s(i) guaranteed to exist by i-punishability. All other states are mapped to themselves,

and this concludes the description of the CURE.

To verify that s is a CURE, notice that, since the play is on s alone, only changes

of the transition for s by a player could possibly lead to disequilibrium. However, if player

i defects from si, the play will move to a state s′ with s−i = s′−i, and then immediately

to s(i) where it stays forever, thus failing to improve i’s utility (by the assumption that

ui(s(i)) ≤ ui(s)). This completes the proof of existence.

In a normal-form game, a punishable state can be found by exhaustion.

Some geometric arguments, omitted here, extend the lemma to guarantee a pun-

ishable state for all games except 2× 2, 2× 2× 2, 2× 2× 3, and 2× 2× 2× 2 games. The

finite corner cases are handled by tweaking the “punishable state” approach.

We are not claiming that the equilibria guaranteed to exist by this result are in any

sense natural. State s is supported, for each player i, by both “threats” by other players

(their transitions from s′ to s(i) and the persistence in s(i)) and by what is essentially a

commitment by player i to collaborate with the other players in punishing itself if it ever

deviates from playing s. Still, besides sink and correlated equilibria, CUREs in normal-form

games are the only equilibrium concept we know that is both tractable and universal.

5.3 Forecasting the average: Lasso equilibria

When evaluating the cost of the sink they are destined for, players with unit

recall in the above model assume that they are committed to following their full automaton

strategy in perpetuity. They expect to receive the steady-state average payoff over the sink

they are “aimed” toward. What if, as they look ahead to the future, they are allowed to

realize that “it’s downhill from here” — that is, that the sink they are headed to is worse

for them than the state they are now in?

Bilò and Flamini [BF07] propose a similar notion of second-order Nash equilibria,

where players recursively consider the worst-case scenario if they continue doing what they

are doing, and stop moving if there’s a risk of ending up worse off later on. The resulting

equilibria are a generalization of pure Nash equilibria to include states where players might

have a best-response move they could make but don’t, due to some risk of eventual decrease
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in payoff. Unsurpisingly, these equilibria are present and plentiful, since the players are very

risk-averse and are willing to stop moving at the slightest probability of a decrease.

We consider instead a model where players evaluate the average payoff in their

future, and stop moving if they would currently be better off. This definition can be made

recursive, with each player iteratively re-evaluating his stopping based on the other player’s

stopping decisions. For simplicity, we consider the bimatrix case, with players in any given

state given just the option of keeping the same strategy, or switching to their best response.

In this case, if no players stop, they will deterministically follow a “lasso” shaped walk in

the state space (a connected subgraph with outdegree at most 1, i.e. either a path or a

path connected to a cycle). The recursion is then irrelevant to our goal of evaluating the

universality of such equilibria and tractability of finding them, since, as long as there is a

state where one player will change his mind about the following the lasso and stop, further

recursion will only result in an equilibrium point earlier on the path from the starting state

to that state. Once the first stopping point in the recursion is found, finding the actual

recursive equilibrium requires just a quick backward induction.

These equilibria, which we will call lasso equilibria in honor of the bimatrix case,

are particularly applicable to situations where a player’s payoff after a strategy change is

only meaningful after some other players have had a chance to respond to it. For instance,

the BGP model in Chapter 4 has a natural extension for “traffic attraction”, a common

Internet phenomenon where ASes gain revenue from having their customers route more

traffic to them [GHJ+08]. There, the provider AS’s immediate payoff after a routing table

update is meaningless until its customers have had a chance to reconsider whether they want

to route through that provider. We expect that the fully-general version of lasso equilibria

will be a useful tool for modeling this.

Our results on lasso equilibria here are parallel to our URE result in Section 5.1

— we show that, with high probability, in a random bimatrix game, lasso equilibria exist

and are easy to find. Thus, they are a reasonable and almost-universal generalization of

pure Nash.

Theorem 11 For any ε > 0, in an m×m bimatrix game with payoffs chosen independently

from the uniform distribution on an interval, the probability that a lasso equilibrium exists

and can be found in polynomial time is 1− 1/Ω(m1/5).

Proof: Without loss of generality, assume that the interval is [0, 1]. Let (R,C) again
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be the payoff matrices for the row and column players, whom we’ll name Rand C. We will

consider the possible best-response transitions between states that are at least one player’s

best response, and will proceed by demonstrating that:

1. With high probability, there is a loop of non-trivial size among these transitions.

2. Such a loop, with high probability, has a state which is the best response for C, but

is also better for Rthan R’s average payoff over the loop.

We will slowly “reveal” information about the random values in the payoff matrices so as

to exploit the independence conditions at each step. First, reveal which column is C’s best

response to Rplaying his strategy 1 (with no regard for what the actual payoffs are), and

label that column κ1. Let ρ0 = 1. We’ll then consider the path of best-response transitions

starting from (ρ0, κ1) (where only Rcan have an incentive to move). The first step is to R’s

best response to κ1, which we call ρ2; the second is to C’s best response to ρ2, which we

call κ3. For ease of notation, we only use even-numbered ρs and odd-numbered κs. Note

that at each iteration from (ρi, κi+1) to (ρi+2, κi+1), we only need to reveal which entry in

the κi+1’th column of R is the maximum, rather than anything about the values in that

column, and conversely for the (ρi+1, κi) → (ρi+1, κi+2) transition, where we reveal which

entry of C is the maximum of the ρi+1’th row. Let k∗ = min{k|∃i < k . ρi = ρk ∨ κi = κk}

be the first time where the path loops back to itself to form the lasso. This can include

k = i + 2, i.e. the player that could’ve deviated doesn’t actually want to, so the state is a

pure Nash. To lower-bound the likely time until we cycle back, we get:

Pr[k∗ > k] =
k
∏

i=1

Pr[k∗ 6= i|k∗ ≥ i] (5.21)

WLOG, let i be even. Conditioned on k∗ ≥ i, k∗ 6= i is just the event that ρi, R’s best

response to Cplaying κi−1, does not land in a row that we’ve previously “revealed”. Since the

conditioning requires that κi−1 is not a repeat, we must not have revealed any information

about the κi−1 column of R, so this probability is just m−i/2
m , since R’s best response to in

column κi−1 just can’t land in any of the i/2 rows we passed earlier. Inductively, we get,
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for odd k:

Pr[k∗ > k] =

(k−1)/2
∏

i=1

(

1−
i

m

)2

(5.22)

≥

(k−1)/2
∏

i=1

(

1−
k − 1

m

)2

(5.23)

≥

(

1−
k − 1

m

)k−1

(5.24)

≥ 1−
k2

m
(5.25)

Set k = m2/5 (we’ll omit the arithmetic to deal with rounding to an odd integer).

We get Pr[k∗ < m2/5] ≤ m−1/5. Given k∗ > m2/5 (with k∗ WLOG even), the probability

that the loop from ρk∗ goes to a ρi with i > k∗ − m1/5 is at most m1/5

m2/5 = m−1/5, since,

again, the conditioning is independent of the κk∗−1’th column of R, and the probability of

the best response being one of the last m1/5 steps by Ris just m1/5/k∗.

Let l be the length of the loop reached from (ρ0, κ1). By the union bound, we get

that Pr[l] < m1/5 ≤ 2m−1/5.

The resulting loop, as any path in this dynamic, alternates between R’s and C’s

best responses. R’s average payoff is thus the average between l/2 of his best responses,

and l/2 of his payoffs at states which are C’s best responses. The former are bounded

by 1. The latter, conditioned on everything we’ve revealed thus far, are just independent

samples Rρk∗−2l,κk∗−2l+1
, . . . , Rρk∗−2,κk∗−1

(hereafter written as r0, r2, r4, . . . , rl−2) from the

underlying uniform distribution, each conditioned only the event notmax(i) that, out of m

payoffs in ri’s column of R, it is not the maximum. This distribution has the following

c.d.f.:

Pr[ri < α|notmax(i)] =
Pr[ri < α]

Pr[notmax(i)]
Pr[notmax(i)|ri < α] (5.26)

=
αm

m− 1

(

1−

∫ α

0
rm−1
i

dri
α

)

(5.27)

=
mα− αm

m− 1
(5.28)

Then, E[ri] = m
m−1

(

1
2 −

1
m+1

)

≤ 1
2 and Var[ri] = m

3(m+2)−
m2

4(m+1)2
= m3+2m2+4m

12(m3+4m2+5m+2)
≤ 1

12 .
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The Chebyshev bound gives us:

Pr

[

R’s average payoff over loop >
7

8

]

≤ Pr





∑

even i

ri >
3

4

∣

∣

∣

∣

∣

∣

notmax(i)∀i



 (5.29)

≤
Var

[
∑

even i ri|notmax(i)∀i
]

(1/4)2
(5.30)

≤
8

3l
(5.31)

≤
8

3m1/5
(5.32)

Lastly, we bound the probability that, among the l/2 positions whereRcould make

a best response, there are none that are good enough to beat the loop average and convince

Rto stop:

Pr

[

¬∃i . ri >
7

8

]

=

(

7
8m−

(

7
8

)m

m− 1

)l

≤
63

64

l

∀m ≥ 9 (5.33)

Thus, combining the four above via the union bound, we get that the probability

that there is no place along the lasso starting from (ρ0, κ1) where Ris happier than he would

be on average over the loop, thus ensuring that he would stop, and that thus somewhere

on the path between (ρ0, κ1) and that point is a lasso equilibrium, is 1 − 1/Ω(m1/5). In

a normal-form game, following the path from (ρ0, κ1) to find such a point and applying

backward induction to obtain the lasso equilibrium requires only linear time.

This result is an initial indication that lasso equilibria show some promise for

modelling games with delayed payoffs. We leave open a variety of interesting questions

concerning them. Most prominently, there is a design decision about how to model the

necessary non-determinism that will arise with more than 2 players — depending on the

application domain, it may make sense for the players to evaluate the future based on an

average over random orderings of the “activation sequence” of players, or based on the worst-

case activation sequence’s average loop payoff, etc. Also, there is an interesting question,

similar to the URE result above, of what happens when players try to game the future by

making non-best-response moves.
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