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Abstract

Interference Management in Wireless Networks: Physical Layer Communication

Strategies, MAC Layer Interactions, and High Layer Messaging Structures

by

Leonard H. Grokop

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Tse, Chair

Wireless communications research of previous decades has mostly focused on sys-

tems built from point to point channels. In such systems physical communication

links are essentially interference free, and interference management is at most a pe-

ripheral issue. Whilst these approaches have obvious advantages in terms of simplicity

of design and maintenance, they typically suffer from low spectral efficiencies. In this

thesis we research a number of new approaches spanning a range of communication

layers, aimed at improving spectrum management.

In the first chapter the fully connected K-user interference channel is studied in a

multipath environment with bandwidth W . We show that when each link consists of

D physical paths, the total spectral efficiency can grow linearly with K. This result

holds not merely in the limit of large transmit power P , but for any fixed P , and

is therefore a stronger characterization than degrees of freedom. It is achieved via

a form of interference alignment in the time domain. A caveat of this result is that

W must grow with K, a phenomenon we refer to as bandwidth scaling. Our insight

comes from examining channels with single path links (D = 1), which we refer to

as line-of-sight (LOS) links. For such channels we build a time-indexed interference
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graph and associate the communication problem with finding its maximal independent

set. This graph has a stationarity property that we exploit to solve the problem

efficiently via dynamic programming. Additionally, the interference graph enables

us to demonstrate the necessity of bandwidth scaling for any scheme operating over

LOS interference channels. Bandwidth scaling is then shown to also be a necessary

ingredient for interference alignment schemes used on general K-user interference

channels.

In the second chapter we consider the problem of two wireless networks operating

on the same (presumably unlicensed) frequency band. Pairs within a given network

cooperate to schedule transmissions, but between networks there is competition for

spectrum. To make the problem tractable, we assume transmissions are scheduled

according to a random access protocol where each network chooses an access proba-

bility for its users. A game between the two networks is defined. We characterize the

Nash Equilibrium behavior of the system. Three regimes are identified; one in which

both networks simultaneously schedule all transmissions; one in which the denser net-

work schedules all transmissions and the sparser only schedules a fraction; and one in

which both networks schedule only a fraction of their transmissions. The regime of

operation depends on the pathloss exponent α, the latter regime being desirable, but

attainable only for α > 4. This suggests that in certain environments, rival wireless

networks may end up naturally cooperating. To substantiate our analytical results,

we simulate a system where networks iteratively optimize their access probabilities

in a greedy manner. We also discuss a distributed scheduling protocol that employs

carrier sensing, and demonstrate via simulations, that again a near cooperative equi-

librium exists for sufficiently large α.

In the third chapter we examine messaging structures. Much of the existing work

on the broadcast channel focuses only on the sending of private messages. We examine

the scenario where the sender also wishes to transmit common messages to subsets
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of receivers. For an L-user broadcast channel there are 2L − 1 subsets of receivers

and correspondingly 2L − 1 independent messages. The set of achievable rates for

this channel is a 2L − 1-dimensional region. There are fundamental constraints on

the geometry of this region. For example, observe that if the transmitter is able to

simultaneously send L rate-one private messages, errorfree to all receivers, then by

sending the same information in each message, it must be able to send a single rate-

one common message, errorfree to all receivers. This swapping of private and common

messages illustrates that for any broadcast channel, the inclusion of a point R∗ in the

achievable rate region implies the achievability of a set of other points that are not

merely componentwise less than R∗. We formerly define this set and characterize it

for L = 2 and L = 3. Whereas for L = 2 all the points in the set arise only from

operations relating to swapping private and common messages, for L = 3 a form of

network coding is required.

Professor David Tse, Chair Date
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Preface

The primary issue in the design of wireless adhoc networks is managing the in-

terference that transmissions generate at nearby receivers. The simplest approach

to this problem, and the one most commonly adopted in practice, is to assign users

orthogonal subchannels of the available spectrum —each user gets a slice of the pie,

so to speak. This is typically done in such a way as to ensure that neighboring com-

munication links (we refer to a communication link as a user) are assigned different

subchannels. The drawback to this approach is that when the density of users in the

system increases, the spectral efficiency of each user diminishes —each user gets a

smaller slice of pie. Is this an innate characteristic of the communication medium, or

is it possible to design schemes that circumvent this deleterious effect? This question

is the focus of the first chapter of this thesis, where we show that it is indeed possible

to design physical layer communication strategies for which the spectral efficiency of

each user diminishes arbitrarily slowly as the number of users increases. We develop

a framework for efficiently designing optimal communication schemes for line-of-sight

channels by way of a time-indexed interference graph. The ideas can then be extended

to channels with both line-of-sight and non line-of-sight components.

In the second chapter we investigate the scenario where two co-located wireless

adhoc networks share the same frequency spectrum. Within each network devices

cooperate in scheduling transmissions at the MAC layer, but between networks their

is no incentive to do so. Users would still hope to receive an equal slice of the pie,

but due to the competitive nature of the situation, this desirable outcome seems

unlikely. We formulate the problem as a game between two random-access networks

and characterize the Nash equilibrium behavior of the system. The behavior turns out

to depend crucially on the pathloss exponent (the rate at which the signal fades with

v



increasing distance). We identify three distinct regimes and show that surprisingly,

when the path loss exponent is large enough, each network behaves as if it were

operating in isolation.

The last problem we tackle concerns messaging structures. For broadcast and

multiple access channels with three users we characterize the complete set of mes-

saging structures that are achievable for any channel for which a given messaging

structure is achievable.
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Chapter 1

Interference Alignment for

Line-of-Sight Channels

1.1 Introduction

The problem of communicating efficiently in wireless adhoc networks has received

much attention of late, the focus being on how to deal with interference in a shared

medium. Traditional approaches based on orthogonalizing users (eg. time-division

multiple access (TDMA) or frequency-division multiple access (FDMA) schemes) or

reusing the spectrum (eg. code-division multiple access (CDMA), certain modes of

802.11) suffer from poor spectral efficiency. In particular as the number of users in the

system grows, the spectral efficiency of each link vanishes. More recent approaches

include using multi-hop [12], distributed MIMO [24], [11], and interference alignment

[20],[5],[14]. This work is belongs to the latter category. Interference alignment is a

technique that uses appropriate precoding to compact interfering signals into small

dimensional subspaces at each receiver. At the same time, the subspace occupied by

the data remains linearly independent of the interference. It was first applied to a
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Chapter 1. Interference Alignment for Line-of-Sight Channels

multiple MIMO base station problem in [20] and shown to be capable of achieving

multiplexing gains distinctly greater than those achievable using conventional sig-

nalling schemes. The technique was then extended in [14] to show that there were

exactly 4M/3 degrees of freedom (the asymptotic gradient of spectral efficiency with

respect to log2 SNR) in the MIMO X channel (two MIMO transmitters each desir-

ing to send data to two MIMO receivers) with M > 1 antennas at each transceiver.

Following this, a more sophisticated interference alignment technique was developed

in [5] for the K-user interference channel with an infinite number of independently

faded sub-channels, and used to demonstrate that contrary to conventional wisdom,

the total degrees of freedom of the channel is K/2.

Whilst the last approach demonstrates the potential benefits that interference

alignment techniques can provide, it suffers from a number of limitations. Perhaps

the foremost is that whilst a degrees of freedom characterization is useful in the high

SNR limit, it may not be meaningful at moderate SNR’s. This stems from the fact that

degrees of freedom characterizes the asymptotic slope of the spectral efficiency curve

and not its actual value. In particular, it is unclear whether at any fixed SNR the

total spectral efficiency of the system is increasing in proportion to K, or increasing

at all. The point here is that [5] does not contain a scaling law result the likes of

[12] and [24], that is, it does not tell us what happens to the system capacity as

more users enter the fray. We address this question by constructing a communication

scheme that achieves a scaling of system capacity arbitrarily close to linear.

There is another key limitation. It is natural to interpret the parallel channels

used in the interference alignment scheme of [5] as corresponding to sub-channels in

the frequency domain. This is due to various difficulties associated with realizing the

scheme over independently faded parallel channels in time, most notably the very

rapid and accurate channel measurement that must take place, and the substantial

delay incurred. But in order for a large number of frequency channels to undergo
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Chapter 1. Interference Alignment for Line-of-Sight Channels

independent fading, significant scattering/multipath is required.

In this work we examine the K-user interference channel with limited multipath.

We start by assuming each of the K2 links consists only of a single physical path

with complex gain hij and delay τij seconds. This model is a good representation

for a line-of-sight (LOS) channel. Following this we generalize to the case where

each link consists of D physical paths. We illustrate a simple and elegant representa-

tion of interference alignment in the time domain, in terms of aligning symbols on a

time-indexed interference graph. This interference graph proves to be an extremely

useful tool for both conceptualizing and solving various problems relating to inter-

ference in LOS channels. We identify the problem of communicating on the LOS

interference channel with the problem of finding a maximal independent set in the

interference graph, and show how this problem can be solved efficiently using dynamic

programming principles. The simplicity of this approach makes it quite versatile and

potentially capable of being extended to tackle at a variety of related problems.

For the remainder of this work power spectral density (PSD) is used in place

of signal-to-noise ratio, as we will later wish to compare schemes that use different

bandwidths. Depending on the link delays, it may be possible to achieve a spectral

efficiency as high as 1
2
log2(1+ |hii|2PSD/N0) bps/Hz for each user i, regardless of the

number of interferers. This is exactly half the spectral efficiency achievable in the

absence of interference. We characterize the precise channel conditions for which this

is possible and show that they occur in at least 1/16 of all scenarios for the 3-user

interference channel.

This of course, says little about the typical gains one can expect by aligning

interference in the time domain. To address this question, we treat the link delays

as independent and uniformly distributed random variables in [0, Td), where Td is

the delay-spread of the channel. Previous work such as [20], [5], [14] has focused on

degrees of freedom as a metric for performance, which is a measure of the scaling
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Chapter 1. Interference Alignment for Line-of-Sight Channels

of spectral efficiency with PSD when the power spectral density is large. We focus

on the scaling of spectral efficiency with K when the number of users is large. The

main result of this work is the construction of a communication scheme that achieves

a spectral efficiency arbitrarily close to O(1) log2(1 + |hii|2PSD/N0) for each user

i as K → ∞. Thus our result characterizes the best possible scaling of spectral

efficiency with K for any fixed PSD, as compared with [20], [5], [14], where the best

possible scaling of spectral efficiency with PSD, for any fixed K, is characterized.

In this sense, our characterization has a similar flavor to characterizations of scaling

laws for wireless adhoc networks such as [12], [24]. However, our scheme requires no

cooperation between users.

A caveat of our result is that the bandwidth must scale sufficiently with K. In-

terpreting the parallel channel model of [5] in the frequency domain, one sees that

the bandwidth there must also scale with K. Interestingly enough, the bandwidth

scaling required for our scheme is essentially the same as that required in [5], namely

O(K2K2
). However, whereas the scheme in [5] requires coding over blocks of length

O(K2K2
), which creates significant encoding and decoding complexity issues as well

as substantial delay, our scheme requires no block coding, and consequently does not

incur any delay or suffer from complexity issues.

Essentially, in order to align interference into a small dimensional subspace and

keep it linearly independent of the data subspace, a high degree of resolvability of

the received signals is required. We establish this concretely for the LOS channel

in the context of the interference graph, showing that if the bandwidth scales sub-

linearly with K, then the total spectral efficiency of the system (the sum of all users

spectral efficiencies) will scale sublinearly, and hence almost all of the users will

witness vanishing spectral efficiencies as K increases.

This suggests that the greatest performance gains can be reaped in systems with
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Chapter 1. Interference Alignment for Line-of-Sight Channels

large delay spreads1 Perhaps the best example of such a system is the backbone

of a mesh network, used to wirelessly connect rural areas. Such systems are well

approximated by a LOS model, have large delay spreads, and are relatively static,

making channel measurement simpler and more accurate.

The structuring of the rest of the paper is as follows. In section 1.2 we describe the

model of the K-user LOS interference channel. Section 1.3 provides a summary of the

main result concerning the achievability of non-vanishing spectral efficiencies as the

number of users grows. The time-indexed interference graph is introduced in section

1.4. In the same section we present an algorithm for optimizing the spectral efficiency

efficiently via dynamic programming. We also address the questions of bandwidth

scaling, and of characterizing the class of channels for which the spectral efficiency can

reach its maximum value. In section 1.5 we present our construction that establishes

the main result. Following this, in section 1.6, we establish the relationship between

time and frequency domain interference alignment techniques. Section 1.7 contains

further discussion, extensions and open problems.

1.2 Model

We consider the K-user interference channel in which there are K transmitters and

K receivers. Transmitter i wishes to send data to receiver i but its transmission

constitutes interference at all other receivers. We often refer to each tx-rx pair as a

user. There are thus K2 links in total, K direct links and K(K−1) cross-links. Each

link consists of a single physical path. Denote the gain and delay (in seconds) of the

link between transmitter j and receiver i by hij ∈ C and τij ∈ [0,∞), respectively.

We assume the hij and τij are fixed for the duration of communication. Denote the

1Delay spread is the length of the impulse response of the channel
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Chapter 1. Interference Alignment for Line-of-Sight Channels

signal transmitter j sends by xj(t). Then the baseband signal at the ith receiver is

yi(t) =
K∑

j=1

hijxj(t− τij) + zi(t)

where the zi(t) are i.i.d. white noise processes with power spectral density N0

Watts/Hz. Denote the carrier frequency fc and the bandwidth that the signals xj(t)

are constrained to lie in by W Hz. Assuming the use of ideal sinc pulses, the passband

signal after sampling is given by

yi[m] =
K∑

j=1

hije
−2πfcτij

∞∑

l=0

sinc(l − τijW )xj[m− l] + zi[m]

where the zi[m] are i.i.d. CN (0, N0W ). We use the following conventional approxi-

mation for the sinc pulse,

sinc(t) ≈




1, if −1/2 < t < 1/2;

0, otherwise,

see page 27 of [28]. Let lij denote the integer round-off of the real number τijW . This

leads to

yi[m] =
K∑

j=1

hije
−2πfcτijxj[m− lij] + zi[m].

In a wireless model one typically makes an assumption about the statistics of the

channel. For example, in a channel with ISI, the tap coefficients are often modeled

as i.i.d. Rayleigh random variables. In models where there is a dominant path,

Rician random variables are used instead. Likewise in this work we make a statistical

assumption on the channel, but limit this statistical assumption only to the link

delays, taking the τij to be i.i.d. uniform in [0, Td), where Td denotes the delay-spread

of the channel in seconds. This means that if we define L to be one plus the integer
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round off of TdW , the lij are i.i.d. uniform in {0, . . . , L− 1}. No assumption is made

on the link gains hij, other than they all being non-zero.

We refer to this as the K-user line-of-sight (LOS) interference channel, as this is

the most common scenario giving rise to such a model.

There is a straightforward extension of this model to the case where each link

consists of D physical paths, such that the ith received signal is

yi(t) =
K∑

j=1

D∑

d=1

hij,dxj(t− τij,d) + zi(t).

Here hij,d ∈ C and τij,d ∈ [0,∞) are the complex gain and delay of the dth physical

path between transmitter j and receiver i. This leads to the following generalization

of the passband model after sampling

yi[m] =
K∑

j=1

D∑

d=1

hij,de
−2πfcτij,dxj[m− lij,d] + zi[m].

The natural extension of our statistical assumption for the LOS channel is to treat the

delays lij,d as i.i.d. uniform in {0, . . . , L−1}. In doing so we are assuming independent

delays not just across physical paths of different links, but also across the physical

paths corresponding to the same link.

We refer to this as the K-user D-path interference channel.

1.3 Preview of Main Result

Theorem 1.3.1. For any ε > 0, there exists a communication scheme on the K-user

LOS interference channel such that if W > (2K(K−1))K(K−1)+ε, the expected spectral
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efficiency of user i tends to

1

(K(K − 1))ε
log2

(
1 + |hii|2 PSD

N0

)
(1.1)

as K →∞.

Section 1.5 is devoted to proving this result. Here the expectation of spectral

efficiency is taken over the random direct delays lii. Roughly speaking this result says

that as K scales, it is possible for each user to communicate at a spectral efficiency

arbitrarily close to O(1) log2(1 + PSD
N0

), so long as the bandwidth scales as fast as

O((2K(K − 1))K(K−1)). In other words, communication at spectral efficiencies that

vanish arbitrarily slowly with K is possible if the bandwidth scales sufficiently. In

this result, and throughout this work, we assume that all cross delays lij for i 6= j

are known at all transmitters and receivers. This result is of a similar nature to the

scaling laws of [24], in that we show the growth of system capacity with the number

of users is arbitrarily close to linear. Unfortunately, as is the case in [5], the required

bandwidth scaling is great. A result presented later on (theorem 1.4.2) addresses the

question of whether bandwidth scaling is necessary.

For the case where each link consists of D physical paths we have the following

generalization.

Theorem 1.3.2. For any ε > 0, there exists a communication scheme on the K-

user D-path interference channel such that if W > (2DK(DK − 1))DK(DK−1)+ε, the

expected spectral efficiency of user i tends to

1

(DK(DK − 1))ε
log2

(
1 + max

d∈{1,...,D}
|hii,d|2 PSD

N0

)
(1.2)

as K →∞.

As is evident from the statement of the theorem, there is a tradeoff between
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the number of physical paths per link and the bandwidth scaling required. Again,

the question of whether this bandwidth scaling is necessary is addressed in a result

presented later on.

1.4 The Interference Graph

The key insight leading to theorem 1.3.1 comes from formulating the communication

problem in a graph theoretical setting. We start with an example. Consider a 3-user

LOS interference channel where the direct links are all zero, i.e. l11 = 0, l22 = 0

and l33 = 0, and the cross-links are say, l21 = 3, l31 = 1, l12 = 1, l32 = 4, l13 = 3,

l23 = 0. Choose a length T for the communication block. Create a directed graph

G3,T (l12, l13, l21, l23, l31, l32) = (V , E) as follows. Let the vertex set be

V = {v1(0), . . . , v1(T − 1)} ∪ {v2(0), . . . , v2(T − 1)} ∪ {v3(0), . . . , v3(T − 1)}.

The vertex vi(t) represents the tth time slot for the ith transmitter. Form the edge

set E as follows. Add a directed edge e21(0) starting from vertex v1(0) and ending at

vertex v2(l21) = v2(3). This represents the fact that, owing to a delay of 3 time slots, a

transmission during time slot 0 by transmitter 1 arrives at receiver 2 during time slot

3. Also add a directed edge e31(0) starting from v1(0) and ending at v3(l31) = v3(1).

This represents the fact that, owing to a delay of 1 time slot, a transmission during

time slot 0 by transmitter 1 arrives at receiver 3 during time slot 1. Likewise add

directed edges e12(0) and e32(0) from vertex v2(0) to v1(l12) = v1(1) and v3(l32) =

v3(4), respectively, and directed edges e13 and e23 from vertex v3(0) to v1(l13) =

v1(3) and v2(l23) = v2(0), respectively. This set of six edges encapsulates all of the

interference generated by transmissions during time slot 0. As the channel is time-

invariant the same interference structure applies for later time slots. Thus for each

9
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

Figure 1.1: The interference graph associated with the LOS channel with direct-delays
l11 = 0, l22 = 0, l33 = 0 and cross-delays l21 = 3, l31 = 1, l12 = 1, l32 = 4, l13 = 3, l23 = 0.

t = 1, 2, . . . , T − 1 add a directed edge from v1(t) to v2(t + l21), provided t + l21 ≤ T ,

a directed edge from v1(t) to v3(t + l31), provided t + l31 ≤ T , a directed edge from

v2(t) to v1(t + l12), provided t + l12 ≤ T , etc... See figure 1.1 for an illustration.

In this example all direct delays were zero, whereas in general this is not the case.

However as each transmitter j can merely offset it’s transmitted sequence xj[m] by

−ljj, we can effectively assume without loss of generality that ljj = 0. More concretely

we define the normalized cross-delays

l′ij , lij − ljj.

Note that l′ij ∈ {−L + 1, . . . , L − 1}, that is, it is possible for l′ij to be negative. At

this point one may wonder why the interference graph need be directed, since the

feasibility of a given transmit pattern is independent of edge direction. The answer

is it need not be, but we define it as such to aid in conceptualizing the problem.

In general we have

Definition 1.4.1. The time-indexed interference graph (or simply interference graph

for short) of length T associated with the K-user LOS interference channel with nor-

10
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

maximal independent set 

Figure 1.2: A feasible transmit pattern corresponds to an independent set. The vertices of
a maximal independent set are shaded. For a symmetric channel, the maximal independent
set maximizes total spectral efficiency.

malized cross-delays {l′ij}i 6=j, is the directed graph GK,T ({l′ij}i6=j) = (V , E) where

V =
K⋃

j=1

{vj(1), . . . , vj(T )}

E =
K⋃

i=1

K⋃

j=1,j 6=i

{eij(1), . . . , eij(T − l′ij)},

with edge eij(t) stemming from vertex vj(t) and ending at vertex vi(t + l′ij).

This graph has KT vertices and approximately K(K − 1)T edges. As a trans-

mission during time slot t is interfered with by one time slot at each other user, and

itself interferes with one time slot at each other user, each vertex has both in-degree

K − 1 and out-degree K − 1. To reduce the notational burden, we often refer to the

graph GK,T ({l′ij}i6=j) simply as G, where the parameters of the interference graph are

implicit.

One can similarly define a time-indexed interference graph for the D-path inter-

ference channel, but in the interest of brevity and clarity we do not discuss it here.

A transmit pattern is a subset of time slots during which data symbols are sent,

11
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one data symbol being sent per time slot. A transmit pattern is called feasible if each

data symbol is received during a time slot that contains no interference from other

transmissions. Thus a feasible transmit pattern corresponds to an independent set on

the interference graph. Occasionally we will drop the adjective “feasible” when it is

clear that the transmit pattern in question is such. As each data symbol arriving at

receiver i during a time slot containing no interfering symbol, is capable of conveying

log2(1 + |hii|2 PSD
N0

) bps/Hz, user i’s spectral efficiency will be

Ri = Ni log2

(
1 + |hii|2 PSD

N0

)
,

where Ni is the number of vertices in {vi(1), . . . , vi(T )} that are in the independent

set. Let us assume for the meantime that hii = 1 for all i. Then the total spectral

efficiency is directly proportional to the size of the independent set. Thus the problem

of designing a communication scheme to maximize total spectral efficiency reduces

to finding the maximal independent set of the interference graph. Denote the size of

the maximal independent set of a graph G (called the independence number) by α(G).

Then the maximum total spectral efficiency for a graph G is

α(G) log2

(
1 +

PSD

N0

)
.

For the preceding example, the maximal independent set is illustrated in figure 1.2.

Whenever an independent set contains two vertices that possess a mutual neighbor,

the interference generated by these two transmissions aligns at the mutual neighboring

vertex. This is interference alignment in the time domain. For the example in figure

1.2, the neighbors of each unshaded vertex are all shaded, that is, data transmissions

occur at all neighbors of an unshaded vertex. This is not always the case. Suppose

we use a TDMA based communication scheme where user 1 transmits on consecutive

12
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time slots for a long period whilst users 2 and 3 remain silent. Then after a small

guard interval user 2 transmits on consecutive time slots whilst users 1 and 3 remain

silent. Finally user 3 transmits, and then back to user 1 and so on. In this round

robin scheme, each unshaded vertex is connected to only a single shaded one and no

interference alignment occurs.

The problem of finding the maximal independent set is a well-known NP-hard

problem, meaning that for an arbitrary graph, there is no known algorithm capable

of solving the problem in time sub-exponential in the number of vertices. Knowing

this it may appear that finding an optimal transmit pattern requires a computation

time that is exponential in the block length T , however the interference graph is not

an arbitrary graph. In particular it is stationary in the sense that, ignoring boundary

effects, the structure of the graph is invariant to time shifts. In the next section we

present an algorithm that exploits this property to find the maximum independent

set in linear time. More generally, when the link gains hii are arbitrary the algorithm

solves the problem of finding an independent set that maximizes spectral efficiency.

We refer to this set as the optimal independent set.

1.4.1 Finding the maximal independent set efficiently

In this section we concentrate on the LOS channel, but the ideas can be extended to

the D-path channel. Given an interference graph G we now illustrate how dynamic

programming principles can be employed to compute the maximal independent set

efficiently. Let each vertex vj(t) ∈ {0, 1} with vj(t) = 1 if vj(t) is included in the

transmit pattern, that is, if a data symbol is transmitted by user j during time slot

t, and vj(t) = 0 otherwise. There is a slight abuse of notation here as we have used

vj(t) to represent both an element of the vertex set V and an indicator function for

whether or not a data symbol is transmitted by transmitter j during time slot t.

13
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t)

x2(t)

x1(t)

etc... 

State at t = 4  

Figure 1.3: The LOS interference channel of figure 1.1. The state at time t = 4 is a
function of the shaded vertices, each taking on one of two values.

Concretely stated, the optimization problem we will solve is

min
{vj(t)} ∈ {0, 1}KT

s.t. vi(s) + vj(t) ≤ 1,∀(vi(s), vj(t)) ∈ E

−
K∑

j=1

rj

(
T−1∑
t=0

vj(t),

)
(1.3)

where ri = log2(1 + |hii|2 PSD /N0). This is the problem of finding the optimal

independent set. This cost is just the sum of the spectral efficiencies of the users

weighted by the number of data symbols they send. We use a negative sign so as

to justify the description of this metric as a cost, i.e. something we are trying to

minimize. In the event that all direct gains are equal, rj is independent of j and the

problem reduces to finding the maximal independent set of G.

To solve this problem efficiently, we start by defining

l∗j , max{max
i

l′ij, max
i
−l′ji}.

This is the length of the longest edge that connects a vertex at a time t, to a vertex

belonging to user j for time ≤ t. When all the l′ij are positive, l∗j simply represents the

14
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longest edge stemming from user j. In the example of figure 1.1, l∗1 = 3, l∗2 = 4 and

l∗3 = 3. When some of the l′ij are negative, l∗j represents the longest edge connecting

user j to another user in the forward time direction. Thus the total amount of memory

in the system is maxj l∗j . If this seems somewhat contrived, recall that although the

interference graph is a directed graph, it need not be defined as such, as the effect

of vertex vi(t) causing interference at vertex vj(t
′) is identical to the effect of vertex

vj(t
′) causing interference at vertex vi(t). What matters for the dynamic programming

formulation in this section, is not whether vi(t) is causing interference with vj(t
′) or

vice versa, but whether t > t′, t = t′ or t < t′. In our algorithm we move through

vertices in order of increasing time t. The state of the system at time t is defined by

those vertices at times ≤ t that are connected to vertices at times ≥ t.

More precisely, define the state vector at time t to be

s(t) =




v1(t)
...

v1(t− l∗1)
...
...

vK(t)
...

vK(t− l∗K)




. (1.4)

This is the collection of all vertices at times ≤ t, that interfere with, or are interfered

with by vertices at times ≥ t. Figure 1.3 illustrates which vertices are included in

the state vector. As each vj(t) takes on one of two values, the state space consists

of at most 2
∑K

j=1(l
∗
j +1) possible states. Some states may be infeasible because two of

their vertices are connected by an edge. Thus define the state space as the space of
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all feasible states

S =
{
s1, . . . , s|S|

}

with each si ∈ {0, 1}
∑K

j=1(l
∗
j +1). Each state in S corresponds to an independent set

in the subgraph made up of vertices in s(t). Thus there are typically far fewer than

2
∑K

j=1(l
∗
j +1) states. A second example is given in figures 1.4 and 1.5. In this example

there are a total of 28 states as shown in figure 1.5.

For notational convenience we label the elements of si as such

si =




s
(1,0)
i

...

s
(1,l∗1)
i

...

...

s
(K,0)
i

...

s
(K,t−l∗K)
i




.

Denote the set of feasible state transitions from a ∈ S to b ∈ S by

F =
{
(a,b) : b(j,k+1) = a(j,k), for j = 1, . . . , K and k = 0, . . . , l∗j − 1

}

For the example of figures 1.4 and 1.5 the set of feasible state transitions is

S = {(s1, s2), (s1, s8), (s1, s11), (s2, s3), . . . }

With the state space clearly defined, it is straightforward to derive the actual

algorithm, which is akin to the Viterbi algorithm. It begins by initializing the costs
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t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 

x3(t) 

x2(t) 

x1(t) 

State at t = 2 

etc… 

Figure 1.4: A LOS interference channel with normalized cross delays l′21 = 0, l′31 = 1,
l′12 = 2, l′32 = 0, l′13 = 1 and l′23 = −2. The state at time t = 2 is a function of the
shaded vertices.

to zero, that is

csj
(0) = 0,

for all sj ∈ S. Each iteration of the algorithm involves finding the minimum cost

path entering each state. At times t = 1, . . . , T compute

si∗(t, sj) = arg min
si ∈ S

(si, sj) ∈ F

csi
(t− 1),

for each sj ∈ S, which is the minimum cost state at time t − 1 from which we can

transition into state sj at time t. Then compute

csj
(t) = csi∗ (t,sj)(t− 1)−

K∑

k=1

rks
(k,0)
j ,

for each sj ∈ S, which is the minimum cost of a path that ends up at state sj at time
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Figure 1.5: An illustration of the entire state space S for the example of figure 1.4. For
each state, both the state vector is given and the corresponding independent set shaded.
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t. When time t = T is finally reached, compute

s∗(T ) = arg min
si∈S

csi
(T ),

which is the optimal termination state. The optimal independent set is then found

by working backwards. Start by setting the T th column of vertices v1(T ), . . . , vK(T )

according to s∗(T ). That is, set vj(T ) = [s∗i (T )](j,0) for j = 1, . . . , K. Then set the

T − 1th column according to si∗(T, s∗(T )), that is, set vj(T − 1) = [s∗i (T, s∗(T ))](j,0)

for j = 1, . . . , K. Continue by setting vj(T − 2) = [s∗i (T − 1, s∗i (T, s∗(T )))](j,0), etc...

We now briefly examine the complexity of this algorithm. As the state space

consists of all independent sets of a subgraph defined by 2
∑K

j=1(l
∗
j +1) vertices, given a

set of delays l′ij, it takes O(2
∑K

j=1(l
∗
j +1)) time steps to enumerate. Once this is done,

the algorithm takes O(T |S|) time steps to solve problem (1.3). Roughly speaking,

l′ij = O(L), and |S| = O(LK log LK). Thus the algorithm takes

O(TLK log LK) + O(2LK)

time steps to compute the optimal independent set.

As the state space defined in equation 1.4 is finite, for large T the optimal inde-

pendent set will have a periodic form with period less than or equal to the number

of states |S|. Thus, if there is no restriction on how large T can be, once the period

of the maximal independent set is found, we can simply set T equal to it, without

compromising optimality. In this case, the entire problem can be solved in

O(LK log LK2LK log LK) + O
(
2LK) = O((LK)LK+1 log LK

)

time steps.
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1.4.2 Bandwidth scaling

Theorem 1.3.1 shows that if the bandwidth scales sufficiently quickly with K, the

spectral efficiency per user can be made to vanish arbitrarily slowly. A natural ques-

tion to ask is whether it is necessary for the bandwidth to scale with K, in order for

this desirable property to hold. The following converse result establishes that this is

indeed the case.

Theorem 1.4.2. If the bandwidth scales sufficiently slowly with K such that

lim
K→∞

log W

log K
log K

= 0

then

lim
K→∞

log α(G)/T

log K
= 0 (1.5)

with probability one.

As the total spectral efficiency

K∑
i=1

Ri ≤ α(G)

T
log2

(
1 + max

i
|hii|2 PSD

N0

)

theorem 1.4.2 implies

lim
K→∞

log
(∑K

i=1 Ri

)

log K
= 0,

which is equivalent to limK→∞ Ri = 0 for almost all users i ∈ {1, . . . , K}.
Roughly speaking the above result says that if the bandwidth scales slower than

O(K/ log K), then the spectral efficiency resulting from any feasible transmit pattern

will vanish as K → ∞. Note there is a gap between this converse result and the

achievability result of theorem 1.3.1. Theorem 1.3.1 demonstrates that it is sufficient

for the bandwidth to scale like O((2K(K−1))K(K−1)), but theorem 1.4.2 shows that it
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is necessary for the bandwidth to scale only as fast as O(K/ log K). This establishes

that the slowest possible bandwidth scaling lies somewhere between O(K/ log K) and

O((2K(K − 1))K(K−1)). It is unclear, which if any of these bounds is tight.

Proof. Remove those edges that connect vertices of different time slots in the inter-

ference graph, (vi(t), vj(t
′)) for t′ 6= t. This provides an upper bound on the inde-

pendence number. Now consider a single column V(t) = {v1(t), . . . , vK(t)} of this

graph in isolation. For any pair of vertices in V(t), there exists an edge connecting

them independently with probability 1− (1− 1/L)2 (probability 1/L for each of the

two possible directions). Thus the graph consisting of vertices V(t) and the random

subset of edges connecting them, is precisely the Erdős-Rényi graph GK,1−(1−1/L)2 . A

well known result (see for example [4]) is that

lim
n→∞

α(Gn,p)

log n
=

2

log(1/(1− p))

with probability one. Hence the independence number of GK,2/L satisfies

lim
n→∞

α(GK,2/L)

log K
=

2

log(1/(1− 1/L)2)

≤ L.

As L is directly proportional to W , if limK→∞ log W/ log K
log K

= 0 then the same limit

applies for L and

lim
K→∞

log α(GK,2/L)

log K
= 0.

Now as the independence number of the interference graph satisfies α(G) ≤ Tα(GK,2/L),

equation (1.5) follows.
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1.4.3 When is the maximal independent set maximal?

We now turn to the problem of analysis. Ideally we would like a simple characteri-

zation of the size of the maximal independent set in terms of the parameters of the

system, K, T , and the normalized cross-delays l′ij. It is unclear if such a charac-

terization exists. Instead we present two results. The first characterizes when the

independence number is equal to its maximum possible value, and shows how the

maximal independent set can be found almost instantly in this event. The second,

which is theorem 1.3.1, demonstrates that surprisingly large independent sets exist

on average, when both the number of users and the bandwidth are sufficiently high.

In this section we present the former result, in the next section we present the latter.

What we will be revealed in this section is that the problem of determining whether

or not the independence number is equal to its maximum possible value, is a group

theoretic one.

We assume in this section that the direct gains are all equal so that the optimal

independent set is equivalent to the maximal independent set. Owing to the absence

of some edges, the boundary of the interference graph has a slightly different structure

than it’s interior. In order to circumvent this problem, we let T → ∞ so that these

boundary effects are negligible.

Definition 1.4.3. The independence rate of sequence of interference graphs

GK,1({l′ij}i6=j),GK,2({l′ij}i6=j), . . .

is

IR(GK({l′ij}i6=j)) , lim
T→∞

α(GK,T ({l′ij}i6=j))

T
.

We write IR(GK) for short. Start with the following observation.
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Lemma 1.4.4. For any number of users K and any channel {l′ij}i6=j

IR(GK) ≤ K

2
.

This means that for large T we can only include at most half the vertices of the inter-

ference graph in any feasible transmit pattern. We now ask, when is the independence

rate exactly equal to K/2? The following result succinctly answers this question for

K = 3. Define

l , l′31 + l′13 + l′32 + l′21 + l′12 + l′23

l1 , l′13 + l′32 + l′21

l2 , l′21 + l′12

l3 , l′31 + l′13.

If li 6= 0, define γi to be the exponent of 2 in the prime factorization of li, that is

li = 2γiβi where βi represents the rest of the prime factorization. If li = 0 then define

γi = ∞. Similarly if l 6= 0, define γ to be the exponent of 2 in the prime factorization

l, i.e. l = 2γβ. If l = 0 then define γ = ∞.

Theorem 1.4.5. IR(G3) = 3/2 if and only if γ1 < γ2, γ1 < γ3 and γ1 < γ, in which

case there are exactly 2gcd(l1,l2/2,l3/2,l/2) feasible transmit patterns achieving it.

To clarify, if for example both γ1 = ∞ and γ2 = ∞, then the above conditions

are not satisfied and IR(G) < 3/2. This theorem provides a necessary and sufficient

condition such that all users can transmit half the time without interfering with one

another. The most probable way this condition can be met is if l1 is an odd number,

and l, l2 and l3 are all even numbers. Each of these events roughly occurs indepen-

dently with probability 1/2, hence the probability all four occur simultaneously is

23



Chapter 1. Interference Alignment for Line-of-Sight Channels

1/16. Thus with probability & 1/16 there exists a feasible transmit pattern enabling

all users to transmit half the time without interfering with one another. There are of

course other ways in which our condition can be met, for example, if l1 is even, but

not a multiple of 4, and l, l2 and l3 are all multiples of 4, however this, and all other

configurations satisfying the condition of theorem 1.4.5 likely occur with probability

much less than 1/16. The proof of theorem 1.4.5 is given in the appendix.

Example 1.4.6. For the channel in figure 1.11, we have l = 2 and l1 = 1, l2 =

2, l3 = 2. This means γ = 1, γ1 = 0, γ2 = 1, γ3 = 1, so a feasible transmit pattern

achieving independence number 3/2 exists. As gcd(l1, l2/2, l3/2, l/2) = 1 there are

only two feasible transmit patterns: the first is shown in the figure as a sequence of

shaded vertices, the second is obtained by complementing the transmit pattern, i.e.

unshading the shaded vertices, and shading the unshaded ones.

How does theorem 1.4.5 generalize for an arbitrary number of users, K? Define a

cycle on the interference graph to be the indices of a tuple of edges with connecting

vertices, that start and end on the same row. For example ((1, 2), (2, 3), (3, 1)) and

((3, 2), (2, 3)) are examples of cycles for K = 3. The length of a cycle is the sum of the

normalized cross-delays associated with it. For example, the cycle ((1, 2), (2, 3), (3, 1))

has length l′12 + l′23 + l′31.

Define the set of cycles containing an even number of terms as

Ye = {((i1, i2), (i2, i3), . . . , (i2n, i1)) : i1 6= i2 6= · · · 6= i2n and ij ∈ {1, . . . , K}} ,

and the set of cycles containing an odd number of terms as

Yo = {((i1, i2), (i2, i3), . . . , (i2n+1, i1)) : i1 6= i2 6= · · · 6= i2n+1 and ij ∈ {1, . . . , K}} .

Then we claim it can be shown that
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Claim 1.4.7. IR(GK) = K/2 if and only if the exponents of 2 in the prime factor-

izations of the lengths of all cycles containing an odd number of terms, are the same,

and this exponent is strictly less than the exponent of 2 in the prime factorization of

the length of every cycle containing an even number of terms. That is, the exponent

of 2 in the prime factorization of

∑

(i,j)∈Yo

l′ij,

is the same for all Yo ∈ Yo, and this value is strictly less than the exponent of 2 in

the prime factorization of
∑

(i,j)∈Ye

l′ij,

for any Ye ∈ Ye.

1.5 Achieving Non-Vanishing Spectral Efficiency

We now prove theorem 1.3.1 by presenting a construction with expected spectral

efficiency that can be made to vanish arbitrarily slowly as K → ∞. First, a high-

level overview of the proof. The idea is to construct a transmit pattern that has

close to O(1) independence rate as K → ∞. At the heart of the transmit pattern

is a generalized arithmetic progression. If the bandwidth scales appropriately with

the number of users then this progression will have desirable interference alignment

properties, but care has to be taken in constructing a transmit pattern out of it. In

particular, the progression will be very sparse, meaning that many identical versions

of this progression must be interleaved, each with a different timing offset. The trick

to making the analysis work is to use a randomization argument to show that a good

set of offsets exists.
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Proof. (of Theorem 1.3.1) First some notation that will be used throughout the proof.

Let

N , K(K − 1)

and

A , L

NN+ε
.

We use ⊕ to denote addition modulo L. Let

T ,
{ ⊕

1≤i 6=j≤K

αijlij : {αij}i6=j ∈ {0, . . . , N − 1}N

}
.

This is the set of all linear combinations of the cross-delays (not normalized) with

integer coefficients ranging from 0 to N . Define

S ,
A⋃

a=1

(ma ⊕ T )

See figure 1.6 for an illustration. Each user transmits one data symbol at each time

slot in the set

X ,
∞⋃

k=0

(S + kL).

The above construction corresponds to concatenating data blocks S of length L. The

modulo L addition used in constructing S and T , ensures a seamless transition at the

block boundaries. This is illustrated in figure 1.7. The construction is defined in this

seemingly convoluted way in order to make the analysis simple and elegant. However

there is an easier way of conceptualizing this construction: take multiple copies of the

generalized arithmetic progression
{∑

1≤i6=j≤K αijlij : {αij}i 6=j ∈ {0, . . . , N − 1}N
}

,

and throw them down on the infinite time axis with offsets m1, . . . , mA, L+m1, . . . , L+

mA, 2L + m1, . . . , 2L + mA, . . . . Although this construction is periodic with period
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0 L-1time slots 

S

T + m1 mod L 

T + m2 mod L 

T + m3 mod L 

m1

m2

m3

Figure 1.6: The construction S is formed by interleaving a sufficient number of generalized
arithmetic progressions T with random offsets mi. The colored bars indicate time slots
during which data symbols are sent.

L, locally, the offsets of these progressions will appear as a Poisson process with in-

tensity A/L = 1/NN+ε. As there are NN points in each progression, the density of

points in X will be 1/N ε and hence the spectral efficiency will go to zero with K like

1/(K(K − 1))ε.

We will show that there exists a choice of

(m1, . . . , mA) ∈ {0, . . . , L− 1}A

such that the expected spectral efficiency of this scheme approaches (1.2) as K →
∞. More specifically, we show that for the above construction, at each receiver the

expected fraction of time slots containing a data symbol but no interference is large.

Each such data symbol is then able to convey log2(1 + |hii|2 PSD /N0) bps/Hz of

information and the expected spectral efficiency achieved by the scheme for user i is

the fraction of such time slots multiplied by log2(1 + PSD /N0).
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0 L time slots 

S S+L S+2L 

2L 3L

etc…

X

Figure 1.7: The construction X is formed by concatenating blocks of S. The modulo L
structure of S ensures a seamless transition from block to block.

Since our construction X consists of a concatenation of identical blocks of length

L, we analyze its performance over a single block extending from time slot 0 to L−1.

At receiver i the set of time slots containing interference is

Fi ,
K⋃

j=1,j 6=i

(S ⊕ lij) . (1.6)

Denote the number of time slots at receiver i, that contain a data symbol from

transmitter i, but no interference by Si , |{t ∈ (S ⊕ lii)\Fi}|. Then conditioning on

the cross delays we have

ESi =
1

LK(K−1)

∑

{lij}i 6=j

E{lii}i
[Si|{lij}i6=j]. (1.7)

Define

s(k) ,





1, if k ∈ S
0, otherwise.

That is, s(k) = 1 if a transmission takes place at time slot k, and zero otherwise.

Similarly define

fi(k) ,





1, if k ∈ Fi

0, otherwise.
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That is, fi(k) = 1 if there is interference during time slot k at receiver i and zero

otherwise. Conditioned on the cross delays, Si is the correlation function between

the set of transmit times S and the set of interference free times F c
i , evaluated at an

offset of lii, specifically

Si(lii) =
L−1∑

k=0

s(k ⊕ lii)(1− fi(k))

Thus

E{lii}i
[Si|{lij}i 6=j] =

1

L

L−1∑

lii=0

Si(lii)

=
1

L

L−1∑

lii=0

L−1∑

k=0

s(k ⊕ lii)(1− fi(k))

=
1

L

L−1∑

k=0

(1− fi(k))
L−1∑

lii=0

s(k ⊕ lii)

=
1

L

L−1∑

k=0

(1− fi(k))
L−1∑

lii=0

s(lii)

=
1

L

L−1∑

k=0

(1− fi(k))|S|

= |S|
(

1− |Fi|
L

)

where in the above sequence of equations we have used the identities |S| ≡ ∑L−1
k=0 s(k)

and |Fi| ≡
∑L−1

k=0 fi(k). Substituting back into equation (1.7) we find the fraction of

time slots at receiver i containing data but no interference is

ESi

L
=

1

LK(K−1)

∑

{lij}i 6=j

|S|
L

(
1− |Fi|

L

)
. (1.8)

The above expression makes intuitive sense as if we uniformly select a time slot at
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random from {0, . . . , L − 1}, then conditioned on the {lij}i6=j, the quantity |S|/L is

the probability this time slot contains a data symbol, and 1−|Fi|/L is the probability

it does not contain an interference symbol. We now compute appropriate bounds on

the terms |S| and |Fi|. From equation (1.6) we have

Fi =
⋃

j 6=i

(S ⊕ lij)

=
⋃

j 6=i

([
A⋃

a=1

(ma ⊕ T )

]
⊕ lij

)

=
A⋃

a=1

[⋃

j 6=i

(T ⊕ lij)

]
⊕ma

But
⋃

j 6=i

(T ⊕ lij) ⊂
{ ⊕

1≤i6=j≤K

αijlij : {αij}i6=j ∈ {0, . . . , N}N

}
,

and this set has at most (N + 1)N elements. This is the interference alignment

property. Hence

|Fi|
L

≤ A
1

L

∣∣∣∣∣
⋃

j 6=i

(T ⊕ lij)

∣∣∣∣∣

≤ A(N + 1)N

L

<
(N + 1)N

NN+ε

= N−ε

(
1 +

1

N

)N

< eN−ε.

We now bound |S|. We first show that |T | = NN almost surely as N → ∞. In

order to have |T | < NN , there must exist two sets of coefficients {αij}i6=j 6= {αij}′i6=j
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both elements of {0, . . . , N − 1}N , satisfying

⊕

i6=j

αijlij =
⊕

i6=j

α′ijlij.

This is equivalent to requiring there to exist some {αij}i6=j ∈ {−N +1, . . . , N−1}N\0
satisfying

⊕

i6=j

αijlij = 0.

Using the union bound we have

Pr
(|T | < NN

)
= Pr

(
∃{αij}i6=j ∈ {−N + 1, . . . , N − 1}N\0 s.t.

⊕

i6=j

αijlij = 0

)

≤
∑

{αij}i6=j∈{−N+1,...,N−1}N

Pr

(⊕

i6=j

αijlij = 0

)
.

As conditioned on all cross delays other than l12, there is at most one value of l12

that satisfies
∑

i6=j αijlij = 0, and the cross delays are uniformly distributed over

{0, . . . , L− 1}, we have

Pr
(|T | < NN

) ≤
∑

{αij}i6=j∈{−N+1,...,N−1}N

1

L

=
(2N)N

L

≤ (2N)N

(2N)N+ε

= (N)−ε

→ 0

as N →∞ (or equivalently, as K →∞).

At this point it should start to become clear why it is that in this particular
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O(NN) time slots 

O([2N]N) time slots 

NN distinct pointsoverall density of points = O(2-N)

Figure 1.8: An illustration of the generalized arithmetic progression T without the modulo
L wrap around. There are NN points spread over O((2N)N) time slots, however almost
all points are concentrated at the center in a width of O(NN). Hence the density of
points is O(2−N).

construction the bandwidth must scale like (2N)N . From the above calculation we

see that in order to make all the points in the generalized arithmetic progression T
distinct, we require the lij to be large. How large? It may seem that as there are NN

integers in T , the minimum being 0 and the maximum being roughly the same order

as lij, we require lij = O(NN). However, the structure of the generalized arithmetic

progression is such that the bulk of its points are concentrated around the center,

such that we actually require at least lij = O((2N)N) to separate these center points

out, as the above calculation shows. But such a large order of lij makes T very sparse,

in fact if lij = O((2N)N) then T ’s density is a mere O(2−N). So to fill in the gaps we

interleave multiple sequences T . How many? O(2N). In general if lij = O(L) then

we must interleave O(L/NN) = A sequences. This explanation is illustrated in figure

1.8

We now use a probabilistic argument to demonstrate the existence of a good choice

of (m1, . . . , mA). Let ma ∼ i.i.d. U({0, . . . , L− 1}). Let

t(k) ,





1, if k ∈ T
0, otherwise.
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and

ta(k) ,





1, if k ∈ ma ⊕ T
0, otherwise.

Thus ta(k) = t(k ⊕ma). Then we can write

s(k) = t1(k) + t2(k)(1− t1(k)) + t3(k)(1− t2(k))(1− t1(k))

+ · · ·+ tA(k)(1− tA−1(k))× · · · × (1− t1(k)).

This expression says that k ∈ S if k ∈ m1 ⊕ T , or if k /∈ m1 ⊕ T but k ∈ m2 ⊕ T ,

or if k /∈ m1 ⊕ T and k /∈ m2 ⊕ T but k ∈ m3 ⊕ T , etc... We can write the above

expression alternatively as

s(k) = t1(k) + (1− t1(k))(t2(k) + (1− t2(k))(t3(k) + . . . ))

= t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2) + (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))
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Then taking the expectation over the distribution of m1, . . . , mA

E|S|
L

=
1

L
E

L−1∑

k=0

s(n)

=
1

L
E

L−1∑

k=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1∑
mA=0

· · ·
L−1∑

m1=0

L−1∑

k=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1∑

k=0

L−1∑
mA=0

· · ·
L−1∑

m1=0

t(k ⊕m1) + (1− t(k ⊕m1))(t(k ⊕m2)

+ (1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1∑

k=0

L−1∑
mA=0

· · ·
L−1∑

m2=0

|T |+ (L− |T |)t(k ⊕m2)

+ (L− |T |)(1− t(k ⊕m2))(t(k ⊕m3) + . . . ))

=
1

LA+1

L−1∑

k=0

L−1∑
mA=0

· · ·
L−1∑

m2=0

|T |+ |T |(L− |T |)

+ (L− |T |)2(t(k ⊕m3) + . . . ))

...

=
|T |
L

A−1∑
a=0

(
1− |T |

L

)a

= 1−
(

1− |T |
L

)A

→ 1−
(

1− NN

L

) L

NN+ε

a.s.

→ 1− e−
NN

L
L

NN+ε

→ N−ε.
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Substituting back into equation (1.8)

ESi

L
=

1

LK(K−1)

∑

{lij}i6=j

N−ε
(
1− eN−ε

)

= N−ε
(
1− eN−ε

)

→ N−ε

as N →∞ (or equivalently K →∞). As each data symbol that is received without

interference is capable of reliably communicating log2(1 + |hii|2PSD/N0) bps/Hz, the

expected spectral efficiency of each user i goes to

1

(K(K − 1))ε
log2

(
1 + |hii|2PSD/N0

)

as K →∞.

The proof of theorem 1.3.2 is a straightforward extension of the previous.

Proof. (of Theorem 1.3.2) If each receiver i treats physical paths 2, 3, . . . , D from

transmitter i as interference, then the received signals in the K user D path inter-

ference channel are statistically identical to those of the DK-user LOS interference

channel. Thus the achievability result of theorem 1.3.1 carries over to the D path

channel with K replaced by DK, and |hii|2 replaced by maxd∈{1,...,D} |hii,d|2.

1.6 Frequency Domain Interpretation

In this section we reconcile the time domain version of interference alignment pre-

sented in this paper, and the frequency domain results of [5]. Specifically we show
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how the three-user construction of [5] has a simple time domain structure for the LOS

interference channel.

To begin, we need to transform the LOS model into the frequency domain. For this

we use an OFDM architecture summarized in figure 1.9. Transmitter j has a stream

of complex data symbols to send {xj[0], xj[1], . . . } to receiver i. These are broken up

into blocks of length n. Consider a single block denoted x = [xj[0], . . . , xj[n − 1]]T .

To send this block the transmitter computes the M -length vector xj = Vjxj, where

Vj ∈ CM×n is an encoding matrix to be specified later. Let lmax , maxi,j lij. To send

xj, tx j computes its IDFT and appends a cyclic prefix of length lmax. Each receiver

removes the cyclic prefix and computes the DFT. Specifically

x̃j =


 0lmax×(M−lmax) Ilmax×lmax

IM×M


F∗M×Mxj

and

yj = FM×M

(
0M×lmax IM×M

)
ỹj

where FM×M is the M ×M DFT matrix,

FM×M =
1√
M




1 1 1 · · · 1

1 ej2π/M ej2π·2/M · · · ej2π·(n−1)/M

1 ej2π·2/M ej4π·(n−1)θ · · · ej2π·2(n−1)/M

...
...

...
. . .

...

1 ej2π·(M−1)/M ej2π·2(M−1)θ · · · ej2π·(M−1)(n−1)/M




.

The result is a length M sequence

yi[k] =
K∑

j=1

hije
−j2π(fcτij+klij/M)xj[k] + zi[k]
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xj[0]

xj[n-1]

add

cyclic

prefix

remove 

cyclic

prefix

channel

IDFT DFTVj
ZF

equalizer

[0]x̂ j

1]-[nx̂ j

Figure 1.9: Illustration of the OFDM architecture used to reconcile the time and frequency
domain versions of interference alignment.

for k = 0, . . . , M − 1. Let θij , lij/M . Then in matrix form

yi =
K∑

j=1

HijVjxj + zi

where the link matrices are

Hij = hije
−j2πfcτij




1

e−j2π·θij

e−j2π·2θij

. . .

e−j2π·(M−1)θij




. (1.9)

Choose W sufficiently large such that the lij are distinct. Note that M needs to be

much larger than lmax in order for the overhead from the cyclic prefix to be small.

Also, M must not have any of the lij as divisors, else the channel matrices will lose

rank. Let H , h−1
ij ej2πfcτijH and T , H12H

−1

21 H23H
−1

32 H31H
−1

13 . Let w = [1 · · · 1]T .

Choose the encoding matrices as follows

V1 = H
−1

31 H32T
2V

V2 = TV

V3 = H
−1

13 H12V
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where

V = [w Tw T2w · · · Tn−1w]

and let

n = (M − 1)/2.

where M will be chosen to be an odd number. This is the three user construction

of [?], but note the channel matrices Hij do not consist of M independently faded

tones. Rather, all tones are derived from a single parameter lij. Define

θ = θ12 − θ21 + θ23 − θ32 + θ31 − θ13

l = l12 − l21 + l23 − l32 + l31 − l13

Then

V =
1√
M




1 1 1 · · · 1

1 ej2π·θ ej2π·2θ · · · ej2π·(n−1)θ

1 ej2π·2θ ej2π·4θ · · · ej2π·2(n−1)θ

...
...

...
. . .

...

1 ej2π·(M−1)θ ej2π·2(M−1)θ · · · ej2π·(M−1)(n−1)θ




. (1.10)

Lemma 1.6.1. If M is prime the columns of V are a permuted subset of the columns

of FM×M , i.e.

V = FM×Mπl,M (1.11)

where πl,M is an M × n permutation matrix, i.e. each column of πl,M is a unique

column of IM×M .

Proof. Consider the matrix element V(2, k) = ej2πkl/M/
√

M = ej2π·(kl mod M)/M/
√

M
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for some k ∈ {0, . . . , M − 1}. Let M be prime. Then the set

{1, ej2π/M , ej2π·2/M , . . . , ej2π·(M−1)/M}

together with the multiplication operation forms a group. Thus each V(2, k) corre-

sponds to a unique FM×M(2, k′) for some k′ ∈ {0, . . . , M − 1}. Now observe that

V(j, k) = V(2, k)(j−1) and FM×M(j, k′) = FM×M(2, k′)(j−1). Thus FM×M(j, k′) =

VM×M(j, k). In other words each column of V corresponds to a unique column of

FM×M , which establishes the result.

Lemma 1.6.1 enables us to write the encoding matrices Vj in a revealing form.

Define

Γ1 , H
−1

31 H32T
2 (1.12)

Γ2 , T (1.13)

Γ3 , H
−1

13 H12. (1.14)

Then

x̃j =


 0lmax×(M−lmax) Ilmax×lmax

IM×M


F∗M×MΓjFM×Mπl,Mxj.

Examining the above expression reveals that the encoding operation for tx j cor-

responds to transmitting consecutive data symbols l time slots apart, but cyclicly

wrapped around such that roughly half of all time slots contain data symbols and no

two data symbols share the same time slot. As the operation F∗M×MΓjFM×M corre-

sponds to delaying the input stream, the entire transmission sequence is just offset

by this amount.

Based on equations (1.12)-(1.14) we can define the delay dj for user j’s transmis-
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sion sequence as

d1 , 2l12 − 2l21 + 2l23 − l32 + l31 − 2l13

d2 , l12 − l21 + l23 − l32 + l31 − l13

d3 , l12 − l13.

Then we see that transmitter j will send its first symbol xj[1] in time slot dj mod M ,

its second symbol xj[2] in time slot dj + l mod M , its third in time slot dj + 2l

mod M , etc... The last symbol will be sent at time dj + (n − 1)l mod M . More

precisely transmitter j sends

x̃j[m] =





xj[k], if m = kl + dj mod M for some k

0, otherwise

at times m = 0, 1, . . . , M − 1.

The manner by which this transmission scheme achieves interference alignment is

now simple to understand. Tx 1, transmits it’s first data symbol x1[1], such that it

arrives at rx 3 at the same time as tx 2’s first data symbol x2[1]. Tx 2 transmits x2[1]

such that it arrives at the same time as x3[1] at rx 1. Tx 3 transmits x3[1] such that

it arrives at rx 2 at the same time as x1[2], etc... See example 1.6.3 and figure 1.10.

From figure 1.10 it is clear how decoding should be performed —receivers merely

decode each data symbol by looking at the time slot in which it was received. But let

us reconcile this with the decoding methodology of [?], where the received sequence

is passed through a ZF equalizer. This corresponds to projecting the vector yj onto

the subspace orthogonal to the interference. At the first receiver

y1 =
(

H11V1 H12U
)


 x1

xg


 + z1
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where

U = [w Tw T2w · · · Tnw].

and xg represents a combination of interfering symbols from the 2nd and 3rd users.

It is straightforward to see that we can write the space orthogonal to U as

Uc = FM×Mπc
l,M

where πc
l,M is a permutation matrix orthogonal to πl,M in the sense that πc

l,M
∗πl,M = 0.

Simply put, Uc is a matrix whose columns are those columns of FM×M that are not

present in V. Thus the first receiver computes x̂1 = G∗
1y1 where

G∗
1 = (Uc∗H−1

12 H11V1)
−1Uc∗H−1

12 .

If we write out the decoder in detail

G∗
1y1 =

(πc
l,M

∗F∗M×MH−1
12 H11Γ1FM×Mπl,M)−1πc

l,M
∗F∗M×MH−1

12 FM×M

(
0M×lmax IM×M

)
ỹj

we see that the first few operations correspond to removing the cyclic prefix, delaying

the resulting stream by l12 and then selecting the interference free subset of this. The

last operation is in general undefined, as the matrix we invert may not be full rank.

However in certain scenarios the matrix equals identity and is then invertible.

The reason for this phenomenon is that the last operation corresponds to recov-

ering the data from the interference free subspace, which may contain fewer than n

dimensions of xj. In the case of many independently faded OFDM sub-channels such

as is assumed in [?], one could always project the subspace spanned by the data onto

the interference free subspace without losing information, however for single path
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channels each data dimension is either orthogonal or overlapping with an interference

dimension.

The scenario in which the above decoder is well defined (i.e. data and interference

subspaces are orthogonal) is given by the following condition.

Lemma 1.6.2. If

l11 = d1 + nl mod M

l22 = d2 + nl mod M

l33 = d3 + nl mod M

then the interference subspace is orthogonal to the data subspace.

Thus if each of the direct delays takes on a single, specific value, the signal space will

be orthogonal to the interference space at each of the receivers and we will be able

to decode all data symbols.

Example 1.6.3. Suppose the link delays are l11 = 0, l22 = 5, l33 = 9, l12 = 5,

l13 = 4, l21 = 4, l23 = 6, l31 = 5, l32 = 4. Then d1 = 7, d2 = 4 and d3 = 1. Also

l = 5− 4+6− 4+5− 4 = 4. Note that for illustrative purposes the direct delays have

been precisely chosen such that the data and interference subspaces are orthogonal.

Choose the data block length M to be the prime 13, and use a cyclic prefix of length 9.

The total length of cyclic prefix plus data block is 21. Then tx 1 will transmit its 0th

data symbol, namely x1[0], in time slot d1 mod M = 7 mod 13 = 7. It’s second data

symbol x1[1] will be transmitted in time slot l + d1 mod M = 4 + 7 mod 13 = 11.

It’s third data symbol x1[2] will be transmitted in time slot 2l + d1 mod M = 15

mod 13 = 2, etc.. These data symbols will arrive at rx 2 delayed by l21 = 4 time

slots. Thus x1[0] will appear as interference at rx 2 during time slot 7 + 4 = 11, x1[1]

will appear as interference during time slot 11 + 4 = 15, etc... Similarly tx 1’s data
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x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

RX 1 

RX 2 

RX 3 

time slot 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

(a)

RX 1 

RX 2 

RX 3 

time slot 

x3(1) x3(0) x3(5) x3(4) x3(3) x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) x3(5) x3(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) x1(4) x1(1) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(1) x2(5) x2(2) 

x3(1) x3(0) x3(5) x3(4) x3(2) x3(3) x3(2) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(1) x2(5) x2(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) 

x1(0) x1(5) x1(4) x1(3) x1(1) x1(2) x1(4) x1(1) 

x2(4) x2(3) x2(1) x2(5) x2(0) x2(2) x2(5) x2(2) 

 (b) 

Figure 1.10: Illustration of 3 user interference alignment scheme of [5] in the time domain.
See example 1.6.3 for a description. (a) Received sequences with the cyclic prefix omitted.
(b) Received sequences incorporating the cyclic prefix.
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symbols will arrive at rx 3 delayed by l31 = 5 time slots. Similarly one can do the

same computation for tx 2’s and tx 3’s data symbols.

The details are given in figure 1.10. In part (a) of the figure the cyclic prefix has

been omitted for illustrative purposes. It is incorporated into the picture in part (b).

The red shaded boxes contain data symbols, the grey shaded boxes contain interference

symbols. Notice the interference alignment property manifests itself as an overlap-

ping of interfering data symbols. The shaded, but unlabeled boxes represent symbols

belonging to the next OFDM block. The black box outlines those time slots that are

used for decoding. The 9 time slots prior to these are discarded when the cyclic prefix

is removed. The 9 unboxed time slots to the right of the black outline will also be

discarded, but during the next OFDM block.

1.6.1 K-user channels

In the previous section we demonstrated that for three-user LOS channels, the fre-

quency domain scheme of [5] has a simple analog in the time domain that works

well when the block length is chosen to be a prime number, and the direct delays

take on particular values. One would imagine that an analogous scheme for K > 3

users would therefore also exist and work well. This is not the case. In fact for the

LOS interference channel with more than three users, the alignment scheme of [5]

has various shortcomings which result in it achieving zero degrees of freedom in total.

Our construction (in section 1.5) is inspired by the use of a generalized arithmetic

progression in [5], but circumvents the schemes shortcomings by:

1. Truncating the generalized arithmetic progression appropriately.

2. Interleaving many replicas of the progression, with random offsets.

3. Scaling the bandwidth with K.
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For example, to understand why truncation is necessary, recall the precoding

matrices used in for the K-user channel in [5] are of the form

Vj = SjB

for j = 2, . . . , K, where the matrix B is composed of the column vectors in the set

B =






 ∏

i,j∈{2,3,...,K},i6=j,(i,j)6=(2,3)

(H
−1

i1 HijSj)
αij


w : αij ∈ {0, 1, . . . , n− 1}



 ,

and Sj = H
−1

1j H13H
−1

23 H21. Observing equation (1.9), write the link matrices in the

form

Hij = Zlij ,

where

Z ,




1

e−j2π·/M

e−j2π·2/M

. . .

e−j2π·(M−1)/M




.

Then we have

B =
{
Z

∑
i,j∈{2,3,...,K},i 6=j,(i,j) 6=(2,3) αij l̃ijw : ∀αij ∈ {0, 1, . . . , n− 1}

}
.

where lij = −lij + lij − l1j + l13 − l23 + l21. For sufficiently large n we will be able to

find many pairs ({αij}, {α′ij}) such that

∑

i,j∈{2,3,...,K},i 6=j,(i,j)6=(2,3)

αij l̃ij =
∑

i,j∈{2,3,...,K},i 6=j,(i,j) 6=(2,3)

α′ij l̃ij.
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Thus the precoding matrices will loose rank as many of their columns will be repeats

of previous ones. This phenomenon of repeated elements is common in generalized

arithmetic progressions over integer fields. See for example [27]. How much rank

will be lost? Observe that the largest exponent of Z in B will be no greater than

(n− 1)((K − 1)(K − 2)− 1) max lij. But there are n(K−1)(K−2)−1 columns in B. Thus

as n →∞ the rank of B will scale only like O(n) due to repeated columns, whilst the

dimension of the space scales like roughly O(n(K−1)(K−2)−1). Hence the total degrees

of freedom goes to zero unless the progression is truncated.

1.6.2 Bandwidth Scaling Revisited

The final issue we address in terms of reconciling time and frequency domain inter-

pretations, is that of bandwidth scaling. We now demonstrate that bandwidth scaling

is required in the scheme of [5] when the physical channel model is brought into the

picture.

Theorem 1.6.4. In a multipath fading channel with L taps, if the bandwidth satisfies

lim
K→∞

log W

log((K − 1)(K − 2)− 1)(K−1)(K−2)−3
= 0,

then the total degrees of freedom achieved by the K-user interference alignment scheme

of [5] goes to zero as K →∞.

This means that the bandwidth must scale at least as fast as O(((K − 1)(K − 2) −
1)(K−1)(K−2)−3) which is roughly the same scaling that is required in theorem 1.3.1,

namely O(K2K2
).

Proof. For a general multipath channel with L taps, the link matrices are of the form

Hij =
L−1∑

l=0

aij,lZ
l.
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Using the commutativity of the diagonal Hij matrices we can write

Vj = Sj


 ∏

i,j∈{2,3,...,K},i6=j,(i,j)6=(2,3)

Hi1H1jH23



−n

C,

where the matrix C is composed of the column vectors in the set

C =

{ 
 ∏

i,j∈{2,3,...,K},i6=j,(i,j)6=(2,3)

(Hi1H1jH23)
n−αij(HijH13H21)

αij


w :

αij ∈ {0, 1, . . . , n− 1}
}

.

In [5] the minimum scaling of n with K required is

lim
K→∞

log n

log(K − 1)(K − 2)− 1
> 0.

Each of the Hij matrices is a polynomial of degree at most L− 1 in the matrix Z.

Thus each column of C is a polynomial of degree at most 6n(L−1)((K−1)(K−2)−1)

in the matrix Z. This means the maximum rank of C is 6n(L − 1)((K − 1)(K −
2) − 1) + 1, as any c polynomials of degree ≤ d that are in general position, are

linearly dependent for c > d + 1. The total number of rows in C however, is at least

n(K−1)(K−2)−1. Thus the total degrees of freedom is no more than

6n(L− 1)((K − 1)(K − 2)− 1)

n(K−1)(K−2)−1
.

which goes to zero as K →∞, unless L (and hence W ) scales like

lim
K→∞

log L

log((K − 1)(K − 2)− 1)(K−1)(K−2)−3
> 0.
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1.7 Discussion and Conclusion

Although this work concentrated on the line-of-sight channel, where each link consists

of only a single physical path, it is possible to generalize the concepts and construc-

tions presented herein to the case where each link consists of D physical paths. This

is done by modifying the interference graph such that each vertex interferes with D

other vertices at each user. Intuitively this would cause the independence rate of the

interference graph to decrease, but it can be shown by a simple modification of the

proof of theorem 1.3.1, that when the D delays are i.i.d. for each link, the indepen-

dence rate scales arbitrarily close to O(K) as K →∞, so long as the bandwidth scales

sufficiently with K. Put another way the spectral efficiency can again be made to

vanish arbitrarily slowly as K →∞. The trick is to treat the additional paths as ficti-

tious interferers who have no data of their own to send. The catch is that the scheme

requires the bandwidth to scale much more quickly, like O((2DK(DK−1))DK(DK−1)).

Thus for all practical purposes, increasing the number of physical paths would likely

lead to a decrease in the performance of time-domain based interference alignment

schemes.

We demonstrated in section 1.4.2 that if the bandwidth scales sub-linearly in K,

then the independence rate of the interference graph goes to zero as K → ∞, and

in section 1.5, that if the bandwidth scales like O((2K(K − 1))K(K−1)), then the

independence rate scales arbitrarily close to O(K). This brings us to an interesting

open question. How does the independence rate scale in the intermediate regime

where O(K) ≥ W < O((2K(K − 1))K(K−1))? What if there are D physical paths?

There are several variations of the LOS interference channel for which the inter-

ference graph techniques discussed in this work are applicable, and for which fur-
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ther study is warranted. These were alluded to earlier. For instance, the partial

connected interference channel may be a more accurate model of a wireless adhoc

network. It is possible that for such channels, a bandwidth scaling much less than

O((2K(K − 1))K(K−1)) is sufficient in order for the independence rate to scale arbi-

trarily close O(K). It is not clear how one would approach the problem of showing

this if it were true, or disproving it otherwise. An interference channel with one dom-

inant path per link and several sub-dominant ones, is also an interesting candidate

for investigation. This channel is more commonly encountered in practice than the

line-of-sight channel. It is likely that an optimization problem similar to 1.3 can be

formulated for this scenario. It would be interesting to study whether time-domain

based interference alignment can provide gains here. Presumably as the dominance

of one physical path over the others diminishes, so too will the performance improve-

ment.

Lastly we discuss some interesting fringe benefits associated with the communica-

tion schemes presented in this work. Whereas interference alignment in the frequency

domain requires coding over very long blocks, which results in substantial delay due

to the necessity of buffering data symbols at the encoder and received symbols at the

decoder, no such delay is required for the time-indexed interference graph techniques

detailed above. Data symbols are transmitted as soon as an appropriate time slot is

reached, and detected when received. The only delay incurred is that stemming from

the use of an error correction code. In the same respect, the encoding and decoding

complexity are greatly reduced. Thus delay and complexity issues are non-existent.

Conditioning issues are also non-existent. Interference alignment in the frequency

domain, although performing well at very high-PSD, suffers at moderate PSD if the

data and interference subspaces are close to one another. Time domain interference

alignment techniques are free from this problem as the data and interferences sub-

spaces are orthogonal by design.
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1.8 Appendix

1.8.1 Proof of Theorem 1.4.5

First suppose l 6= 0. From the interference graph form l infinite chain graphs

G ′0, . . . ,G ′l−1. These graphs will be functions of K and {lij}i6=j but for notational

brevity we omit this notation. The ith chain graph G ′i has vertex and edges sets

V ′i = {v′i(0), v′i(1), . . . }
E ′i = {e′i(0), e′i(1), . . . }.

This is an undirected graph with edge e′i(j) joining vertices v′i(j) and v′i(j + 1). We

now associate the chain graphs with the interference graph. Let

v′i(6k) = v3(kl + i)

v′i(6k + 1) = v1(kl + i + l′31)

v′i(6k + 2) = v3(kl + i + l′31 + l′13)

v′i(6k + 3) = v2(kl + i + l′31 + l′13 + l′32)

v′i(6k + 4) = v1(kl + i + l′31 + l′13 + l′32 + l′21)

v′i(6k + 5) = v2(kl + i + l′31 + l′13 + l′32 + l′21 + l′12)

where the vk(t) are the vertices in the original interference graph. See figure 1.11 for an

illustration. Note that the mapping from the interference graph to the l chain graphs

is not one-one. In particular, each vertex in the interference graph is associated with

a pair of vertices in the set of chain graphs. Paired vertices are called twins as they

correspond to the same vertex from the original interference graph. We now think

of a feasible transmit pattern as a collection of vertices from the set of chain graphs.
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e'i(5) e'i(0) 

e'i(1) 

e'i(3) 
e'i(4) 

e'i(2) 

…

v'0(0) …

(c) chain graphs 

(a) interference graph 

v0(0)

v0(1)

v0(2)

& v0(6) 

v0(4)

& v1(1) 

v1(0), … , v1(7) 

v2(0), … , v2(7) 

v3(0), … , v3(7) 

(b) one cycle of interference 

v'0(1) v'0(2) v'0(3) v'0(4) v'0(5) v'0(6) v'0(7) v'0(8) v'0(9) 

v'1(0) v'1(1) v'1(2) v'1(3) v'1(4) v'1(5) v'1(6) v'1(7) v'1(8) v'1(9) 

Figure 1.11: (a) A segment of the interference graph. Each row of vertices corresponds to
the transmission opportunities for each of the users. The shaded vertices correspond to a
feasible transmit pattern achieving an independence rate of 3/2. A few of the vertices are
labeled with their equivalent vertices in the chain graphs. In this example the normalized
cross delays are l′21 = 0, l′31 = 1, l′12 = 2, l′32 = 0, l′13 = 1 and l′23 = −2. Thus
l = 0+1+2+0+1−2 = 2 meaning that each cycle of interference moves two time slots
to the right as illustrated in (b), which shows a single cycle from the interference graph,
containing all six directed edges. (c) The corresponding chain graphs. As l = 2, there
are two chains. A pair of twin vertices connected by a dashed line in the chain graphs,
correspond to the same vertex in the original interference graph.
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However, note that if a feasible transmit pattern results in a particular vertex (from

the set of chain graphs) being included in the independent set, its twin will also be

included. Likewise if a feasible transmit pattern results in a particular vertex being

excluded, its twin will also be excluded. The key to characterizing the set of channels

for which an interference rate of 3/2 is achievable lies in understanding which pairings

are favorable, and which are not.

The pairings can be succinctly described by the following three equations

v′i(6k) = v′i−l3 mod l(6(k + bl3/lc) + 2) (1.15)

v′i(6k + 1) = v′i−l1 mod l(6(k + bl1/lc) + 4) (1.16)

v′i(6k + 3) = v′i−l2 mod l(6(k + bl2/lc) + 5) (1.17)

for i = 0, . . . , l − 1 and k = 0, 1, . . . .

In order to achieve an independence rate of 3/2, half of all vertices must be

included in the transmit pattern. Denote the transmit pattern by T . Because in each

chain, all neighboring vertices are connected by an edge, this is only possible if in

each chain, every second node is included in the transmit pattern. For each chain

there are two ways of doing this, either v′i(2k) ∈ T for all k, or v′i(2k + 1) ∈ T for

all k. Let ci denote the phase of the ith chain. If the former condition holds, we say

the chain is in phase and write ci = I. If the latter holds we say the chain is out of

phase and write ci = O. In the entire graph there are only 2l combinations we need

to examine, corresponding to all possible inphase/out of phase assignments for the

l chains. A feasible transmit pattern achieving independence rate 3/2 exists if and

only if each chain admits an I or O assignment and the assignment of I’s and O’s to

the l chains does not violate conditions (1.15)-(1.17). Thus we wish to characterize

those channels for which such an I/O assignment can be found.

At this point we consider an example. Suppose l divides l1. We claim an indepen-
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dence rate of 3/2 is not achievable. To see this argue by contradiction. Assume that

c0 = I. As l divides l1, we have l1 mod l = 0 and condition (1.16) pairs vertex v0(1)

with vertex v0(6k
′ + 4) for some integer k′. But these vertices lie an odd distance

apart on the same chain, so working backwards we see that we must have c0 = O, a

contraction. So suppose instead that c0 = 0. Using the same logic as before we arrive

at c0 = I, again a contradiction. Thus the independence rate is less than 3/2.

From this example we see that condition (1.15) tells us if c0 = I then we must

also have c−l3 mod l = I, as vertices v′0(0) and v′−l3 mod l(6bl3/lc + 2) are an even dis-

tance apart. Continuing this logic we see that we must also have c−l1 mod l = O, and

c−l2 mod l = I. We can also conclude something else, as c−l1 mod l = O, we must have

c−2l1 mod l = I by condition (1.16). Continuing further, we must have c−2l1−l2 mod l = I

by condition (1.17) and so on.

By this point it should be clear that conditions (1.15)-(1.17) are satisfied if and

only if for all integers k1, k2, k3,

c2k1l1+k2l2+k3l3 mod l 6= c(2k1+1)l1+k2l2+k3l3 mod l (1.18)

Let P(l) denote the group consisting of integers {0, . . . , l − 1} together with the

addition modulo l operation. Consider the set of chains c2k1l1+k2l2+k3l3 mod l for all

integers k1, k2, k3. This set forms a subgroup of P(l) with generator gcd(2l1, l2, l3).

We denote this subgroup by Pgcd(2l1,l2,l3)(l). It has gcd(2l1, l2, l3, l) − 1 cosets other

than itself. The set of chains c(2k1+1)l1+k2l2+k3l3 mod l for all integers k1, k2, k3, forms

coset number l1 mod gcd(2l1, l2, l3, l). But as

2l1 mod gcd(2l1, l2, l3, l) = 0,

either l1 mod gcd(2l1, l2, l3, l) equals gcd(l1, l2/2, l3/2, l/2), or 0. If it is zero, condition
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(1.18) above is violated. This occurs if and only if l1 is a multiple of gcd(2l1, l2, l3, l).

Alternatively if it equals gcd(l1, l2/2, l3/2, l/2) then we can choose the phases of half

the cosets, namely cosets

0, 1, ..., gcd(l1, l2/2, l3/2, l/2)− 1

arbitrarily, and still satisfy (1.18). For this reason we refer to the chains

c0, c1, ..., cgcd(l1,l2/2,l3/2,l/2)−1

as seed chains. This means that there are 2gcd(l1,l2/2,l3/2,l/2) possible solutions that

achieve independence rate 3/2. So what does it mean for l1 to not be a multiple of

gcd(2l1, l2, l3, l)? It means that

gcd(l1, 2l1, l2, l3, l) 6= gcd(2l1, l2, l3, l).

In other words

gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l).

It is shown in lemma 1.8.1 that the above inequality is equivalent to having γ1 < γ2,

γ1 < γ3 and γ1 < γ. This establishes theorem 1.4.5 for l 6= 0.

Now suppose l = 0. This proof is a slight modification of the previous. From the

interference graph from an infinite number of cycle graphs G ′0,G ′1, . . . . The ith cycle

graph G ′i has vertex and edge sets

V ′i = {v′i(0), v′i(1), v′i(2), v′i(3), v′i(4), v′i(5)}
E ′i = {e′i(0), e′i(1), e′i(2), e′i(3), e′i(4), e′i(5)},
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where edge e′i(j mod 6) joins vertices vi(j mod 6) and vi(j + 1 mod 6), for j =

0, 1, 2, 3, 4, 5. Notice that for l 6= 0 we created a finite number of chain graphs, each

with an infinite number of vertices, whereas for l = 0 we create an infinite number

of cycle graphs, each with a finite number of vertices. We now associate the cycle

graphs with the interference graph. Let

v′i(0) = v3(i)

v′i(1) = v1(i + l′31)

v′i(2) = v3(i + l′31 + l′13)

v′i(3) = v2(i + l′31 + l′13 + l′32)

v′i(4) = v1(i + l′31 + l′13 + l′32 + l′21)

v′i(5) = v2(i + l′31 + l′13 + l′32 + l′21 + l′12)

where vk(t) are the vertices in the original interference graph. As before, the mapping

from interference graph to the indefinite number of cycle graphs is not one-one. Each

vertex in the interference graph is associated with a pair of vertices in the set of cycle

graphs. The pairings are described by the following three equations

v′i(0) = v′i−l3
(2)

v′i(1) = v′i−l1
(4)

v′i(3) = v′i−l2
(5)

We want to assign each cycle graph i a phase, either ci = I or ci = O and we

need to find necessary and sufficient conditions for a feasible assignment. Similarly

to equation 1.18, the condition we are after is

c2k1l1+k2l2+k3l3 6= c(2k1+1)l1+k2l2+k3l3

55



Chapter 1. Interference Alignment for Line-of-Sight Channels

for all integers k1, k2, k3. By this point it should be clear, based on the proof for the

l 6= 0 case, that the above condition is equivalent to

gcd(l1, l2, l3) 6= gcd(2l1, l2, l3).

This inequality is equivalent to having γ1 < γ2 and γ1 < γ3. Thus we see that the

conditions for l = 0 case are the same as the l 6= 0 case if we set γ = ∞. This

establishes the result in general.

Lemma 1.8.1. gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l) if and only if γ1 < γ2, γ1 < γ3 and

γ1 < γ.

Proof. Suppose

gcd(l1, l2, l3, l) 6= gcd(2l1, l2, l3, l)

⇒ gcd(2γ1β1, 2
γ2β2, 2

γ3β3, 2
γβ) 6= gcd(2γ1+1β1, 2

γ2β2, 2
γ3β3, 2

γβ)

⇒ gcd(2γ1 , 2γ2 , 2γ3 , 2γ) gcd(β1, β2, β3, β) 6= gcd(2γ1+1, 2γ2 , 2γ3 , 2γ) gcd(β1, β2, β3, β)

⇒ min(γ1, γ2, γ3, γ) 6= min(γ1 + 1, γ2, γ3, γ).

This can only hold if γ1 < γ2, γ1 < γ3 and γ1 < γ. The proof in the opposite direction

is identical.

56



Chapter 2

Spectrum Sharing between Wireless

Networks

2.1 Introduction

The recent proliferation of networks operating on unlicensed bands, most notably

802.11 and Bluetooth, has stimulated research into the study of how different systems

competing for the same spectrum interact. Communication on unlicensed spectrum

is desirable essentially because it is free, but users are subject to random interference

generated by the transmissions of other users. Most research to date has assumed

devices have no natural incentive to cooperate with one another. For instance, a

wireless router in one apartment is not concerned about the interference it generates

in a neighboring apartment. Following from this assumption, various game-theoretic

formulations have been used to model the interplay between neighboring systems

[31], [10], [3], [13], [21]. An important conclusion stemming from this body of work

is that for single-stage games the Nash Equilibria (N.E.) are typically unfavorable,

resulting in inefficient allocations of resources to users. A quintessential example is
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the following. Consider a system where a pair of competing links is subjected to

white-noise and all cross-gains are frequency-flat. Suppose the transmitters wish to

select a one-time power allocation across frequency subject to a constraint on the

total power expended (this problem is studied in [30], [6], [9] where it is referred to as

the Gaussian Interference Game). It is straightforward to reason (via a waterfilling

argument) that the selection by both users of frequency-flat power allocations, each

occupying the entire band, constitutes a N.E.. This full spread power allocation

can be extremely inefficient. Consider a symmetric system where the cross-gains and

direct-gains are equal. At high SNR each link achieves a throughput of only 1 b/s/Hz,

instead of 1
2
log2(1+SNR) b/s/Hz, which would be obtained if the links cooperated by

occupying orthogonal halves of the spectrum. At an SNR of 30 dB, the throughput

ratio between cooperative behavior and this full spread N.E. behavior, referred to

as the price of anarchy, is about 5. This example highlights an important point in

relation to single-stage games between competing wireless links: users typically have

an incentive to occupy all of the available resources.

In this work a different approach is taken. Rather than assuming total anarchy,

that is, competition between all wireless links, we instead assume competition only

between wireless links belonging to different networks. Wireless links belonging to

the same network are assumed to cooperate. In short, we assume competition on

the network level, not on the link level. In a practical setting this may represent

the fact that neighboring wireless systems are produced by the same manufacturer,

or are administered by the same network operator. Alternatively one may view the

competition as being between coalitions of users [22].

To make the problem analytically tractable but still retain its underlying mechan-

ics, we assume each network operates under a random-access protocol, where users

from a given network access the channel independently but with the same probabil-

ity. Analysis of random access protocols provides intuition for the behavior of sys-
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tems operating under more complex protocols, as the access probability can broadly

be interpreted as the average degrees of freedom each user occupies. For the case

of competition on the link level, game-theoretic research of random-access protocols

such as ALOHA have been conducted in [25] and [19]. In our model each network has

a different density of nodes and chooses its access probability to maximize average

throughput per user. Note this access protocol is essentially identical to one in which

users select a random fraction of the spectrum on which to communicate. Thus an

access probability of one corresponds to a full spread power allocation.

We first assume all links in the system have the same transmission range and

afterwards show that the results are only trivially modified if each link is assumed to

have an i.i.d. random transmission range. We characterize the N.E. of this system

for a fixed-rate model, where all users transmit at the same data rate. We show that

unlike the case of competing links, a N.E. always exists and is unique. Furthermore for

a large range of typical parameter values, the N.E. is not full spread —nodes in at least

one network occupy only a fraction of the bandwidth. We also identify two modes,

delineated by the pathloss exponent α. For α > 4, the N.E. behavior is distinctly

different than for α < 4 and possesses pseudo-cooperative properties. Following this

we show that the picture for the variable-rate model, in which users individually

tailor their transmission rates to match the instantaneous channel capacity, remains

unchanged. Before concluding we present simulation results for the behavior of the

system when the networks employ a greedy algorithm to optimize their throughput,

operating under both a random access protocol, and a carrier sensing protocol.

In section II we formulate the system model explicitly. In section III.A we in-

troduce the random access protocol and analyze its N.E. behavior in the fixed-rate

model. In section III.B we analyze the variable-rate model. In section IV we extend

our results to cover the case of variable transmission ranges. Section V presents sim-

ulation results and the carrier sensing protocol. Section VI summarizes and suggests
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extensions. Section VII contains proofs of the main theorems presented.

2.2 Problem Setup

Consider two wireless networks consisting of nλ1 and nλ2 tx-rx pairs, respectively.

Without loss of generality we will assume λ1 ≤ λ2. The transmitting nodes are

uniformly distributed at random in an area of size n. To avoid boundary effects

suppose this area is the surface of a sphere. Thus λi is the density of transmitters (or

receivers) in network i. For each transmitter, the corresponding receiver is initially

assumed to be located at a fixed range of d meters with uniform random bearing.

Time is slotted and all users are assumed to be time synchronized.

Both networks operate on the same band of (presumably unlicensed) spectrum

and at each time slot a subset of tx-rx pairs are simultaneously scheduled in each

network. When scheduled a tx-rx pair uses all of the spectrum. It is generally

desirable to schedule neighboring tx-rx pairs in different time slots. This scheduling

model is a form of TDM, but is more or less analogous to an FDM model where each

tx-rx pair is allocated a subset of the spectrum (typically overlapping in some way

with other tx-rx pairs in the network).

Transmitting nodes are full buffer in that they always have data to send. Trans-

missions are assumed to use Gaussian codebooks and interference from other nodes is

treated as noise. Initially we analyse the model where all transmissions in network i

occur at a common rate of log(1+βi). We refer to β as the target SINR. Thus a trans-

mission in network i is successful iff SINR > βi. Later we explore the model where

transmission rates are individually tailored to match the instantaneous capacities of

the channels. The signal power attenuates according to a power law with pathloss

exponent α > 2. We assume a high-SNR or interference limited scenario where the

thermal noise is insignificant relative to the received power of interfering nodes and
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thus refer to the SIR as the SIR. For a given realization of the node locations the

time-averaged throughput achieved by the jth tx-rx pair in network i is then

Rj = fjP(SIRj(t) > βi) log(1 + βi)

per complex d.o.f., where fj is the fraction of time the jth tx-rx pair is scheduled. The

average (represented by the bar above the R) is essentially taken over the distribution

of the interference as at different times different subsets of transmitters are scheduled.

As for α > 2 the bulk of the interference is generated by the strongest interferer,

to make the problem tractable, we compute the SIR as the receive power of the desired

signal divided by the receive power of the nearest interferers signal. We refer to this

as the Dominant Interferer assumption. Denote the range of the nearest interferer to

the jth receiver at time t by rj(t). Then

SIRj(t) =
d−α

r−α
j (t)

The metric of interest to each network is its expected time-averaged rate per user,

ER = Eg [fjP(SIRj(t) > βi) log(1 + βi)]

The subscript g indicates this expectation is taken over the geographic distribution

of the nodes. As the setup is statistically symmetric, this metric is equivalent to the

expected sum rate of the system, divided by nλi, in the limit n →∞.
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2.3 Random Access protocol

2.3.1 Fixed-Rate model

Suppose each network uses the following random access protocol. At each time slot

each link is scheduled i.i.d. with probability pi. The packet size is log(1 + βi) for all

communications in network i. The variables βi are optimized over.

Let us first compute the optimal access probability for the case of a single network

operating in isolation on a licensed band, as a function of the node density and the

transmission range. This problem has recently been studied independently in [15]-[17]

with equivalent results derived. In [2] similar results are derived for the case where

the SIR is computed based on all interferers, not just the nearest.

Let the r.v. Nj(x) denote the number of interfering transmitters within range x

of the jth receiver.

ER = Eg

[
fjP(rj(t) > β

1/α
i d) log(1 + βI)

]

= pi

nλi−1∑

k=1

P(Nj(β
1/αd) = k)(1− pi)

k log(1 + βi)

= pi

nλi−1∑

k=1

(
πβ

2/α
i d2

n

)k (
1− πβ

2/α
i d2

n

)nλi−k−1

×
(

nλi − 1

k

)
(1− pi)

k log(1 + βi)

= pi

(
1− pi

πβ
2/α
i d2

n

)nλi−1

log(1 + βi)

→ pi log(1 + βi)e
−πλid

2piβ
2/α
i

in the limit n →∞.

In order to obtain better insight into the problem at hand, a change of variables
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is required. We refer to the set of all points within the transmission range as the

transmission disc. The quantity πλid
2 is the average number of nodes (tx or rx) per

transmission disc. We often refer to it simply as the number of nodes per disc and

represent it by the symbol

Ni , πλid
2.

Assume Ni is larger than a certain threshold (we make this precise later). Maxi-

mizing over the access probability yields

ER → log(1 + βi)

Niβ
2/α
i

e−1 (2.1)

with the optimal access probability being

p∗i =
1

Niβ
2/α
i

. (2.2)

One can further optimize over the target SIR so that βi is replaced by β∗i in the above

two equations. Inspection of equation (2.1) reveals that the optimal target SIR is a

function of α alone. So if we define the quantity

Λi , Nipi,

Λ∗i will be a constant, independent of Ni. The quantity Λi represents the average

number of (simultaneous) transmissions per transmission disc. We sometimes refer

to it simply as the transmit density. Whereas the domain of pi is [0, 1], the domain of

Λi is [0, Ni]. Thus we see that for Ni sufficiently large, the access probability should

be set such that an optimal number of transmissions per disc is achieved. What is

this optimal number? What is the optimal target SIR?

For the purposes of optimizing equation (2.1), define the function Λ∗(α) as the
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unique solution of the following equation

α

2
=

(
1 + Λ∗α/2

)
log

(
1 +

1

Λ∗α/2

)
. (2.3)

A plot of Λ∗(α) is given in figure 2.1. So as to avoid confusion, note that the symbol

Λ∗ represents a pre-defined function, not necessarily the same as the symbol Λ∗i , which

is a variable. As equation (2.1) is smooth and continuous with a unique maxima, by

setting it’s derivative to zero we find that the optimal target SIR is β∗ = Λ∗−α/2 and

the optimal number of transmissions per disc is Λ∗i = Λ∗, when Ni is larger than a

certain threshold.

When Ni is smaller than this threshold, there aren’t enough tx-rx pairs to reach

the optimal number of transmissions per disc, even when all of them are simultane-

ously scheduled. In this case the solution lies on the boundary with p∗i = 1. This

corresponds to the scenario where the transmission range is short relative to the node

density such that tx-rx pairs function as if in isolation. It is intuitive that in this case

all transmissions in the network will be simultaneously scheduled. Our discussion is

summarized in the following theorem.

Theorem 2.3.1. (Optimal Access Probability) For a single network operating in iso-

lation under the random access protocol, when Ni > Λ∗ the optimal access probability

is p∗i = Λ∗
Ni

, where Λ∗ is given by the unique solution of equation (2.3). The optimal

target SIR is β∗i = Λ∗−α/2.

When Ni ≤ Λ∗, p∗i = 1 and β∗i is given by the unique solution to

α

2Niβ∗i
2/α

=

(
1 +

1

β∗i

)
log(1 + β∗i ).

The region satisfying Ni > Λ∗ is referred to as the partial reuse regime. The comple-

ment region is referred to as the full reuse regime. Note the optimal access probability

64



Chapter 2. Spectrum Sharing between Wireless Networks

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

α

Λ
*

Figure 2.1: Optimal average number of transmissions per transmission disc as a function
of the pathloss exponent.
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of the above theorem is equivalent to the results of section IV.B in [15], and those

discussed under the title “Maximum Achievable Spatial Throughput and TC” on page

4137 of [29].

Now we perform the same computation for the case where both networks operate

on the same unlicensed band. In this case there is both intra-network and inter-

network interference. It is straightforward to extend the above analysis to show that

for network i

ERi → Λi

Ni

log(1 + βi)e
−(Λ1+Λ2)β

2/α
i

in the limit n → ∞. For a given Λ2 the first network can optimize Λ1 and β1, and

vice-versa. That is each network can iteratively adjust its access probability and

target SIR in response to the other networks. In this sense a game can be defined

between the two networks. A strategy for network i is a choice of Λi ∈ [0, Ni] and

βi > 0. Its payoff function (also referred to as utility function) is the limiting form of

ERi times Ni,

U1 ((Λ1, β1), (Λ2, β2)) = Λ1 log(1 + β1)e
−(Λ1+Λ2)β

2/α
1 (2.4)

U2 ((Λ1, β1), (Λ2, β2)) = Λ2 log(1 + β2)e
−(Λ1+Λ2)β

2/α
2 . (2.5)

Here we have scaled the throughput by Ni to emphasize the simple form of the payoff

functions. At first glance this setup seems desirable but there is a redundancy in

the way the strategy space has been defined. The problem is that the variable βi

only appears in Ui and thus should be optimized over separately rather than being

included as part of the strategy. This leads to the following game setup.

Definition 2.3.2. (Random Access Game) A strategy for network i in the Random
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Access Game is a choice of Λi ∈ [0, Ni]. The payoff functions are

U1(Λ1, Λ2) = max
β1>0

Λ1 log(1 + β1)e
−(Λ1+Λ2)β

2/α
1

U2(Λ1, Λ2) = max
β2>0

Λ2 log(1 + β2)e
−(Λ1+Λ2)β

2/α
2 .

The above formulation is intuitively appealing as a networks choice of access prob-

ability constitutes its entire strategy. If we could explicitly solve the maximization

problems, the variables βi would be removed altogether. When Λ1 and Λ2 are large

this can be done and

U1(Λ1, Λ2) ≈ Λ1

(Λ1 + Λ2)α/2
· (α/2)α/2e−α/2 (2.6)

U2(Λ1, Λ2) ≈ Λ2

(Λ1 + Λ2)α/2
· (α/2)α/2e−α/2, (2.7)

but in general it is not possible. Instead, since we are only interested in analyzing

the Nash equilibrium (N.E.) or equilibria of this game, we do the following.

Observe that the objective function within the maximization is smooth and con-

tinuous. This enables the order of maximization to be swapped. That is, for a given

Λ2, we first maximize over Λ1 in equation (2.4) and then over the β1. Likewise for

equation (2.5). The benefit of this approach is that the maximizing Λi can be ex-

plicitly expressed as a function of βi. This was demonstrated earlier for the single
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network scenario. The resulting expressions are

U1(Λ1, Λ2)

=





Λ1 log
(
1 + Λ

−α/2
1

)
e−Λ2/Λ1−1, Λ1 < N1;

maxβ1>0 log(1 + β1)e
−(N1+Λ2)β

2/α
1 , Λ1 = N1.

U2(Λ1, Λ2)

=





Λ2 log
(
1 + Λ

−α/2
2

)
e−Λ1/Λ2−1, Λ2 < N2;

maxβ2>0 log(1 + β2)e
−(N2+Λ1)β

2/α
2 , Λ2 = N2.

The set of N.E. of the above game and their corresponding values of U1 and U2

are identical to those of the Random Access Game. Inspection of the above equations

reveals a further simplification of the problem is at hand —the set of N.E. of the

above game are identical to the set of N.E. of the following game (though the values

of U1 and U2 at the equilibria may be different).

Definition 2.3.3. (Transformed Random Access Game) A strategy for network i

in the Transformed Random Access Game is a choice of Λi ∈ [0, Ni]. The payoff

functions are

U1(Λ1, Λ2) = Λ1 log
(
1 + Λ

−α/2
1

)
e
−Λ2

Λ1
−1

U2(Λ1, Λ2) = Λ2 log
(
1 + Λ

−α/2
2

)
e
−Λ1

Λ2
−1

,

We now analyze the N.E. of the Random Access Game by analyzing the N.E.

of the Transformed Random Access Game. The first question of interest is whether

or not there exists a N.E.? It turns out a unique N.E. always exists but its nature

depends crucially on the pathloss exponent. There are two modes, 2 < α < 4 and
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α > 4. We start with the first.

Theorem 2.3.4. (Random Access N.E. for 2 < α < 4) For 2 < α < 4 the unique

N.E. occurs at Λ∗1 = N1, and Λ∗2 defined by either the solution of

N1 = Λ2


 α

2
(
1 + Λ2

α/2
)

log
(
1 + Λ2

−α/2
) − 1


 (2.8)

or N1, whichever is smaller.

The N.E. described in theorem 2.3.4 occurs on the boundary of the strategy space.

This is because for 2 < α < 4 each network tries to set its number of transmissions

per disc higher than the other (see the proof of the theorem). The equilibrium is

then only attained when at least one network has maxed out and scheduled all of its

transmissions simultaneously.

The N.E. can be better understood when N1 À 1 corresponding to the case in

which transmissions span several intermediate nodes.

Theorem 2.3.5. (Random Access N.E. for 2 < α < 4 and N1 À 1) In the limit

N1 →∞ the N.E. occurs at

(Λ∗1, Λ
∗
2)

=





(N1, N2), N1 ≤ N2 ≤ 2

α− 2
N1(

N1,
2

α− 2
N1

)
,

2

α− 2
N1 ≤ N2.

This result stems from using the limiting form log(1 + x) → x as x → 0 in the

utility functions U1 and U2, as was done in equations (2.6) and (2.7). From it we

see that if the denser network has more than ≈ 2/(α − 2) times as many nodes as

its rival, the N.E. will correspond to partial reuse, i.e. the denser network will only
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Figure 2.2: The solid line represents the solution to equation (2.8) for α = 3. The N.E.
value Λ∗2 is equal to the minimum of this line and N2. The limiting solution used in
theorem ?? is plotted as a dashed line.

occupy a fraction of the total available bandwidth. This is in stark contrast to the

case of competing individual transmissions where the N.E. typically corresponds to

a full spread, i.e. both competing links spread their power evenly across the entire

bandwidth. The limit result of theorem ?? is plotted in figure 2.2 as a dashed line.

We now investigate the average throughput at equilibrium for the mode 2 < α < 4.

We define the metric

Ue = U1(Λ
∗
1, Λ

∗
2) + U2(Λ

∗
1, Λ

∗
2)
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This quantity has a natural interpretation. Recall ERi is the average throughput per

tx-rx pair and Ni is the average number of tx-rx pairs per transmission disc in network

i. Thus Ui = NiERi is the average throughput per transmission disc in network i.

This is the average number of bits successfully received in network i within an area

of size πd2 per time slot, per d.o.f.. The quantity Ue is then the average throughput

per transmission disc in the system, that is, the average number of bits successfully

received in both networks within an area of size πd2 per time slot, per d.o.f..

Theorem 2.3.6. In the limit N1 →∞

Ue →





c1(α)

N
α/2−1
1

N1 ≤ N2 ≤ 2
α−2

N1

c2(α)

(N1 + N2)α/2−1
, 2

α−2
N1 ≤ N2.

where c1(α) = (α/2− 1)α/2−1 (α/2)e−α/2 and c2(α) = (α/2)α/2e−α/2.

The important property of this result is that as the number of nodes per transmission

disc increases, Ue decreases roughly like 1/(N1 +N2)
α/2−1. Let us compare this to the

average throughput per transmission disc in the cooperative case, that is when the

two networks behave as if they were a single network with N1 + N2 nodes per disc.

From equation (2.1) this average throughput per disc is

Uc = Λ∗ log(1 + Λ∗−α/2)

which is independent of the number of nodes per disc. Thus as the number of nodes

per disc grows, so does the price of anarchy

Uc

Ue

= O
(
N

α/2−1
1

)
.

For α > 4 the N.E. behavior is different. Whereas for 2 < α < 4 the solution always
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lies on the boundary, for α > 4 it typically does not.

Theorem 2.3.7. (Random Access N.E. for α > 4) For α > 4 the unique N.E. occurs

at

(Λ∗1, Λ
∗
2) = (

√
Λ∗(α/2),

√
Λ∗(α/2))

if
√

Λ∗(α/2) < N1, otherwise Λ∗1 = N1 and Λ∗2 is defined by either the solution of

equation (2.8) or N2, whichever is smaller.

A plot of
√

Λ∗(α/2) versus α is given in figure 2.8. The condition
√

Λ∗(α/2) < N1

corresponds to network 1 having more than
√

Λ∗(α/2) nodes per transmission disc.

We refer to this as the partial/partial reuse regime.

The interpretation of theorem 2.3.7 is that for α > 4 in the partial/partial reuse

regime, the solution lies in the strict interior of the strategy space. This is because

on the boundary of the space network i can improve its throughput by undercutting

the transmit density of network j, i.e. setting Λi < Λj. The symmetry of the N.E.

(Λ∗1 = Λ∗2) then follows by observing the utility functions are symmetric and the

solution is unique.

There is a cooperative flavor to this equilibrium in that both networks set their

transmission densities to the same level, and this level is comparable to the optimal

single network density Λ∗(α). Moreover the equilibrium level does not grow with

the number of nodes per transmission disc, as it does for 2 < α < 4. Actual co-

operation between networks corresponds to setting the access probability based on

equation (2.2), taking into account that the effective node density is λ1 + λ2. Thus

the cooperative solution is

(Λ∗1, Λ
∗
2) =

(
λ1

λ1 + λ2

Λ∗,
λ2

λ1 + λ2

Λ∗
)

.

Under cooperation the average throughput per transmission disc is (from equation
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Figure 2.3: These plots can be used to determine which regime the N.E. is in. The x-axis
and y-axis corresponds to the average number of nodes per transmission disc in network
1 and 2, respectively. Note the lower left vertex of the partial/partial reuse regime always
occurs at (

√
Λ∗(α),

√
Λ∗(α)) and the intersection of the full/full reuse regime with the

axes always occurs at (Λ∗(α), 0) and (0, Λ∗(α)).
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Figure 2.4: For α > 4, the price of anarchy depends only on the pathloss exponent in the
partial/partial reuse regime.

(2.1))

Uc =
1

e
Λ∗(α) log

(
1 +

1

Λ∗(α)α/2

)
.

Under cooperation in the partial/partial reuse regime it is

Ue =
2

e2

√
Λ∗(α/2) log

(
1 +

1

Λ∗(α/2)α/4

)

The price of anarchy is the ratio of these two quantities (Ue/Uc) and is plotted in

figure 2.4. Comparing the two modes we see that whereas for 2 < α < 4 the price of
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anarchy grows in an unbounded fashion with the number of nodes per transmission

disc, for α > 4 the price of anarchy in the partial/partial reuse regime is a constant

depending only on α.

We now summarize the equilibria results. There are three regimes.

1. Full/Full reuse

- N1 ≤
√

Λ∗(α/2) and N1 ≤ N2

(
α/2(1 + N2

α/2) log(1 + N2
−α/2)− 1

)

- both networks schedule all transmissions

2. Full/Partial reuse

- N1 ≤
√

Λ∗(α/2) and N1 > N2

(
α/2(1 + N2

α/2) log(1 + N2
−α/2)− 1

)

- denser network schedules all transmissions, sparser schedules only a fraction

3. Partial/Partial reuse

- N1 >
√

Λ∗(α/2)

- both networks schedule only a fraction of their transmissions

In the full/full reuse regime (Λ∗1, Λ
∗
2) = (N1, N2). In the full/partial reuse regime

the sparser network sets Λ∗1 = N1 and the denser network sets Λ∗2 as the solution to

equation (2.8). In the partial/partial reuse regime (Λ∗1, Λ
∗
2) = (

√
Λ∗(α/2),

√
Λ∗(α/2)).

The regimes are essentially distinguished by which boundary constraints are ac-

tive. For 2 < α < 4 the partial/partial reuse regime is not accessible. Figure 2.3

provides an illustrated means for determining which regime the system is in, for a

range of values of the pathloss exponent. In these plots we consider all values of N1

and N2, not just those satisfying N1 ≥ N2. Notice that as α → 2 the entire region

corresponds to the full/full reuse regime, for α = 4 almost the entire region corre-

sponds to the full/partial reuse regime and for α →∞ the entire region corresponds

to the partial/partial reuse regime.
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2.3.2 Variable-Rate model

In this section we examine the case where tx-rx pairs tailor their communication rates

to suit instantaneous channel conditions, sending at rate log(1 + SIR(t)) during the

tth time slot. Various protocols can be used to enable tx-rx pairs to estimate their

SIR(t).

Consider first the single, isolated network scenario. The expected time-averaged

rate per user is now

ERi = piE log(1 + SIR).

As before, the rate is both time-averaged over the interference and averaged over the

geographic distribution of the nodes. The SIR is the instantaneous value observed by

a given rx node and is distributed according to

P(SIR > x) = P(r > x1/αd)

=

(
1− πx2/αd2pi

n

)nλi

where the variable r denotes the distance to the nearest interferer. Thus

ERi = pi

∫
P (log(1 + SINR) > s) ds

= pi

∫
P (SINR > x)

dx

1 + x

= pi

∫ (
n

piπd2

)α/2

0

(
1− πx2/αd2pi

n

)nλi dx

1 + x

→ pi

∫ ∞

0

e−πpiλid
2x2/α dx

1 + x
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in the limit n →∞. Changing variables and optimizing we have

ERi → 1

Ni

max
0≤Λi≤1

Λi

∫ ∞

0

e−Λix
2/α dx

1 + x
. (2.9)

Define Λ′(α) as the maximizing argument of the unconstrained version of the above

optimization problem, or more specifically as the unique solution to

∫ ∞

0

1− Λ′x2/α

1 + x
e−Λx2/α

dx = 0.

The function Λ′(α) is plotted in figure 2.8. Then

p∗i = min(Λ′(α)/Ni, 1)

From this we see that the solution for the variable-rate case is the same as the fixed-

rate solution, differing only by substitution of the function Λ′(α) for Λ∗(α).

Now we turn to the case of two competing wireless networks. Using an approach

similar to the one above it can be shown that

ERi → 1

Ni

Λi

∫ ∞

0

e−(Λ1+Λ2)x2/α dx

1 + x
.

In this way we can define the game between the two networks like so.

Definition 2.3.8. (Variable Rate Random Access Game) A strategy for network i in

the Variable Rate Random Access Game is a choice of Λi ∈ [0, πλid
2]. The payoff

functions are

U1(Λ1, Λ2) = Λ1

∫ ∞

0

e−(Λ1+Λ2)x2/α dx

1 + x

U2(Λ1, Λ2) = Λ2

∫ ∞

0

e−(Λ1+Λ2)x2/α dx

1 + x
.
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From the above definition we see that the Fixed-Rate game is derived from the

Variable-Rate game by merely applying a step-function lower bound to the players

utility functions, with the width of the step-function optimized, i.e.

∫ ∞

0

e−(Λ1+Λ2)x2/α dx

1 + x

≥ max
βi>0

e−(Λ1+Λ2)β
2/α
i

∫ βi

0

dx

1 + x

= max
βi>0

log(1 + βi)e
−(Λ1+Λ2)β

2/α
i .

A plot comparing the expression on the left as a function of Λ1 +Λ2, to the expression

on the right as a function of Λ1 + Λ2, for α = 4, is presented in figure 2.5. The figure

suggests that both expressions share a similar functional dependency on Λ1 +Λ2. It is

therefore natural to wonder whether, as a consequence of this close relationship, the

N.E. of the Variable-Rate game bears any relationship to the N.E. of the Fixed-Rate

game?

As in the Fixed-Rate game, the utility functions of the Variable-Rate game can

be explicitly evaluated when Λ1 and Λ2 are large yielding

U1(Λ1, Λ2) ≈ Λ1

(Λ1 + Λ2)α/2
· Γ(α/2 + 1)

U2(Λ1, Λ2) ≈ Λ2

(Λ1 + Λ2)α/2
· Γ(α/2 + 1).

Comparing with equations (2.4) and (2.5) we see that for large Λ1, Λ2, the utility

functions of the Variable-Rate game have exactly the same functional dependency

on Λ1, Λ2 as the utility functions of the Fixed-Rate game, differing only in an α-

dependent constant. These constants are plotted in figure 2.6. The plots illustrate

the benefit in total system throughput that stems from playing the Variable-rate game

in place of the Fixed-Rate game.
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As anticipated by the above discussion, the N.E. behavior of the Variable-Rate

game parallels that of the Fixed-Rate game. The same two modes are present, 2 <

α < 4 and α > 4. These give rise to the same three spreading regimes, the only

difference being that the boundaries delineating them are shifted slightly. The N.E.

values (Λ∗1, Λ
∗
2) in each regime take on a similar form.

Theorem 2.3.9. The Variable-Rate Random Access Game has a unique N.E. (Λ∗1, Λ
∗
2)

which lies in one of three regions. Let Λ′′(α) be the unique solution of

∫ ∞

0

1− Λ′′x2/α

1 + x
e−2Λ′′x2/α

dx = 0. (2.10)

for α > 4, and equal to positive infinity for α ≤ 4.

• (Full/Full reuse) If N1 ≤ Λ′′(α) and N2 ≤ the unique solution over Λ of

∫ ∞

0

1− Λx2/α

1 + x
e−(N1+Λ)x2/α

dx = 0, (2.11)

then (Λ∗1, Λ
∗
2) = (N1, N2).

• (Full/Partial reuse) If N1 ≤ Λ′′(α) and N2 > the unique solution of equation

(2.11) then Λ∗1 = 1 and Λ∗2 is equal to this unique solution.

• (Partial/Partial reuse) If N1 > Λ′′(α) then (Λ∗1, Λ
∗
2) = (Λ′′(α), Λ′′(α)).

A regime map is provided in figure 2.7. As is evident from the above theorem, it

is not possible to characterize the behavior of the N.E. for the Variable-Rate game

as explicitly as for the Fixed-Rate game. This is in part due to the more complex

representation of the utility functions in terms of integrals, and in part due to the

fact that the the function Λ′′(α) cannot be represented in terms of the function Λ′(α),

as in the case of the Fixed-Rate game, where one function equals the square-root of

the other evaluated at α/2.
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Figure 2.7: The three regimes for the N.E. of the Variable-Rate Game.

For large N1 however, we can use the approximation adopted in theorem ?? to

explicitly characterize the behavior of the N.E. in the full/partial reuse regime.

Theorem 2.3.10. (Variable-Rate Random Access N.E. for 2 < α < 4 and N1 À 1)

In the limit N1 →∞ the N.E. occurs at

(Λ∗1, Λ
∗
2)

=





(N1, N2), N1 ≤ N2 ≤ 2

α− 2
N1(

N1,
2

α− 2
N1

)
,

2

α− 2
N1 ≤ N2.

Thus for 2 < α < 4 and large N1, the behavior of the N.E. in the Variable-Rate game

is identical to that of the Fixed-Rate game. As discussed earlier, the values of U1

and U2 at equilibrium are equal to those of the Fixed-Rate game times a constant

(α/2)α/2e−α/2/Γ(α/2 + 1).
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2.3.3 Explanation of Behavior

The intuition behind our result is the following. The average throughput per link is

essentially equal to the product of the fraction of time transmissions are scheduled,

and the average number of bits successfully communicated per transmission. Adjust-

ing the transmit density has a linear effect on the former term, but a non-linear effect

on the latter. The latter depends on the SIR and the SIR essentially depends on the

pathloss exponent via

SIR ≈
(

distance to transmitter

distance to interferer

)α

When the nearest interferer is closer than the transmitter, the ratio inside the paren-

theses is less than one, and a large value of α substantially hurts the SIR, dragging

it to near zero and causing the link capacity to drop to near zero. However, when

the nearest interferer is further away than the transmitter, the ratio is greater than

one and a large value of α substantially improves the SIR, resulting in a large link

capacity. Thus for large α the average number of bits successfully communicated per

transmission is very sensitive to whether or not the transmission disc is empty.

This insensitivity for sufficiently small α means that increasing the transmit den-

sity in network i causes a linear increase in the fraction of time transmissions are

scheduled, but has little effect on the number of bits successfully communicated per

transmission, up until the point where the transmit density of network i starts to

dwarf the transmit density of network j. Thus network i will wish to increase its

transmit density until it is sufficiently larger than network j’s. Likewise network j

will wish to increase its transmit density until it is sufficiently larger than network

i’s. Ultimately this results in either

1. a full/full reuse solution, which occurs when the sparser network max’s out

84



Chapter 2. Spectrum Sharing between Wireless Networks

and winds up simultaneously scheduling all of its transmissions, and the denser

network is insufficiently dense such that its optimal transmit density based on

the sparser networks choice, results in it simultaneously scheduling all of its

transmissions, or

2. a full/partial reuse solution, which occurs when the sparser network max’s out

and winds up simultaneously scheduling all of its transmissions but the denser

network is sufficiently dense such that its optimal transmit density based on the

sparser networks choice, results in it simultaneously scheduling only a fraction

of its transmissions.

The opposite effect occurs for sufficiently large α, where the average number of

bits successfully communicated per transmission depends critically on whether or not

there is an interferer inside the transmission disc. In this scenario network i will set

its active density to a level lower than network j’s, in order to capitalize on those

instances in which network j happens to not schedule any transmissions nearby to one

of network i’s receivers, resulting in the successful communication of a large number

of bits. Likewise network j will set its active density to a level lower than network

i’s, and the system converges to the partial/partial reuse regime.

2.4 Variable Transmission Range

One of our initial assumptions was that all tx-rx pairs have the same transmission

range d. In this section we consider the scenario where the transmission ranges of all

tx-rx pairs in the system are i.i.d. random variables Dj. When the variance of Dj is

large, some form of power control may be required to ensure long range transmissions

are not unfairly penalized. A natural form of power control involves tx nodes setting

their transmit powers such that all transmissions are received at the same SNR. This
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means transmit power scales proportional to Dα
j . Denote the distance from the kth

tx node to the jth rx node Dij. Then the interference power from the kth tx node

impinging on the jth rx node is proportional to Dα
kk/D

α
kj. In the fixed transmission

range scenario this quantity was proportional to 1/Dα
kj. There we assumed the bulk

of the interference was generated by the dominant interferer. Denote the scheduled

set of tx nodes at time t by A(t). This assumption essentially evoked the following

approximation
∑

k∈A(t)

1/Dkj(t)
α ≈ max

k∈A(t)
1/Dkj(t)

α.

The equivalent approximation for the variable transmission range problem is

∑

k∈A(t)

Dα
kk/Dkj(t)

α ≈ max
k∈A(t)

Dα
kk/Dkj(t)

α.

Thus for variable range transmission the dominant interferer is not necessarily the

nearest to the receiver. Under this assumption the SIR at the jth rx node at time t

is then

SIRj(t) =
D−α

k∗k∗

D−α
k∗j∗

where k∗ is the index of the tx node that is closest to the jth receiver relative to its

transmission range.

Let us compute the throughput for the variable transmission range model under

the Fixed-Rate Random Access protocol.

ER = piP (SIRj(t) > βi) log(1 + βi).
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The probability the SIR is greater than the threshold

P(SINRj(t) > βi) = P
(
Dkj > β

1/α
i Dkk,∀k

)

=

(∫ √
n/π/β

1/α
i

0

P
(
Dkj > β

1/α
i x

)
PDkk

(x)dx

)nλ

=

(∫ √
n/π/β

1/α
i

0

(
1− piπβ

2/α
i x2

n

)
PDkk

(x)dx

)nλ

=

(
1− piπβ

2/α
i

n

∫ √
n/π/β

1/α
i

0

x2PDkk
(x)dx

)nλ

=

(
1− piπβ

2/α
i ED2

kk

n

)nλ

→ e−piπβ
2/α
i ED2

kk

as n → ∞. For notational simplicity let d ≡ Dkk. If we define Ni as the average

number of nodes per transmission disc, where the average is taken over both the geo-

graphical distribution of the nodes and the distribution of the size of the transmission

disc, i.e.

Ni = πλiE2
d

we wind up with ER → pi log(1 + βi)e
−Nipiβ

2/α
i , which is the same result as the fixed-

transmission range model. It is straightforward to extend the analysis to the case of

two competing networks. The throughput per user in network 1 is then

ER → p1 log(1 + β1)e
−(N1p1+N2p2)β

2/α
1 .

Likewise for network 2. From this we see that all results for the fixed-transmission

range model extend to the variable-transmission range model by simply replacing d2

by Ed2.
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2.5 Simulations

2.5.1 Random Access Protocol

In order to get a sense of the typical behavior of the players in the (Variable-Rate)

Random Access game, and to justify the validity of the Dominant Interferer assump-

tion, we simulate the behavior of the following greedy algorithm with the interference

computed based on all transmissions in the network, not just the strongest.

Inputs: p1(0), p2(0), ∆

Outputs: pi = [pi(1), . . . , pi(500)], for i = 1, 2.

For t = 1 to 500

Form estimate R1(p1(t− 1) + ∆, p2(t− 1))

Form estimate R1(p1(t− 1)−∆, p2(t− 1))

If R1(p1(t− 1) + ∆, p2(t− 1)) > R1(p1(t− 1)−∆, p2(t− 1))

p1(t) = min(p1(t− 1) + ∆, 1)

Else

p1(t) = max(p1(t− 1)−∆, 0)

End

Form estimate R2(p1(t), p2(t− 1) + ∆)

Form estimate R2(p1(t), p2(t− 1)−∆)

If R2(p1(t), p2(t− 1) + ∆) > R2(p1(t), p2(t− 1)−∆)
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p2(t) = min(p2(t− 1) + ∆, 1)

Else

p2(t) = max(p2(t− 1)−∆, 0)

End

End

Each update time t, network 1 temporarily sets its access probability to p1(t−1)+

∆ and measures the resulting throughput, averaged over 200 transmission times. This

is denoted R1(p1(t−1)+∆, p2(t−1)). It then repeats this measurement for an access

probability of p1(t−1)−∆. This is denoted R1(p1(t−1)−∆, p2(t−1)). It then either

permanently increases its access probability to p1(t) = p1(t− 1) + ∆ or permanently

decreases it to p1(t) = p1(t − 1) − ∆ depending on which option it estimates will

lead to a higher throughput. Now network 2 performs the same operation. It uses a

total of 400 time slots to measure the effect of increasing versus decresing its access

probability and then either sets p2(t) = p2(t− 1)+∆ or p2(t) = p2(t− 1)−∆. If ∆ is

small, then both networks can perform these measurement operations simultaneously

without significantly affecting the outcome.

The topology used in the simulations consisted of 400 tx nodes from network 1 and

200 tx nodes from network 2, all i.i.d. uniformly distributed in a square of unit area.

For each tx node, its corresponding rx node was located at a point randomly chosen

at uniform from a disc of radius 0.15. This corresponds to N1 = 400/
√

(800) ≈ 14.14

and N2 = 200/
√

(800) ≈ 7.28. A step-size of ∆ = 0.02 was used. When computing

the throughputs, in order to avoid boundary effects, only transmissions emanating

from those tx nodes in the interior of the network were counted. The results for

α = 2.5, 3.5 and 4.5 are displayed in figure 2.9. The observed behavior corresponds to

the analytical results. For the values of N1 and N2 used, the N.E. lies in the Full/Full
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regime for α = 2.5, the Full/Partial regime for α = 3.5, and the Partial/Partial regime

for α = 4.5, as can be seen from figure 2.3.

2.5.2 Carrier Sensing Multiple Access based protocol

The high level conclusion from our analysis of the Random Access protocol, is that the

Nash Equilibrium is cooperative in nature for a sufficiently high pathloss exponent.

Ideally we would like to be able to draw this conclusion for a more sophisticated class

of scheduling protocols employing carrier sensing. Due to the analytical intractability

of the problem, we present simulation results to illustrate this effect. We assume both

networks operate under the following protocol. We present a centralized version of it

due to space constraints, but claim there exists a distributed version that performs

identically in most cases. During the scheduling phase, each tx-rx pair is assigned a

unique token at random from {1, . . . , n}. Tx nodes proceed with their transmission

so long as they will not cause excessive interference to any rx node with a higher

priority token. More precisely, a transmission is scheduled so long as for each rx

node with higher priority, the difference between its received signal power in dB and

the interference power from the lower priority tx node in dB, exceeds a silencing

threshold γi (i = 1 for network 1 and i = 2 for network 2). Thus a game between

the two networks can be defined where the strategies are the choices of silencing

thresholds γ1 and γ2. We refer to this as the CSMA game. The silencing threshold

for the CSMA game essentially plays the same role as the access probability in the

Random Access game -it determines the degree of spatial reuse. A high value of γ

leads to a low density of transmissions, a low value of γ leads to a high density.

We simulate the behavior that arises when both networks optimize their silencing

thresholds in a greedy manner. Analogously to before, we have the following algo-

rithm.
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Figure 2.9: Simulations of greedy algorithm under Random Access protocol.
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Inputs: p1(0), p2(0), ∆

Ouputs: pi = [pi(1), . . . , pi(500)], for i = 1, 2.

For t = 1 to 500

Form estimate R1(γ1(t− 1) + ∆, γ2(t− 1))

Form estimate R1(γ1(t− 1)−∆, γ2(t− 1))

If R1(γ1(t− 1) + ∆, γ2(t− 1)) > R1(γ1(t− 1)−∆, γ2(t− 1))

γ1(t) = min(γ1(t− 1) + ∆, 30dB)

Else

γ1(t) = max(γ1(t− 1)−∆,−30dB)

End

Form estimate R2(γ1(t), γ2(t− 1) + ∆)

Form estimate R2(γ1(t), γ2(t− 1)−∆)

If R2(γ1(t), γ2(t− 1) + ∆) > R2(γ1(t), γ2(t− 1)−∆)

γ2(t) = min(γ2(t− 1) + ∆, 30dB)

Else

γ2(t) = max(γ2(t− 1)−∆,−30dB)

End

End

The topology used in the setup is identical to before, the only exception being
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that at each iteration of the algorithm, 10 old tx-rx pairs leave each network, and

10 new pairs join in i.i.d. locations drawn uniformly at random. This is to ensure

sufficient averaging.

In a similar fashion to before, each network estimates the effect of either increasing

or decreasing the silencing threshold and then makes a permanent choice. For the

same parameter values, the results of the simulation are displayed in figure 2.10. On

the y-axes of these plots we have drawn the fraction of nodes simultaneously scheduled

at each iteration, which we denote f1 and f2, rather than the silencing thresholds γi, in

order to draw a simple visual comparison with figure 2.9. For this reason there is more

fluctuation in the results, as the fraction of simultaneously scheduled transmissions

varies not only due to the up/down movements of the silencing thresholds, but also

due to the changing topology.

We conclude from these plots that for small values of α (namely α = 2.5) the

system converges to a competitive equilibrium, where both networks simultaneously

schedule a large fraction of their transmissions, and for large values of α (namely

α = 3.5 and 4.5) the system converges to a near cooperative equilibrium, where both

networks schedule a small fraction of their transmissions.

2.6 Conclusion

This work studied spectrum sharing between wireless devices operating under a ran-

dom access protocol. The crucial assumption made was that nodes belonging to

the same network or coalition cooperate with one another. Competition only exists

between nodes belonging to rival networks. It was found that cooperation between

devices within each network created the necessary incentive to prevent total anarchy.

For pathloss exponents greater than four, we showed that contrary to ones intuition,

there can be a natural incentive for devices to cooperate to the extent that each
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Figure 2.10: Simulations of greedy algorithm under Carrier Sensing Multiple Access pro-
tocol
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occupies only a fraction of the available bandwidth. Such results are optimistic and

encouraging. We demonstrated via simulations that it may be possible to extend them

to more complex operating protocols such as those that employ carrier-sensing to de-

termine when the medium is free. More generally one wonders whether a multi-stage

game capturing the system dynamics under such a protocol can be formulated, and

whether the desirable properties of the single-stage game continue to hold. It would

also be worthwhile investigating the incentives wireless links have to form coalitions,

as in this work it was in essence assumed that coalitions had been pre-determined.

2.7 Proofs

2.7.1 Theorem 2.3.1

The limiting expression for the average throughput is

ER(pi, βi) → pi log(1 + βi)e
−Nipiβ

2/α
i .

Given a βi there is a single maximum over pi. By differentiation we have

∂ER

∂pi

=
(
1− piNiβ

2/α
i

)
log(1 + βi)e

−Nipiβ
2/α
i ,

so p∗i = min(1, 1/Niβ
2/α
i ). Thus

ER(p∗i , βi) =





log(1 + βi)e
−Niβ

2/α
i , βi ≤ N

−2/α
i ,

log(1 + βi)e
−1

Niβ
2/α
i

, βi > N
−2/α
i .

Both of these functions have one maximum, but the maximum of the second function

is always greater than the maximum of the first as it represents the solution to the
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unconstrained problem

max
pi>0,βi>0

ER(pi, βi),

whereas the maximum of the first represents the solution to

max
pi=1,βi>0

ER(pi, βi).

Thus if the maximum of the second function occurs for βi > N
−2/α
i , it is the maximum

of the entire function, but if it occurs for βi ≤ N−2/α, the maximum of the entire

function is the maximum of the first function over the domain βi ≤ N−2/α. By

differentiation we find the maximum of the second function occurs at the unique

solution of
α

2
= (1 + 1/βi) log(1 + βi)

which is βi = Λ∗−α/2. Thus if Ni > Λ∗, the solution is p∗ = Λ∗/Ni and β∗i = Λ∗−α/2.

If Ni ≤ Λ∗ the solution is p∗ = 1 and β∗i equal to the unique solution of

α

2Niβ
2/α
i

= (1 + 1/βi) log(1 + βi) (2.12)

or N
−2/α
i , whichever is smaller. But as (1+1/x) log(1+x) is a monotonically increasing

function, from the definition of Λ∗ we have

α

2
≤

(
1 + N

α/2
i

)
log

(
1 + N

−α/2
i

)

whenever Ni ≤ Λ∗. Combining this with equation (2.12) and using the monotonicity

of (1 + 1/x) log(1 + x) we see that the unique solution to equation (2.12) is always

smaller than N
−2/α
i . This establishes the desired result.
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2.7.2 Theorem 2.3.4

First we show that any N.E. must lie on the boundary of the strategy space, i.e.

Λi = 1 for some i. The utility functions are smooth and continuous. Differentiating

U1 with respect to Λ1 yields

∂U1

∂Λ1

= e−Λ2/Λ1


Λ2

Λ1

− α

2
(
1 + Λ

α/2
1

)
log

(
1 + Λ

−α/2
1

) + 1




Consider the function f(x) = (1+x) log(1+1/x). As f(x) is monotonically decreasing

for x ≥ 0 and limx→∞ f(x) = 1 we have f(x) > 1 for all x ≥ 0. Thus for α < 4,

∂U1/∂Λ1 > 0 whenever Λ1 < Λ2 and similarly ∂U2/∂Λ2 > 0 whenever Λ2 < Λ1.

Thus for a N.E. to occur in the interior of the strategy space we must have both

Λ1 > Λ2 and Λ2 > Λ1. As these conditions are mutually exclusive at least one of the

constraints of the strategy space must be active at the N.E.. In essence each network

is trying to set it’s active density higher than the other’s. Eventually at least one

network maxs out.

First consider the case where the solution to

N1 = x

(
α

2 (1 + xα/2) log (1 + x−α/2)
− 1

)
. (2.13)

occurs for x < N2. Suppose Λ∗2 = N2. Then as N1 ≤ N2 we have Λ1 ≤ Λ∗2, hence

∂U1/∂Λ1 > 0 for all Λ1 on the interior and hence Λ∗1 = N1. Now the function

U2(Λ
∗
1, Λ2) has a unique maximum for Λ2. This maximum satisfies ∂U2(Λ

∗
1, Λ2)∂Λ2 =

0, which is equation (2.13) with Λ∗2 substituted for x. But the solution equation (2.13)

satisfies x < N2, so Λ∗2 < N2, a contradiction. Thus the constraint Λ2 ≤ N2 must be

inactive. Suppose instead that the constraint Λ∗1 = N1 is active. Then by the same

arguments the unique Λ∗2 satisfies equation (2.13). This establishes the solution and
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it’s uniqueness, for the first case.

Second consider the case where the solution to equation (2.13) occurs for x ≥ N2.

Then it is straightforward to check using similar arguments above, that the unique

solution satisfies (Λ∗1, Λ
∗
2) = (N1, N2). This establishes the result.

2.7.3 Theorem 2.3.5

For α > 2 the solution to equation (2.8) only goes to infinity for N1 → ∞. In this

limit (1 + Λ∗2
α/2) log(1 + Λ∗2

−α/2) → 1 and

Λ∗2 →
2

α− 2
Λ∗1

if N1 ≤ (α/2 − 1)N2. Otherwise, Λ∗2 = N2. Computing p∗i = Λ∗i /Ni produces the

stated result.

2.7.4 Theorem 2.3.6

This follows by direct substitution.

2.7.5 Theorem 2.3.7

The proof of this result is more involved than the proof of theorem 2.3. There are

three regimes.

First consider the joint spread regime where N1 >
√

Λ∗(α/2). We show that a

N.E. cannot occur on the boundary of the strategy space. Suppose Λ∗1 = N1. Then

Λ∗1 >
√

Λ∗(α/2). As
√

Λ∗(α/2) is the solution to the equation

α

2
(
1 +

√
Λ∗(α/2)

α/2
)

log
(
1 +

√
Λ∗(α/2)

−α/2
) − 1 = 1.
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and (1 + x) log(1 + 1/x) is a monotonically decreasing function for x > 0, we have

α

2
(
1 + Λ∗1

α/2
)

log
(
1 + Λ∗1

−α/2
) − 1 > 1.

If Λ∗1 lies on the boundary of the strategy space then ∂U1(Λ
∗
1, Λ

∗
2)/∂Λ1 > 0 which

implies

Λ∗2 > Λ∗1


 α

2
(
1 + Λ∗1

α/2
)

log
(
1 + Λ∗1

−α/2
) − 1




> Λ∗1

>
√

Λ∗(α/2).

This in turn implies

α

2
(
1 + Λ∗2

α/2
)

log
(
1 + Λ∗2

−α/2
) − 1 > 1.

At equilibrium ∂U2(Λ
∗
1, Λ2)/∂Λ2 ≥ 0 so

Λ∗1 ≥ Λ∗2


 α

2
(
1 + Λ∗2

α/2
)

log
(
1 + Λ∗2

−α/2
) − 1




> Λ∗2,

a contradiction. Thus Λ1 < N1. Now assume Λ2 = N2. By assumption N2 ≥ N1 so

Λ∗2 >
√

Λ∗(α/2). By repeating the same arguments we can generate the same style

of contradiction and thus Λ2 < N2. This establishes that a N.E. cannot occur on the

boundary of the strategy space. In essence each network is trying to undercut the

active density of the other. This drags the equilibrium away from the boundary.
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Now we establish any N.E. must be symmetric, i.e. Λ∗1 = Λ∗2. Suppose a N.E.

(Λ∗1, Λ
∗
2) with Λ∗1 6= Λ∗2 exists. Then as it must lie on the interior of the strategy space

and as the utility functions are symmetric, (Λ∗2, Λ
∗
1) must also be a N.E.. On the

interior of the strategy space the N.E. criterion is ∂U1(Λ
∗
1, Λ

∗
2)/∂Λ1 = 0 and so the

function Λ∗1(Λ2) is monotonically increasing in Λ2. But this implies we cannot have

N.E. at both (Λ∗1, Λ
∗
2) and (Λ∗2, Λ

∗
1), a contradiction. Thus Λ∗1 = Λ∗2.

By differentiating the utility functions this implies that at any N.E. Λ∗1 satisfies

α

2
(
1 + Λ∗1

α/2
)

log
(
1 + Λ∗1

−α/2
) − 1 = 1

with Λ∗2 = Λ∗1. But this is equivalent to Λ∗1 =
√

Λ∗(α/2). Thus the N.E. is unique

and occurs at (Λ∗1, Λ
∗
2) = (

√
Λ∗(α/2),

√
Λ∗(α/2)).

Next consider the partial spread and full spread regimes where N1 ≤
√

Λ∗(α/2).

We first show that Λ∗1 = N1. Suppose Λ∗1 < N1. Then Λ∗1 <
√

Λ∗(α/2) which implies

α

2
(
1 + Λ∗1

α/2
)

log
(
1 + Λ∗1

−α/2
) − 1 < 1.

At equilibrium ∂U1/∂Λ1 = 0 so

Λ∗2 = Λ∗1


 α

2
(
1 + Λ∗1

α/2
)

log
(
1 + Λ∗1

−α/2
) − 1




< Λ∗1

<
√

Λ∗(α/2).
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But this in turn implies

α

2
(
1 + Λ∗2

α/2
)

log
(
1 + Λ∗2

−α/2
) − 1 < 1

which in conjunction with the equilibrium condition ∂U2/∂Λ2 = 0 implies Λ∗1 < Λ∗2,

a contradiction. Thus Λ∗1 = N1. Now we can solve for Λ∗2 to conclude that Λ∗2 is

the unique solution to equation (2.8) or N2, whichever is smaller. This concludes the

proof.

2.7.6 Theorem 2.3.9

We first tackle the full spread and partial spread regimes. It is shown in lemma 2.8.4

in the appendix that Λ′′(α) is undefined for α ≤ 4 and recall Λ′′(α) is defined to

be positive infinity for α > 4. Consider the case where N1 ≤ Λ′′(α). We show that

Λ∗1 = N1. Suppose the contrary, that Λ∗1 < N1. Then Λ∗1 < Λ′′(α). Define the function

f(s1, s2) ,

∫∞
0

e−(s1+s2)x2/α dx

1 + x

s1

∫∞
0

x2/αe−(s1+s2)x2/α dx

1 + x

,

for s1 and s2 positive. In Lemma 2.8.1 in the appendix it is shown that f(s, s) is a

monotonically decreasing function in s. By rearranging equation (2.10) one can check

that f(Λ′′(α), Λ′′(α)) = 1. Thus f(Λ∗1, Λ
∗
1) > 1. For a given Λ2 it is shown in Lemma

2.8.2 in the appendix that the utility function U1(Λ1, Λ2) is a smooth continuous

function of Λ1 with a unique maximum (and likewise for U2 given Λ1). As Λ∗1 < N1

the maximum with respect to Λ1 occurs at ∂U1(Λ
∗
1, Λ2)/∂Λ1 = 0. By rearranging

equation (2.11) one can check that this condition is equivalent to f(Λ∗1, Λ2) = 1. This

means f(Λ∗1, Λ
∗
2) < f(Λ∗1, Λ

∗
1). In lemma 2.8.2 we show that f(s1, s2) is a monotonically
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increasing function in s2 given s1. Thus we have Λ∗2 < Λ∗1 and so also Λ∗2 < Λ′′(α)

and Λ∗2 < N1. Thus f(Λ∗2, Λ
∗
2) > 1. As by assumption N1 ≤ N2, we have Λ∗2 < N2

and so the maximum of U2 occurs at ∂U2(Λ1, Λ
∗
2)/∂Λ2 = 0. This means f(Λ∗2, Λ

∗
1) =

1 < f(Λ∗2, Λ
∗
2) which implies Λ∗1 < Λ∗2. This is a contradiction. Thus we must have

Λ∗1 = N1 at a N.E.. By maximizing over Λ2 via differentiation of U2, we see that Λ∗2

equals the solution of (2.11) or N2 whichever is smaller. Lemma 2.8.2 establishes the

solution of (2.11) always exists and is unique.

Now consider the case where N1 > Λ′′(α). We first show that a N.E. cannot occur

on the boundary of the strategy space. Suppose Λ∗1 = N1. Then Λ1 > Λ′′(α). This

implies f(Λ∗1, Λ
∗
1) < 1. As Λ∗1 = N1 the maximum of U1 occurs at ∂U1(Λ

∗
1, Λ2)/∂Λ1 ≥ 0

for a given Λ2. This means f(Λ∗1, Λ
∗
2) ≥ 1 > f(Λ∗1, Λ

∗
1), thus Λ∗2 > Λ∗1. We also

then have Λ∗2 > Λ′′(α). From the optimality condition for network 2 we then have

∂U2(Λ
∗
1, Λ2)/∂Λ2 ≥ 0. This means f(Λ∗2, Λ

∗
1) ≥ 1 > f(Λ∗2, Λ

∗
2) which implies Λ∗1 > Λ∗2.

This is a contradiction. Thus we must have Λ∗1 < N1. As N2 ≥ N1 > Λ′′(α) we can

repeat the argument for Λ∗2 to conclude that we must also have Λ∗2 < N2. This proves

a N.E. can only occur on the interior of the strategy space.

Now we establish any N.E. must be symmetric, i.e. Λ∗1 = Λ∗2. Suppose a N.E.

(Λ∗1, Λ
∗
2) with Λ∗1 6= Λ∗2 exists. Then as it must lie on the interior of the strategy space

and as the utility functions are symmetric, (Λ∗2, Λ
∗
1) must also be a N.E.. On the

interior of the strategy space the N.E. criterion is ∂U1(Λ
∗
1, Λ

∗
2)/∂Λ1 = 0 and so the

function Λ∗1(Λ2) is monotonically increasing in Λ2 by lemma 2.8.3. But this implies

we cannot have N.E. at both (Λ∗1, Λ
∗
2) and (Λ∗2, Λ

∗
1), a contradiction. Thus Λ∗1 = Λ∗2.

Finally one can verify that Λ∗1 = Λ∗2 = Λ′′(α) is a N.E. by differentiating the utility

functions. Thus the unique N.E. is (Λ∗1, Λ
∗
2) = (Λ′′(α), Λ′′(α)).

In essence what is going on here is that in the absence of strategy space constraints,

when Λi < Λ′′(α), network i wants to set Λi > Λj and when Λi > Λ′′(α) network i

wants to set Λi < Λj. Thus the natural equilibrium is at (Λ∗1, Λ
∗
2) = (Λ′′(α), Λ′′(α)).
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The problem for α < 4 is Λ′′(α) is infinite and the sparser network winds up maxing

out at Λ∗1 = N1. When α > 4 the function Λ′′(α) is finite and it is possible to have

N1 > Λ′′(α), i.e. both networks have a sufficiently high density of nodes so as not

to be constrained by the strategy space. In this case they get to set their access

probabilities so as to achieve the natural equilibrium.

2.8 Appendix

Lemma 2.8.1. The function f(s, s) is monotonically decreasing in s.

Proof. By changing variables we can rewrite f(s, s) as

f(s, s) ,
∫∞

0
gs(x)dx∫∞

0
xgs(x)dx

where

gs(x) =
xα/2−1e−2x

sα/2 + xα/2
.

Choose a pair of values for s1 and s2 satisfying 0 ≤ s1 ≤ s2 and then observe that for

any x1 ≤ x2 the following inequality holds

gs2(x2)

gs1(x2)
≥ gs2(x1)

gs1(x1)
.

Thus

∫ ∞

0

∫ x2

0

(x2 − x1)gs1(x1)gs2(x2)dx1dx2 =

∫ ∞

0

∫ ∞

x1

(x2 − x1)gs1(x1)gs2(x2)dx2dx1

=

∫ ∞

0

∫ ∞

x2

(x1 − x2)gs1(x2)gs2(x1)dx1dx2

≥
∫ ∞

0

∫ ∞

x2

(x1 − x2)gs1(x1)gs2(x2)dx1dx2.
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Then ∫ ∞

0

∫ ∞

0

(x2 − x1)gs1(x1)gs2(x2)dx1dx2 ≥ 0

and so

∫ ∞

0

∫ ∞

0

x2gs1(x1)gs2(x2)dx1dx2 ≥
∫ ∞

0

∫ ∞

0

x1gs1(x1)gs2(x2)dx1dx2

which implies

∫ ∞

0

gs1(x)dx

∫ ∞

0

xgs2(x)dx ≥
∫ ∞

0

xgs1(x)dx

∫ ∞

0

gs2(x)dx

and thus f(s1, s1) ≥ f(s2, s2).

Lemma 2.8.2. The function

Ui(Λ1, Λ2) = Λi

∫ ∞

0

e−(Λ1+Λ2)x2/α dx

1 + x

is smooth and continuous in Λi with a unique maximum Λ∗i .

Proof. As the integral is well-defined for all positive Λ1 and Λ2, the function is smooth

and continuous by inspection. To see that a unique maximum exists set the derivative

to zero to obtain f(Λi, Λj) = 1. For fixed Λj it is straightforward to show f(Λi, Λj)

is monotonically decreasing in Λi using arguments similar to those in lemma 2.8.1.

For Λi → 0 we find f(Λi, Λj) → ∞ and for Λi → ∞ we find f(Λi, Λj) → 2/α which

is always less than 1 for α > 2. Thus there always exists a single Λ∗i satisfying

f(Λ∗i , Λj) = 1 and hence a unique maximum always exists.

Lemma 2.8.3. The function f(s1, s2) is monotonically increasing in s2 given s1.
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Proof. The proof mirrors that of lemma 2.8.1, the only difference being that now

gs2(x2)

gs1(x2)
≤ gs2(x1)

gs1(x1)
,

i.e. the inequality goes the other way. We omit the details for brevity.

Lemma 2.8.4. The function Λ′′(α) is undefined for α ≤ 4 and uniquely defined for

α > 4.

Proof. Λ′′(α) is the solution to f(Λ′′(α), Λ′′(α)) = 1. The function f(s, s) is a mono-

tonically decreasing in s by lemma 2.8.1. By taking s → 0 we find f(s, s) →∞ and

by taking s → ∞ we find f(s, s) → 4/α. Thus when α ≤ 4 there is no s for which

f(s, s) = 1 and hence Λ′′(α) is undefined. When α > 4 there is a single s at which

f(s, s) crosses the value 1 and hence Λ′′(α) is uniquely defined.
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Chapter 3

Fundamental Constraints on

Multicast Capacity Regions

3.1 Introduction

The broadcast channel has predominantly been studied in the context of unicast

messaging, where the transmitter wishes to send one private message to each of the

L receivers (see [7] for example). We refer to this as unicasting. The transmitter may

however wish to send different messages to different subsets of receivers. We refer

to this as multicasting. The most general multicast structure comprises of 2L − 1

messages (the powerset). For L = 2 there are three messages, one required only by

the first receiver, one required only by the second receiver, and one required by both

receivers.

The multicast capacity region for a broadcast channel is the set of 2L−1-dimensional

rate vectors that are achievable. For L = 2 this is the set of achievable rate vectors

(R1, R2, R12), where R12 denotes the rate of the common message. One question of

interest is, can the multicast capacity region be inferred from the unicast capacity
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region? That is, can we always compute the multicast capacity region from the uni-

cast capacity region, i.e. without knowing the structure of the channel? For certain

broadcast channels this is true, although it is not true in general. Thus the multicast

capacity region provides additional information about the communication limits of

the channel beyond that of the unicast capacity region.

Multicasting has received significant attention in the network-coding literature.

In [1] and [18] the maximum rate at which a common message can be sent from

a source node through a network of directed noiseless links to a collection of sink

nodes, is shown to equal the minimum-cut of the associated graph. In [8] and [23] the

multicast capacity region for one-source-two-sink networks is fully characterized.1 It

is again given by the minimum-cuts of the associated graph. For three or more sinks

this is not the case and the problem is open. In this exposition we shed light on it by

characterizing some of the structure for three-sink networks.

There is an oddity to multicasting. Suppose we have a two-user broadcast channel

that can support a rate vector (1, 1, 1). That is the transmitter can simultaneously

deliver one bit of private information to the first receiver, one bit of private informa-

tion to the second receiver, and one bit of common information to both receivers. An

important point to clarify is that there is no secrecy requirement –“private” informa-

tion sent to the first receiver may or may not be decodable by the second receiver and

vice versa. Then the channel can also support a rate vector (2, 1, 0). The transmitter

merely uses the common bit to send private information to the first receiver. Ofcourse

the second receiver is capable of decoding this bit too, but the information is of no

interest to it. By symmetry the achievability of rate vector (1, 1, 1) also implies the

achievability of rate vector (1, 2, 0). There is one more implication in this vein: the

achievability of (1, 1, 1) implies the achievability of (0, 0, 2). The reasoning is similar.

1To be more precise, we define the multicast capacity region of a network as the convex-hull
of the union of all multicast capacity regions of broadcast channels that arise from specifying the
encoding and decoding operations at intermediate nodes in the network.
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The transmitter sends the same information on the two private bits. In this way the

first user receives the same private bit as the second user, in addition to the same

common bit. Thus two common bits have been sent. These three manipulations

are summarized in figure 3.1 as extremal rays stemming from (1, 1, 1) and represent

three distinct encoding/decoding operations that can always be performed, regard-

less of the structure of the broadcast channel. In this sense they are universal. By

time-sharing one can achieve any point in the polytope indicated in figure 3.1. To

summarize: if a rate-vector (1, 1, 1) is achievable, so must be the region illustrated,

regardless of the channel. Is this set of operations complete? Put in reverse, are

there any rate vectors outside the polytope in figure 3.1 that are achievable on for

all broadcast channels for which (1, 1, 1) is achievable? The answer is that there are

not –there exists a broadcast channel where the rate vector (1, 1, 1) is achievable, but

no rate vector outside the polytope in figure 3.1 is. Thus for the two-user broadcast

channels the three operations discussed form a complete set -they are the only distinct

universal encoding/decoding operations.

It is straightforward to generalize these operations to broadcast channels with an

arbitrary number of users. Consider for example the three user broadcast channel.

There are seven messages. Suppose a rate vector (R1, R2, R3, R12, R13, R23, R123) =

(1, 1, 1, 1, 1, 1, 1) is achievable (for example, R13 represents the rate of the message

intended for receivers 1 and 3). Then for any two subsets of receivers I ⊂ J we can

perform the operation RI → RI+1, RJ → RJ−1, and for any two subsets of receivers

I 6= J we can perform the operation RI → RI−1, RJ → RJ −1, RI∪J → RI∪J +1.

For instance we may swap the first and second receivers’ private bits for a common bit

that is sent to the pair, so that the rate vector (0, 0, 1, 2, 1, 1, 1) is achieved. Similarly

the rate vector (0, 1, 1, 1, 1, 0, 2) can be achieved by using the first receivers private bit

and the bit common to the second and third receivers, to send information common

to all three receivers. It can be shown that the number of distinct operations of this
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form is 15. That is, if the rate vector (1, 1, 1, 1, 1, 1) is achievable, so is the set of

points contained within a 15-edged polytope, which is the generalization to L = 3 of

the polytope in figure 3.1.

Again we ask the question, is this set of operations complete? Are there any

points outside this 15-edged polytope that are universally achievable on any three-

user broadcast channel? The answer, perhaps surprisingly, is yes. There exists a

sixteenth distinct universal encoding/decoding operation. It does not involve a mere

relabeling of common and private bits. It enables the rate vector (1, 1, 1, 0, 0, 0, 3)

to be achieved. This new operation together with the fifteen trivial ones forms the

complete set of distinct universal encoding/decoding operations for L = 3. That is,

all other rate vectors universally achievable from (1, 1, 1, 1, 1, 1, 1) can be achieved by

time sharing between these 16 distinct universal encoding/decoding operations.

Now we turn to the multiple access channel (MAC) with L users. The MAC has

also typically been studied in the context of unicast messaging where it’s capacity

region has in many cases been completely characterized. For multicasting the capacity

of the discrete memoryless MAC is computed in [26] and a conjecture regarding the

generalization of this result to an arbitrary number of users is given.

Let us apply the reasoning we applied above for the broadcast channel, to the

MAC. Consider a two user MAC. Each transmitter wishes to send a private message

of rate Ri to the receiver for i ∈ {1, 2}. In addition there is a common message of

rate R12 that both transmitters share, and desire to be sent to the receiver. Suppose

for a given MAC a rate vector (R1, R2, R12) = (1, 1, 1) is achievable. Then the first

transmitter could just label its rate-one bit stream as common information and send

it to the transmitter. Thus the rate vector (0, 1, 2) is also achievable. By symmetry

the second transmitter could do the same so (1, 0, 2) is achievable too. Are there

any other operations that tradeoff between elements of the rate vector?2 The answer

2We could combine these two arguments to conclude (0, 0, 3) is achievable but we will not be
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is no. For the broadcast channel we could swap common information for private,

but not so for the MAC. More specifically we cannot relabel common information as

private, as a common bitstream may require both transmitters have access to it in

order for it to be passed to the receiver. A private bitstream assumes only a single

transmitter has access to it. The (1, 1, 1)-multicast region for the two-user MAC is

plotted in figure 3.2. There are three extremal rays and correspondingly three distinct

universal/encoding decoding operations. The first two are stated above and the third

consists of merely lowering the common rate so as to arrive at the point (1, 1, 0).

Unlike the broadcast channel, this structure directly generalizes to L users. For

three users there are ten universal encoding/decoding operations. Six result from

relabeling private information as pairwise. Three result from relabeling pairwise as

common and the last results from lowering the common rate. Thus the multicast

capacity region of the multiple access channel has a less intricate structure than that

of the broadcast.

In this paper we characterize the complete set of distinct universal encoding/decoding

operations and the associated region of achievable rate vectors, for both the broadcast

channel and the MAC channel, for L = 3. In essence this is a characterization of the

universal constraints on the multicast capacity region of these channels.

Section II describes the notation we use. In section III we describe the problem

in detail. Section IV presents the results and section V and VI the proofs.

3.2 Preliminary Notation

We briefly describe some of the notation that will be used. Typically I and J will

be used to denote subsets of {1, 2, 3}. For example we may have I = {2, 3}, which

would imply RI ≡ R{2,3} ≡ R23. Rates in bold font represent tuples, for example

interested in this operation as it can be expressed as a linear combination of others.
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extremal ray 

(-1,-1,1)/ 3

extremal ray 

(1,0,-1)/ 2

R2

R1

R12

(1,1,1) 

(0,0,2)

(1,2,0)

(2,1,0)
extremal ray 

(0,1,-1)/ 2

Figure 3.1: The (1, 1, 1)-multicast region for the broadcast channel, L = 2.
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extremal ray 

(-1,0,1)/ 2

R2

(1,1,1) 

(0,2,0) 

(2,0,0) 

R1

R12

(1,1,0) extremal ray 

(0,0,-1)/ 2

extremal ray 

(0,-1,1)/ 2

Figure 3.2: The (1, 1, 1)-multicast region for the multiple access channel, L = 2.
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we may have R = (R1, R2, R12). Elements of time series are indicated by a index

in parentheses following the variable, for example Y (i). An entire time series is

represented by bold font, for example W1 = [W1(1), . . . , W1(n)] If S is a set then

2S denotes the powerset (the set of all subsets of S) excluding the nullset, e.g. if

S = {1, 2} then 2S ≡ {{1}, {2}, {1, 2}}. We denote the nullset by φ. The symbol ¹
denotes element-wise inequality.

3.3 Problem Setup

Consider a broadcast channel with three receivers. The input alphabet is denoted X
and the output alphabets Y1,Y2,Y3. The probability transition function is p(y1, y2, y3|x).

The message vector is

(W1,W2,W3,W12,W13,W23,W123).

The subscript denotes the subset of receivers for which the message in intended,

for example message W23 is intended for receivers 2 and 3. Denote the rate vector

R = (R1, R2, R3, R12, R13, R23, R123). A (2nR, n) code consists of an encoder

xn :
∏

I⊆{1,2,3}
{1, . . . , 2nRI} → X n

and twelve decoders

Ŵi,I : Yn
i → 2nRI

where i ∈ {1, 2, 3} denotes the receiver and I ⊆ {1, 2, 3} with i ∈ I denotes the

message index. Thus each receiver decodes four messages (the first receiver decodes

W1,W12, W13,W123, etc...). The probability of error P
(n)
e is defined to be the probabil-
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Figure 3.3: System diagrams for L = 2.

ity that at least one of the decoded messages is not equal to the transmitted message,

i.e.

P (n)
e = P




⋃

I ⊆ {1, 2, 3}
s.t. i ∈ I

{
Ŵi,I(Y n

i ) 6= Wi,I
}




.

where the seven messages are assumed to be mutually independent and uniformly

distributed over
∏
I∈{1,2,3}{1, . . . , 2nRI}.

Definition 3.3.1. A multicast rate vector R is said to be achievable for the broadcast

channel if there exists a sequence of (2nR, n) codes with P
(n)
e → 0.
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Definition 3.3.2. The multicast capacity region of the broadcast channel is the clo-

sure of the set of achievable multicast rate vectors. It is denoted Cp(y1,y2,y3|x) or C for

short.

Often we will omit the adjective ‘multicast’.

We now give a defintion that makes precise the operation of swapping common

and private messages, and quantifies the change in the rate vector. Let RW and RM

be two rate vectors.

Definition 3.3.3. A (dR, n)-universal encoding/decoding operation is a pair of map-

pings

WJ :
∏

I⊆{1,2,3}
{1, . . . , 2nRM

I } → {1, . . . , 2nRW
J }, and

M̂i,I :
∏

J ⊆ {1, 2, 3}
s.t. i ∈ J

{1, . . . , 2nRW
J } → {1, . . . , 2nRM

I }

for all J ⊆ {1, 2, 3} and all i ∈ {1, 2, 3} for all I ⊆ {1, 2, 3} such that i ∈ I, with the

properties M̂i,I = M̂j,I for all i, j ∈ {1, 2, 3}, RM 6= RW and

RM −RW

‖RM −RW‖ = dR,

W (M) being the universal encoder output and M̂(Ŵ ) being the universal decoder

output. The vector dR is referred to as the ‘normalized difference vector’.

The property M̂i,I = M̂j,I for all i, j ∈ {1, 2, 3} ensures that all users agree on the

common messages they decode. See figure 3.3 for a system diagram that illustrates

the relationship between M,W, M̂ and Ŵ .
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Example 3.3.4. Suppose RW = (1, 0, 0, 1, 0, 0, 0) and RM = (2, 0, 0, 0, 0, 0, 0). Let

n = 1. Then the mapping W1(M) = M1(1), W12(M) = M1(2) is a universal encoding

operation with dR = (1, 0, 0,−1, 0, 0, 0)/
√

2. The universal decoding operation is the

inverse mapping given by M̂1(Ŵ) = [Ŵ1, Ŵ12].

Definition 3.3.5. A dR-universal encoding/decoding operation is called ‘distinct’ if

the vector dR cannot be expressed as positive linear combination of vectors {dRi} 6=
dR for which there exist dRi-universal encoding/decoding operations for i = 1, 2, . . . .

The (rays associated with the) normalized difference vectors corresponding to distinct

dR-universal encoding/decoding operations are called ‘extremal rays’.

By positive linear combination we mean a weighted linear sum with non-negative

coefficients.

Example 3.3.6. It will be evident later that the universal encoding/decoding opera-

tion given in example 3.3.4 is distinct and thus (1, 0, 0,−1, 0, 0, 0)/
√

2 is an extremal

ray. By symmetry (0, 1, 0,−1, 0, 0, 0)/
√

2 is also an extremal ray. Note distinctness

does not imply uniqueness –the universal encoding/decoding operation that moves from

rate vector RW = (1, 0, 0, 1, 0, 0, 0) to rate vector RM = (1.5, 0, 0, 0.5, 0, 0, 0) is also

classified as distinct, but it has the same normalized difference vector. An example of

a universal encoding/decoding operation that is not distinct is one that moves from

rate vector RW = (1, 0, 0, 1, 0, 0, 0) to rate vector RM = (1.5, 0.5, 0, 0, 0, 0, 0). Denote

the corresponding normalized difference vector is dRA , (0.5, 0.5, 0,−1, 0, 0, 0)/
√

1.5.

The universal encoding/decoding operations that achieve this shift correspond to time-

sharing between two operations, one with normalized difference vector

dRB , 1√
2
(1, 0, 0,−1, 0, 0, 0),
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the other with normalized difference vector

dRC , 1√
2
(0, 1, 0,−1, 0, 0, 0).

Indeed we have

dRA =
1√
3
dRB +

1√
3
dRC .

We now give a formal definition of the region alluded to in figure 3.1. Let

R∗ = (R∗
1, R

∗
2, R

∗
3, R

∗
12, R

∗
13, R

∗
23, R

∗
123)

be a parameter.

Definition 3.3.7. The ‘R∗-multicast region’ is the intersection of the capacity regions

of all broadcast channels for which the rate vector R∗ is achievable, i.e.

⋂

p(y1,y2,y3|x):R∗∈Cp(y1,y2,y3|x)

Cp(y1,y2,y3|x)

See figures 3.1 for examples of this region.

As the problem setup for the multiple access channel is entirely analogous to the

aforementioned setup for the broadcast channel, we do not explicitly describe it. An

example of the R∗-multicast region is given in figure 3.2

The aim of this paper is to characterize the R∗-multicast cones for both the

broadcast and multiple access channels.
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GBC,2 =




1 0 1
0 1 1
1 1 1


 HBC,2 =




1 0 −1
0 1 −1

−1 −1 1




GMAC,2 =




1 0 1
0 1 1
1 1 1


 HMAC,2 =




1 0 −1
0 1 −1

−1 −1 1




Figure 3.4: Results for L = 2.

GBC,3 =




1 0 0 1 1 0 1 1 1 1 1 2 2 1 2
0 1 0 1 0 1 1 1 1 1 1 2 1 2 2
0 0 1 0 1 1 1 1 1 1 1 1 2 2 2
1 1 0 1 1 1 1 2 1 1 2 2 2 2 2
1 0 1 1 1 1 1 1 2 1 2 2 2 2 2
0 1 1 1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 1 2 2 2 2 3 3 3 3




HBC,3 =




−1 −1 0 1 0 0 1 0 0 −1 0 0 0 0 0 0
−1 0 −1 0 1 0 0 −1 0 0 1 0 0 0 0 0

0 −1 −1 0 0 −1 0 0 1 0 0 1 0 0 0 0
1 0 0 −1 −1 −1 0 0 0 0 0 0 1 0 0 −1
0 1 0 0 0 0 −1 −1 −1 0 0 0 0 1 0 −1
0 0 1 0 0 0 0 0 0 −1 −1 −1 0 0 1 −1
0 0 0 0 0 1 0 1 0 1 0 0 −1 −1 −1 2




GMAC,3 =




1 0 0 1 1 0 1 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1




HMAC,3 =




1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0

−1 0 −1 0 0 0 1 0 0 0
0 −1 0 0 −1 0 0 1 0 0
0 0 0 −1 0 −1 0 0 1 0
0 0 0 0 0 0 −1 −1 −1 1




Figure 3.5: Results for L = 3.
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3.4 Results

Theorem 3.4.1. For L = 3 the R∗-multicast region of the broadcast channel is the

set of all R ∈ R7
+ satisfying

GT
BC,3 (R−R∗) ¹ 0 (3.1)

where GBC,3 is given in figure 3.4. This region is a polytope, characterized by the

cone {R ∈ R7 : GT
BC,3R ¹ 0}. We refer to this cone as the L = 3 ’multicast cone’.

The sixteen extremal rays of this cone are given by the columns of the matrix HBC,3

in figure 3.4. Thus there are 16 distinct universal encoding/decoding operations for

L = 3.

The (1, 1, 1)-multicast region for the broadcast channel for L = 2 is illustrated in

figure 3.1. For L = 2 there are 3 distinct universal encoding/decoding operations.

The GBC,2 and HBC,2 matrices are given in the above figure.

The columns of GBC,2 are the normal vectors to the three hyperplanes bounding the

region. The columns of HBC,2 are the three extremal rays (see figure 3.1).

Theorem 3.4.2. For L = 3 the R∗-multicast region of the multiple access channel is

the set of all R ∈ R7
+ satisfying

GT
MAC,3 (R−R∗) ¹ 0 (3.2)

where GMAC,3 is given in figure 3.4. This region is also a polytope characterized by

the cone {R ∈ R7 : GT
MAC,3R ¹ 0}. The 10 extremal rays of this cone are given by

the columns of the matrix HMAC,3 in figure 3.4. Thus there are 10 distinct universal

encoding/decoding operations for L = 3.

The (1, 1, 1)-multicast region for the MAC for L = 2 is illustrated in figure
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3.2. There are 3 distinct universal encoding/decoding operations. The GMAC,2 and

HMAC,2 matrices are given in figure ??.

An alternative interpretation of theorem 3.4.1 is the following (the same interpre-

tation applies for 3.4.2). For notational simplicity we denote the capacity region of

an arbitrary broadcast channel by C. Let

R∗(α) = arg max
R∈C

αTR

R∗(α) is the rate vector lying on the boundary of the capacity region in the direction

of α. Let

C∗(α) =
{
R ∈ R7

+

∣∣αTR ≤ αTR∗(α)
}

.

C∗(α) is the halfspace of all rate vectors lying underneath the hyperplane αTR =

αTR∗(α). The region C is convex and thus we can characterize it by its support

function C∗(α), i.e.

C =
⋂

α∈R7
+

C(α).

However this is not the minimal dual representation of C. Let

H∗
3 ,

{
α ∈ R7

+

∣∣αTHBC,3 ¹ 0
}

Corollary 3.4.3. The multicast capacity region of an any broadcast channel with

three receivers can be expressed as

C =
⋂
α∈H

C(α).

if and only if

H ⊇ H∗
3.
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This says the following: when computing the multicast capacity region of a broadcast

channel by maximizing the weighted sum-rate, the smallest set that one need vary

the weighting coefficients α over is H∗
3. Put another way, the normal vector α to any

point on the boundary of the multicast capacity region is always contained in the set

H∗
3. See figure 3.6.

3.5 Proof of Theorem 3.4.1

The direct part of the proof consists of showing that for any broadcast channel, if a

rate vector R∗ is achievable then all rate vectors in the region given by equation (1) are

achievable. This establishes that the R∗-multicast region is ‘at least as large’ as the

region given by equation (1). The converse part of the proof consists of illustrating,

for each R∗ ∈ R7
+, a broadcast channel for which no rate vector outside the region

given by equation (1) is achievable. This establishes that the R∗-multicast region is

‘at least as small’ as the region given by equation (1). We start with the direct part.

For notational simplicity we drop the broadcast channel (BC) subscript.

3.5.1 Direct Part

Suppose that R∗ is achievable for a particular broadcast channel. We show that any

rate-vector R ∈ R7
+ satisfying

R ¹ R∗ + HBC,3∆ (3.3)

for ∆ ∈ R16
+ is also achievable. We then show that this region is precisely the one

given in equation (1). Let ∆i denote the ith element of ∆ and HBC,3(i) denote the ith

column of HBC,3. To show that any rate-vector satisfying equation (2) is achievable,
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+

1

2

i

j

H*

i

j

i

j

C

C
(a)

(b)

Figure 3.6: The normal vector α of the broadcast channel capacity region satisfies αT ∈
H∗. (a) A capacity region that cannot occur. (b) A capacity region that can occur.
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we show that each of the 16 rate-vectors given by

R(i) = R∗ + HBC,3(i)∆
∗
i , i = 1, . . . , 16 (3.4)

are achievable where

∆∗
i = max

HBC,3(i)∆i¹R∗
∆

By time sharing between these vectors the entire boundary region {R∗−HBC,3∆|∆ ∈
R16

+ } is achieved and hence any point within it (i.e. satisfying equation (2)) can also

be achieved.

Let M, M̂ correspond to the binary message vector and estimate of the message

vector, respectively, that the transmitter wishes to send at rate vector R(i). We

illustrate the achievability of equation (3) for i = 3.

To universally encode for i = 3, assume without loss of generality that R∗
1 ≤ R∗

2.

In what follows we ignore rounding effects as it will be clear that in the limit n →∞
they are negligible. Set

W n
1 = [M12(1), . . . , M12(nR∗

1)]

W n
2 = [M12(1), . . . , M12(nR∗

1),M2(1), . . . , M2(nR∗
2 − nR∗

1)]

W n
12 = [M12(nR∗

1 + 1), . . . , M12(nR∗
1 + nR∗

12)]

In words, the information common to receivers 1 and 2 is split into two parts. The first

part is replicated and sent separately down both receiver 1 and receiver 2’s private

channels. The second part is sent down the channel common to both receivers. As

receiver 2’s private channel can accommodate a higher bit-rate than receiver 1’s, there

is some bandwidth left over. This is allocated to sending some of receiver 2’s private

information.

For all other subsets I of {1, 2, 3} set W n
I = Mn

I and M̂n
I = Ŵ n

I . Universal
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decoding is straightforward. The first receiver sets

M̂n
1,12 = [Ŵ n

1 , Ŵ n
12]

M̂n
1,13 = Ŵ n

13

M̂n
1,123 = Ŵ n

123

and in this way successfully recovers its message, as the achievability of R∗ implies

that W was decoded correctly. The second receiver sets

M̂n
2,2 = [Ŵ2(nR∗

1 + 1), . . . , Ŵ2(nR∗
2)]

M̂n
2,12 = [Ŵ2(1), . . . , Ŵ2(nR∗

1), Ŵ
n
12]

M̂n
2,23 = Ŵ n

23

M̂n
2,123 = Ŵ n

123

and is similarly successful in decoding. The third receivers sets M̂n
I = Ŵ n

I for all of

its messages. Then we have achieved a rate vector of

R(3) = R∗ +




−1

−1

0

1

0

0

0




R∗
1

= R∗ + HBC,3(3)∆3.

with ∆3 = R∗
1. The universal encoding and decoding procedures for all other i ∈
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{1, . . . , 15} are similar and follow from the structure of the columns of the matrix

HBC,3.

Universal encoding and decoding for i = 16 is different. Assume without loss of

generality that R∗
12 ≤ R∗

13 ≤ R∗
23. To encode, set W n

i = Mn
i for i = 1, 2, 3 and

W n
12 = [M123(1), . . . ,M123(nR∗

12)]

W n
13 = [M123(nR∗

12 + 1), . . . , M123(2nR∗
12),M13(1),M13(nR13 − nR12)]

W n
23 = [M123(1)⊕M123(nR∗

12 + 1), . . . , M123(nR∗
12)⊕M123(2nR∗

12),

M23(1), . . . , M23(nR23 − nR12)]

W n
123 = [Mn

123(2nR∗
12), . . . , M

n
123(2nR∗

12 + nR∗
123)]

In words, the information common to all receivers is split into three streams. The

first and second are sent at rate R∗
12 using the three pairwise links. The third stream

is sent at rate R∗
123 across the link common to all receivers.

The first receiver decodes by setting M̂n
1,1 = Ŵ n

1 and

Mn
13 = [W13(nR∗

12 + 1), . . . , W13(nR∗
13)]

Mn
123 = [W n

12,W
n
13,W

n
123].

The second receiver decodes by setting M̂n
1,2 = Ŵ n

2 and

Mn
23 = [W23(nR∗

12 + 1), . . . , W23(nR∗
23)]

Mn
123 = [W n

12,W
n
12 ⊕W n

23,W
n
123].
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The third receiver decodes by setting M̂n
1,3 = Ŵ n

3 and

Mn
13 = [W13(nR∗

12 + 1), . . . , W13(nR∗
13)]

Mn
23 = [W23(nR∗

12 + 1), . . . , W23(nR∗
23)]

Mn
123 = [W n

13,W
n
13 ⊕W n

23,W
n
123].

Then we have achieved a rate vector of

R(3) = R∗ +




0

0

0

−1

−1

−1

2




R∗
12

= R∗ + HBC,3(16)∆16.

with ∆16 = R∗
12. Thus the 16 rate vectors satisfying equation (3) are achievable and

by time sharing between them, all rate vectors in the region given by equation (2)

are achievable.

It remains to show that this region is equivalent to the one in equation (1), i.e.

that for any R∗ ∈ R7
+

{
R ∈ R7

+

∣∣GT
BC,3R ¹ GT

BC,3R
} ≡ {

R ∈ R7
+

∣∣R ¹ R∗ + HBC,3∆,∀∆ ∈ R16
+

}
.

On the left is the characterization of the polytope in terms of the hyperplanes bound-

ing it. On the right is the dual characterization in terms of the edges of the polytope
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(1-dimensional facets). This equivalence can be demonstrated using computer soft-

ware such as polymake.

3.5.2 Converse Part

To establish the converse we now present, for each R∗, a particular (deterministic)

broadcast channel and show its capacity region is equal to (1). Let the input alphabet

X =
∏
I⊆{1,2,3}{0, . . . , 2nR∗I − 1} with the ith channel input

X(i) = [X1(i), X2(i), X3(i), X12(i), X13(i), X23(i), X123(i)]

so that each XI ∈ {0, . . . , 2nR∗I − 1}, and let Yi ∈
∏
I⊆{1,2,3},i∈I{0, . . . , 2nR∗I − 1} for

i = 1, 2, 3 with

Y1(i) = [X1(i), X12(i), X13(i), X123(i)]

Y2(i) = [X2(i), X12(i), X23(i), X123(i)]

Y3(i) = [X3(i), X13(i), X23(i), X123(i)].

See figure 3.7 for an illustration of the channel. Suppose the channel is used n

times. The messages to be transmitted are WI ∼ U({1, . . . , 2nRI}) and mutually

independent. Denote the length-n vector of channel inputs by X and the length-n

vectors of channel outputs by Y1,Y2 and Y3. Let GBC,3(i) denote the ith column of

GBC,3. We wish to show

GBC,3(i)
TR ≤ GBC,3(i)

TR∗ (3.5)

for i = 1, . . . , 15. Before this we introduce some notation. Suppose A is a collection

of subsets of {1, 2, 3}, for example A = {1, 2, 12, 13, 123}. The collection A should
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X1(i) 

X2(i) 

X3(i) 

X13(i) 

X12(i) 

X23(i) 

X123(i) 

Y1,1(i) 

Y1,12(i)

Y1,13(i) 

Y1,123(i)

R3
*

R2
*

R1
*

R12
*

R13
*

R23
*

R123
*

bits/channel use 

Y2,1(i) 

Y2,12(i)

Y2,23(i) 

Y2,123(i)

Y3,1(i)

Y3,13(i) 

Y3,23(i) 

Y3,123(i) 

receiver 1

receiver 2

receiver 3

Figure 3.7: Illustration of the deterministic broadcast channel used in converse.

be thought as the indices of a subset of the seven channel links (see figure 3.7), for

example A = {1, 123} corresponds to two links, the private one from X1 to Y1,1 and

the common one from X123 to Y1,123, Y2,123, Y3,123. By bAc we denote the indices of the

messages intended for those receivers cut by A. For example if A = {1, 2, 12, 13, 123}
then all links to the first receiver are cut, but not all links to the second or the third.

As the first receiver is sent the messages W1, W12,W13 and W123, we have bAc =

{1, 12, 13, 123}. As another example let A = {2, 3, 12, 13, 23, 123}. Then all links to

both the second and third receivers are cut and bAc = {2, 3, 12, 13, 23, 123} = A.

As a final example if A = {1, 12, 23, 123} no receivers are completely cut, and thus

bAc = φ.

Lemma 3.5.1. Let A1,A2 and A3 be three collections of subsets of {1, 2, 3} such that
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either A1 ⊆ A2 ∪ A3, A2 ⊆ A1 ∪ A3 or A3 ⊆ A1 ∪ A2. Then

∑

I∈bA1∪A2∪A3c
RI+

∑

I ∈ bA1 ∪ A2c∩
bA1 ∪ A3c ∩ bA2 ∪ A3c

RI+
∑

I ∈ bA1c∩
bA2c ∩ bA3c

RI ≤
∑
I∈A1

R∗
I+

∑
I∈A2

R∗
I+

∑
I∈A3

R∗
I

This lemma is a generalization of the cutset bounds to multiple subsets of cuts. Indeed

if we set A2 = φ and A3 = φ we are left with

∑

I∈bA1c
RI ≤

∑
I∈A1

R∗
I

which are precisely the cutset bounds.

Proof.

n

( ∑
I∈A1

R∗
I +

∑
I∈A2

R∗
I +

∑
I∈A3

R∗
I

)

≥
∑
I∈A1

H(XI) +
∑
I∈A2

H(XI) +
∑
I∈A3

H(XI)

≥ H (∪I∈A1XI) + H (∪I∈A2XI) + H (∪I∈A3XI)

= H (∪I∈A1∪A2∪A3XI) + I (∪I∈A1∪A2XI ;∪I∈A1∪A3XI ;∪I∈A2∈A3XI)

+ I (∪I∈A1XI ;∪I∈A2XI ;∪I∈A3XI)

≥ H
(∪I∈bA1∪A2∪A3cWI

)
+ H

(∪I∈bA1∪A2c∩bA1∪A3c∩bA2∪A3cWI
)

+ H
(∪I∈bA1c∩bA2c∩bA3cWI

)
+ εn

= n

( ∑

I∈bA1∪A2∪A3c
RI +

∑

I∈bA1∪A2c∩bA1∪A3c∩bA2∪A3c
RI +

∑

I∈bA1c∩bA2c∩bA3c
RI

)

where the third step follows from lemma 3.7.2 in the appendix and the fourth from

the requirement P
(n)
e → 0 (Fano’s inequality) and lemma 3.7.1 in the appendix.
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Applying lemma 5.1 to the sets of indices in table 1 establishes equation (3.1) for

columns i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15 of GBC,3. Unfortunately for column

i = 11 the condition that either A1 ⊆ A2 ∪A3, A2 ⊆ A1 ∪A3 or A3 ⊆ A1 ∪A2 must

hold, is violated. Consequently the 11th converse bound is established in a different

fashion.

Let A1,A2,A3 be defined by the 11th row of table 1. Then

n

( ∑
I∈A1

R∗
I +

∑
I∈A2

R∗
I +

∑
I∈A3

R∗
I

)

≥
∑
I∈A1

H(XI) +
∑
I∈A2

H(XI) +
∑
I∈A3

H(XI)

≥ H (∪I∈A1XI) + H (∪I∈A2XI) + H (∪I∈A3XI)

≥ H (∪I∈A1XI) + H (∪I∈A2XI) + H
(∪I∈A3∪{123}XI

)−H (X123)

≥ H(∪I∈A1XI |W1,W12,W13,W123) + H(W1,W12,W13,W123)

+ H(∪I∈A2XI |W2,W12,W23,W123) + H(W2,W12,W23,W123)

+ H(∪I∈A3∪{123}XI |W3,W13,W23) + H(W3,W13,W23)−H(X123)

≥ H(X123|W1,W12,W13,W123) + H(W1,W12,W13,W123)

+ H(X123|W2,W12,W23,W123) + H(W2,W12,W23,W123)

+ H(X123|W3,W13,W23) + H(W3,W13,W23)−H(X123)

≥ H(W1,W12,W13,W123) + H(W2,W12,W23,W123) + H(W3,W13,W23)

= H(W1) + H(W2) + H(W3) + 2H(W12) + 2H(W13) + 2H(W23) + 2H(W123)

= n(R1 + R2 + R3 + 2R12 + 2R13 + 2R23 + 2R123)

where the fourth step follows from the requirement P
(
en) → 0 (Fano’s inequality), the

sixth from lemma 3.7.3 and the seventh from the independence of the messages.
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i A1 A2 A3

1 {1}, {12}, {13}, {123} φ φ
2 {2}, {12}, {23}, {123} φ φ
3 {3}, {13}, {23}, {123} φ φ
4 {1}, {2}, {12}, {13}, {23}, {123} φ φ
5 {1}, {3}, {12}, {13}, {23}, {123} φ φ
6 {2}, {3}, {12}, {13}, {23}, {123} φ φ
7 {1}, {2}, {3}, {12}, {13}, {23}, {123} φ φ
8 {1}, {3}, {12}, {13}, {123} {2}, {12}, {23}, {123} φ
9 {1}, {2}, {12}, {13}, {123} {3}, {13}, {23}, {123} φ
10 {1}, {2}, {12}, {23}, {123} {3}, {13}, {23}, {123} φ
11 {1}, {12}, {13}, {123} {2}, {12}, {23}, {123} {3}, {13}, {23}
12 {1}, {2}, {12}, {13}, {123} {2}, {3}, {12}, {23}, {123} {3}, {13}, {23}, {123}
13 {1}, {3}, {13}, {23}, {123} {1}, {2}, {12}, {23}, {123} {1}, {12}, {13}, {123}
14 {1}, {2}, {12}, {13}, {123} {2}, {12}, {23}, {123} {1}, {3}, {13}, {23}, {123}
15 {1}, {2}, {12}, {13}, {123} {2}, {3}, {12}, {23}, {123} {1}, {3}, {13}, {23}, {123}

Figure 3.8: The (1, 1, 1)-multicast region for the broadcast channel, L = 2.

3.6 Proof of Theorem 4.2

The direct part of this proof is entirely analogous to the direct part for the broadcast

channel. This establishes the universal achievability of the R∗-multicast region. The

converse part is different. For each R∗ we present a sequence of channels. The limiting

intersection of the capacity regions of these channels is the region in equation (3.2).

The capacity regions of these channels are not precisely computed, but only outer

bounded in a manner sufficient to establish their limiting intersection.

3.6.1 Direct part

As this part of the proof is trivial and entirely analogous section 5.1 we only provide

a sketch. In essence we need to establish that each of the columns of HMAC,3 are

achievable in the sense of section 5.1. The first column is achieved by transmitting

additional M12 bits on the W1 channel, the second column is achieved by transmitting

additional M13 bits on the W1 channel, the third column is achieved by transmitting
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additional M12 bits on the W2 channel, and so on. The last column is achieved by

lowering the rate of the M123 message.

3.6.2 Converse part

For each R∗ we present a sequence of deterministic channels with capacity region

tending to the region in equation (3.2). The capacity regions of these channels are

not explicitly computed, only outer bounded, but we show the limiting outer bound

is tight. The sequence is parameterized by the integer k.

Let R∗ be given and assume its elements are rational. Denote their numerators and

denominators by NI and DI , for I ⊆ {1, 2, 3} so that R∗ = (N1/D1, . . . , N123/D123).

Let l = LCM(D1, . . . , D123). The kth channel is defined as follows. See figure 3.10

for a pictorial representation. Every k × l time steps the channel takes in a triple of

inputs and outputs one symbol. The input alphabet is X = X1 ×X2 ×X3 where

X1 = {0, 1}kN1 × {0, 1}kN12 × {0, 1}kN13 × {0, 1}kN123

X2 = {0, 1}kN2 × {0, 1}kN12 × {0, 1}kN13 × {0, 1}kN123

X3 = {0, 1}kN3 × {0, 1}kN13 × {0, 1}kN23 × {0, 1}kN123

The output alphabet is

Y = {0, 1}kN1 × {0, 1}kN2 × {0, 1}kN3

× ({0, 1}kN12 ∪ {e})× ({0, 1}kN13 ∪ {e})× ({0, 1}kN23 ∪ {e})× ({0, 1}kN123 ∪ {e})

where e is an output symbol that can be thought of as an erasure. The channel thus

decomposes into one with 4 × 3 = 12 inputs and 7 outputs. The outputs at time i
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are related deterministically to the inputs at time i via

Y1(i) = X1,1(i)

Y2(i) = X2,1(i)

Y3(i) = X3,1(i)

Y12(i) =





X1,12(i) if X1,12(i) = X2,12(i)

e otherwise

Y13(i) =





X1,13(i) if X1,13(i) = X3,13(i)

e otherwise

Y23(i) =





X2,23(i) if X2,23(i) = X3,23(i)

e otherwise

Y123(i) =





X1,123(i) if X1,123(i) = X2,123(i) = X3,123

e otherwise

The input streams thus consist of blocks of kNi bits. The output streams Y1(i), Y2(i), Y3(i)

match their associated input streams. The output stream Y12(i) matches its associ-

ated input streams if and only if the input streams match at each bit, otherwise the

erasure symbol is outputted. Likewise for the other output streams. For this reason

the boxes inside the channel in figure 3.9 are labeled ’coordination channel’. See

figure 3.10 for a pictorial example of one such coordination channel. The idea of the

coordination channels is that in the limit of large k, they only let common information

through. This should be intuitive from their definition and from the figure.

We now bound the capacity region of this channel. It is clear that we can fur-
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X3,13(i) 
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Figure 3.9: Illustration of the deterministic multiple access channel used in converse.

ther decompose the channel into seven parallel channels, one linking X1,1 and Y1,

one linking X2,1 and Y2, one linking X3,1 and Y3, one linking (X1,12, X2,12) and Y12,

one linking (X1,13, X3,13) and Y13, one linking (X2,23, X3,23) and Y23, and one link-

ing (X1,123, X2,123, X3,123) and Y123. The capacity region of the channel in question

is thus the Minkowski sum of the capacity regions of these seven channels. Denote

these seven capacity regions by Ck
I for I ⊆ {1, 2, 3}. Then the capacity region of our

channel is given by

Ck =
∑

I⊆{1,2,3}
Ck
I .

where sigma denotes the Minkowski sum. In particular we wish to compute the
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0,0 

0,1 

1,0 

1,1 

Y(2i), Y(2i+1) 
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Figure 3.10: (a) a coordination channel for k = 1. (b) a coordination channel for k = 2.
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limiting intersection of these regions

C = lim
K→∞

K⋂

k=1

Ck

=
∑

I⊆{1,2,3}
lim

K→∞

K⋂

k=1

Ck
I

=
∑

I⊆{1,2,3}
CI .

Lemma 3.6.1.

1. The region C1 is the set of all R ∈ R7
+ satisfying R1 + R12 + R13 + R123 ≤ R∗

1

and RI = 0 for I ∈ {2, 3, 23},

2. The region C2 is the set of all R ∈ R7
+ satisfying R2 + R12 + R23 + R123 ≤ R∗

2

and RI = 0 for I ∈ {1, 3, 13},

3. The region C3 is the set of all R ∈ R7
+ satisfying R3 + R13 + R23 + R123 ≤ R∗

3

and RI = 0 for I ∈ {1, 2, 12},

4. The region C12 is the set of all R ∈ R7
+ satisfying R12 + R123 ≤ R∗

12 and RI = 0

for I ∈ {1, 2, 3, 13, 23},

5. The region C13 is the set of all R ∈ R7
+ satisfying R13 + R123 ≤ R∗

13 and RI = 0

for I ∈ {1, 2, 3, 12, 23},

6. The region C23 is the set of all R ∈ R7
+ satisfying R23 + R123 ≤ R∗

23 and RI = 0

for I ∈ {1, 2, 3, 12, 13},

7. The region C123 is the set of all R ∈ R7
+ satisfying R123 ≤ R∗

123 and RI = 0 for

I ∈ {1, 2, 3, 12, 13, 23}.
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Proof. The first three regions are trivial. We establish the fourth. The messages

WI are uniformly distributed on {1, . . . , 2nRI} and mutually independent for fixed

n. Denote the n-length output sequence by Y12. By Fano’s inequality we must have

H(∪I⊆{1,2,3}WI |Y12) ≤ εn with εn → 0 as n → ∞ in order for the error probability

to be made arbitrarily small. Thus by the mutual independence of the messages we

have

n(R1 + R2 + R3 + R13 + R23) = H(W1) + H(W2) + H(W13) + H(W23)

≤ H(∪I⊆{1,2,3}WI ,Y12)−H(W12,W123)

≤ H(Y12)−H(W12,W123) + εn

= H(Y12|W12,W123) + εn

Assume for simplicity that n = mk where m is an integer. We write Y12 = [Y1
12, . . . ,Y

m
12]

where Yi
12 represents the ith block of k symbols in Y. Similarly Xi represents the ith

block of k symbols in X. We also use the shorthand W ≡ {W12,W123}. We proceed

to show that H(Y12|W) is sufficiently small.

H(Y12|W) ≤
m∑

i=1

H(Yi
12|W)

= −
m∑

i=1

∑
w

P (W = w)
∑

x

P (Yi
12 = x|W = w) log P (Yi

12 = x|W = w)

From the channel definition we have

P (Yi
12 = x|W = w) =





P (Xi
1,12 = x,Xi

2,12 = x|W = w) x 6= e;

P (Xi
1,12 6= Xi

2,12|W = w) x = e.

Using this expression and the conditional independence of Xi
1,12 and Xi

2,12 given W

we have

137



Chapter 3. Fundamental Constraints on Multicast Capacity Regions

−
∑

x

P (Yi
12 = x|W = w) log P (Yi

12 = x|W = w)

= −P (Xi
1,12 6= Xi

2,12|W = w) log P (Xi
1,12 6= Xi

2,12|W = w)

−
∑

x

P (Xi
1,12 = x|W = w)P (Xi

2,12 = x|W = w) log P (Xi
1,12 = x|W = w)

−
∑

x

P (Xi
1,12 = x|W = w)P (Xi

2,12 = x|W = w) log P (Xi
2,12 = x|W = w).

The first term can be upper bounded by 1 (as −x log2 x < 1 for all x ∈ R). The

second term can also be upper bounded by 1. To see this, maximize first over the

distribution P (Xi
2,12|W = w) and then over the distribution P (Xi

1,12|W = w),

max
P (Xi

1,12|W = w)

P (Xi
2,12|W = w)

∑
x

P (Xi
1,12 = x|W = w)P (Xi

2,12 = x|W = w) log P (Xi
1,12 = x|W = w)

= max
P (Xi

1,12|W=w)

[
max

x
P (Xi

1,12 = x|W = w)
]
log

[
max

x
P (Xi

1,12 = x|W = w)
]

≤ 1

Likewise the third term can be upper bounded by 1. Thus putting this all together

we have

H(Y12|W) < 3
m∑

i=1

∑
w

P (W = w)

= 3m
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and so

R1 + R2 + R3 + R13 + R23 < 3m/n

= 3/k

Then by letting k →∞ we have RI = 0 for I ∈ {1, 2, 3, 13, 23}. From the structure of

the coordination channel it is clear that we can achieve points (R12, R123) = (R∗
12, 0)

and (R12, R123) = (0, R∗
12). By time-sharing we can achieve all points in the region

R12 + R123 ≤ R∗
12. Conversely from Fano’s inequality we have

n(R12 + R123) = H(W12) + H(W123)

≤ H(Y)

≤ log(2kR∗12 + 1)m

= n(R∗
12 + δk)

where δk → 0 as k →∞. This establishes the fourth component of the lemma. The

remaining components are established in the same manner. We omit the details.

It remains to show that the region
∑

I⊆{1,2,3} CI , corresponds to the region in equation

(3.2).

3.7 Appendix

Lemma 3.7.1. Let X1,X2 and X3 be three sets of random variables satisfying at least

one of the properties X1 ⊆ X2 ∪ X3, X2 ⊆ X1 ∪ X3 or X3 ⊆ X1 ∪ X2. Let W be a

random variable that satisfies H(W |Xi) = 0 for i = 1, 2, 3. Then

I(X1;X2;X3) ≥ H(W )
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Proof.

I(X1;X2;X3) = I(W,X1; W,X2; W,X3)

= H(W,X1) + H(W,X2) + H(W,X3)

−H(W,X1,X2)−H(W,X1,X3)−H(W,X2,X3) + H(W,X1,X2,X3)

= H(W ) + H(X1|W ) + H(X2|W ) + H(X3|W )

−H(X1,X2|W )−H(X1,X3|W )−H(X2,X3|W ) + H(X1,X2,X3|W )

= H(W ) + I(X1;X2;X3|W )

≥ H(W )

where the last step follows from lemma 3.7.4.

Lemma 3.7.2.

H(A) + H(B) + H(C) = H(A,B,C) + I(A,B; A, C; B, C) + I(A; B; C)

Proof. ITIP

Lemma 3.7.3. Let X1, . . . , Xn be a set of mutually independent r.v’s. Let X1,X2 and

X3 be three subsets of these r.v.’s with the property X1 ∩ X2 ∩ X3 = φ. Then for any

r.v. Y

H(Y |X1) + H(Y |X2) + H(Y |X3) ≥ H(Y ).
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Proof.

H(Y |X1) + H(Y |X2) + H(Y |X3)

≥ H(Y |X1,X c
2 ) + H(Y |X2,X c

3 ) + H(Y |X3,X c
1 )

= H(Y,X1,X c
2 ) + H(Y,X2,X c

3 ) + H(Y,X3,X c
1 )−H(X1,X c

2 )−H(X2,X c
3 )−H(X3,X c

1 )

= H(Y,X1,X2,X3) + I(Y,X1,X c
2 ; Y,X2,X c

3 ; Y,X3,X c
1 )

+ I(Y,X1,X2,X3; Y,X1,X2,X3; Y,X1,X2,X3)

−H(X1,X c
2 )−H(X2,X c

3 )−H(X3,X c
1 )

= 2H(Y,X1,X2,X3) + I(Y,X1,X c
2 ; Y,X2,X c

3 ; Y,X3,X c
1 )

− 2H(X1\X2 ∪ X3)− 2H(X2\X1 ∪ X3)− 2H(X3\X1 ∪ X2)

− 2H(X1 ∩ X2\X3)− 2H(X1 ∩ X3\X2)− 2H(X2 ∩ X3\X1)− 3H(X1 ∩ X2 ∩ X3)

= 2H(Y,X1,X2,X3) + I(Y,X1,X c
2 ; Y,X2,X c

3 ; Y,X3,X c
1 )

− 2H(X1\X2 ∪ X3)− 2H(X2\X1 ∪ X3)− 2H(X3\X1 ∪ X2)

− 2H(X1 ∩ X2\X3)− 2H(X1 ∩ X3\X2)− 2H(X2 ∩ X3\X1)− 2H(X1 ∩ X2 ∩ X3)

= 2H(Y,X1,X2,X3) + I(Y,X1,X c
2 ; Y,X2,X c

3 ; Y,X3,X c
1 )− 2H(X1,X2,X3)

≥ I(Y,X1,X c
2 ; Y,X2,X c

3 ; Y,X3,X c
1 )

≥ H(Y )

where the third step follows from lemma 3.7.2, the fourth from a set expansion made

possible by the mutual independence of the underlying r.v.’s X1, . . . , Xn, the fifth

from the property X1 ∩ X2 ∩ X3 = φ, the sixth by a set relationship, and the eighth

by lemma 3.7.1.

Lemma 3.7.4. Let X1,X2 and X3 be sets of random variables. If either X1 ⊆ X2∪X3,
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X2 ⊆ X1 ∪ X3 or X3 ⊆ X1 ∪ X2 then for any r.v. W ,

I(X1;X2;X3|W ) ≥ 0.

Proof. Assume without loss of generality that the first containment property X3 ⊆
X1 ∪ X2 holds. Then

I(X1,X2,X3|W )

= H(X1|W ) + H(X2|W ) + H(X3|W )

−H(X1,X2|W )−H(X1,X3|W )−H(X2,X3|W ) + H(X1,X2,X3|W )

= H(X1|W ) + H(X2|W ) + H(X3|W )−H(X1,X2|W )−H(X1,X3|W )

= I(X1;X3|W ) + I(X2;X3|W )−H(X3|W )

≥ H(X1 ∩ X3|W ) + H(X2 ∩ X3|W )−H(X1 ∩ X3,X2 ∩ X3|W )

= I(X1 ∩ X3;X2 ∩ X3|W )

≥ 0.

The second step follows from the containment property X1 ⊆ X2 ∪X3. The first term

in the fourth step follows by applying lemma 3.7.6 with W = W , X = X1, Y = X3

and Z = X1 ∩ X3, the second term by applying the same lemma with W = W ,

X = X2, Y = X3 and Z = X2 ∩ X3. The third term in the third and fourth steps are

equal by the containment property.

Lemma 3.7.5. If H(Z|X) = 0 and H(Z|Y ) = 0 then I(X; Y |W ) ≥ H(Z|W ).
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Proof.

I(X; Y |W ) = I(X, Z; Y, Z|W )

= H(X, Z|W ) + H(Y, Z|W )−H(X, Y, Z|W )

= H(Z|W ) + H(X|W,Z) + H(Z|W ) + H(Y |W,Z)−H(Z|W )−H(X,Y |W,Z)

= H(Z|W ) + I(X; Y |W,Z)

≥ H(Z|W ).

Lemma 3.7.6. If H(Z|X) = 0 and H(Z|Y ) = 0 then I(X; Y |W ) ≥ H(Z|W ).
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