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ABSTRACT
We explore natural and calm interfaces for configuring ubiq-
uitous computing environments. A natural interface should
enable the user tonamea desiredconfigurationand have
the system enact that configuration. Users should be able
to use familiar names for configurations without learning,
which implies the mapping from names to configurations is
many-to-one. Instead of users learning the environment’s
command language, the system simultaneously learns com-
mon configurations and infers the keywords that are most
salient to them. We call this the SNAC problem (Simultane-
ous Naming and Configuration). As a case study, we design
a speech interface for workspace lighting control on a large
array of individually-controllable lights. We present an ap-
proach to the SNAC problem and demonstrate its applicabil-
ity through an evaluation of our system, Illuminac.

Author Keywords
Natural Speech Interfaces, Non-negative Matrix Factoriza-
tion, Environment Control
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INTRODUCTION
The number of electronic devices in our environment is ever
increasing. While this brings greater flexibility and control,
configuring each individual device becomes ever more te-
dious. For example, in the home, to prepare the environmen-
tal state for cooking, one might want to turn the radio on and
turn it to the news, turn the volume of the speakers up since
the kitchen will be noisy, and make the kitchen lights bright.
Then, to prepare the environmental state for watching televi-
sion, one might dim the lights in the living room, turn on the
television, turn the volume of the speakers to medium, and
close the blinds. Controlling all of these devices—the lights,
the radio, the television, the speaker volume, the television,
and the blinds—to achieve a desired environmental state is
quite tedious. It is widespread best practice to use activity-

specific “configurations” of many devices rather than setting
each device individually. The user can then invoke the con-
figuration with a single action— i.e. a key press or a spoken
command.

As with any interface, an interface for controlling the envi-
ronmental state in the home should match the user’s mental
model. That is, the user should only need to specify an in-
tuitive namefor the environmental state rather than thecon-
figuration of each individual device needed to achieve the
desired state. In the home example, the user should be able
to indicate “set cooking mode” or “apply TV mode” rather
than specifying the configuration of the radio, speakers and
lights to achieve the cooking or television watching environ-
mental state.

In addition to matching the user’s mental model, we want the
interface to be “calm.” That is, the interface in a ubicomp
environment, like environment control, should be almost in-
visible except during direct (focal) interaction (as advocated
by Weiser [24]). In this context, a speech-based interface
seems like a good option. With distributed microphone tech-
nology, the physical interface all but disappears, but jumps
fluidly to the foreground when the system responds to spo-
ken input. Furthermore, speech is often considered the most
natural form of human expression and has the potential to
address certain accessibility concerns.

In the home example, the user should be able to say “I’d like
the cooking mode please”, or “Apply the mode for prepar-
ing dinner,” or similar variation, and have the system give a
similar response. They should also be able to say ”cooking
mode” or ”TV mode” and get a different response. These
terms are widely shared by people, and their repeated use
during training allows a system to learn them as well.

Note that this problem is more challenging than simply mem-
orizing command strings and the appropriate device settings.
In the latter case, the system will be extremely brittle, and
will respond only when exact training strings are provided.
By simultaneouslylearning commands and device settings,
the system becomes both more robust and better able to gen-
eralize. For instance, there will be many training strings for
watching television that include the word “TV” and many
other filler words, but which all specify a similar light and
window shade pattern. Since the system looks for common
patterns in names and configurations, the word “TV” will
be strongly present in a pattern that includes presentation
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light settings. Thus it is able to infer that “TV” is a salient
keyword for watching television vs. “please” or “now” that
may also occur in command strings. Similarly, “movie” and
“TV” will typically occur with similar patterns of devices,
and the system will be able to infer that they are aliases in
this context. We called this the SNAC problem (Simultane-
ous Naming And Configuration).

We believe this theme occurs in many ubicomp environ-
ments. For example, in the workspace the SNAC problem
arises in mapping the “semantic gap” from a configuration
command like “presentation” to control the lights, projector,
and sound devices. In a workspace with an array of indi-
vidually controllable lights instead of a bank of lighting all
controlled by one light switch, mapping from a configura-
tion command like “Turn Joe’s desk lights on please” to turn
on the lights over Joe’s desk presents the same challenge.

In this paper, we describe the design, deployment and testing
of a natural speech interface in an open-plan workspace. The
system runs live and controls 79 devices (individually con-
trollable lights) from 25 users who have both their own and
shared environment names and configurations. We make the
following contributions:

• We identify and describe an approach to the Simultaneous
Naming and Configuration problem (SNAC) — a prob-
lem which arises in natural environment control. Our ap-
proach results in a calm interface which learns intuitive
namesfor commonly usedconfigurationsof devices in a
home or work environment instead of requiring the user
to learn hard coded, static names for hard coded config-
urations of devices, or worse, hard coded names for indi-
vidual devices. (SNAC Approach section)

• We identify an appropriate learning algorithm for the si-
multaneous naming and configuration problem: non-negative
matrix factorization (NMF) (SNAC Approach Learning
Model section).

• We show the applicability of our approach to the SNAC
problem on natural speech interfaces for workspace light-
ing control by implementing and deploying a SNAC-based
system, Illuminac. With Illuminac, we see that one or two
training points is often sufficient to produce environmen-
tal states with mostly correct configurations, thereby pro-
viding good accuracy with little training (Illuminac sec-
tion).

OVERVIEW OF WORKSPACE LIGHTING CONTROL
Before we present the approach to the SNAC problem, we
first introduce the workspace lighting control domain for
which Illuminac is designed.

Many large open-plan workspaces have extensive banks of
lights controlled by just one light switch. Therefore, the
lighting control is not flexible enough to respond to occu-
pancy or daylighting. Many lights are turned on for just a
few occupants, and lights next to a window cannot be turned
off without turning off the lights away from the window.
More granular control over the lighting in large workspaces

could enable a reduction in energy consumption by allowing
unnecessary lights to be turned off. In addition to turning off
unnecessary lights, Mooreet. al.show when users are given
control over their lights, they often set the lights to a lumi-
nance level lower than the level recommended by the Char-
tered Institution of Building Services Engineers (CIBSE) with
an average lamp output 55% of the maximum [15].

Proprietary granular lighting control systems for both retrofit
and new construction have been available for some years [23].
Most recently, a low-cost industry standard has emerged:
DALI: Digital Addressable Lighting Interface [7]– is a bus
system for individual light control which has been adopted
by most lighting manufacturers, and deployed in major in-
stallations (e.g. Heathrow terminal 5). It is an increasingly
popular option in energy-conscious building design. How-
ever, the increase in flexibility implies an increase in control
complexity. The current state-of-the-art in complex light-
ing control is panels of wall buttons with (often cryptic)
scene names, or touch screens with complex menu hierar-
chies. Neither of these approaches address the issue of light-
ing in reconfigurable workspaces, where many more con-
figurations are possible. There is clearly a need for more
flexible, intuitive and scalable lighting control.

Intelligent systems for controlling workspace lights that adapt
to daylight from windows and occupancy levels are being
developed using flexible lighting control. At the same time,
there is still a need for user interfaces that allow users to
directly control flexible workspace lights and override such
intelligent systems when appropriate. Escuyeret. al. found
users didn’t mind the occasional error in an automatic light-
ing control system as long as they had an easy manual way
to correct the lighting scene [8]. Love notes that automatic
controls were commonly disabled by users [13]. Whether
it’s in conjunction with an intelligent system, or on it’s own,
a manual control for flexible lighting is necessary.

We propose a speech-based interface for lighting control in
shared workspaces, as they are natural and allow for a calm
interface. To do so, users should be able to customize the
system to work with names of lighting scenes that are nat-
ural to them. For example, based on our experience with
Illuminac, we found that one user says “turn on my lights”
to turn on the two lights over her desk, while another user
says “all on” to turn on the four lights around her desk.

As alluded to earlier, to support customized speech com-
mands for personalized lighting configuration, we must ad-
dress the SNAC problem. Specifically, we need to discover
the lighting scenes commonly used in the space and the names
for those lighting scenes. A lighting scene is a set of lights
and an intensity setting for each of the lights in the set. A
name for a lighting scene is a set of words. For example, a
user might have two intensity settings for the three lights
over his desk—one for desk work and one for computer
work. He might say ”Please turn Jason’s reading lights on”
or ”can I get Jason’s computer lights on?”. The desk work
lighting scene would be the three lights over Jason’s desk
set to 100% intensity and the computer lighting scene would
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be the three lights over his desk set to 50% intensity. The
name of the desk work lighting scene might be{Jason’s,
reading} and the name of the computer lighting scene might
be{Jason’s, computer}.

In our approach to the SNAC problem we use a learning-
-based system that is trained on two kinds of data from the
users simultaneously: the commands and the configurations
(lighting scenes). While the details of the design and evalu-
ation of Illuminac are discussed in the subsequent sections,
in the remainder of this section, we sketch how the user in-
teracts with our system.

To add a command and lighting scene to Illuminac, users
train the system by first recording their command. Then,
the user demonstrates the desired lighting configuration and
identifies herself. The novel aspect of our system is that
rather than simply storing this mapping from command to
configuration, we combine the recorded speech command
and lighting configuration into a common representation to
provide as input for a standard machine learning algorithm.
Intuitively, the system uses the learning algorithm to identify
structure across the space of command-configuration pairs,
not just the space of commands. Once the user has trained
the system on a few examples, the user can say her com-
mand into any of the microphones in the room, and the sys-
tem changes the lighting scene by applying the trained model
to the user’s command. Because the model is trained on
commands and configurations specific to the workspace, we
expect to be able to perform reasonable lighting actions with
less command training. For example, when a visitor who
has never provided training input to the system comes into
the lab, she can try her command and potentially get reason-
able behavior because regular users may have already trained
the system on similar commands. Of course, if the resulting
behavior is undesired, she can manually change the lighting
scene, thereby giving the system another training data point
suited to her.

APPROACH TO THE SNAC PROBLEM
As we described above, the challenge in supporting cus-
tomized commands for configuration tasks is not only dis-
covering how users give commands. The challenge is in si-
multaneously discovering (1) the commands natural to the
users, (2) the configurations naturally used in the domain,
and (3) the mapping between the commands and configura-
tions.

Traditional Approach to Designing Speech Interfaces
Discovering the names naturally used by users is a common
problem in the design of speech interfaces. Speech inter-
face designers commonly use the wizard-of-Oz data collec-
tion technique [6] to gather formative data including sample
utterances, which helps inform the design of the speech in-
terface toward supporting more natural speech input. The
wizard-of-Oz data collection technique allows more realis-
tic sample usage data to be collected before a prototype of
the system is ready. A human (called the wizard) acts as the
speech interface by responding to the user’s commands. The
wizard often communicates with the user through a speech

synthesizer to make the user think she is using a working
system and invoke more realistic responses.

Simultaneously Discovering Naming and Configuration
For workspace lighting control, we not only need to dis-
cover the names users use to refer to lighting scenes, but
also the configurations of lights that achieve the named light-
ing scene. Thus, in addition to collecting sample utterances
from users, we also collect sample configurations for those
utterances.

Since the configurations are not knowna priori, a wizard is
not able to accurately respond to a user’s commands. In fact,
if a wizard is used, the users will alter their commands so
that the wizard will understand the configurations to which
they are referring. We discovered this effect during an early
phase of data collection in which users sent messages to a
wizard asking her to change the lighting scene. Thus, in our
approach, users train the system directly by demonstrating
their configurations in addition to recording their commands.

In order to make the system both more robust to small vari-
ances in the commands and better able to generalize, we use
a supervised learning algorithm. The learning algorithm is
trained on data provided by the users that includes both the
users’ personalized commands and their customized config-
urations.

This approach also allows an interface to support more nat-
ural interaction through customized commands and configu-
rations in a new workspace or with a new set of users without
having to have a designer perform the customization.

LEARNING MODEL
We select a learning algorithm that allows factors to overlap.
This property is important in our problem because both con-
figurations and commands can overlap. In the home exam-
ple, a cooking environmental state and a television watching
environmental state could both set the speaker volume up.
For workspace lighting, the space is shared and users who
sit next to each other often have overlapping sets of lights
in their lighting scenes. The names of the configurations
can also overlap. In the workspace lighting control example,
many users refer to their lights as “my lights.” We disam-
biguate such similar names with the speaker’s identification.

Non-negative matrix factorization (NMF), a standard learn-
ing algorithm, finds non-orthogonal or possibly overlapping,
factors in the training data. Each data point (a command-
configuration pair) can be explained by an additive combi-
nation of the factors. NMF is more appropriate than a clus-
tering learning algorithm such ask-means that would assign
a light to one cluster, not allowing it to be part of multiple
clusters.

Since we need to learn the commands, configurations, and
the mapping, we train our model on command-configuration
pairs. That is, we train the learning model on two kinds of
data simultaneously: the commands and the light configura-
tions. To record a new training point, users provide both the
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Figure 1. Picture and floor plan of the workspace for which we have
implemented a natural speech interface for the lighting control. Each of
the 79 individually-controllable lights as well as the eight microphones
are shown.

command and the configuration, specifically they

1. record their command using a microphone and
2. demonstrate the lighting scene named by their command

by manually changing the lighting scene (using a web-
based graphical user interface).

By collecting both kinds of data simultaneously, we are col-
lecting data about the commands that are natural to users,
the configurations that naturally occur in the target domain,
and the ground truth mapping between the two.

ILLUMINAC
We designed and deployed a natural speech interface for
workspace lighting control, Illuminac, to show the applica-
bility of our approach to the SNAC problem. In this sec-
tion, we describe the workspace for which Illuminac was
designed, outline the iterative design steps used in the de-
sign process, explain the design of the system, discuss the
evaluation of the system, and present the results from the
evaluation.

Workspace Details
Illuminac was designed for and is deployed in a 2,300 square
foot open-plan shared workspace with about twenty-five reg-
ular occupants (nineteen of whom have permanent desks in
the workspace; the rest have permanent desks in the adjacent
room). The workspace has six graded-awareness cubicles
(i.e., cubicles with walls of varying heights from full height
to desk height) that occupy half the room. The other half is
a multi-use space for meetings, presentations, ad-hoc team
meetings or individual work.

Figure 2. Web-based graphical user interface used to manually config-
ure the array of lights in the workspace.

The multi-use space has a presentation screen, a “soft space”
with a couch and chairs, and a set of four computers for vis-
itors of the lab to use. There is also a tool shop in one corner
of the room. Figure 1 shows a picture and the floor plan of
the room. The room has 79 individually-controllable com-
pact fluorescent lights mounted overhead. The intensity of
each of the lights can be controlled over the network via a
web interface. All occupants of the lab have access to the
web interface (Figure 2). They can access it from their per-
sonal computers or from one of the public machines. The
public machine next to the entrance (labeled “Main Public
Machine” in Figure 1) always has the web interface open.

There are eight desk microphones throughout the room to
allow easier access to the lighting control system. There is
one microphone in each cubicle, one at the desk in the cor-
ner, and one at the main public machine where the graphical
interface to the lights is always open in a browser window.
Each microphone has a clearly labeled on/off switch so that
residents may control what is and is not recorded.

Iterative Design Steps
In the design of our natural speech lighting control system,
we followed an iterative design process beginning with a
text-based wizard-of-Oz study, followed by a training data
collection study, and finally a deployment of the live system.

Text-Based Wizard-of-Oz Study
We began our design of Illuminac with a low-fidelity wizard-
of-Oz study to better understand the lighting control domain
including the kinds of lighting scenes used in the space and
the types of commands used to refer to the lighting scenes.
By low-fidelity, we mean natural language text input instead
of speech input. Participants were asked to send the wiz-
ard (a researcher in the lab) an instant message whenever
they wanted to change the lighting scene. The wizard would
change the lighting scene using the web interface based on
the participant’s message. If the wizard was not available
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to change the lighting scene, the participants were asked to
type the message they would have sent to the wizard into the
web interface and then change the lighting scene themselves
with the web interface. This way data could be collected
even if the wizard was not at his desk. The GUI interface
was similar to the one in Figure 2, but it also included a text
box for entering the messages.

We collected three weeks of data including 230 command-
configuration pairs from ten participants who were regular
occupants of the space.

This study confirmed our hypothesis that the lighting config-
urations are sometimes overlapping and are not all disjoint
sets of lights. After the formal study concluded, some partic-
ipants expressed the desire to continue being able to ask the
wizard to change the lighting scene, but instead of sending
instant messages, they wanted to ask the wizard with a spo-
ken command. This provided anecdotal evidence that speech
would be a good fit for lighting control in the space.

Formative Training Data Collection
After the low-fidelity wizard-of-Oz study, we collected two
weeks of high fidelity training data to design and tune the
learning algorithm, which estimates lighting scenes given a
spoken command. The study included sixteen participants
who were regular occupants of the space. Each participant
was asked to record a command and demonstrate the desired
system response as if they were training the system to un-
derstand their personalized commands. They were asked to
complete the following three steps each time they wanted to
change the lighting scene:

1. say their command to change the lighting scene;
2. type their name into the text box on the web page; and
3. change the lighting scene with the web interface.

We did not tell them when or how to change the lighting
scene in the lab. The participants could use any of the eight
microphones throughout the space to record their command.
Then they used the web interface to demonstrate their de-
sired change in the lighting scene. We followed the data col-
lection with individual interviews and asked the participants
to reflect on their lighting control preferences and their ex-
perience with the study.

We collected 120 command-configuration pairs. For each
pair, we collected the user’s name, the audio clip of the com-
mand and the intensity values before and after the command.
Each audio clip was transcribed manually as well as with an
automatic speech recognizer. The complete vocabulary in-
cluded about 350 unigrams and bigrams (i.e., single words
and two-word phrases).

This high-fidelity formative training data once again demon-
strated both the configurations and commands are overlap-
ping, which strongly suggests the selection of NMF as the
basis for the learning algorithm. This data directly informed
the design of the learning algorithm, which in turn enabled
us to build and deploy a live system.

2
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Figure 3. The four steps users follow in the training mode to train the
system on their personalized command and lighting scene.

System Design
Illuminac has two modes: a training mode where users train
the system on their personalized lighting configurations and
a running mode where users can use their personalized com-
mands to change the lighting scene. The system is in run-
ning mode by default meaning it is ready to process a com-
mand and change the lighting scene. To switch to the train-
ing mode, the user uses the “Start Training” button on the
web-based graphical user interface (highlighted in Figure 2).

Training Mode
In the training mode, users complete the following four steps
to add a training point (shown in Figure 3):

1. record her command using one of the microphones around
the room (prefaced by her name to simulate speaker iden-
tification);

2. correct any recognition errors in the automatic speech recog-
nition transcript using the web-based graphical user inter-
face;

3. demonstrate her desired lighting scene using the web-based
graphical user interface to manually set the lighting con-
figuration; and

4. verify the command and configuration are correct before
saving the training point.

After the user adds a new training point, the system retrains
the model on the old training data plus the new data point. It
also adds the command to the speech recognition language
model to increase the recognition accuracy for the command
the next time it is used. The new model is trained and ready
to be used in the running mode in just a few seconds. Even
though we are not using an online training algorithm, we can
retrain the model fast enough when we get a new training
point that users can think of the system as an online training
system.
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Running Mode
In the running mode, a user can use one of her speech com-
mands to change the lighting scene. To do so, the user says
her command into any one of the microphones around the
room. The system transcribes the command, applies the
trained model to the transcript, and changes the lighting scene
according to the estimated lighting scene.

If the estimated lighting scene is incorrect, the user can say
“undo,” “cancel,” or “wrong” to undo the last lighting scene
change.

While the system is transcribing a command, the text “pro-
cessing ...” is displayed in the GUI and an LED next to each
microphone lights up (typically takes about two seconds).
This lets the user know the system “heard” them and is process-
ing the command.

Learning Model
The system uses a learning algorithm, namely least-squares
non-negative matrix factorization (NMF) to estimate the new
lighting scene given a command.

NMF has been shown to work well for pure text clustering,
as well as image segmentation [11]. In our problem, we have
both text (the commands), as well as an image (the grid of
lights).

As the name suggests, NMF imposes a non-negative con-
straint on the data. The commands are naturally represented
with non-negative values in a term-frequency vector. The
lighting scene is also naturally represented with non-negative
values for the intensity of each light.

The NMF algorithm is fast enough to allow us to retrain the
model between uses. The algorithm runs in 0.89 seconds on
two weeks of training data.

Given the similarity of our data with text and images, the
non-orthogonal factors in our data, and the naturally non-
negative values in our data representation, we selected NMF
to learn which lights should change given a new command
and the current lighting scene.

Data Representation
Commands
We represent the commands (tagged with the user’s name)
with a term-frequency vector. A term is a word (unigram) or
pair of consecutive words (bigram) that appears in any of the
commands, and each term is represented with an entry in the
vector. Thus the length of the vector is the number of unique
unigrams or bigrams in all of the commands. The value of
each entry in the vector is the number of times the unigram
or bigram appears in the command. We include bigrams to
be able to capture phrases, such as “soft space,” “kitchen
area,” or “public machines.”

Lighting Scene
We represent the lighting scene as a vector of intensity val-
ues: one for each light. The intensity values that did not

change when the user demonstrated the new lighting scene
are set to zero to allow the algorithm to learn to which lights
a command refers, as well as to what intensity to set the
lights.

Users do not train the system on “off” commands, instead
they are derived from the “on” commands. This is because
we want to make sure the lights are set to intensity zero when
they are turned off, not just a low intensity. Based on data
from the formative data collection studies, the words “off”
or “out” are added to the “on” command to derive the “off”
command. Note, “on” commands do not need to have the
word “on” in them, but to turn the lights off, the command
must have the word “off” or “out” in it (which was always
true in our sample data).

Application of NMF
Our trained model is a set of orthogonal, possibly overlap-
ping factors. To get the factors that describe our training
data, we use NMF to factorize our data into two matrices,
one of which describes the factors in our data.

NMF is an algorithm that finds a positive factorization of the
given matrix [12, 11]:

X ≈ UVT

whereX represents the training data,VT represents the fac-
tors in our data, andU tells the strength of each factor in
each of the data points.

Each row inX is a training point (i.e., a command-config-
uration pair). Thus each row vector is comprised of the com-
mand term-frequency vector concatenated with the lighting
configuration vector. The matrixX has dimensionsm × n
wherem is the number of training points in the model andn
is the length of the term-frequency vectors (q) plus the num-
ber of lights (p). The matrixVT has dimensionsk×n where
k is the number of factors. We explain shortly how we chose
k in the system. Each row inVT represents one of the fac-
tors. The matrixU has dimensionsm × k. The ith row in
U gives the coefficients to the additive sum of the factors to
describe theith training point.

Selecting the Number of Factors (k)
A good factorization should explain the data with the small-
est number of factors. We used the formative training data
to calculate the accuracy rate for a large range ofk values
(between 1 and 200) and plotted the accuracy as a function
of k. We chose the value ofk where increasingk had negli-
gible improvement in accuracy (i.e., the elbow of the curve),
which we found to be 32.

Lighting Configuration Estimation
To estimate a lighting configuration given a new command,
we use NMF again to find the factors from our training data
that are present in the new command. Figure 4 depicts how
to apply the trained model to a new command. As described
above, our trained model is a matrix that represents the fac-
tors in the training dataVT . Each factor has a “command”
component and a “configuration” component. The command
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Train Model: 
Factorize training data (X) into matrices U and V using NMF

×≈configurationscommands

X

m × n

U

m × k

VT

configurationscommands

k × n

Calculate factor coefficients (u’run):
Given a new command (x’cmd)
Use NMF, holding VT

cmd and xcmd constant

≈ ×command

x’cmd

1 × q

u’run

1 × k
command

VT
cmd

k × q

Estimate new lighting scene (x’config):
Multiply factor coefficients (u’run) by factors (Vconfig)

= ×

u’run

1 × k
configuration

VT
config

k × p

configuration

x’config

1 × p

Figure 4. Given a new command, we use the factors matrix from our
training data and NMF to estimate the new lighting configuration. In
each step, matrices that are given are in black, and matrices that we
calculate are in gray.

components are in the left half ofVT (columns 1 toq in
VT ), and the configuration components are in the right half
of VT (columnsq + 1 to n in VT ). We will call these
matricesVT

cmd andVT
config respectively.

VT =
[
VT

cmd ,VT
config

]
The matrix we need to factorize contains the term-frequency
vector for the new command, which is only one row. We run
NMF on the command term-frequency vector

x′
cmd ≈ u′

run ×VT
cmd

(x′
cmd has dimensions1× q, u′

run , has dimensions1× k),
holding VT

cmd constant to getu′
run , which tells us which

factors are present in the new command. We can then multi-
ply u′

run by the configurations component of the factors to
get the lighting configuration vector:

x′
config = u′

run ×VT
config

The final step in estimating the new lighting configuration
is to estimate which intensity values to change and to what
value to change them. We use two NMF models to do so. To
estimate which intensity values to change, we train a model
on a data matrix where the values in the configuration vec-
tors are boolean values that indicate which lights are part of a
lighting configuration. To estimate to what intensity value to
set a light, we use the original data matrix described above.
When we apply these two models to a new command, we get
two parts of the lighting configuration estimate:x′

configbool

andx′
config . Thex′

configbool vector has values between 0
and 1. We perform cross validation on the formative train-
ing data to select a threshold value to convert the values to

boolean values. We change the intensity value for each light
that has a one inx′

configbool to the estimated intensity value
for that light inx′

config . In other words, we only change the
intensities of the lights involved in the lighting scene referred
to in the new command.

Automatic Speech Recognition
We are using Carnegie Mellon’s Sphinx 3.5 speech recog-
nizer [19] to transcribe the commands. Sphinx 3.5 is a state-
of-the-art fully-continuous acoustic model recognizer, which
is open for experimental use.

We trained an acoustic model on the ICSI Meeting Cor-
pus [9], which features all the imperfections of natural speech:
pauses, um’s and ah’s, truncated words, grammar errors, sen-
tence and phrase restarts, etc. It also features a variety of na-
tionalities and accents. This acoustic model is a better match
for our user base than the publicly available acoustic models
(HUB4, WSJ, RM1), which feature artificially clean speech
being read from transcripts.

The language model is trained on the commands from the
training data. The recognizer runs fast enough to transcribe
the commands almost in real-time (it runs in 1.2x real time
on a 3 GHz dual processor machine with 1.5 GB of RAM).
As described above, we use a status LED to let users know
the system “heard” them while the recognizer is processing
the command.

Evaluation

Study Description
We deployed Iluminac with ten of the twenty five regular
occupants of the lab for one week. The system ran with
live speech recognition on the audio from the microphones
around the room, live training mode where the model was re-
trained after each training point was collected, and live run-
ning mode which applied a lighting scene when a user spoke
a command into one of the microphones. We started with no
training data and asked the participants to train the system
on their commands again1. Participants were instructed to
use the system whenever they wanted to change the lighting
scene. The first time they used the system for a particular
command they were asked to record a training data point.
Subsequent times they were asked to test their commands,
but recording more training points if the system did not re-
spond as expected. When the participants tested a new com-
mand they recorded the accuracy of the results on a paper
log next to the microphone. They recorded the accuracy of
the system response by circling one of the following options:

4 3 2 1 0
Correct Partially

Correct
Some Correct,
Some Wrong

Nothing
Happened

Wrong

At the end of the study, the participants were asked to com-
plete an anonymous web questionnaire about their experi-
ences with the system.

1Many of the participants in this study also participated in previous
studies and had already provided training points.
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Training and Test Data Per Command Type

0 2 4 6 8 10 12 14 16

Kevin: dim my desk lamp
Chris: window lights off

Chris: checkers
Joe: presentation mode

Link: turn on marcus's lights
Link: turn on the lights over the

Wendy: cube and gertrude on
Link: turn on all of Chris's lights

Chris: south east cubicle lights on
Link: turn on all the lights
Joe: experiment lights on

Jaime: team design research on
Link: turn on my lights please

Marcus: turn on my lights
Pristine: all on

Chris: all on
Jack: my lights on

Brian: turn my lights on

Number of Data Points

training
testing

Figure 5. The number of training and test data points collected for each
group of similar commands. The command group labels are represen-
tative commands recorded by the participants.

Data Collected
We collected 43 training points and 81 test points from the
ten participants. For each training point, we collected the
state of the lighting scene before and after the training ses-
sion, as well as the command (transcribed using the auto-
matic speech recognizer and corrected by the participant).
For each test point, we collected the state of the lighting
scene before and after the system changed the lighting scene,
the command that the participant provided using one of the
microphones, and the participant’s evaluation of the system’s
response. Figure 5 shows the number of data points collected
for each group of similar commands.

Study Results and Discussion
To analyze the results we manually assigned each training
and testing point to a group of similar commands. For ex-
ample all of the commands Jack used to refer to the lights
over his desk were put into one group. Figure 5 lists a repre-
sentative command for each group of similar commands.

The average testing score plateaued between “correct” and
“partially correct” when commands were tested with 1, 2,
or 3 training points (see Figure 6). We believe these results
could be improved by changing the training GUI to alleviate
a common confusion about which lights were being saved
as a lighting scene. The interface only recorded the inten-
sity values that changed during the training mode, but users
thought it was saving the intensity values for each light se-
lected. As a result some of the training data was not correct,
which we believe impacted the accuracy results negatively.

Although the average score is closer to “partially correct”
than “correct”, when asked in the post questionnaire, “After
the study is over, would you like to continue using the sys-
tem?” eight out of ten participants respondedYes, and two
respondedMaybe—the options wereYes, Maybeand No.
One of the participants who respondedMaybesaid the mi-
crophone was too far away, and he was too lazy to get to a
microphone, which is a limitation in our experimental setup
that could be overcome in a commercial deployment. Right
now each cubicle with three people shares one microphone,

Average Lighting Scene Change Score vs. Training Length
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Figure 6. The average test point score as reported by the participants
versus the training length for the specific type of command when the
test point was recorded

which could be remedied by giving each user a microphone
at their desk, making the microphone convenient to access.
The other participant who respondedMaybetends to sit in
the public area most of the time where the furniture moves
around quite a bit, and he does not often use the same set
of lights. In such an open space, a location-based speech
approach would likely work better where users could say
“lights on here.” Such a location based approach could be
implemented with distributed microphone array technology
overhead, though such technology would not be desirable
in the cubicle area for privacy reasons. With overhead mi-
crophones, users cannot control what is being recorded, but
with desk microphones, users have the power to turn the mi-
crophone on their desk off.

When asked, “How many training data points would you be
willing to provide to be able to use speech to control the
lights” participants responded with an average of 3.9 (min
2, max 5). On average participants recorded 1.9 training
points per command group during the study. Since the aver-
age number of training points participants would be willing
to provide is higher than the average number they recorded
during a formal study, we believe the performance of the sys-
tem outside a formal study would be at least similar to the
performance during the study.

RELATED WORK
We situate our work in the literature related to designing
natural speech interfaces, existing smart home and home IT
projects, workspace lighting control, multimodal interfaces,
and previous applications of factorization algorithms such as
NMF.

Natural Speech Interface Design
In speech interfaces where all of the objects that can be re-
ferred to are knowna priori, the designer can use the wizard-
of-Oz technique [6] to support names for those objects that
are natural to the users. For example, in the RoomLine [3]
system, a speech interface that allows users to reserve rooms
over the phone, all of the rooms, the sizes of the room, and
the equipment available in the rooms were known at the
time the speech interface was designed. Such speech inter-
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faces can be grammar-based like many successful commer-
cial systems (e.g., BeVocal [18], Tellme [17]), they can be
statistical language model-based [4], or they can use a com-
bination of both [21]. In our system, we do not know the
objects (configurations)a priori, but we still want to be able
to support names that are natural to the users.

Smart Homes and Home IT
Controlling lighting and other devices in the home is not
new, nor is using speech to do so, but we believe using speech
to control configurations of devices is novel. Quesada et al.
address the interface challenge in the home machine envi-
ronment [20] with a speech interface for lighting control in
the home, but each light is controlled with individual com-
mands, and the speech interface is designed specifically for
the particular set of lights. Mozer et. al. [16] have stud-
ied predictive light automation, which as mentioned above,
could be combined with a speech interface for situations
when the predictive light automation does not do a good job
with the prediction. Juster and Roy use situated speech and
gestures to control a robotic chandelier, Elvis [10]. Their
work focuses on how to move the chandelier arms to achieve
a desired lighting scene given input from photo sensors. They
focus less on the speech interface to the chandelier, and it is
designed to support a static set of lighting configurations.
We focus on the speech interface and supporting customized
commands and configurations for each new set of devices
without having to have a designer perform the customiza-
tion.

Workspace Lighting Control
Commercial as well as research intelligent workspace light-
ing control systems exist, but they do not address the inter-
face for manual control when users wish to override the sys-
tem. Much of the work focuses on figuring out to what in-
tensity to set the lights based on a variety of constraints, such
as the amount of daylight present, the user’s preferences and
the building manager’s requirements [25, 22]. Whether a
manual interface is used in conjunction with an intelligent
system (when the users want to override the system) [8] or
a manual interface is used instead of an intelligent system
(some users disable intelligent systems [13]), the manual in-
terface should be natural and easy to use. If it is not easy
to use, users will be less likely to use it, either resulting in
a waste of energy (the default intensity if too high), or a po-
tential decrease in productivity (the default intensity is too
low). In Illuminac, our focus is on designing a natural, easy
to use manual interface for the lighting control. Illuminac
can be used on it’s own, or in conjunction with an intelligent
lighting control system.

Multimodal Interfaces
It is well established that speech and gesture work well to-
gether [14], and many of our users mentioned they would
like to be able to point at the lights for which they would like
to turn on. Wilson’s work on the XWand [26] demonstrates
such a system where the user can control different devices
by pointing at the device and saying a predetermined utter-
ance. The position of the wand is determined with the use
of at least two calibrated cameras and a blinking LED at the

end of the wand. The speech recognition system uses a sim-
ple command and control style grammar. Wilson acknowl-
edges “while speech clearly has enough expressive power to
make the wanted unnecessary, relying on speech alone can
be difficult in practice.” We aim to address this difficulty.
Wilson also acknowledges “the acceptance of the XWand or
a related device is limited by the limitations imposed by the
installation and calibration of the cameras.” The authors ad-
dress this limitation by trying a wand with audio feedback
to aid in pointing tasks without cameras available to track
the position of the wand. They find it is possible without
the cameras, but the pointing takes more thought on the part
of the user and requires the targets be more widely spaced,
which is not the case in our workspace. Our proposed ap-
proach could be combined with the XWand to develop a
multimodal gesture and speech interface for configuration
tasks where the configurations are not able to be predeter-
mined and can also be used in cases where the calibration
and installation of cameras is not possible.

Applications of Matrix Factorization
In recent years, alternative factorization methods such as
least-squares NMF (Non-negative Matrix Factorization) have
found favor over singular value decomposition (SVD) in cases
where patterns are not orthogonal. This choice is especially
true when the patterns appear “non-negatively,” which is in-
deed the case for both light intensities and for word frequen-
cies in user commands. Thus, NMF seems like a natural
candidate for SNAC analysis. Furthermore, NMF has been
shown to be superior to SVD for pure text clustering [11] or
for image segmentation [11], which is similar to our light
grouping problem. Barnard et al. match words and pic-
tures [1] using an “aspect” probabilistic model, which is an-
other type of factor model. Other candidate factor models
include Latent Dirichlet Analysis (LDA) [2] and GaP [5].
These methods add prior probabilities to the factors and use
likelihood measures (rather than least squares) to fit the orig-
inal data. We did not use these methods because (i) when
there is enough training data, the factor priors have little
or no effect and (ii) least-squares NMF has been shown to
produce better (more independent) factors compared to KL-
divergence (likelihood) fitting methods [11].

CONCLUSION AND FUTURE WORK
This paper introduced an approach to the challenge of si-
multaneously learning names and the configurations named
in natural speech interfaces for environment and device con-
trol. We demonstrated this challenge and introduced a so-
lution in the domain of workspace lighting control. Our
system allows users to have customized “light switches” for
their lighting scene configurations through the use of natural
language speech commands. The users train the system not
only on their personalized commands but also on the config-
urations to which their commands refer.

Results from the live deployment of our natural speech in-
terface for workspace lighting control are promising, and we
look forward to seeing how well our approach works in other
workspaces, especially ones foreign to the authors. In ad-
dition to other workspaces, we would like to evaluate our
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approach with other devices in the workspace in addition to
lights such as projectors, and speakers. In other ubicomp do-
mains, such as home environment control and mobile device
configuration.
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