Compositionality in Deterministic Real-Time
Embedded Systems

Slobodan Matic

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-12
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-12.html

February 11, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compositionality in Deterministic Real-Time Embedded Systems

by
Slobodan Matic

B.S. (University of Belgrade)

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in
Engineering - Electrical Engineering and Computer Sciences
in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Thomas A. Henzinger, Chair
Professor Edward A. Lee
Professor Raja Sengupta

Spring 2008

The dissertation of Slobodan Matic is approved.

Chair Date

Date

Date

University of California, Berkeley

Spring 2008

Abstract

Compositionality in Deterministic Real-Time Embedded Systems

by

Slobodan Matic

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Thomas A. Henzinger, Chair

Many computing applications, especially those in safety critical embedded systems,
require highly predictable timing properties. However, time is often not present in the
prevailing computing and networking abstractions. In fact, most advances in computer
architecture, software, and networking favor average-case performance over timing pre-
dictability. This thesis studies several methods for the design of concurrent and/or dis-
tributed embedded systems with precise timing guarantees. The focus is on flexible and
compositional methods for programming and verification of the timing properties. The

presented methods together with related formalisms cover two levels of design:

- Programming language/model level. We propose the distributed variant of Giotto, a
coordination programming language with an explicit temporal semantics - the logical ex-
ecution time (LET) semantics. The LET of a task is an interval of time that specifies the
time instants at which task inputs and outputs become available (task release and termi-
nation instants). The LET of a task is always non-zero. This allows us to communicate
values across the network without changing the timing information of the task, and without

introducing nondeterminism. We show how this methodology supports distributed code

generation for distributed real-time systems. The method gives up some performance in
favor of composability and predictability. We characterize the tradeoff by comparing the

LET semantics with the semantics used in Simulink.

- Abstract task graph level. We study interface-based design and verification of appli-
cations represented with task graphs. We consider task sequence graphs with general event
models, and cyclic graphs with periodic event models with jitter and phase. Here an inter-
face of a component exposes time and resource constraints of the component. Together with
interfaces we formally define interface composition operations and the refinement relation.
For efficient and flexible composability checking two properties are important: incremen-
tal design and independent refinement. According to the incremental design property the
composition of interfaces can be performed in any order, even if interfaces for some com-
ponents are not known. The refinement relation is defined such that in a design we can
always substitute a refined interface for an abstract one. We show that the framework sup-
ports independent refinement, i.e., the refinement relation is preserved under composition

operations.

Professor Thomas A. Henzinger
Dissertation Committee Chair

Contents

Contents

List of Figures

List of Tables
Acknowledgements

1 Introduction

1.1 Motivation

1.2 Composable Code Generation for Distributed Systems

1.3 Component Resource Abstraction and Tradeoffs

1.4 Interface-based Formalisms for Real-time Components

1.5 Thesis Organization and Contributions

2 Composable Code Generation for Distributed Giotto

2.1 Introduction
2.2 GiottoLanguage
2.3 Composable Design withGiotto
24 TiminglInterfaces
2.5 Implementation
2.6 Compositional SCCAnalysis
2.6.1 Giotto-Generated Distributed SCC
2.6.2 Formal Distributed SCC Semantics

2.6.3 Interface Compliance and Time Safety

2.6.4 Distributed Code Generation Correctness

2.7 Conclusion

3 Component Resource Abstraction and Tradeoffs

3.1 Introduction

3.2 Multirate Task Programs

3.3 Task Group Abstraction
3.3.1 Independent Task Set Abstraction

3.3.2 Intragroup Task Precedence Abstraction

3.4 Distributed Task Precedence Abstraction
3.5 Hierarchical Intergroup Abstraction

3.6 Conclusion,

4 Interface Formalism for Real-time Components

4.1 Introduction
4.2 Real-TimeComponents
421 ResourceModel
4.2.2 Task Group Composition
4.3 Task Sequencelnterfaces
4.3.1 Informal Description
4.3.2 InterfaceAlgebra L.
4.4 Real-Time Component-Based Design
441 IncrementalDesign.
4.4.2 Independent Refinement
45 TaskGraphinterfaces
451 ComponentModel
452 Interface
45.3 InterfaceAlgebra
4.5.4 Interface Algebra Properties

46 Conclusion

5 Conclusions and Outlook

Bibliography 143

List

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

3.9
3.10

of Figures

Audio mixer Giotto progrands 4 25
Data dependency graph forthe progr&m 25
Additional mode for the Giotto progratd, 27
E code blocks forthe progratd, oL 28
S code blocks forthe progra@y L. 29
E code modules for the progra@y compiled by Alg. 1 36
Timing interface forthe prograd, 38
S code modules fortheprograéfy 40
Cycle of the communication protocol [19] 41
Graph related t®, ;, for G4 with additional moden, 50

RTW: fast to slow data transfer(a) task graph(b) task and signal timeline

form =2 62
RTW: slow to fast data transfer(a) task graph(b) task and signal timeline
form=2 e 62
LET data transfer {a) task graph;(b) task and signal timeline fop; =

D22 =D o 63
Supply and demand bound functions oL L.
Hierarchical scheduling framework 67
(a) Task graph{b) RTW schedule{c) LET scheduleRrR schedule) 69
Abstraction functions for Fig. 3@6) 70

Relative difference betweekrw and LET semantics w.r.t. latency and
composability 70

Teleconferencing applicationtaskgraph

Example form = 2 resources(a) task graph{b) resource partiton 74

3.11 Resource partitionforProp. 6. 75

3.12 LET abstraction functionsforFig.3.9, 76
3.13 Video stream hierarchical abstraction. 77
3.14 LET abstraction functionsforFig.3.13 80
3.15 (a) Instance ofR = (1,0.776); (b) L: Go, D: Gy; (¢) L: 11, D: t4; (d) L:

tiz, D: t1o (L=light, D=dark) 83

3.16 Intergroup precedence abstraction examplegifidProp. 8(2);(b) Prop. 9(2) 83
3.17 (a) Component abstraction function for the hierarchical program in

Fig.3.16a); (b) Detailed view 84
4.1 (a)Taskgraph; (b)) Component 91
4.2 Capacity functionsforTab. 4.1 95
4.3 Interface for singletask sequence L. 97
4.4 Interface for multiple task sequences 97
4.5 Interface composition 98
4.6 Interfaceconnection. 98
4.7 Bursty functions for,t, sequence 99
4.8 (a) F, = F193®{ms,mas}; (b) Fp = (Fra|| F3)®{ms, ms}; (¢) F. =

(F1||Fs|| F3)®{ms, mas} -« o o o o e e e e 100
4.9 Capacity functionsfromTab. 4.2 101
820 (FAlFBIFC)0aB -« o o o e e e e e 108
4.11 Levels of service dfF 4| Fg)0ap and(Fa||Fs||Fc)0as - - -« o o o o .. 109
B.12 (Pl FollFe)0ap - - o oo oo e e e 110
4.13 Levels of service ofF, || F})0u and(Fu || Fyl| Fo)Oup -+« « o o o o o o v o 110
4.14 Capacity functions foF|, ", F},Fy 112
415 FU||Fy S F o 112
4.16 Periodic event model with jitterandphase 115
4.17 Simple graph components with porteventmodels 116
4.18 Interface composition operation forgraphs 120
4.19 Interface connection operationforgraphs 121
4.20 Interface join operationforgraphs 123
4.21 Interface refinementrelation forgraphs 127
4.22 Exampletaskgraph 137

4.23 Independent refinement for the task graph in Fig. 4.22

Vi

List of Tables

3.1 Example teleconferencing applicationdata

4.1 Temporal interface and wcet's for tasks in Fig.(4)1. 94

4.2 Interface refinement

4.3 Task data for robotic application

Vil

Acknowledgements

For every ailment under the sun,

There is a remedy, or there is none;
If there be one, try to find it;

If there be none, never mind it.

Mother Goose rhyme

My coming from troubled but revived Serbia, only few weeks before September 11th,
was a departure from the safety of a familiar environment and the only way to become
aware of one’s own virtues and vices. One better drown learning to swim than spend the
entire life sitting on the shore watching ships pass by. No doubt, the University of Cali-
fornia at Berkeley and its EECS Department were offering much more than one can chew.
Professors, students and researchers striving to live up to their potential while being occu-
pied with intellectual feats and scholarly combats. And Ruth Gjerde, who listens to students
attentively, nods with compassion, and navigates them through administrative mazes. Liv-
ing in the International House Berkeley for three years reinforced my will to understand
both other cultures and my own culture through the other’s perspectives. Serbia is one of
those places located on the cusps of a few cultural divides, and thus challenged after every
major shift of power in the world. | am grateful to all the people, on all sides of all divides,
who ever felt the need or even struggled to keep communication open while standing up

for their own principles.

This thesis is the result of research under the guidance of Prof. Thomas Henzinger.
There is no memory of working with him more vivid than the time spent in problem solving
discussions. And these have all the potential to be fruitful. Beforehand, there is just enough
pressure put upon a student to focus and come prepared. During a discussion, the exchange

of arguments is conducted almost with a belief that the most important problem in the

viii

world is being unraveled. Prof. Henzinger looks absorbed in the problem as if there were
no other meetings waiting. And each time a step forward, no matter how small, is being
taken. Afterwards, the student is encouraged even to go risky and remains full of hope,
at least until the next meeting. Some argue that, in research, feeling confused is essential
to progress. | always admired Prof. Henzinger’s fortitude to feel lost at first, only to be
able to regroup on the spot and reap the results a few moments later. And | can clearly see
the marker in his hands, coming back and forth to the whiteboard, on and on, while he is
thinking out loud and recollecting his thoughts before he starts to write. | am thankful to

him for sharing his ideas, intuition, vision and work ethic.

When Prof. Henzinger decided to move to Switzerland, he generously offered his stu-
dents either to come with him and work at the EPF Lausanne, or to stay at and get the
degree from UC Berkeley, or to do something in between. | have never regretted choosing
the third option and have only benefited from both environments and his continuing sup-
port. Incidentally, if it hadn’t been for him, | would have never had a chance to come close
to the ominous but so beguiling north face of Matterhorn. | cherish those paper deadline
moments when Prof. Henzinger calls me in Berkeley at 1am Europe time and comments on
everything from the definite article usage in English language to the cogent reformulation
of propositions. And | also never forgot the positive appraisal he gave after my first EM-
SOFT presentation, knowing what burden for me public speaking could be at that moment.
He has this delicate sense to know when to show his laissez-faire attitude and when to push
a student in a certain direction. A good advisor has to help students both accept the fact
that they may not be the best and develop the belief that they can still do well and keep
maturing if they work hard. | am not sure whether Prof. Henzinger agrees with the simple
yet often elusive message that the verses of the rhyme given above convey, but working

with him helped such a sentiment become closer to my mind.

All research for this thesis was done within the Center for Hybrid and Embedded Soft-

ware Systems. Around Cory Hall, and the Donald O. Pederson Center in particular, | got

iX

to know and interact with so many fascinating people, and | feel obliged to keep valuable
memories of them all. Unfortunately, due to the inevitable limits of human interaction, for
most of them | only scratched a bit of what they have to offer. Prof. Edward Lee used

to advise me even before he kindly accepted to be my Berkeley co-advisor. Not only are
his advanced material lectures smooth as silk, but he emanates a tremendous passion for
knowledge and discovery. He seems so open to appreciate other people’s work, integrate it
with his own and already known research, and pass it to others. Towards research he almost
comes as playful, clearly demonstrating how joy of research often means the joy of truly
understanding ideas and concepts. | will remember Prof. Christoph Kirsch, a postdoc in
my early days at Berkeley, for helping me define problems, putting up with my ideas, and

initially serving as an interpreter between Prof. Henzinger and me.

With my office mates, Krishnendu Chatterjee and Arindam Chakrabarti, | shared much
more than piles of papers, office commandments or courteous talk. That blissful Yosemite
trip all with its 270° car rotation accident comes to mind. | find disheartening that, de-
spite good will and intention, we did not get to work on a problem together, and do hope
we somehow correct this in future. Krishnendu, so breezy yet engrossed, so “never do
anything” yet weeks ahead of all deadlines, so self accomplished yet without a breath of
arrogance. With Arindam | spent countless hours in social and economic discussions, often
not knowing what stand Arindam would take in an argument and thus enjoying every sec-
ond of it even more. | am thankful to him for disturbing my narrow perception of the role
of the free market. Rational people may reasonably disagree on a matter, but despite that,
it always seemed that both of us yearned to share those daily stories that had captivated
us. | do realize, sadly, that one is offered only few lifetime opportunities to make such a

meaningful connection with a friend.

| hope never to forget what, while staying in Berkeley, | learned to deem very precious:
mid-afternoon fog rolling over the northern crest of Berkeley Hills, the Bridge and its sym-

bolism, reflection of Alta Peak over Pear Lake in Sequoia National Park, small collection of

Giacometti’s sculptures in San Francisco Museum of Modern Art, homeless old lady that |
kept seeing in the middle of the night on the corner of Telegraph and Channing, Bay Area
citizens’ activism, KGO 810 news talk and Gene Burns’ commentary, Aspan Dahmubed’s
April Fools’ Day “love” letter, soft and distant sounds of Sunday 6pm Campanile concerts

and swarms of students around Sather Gate at noon.

| revere my parents, Milena and Milivoje, for empowering me to accept immaterial
wealth and values, and for embedding me with moral virtues of hard work and diligence. |
salute them hoping they can hear the message that | am still on track of the dream they had
for me (Slobodan - the one who is free, Serbian). My siblings, Radina and Ljubisa, are the
foremost ones to follow example of and permanent sources of both benevolent critique and
motivation. Living with all of them bestowed upon me a unique blend of soulful empathy
and existential felicity. Throughout these years | constantly felt frustrated for not being
able to explain them exactly the relevance of the research problems | was working on.
Therefore, although | know they always stood by me, it somehow feels not right to say this
thesis is devoted to them. | would rather now pledge my word that | shall devote more time
to them in future. My work was, however, worth their sacrifice of being far away from me.
That they should have no doubt about. No matter how (in)significant this work may be in

the grand scheme of things, it means so much to me. | feel very fortunate.

Xi

Xii

Chapter 1

Introduction

1.1 Motivation

Embedded computing systems are nowadays common in most spheres of life. In fact,
as popular definition suggests, everywhere where computation is subject to physical con-
straints. It is estimated that an average American comes into contact with about a hundred
embedded computers per day, and that by the year 2010 software for embedded computers
will account for 90% of all software being written. The design of such a system asks for a
specified behavior to be mapped on a computing platform under certain constraints. In the
application domains such as automotive, mechatronics, and multimedia, power consump-
tion and size constraints are commonly not of the highest concern. Insieadielated
constraintssuch as latency, deadline, throughput, response-time predictability are required
by specification. For instance, in safety-critical systems the deterministic and timely re-
sponse is often required for fault-tolerance. A common way to achieve it is through replica
determinism that demands the redundant system nodes to take the same decision at about

the same time.

Lee observes in [49] that time is not present in the prevailing computing and network-

ing abstractions used to design embedded systems. Unfortunately, this is true not only
for hardware components, but also for software components such as operating systems,
middleware concepts, and even design tools. In fact, the vast majority of dynamic or vir-
tual features designed to increase the average-case performance have detrimental effects
ontiming predictability Moreover, there are common examples in which a decrease of the
average-case latency results with an increase of the worst-case latency. As Ziegenbein et al.
note in [84] with respect to multiprocessor scheduling anomalies, in some cases the best-
case performance needs to be considered simultaneously. In general, time predictability is
defined as the difference between estimated upper and lower bound of an event time, or as
the difference between estimated and measured worst-case times. In this thesis we consider

systems in which timing predictability is far more important than average performance.

Theile and Wilhelm notice that most cases of low timing predictability fall in two cat-
egories,unknown external interferen@ndlimited analyzability[73]. In the former case,
low predictability is caused by the limited knowledge or unavailability of the system infor-
mation relevant for the implementation. For instance, inter-arrival event times or the un-
derlying scheduling mechanism are unknown during the system design. In the latter case,
system components and their parameters are substantially known, but such a knowledge
is too complex to be analyzed effectively. For instance, many microprocessor architecture
techniques like out-of-order execution or cache replacement strategies are too complicated
for the time bounds to be estimated. Thus, there are at least two ways to attack the tim-
ing predictability problem in embedded systems: reduce the sensitivity to unknown system
information (see, e.g., [31, 81]), and, use architectures or implementation techniques that
can be analyzed more easily ([38, 20]). The elements of both strategies can be found in

solutions for the problems we address in this thesis.

Both [49] and [73] analyze system architecture layers pertinent to time determinism.
[73] lists four layers: hardware architecture (includes all design aspects below the instruc-

tion set), single task software development (code synthesis, intratask analysis and opti-

2

mization tools), task level (scheduling, shared resources, intertask synchronization), and
distributed operation (distributed resources, end-to-end deadlines). In this study we focus

on the methods addressing the two uppermost layers in this classification.

The step in the design process during which system performance, including power and
timing, is validated against its specification is caltformance verificationThis step is
often performed simultaneously with design-space exploration. According to a recent Em-
bedded Market Forecasters [21] analysis, one quarter of embedded system designs missed
the project schedule by at least 50%, about one third missed at least 50% of functional
specifications, and more than 70% missed performance specifications by at least 30%. As
discussed in the International Technology Roadmap for Semiconductors [66], the perfor-

mance verification is already named as one of the top three issues in system-on-chip design.

The current industrial practice in performance verification is almost exclusively limited
to (cycle-true) simulation and prototype testing. The examples include Seamless [55] in
system-on-chip and AutoBox [18] in automotive domains. Even though simulation often
seems viable for functional verification it is less so for the validation of performance, in
particular, timing. Two major reasons are often quoted. The corner-case simulation vectors
that result in worst-case performance are often not intuitive and, thus, very difficult to
find, which makes the simulation procedure very time-consuming. Second, these methods

require executable code, which can often be provided only in the later stages of design.

On the other hand, formal performance validation methods are yet to get significant
attention from industry. The tools that do exist are typically only applied to individual
component analysis, because system-level heterogeneity and complexity are still difficult
to capture precisely in most formalisms. In principle, formal timing analysis should give
both bounds for critical scenarios and the corner-case vectors that produce the scenario.
Also, formal performance analysis seems suitable for design-space exploration since it runs

considerably faster than simulation. Most of existing methods of formal timing analysis fall

in two categoriesgode execution timanalysis andesource sharingnalysis. The former
methods are based on program path analysis and cycle-true processor modeling, and the
latter on the research in scheduling for real-time operating systems. Notable industry-level
examples are tools aiT [1] for C-code worst-case execution time analysis, and RapidRMA

[74] for rate monotonic fixed priority scheduling.

Beside the fact that the applications are becoming more complex in the number, char-
acter and interaction of consisting components, what makes the timing determinism in
embedded systems specific and less tractable? Up until recently, in traditional hardware
design, system timing was guaranteed by hierarchical composition of individual hardware
subsystems. This was possible since the component control was mostly single threaded.
However, the reactive character of embedded software requires preemption and correspond-
ing scheduling strategies. Itis well-known (see, for instance, the work of Richter et al. [62])
that preemptive and time-driven scheduling introduces tindieggendenciesetween com-
ponents that are functionally independent. Recent system-on-chip designs use networks
to connect multiple programmable processor cores with specialized hardware subsystems.
Optimizationof performance in such systems, e.g. optimization of power consumption,
requires component specialization which increases system heterogé#etgrogeneous
platforms, on the other hand, add to the problem complexity through combined effects of
different scheduling strategies needed for different components. If distributed embedded
systems are considered additional resource sharing is involved for communication, often
with event buffering and bursts. All these factors render standard approaches to resource

sharing ineffective.

Embedded systems are complex as a whole, but very often consist of smaller modules
minimally interacting with each other. Such a structure makes embedded systems amenable
to component-based desigiThis approach provides a means for decomposing a system
into components, enabling the reduction of a complex design problem into multiple simpler

design problems. Thus, in contrast to holistic methodologies, in this approach there is no

4

need to perform global analysis for every system configuration. It is often argued that, as the
system complexity increases, component “cut-and-paste” methodologies are the only way
to reach design productivity, because designers must work at higher levels of abstraction,

reusing already designed and verified components.

Heterogeneous component-based frameworks (e.g. Ptolemy [48], Metropolis [25],
UML [17]) are currently primarily used for functional verification and for performance
analysis they need to be extended with analytical models. This is important because in
component-based designs it is mostly the case that only local performance problems have
the potential to impact other parts of the system. As noted in [62], functional problems are
typically confined because of the practice to modularize functions such that most interde-
pendencies are localized. However, there is no simple performance modularization, since
performance interdependencies are introduced even between functionally independent pro-

cesses.

This thesis studies several methods for the component-based design of systems with
precise timing requirements. The focus is on formal flexible and scalable methods for
programming and verification of timing properties. We address issues such as mod-
els of computation, design principles, qualitative properties of composition, and perfor-
mance/predictability/efficiency tradeoffs. In the following sections we describe the prob-

lems with more details, briefly explain our solutions, and review the related work.

1.2 Composable Code Generation for Distributed Sys-

tems

According to Frischkorn in [22], by 2015 up to 40% of the costs of an automotive ve-
hicle will be driven by electronics and software. About 60% of all development costs for a

car electronic control unit will be related to software. In addition, while the number of pro-

cessors is expected to level in the range 60-70, the growth rate of software functions will be
300%. This is closely related to one of the goals of Autosar [3], a huge project in automo-
tive industry: to decouple growth rate of number of functions from growth rate of number
of electronic components. Similar trend exists in avionics software, where previously each
control subsystem had its own dedicated resource, whereas new solutions increasingly offer

a common computing platform for multiple functions.

Clearly, software integration issues will play the major role in design of such distributed
control systems. Note that in standard design techniques, e.g. in those that use simulation
for performance validation, the design errors often show up only during system integration.
In addition, different software parts are often developed by different suppliers. Thus, the
integrator should also have a freedom in choosing between in-house and externally devel-
oped components. In the Autosar project, the description of software components, their
interfaces, resource needs and network topologies are based on Unified Modeling Lan-
guage, a generalized specification language for object modeling. In this thesis we address
similar issues by using a coordination language Giotto [31] extended with suitably defined

component timing interfaces.

There exists a vast literature on synchronous-reactive design and a part of it targets
distributed deterministic systems (see, for instance, the works of Benveniste and his col-
laborators [5, 6, 4]). This methodology is primarily successful at the specification level. In
globally synchronous specifications, parallel components are assumed to execute at exactly
the same points in time enforced by perfect clocks. Also, execution and communication are
assumed to be timeless. Synchronous reactive programs written in Lustre have been com-
piled globally for distributed real-time systems [10], but this approach of Caspi et al. re-
solves underlying scheduling problems through integer linear programming, a method that
is not compositional. Two often quoted problems that prevent synchronous specifications to
scale well to distributed implementations are large variance in component computation or

communication times and the difficulty of maintaining a global notion of time. To address

6

the former problem the clock typically has to run as slow as the slowest system compo-
nent. In addition, in a distributed implementation, the synchronous communication lines
between system components are often replaced with asynchronous ones and designers have
to insure that such a composition does not change the semantics. The desynchronization
procedure introduced by Benveniste et al. in [5] is a formal technique to replace the syn-
chronous communication lines with unbounded buffers. The procedure has been applied

from loosely time-triggered architectures [6] to traffic signal control systems [80].

On the other hand, the global timing in a properly implemented distributed synchronous
system can be predictable and fault-tolerant, although such a design often becomes inef-
ficient. In fact, most software architectures and communication protocols used in safety-
critical distributed real-time systems are time-triggered, i.e., all actions are initiated by
temporal events that follow a global statically computed schedule. As argued by Kopetz
et al. in [45, 44], such conservative designs attempt to avoid nonfunctional dependencies
between components, and thus, support independent verification of each component. The
time-triggered approach is preferred for its compositionality, but it becomes inefficient with
increasing system complexity, especially if the network traffic is irregular. According to
Richter et al. [62] it results in larger buffer size requirements, smaller utilization factors and
larger power consumption. This overhead often drives designers towards asynchronous or
event-triggered solutions. Some recent solutions use global time synchronization but sup-
port event-triggered processing, where the schedule unfolds dynamically during runtime,
depending on the occurrences of different events. For instance, to preserve discrete-event
model semantics in such a setting Zhao et al. [81] develops theoretical concept of relevant
dependency. However, distributed Giotto can be thought of as purely software-based time-
triggered architecture. Consequently, in our research on flexibility in software integration

the focus is not on performance parameters.

Thesis Work. We present a compositional approach to the implementation of hard

real-time software running on a distributed platform. We explain how several code suppli-

7

ers, coordinated by a system integrator, can independently generate different parts of the
distributed software. The purpose of our effort [34, 36, 35] is to provide the application pro-
grammer with a programming interface that hides most of the implementation details (e.g.
scheduling, handling of shared resources), but provides useful services (e.g. component

communication and synchronization).

The task structure, interaction, and timing is specified as a Giotto program. Giotto
is an example of a methodology based on a restricted model that attempts to reduce the
sensitivity of unknown system information such as task execution time. A Giotto program
executes a periodic set of LET (Logical Execution Time) tasks and the set of tasks, or their
periods, may change whenever a Giotto mode switch occurs. Instead of just a deadline, a
LET task has a release and a termination time: the release time specifies the exact time at
which the task inputs are made available to the task; the termination time specifies when
the task outputs become available to other tasks. Therefore, the times when a LET task
reads and writes data are decoupled from the task execution. The LET of a task is always
non-zero. This allows us to communicate values across the network without changing the
timing information of the task, and without introducing nondeterminism. Thus, LET tasks

can be replaced and composed without modifying their behavior or timing.

We demonstrate how Giotto can be implemented on a distributed platform by dis-
tributed compilation with little global coordination. Each supplier is given a part of the
Giotto program and a timing interface, from which the supplier generates task and schedul-
ing code. The timing interface specifies the time slots that can be used by the supplier for
computation on the hosts, and the time slots that can be used by the supplier for commu-
nication over the network. The integrator then checks, individually for each supplier, in
pseudo-polynomial time, if the supplied code complies to the timing interface and meets,
on the given hardware, the release and termination times specified by the Giotto program.

If all checks succeed, then the supplied software parts are guaranteed to work together and

implement the original Giotto program. We demonstrate the feasibility of the approach by

a prototype implementation.

A supplier may be replaced by another one, and as long as the code produced by the new
supplier complies to its component specification and timing interface, it will work together
properly with all other code in the system. Likewise, if new functionality is added to the
system, say by adding a new supplier, as long as the new software passes the two checks
(interface compliance and time safety), it will not change the behavior (neither functionality
nor timing) of the original system in any way. The advantage of our approach lies in the
fact that the two checks can be performed automatically, and the system integrator need not

rely exclusively on testing to see if the upgraded system behaves correctly.

1.3 Component Resource Abstraction and Tradeoffs

A general methodology for temporal protection in traditional real-time systems research
is the resource reservation framework studied, for instance, by Lipari [51] and Almeida [2].
The idea is that each task, or a component of tasks, is assigned a server that is reserved a
fraction of the processor available bandwidth: if a task tries more than it has been assigned,
it is slowed down. This way one can isolate the unpredictability of execution times of
different tasks or streams of tasks from each other. In such solutions, a failing component
cannot influence the behavior of other components in the system, since there is a temporal

isolation between components.

Recently, these methods were extended to hierarchical scheduling systems which con-
sist of real-time components arranged in a scheduling hierarchy [56, 57, 61, 65]. This is
a form of “divide and conquer” technique, where resource partitioning is performed over
multiple levels. Each component consists of a real-time task workload and a scheduling

policy for the workload. A resource is allocated by a higher to a lower scheduling level

through ascheduling interfaceThe interface specifies the resource requirement from the
lower level and the resource guarantee from the higher-level scheduler. A hierarchical
scheduling framework should exhilsiéparationramong levels, i.e., the interface should be
minimal. Moreover, the main benefits of hierarchical scheduling arise if the framework is

fully compositiongli.e., if properties established at the lower also hold at the higher level.

These methods demonstrate how to perform composition of components in a hierar-
chical scheduling framework, but do not address the problem of generating the timing
properties of a component. Shin et al. [68] defines this probleabasactingthe collec-
tive real-time requirements of a component as a single real-time requirement. This single
requirement should be a sufficient and necessary requirement for all the collective require-
ments of the component. Abstraction of the internal complexity of a task group into a
single requirement is used to reduce scheduling difficulties in the hierarchical scheduling

framework.

Early work in task group abstraction by Lipari [51] or Shin [68] considerspieodic
resource mod€lT’, '), a resource abstraction under which a component is guaranteed to get
C units of the resource evefly units of time. This research showed how to abstract a group
of independent periodic tasks with EDF (Earliest Deadline First) or RM (Rate Monotonic)
scheduling algorithms into a single periodic task characterized with d’pair). The ex-
act procedures were given in [51] for a component with RM scheduling, and in [68] for
a component with EDF scheduling. The compositionality of the framework was demon-
strated by combining multiple scheduling interfaces into a single higher-level interface.
The work by Easwaran et al. [19] is specific because the component at the topmost level
can select a value for peridd that minimizes the resource demand of the system. The
corresponding periodic resource model is exported to the operating system for scheduling
and the chosen value for period is propagated to all the components in the system where
resource capacities are given by the corresponding interfaces. The component model by

Almeida et al. [2] refines the periodic resource model by including release jitter, deadlines

10

earlier than periods and synchronization blocking. In addition, this is one of the rare efforts

to study trade-offs between complexity and tightness of abstraction.

In [59] Mok et al. introduce another resource partition model,libended-delay re-
source model The bounded delay resource models), guarantees fractioa of the re-
source with at most time units of delay. This model is suitable when different components
aimed at the same resource have considerably different latency requirements. Later work
[69] by Shin shows how to abstract a set of independent periodic tasks into a bounded-delay
interface. They also show how to use the bounded-delay model together with the periodic
model as scheduling interface models, i.e., they show how to abstract a set of periodic and

bounded-delay tasks into a single periodic or bounded-delay task.

Thesis Work. We showed that the previous results ([68, 69]) can be extended for
supporting interacting tasks with data dependencies. We assume that all applications that
execute on the considered resources are specified in the conventional pesédmmdel
with an underlying task precedence graph. We study the peniesaurcemodel for hier-
archical scheduling model in the presence of dataflow constraints between the tasks within
a group (intragroup dependencies), and between tasks in different groups (intergroup de-

pendencies) [53].

We consider two natural semantics for dataflow constraints, namely, RTW (Real-Time
Workshop) semantics and LET (logical execution time) semantics. While RTW follows
the semantics of real-time code generated from a Simulink environment ([71]), LET has
been used in Giotto domain-specific language, as discussed above. The most important
semantics difference between the two models is as follows. The RTW scheme transfers
the output of a task as soon as the task completes execution. The LET scheme makes the
output of a task available at the prespecified time, namely, at the relative deadline defined

by the task period.

We show that while RTW semantics offers better end-to-end latency on the task group

11

level, LET semantics allows tighter resource bounds in the abstraction hierarchy and there-
fore provides better composability properties. This result holds both for intragroup and
intergroup dependencies, as well as for shared and for distributed resources. In addition,
for a suitable chosen composability metrics, we prove some bounds on the composability
difference between the two models. Finally, we show that, in contrast to the RTW seman-

tics, the LET semantics both exhibits separation between levels and is fully compositional.

1.4 Interface-based Formalisms for Real-time Compo-

nents

Although the performance verification community has different techniques than the
real-time systems community, the goals are often similar [83]: to achieve high productivity,
designers must work at higher levels of abstraction, reusing already designed and verified
components. The goal of abstraction is to be able to verify correctness using the abstract
interface without implementation or prototype. Thus, in both communities, the validation
task is decomposed into thanalysisof individual processes for which formal analysis
techniques are known and on tbempositiorof the results in order to obtain system-level
timing information. However, the methods they use differ in either the analysis, or the

composition parts, or both.

A group of methods by Ernst and his group integrate local analysis with a global event-
flow based analysis, typically using existing models and analysis techniques [40, 63, 29].
To avoid traps of simulation these methods do not consider each event individually, but
abstract events tevent streamsActivating events may be aperiodic by nature, e.g. alarms,
or periodic with jitter, e.g. packets in a communication protocol. Even strictly periodic
task activation can be seen as event-driven, since it is the result of the expiration of a

timer. Event streams are represented by standard event models, and the corresponding

12

compositional analysis methodology is based on the event propagation models. In most
cases, the analysis requires only a few simple properties of event streams, such as event
period, maximum jitter, or event burst. In such a context, global schedulability can be seen
as flow-analysis problem for event streams that can be solved iteratively using event stream
propagation. In principle, based on event stream manipulation one can identify worst-case
scenarios, potentially even buffer overflows and missed deadlines as a result of transient

overload.

In [40] the local analysis techniques are composed on the system level by connecting
their input and output event streams. For such a compositional approach, it is required
that the output event models of one component be compatible with the input event models
of the connected components. Incompatible event models may also need to be connected
by the overall application and communication structure. For instance, an aperiodic event
model is to be connected to a periodic one. To overcome this problem certain transfor-
mation functions are defined and applied in order to adapt event models. In general, the
method allows local scheduling results from the real-time systems research to be used,
which is a major advantage over holistic analysis approaches such as the one by Pop et al.
[60]. Another difference to the holistic approach is that the formal event stream equations
are much better structured with respect to the architecture. The SymTA/S tool is based
on this approach [29]. It supports heterogeneous architectures, complex task dependen-
cies and context aware analysis, and it determines system-level performance data such as
end-to-end latencies, bus and processor utilization, and worst-case scheduling scenarios.
Furthermore, SymTA/S combines optimization algorithms with system sensitivity analysis

for rapid design space exploration.

A similar compositional performance analysis approach is based oedhéme calcu-
lus by Thiele and his group [75, 11, 76, 72]. This approach is geared towards performance
analysis of embedded and network processors and uses the event model representation

known from the network calculus theory developed by Boudec et al. [7]. The work [75]

13

by Wandeler et al. is the first research effort that formally combines the network calculus
and interface design theories in the real-time context. Each component represents a task,
so there is no abstraction of task groups into components. Also, the task model in [75]
assumes independent tasks, so interface compatibility checking does not have to take into
account dataflow constraints. Finally, they assume preemptive fixed-priority scheduling,
where each component (task) is specified with a certain priority. The research in [76] ex-
tends this work for other scheduling algorithms such as EDF and polling servers, whereas
[72] moves from static interfaces by introducing formalism that can adapt system guaran-

tees according to the system environment.

This approach is not limited to a particular task set characterization (e.g. periodic task
set) or to a particular resource model (e.g. bounded-delay model). In contrast, they use
network calculus notions of upper and lower bound event arrival curves for event streams,
and service curves for resource modeling. This generality comes with a price. Since the
event stream models are not the standard ones, new scheduling analysis procedures for the
local components have to be developed. So, the existing work in real-time system research
cannot be reused. Furthermore, the complexity of the equations makes the approach less
intuitive than some simple local techniques such as rate monotonic analysis. As often
advocated, a system-level analysis, especially a compositional or hierarchical one, should

be comprehensible to be successful.

Thesis Work. In the area of interface-based timing verification we present an assume-
guarantee interface algebra for real-time components [37]. This approach is based on inter-
face theory methodology [13, 14] by de Alfaro et al. In general, the input/output behavior
of a system component is captured by an automaton. Two interfaces are compatible if there
is a way to use them together such that their input expectations are met. Thus, the interface
automaton of a composition is constructed by pruning all violating states from the product
of the component automata. In particular, the timed interfaces theory [15] can be applied

when timing of inputs and outputs are important. A timed interface is specified as a timed

14

game between two players, representing the inputs and outputs of the component. How-
ever, in the results presented here, and since we always abstract events into a suitable event
stream that can be represented by a simple predicate, the form of the interface is stateless,
and thus the composition is much simpler. Our approach is also similar to the real-time
interfaces approach of Wandeler et al. [75]. However, for the components we do not use
general event and resource models, but only those for which effective resource abstraction
results can be derived. Thus, we can extend and reuse some of the theory discussed in
Sec. 1.3. The objective is to enable automatic, efficient, and flexible composition of such

real-time interfaces.

In the first problem we address in this area, a component implements a tetkof
sequencethat share a resource. The arrival rate function bounds the number of task (se-
guence) requests in a given interval of time. We show how to abstract such a task group
using the bounded-delay or periodic resource models. Then we consider such a task group
as a part, i.e., a component, of a larger real-time system specified with a set of task se-

guences that define task precedence constraints.

Due to the task dependencies between different components, the interface cannot just
contain resource constraints, but also dataflow propagation constraints. A component inter-
face consists of an arrival rate function and a latency for each task sequence, and a capacity
function for each shared resource. A capacity function defines a fraction of processing
power that is reserved for the component, or, more generally, a resource partition model
such as bounded-delay model. The interface specifies that the component guarantees cer-
tain task latencies depending on assumptions about task arrival rates and allocated resource
capacities. Together with interfaces we formally define interface composition operations,
and the compatibility and refinement relation. Interface compatibility can be checked on
partial designs, even when some component interfaces are yet unknown. In this case in-
terface composition computes as new assumptions the weakest constraints on the unknown

components that are necessary to satisfy the specified guarantees.

15

For efficient and flexible composability checking two properties are important: incre-
mental design and independent refinement. According tinttremental design property
the composition of interfaces can be performed in any order, i.e., it is associative, even if
interfaces for some components are not known. Note that resource abstraction procedures
described in Sec. 1.3 and most of other approaches described in Sec. 1.4 are not associative.
However, we prove that our interface algebra satisfies the incremental design property. The
refinement relation is defined such that in a design we can always substitute a refined inter-
face for an abstract one. We show that the framework supjolépendent refinemernte.,
the refinement relation is preserved under composition operations. Our algebra thus for-
malizes an interface-based design methodology that supports both the incremental addition

of new components and the independent stepwise refinement of existing components.

Little previous work exists that considers compositional performance analysis in the
presence of complex task dependencies that include cycles. However, this is an important
problem in practice since nonfunctional dependency cycles are often introduced by com-
munication sharing as noted by Richter et al. [62]. The research presented by Yen et al.
in [78] or Goddard et al. [24, 23] are notable examples, but these are holistic methods
in real-time tradition, that do not allow compositional analysis. Zhou et al. [82] studies
causality interfaces for general dataflow model, but the approach is targeted towards dead-
lock detection, and does not include real-time properties. In the SymTA/S tool limited set
of cyclic graphs is allowed [63] in the models. For instance, a cycle can have only one
external input. The cycles are analyzed by iterative propagation of event streams until the
event stream parameters converge or until a process misses a deadline or exceeds a buffer
bound. The iteration process terminates because the event timing uncertainty grows mono-
tonically with every iteration, but that typically ends in uncompatibility error rather than in

a fixed-point solution that satisfies interface constraints.

In the final part of the thesis we study interface-based verification of general task

graphs, arbitrary directed graphs where each node represents a task, and each edge rep-

16

resents the data flow between tasks [54]. Since input degree of a node can be greater
than one, a task may execute only after data is available on all input edges (AND type of
task triggering). The graph is allowed to have cycles, i.e., we allow for cyclic functional
dependencies between tasks. We assume that the primary inputs of a task graph are spec-
ified with event arrival curves that bound the number of task executions. In particular, we
concentrate on periodic event models with jitter and burst. In order to avoid iteration prob-
lems of [63] one has to specify also phase information between events in different event
streams. Therefore, our objective is to define the form of interface and interface operations
that would enable flexible interface-based design similar to the case of task sequences. In
this case, three operations are needed for construction of composite task graphs, the com-
position, connection, and join operations. Finally, we study requirements that enable the

incremental design and independent refinement properties discussed above.

1.5 Thesis Organization and Contributions
We now present the organization of the thesis and the main results of each chapter.

e In Chapter 2 we present a compositional approach for the implementation of hard
real-time software running on a distributed platform. We explain how several code
suppliers, coordinated by a system integrator, can generate parts of the distributed
software in a distributed manner. We present the algorithm that generates the neces-
sary Giotto code and timing interface for each host and each supplier. We also present
pseudo-polynomial checks for interface compliance (w.r.t. a timing interface) and
time safety (w.r.t. the worst-case execution times of tasks), and formally prove the
distributed Giotto compiler correct. The feasibility of the approach is demonstrated
by a prototype implementation. A preliminary version of this Chapter appeared in

[35].

17

e In Chapter 3 we first study the abstraction of a task group that executes on a single
resource and with precedence constraints among tasks within the group (intragroup
task precedences). We show the tightness difference in favor of the LET seman-
tics. For the case of a task group distributed over several resources we characterize
how large the gap in the tightness of abstractions between the two schemes, RTW
and LET, can be. In the context of higher levels of the hierarchical scheduling frame-
work, we allow for the task precedences among different task groups (intergroup task
precedences). The LET semantics again results in tighter and simpler abstractions.
In addition, and contrary to the RTW semantics, we show that the LET semantics
enables a compositional framework with separation between levels. The results of

this Chapter were published in [53].

¢ In Chapter 4 we first study real-time components consisting of task sequences [37].
We give procedure to obtain resource partition parameters for a group of aperiodic
tasks given with arrival rates and deadlines. The right form of the interface and corre-
sponding algebra are presented and discussed. We formally prove that the framework
satisfies incremental design and independent refinement properties. The approach is
then extended for the case of task graph components that include task cycles [54].
Due to the different event model a different interface algebra has to be defined. The
two properties adapted to allow cycles are shown to hold even for this interface-based

design methodology.

e Chapter 5 concludes the thesis and gives some pointers for future research. The

relevant problems and concluding remarks are given at the end of each chapter.

18

Chapter 2

Composable Code Generation for

Distributed Giotto

2.1 Introduction

In this chapter we suggest that the competing goalkinudly executiorand compos-

able designcan be achieved together by adopting a software solution that requires only
basic hardware services such as clock synchronization and redundancy management. We
base our work on the LETdgical execution timgparadigm, and the LET-based language
Giotto, previously proposed as a software model that guarantees predictable real-time exe-
cution and at the same time supports portable, composable code [31]. The chapter demon-
strates how Giotto can be implemented on a distributed platform by distributed compilation
with little global coordination. In this way, Giotto offers a framework for the compositional

design of hard real-time systems.

Giotto is a domain-specific language for control applications [31]. A Giotto program
executes a periodic set of LET tasks, and the set of tasks, or their periods, may change

whenever a Giotto mode switch occurs. Instead of just a deadline, a LET taskdiease

19

and atermination time the release time specifies the exact time at which the task inputs
are made available to the task; the termination time specifies when the task outputs become
available to other tasks. The task must start running, may be preempted, and must complete
execution during its LET, which is the time from release to termination. Thus the times
when a LET task reads and writes data are decoupled from the task execution. LET avoids
race conditions, and thus ensures the predictable, deterministic execution of a set of real-
time tasks. LET tasks can be replaced and composed without modifying their behavior or
timing. Since LET is an abstract programming model, the compiler must ensure that the
generated code satisfies the LET assumption. This can be achieved by compiling Giotto
into schedule-carrying codéSCC) [35] for a pair of virtual machines: the E (embedded)
machine mediates between tasks and the physical environment [32]; the S (scheduling)
machine mediates between tasks and the CPU [35]. E code specifies when sensors and task
inputs are read, and when actuators and task outputs are written; S code specifies when
a task is executed on the CPU. We have implemented the E and S machine as part of a
high-performance microkernel for real-time systems [42], and used Giotto to successfully

implement flight control systems for model helicopters [30].

A Giotto program specifies the functional and timing behavior of a dynamic set of tasks,
for example, the tasks of an automotive control system. Such a system is typically executed
by an on-board network with several hosts (CPUs). Moreover, such a system is typically put
together from several parts, which correspond to different control problems, for example,
fuel injection and anti-lock brake control. While the different software parts may interact,
they are often developed by differestippliers the brake supplier will deliver its own
software, etc. Furthermore, to optimize the use of computational resources, there need not
be a one-to-one correspondence between hosts and suppliers. The contracting company,
or integrator (e.g., the car manufacturer), then faces the challenge of putting together and
maintaining the entire system. Using today’s methodologies, a simple modification in the

software of a single supplier may induce a series of modifications in the whole system.

20

For example, a change of timing attributes (e.g., task execution times) in one software
component may cause the schedule of other components to change. We show how this

problem can be avoided using Giotto.

We view the Giotto program as the overall system specification (timing and task inter-
action). Each supplier is given a part of the Giotto program with the charge to implement
the corresponding tasks. This information can be regardedcasmponent specification
So that all supplied software parts will fit together, each supplier also receives timing in-
formation in the form of a&iming interface The timing interface specifies the time slots
that can be used by the supplier for computation on the hosts, and the time slots that can be
used by the supplier for communication over the network. From a component specification
and a timing interface each supplier produces code. The integrator then checks that the pro-
duced code complies to the timing interface and meets, on the given hardware, the release
and termination times specified by the Giotto program. The first check is datiediace
compliancethe secondtime safety Both checks are local for each piece of supplied code
and can be performed in pseudo-polynomial time. If all checks go through, the integrator
is assured that all supplied software parts fit together and correctly implement the original

Giotto program (note that correctness includes the satisfaction of all real-time constraints).

The distributed implementation of hard real-time systems is a key challenge in modern
control systems, especially in automobile (drive-by-wire) and aircraft (fly-by-wire) con-
trol. Much of the work in this area has been devoted to hardware-focused solutions, such
as the time-triggered architecture [43], which guarantees hard real-time constraints across
a distributed system by strict adherence to clock-synchronized networking protocols. The
cost of such a solution is paid in terms of flexibility, and even recent efforts in the au-
tomotive industry (FlexRay, Autosar [70, 3]) require that all component processes, their
dependencies, and their timing profiles be known in advance. Essentially, we build a fully
software-based instance of the time-triggered paradigm. Instead of having the hardware

and network protocol enforce all timing interfaces, each timing interface is enforced sepa-

21

rately by the compiler (during distributed code generation by the suppliers) and by program
analysis (during code integration by the integrator). The LET assumption is crucial to this
approach. The LET (release to termination) of a task is always non-zero. This allows
us to communicate values across the network without changing the timing of a task, and
without introducing nondeterminism, as long as the timing interface ensures that all values
are available in time to meet all task release and termination times, and all sensor read
and actuator update times. By contrast, the synchrony assumption used by other real-time
languages [26] does not offer this flexibility, and hence an important approach to distribut-
ing synchronous programs is based on the Globally Asynchronous, Locally Synchronous

paradigm [4].

We obtain the benefits of the time-triggered paradigm in terms of real-time assurance,
and at the same time achieve a high degree of flexibility. For example, a supplier may be
replaced by another one, and as long as the code produced by the new supplier complies
to its component specification and timing interface, it will work together properly with all
other code in the system. Likewise, if new functionality is added to the system, say by
adding a new supplier, as long as the new software passes the two checks (interface com-
pliance and time safety), it will not change the behavior (neither functionality nor timing)
of the original system in any way. This is because interface compliance succeeds only if
the original set of timing interfaces can accommodate an additional timing interface with
sufficient capacity, and time safety succeeds only if the original set of hosts can accommo-
date the new tasks. The advantage of our approach lies in the fact that the two checks can
be performed automatically, and the system integrator need not rely exclusively on testing

to see if the upgraded system behaves correctly.

Previously, Giotto had only been compiled for single-CPU systems [33]. The contri-
bution of this chapter is two-fold: we describe a methodology that supportssttiputed
real-time code generation for (&)stributedreal-time systems. Multiple suppliers (1) can

independently compile different parts of a Giotto program to run on a system of multiple

22

CPUs (2). Because of the time-driven nature of our timing interfaces, (1) immediately
enables (2) on clock-synchronized systems. Other approaches for (2), however, may not
necessarily support (1); for example, synchronous reactive programs written in Lustre have
been compiled globally for distributed real-time systems [10]. Aimed at (1) are scheduling
techniques that address the problem of dividing tasks into groups, and scheduling tasks
within groups [58, 68]: the challenge is to develop compositional schemes for resource
partitioning such that each task group may be programmed as if it had dedicated access to
the resource and may be tested for schedulability without global task knowledge. However,
these techniques typically assume a single CPU and no interaction between tasks. In dis-
tributed real-time systems there are efforts [46] to define minimal but complete interfaces
that link components together. In avionics software, where previously each control sub-
system had its own dedicated resource, new solutions are proposed which offer a common
computing platform for multiple functions; [64] presents requirements for the temporal
partitioning of such a platform. The car manufacturers’ and suppliers’ perspectives on em-
bedded software reuse are described in [28], which presents a general framework in which
different software components can be classified according to their degree of reusability,

albeit without considering real-time communication in detail.

Outline of the Chapter. In Sec. 2.2 we present a brief review of Giotto and introduce
a running example that we will use throughout this chapter. In Sec. 2.3 we discuss the
algorithm that generates from a given Giotto program virtual machine code (SCC) for each
host and each supplier. In Sec. 2.4 we introduce timing interfaces and show how they
can be composed. Sec. 2.5 describes our prototype implementation of distributed Giotto.
In Sec. 2.6 we give the formal semantics of distributed SCC, we analyze distributed SCC
generated from Giotto, present pseudo-polynomial checks for interface compliance (w.r.t. a
timing interface) and time safety (w.r.t. the worst-case execution times of tasks), and prove

the distributed Giotto compiler correct.

23

2.2 Giotto Language

We give a brief introduction to Giotto and refer to [31] for details. A simple example of
a Giotto progranti, is shown in Fig. 2.1. For now ignore the distribution annotations given
in the brackets to the right of the program. In this audio application a prerecorded PCM-
format audio file is read, processed, analyzed, and reproduced by three real-time tasks.
The Generator task synthesizes the digital audio samples of the sound that resembles the
plucking of a string. This is done according to the Karplus-Strong algorithm [41], where the
period of the task determines the pitch of the generated sound)MTiwe task merges the
file samples with the synthesized samples amplifying the string pluck soundddigzer

task computes a short-time Fourier series of the mix sound.

A Giotto program begins with port declarations. A port is a typed variable. The set
Ports is partitioned into the following four sets: a s8tnsePorts of sensor ports, a
set ActPorts of actuator ports, a sdtPorts of task input ports, and a sélutPorts of
task output ports. The sensor ports include the integer-typedpaatdiscrete clock. In
Fig. 2.1 the sensor porudioSampler represents a vector of audio file samples, the actua-
tor port MixzPlayer a vector of final waveform samples, and the task output st rum,
MizSound, and StringSound, respectively, represent vectors of Fourier coefficients, mix
samples, and string samples. The Fig. 2.2 shows the data dependency graph for the tasks

(rectangles with rounded corners), the sensor, and the actuator.

Each sensor (resp. actuator) poi$ read (resp. written) by a device drivér[p|. Each
task output port is double-buffered, i.e., it is implemented by two copies, a local copy that
is used by the task only, and a global copy that is accessible to the rest of the program
including other tasks. The copy drivespy[p] copies data from the local copy to the global

copy of the task output port

Giotto has two kinds of computational activities, tasks and drivers. Tasks are released

and their execution take time, while drivers are executed in logically zero time. A Giotto

24

sensor

AudioSampler uses dev|AudioSampler]; [s1, h1]
actuator

MizPlayer uses dev[MizPlayer]; [s1, M1]
output

Spectrum uses copy|Spectrumy]; [s1, hi]

MizSound uses copy|MizSound]; [s2, ho]

StringSound uses copy[StringSound]; [s3, Aol
task

Analyzer(In,) output(Spectrum);
Mizer(Iny) output(MizSound);
Generator(Ins) output(StringSound);
driver
InDrvy(MizSound) output(In,);
InDrvy(AudioSampler, StringSound) output(Ins);
InDruvs() output(Ins);
ActDrv(MizSound) output(MizPlayer);
start m; {
mode m; () period 8 {
actfreq 2do MizPlayer(ActDrv);
taskfreq 1do Analyzer(InDrv,);
taskfreq 2do Mizer(InDrvs);
taskfreq 1do Generator(InDrvs); }

}
Figure 2.1. Audio mixer Giotto progrard 4

taskt has a setn[t] C InPorts of input ports, a seDut[t] C OutPorts of output ports,

and a task functionask[t] from the input to the output ports. The task function represents
the result of the computational activity performed by the task. For example, théfiask

is defined with input porfn,, output portMizSound, and task functiortask|Mizer]. Let

Tasks be the set of tasks. In addition to the device and copy drivers described above, drivers

can be used to transport data between ports and to initiate mode changes. A Giotto driver

AudioSampler
2 [s1.]

R MixPlayer
2 [s1./]

Generator Mixer Analyzer
2 [, h;} 0 [s1. /)

1 [s5./,]

Figure 2.2. Data dependency graph for the progtam

25

d has a sefSrc[d] C Ports of source ports, a sdbst[d] C Ports of destination ports,

a driver functiondrv[d] from the source to the destination ports, and an optional boolean
condition on the source ports to control mode switching. For instateéioSampler and
StringSound are the source ports ard is the destination port of the drivénDrv,. Let

Drus be the set of drivers.

A Giotto program is defined with a set of modes, each of which consists of a set of
periodic tasks. In each mode the invocation of tasks is repeated after a fixed amount of
time we call the mode period. The task set can change at transitions (switches) from one
mode to another. Let/odes be the set of modes, containing a start metdet € Modes.

A Giotto modem has a periodr[m] € N.,, a set of task invocations, a set of actuator
updates, and a set of mode switches. Each task invoctign, ¢, d) consists of a task
frequencyw,,.s. € Ny relative to the mode period, a taskand a task input drivet, which
loads the task inputs. In our example there is only one medeith the periodr|[m;] = 8

time units, in this case milliseconds. The audio file is discretized at the ratedi4,Jand

44 of its samples are read everym4. The mix sound is also processed with the period
of 4ms, so the frequency of thé/izer task is 2, and one of the three task invocations of
modem; is (2, Mizer, InDrvy). The LET character of théfizer task implies that, even if

it completes earlier, its output/izSound is made available through thepy[MizSound|
driver exactly at 4:s. Each actuator updatev,.;, d) consists of an actuator frequency
weet € Nsg, and an actuator drivef. Each mode switcHwgyin, m’, d) consists of a
switch frequencyw,,i..n € Nsg, a target moden’ € Modes, and a mode drived which
uses the boolean condition on its source ports to control the mode switch. For the single
modem; of the example, we have one actuator updatelctDrv) and no mode switches.

In the rest of the chapter we will refer to the single-mode program in Fig. 2.1. However, if,
for instance, we want to be able to switch to a madein which taskMizer is executed
twice as fast, i.e. withv;, =4, the program 4 should also contain code fat, shown in

Fig. 2.3.

26

mode my() period 8 {

exitfreq ~ 4do m;(ModeDruv,);
actfreq 4 do MizPlayer(ActDrov);
taskfreq 1do Analyzer(InDrvy);
taskfreq 4 do Mizer(InDrvs);
taskfreq 1do Generator(InDrvs); }

Figure 2.3. Additional mode for the Giotto progray

For a modem, the least common multiple of the task, actuator, and mode-switch fre-
quencies ofn is called the number afinits of m, and is denoted,,,,[m]. The duration
of a unitisy[m| = 7[m]/w..[m]. For the compilation procedure we need the following
sets that can, given a moae € Modes and an integer unit < k < w,,q,[m], be directly
determined from the Gitto program. The $etkInvocations(m, k) contains all task invo-
cations of moden that are released at uriti.e., for whichk -[m] is an integer multiple of
7 [m]/wiask. FOrinstancey[m;| = 4 andtaskinvocations(m;, 1) = {(2, Mizer, InDrvs)},
because thé/izer task is the only task that is released at unit Irgf, i.e., at time 4ns.
An output port is in the setaskOutPorts(m, k) if in mode m it is updated at unit,
i.e., if itis a task output port of a task taskinvocations(m, k). A sensor port is in the set
senPorts(m, k) ifin modem itis read at unik, i.e., if itis a source port of an input driver of
a task intaskInvocations(m, k). The setactDrivers(m, k) contains all actuator drivers of
modem that are invoked at unit. Finally, an actuator portis in the settPorts(m, k) if in
modem it is updated at unik, i.e., if it is a destination port of a driver ixtDrivers(m, k).

For instancesenPorts(my, 1) = { AudioSampler} andactPorts(m;, 1) = { MizPlayer}.

E Code, S Code, and Schedule-Carrying Coddn [31] we presented the execution
of a Giotto program on a single processor through the interpretation of code compiled
for two virtual machinesembeddedind schedulingmachine. The embedded machine
[32] handles sensors, actuators, and all task requests. ItEwwlethat specifies the
timing and control flow of Giotto tasks and drivers. The embedded machine has three

non-control-flow instructions. Aall(d) instruction immediately invokes a driver. A

27

release(t) instruction releases a tagkand proceeds to the next E code instruction. A
future(/, a) instruction marks the E code at the addre$sr execution aftef ms elapse.

The positive integef specifies a time trigger, the simplest and only form of trigger that we
consider in this chapter. In order to handle multiple active triggers, the embedded machine
maintains a trigger queue. The Giotto compiler generates a block of E code instructions for

each unit of each program mode.

For example, in Fig. 2.4, the block of E code for unit O of mode is identified by
the label£(m;,0). It initiates the execution of the copy drivers that update the three task
output ports, and the execution of the audio player device driver. Then the audio sampler
device driver and the three task input drivers update the input ports of the three tasks that
are released next. Note the order of drivaill instructions: copy drivers are followed
by device drivers, followed by task input drivers. Finally, a time trigger with address label
E(my,1) is activated. So, afterrs the embedded machine executes the block of E code
starting at the address(m;, 1). The last instruction of this block activates anothers4
trigger, now with addresg(m;,0). In this way the execution of each of the two blocks is
repeated every:8s. Note that the task and driver functions are external to the embedded

machine and must be implemented in some other language.

E(m1,0>: E(ml,l):
call(copy|Spectrum]) call(copy[MizSound))
call(copy[MizSound)) call(ActDrv)
call(copy[StringSound)) call(dev[MizPlayer])
call(ActDrv) call(dev[AudioSampler])
call(dev[MizPlayer]) call(InDrvs)
call(dev[AudioSampler]) release(Mizer)
call(InDruvy) future(4, £(m;,0))
call(InDrvs)
call(InDrvs)
release(Analyzer)
release(Mixer)
release(Generator)

future(4, E(my, 1))

Figure 2.4. E code blocks for the prograi

28

S(mz,O): S(mz,l):

dispatch(Mizer,4) dispatch(Mizer,4)
dispatch(Generator,4) dispatch(Generator,4)
dispatch(Analyzer,4) dispatch(Analyzer,4)

Figure 2.5. S code blocks for the program

The scheduling machine [31] determines when, and in what order, tasks released by
the E code are executed (dispatched). It replaces the system task scheduler, since the code
that it runs,S codedefines a schedule according to which, at run time, a simple dispatcher
selects which task to execute. The scheduling machine also has three instructions, one of
which is call(d) as for the embedded machine. dAspatch(¢, /) instruction resumes
(or starts) the execution of a released taskntil £ ms elapse, measured from the start
instant of the current S code block. The integepecifies the simplest and the only form
of timeoutsthat we consider in this chapter. The task executes until either it completes or
the timeout becomes true, whichever happens first, and after that the scheduling machine
proceeds to the next instruction. Adle(¢) instruction causes the scheduling machine to
idle until the timeou becomes true. Each block of E code is annotated with a block of
S code which starts execution in a separate thread after the last instruction of the E code
block. An important difference between E and S code is that each E code block executes
instructions instantaneously, whereas each block of S code executes over time. We call the
resulting code, consisting of both E and S code blos&sedule-carrying codéSCC). The
example S code in Fig. 2.5 contains a possible schedule for the Giotto pra@grarhhe
block of S code at the lab&l(m;,0) is interpreted after the block of E code at the label
E(my,0). It starts with the execution of th&izer task followed by the other two tasks.

The task executing ats is suspended and resumed with the correspondingatch
instruction in theS(m,, 1) block. We note that an S code instruction that dispatches a
task not yet released is simply ignored. With the SCC code in Fig. 2.4 and 2itlee

task is executed twice every/8, and the task&/enerator and Analyzer once, exactly as

specified by the Giotto prograif 4.

29

2.3 Composable Design with Giotto

Distributed Code Generation Flow. In our distributed model the systemtegrator
generates a Giotto prograi to be implemented by a sét of supplierson a setH of
hosts A supplier is an independent code developer. A host is a self-contained computa-
tional element with its own processor, memory, and communication interface. We assume
that hosts are connected by a shared bus or a broadcast network. Hosts communicate by
exchanging messages containing port values. For perPorts, let u[p] be the message

with the portp value.

The integrator assigns each task and each driver definédtma particular host and
supplier. For a task € Tasks let h(t) (resp.3(t)) be the host (resp. supplier) which
executes (resp. implements) taskVe similarly define:(d) ands(d) for a driverd € Drus.

Let Tasks, ; (resp.Druss ;) be the set of all tasks (resp. drivers) assigned to suppler

host. We require that a task and its input and copy drivers be assigned to the same
supplier on the same host. Also, an actuator driver and the corresponding device driver
must be assigned to the same supplier on the same host. With such an assignment the
integrator also allocates each port@fto a particular host and supplier. gfe Ports is a

sensor or an actuator port, thefp) = 5(dev[p]) andh(p) = h(dev[p)). If p is taskt input

or output port, i.e., ifp € In[t] U Out[t], thens(p) = 5(t) andh(p) = h(t). Finally, each
message[p] is associated with a supplie(p) and host:(p), namely, the sending supplier

and host. LetVsgs, , be the set of all messages that are associated with supiehost

h.

In the rest of the chapter we assume that the example Giotto programa streaming
audio application, is to be implemented by three suppliers on two hosts. In Fig. 2.1 each
annotation given in brackets to the right of a port denotes the supplier and the host to which
the port is allocated. The assignment for tasks is shown in Fig. 2.2. The audio file is read

on hosth, and every s 44 of its samples are sent to hastfor processing. Thé/izer

30

and Generator tasks, implemented respectively by the supplig@ndss, run onh,. After
receiving the samples from, the taskMizer merges them with the generated samples, and
within the same #hs, the resultingMizSound samples are sent back to hast The final
waveform is there reproduced and analyzed by4helyzer task implemented by supplier
s1. The sets of tasks, drivers, and messages that are associated, for instance,owith
hy are Taskss, n, = {Mizer}, Drusg, n, = {InDrvy, copy[MizSound]}, and Msgs, ;, =
{p[MizSound]}.

For each supplies € S and each host € H, the integrator gives out (see the next

sections for formal definitions)

1. an E code modulé; ;, that describes the timing and control flow of driver, task, and

message invocations for supplieon hostk, and

2. atiming interfacer’ ;, that specifies the computation and transmission time instants

on hosth that are available for supplier

Once a supplies receives the E code modudg ;, and timing interfacel’, , for hosth it

generates

1. an S code modul§, ;, for hosth,

2. functionality code for all taskdusks;;, and driversDrus,; (sequential functions

written in, e.g., native C code), and

3. worst-case execution (transmission) time estimatgg for the tasks inTasks,

(messages isgs, ;).

Provided with the wcet’s and transmission times the integrator then verifies each gener-
ated S code module against the corresponding timing interface and E code module. In this
way the integrator can check the composability of all supplied S code modules and ensure

that the resulting distributed SCC program satisfies the semantics (including the timing) of

31

the original Giotto prograntz. Moreover, once a supplier modifies its S code module on
a host, to check if Giotto semantics is preserved, it is sufficient to check only if the new

module complies to its timing interface.

From Giotto to Distributed E Code. Let P be entire distributed SCC program. The
set Ports p of distributed SCC ports contains additional po®e(ts C Portsp) needed to
store the data sent over the network. Namely, if according to the Giotto proGranm
port-to-host allocation a value of the pgre Ports is needed as input to a driver on a host
h different from the originating host(p), i.e., if a message with the valuemust be sent

over the network, then the hostmust keep its own copy; of portp.

For a given porp, let the setrecHosts(p) be the set of hosts that need to receive mes-
sages with porp values during program execution in at least one mode, i.e., the set of hosts
on which a task input, actuator, or mode switch dri¥es executed in at least one mode,
such thatp is a source port ofl. The hosti(p) to which the porip is allocated is not in
recHosts(p). For a given task, let the sekendOutPorts(t) be the set of taskoutput ports
p for which there are hosts that must receive the message with the palde (i.e., those

with recHosts(p) # ().

According to Giotto semantics, each taskput (resp. copy) driver reads (resp. writes)
input (resp. output) ports at the release (resp. termination) time instants defined by the
beginning (resp. end) of the tasgeriod. In the distributed SCC implementation each copy
driver is still executed at the end of the task period by an E code instruction. However, each
task input driver is executed by an S code instruction and it is delayed if its source ports
need to be sent over the network first. In general, in each task period, the transmission of

sensor ports preceeds task execution, which preceeds the transmission of task output ports.

More precisely, letl be the task input driver for a taglasigned to host. For all sensor

portsp € Src[d] such thath(p) # h, a messagg@/[p] is received at. The completion of

32

the message[p] transmission updates on each hbSstc recHosts(p) (including i) the
sensor porip,.. The taskt input driver ready; (and other ports), applies its function,
and writes to the task input ports. It succeeds all sensor port messages and preceeds
the taskt execution. The completion of the taskvrites to the local copy of the tagk
output ports. The dispatch of the task output port mesgégefor p’ € Outt] succeeds

the taski completion. The completion of the task output port messagé writes on

each of the hosts ih” € recHosts(p') to the task output pont),,. Finally, at eachh” e
recHosts(p') U {h}, the copy|p).| driver copies local into global task output ports at the

end of the task period (i.e., at the termination time of the task).

We assume that the transmission of a sensor port value is performed in a time interval
of lengthe after the time instant the sensor is read. Tdtencyvaluee must be determined
at compile time and for simplicity we also assume that this value is the same for all ports.
If a task reads a sensor port that needs to be received, then the task input driver is called
exactlye time instants after the task is released. Otherwise, it is executed at the time the
task is released. Symetrically, the transmission of task output ports is performed in a time
interval of lengthe before the task is terminated (i.e., before its period expires). We require
that the timee be less than or equal to the mode unit time:] = 7 [m]/w,q.[m] for each
modem. This implies that the task input driver is always called before its input ports can

be updated with new values.

Given a Giotto program, Algorithm 1 generates all E code modgljgsexecuting in
modem. This is done in parallel for each suppliere S and each host € H. The
while loop generates a block of E code for each énif modem. The E code compiler
commandemit(s, h, instr) generates the E code instructiomtr for suppliers on hosth.
The compiler first generatesall instructions to the task output (copy) drivers, actuator
drivers, and actuator device drivers. Line 10 refers to [33] for details on generating a block
of E code instructions that addresses mode switching; this is orthogonal to the issues dis-

cussed in this chapter. The last segment handigs instructions for sensor device drivers,

33

Algorithm 1 The distributed Giotto compiler (modwg)

k= 0; y[m] := w[m]/wmaz[m];
while & < wyq,[m] do
Vs e S.VYh e H:link Es ,(m, k) to next address &, j;
Vp € taskOutPorts(m, k).Nh € recHosts(p) U {h(p)}.¥s €8S:
5: emit(s, h, call(copy[pn]));
Vd € actDrivers(m, k):
emit(5(d), h(d), call(d));
Vp € actPorts(m, k):
emit(5(p), h(p), call(dev[p]));
10: Mode SwitchCompilationAlgorithm[33]
Vp € senPorts(m, k):
emit(5(p), h(p), call(dev[p]));
if recHosts(p) #) then
emit(5(p), F(p), release(ulpl;);
15: V(- t,d) € taskInvocations(m, k):
€1:=0; €2 :=0;
if Srcld] N senPorts(m, k) # D thene; :=¢;
if sendOutPorts(t) # () theney := ¢;
emit(5(t), h(t), release(er; t; €2));
20: Vp € sendOutPorts(t) :
emit(5(t), h(t), release(e; ulp));
Vse S.Vhe H:
emit(s, h, future(y[m|, Es p,(m, (k + 1) mod wpez[m])));
Vs € S.Vh € H: emit(s, h,return);
25: k=k+1;

end while

34

the invocation of tasks and messages, and the future invocation of the embedded machine
at the next unit. Theelease instructions in the algorithm (lines 14, 19 and 21) are of a
special form not needed for single-processor SCC. They indirectly contain precedence con-
straints that are necessary for correct communication by explicitly specifying the latency
time e. This number does not affect the program execution itself, but a supplier needs it in

order to construct a correct schedule, i.e., S code module.

We treat messages sent over the network similar to tasks. So, in order to simplify nota-
tion we also use the same SCC instructions for messages. The instatsltiorse(u(p); €)
releases the messagp] with the sensor port value, but demands that the message trans-
mission be completed by timefrom the release. The instructiarelease(e;;t;€y) re-
leases the taskwith the constraint that the task be dispatched no earlier thanetirater
the release, and completed at the latgsime before the task termination time. The
instructionrelease(c; u[p|) releases the message with tassutput portp, with the con-
straint that the message be sent no earlier ¢hieme before the tasktermination. The final
future instruction causes the embedded machine to wait for tifng and then execute

the E code for the next unit.

Fig. 2.6 shows the E code modules compiled by Alg. 1 from the audio mixer Giotto
programG,. The code for different suppliers on the same host is separated by a single
horizontal line, and the code for different hosts is separated by two lines. The latency is
chosen to be = 1ms. For instance, the commatdlease(u[AudioSampler]; 1) releases
the message with the sensor pdrtdioSampler value, but also specifies a constraint that

the message must be sent beforeskexpires.

Note that the code generation scheme of Alg. 1 implies the order of execution: copy
drivers are followed by actuator drivers, mode switch drivers, and task input drivers, in that
order. However, E code blocks compiled for the same host and same unit of a mode are fully

composable, i.e., they can be executed in any order. If the task outpyt go@utPorts

35

ES1,h1 (ml) O):
call(copy[MizSoundp,))
call(copy[Spectrum])
call(drv[ActDrv))
call(dev[MixPlayer])
call(dev[AudioSampler])
release(u[AudioSampler]; 1)
release(0; Analyzer;0)
future(4, B, p, (Mg, 1))

E81,h1 (ml) 1):
call(copy|MizSoundp,))
call(drv[ActDrv))
call(dev[MizPlayer])
call(dev[AudioSampler])
release(u[AudioSampler]; 1)
future(4, £, p, (my,0))

ESz,hz(mJ) O):
call(copy[MizSound))
call(copy[StringSound))
release(1l; Mizer;1)
release(l; u[MizSound))
future(4, Es, n,(my, 1))

&

52,h2(m1’ 1):
call(copy[MizSound))
release(1; Mixer; 1)
release(1; u[MizSound))
future(4, Es, p,(ms,0))

ESB,hQ(th):
call(copy[MizSound))
call(copy[StringSound))
release(0; Generator;0)
future(4, By, n,(my, 1))

Esg,hg (ml) 1)
call(copy|[MizSound))
future(4, B, p,(m;,0))

Figure 2.6. E code modules for the progréin compiled by Alg. 1

is a source port of an actuator, mode switch, or task input driver that executes at:.arnost

a modem, thenh € recHosts(p) U {h(p)}. The set of hosts that receive pprtiata does

not depend on the program mode. This means that a message with thevalue is sent

to the host: even if the program executes in a mode in whids not a source port to any

driver onh. This is so because in a mode whers usedp must have a corect value even

in the first period of execution in the mode.

2.4 Timing Interfaces

As presented in Section 2.3, each supplier obtains for each host an E code module spec-

ifying the release times of the tasks (resp. messages) that it implements, and for which it

has to determine the times of execution (resp. transmission). Since both computation and

communication resources are shared, this information must be accompanied by a temporal
specification that provides exclusive time windows for task execution (resp. message trans-
mission). This specification, which we call timing interface, is also given to each supplier.
A timing interface defines the available computation and communication time windows,
but not when to perform a particular action within these windows. This gives flexibility to

a supplier, especially if multiple tasks are assigned to a supplier on a host. It also enables
timing modifications that are local to a supplier and host, if a modification in the corre-
sponding E module (e.g., adding a task) is made. In the next sections we show that the

timing interface contains all information necessary for correct distributed code generation.

Formally, a supplies € S on hosth € H receives for each mode € Modes of
the Giotto programi atiming interface a pair of predicated}, = (D7, X[7,). The

predicatesD?,, X, : {0, ..., 7[m] — 1} — {0, 1} are defined as follows:

e D (¢) = 1iffin mode m at time¢ suppliers on hosth may execute a task from

Taskss p;

e X7 (¢) = 1iffin mode m at time/ suppliers on hosth may send a message from

Msgs .-

Let T, = {T},|m € Modes} andT = { T, x|s € S,h € H}.

Fig. 2.7 shows a graphical representation of a timing interface for the progtam
from Fig. 2.1. The computation slots are shaded light; for these time units the correspond-
ing predicateD is equal to 1. Recall the E modulg, ;, of Fig. 2.6, in particular the blocks
labeledE;, ;, (m;,0) and E, 5, (m;,1). The timing interface given to supplier on host
h, can be interpreted as follows. The tadkalyzer may be executed at any time in the
intervals (1,3) and (5,7).s (modulo 8ns, which is the period of the mode;). Further-
more, the @hs-sample of thedudioSampler sensor value may be sent at any time in the

interval (0,1)ms, and the 4»s-sample of the same sensor may be sent in (4,8)

37

Tsl yha
D
Loy ho
X
ng,hg
- —
o 1 2 3 4 8

Figure 2.7. Timing interface for the prograf¥y

We assume that all hosts are clock-synchronized, so that communication is performed
according to the Time Division Multiple Access (TDMA) protocol: in each time slot only
one node is allowed to send data while all other nodes can listen for data. We have defined
timing interface considering a simple communication architecture, where each host has
only one processor for both computation and communication tasks. A host with an addi-
tional dedicated communication processor, e.g., a node in the Time-Triggered Architecture

[43], can be modeled as two hosts.

We next definanterface feasibility a property needed for the composition of SCC
modules. First, we require that the timing interface windows for the same resource but
different suppliers must be disjoint, i.e., at every time instant on each host at most one
supplier may execute a task, and at most one of the suppliers may send a message. Second,
when a host is supposed to receive data, no task execution is allowed. In particular, for
sensor port data this is true in the latency time windewindow) after the data is read,
and for task output port data, in thewindow before the task termination time. Both

properties are satisfied for the interface shown in Fig. 2.7.

Formally, a timing interfacel’ = (D, X) is feasiblefor a Giotto programé if the

following two conditions are satisfied:

e (Resource Sharingror all modesn € Modes, supplierss;, s; €5 (with s; # s),

hostshy, hy € H (with by # hy), and timed € {0, ..., 7[m| — 1},

— at most one o™

s1,h1

(0), D3,

s2,h1

(0), X&'y, (0), and X, (¢) is equal to 1, and

38

— at most one o™

s1,h1

(), X35, (0), X7, (0),and X7, (£) is equal to 1.

e (Data ReceptiopFor all modesn € Modes, unitsk € {0, ..., wna[m] — 1}, ports

p € SensePorts U OutPorts, and timed € Ny, if either

— p € senPorts(m, k) andk - y[m] < < k-~[m] + ¢, or

— p € taskOutPorts(m,k + 1) and(k + 1) - y[m] —e <l < (k+ 1) - y[m],

and if X;gp)ﬁ(p)

recHosts(p).

(¢) = 1, then D7, (¢) = 0 for each supplies € S and hosth €

Given a Giotto program and a set of timing interfaces, one for each supplier, host, and

mode, the feasibility conditions can be checked independently for each interface.

Earliest-Deadline-First S Code. Provided with the pattern of task and message re-
leases in an E code modufg),, and available time windows in a timing interfagg,, the
suppliers generates the schedule for hast.e., order and timing of tasks and messages
on h, and encodes it as an S code modsllg. We briefly explain a potential generation
scheme fokS; ;. Even with the timing constraints imposed Y ;, it can be shown that
the Earliest Deadline First (EDF) strategy is an optimal strategy with respect to schedule
feasibility, i.e., if tasks and messages are schedulable jntime windows by some strat-
egy, then they are also schedulable by the EDF strategy. The release and deadline times of
tasks and messages to be implemented by a suppdiera host: in modem are implicitly
contained in the E code modug ,. So, the supplies can always check EDF strategy

and, if feasible, generate the S code modtilg according to the following scheme.

Let, for instance, an intervéd,, ;) C [0, 7[m]), with integer bounds$,, ¢, € Ny, be a
computation window of the timing interfacg’; , i.e., letfor all¢ € [¢,,¢,) be D, (¢) = 1.
Letty, ta, ...t 1usks, ,| D€ the EDF permutation of taskBisks, ;, at unitk of modem (the
task ¢, has the earliest deadline). The EDF S code modylge contains the following

sequence of instructions:

39

idle(¢; — kvy[m])

dispatch(ty, lo — ky[m])
dispatch(ty, lo — ky[m])

dispatch(twaskss’hp by — ky[m])

The entire EDF S code module consists of such code segments for each computation or

communication slot of the timing interface. The Fig. 2.8 shows EDF S code modules for

Giotto program(G 4 generated using timing interface shown in Fig. 2.7.

Ssl,hl (m1 , O)
call(InDrvy)

dispatch(u|MizPlayer], 1)

idle(1)
dispatch(Analyzer, 3)

Sshhl (m1 s 1)
dispatch(u|[MizPlayer], 1)

idle(1)
dispatch(Analyzer,3)

Ssz,h2 (ml) O)
idle(1)
call(InDruvs)
dispatch(Mizer,?2)
idle(3)
dispatch(u|MizSound], 4)

5327h2(m1, 1)

idle(1)

call(InDrvs)
dispatch(Mizer, 2)
idle(3)
dispatch(u|MizSound], 4)

n

s3,h2 (ml) O)
call(InDrvs)
idle(2)

5537h2(m1, 1)

idle(2)
dispatch(Generator, 3)

dispatch(Generator, 3)

Figure 2.8. S code modules for the progrémn

2.5 Implementation

Our test system consists of several off-the-shelf PC hosts with 200Mhz PentiumPro
processors and 128MB RAM. All hosts are equipped with standard 100Mbit Ethernet net-
work cards and are locally connected. The underlying operating system is RTLinux, where
standard Linux runs under the control of a real-time kernel as the lowest priority task [79].

In contrast to Linux fair time-sharing scheduling, RTLinux uses a simple priority-based

40

preemptive scheduler, thus permitting real-time functions to operate in a predictable and

low-latency environment. In our tests the maximum scheduling latency was ahout 30

Real-time communication is attained through a special network driver [47] that pre-
cludes the standard Ethernet CSMA/CD protocol by establishing a TDMA-based time-
triggered protocol, where each node has exclusive access to the network within its sched-
uled time slot. A software-based synchronization of the hosts is carried out by controlling
the period of a thread that performs send and receive network operations. The control algo-
rithm uses the arrival times of incoming data packets. The communication cycle is shown
in Fig. 2.9. For the purposes of synchronization, one of the hosts is designated as master
and all others as clients. In each cycle the master sends a sync packet with the id of the
client that is supposed to respond by sending a resync packet in the next slot. The subse-
guent slots are reserved for each of the hosts to send actual data packgts. tHe time
of a single slot, anadV is the number of hosts operating under the time-triggered protocol,

then the cycle repeats after tirfig- (IV + 2).

Client 1
Send

Client N-1
Send >

Master

Resync
Y Send

Sync

Figure 2.9. Cycle of the communication protocol [19]

In general, the protocol latency, i.e., the time between the send call of the network
driver and the arrival of the data packet, depends on the time instant at which the call is
made. However, the driver provides a function that synchronizes the sending thread with
the network schedule, i.e., the driver resumes the thread when it reaches the exclusive time
slot to send a message. This mechanism enables the precise timing in the interpretation
of the SCC instructions (including message dispatch) with respect to the global time. The
distributed SCC virtual machine is built as a dynamically loadable RTLinux kernel module.
For the code of each supplier the machine maintains a context data structure similar to the
non-distributed implementation described in [42]. To implement distributed SCC correctly

we make use of special RTLinux calls that suspend and resume task threads.

41

To test the virtual machine we implemented the audio applicatignhrough the dis-
tributed SCC program shown in Fig. 2.6 and 2.8. Note that in Fig. 2.8 éagpatch
instruction with a task (resp. messsage) as an argument executes in computation (resp.
communication) slots shown in Fig. 2.7. In this setup each time slot Tasts 1ms,
and an entire communication cycle lagiss (N=2). In this configuration the maximum
bandwidth available to each host is 218&it/s. The tests show that the sound card is fed
continuously with samples. The audio reproduced badk alays without any noticable

interruption or other sound defects.

The estimated overhead of the network driver synchronization threaduis Zbhe
overhead of the virtual machine, i.e., the time it takes to go through the machine event loop
with two trigger and thread instances, is less thamsl@ivided roughly equally between E
and S parts). Since the machine is invoked at 1khz, the system overhead i8.a%outhe
actuator jitter is less than.2, since in Giotto a task output is written at the task termination
time. In these measurements we used the Pentium time stamp counter, the most precise PC

clock.

2.6 Compositional SCC Analysis

We first characterize distributed SCC program compiled from a Giotto progtao-
cording to the scheme presented in Section 2.3. The program is represented as a state

transition system that is then used to verify correctness of such an implementagion of

2.6.1 Giotto-Generated Distributed SCC

We start by describing E and S code modules separately, and then define entire dis-
tributed SCC program. Let' be a Giotto program)/odes the set of modes of7, and M/

the size ofModes. We assume that for each input Giotto prografrs bounded by a con-

42

stant. Letly, , be equal td Tasks »| + | Msgs, ;| + | Drvs, 4|, i.€., letg, , represent the size
of the part of progranGG allocated to supplies on hosth. Let a node of a directed graph

without predecessor (resp. successor) be called a source (resp. sink) node of the graph.

A G-generated E modul€,; consists of a directed acyclic control-flow graph
(VE,, EZ,), two edge-labeling functions and A and a node-labeling function. Each
edgee € Ef, is labeled with an instructior(e) and an argumenk(e), and each node
v € V¢, is labeled with a pain(v) = (m, k), such thatn is a mode from\/odes andk is a

unit od moden, i.e. k € {0, ...,wmq[m]}. The grapH V¥, E,) has following properties:

e Each path from a source to a sink consists of
— a sequence a(g, ;) edgese, each withx(e) = call instruction that calls a
driver A(e) from Drus; 1, followed by

— a sequence 00(g; ;) edgese, each withx(e) = release instruction that

releases a task or message) from Tasks, , U Msgs, ,, and followed by
— asingle edge with k(e) = future instruction and an argumente) = (4§, v’)
that marks a source of V%, for execution aftef € N, units of time.

e For each moden € Modes and each unik € {0, ..., w,q..[m]} there exists

— exactly one source nodesuch that)(v) = (m, k), and

— at most one node such that)(v) = (m, k) andv has more than one successor;

such node’ has less thai/ successors.

Let all numbers inG, i.e., mode periods as well as task and actuator frequencies and
wmaez|m] be bounded by:. For instance, for the Giotto progradi,, » is equal to 8.
The number of sources ¢V5,, £) is O(M - n), and the number of sinks 8(M? - n).

Since we consider the number of modes to be fixed, we have that sizg & O(gs,, - n).

43

A G-generated S modulg, , consists of a control-flow directed graphi’,, £2,), two
node-labeling functiong andv, and an edge-labeling function We require that the graph
(V3,, ES,) consists of chains of total length(g, , - n). Each control location € V is

labeled by one of the following:

e p(u) = dispatch, v(u) € Tasks,, U Msgs, and nodeu has a successarf such
that \(u, u') € Nyo. If v(u) € Tasks, the execution of: dispatches the task(u).
Control proceeds ta’ if v(u) completes or the first(u, «') time units pass from the
time at which the thread with this control location was created:(#f) € Msgs

then the analogous explanation holds for the transmission of the megsage

e p(u) = idle andwu has a successaf such that\(u,u’) € N.g. The execution of
u idles the processar until A(u,u’) € N5, time units pass from the time of thread

creation.

e p(u) = call andu has a successaf such that\(u,u') € Drusg ;. The execution

of (u,u) calls driverA(u, u’).
e p(u) = v andu has no successor indicates thread termination.

A G-generated SCC module, ;, for a suppliers and a host consists of a&-generated
E moduleé, ;, a G-generated S modul; ,, and anannotation function®, ;, that maps
each sink of the control graph &%, to a node in the control graph & ;. When the
E code execution arrives at a sinkthis creates a new thread of S code which starts at
control location®, ,(v). LetV;¢ be the union of node seig’, over all supplierss € S,
i.e. the set of all E code control locations on hbsEach function®, , maps a sink node
v' € VE, toasource node, ,(v') € V3, suchthatif(v,v') € E¢,, k(v,v') = future and
A(v,v') = (£, -) thenthe chain V.5, , E,) that starts from node, ,(v') does not contain
numbers, i.e., clock timeouts tispatch andidle instructions, larger thaf According

to the last condition, if the next E code instruction is executed dftene units, then the

44

chain of S code instructions describes the schedule for at most thé et units. Note
that if G is a single-mode program then bathi’, , £¢,) and(V3,, ES,) consist of chains

S

of sizeO(gs).

Lastly, a G-generated distributed SCC programover a setS of suppliers and a set
H of hosts is a function that assigns to eackh S and eachh € H a GG-generated SCC

moduleP; ;, for a suppliers and a host.

Semantics. A state of aG-generated distributed SCC programconsists of a port
valuation functionr that maps each port iRortsp to a value of the appropriate type, a
program counter function that assigns to each haste H a control nodey, € V¢, a
status functior : TasksU Msgs — NoU{_L}, a trigger functiornr that assigns to each host
h € H aqueuer, C (Ny x Vi£)* of future invocations, and a thread functiéthat assigns
to each host. € H a setd, of threads. Each thread;,) € 6) consists of a program
counteru € V¥ and a numbef € N of time units for which the thread has been executed.
Let ¢ be the function such that for each task Tuasks, the statug:(t) € Ny indicates that
t has been released and executedcfoy > 0 time units; the status(t) = L indicates
that¢ has been completed (or not yet released). For a megsag@/sgs, c(u) is defined

analogously for the message release and transmission.

Section 2.6.2 presents the semantics of a distributed SCC proBragndefining a
transition system on the space of state®oEach transition represents either the execution
of an E or S code instruction on one of the hosts, or a time step. A sertesrafnsitions
corresponding to a block of E code instructions are taken when a trigger becomes true. A
completion S transitiors taken when a task or message completésnaout S transition
when a timeout odispatch or idle instruction becomes true; andransient S transition
when an S codeall instruction is executed. The transition rules impose an order on
transitions of different type. For instance, if an E transition and a timeout S transition occur

at the same time, then an enabled trigger must be processed before any expired timeout is

45

handled, because the E code may release tasks that require immediate dispatching service

from the S code.

For a given initial statey,, a trace of the distributed SCC prograrf is an infinite
sequencey, q1, . . . of states ofP such that for ali € N, there exists a transition from
t0 giy1. Letw, p, : Tasks,, U Msgs, , — Nso be the worst case execution or transmission
time (wcet) function for the tasks and messages of supplier S on hosth € H and
let w be the set of such functions for all suppliers and all hosts. A trace ©f anw-
traceif for each suppliers € S, hosth € H, and each invocation of a task or message

v € Tasks,, U Msgs, ,, x completes with execution (transmission) time at mogt ().

2.6.2 Formal Distributed SCC Semantics

In [34] we give an operational semantics of schedule-carrying code by defining a state-
transition system in which all port values are abstracted away. Here we are interested
in the input-output behavior afistributed SCC, so we extend the formalism by taking
into account port values and the distributed nature of code. We present the interleaving
semantics for SCC modules of all suppliers on all hosts. To use the same notation for
messages as for tasks, let the message input pojitsp|] formally be {p}, let message
output portsOut[u[p]] be{ps | h € recHosts(p)} and let a message functioask|u[p]] be

identity function from the message input to output ports.

The state; = (r,v, ¢, 7,0) has atransitionto the state/ = (1/,v', ¢, 7/, ¢) if one of

the following:

Completion S transition. The statey is completion enablinghat is, there exist a hoste
H and athreadu, §) € 6, suchthat(v(u)) = L andp(u) = dispatch. Letthe suc-
cessor ofu bew'. Thenr’ = r except that’(Out[v(u)]) = task[v(u)](r(In[v(u)])),
(v, d,7") = (v,¢,7) andd’ = 0 except that], = (0,\{(u,9)}) U {(v/,9)}.

46

Transient S transition. The stateg is not completion enabling butansient enabling
that is, there exist a host € H and a threadu,d) € #6,, such thatp(u) =
call, and the successar is u/. Thenr’ = r except thatr'(Dst[A(u,u)]) =
dro[Au, u")|(r(Src[A(u, u')])), (v, ¢, 7") = (v,¢,7) andd’ = 6 except thay; =
(02 \{(u,0)}) U {(«',)}

E transition. The statg; is neither completion nor transient enabling Bugénabling that
is, there exists a hod¢t € H and either (1, has no successor ard,) € 7, or
(2) v, has a successof . If (1) let (0,v) be the first such pair im,. Thenp = p/,
v = v except thaw), = v, ¢ = ¢, 7 = 7 except thatr; = 7, \ {(0,0)} and
¢ = 6. If (2) then one of the following: (ak(v,,v,) = call andr’ = r except
that ' (Dst[A\(vp, v},)]) = dro[A(vn, vp)](r(Src[A(vs, v},)])), ¢ = cand7r’ = 7; (b)
k(vp,v)) = release andr’ = r, ¢ = c except that/(A(vp,v},)) = 0, 7" = 7; (C)
k(vp, v}) = future andr = 1/, ¢ = candr’ = 7 except that} = 7, o {\(vs, v},)}.
In all three cases, if}, is a sink, thery’ = 6 except that, = 6, U {(P,(v},),0)}; if

v}, IS not a sink, thed’ = 6.

Timeout S transition. The state; is neither completion nor transient nor E enabling but
timeout enablingthat is, there exist a hogte H and a threadu, ¢) €), such that
p(u) € {dispatch, idle}, the successor of is v/, A\(u,u’) € Ny and\(u,u) < 4.

Then(r',v',¢,7') = (r,v,¢,7), 0 = 0" except that, = (0,\{(u,d)}) U{(v,0)}.

Time transition. The stateg is neither completion nor transient nor E nor timeout en-
abling. Thenr'(p) = r(p) for all p € Portsp \ {p.} andr'(p.) = r(p.) + 1.
For ¢ = r(p.) we call functionr, = r the port valuation at timel. For this
transition it also holds’ = v and for eachh € H we have: (1) the queue
7 results fromr, by replacing each trigger bindin@,) by (6 — 1,u), (2) the
thread set) results fromé,, by replacing each thread:, §) by (u,0 + 1), (3) let

Xn =A{z | (u,-) € 0;,p(u) = dispatch,v(u) = z} and letz € X, be a task

47

or message to be executed bnif » € Tasks,, U Msgs,, for somes € S, then
d(x)=c(x)+1lord(x) = Lif . =z, andd(z) = c(z) if x # z; in case’’(z) = L
we say that on the transitiofy, ¢’), task or message completesafter execution

timec(x) + 1.

2.6.3 Interface Compliance and Time Safety

For the compositional analysis of a distributed SCC program we need the following
two properties. Letz be a multiple-mode Giotto prograniy; , a timing interface for a

suppliers and a host, P; ; a G-generated SCC module, and;, a wcet function.

The moduleP; ,, interface-compliesvith T , if all dispatch instructions ofP; ;, exe-
cute in time intervals provided by . In our example each SCC modutg;, defined by
the E and S code blocks in Fig. 2.6 and 2.8 interface-complies with the timing interface
T, shown in Fig. 2.7 because the S code in Fig. 2.8 was generated as EDF S code with

respect to this interface.

The moduleP; ;, is time-safeif (1) no driver reads from output ports of a task (resp.
message) assigned to supplieon hosth before it completes execution (resp. transmis-
sion), and (2) no driver writes to input ports of a task (resp. message) after it starts execution
(resp. transmission). This requirement ensures that all task release and termination times of
the original Giotto program are maintained [33]. Let, for instance, the worst case execution
(resp. transmission) times of all tasks (resp. messagesye Each SCC modulé ,,
defined by the E and S code blocks in Fig. 2.6 and 2.8 is time-safe. For examglg;jn
input ports of task\/izer are written at time s (InDrv, driver), its output ports are read
at 4ms (copyMixSounddriver), and the task starts execution at4, but completes before

time 2ms.

We give the formal definitions of the two properties on the program state to be clear

that they can be checked in constant time:

48

e A state of a distributed SCC prografwith a program counter functiomand thread
function ¢ violatesinterface compliance witlf , = (D, Xs5) if there exists a
thread(u, 0) € 6, such thap(u) = dispatch, n(v,) = (m, k), and either (1y(u) €
Tasks,,, and D7, (ky[m]+0) = 0, or (2)v(u) = Msgs, , and X, (ky[m]+J) = 0.
We say that s ,,w;) interface-compliesvith T’ , if for all w; j,-tracesy of { P; 1, }

no state ofy violates interface compliance witf; j,.

e A state of a distributed SCC prografwith a program counter function, status
function ¢, and thread functiofi violatestime safety or{s, &) if there exists a task
or message € Tasks,, U Msgs, , such that either (a), has a successaf, with
k(vp,v)) = call and \(v,,v;) = d (E code driver), or (b) there exists a thread
(u,-) € 0y with p(u) = call, u has a successar, and \(u,u') = d (S code
driver), and one of the following: (1¥rc[d] N Out[x] # O andc(x) # L, or (2)
Dst[d] N In[z] # 0 ande(z) # 0. We say that P ,,w; ;) is time-safeif for all

ws p-tracesy of { P, ,} no state ofy violates time safety ofs,).

Checking Interface Compliance and Time Safety. The paper [34] discusses time
safety checking for single-mode, single-CPU Giotto programs. These results are here gen-
eralized to both the distributed and multiple-mode settings. For distributed single-mode
programs we give an efficent algorithm that check®f, complies to a given interface
and if it is time-safe. For distributed multi-mode programs we give a sufficient condition

that can be efficiently checked.

Let a G-generated SCC module be given withGagenerated E modulé; ;, a G-
generated S modul§; ;, and an annotation functiof, ,. We first construct a directed
graphP; ;, by connecting the control graphs &f;, ands; ;, through edges from each sink
of V&, (resp.V3,) to a source o¥/3, (resp.V,) determined by the mag, , and control

flow of & 5. If G is a single-mode program each graply, is a chain.
We next argue that graph; ,, is an acyclic graph even iff is a multi-mode program.

49

For instance, let Giotto prograifi, have both moden; and modem, given in Fig. 2.3.

The Fig. 2.10 shows a graph in which each edge abstracts a chéalyof) edges of

the graphP; ;. As discussed with respect to the Algorithm 1 and as defined by the Giotto
semantics, for a mode switch the compiler computes the unit of the destination mode as
close as possible to the end of the mode’s period. This means that the time until the end
cannot increase when mode switch is performed. Since there can be no multiple switches
at the same time instant, i.e. in each visited mode time has to progress for some nonzero
time, this actually means that time until the end of target mode’s period has to decrease.
Therefore, if there was a mode switch from modet unitk; and at some later instant the
program performs another mode switch now to the madat unitk, thenk; < k;. Note

also that in constructin@fh we ignore mode switches with unit zero of target mode. This

is because at such mode switch there will be no active task that already executed for some
time and further behavior is as if the program started its execution at that time instant. The
last two conclusions together show tiit;, is an acyclic directed graph.

(mz,O) (mlvl)

(m—?’O) (%271) (771272) (m273)

Figure 2.10. Graph related @, ;, for G4 with additional moden,

We next construct a state-transition graph by annotating each node of theZgraph
with a particular state of the SCC modukg ;. The graphP; , is acyclic, so the nodes
can be sorted and processed in topological order. Each source nBgg @¢br each mode
there is exactly one such node) is annotated with the state in which the trigger queue and
thread set is empty and the status function maps eaetlasks, ;, U Msgs, ;, to L (recall
thatc(z) = L means that: has not yet been released). For the other nodéB, afwe

proceed by transforming the state of theirimmediate predecessors. We do so by performing

50

one or more transition steps defined by the semantics of SCC programs (App. A). Task
execution-time nondeterminism in time transition steps is eliminated by assuming that each
task (or message) completes exactly after the time given by the weet, (x). If a node
v has more than one predecessqrthen the status function value at nodefor each
v € Taskssy U Msgs,,, is the least value among the status function values:fat all
predecessors. So, for the nodes with more than one incoming edge, we compute the task

execution time pointwise and conservatively.

Checking the states of the graph, offers a sufficent condition for time safety and
interface compliance of all executions of the distributed SCC mofle If no state of
the graphP; ; violates time safety and interface compliance, thend@hgenerated SCC
module (P, w; ;) interface-complies withr’; , and is time-safe. If this is not the case
then, for a general Giotto progrard, we cannot conclude that SCC moduke, ;,, w; 1)
does not interface-comply witlT; , (or is not time-safe). This is because in the state
construction ofP, ;, different incoming edges of a node may impose conservative approx-
imations on different tasks. Also, there may be unreachable modes [33]. HoweW¥es if
a single-mode program, then the state-transition gfaphis a disconnected chain. So, if
P, 1, does not interface-comply or is not time-safe at some sgtateen the trace along the
chain up tog is a counterexample. The size®f , is O(gs,» - n), because bottV?,, EZ)
and(V3,, E3,) are of the same size. Constructing the transition gfiph annotating it
with states, and checking its states can be dori&(in ,, - n) time. Therefore, we have the

following proposition:

Proposition 1 Let GG be a single-mode Giotto program with all numbers bounded.hyet

gs., and T , be the size of the part @f and the timing interface assigned to suppliesn
hosth. Let P ; andw;; be theG-generated SCC module and wcet function for supplier
s on hosth. It can be checked in tim@(g; - n) whether(P; ,, ws ;) interface-complies

with 7, and is time-safe.

51

Note that for multi-mode Giotto the pseudo-polynomial check is sufficient but not nec-

essary.

2.6.4 Distributed Code Generation Correctness

We show that LET semantics of a Giotto program is preserved by the distibuted
SCC program generated according to Alg. 1 if each SCC module satisfies interface compli-
ance and time safety. If an SCC program preserves the LET semantics of a Giotto program

we say that iimplementshe Giotto program, and this property is what we define first.

Let G be a Giotto program, |e1' = {7, | s € S and h € H} be a feasible interface
for G,letP = {P;; | s € Sand h € H} be aG-generated distributed SCC program, and

letw = {ws, | s € S and h € H} be awcet function fo.

Let & andr/” be the port valuation functions at tindec N, for G and P [31]. A trace
of P and a trace of7 areinput-compatiblgresp.output-compatiblgif they have the same
sensor (resp. actuator) port values at the same times, ii#.(jif = /' (p) for each sensor
portp € SensePorts (resp.p € ActPorts) and each time instarft € N,. We say that
(P,w) implementghe Giotto progran(if for every w-trace of P and every trace otz
input-compatibility implies output-compatibility (i.e., if, for all sensor inputs, they produce

the same actuator outputs at the same times).

We say that P,w) interface-complies td" if for each supplies € S and hosth € H,
the G-generated SCC modulé(;,,w;) interface-complies witl ,. We say that P,w)

is time-safe if ¢; ,,w,) is time-safe for eackh € S andh € H.

Proposition 2 Let G be a Giotto program, lefl” be a feasible timing interface far, let
P be the distributed SCC prograifi-generated according to Alg. 1, and letbe a wcet

function. If (P,w) interface-complies td" and is time-safe, them(w) implements-.

We first give informal explanation why interface feasibility, interface compliance, and

52

time safety ensure correctness of the implementation. If interface feasibility condition is
not satisifed, e.g. time windows on a host are not disjoint, even if each supplier produces
interface-compliant and time-safe code, the host may be overloaded and miss deadlines de-
fined by LET semantics. A similar outcome is possible if the interface is feasible, and each
supplier on each host generates an SCC module that is individually time-safe, but it ignores
the interface. Lastly, if a module does not satisfy any of the two time safety conditions, e.g.

a time slot in the interface is not sufficently large, a task or message invocation may result

in incorrect output.

Proof. Note first that the resource sharing propertyofand interface compliance
property of (P,w) ensure that for each state d?,(v) and each hoskt € H there exists
at most one threalu, -) in 6, such thatp(u) = dispatch. Also, the resource sharing
property of T and interface compliance property a?,(v) ensure that for each state of
(P,w) there exists at most one threéd -) in {J, ., 5 such thatp(u) = dispatch and
v(u) € Msgs. So, if T is feasible and R,w) interface-complies tdl’ then there are no

resource sharing conflicts.

We prove the input-output equivalence of the two programs under the interface com-
pliance and time safety assumptions. We first show that tracésasfd P match on task

output port values.

Lemma 1 If p € OutPorts, h € recHosts(p) U {h(p)}, thenrf(p) = [’ (py) for any time

¢ € Np.

Proof[Lemma] We use induction on time For time/ = 0 the statement holds because
the initialization driverinit [p] is called om.(p) andinit[p;] is called on all € recHosts(p)

(E transitions withcall instructions). They set andp, to initial 7% (p) value.

Sincep € OutPorts there exists a tasksuch thatp € Out[t] andt € Tasks, s,

for somes € S. In the code generated by the Algorithm 1 the global cefyp;) of

53

the task output porp on hosth is updated only by the invocation of the driverpy(p;]

(call E transition) ift € taskOutPorts(m, k) for a modem and a unitk, i.e. when task
t logically completes. Note that according to the Giotto semantit®) is also updated
only if t € taskOutPorts(m, k), so we only have to prove that (p,) is modified with a

correct value.

Let ¢ be any time instant at whicte11(copy|ps]) instruction is executed, i.e. for which
t € taskOutPorts(m, k) for some moden € Modes and unitk of m. Assume that lemma

holds for all integers less than

1. h=h(p):
Let ¢ be the last time instant taskwas released beforé Let the mode and
the unit of the correspondingelease E transition bem’ and k' respectively,
t € taskOutPorts(m’, k'). Letd be the task input driver, i.e.(-, t,d) € Invokes|m/],
and letp’ be an input port ofl, p’ € Dst[d]. By the definition of therec Hosts operator

we haveh € recHosts(p') U {h(p')}.

e If p’ € OutPorts by induction hypothesis we also hawg(p') = r/ ().

e If ' € SensePorts andh(p') = h the portp’ is updated on the hogtat time
¢' by execution ofdev|[p'] driver (call E transition) and by input-compatibility
assumption we have? (p') = r} (p),) = /().

e Letp' € SensePorts andh € recHosts(p'). According to the Algorithm 1
and input-compatibility the drivetlev[p'] is invoked at the unit’ on the host
h(p') and the message(p’) with the portp’ valuerS (p') is releasedelease
E transition). If the program¥,w) is time-safe, thenX; ;,w) is also time-safe.
Therefore, the message transmission completes before/tine because at
this time instant drived is called and sharing property should not hold. By as-
sumption, the data reception property is satisfied throughout the message trans-

mission, so the message completion S transition correctly updates thg port

54

So, for allp’ € Dst[d] we havery (p') = ;. (p'). We assume that timeis less than
atime stepy[m’] so the message transmission is completed before any potential mode
switch from moden/. If the time safety property is satisfied the task dispatched
after?’ + ¢, but completed (completion S transition) by tihe ¢ at which the local

copy ofp is updated. So;&(p) = rf'(p) for all p € Out[t]. Sinceh = h(p) we have

reG (p) = Tep (Pn)-

. h € recHosts(p) :

By the similar argument as above it can be proved #¥dp) = r” (p). According to

the Algorithm 1 on the hosti(p) the message with the pgrivaluerf(p) is released
(release E transition). Again, time safety and data reception properties ensure that
the message is transmitted to the hiostfter the task completes but before timé
Sinceh € recHosts(p) the drivercopy[ps] is invoked on the host at time/ and we

haver(p) = 1" (pn).

So, if the programg and (P,w) are input-compatible the lemma above holds. To

prove the output-compatibility of the two programs consider a pat ActPorts and let

h = h(p). The code inP generated by the Algorithm 1 updates modem at unitk only

if p € actPorts(m, k). The same is true for the execution of the Giotto progi@niet d

be an actuator driver such that Dst[d]. Since each driver input popt € Src|d] is also

in the set of task output portsutPorts and since by the definition of thecHosts operator

h € recHosts(p') U{h(p')} by the lemma we have® (p') = rf(p),). After applying driver

function drv[d] on Dst[d], which updates on h, we haver® (p) = rf (py) = rf (p). O

The compositional nature of interface compliance and time safetd,of)(ensures that

if, for somes € S andh € H, one moduleP; ;, is modified, then for to implementd it

is sufficient to check if £ 5w, ;) interface-complies wittl’, , and if it is time-safe. So,

combining propositions 1 and 2 we have:

55

Corollary 1 Let GG be a single-mode Giotto program of sizavith all numbers bounded
by n. It can be checked in tim@(g - n) if (P, w) implements&. Moreover, if(P j,,ws)
is modified for a single supplier and hosth, then it can be checked in tind(g; 5, - n) if

(P, w) still implementsG.

Again, for multi-mode Giotto the pseudo-polynomial check is sufficient but not neces-
sary. Note that P ;,w;) can be modified either by modifying, , (i.e., modifying task
invocation and/or environment interactioss),, (schedule), otv, ,, (wcet). Suppose that in
the audio example the integrator wants to assign additional functionality to suppbar
hosth,, say mix with another synthesized sound with a pitch twice as high. Suppli@r
plements a new taskenerator, (of two times higher frequency) with input drivérDruv 4,
and modifies the S modulg,, ;, as shown below. Then, for correctness of the entire pro-

gram P, only the modified modulé,, ;, needs to be checked for interface compliance and

time safety.
553,h2(m1’0): SS:;JLz(mI?l):

call(InDrvs) call(InDrvy)
call(InDruvy) idle(2)
idle(2) dispatch(Generators, 3)
dispatch(Generators, 3) dispatch(Generator, 3)
dispatch(Generator, 3) idle(4)
idle(4)

2.7 Conclusion

We introduced timing interfaces and showed how they can be used to distribute the
code generation for Giotto programs and distributed target platforms. The integration of
the individually compiled components is performed by individually checking the interface
compliance and time safety of each component. Given a timing interface, EDF S code
was proved an optimal strategy with respect to schedule feasibility. Hence our approach

guarantees global timing requirements without solving a global scheduling problem: as

56

part of the continuing effort of the Giotto project to trade performance for predictability and
composability, the burden is shifted to the generation of timing interfaces. The following

chapter explores the related tradeoffs further.

57

Chapter 3

Component Resource Abstraction and

Tradeoffs

3.1 Introduction

As the number of applications that share the same resources increases, the integration
of software components in real-time or embedded systems becomes more pertinent. In this
chapter we further study composability and resource abstraction of the LET programming
model introduced in the previous chapter, comparing it with some other commonly used

models of computation.

A key challenge is to have real-time assurance and, at the same time, a high degree
of flexibility in component integration. This problem is addressed withiropenreal-
time system [16] that consists of mutuallydependentomponents with sets of tasks of
different time criticality. Research in open real-time systems concentrates on partitioning
and scheduling schemes that make both the implementation and temporal behavior of a
component independent of the presence of other components in the system. However,

embedded real-time systems, e.g., automotive [46] or aircraft [64] systems, are often put

58

together from severahteractingsoftware components corresponding to different control
loops. The problem is even more demanding when components have to be implemented by

different suppliers [28].

In an open system, schedulability analysis and the admission test for a task group cannot
depend on the properties of any other task group in the system. In recent years work in the
composition for open systems has shifted towdmidsarchicalscheduling frameworks [56,

59, 67, 61], which extend resource partitioning over multiple levels. In such a framework
a resource is often allocated by a higher to a lower scheduling level throsgeauling
interface The interface specifies the resource requirement from the lower level and the
resource guarantee from the higher-level scheduler. A hierarchical scheduling framework
should exhibitseparationamong levels, i.e., the interface should be minimal. Moreover,
the main benefits of hierarchical scheduling arise if the framewarknspositionali.e., if

properties established at the lower also hold at the higher level.

Abstractionof the internal complexity of a task group into a single requirement can
be used to ensure the favorable properties and to reduce scheduling difficulties in the hi-
erarchical scheduling framework. Early work in task group abstraction [68, 51] considers
the periodic resourcenodel (T, C'), a resource abstraction under which a component is
guaranteed to get' units of the resource every units of time. This research showed how
to abstract a group of independent periodic tasks with EDF or RM scheduling algorithms
into a single periodic task. The compositionality of the framework was demonstrated by
combining multiple scheduling interfaces into a single higher-level interface. Whereas
these initial efforts with the periodic resource model addressed only independent periodic
tasks, more recent efforts considered sets of tasks with blocking synchronization operations

2, 52].

In this chapter we study, under the same periodic resource model, hierarchies of tasks

with data dependencieNamely, we assume that all applications that execute on the con-

59

sidered resources are specified in the conventional periodic task model with an underlying
task precedence graph. We first (Sec. 3.2) discuss two different application interpreta-
tions, i.e., we present two semanties;w and LET, which differ in the propagation of
data between tasks. WhileT was introduced in Chapter BTw follows the semantics
of real-time code generated from a Simulink environment [71]. Ahw scheme transfers
the output of a task as soon as the task completes execution.ETh&cheme makes the
output of a task available at the prespecified time, namely, at the relative deadline defined

by the task period. Compared to tkew semantics, this typically increases the latency.

The composition with abstracted components inevitably incurs higher resource utiliza-
tion than the component utilization sum. Therefore, effectiveness of composition can be
compromised. If component abstraction is too coarse, only a few components can be cor-
rectly composed, and the rest may be disallowed on the admission test, even when actual
required resource utilization is low. Therefore, we focustight abstractions, i.e., ab-
stractions that minimize lower level resource requirements. We show that the tightness
of abstractions, and therefore composability, depends on the application semantics. So,
although at the lower levels the end-to-end latency is less fortlve semantics, at the
higher levels, when task group abstraction is taken into accountgtheemantics permits

tighter abstractions.

Outline of the Chapter. We compare the composability of the two data transfer seman-
tics in several scenarios. Sec. 3.3 studies the abstraction of a task group that executes on a
single resource and with precedence constraints among tasks within the igitoagréup
task precedences). We show that the tightness difference in favor of theemantics can
come from the underlying scheduling algorithm used to implement a particular semantics.
Sec. 3.4 generalizes the result for the case of a task group distributed over several resources.
We characterize how large the gap in the tightness of abstractions between the two schemes,
RTW andLET, can be. Moreover, we show that witlET semantics both abstraction and

scheduling is simpler. This is important for hierarchical open systems, since complicated

60

interaction between scheduling levels increases unpredictability in task execution. Finally,
Sec. 3.5 studies higher levels of the hierarchical scheduling framework. In this context task
precedences among different task groups are alloweergrouptask precedences). The

LET semantics again results in tighter and simpler abstractions. In addition, and contrary to
theRTW semantics, theET semantics enables a compositional framework with separation

between levels.

3.2 Multirate Task Programs

Let Q be a finite set of numbers that are all multiples of a certain sufficiently small unit
rational number, and I& be the set of real numbers.tAskt = (p, e) consists of a period
p € Q and a worst-case execution time requiremerd R. A task graphG = (V, E)
is a directed graph with a set of tasksand a set of task data dependendies. V2. In
general, a program may exhibit multirate behavior because each task is characterized by
its own period. Therefore, the program is fully specified only with the semantics of data
transfer between tasks. In this chapter we assume that all task graph edges comply with the

same semantics. In particular, we focus on two dataflow semartiesandLET.

Real-Time Workshop semantics.Real-Time WorkshopRTw) [71] is a tool for au-
tomatic code generation in the MATLAB/Simulink environment. For a given task graph
the tool generates multithreaded code, one thread per each sample time of the graph. The
code is supposed to run on an RTOS that offers a priority based preemption mechanism.
Each task is assigned to a thread based on its period, and the schedule within a thread is
constructed from the task dependencies. The rate monoterig scheduler invokes the

generated code, enabling preemption between rates.

To make multirate models operate correctly in real time, the program is implicitly modi-

fied by placingate transitionblocks, hold or delay blocks, between tasks that have unequal

61

L

a) b) :
0 2 2p
Figure 3.1.RTW: fast to slow data transfer(a) task graph{b) task and signal timeline for
m =2

-

periods. The rate transition blocks are assumed to execute in negligible time. Consider the
data dependency shown in Fig. @i}, where the period of the data consumer tasis a
multiple of the period of the data producer taskA problem of data integrity exists when

the input to task, changes after its execution starts. Also, the output is nondeterministic
and depends on how latg starts. Adding a hold block ensures that the second invoca-

tion of ¢; does not overwrite the data. The hold block executes with the slower period of
t2, but with the higher priority of the faster tagk In that way, it executes before tagk

and its output value is held constant whijeexecutes. Beside the schedule for the tasks,
Fig. 3.1(b) shows the input signak of ¢, over time, assuming incrementing functionality

of t1.

z T

€1 Co tl
a) b)

foa
|

Figure 3.2.RTW: slow to fast data transfer(a) tasﬁ graph{b) fask and sizgnal timeline for
m =2

In the inverse case shown in Fig. 3.2, the period of the data producef iaskmultiple
of the period of the data consumer tagk The delay rate transition block compensates
for the varying execution time af, i.e., it makes the time of data transfer deterministic no

matter how early; completes. The delay block executes with the periot dfut with the

higher priority, so that its output value is written before required invocations of

The RTW rate transition mechanism limits the set of syntactically correct programs.

62

First, the period of each task must be an integer multiple of a base period (e.g., the smallest
period). Second, each cycle of the task grapmust contain a dependency resolved with

a delay block.

D1 2 t

e1 €2 t
a) b) — c Tt T R Y

Figure 3.3.LET data transfer (a) task graph{b) task and signal timeline fgr, = p,/2 =
p

Logical Execution Time semantics. According to the logical execution tim@ET)
concurrency model defined in the scope of the Giotto programming language [31], each
task has aeleaseand aterminationtime: the release time specifies the exact time at which
the task inputs are made available to the task; the termination time specifies when the task
outputs become available to other tasks. The task must start running, may be preempted,
and must complete execution duringlitsT, which is the time from release to termination.
Thus the times when a task reads and writes data are decoupled from the task execution.
For the periodic tasks that we consider in this chapter, release and termination time instants
of a task are equal to multiples of the task period. The model is an abstract program-
ming model that does not prescribe any particular scheduling strategy. This is shown in
Fig. 3.3b) with dashed box throughout a period of a task. Of course, it must be ensured

that the generated code satisfiesithg assumption.

For data precedences witlET semantics, a data transfer occurs at release/termination
time instants, which abstracts away precedence constraints and makes tasks independently
schedulable. EveryeT precedence can be modeled as a sequence of adelag a hold
h block as shown in Fig. 3(3). The delay block executes with the period of the data
producert; delaying its output until its termination time. The hold block executes with the

period of the data consumey holding its input value during IiteET. The LET semantics

63

imposes no limitations on the program, i.e., task periods need not be harmonic and the task

graph may be an arbitrary directed graph.

RTW versusLET. We end this section by comparing the two semantics with respect to
latency and synchronization requirements. These properties will faveTivesemantics.
In the remaining sections we will compare the two semantics with respect to composability,

which makes the ET semantics look better.

The end-to-end latencl of a sequence af taskst; with task precedences;_;, t;)
foreachj = 2, ..., n, is the time between the release of tas&nd the completion of task.
Unlike theRTW semantics, with theET semantics each fast to slow precedence constraint
increases the end-to-end latency by the period of the data producer task. In the worst case
all task precedences in the sequence are such, i.@,, tetm; - p,_, for j = 2,...,n and
m; > 1. With theRTW semantics, the end-to-end laten@y;,, of the sequence is bounded
by p,,. With theLET semantics, the latendy, ¢ is bounded by, + - - - + p,,. So, if all tasks
have the same period, i.e.;if; = 1, then the worst-case latency with thew semantics

is n times smaller than the latency with theT semantics.

Moreover, the latency of the sequence in #1av case depends on the worst-case exe-
cution times of tasks and, as such, can be arbitrarily small. On the other hand, the latency
in the LET case depends on the logical execution times of tasks, i.e., on the task periods, no
matter how small actual execution times are. This difference is important for the case when
a single task graph has a dedicated resource. However, in the case of a partitioned resource,
as discussed in [68], the feasibility problem is more relevant than the latency minimization
problem. Note that even the latency of tRew can be reduced either by compromising

determinism, or by more complicated synchronization or dataflow models [50, 24].

RTW andLET semantics differ also in their synchronization and memory requirements.
Let taskt, precede task,, and letp, = m - p;. In p, time units ofRTW execution, the hold

synchronization block is invoked only once. In the same time intervatofexecution, the

64

hold block is invoked once and the delay blaektimes. However, both blocks represent

data transfers and typically execute in negligible amounts of time.

The memory required for the execution of the program withsks anckTw semantics
is bounded by:. The same program withET semantics requires memory twice as large,
since the output data must be stored even after a task completes. Moreover, this memory
is used all the time during program execution, while in #1e®v case memory needed for
a task is used only during task execution. A more detailed study of memory requirements

for a run-time system with theeT semantics is presented in [42].

3.3 Task Group Abstraction

3.3.1 Independent Task Set Abstraction

We first briefly present results from [68] for schedulability of a set of independent tasks
under a periodic resource. A resource can be modelegasa@dic resource? = (7', C)
if it can guarantee allocations of at le&sttime units everyl’ time units. The model does
not specify how the guaranteédtime units are distributed over a time interval of size
An instanceof the periodic resource is any time trace of resource allocations that satisfies
the guarante¢?’, C'). For a given periodic resource = (7, C), the resourceupply
bound functionsbfrz : R — R mapsT € R into the minimum supply of the resource
R over all time intervals of size. For details on computing the supply bound function
the reader is referred to [68]. As an example, Fig. 3.4 shows the supply bound function
sbfp for the periodic resourc& = (8,7). Let V' be the set of independent, periodic,
and preemptive tasks. For a given set of tasksthe resourcelemand bound function
dbfy : R — R mapsr € R into the maximum resource demand over all time intervals
of sizer. If the scheduling algorithm is earliest deadline firsbF), we havedbf (1) =

> vev LT/pil - ei, wheret; = (p;, e;). For the rate monotonic scheduling algoritfirm),

65

the demand bound function is calculated for each taak a cumulative resource demand
of the task over an interval of timg i.e.,dbf v (7, %) = € + >, c (s, [7/px] - e, Where

V (t;) is the set of tasks of higher priority than

401

sbe
dbfv

351

301

251 I

201

15+

10+

5L

0 1 1 1 ,
0 10 20 30 40 50

Figure 3.4. Supply and demand bound functions

We say that the scheduling modél’, T, C, A) is schedulablef under every instance
of allocations of the periodic resour¢&, C'), there exists a feasible schedule for the task
set V' with the scheduling algorithril. Theorems 1 and 2 in [68] give sufficient and
necessary conditions for the schedulability(éf, 7', C', A) with EDF or RM scheduling
algorithms. Letlcmy be the least common multiple of the periods of tasksl/in A
scheduling modelV, T, C, EDF) is schedulable if and only if forall < 7 < 2-1cmy, the
maximal resource demand is no greater than the minimum resource suppijfise(7) <
sbf 7 ¢)(7). Forinstance, ifi’ is the set of three taskB = {(24,8), (8,2), (16,4)}, then
Fig. 3.4 shows the demand bound functiyt /, and also illustrates that/, 7', C', EDF)
is schedulable if 7', C') = (8, 7). A scheduling mode|V, T', C', RM) is schedulable if and

only if for all taskst; € V, there exist$ < 7; < p; such thatbf v (7;, ;) < sbf(r,cy(7;).

In a hierarchical scheduling framework (Fig. 3.5), a separate scheduling problem is
solved at each level of the hierarchy.(I¥', T, C', A) is schedulable, then the set of inde-
pendent periodic task®& under resourcé?’, C') and algorithmA can be abstracted as a

single periodic task 7', C'). So, in a hierarchical scheduling framework, the higher-level

66

7& g1 Ib g2
1 2

ey P [p P
11 tll 12 t12 21 t21 22 t22
e11 €12 €21 €22

Cl Y, QQ

Figure 3.5. Hierarchical scheduling framework

scheduler allocates partitions for the $étas it was a periodic taskZ’, C). In figures we

represent abstractions as rounded boxes, in this case characteriZEd®ypairs.

3.3.2 Intragroup Task Precedence Abstraction

In this subsection we add precedences to a set of periodic tasks that execute on a single
resource. Whereas here we consider a single group of tasks represented by a task graph,
later we will discuss multiple, hierarchically structured task groups with precedences be-
tween them. We use the term “program” to capture tasks, constraints (timing and prece-
dences), and the task graph dataflow semantics. Formatiggpgagam (G, S) consists of
atask graphz = (V, E) and semantic§ € {RTwW, LET}. For instance, the task graph

shown in Fig. 3.6a) is defined withGy = ({t1, ta, t3}, {(t1, t2), (t2, 3) }).

Definition 1 (Program schedulability) If under all instances of the periodic resource
(T, C), there exists a schedule feasible for task graplwith semanticsS the schedul-

ing model(G, T, C, S) is schedulable

We assume that a child scheduler, when communicating resource requirements to its
parent scheduler, provides not only a single pair C'), but a set of pairs, and, in particular,
a function with the domain sép that maps each period to an execution time requirement
(capacity). Such a function enables a tighter hierarchy than a single pair, and also avoids

computation of the optimal pair at the child scheduler (e.g., when the switching overhead is

67

not known). We assume context switching time takes negligible time. This can be avoided

by adding the appropriate overhead to task execution time.

Definition 2 (Program abstraction) A functionc : Q — R tightly abstractgprogram
(G, S) if ¢ maps each period” into the smallest capacity’ such that(G, T, C, S) is

schedulable.

If the function ¢ tightly abstracts the prograf, S), then theabstraction utilization
functionu : Q — R of (G, .S) maps each period’ into u(7) = ¢(7)/T. In the rest of
the chapter, for two functiong; and f;, with arbitrary domain setl and range seR, and
for arelations € {<, <, >, >}, we write f; o fo, if fi(a) o fo(a) forall a € A. Note that

the abstraction utilization function satisfied) < « < 1.

The results summarized in Sec. 3.3.1 cannot be used directly on task graphs because
precedence constraints with semantics must be taken into account. As explained in Sec. 3.2,
the RTW method uses fixed priority scheduling of tasks to maintain the order of task ex-
ecution. TheLET method is not restricted to any scheduling algorithm, and, in principle,
its semantics can be implemented with #mF algorithm where precedences are ignored.
Thus, benefits of better schedulability, may in compositional scheduling frameworks be
turned into tighter abstraction. However, if theF algorithm is not an option [9], some
other, simpler scheduling algorithm might also give a tighter abstraction. For example, if
the periods of all tasks have a common divigpthen a simple round robimRR) technique
may be used. For each ta§k, ¢;), let k; = p;/d. A quantum ofe; /k; time units is allo-
cated to a task in each round. In this case the demand bound function for §odeduling

algorithmisdbf v (1) = >, .y [7/pi - ki) - e/ ki

Example. Fig. 3.7 shows the functions that tightly abstract the program from
Fig. 3.6a) for different semantics, i.e., scheduling algorithms. As expected, the tightest
abstraction is for th&bF scheduling algorithm, i.eEDF for LET semantics. For this ex-

ample, therr algorithm forLET semantics gives the abstraction function that lies between

68

Figure 3.6. (a) Task graph{b) RTW schedule{c) LET schedule RR schedule)

EDF andRTW abstraction functions. In particular, faf = 7.5, the required capacities are

CEDF(T) - 65, CRR(T) - 683, andCRT\N(T) - 7]..

We performed simulations to evaluate the difference between the two semantics with
respect to latency and composability properties. In all simulations we assumed a chain
of tasks as the task graph. The size of the chain, i.e., the task workload size, was the
parameter of the simulation. The periods of the tasks were randomly assigned from the
range [1,20), and the task execution times were chosen such that total workload utilization
was in the range [0.3,0.7]. For each pair of successive tasks in a task chain one period was
the multiple of the other period, because of the limitation ofrimes dataflow model. For
each workload size we ran simulations on 300 task graphs forraathandLET semantics
(undereDF), and the relative difference, averaged over all task graphs, is shown in Fig. 3.8.
The relative difference in end-to-end latency was calculated using the delay between the
release of the first task and the worst-case completion time instant of the last task in the task
chain. Under a shared periodic resource the delay for both semantics is determined by task
periods. The relative difference in composability was calculated as the relative difference

in the abstraction functions taken at the smallest period of chain tasks.

We now formalize the observed abstraction gap for a shared single resource, so that it
can be compared with the distributed case in Sec. 3.4, and to use it as a base case for our

hierarchical scheduling framework discussed in Sec. 3.5.

Lemma?2 Let G = (V,F) be a task graph and7', C') a periodic resource. (1) If

69

101

9.5+

85K

d . . .)
5 6 7 8 9 10
T

Figure 3.7. Abstraction functions for Fig. 34

0.16

0.14|

RELATIVE DIFFERENCE
°
° 2
= IS
:

=4
=)
&

Certrmwtrrw

Il

— Crrw e

0.04
2

L L L L L)
3 4 5 6 8 9 10
TASK CHAIN SIZE

Figure 3.8. Relative difference betwermw andLET semantics w.r.t. latency and com-
posability

(G, T,C,S) is schedulable forS = {RTwW,LET}, then(V, T, C',EDF) is schedulable.
(2)If (V, T, C,EDF) is schedulable, thefG, T', C, LET) is schedulable.

Proof. (1) If (G, T, C,S) is schedulable, then schedulability is preserved by removing
all precedence constraints to obtdiir, 7', C', S). Since for independent taskDF is

the optimal scheduling algorithm even under a partitioned resource [56], it follows that
(V, T, C,EDF)is schedulable. (2) If the independent task(3ét T', C', EDF) is schedula-

ble, thenG is schedulable with theeT semantics even with task precedence constraints,

since the concurrent task instances are independent.

70

Proposition 3 (Tightness) Let G be atask graph. If there exists a functian,, that tightly
abstracts(G, RTw), then there exists a functione, that tightly abstract§ G, LET) and

Urtw — Uer > 0.

Proof. Let G = (V,FE) and suppose thats, tightly abstracts(G,RrTw). For all
T € Q, we have thal{ G, T', cgrw(T'),RTW) is schedulable. From Lemma 2 it follows
that(V, T', cerw(T'), EDF) is schedulable, and consequently, th@t 7', cerw(7'), LET) iS

schedulable. Sa; (7)) is defined and can only be smaller thap, (7). O

Proposition 4 There exists a task grapfi such that in Prop. 3 strict inequality holds, i.e.,

Ugrw — Urer > 0.

Similar to the case with a dedicated resource (e.g., [9]), a task grapith a pair of tasks
t; andt, whose period®; andp, are not in a harmonic relation (i.e., there existsmo> 1
such thatp, = m - p; or p; = m - py) can satisfy the proposition. An example is the task

graph in Fig. 3.6a), with cgry andc.er shown in Fig. 3.7.

3.4 Distributed Task Precedence Abstraction

In this section tasks are distributed over a set of resources. We still consider abstractions
of a task graph, i.e. a single task group with task precedence constraints. We again show
that theLET approach provides tighter abstraction, and therefore, better composability.
In this case the benefits do not only come from the fixed-priority scheduling atihe
approach. To motivate the problem, consider a teleconferencing application with video and
audio streams studied in [12]. The task graph is shown in Fig. 3.9 and the task parameters
in Tab. 3.1. The application is distributed over five resources, and the goal is to find its tight

abstraction.
LetR = {n, ..., mn} be a set of computational resources on which tasks from the task

71

}725 T3
€21 €22 €23 €24 €25

Figure 3.9. Teleconferencing application task graph

Video Tasks | Getframe 10 route IO route Display

tij t11 t12 t13 f14

Resource, Disk Sparc FDDI PC

Periodp;; 2 2 1 720

Exec. timee;; 0.66 1.11 0.44 401.38
Audio Tasks| Get sample LP filter 10 route 10 route DA conv.
tij la1 l22 l23 lo4 T25
Resource; Disk Sparc FDDI PC DSk
Periodp;; 384 384 768 3 3
Exec. timee;; 0.73 18.43 0.49 0.49 0.60

Table 3.1. Example teleconferencing application data

graphG execute, and letr be the size ofR. A task is preallocated to a resource and there
is no task migration. So, each task is defined with a triplee, r), wherer € R. If a

task graphG consists of tasks defined with such triples aht a semantics, we refer to

(G, S) as adistributedprogram. We assume that communication between tasks can either

be modeled as a task or it takes a negligible amount of time.

In the multi-resource case each resource has its own independent periodic model, so
the periodT € Q™ and the capacity’ € R™ arem-tuples. We assume that the scheduler
allocates different resources independently, i.e., it only ensures that for each resource the
periodic requirement is individually satisfied. First note that the program schedulability
definition remains exactly the same as Def. 1 for a single resource. To define tight abstrac-
tion in this case, we have to consider minimal capacity with respect to some metric, and here
we use a simple multi-resource utilization metric. Given a tuple- (7, ..., T},) € Q™
and atupleC' = (Cy, ..., C,) € R™, letu(T,C) =", &

j=1T;"

72

Definition 3 (Multi-resource program abstraction) A functionc : Q™ — R™ tightly
abstractdistributed program(G, S) if ¢ maps each period’” € Q™ into the capacity
C € R™ such that

1. (G, T, C,S)is schedulable;

2. foreachC’ € R™ such that(G, T, C’, S) is also schedulable, we haygT', C') >
w(T, C).

If the function ¢ tightly abstracts the prograft, S), then themulti-resource abstrac-
tion utilizationfunctionu : Q™ — R of (G, S) is defined byu(T) = u(T,¢(T)). Note
that, for a given progrartG,), while there may be several functionthat tightly abstract
(G, S), the multi-resource abstraction utilization functiorf (G, S) is unique. Also, the

functionu satisfied) < u < m.

Proposition 5 (Tightness) Let G be atask graph. If there exists a functian,, that tightly
abstracts(G, RTW), then there exists a functione, that tightly abstract§ G, LET) and

Urtw — Uer > 0.

Proof. With an argument similar to the proof of Prop. 3, it can be shown that for
eachT € Q™, if (G, T, cerw(T),RTW) is schedulable, theG, T', cgrw(T),LET) is
also schedulable. Consequently, for esEhe Q™, wer(7T) is smaller or equal to

,u(T, CRTW(T)) = uRTW(T). O

Consider the task grapty in Fig. 3.1(a), distributed overm = 2 resources, and
notice that the tasks have equal perjpdComputing the abstraction utilization function
ugrw 1S More difficult thamu, .;, because the capacity required for resoutcdepends on
the capacity for resourcg. The worst case is when resoungds allocated at the end of a
periodp, and resource, is allocated at the beginning (see Fig. 3AD. If = € [ey, p — €]

and the capacity for, is e; + z, then the capacity for, has to be at least — = + e,, SO

73

that, completes on time. Based on this task graph, we show in the following proposition
that the difference between the abstraction utilization functions for the two semantics can

be as large as — 1.

p—= eo
tQ,TQ ?I
c) :
P S ty, 1 ;
1 2 : :
€1 €2 : e T .
a) b) 0 P

Figure 3.10. Example fom = 2 resources(a) task graph{b) resource partition

Proposition 6 For all ¢ > 0, there exists a task grapf and a period7T" € Q™ such that

Proof. Let G = (V,E) be a chain ofm tasks with the same perigd assigned tan
different resources, i.e., a generalization of the task graph from Fig(d3.10et V be the
task set obtained frory’ by modifying, for eacly = 1, ..., m, task(p, e;, ;) € V into task
(p,€;,1;) € V,wheree; = e; +z;if j=1,ande; = p — 21 + ¢; + 2; if 1 < j < m,
ande; = p —z;_1 +¢; if j = m (see Fig. 3.11). Lef" = (p, ..., p). Then(G, T, C,RTW)
is schedulable if and only ifV, T, C, EDF) is schedulable and; € [e; 1, p — ¢;] for each
Jj=1,...,m—1. If ¢ is close top, ande, is close to O for eachi = 2, ..., m, thene; is
close top for eachj = 1, ..., m. Consequentlyuzrw(7") can be arbitrarily close to:.. We
also have thatG, T', C', LET) is schedulable if and only ifV', T, C', EDF) is schedulable.
Sincee,; can be arbitrarily close tp, ande; arbitrarily close to O for each = 2, ..., m,

uer(T) can be arbitrarily close to 1

Remark 1 If we assume that for all taskg,, e;, ;) of the task graplt; in Prop. 6 the
execution timee; is less tharp/m, then we can consider a pipelined execution, i.e., the
task graphG’ which differs fromG in that each task periog} (for j = 1, ..., m) is equal to

p/m. Such atask graph witteT semantics has the same latency as the original task graph

74

to, 1o

et s
t]_,T]_§ o o oo o o

L e m
0 b4

-
-

Figure 3.11. Resource partition for Prop. 6

with RTw semantics. Moreover, abstraction is still tighterfam: ugrw(7) — v/ (7T) can
be arbitrarily close tq(m — 1)p + > e; — m)_ ¢;)/p, and thus can be greater than 0,

sincep — > e; > 0.0

Remark 2 Although Prop. 6 holds fom > 1, its form form = 1 is similar to Prop.4.
However, Prop. 4 holds globally with strict inequality, which is not the case for Prop. 6

since bothugr, andu ¢r approachn as the argument’ becomes large

We next argue that abstraction and scheduling for tasks with precedences and multiple
shared resources are simpler with ties semantics. LetG = (V, E') be a task graph, and
let V; C V (for j = 1,...,m) be the set of all tasks allocated to the resoutcelet the
task graphG; = (V;, E N V}) be ther;-task graph and letc; : Q — R be a function that
tightly abstractg G;, S).

Proposition 7 (Abstraction) (1) The function c; that maps each periodT’ =
(Ty, ..., Trm) 10 cler(T) = (ar(Th), ..., em(Th)), tightly abstracts(G, LET). (2) There
exist two task graphg; and G’ with the same-;-task graph for eachy = 1, ..., m, such

that the functions that tightly abstratt, RTw) and (G’, RTw) are not equal.

75

Consider, for instance, Fig. 3.12. The functigp; that tightly abstracts the telecon-
ferencing program from Fig. 3.9 is defined by the= 5 single-variable functions; e+
computed independently for each resourges discussed in Sec. 3.3.2. According to
Prop. 7(2), knowing all functions; ry, is not sufficient to construct the functiag,. An
example for the task grap@i in Prop. 7(2) is the graph from Fig. 3.10(a), and for the task
graphG’, the same graph without the edge betweéeand,.

2-

1.8

1.6

14r

1.2r

o 1r

0.8

0.6

0.4r

0.2+

Figure 3.12.LET abstraction functions for Fig. 3.9

Note that the complexity of a scheduling problem on distributed task graphs, asking
whether an end-to-end latency requirement is satisfied, depends on the choice of semantics.
For therTW semantics the problem is similar to the job-shop scheduling problem, and is
NP-hard even in simple variants [8]. If theT semantics is acceptable, then the scheduling
problem can be decomposed into a set of simple single-resource scheduling problems. This

simplicity is favorable for program admission tests.

3.5 Hierarchical Intergroup Abstraction

In this section we allow for the existence of precedences between different task groups,
i.e., different task graphs. We discuss tightness and the construction of abstractions for such

task graphs. To simplify the presentation we restrict the discussion to the single-resource

76

case. We define a hierarchical scheduling framework that takes into account precedence
constraints. In this framework the separation property between parent and children levels
is not satisfied, i.e., the parent scheduler has to know the details of the entire hierarchy
below it. However, we formally show that the separation property holds véth albeit

not with RTW semantics.

We use the term “program” for the first level of a hierarchy, and “hierarchical program”
for higher levels. So, programs are composed into hierarchical programs, and these are
composed into higher-level hierarchical programs. Get (V, E) be aflat task graph,

a graph defined with the sét of all tasks and the sef of all precedences. We first
inductively define dask hierarchy (1) Every set of tasks{ C V' is a task hierarchy of.

In this case, the set of verticésof the task hierarch§{ is equal toH. (2) If H; is a task
hierarchy onG' with a set of vertices’; for eachj = 1, ..., k, and all sets of vertices are
mutually disjoint, then the collectiohl = {H;, ..., Hx} is a task hierarchy oi:. In this
case, the set of verticas of a task hierarchyH is the union of the sets of vertices of its

elements, i.ey = U_V;.

A hierarchical task graphg = (H, &) on the flat task grapltz consists of a task
hierarchyH on G with a set of verticed’ and the set of precedencés= F N V2 A
hierarchical program(g, S) on the flat task graplé: consists of a hierarchical task graph

G on G and a semanticS € {RTW, LET}.

“1[p1 1t C2 'Plzt 1325 14t
11 12 13 14
11 €12 €13 €14

C

Figure 3.13. Video stream hierarchical abstraction

Example. Assume that the video stream from the teleconferencing application
(Sec. 3.4) executes entirely on the same resource, and that all execution times are scaled

down 4 times. Fig. 3.13 gives an example of task groups with intergroup precedences.

77

There arek = 2 task groups at the leaf level of the hierarchy, and note that there is a prece-
dence between the groups in each direction. The flat task graph (V, E) is defined

with V' = {#1, t12, t13, tia} @nd E = {(t11, t12), (t12, t13), (t13, tia) }. There are three task
hierarchiesH; = {t11, tiu}, Ho = {ti2, tiz}, andH = {Hy, Ha} = {{t1, ta}, {t12, t13} }-

The corresponding sets of vertices &ke= {t1, t14}, Vo = {t2, t13}, V = V, and the sets

of precedences a® = 0, & = {(t2, t13)}, and€ = E. Finally, the three hierarchical
task graphs defined by the hierarchy gie= (H1,&1), Go = (Ha, &), andg = (H,E). O

Note that if in a hierarchical task gragh= (V, £), the task hierarch¢{ is equal to a
subset of taskd/, theng reduces to a subgraph 6f, and the hierarchical prografg, S)
reduces to a program as defined in 3.3.2. An example is the hierarchical taskGgrjuin
such a hierarchical program, Def. 1 defines schedulability and Def. 2 defines abstraction
functions. We use these definitions as a base case for Def. 4 and Def. 5, which respectively
define the same properties for higher-level hierarchical programs. The following conven-

tion holds for all remaining propositions in this section.

Convention. Let (G,S) be a hierarchical program on a flat task gra@hwith
G =(H,&) andH = {H,, ..., Hi}. LetV be the set of vertices df, and let (resp.&;)
be the set of precedenceshf(resp.H;). LetG; = (H;,&;) for j = 1,..., k; we refer
to {G1,...,Gr} as the set otomponent graphsf G. LetC = (c,..., ¢;) be a tuple
of functions such that for each = 1,...,k the functionc; : Q — R tightly abstracts
the hierarchical progranig;, S). Given a tupleP = (Py,...,P;) € Q" and a tuple
C = (¢, ..., ¢) of functionse; : Q — R, let Vp ¢ be the set of independent tasks defined

with VP,C = {(Pj, Cj(Pj)) ‘ j = 1, ,k}} O

In a hierarchical scheduling framework, a separate scheduling problem is solved at

each level of the hierarchy. We assume that the scheduler at the level of a hierarchical

78

program((H, &), S), knows only about the precedence<finbut not about the entire set

E. The scheduler has to determine a schedule that satisfies both the requirements of the
components, i.e., the requirements of the tasklset for some tupleP, and all prece-
dences introduced up to this level, i.e., the requirements of the progiang), S). In

the example from Fig. 3.13 there are two levels of scheduling.cLahd ¢, be the func-

tions that respectively abstract prograghssand G,. The higher-level scheduler has to
satisfy the requirements of the entire progrgf S), but also the requirements of the task
set{(Py, c1(P1)), (Po, c2(P5))} for some rationals?; and P;. Since components do not
specify resource requirements as a siridle C') pair, the following definition contains an

additional existential quantifier.

Definition 4 (Hierarchical program schedulability) If under all instances of a given pe-
riodic resource(T, C), there exist a tuple® € Q* and a schedule feasible both for the
set of independent taskgr - and the program((V,€), S), we say that G, T', C, S) is

schedulable

Definition 5 (Hierarchical program abstraction) A functionc : Q — R tightly abstracts
a hierarchical program(G, S) if ¢ maps each period” into the smallest capacity¢' such

that (G, T, C, S) is schedulable.

The following proposition shows that the hierarchical scheduling framewadgoo-
sitional for the LET semantics, but not for theTw semantics, because in theT case, the
abstraction function (i.e., timing properties) for the composition can be established from
independent abstraction functions for the components. In the caserafemantics, we
show how to construct a function that tightly abstracts a hierarchical program from the tu-
ple C of functions that tightly abstract hierarchical programs at the next lower level of the

hierarchy. Givenl' € Q, let

Cmin(T) = mir}c{c'(T) | ¢ : Q — R tightly abstracts Vpc}.
PeQ

79

Consider the example from Fig. 3.13, and Fig. 3.14. The two functions drawn with
dash lines,c; er and ¢y g1, are tight abstractions of the leaf-level hierarchical programs
(Gy,LET) and(G., LET), respectively. These are computed as explained in Sec. 3.3.2. The
third function, c_e;, which tightly abstract$g, LET), is the functionc,,;, from the above
expression computed using er and ¢, ;. Beside this, the following proposition also
shows that, in general, knowing the tuple of functiens:, is not sufficient to construct

the functioncgry that tightly abstractég, RTw).

2-

1.8

1.6

14r

1.2r

o 1r

0.8

0.6

041

0.2+

Figure 3.14.LET abstraction functions for Fig. 3.13

Proposition 8 (Abstraction) (1) The functiorc, g, that maps each period to c.er(7) =
cmin(T), tightly abstracts(G, LET). (2) There exist two hierarchical task grapfsand
G’ with the same set of component graphs, such that the functions that tightly abstract

(G,RTW) and (G’, RTW) are not equal.

Proof. (1) Given T € QF, we first prove tha{G, T, c,.in(T),LET) is schedulable.
From the definition of the function,,;,, let P € QF and a functionc’ be such that’
tightly abstractslVp - and¢’(7T') = ¢ (7). From Def. 2, it follows thatl/p ¢ is schedu-
lable under each instance of the periodic resourfec’ (7)) = (T, cpin(T)). From
Lemma 3 it follows thatG, T', ¢,..n(T),LET) is schedulable. Assume that there exists

C' < cmin(T) such that(G, T, C,LET) is schedulable. By Def. 4, there existse Q*

80

such that(Ve, T, C,LET) is schedulable. Let’ be the function that tightly abstracts
Vp . From Def. 2, we have’'(7') < C and from definition of the function,,;,, we have

Cmin(T) < (T). This is a contradiction.

(2) Consider the example shown in Fig. 346 Let Gy = ({4, b, 3},
{(ti,t2), (12, t3)}) and G = ({{t1, b}, {t3}}, {(t1, &), (2, t3)}). Let ¢o5 (resp.,cs) be
the function that tightly abstracts hierarchical program S) (resp.,(G, S)). Fig. 3.17b)
shows thaty,er < cier < corrw. ON the other handy grw < crrw, SINCEG, is a leaf-level
task graph containing the same taskgjatet G’ = ({{t1, &=}, {t3}}, {(t:, t2), (13, &2)}) be
the hierarchical task graph equaldoexcept that the edge,, ;) is of opposite direction.
The function that tightly abstract§’, RTw) is equal toc e < crrw, Since both edges in the
hierarchical task grap§’ introduce delays. This means that knowing only the functions
that tightly abstract the lower-level hierarchical programs, and not the direction of all

edges, is not sufficient to computg,. O

The next proposition shows that the hierarchical scheduling framework exbépts
ration for the LET semantics, because for scheduling only component abstractions, and not
component internals, are sufficient. For ®kex semantics, in general, knowing the tuple
of functions ¢; xrw is not sufficient to construct a feasible schedule. We explain how to
construct the composite schedule in the caseeafsemantics. Giverl” € Q, let P,,,;,,(T)
be P € Q" such that for a function’ that tightly abstractd’» - we havec' (T') = cnin(T),

i.e., let it be equal to thé that minimizes the expression defining the functigg,.

Proposition 9 (Scheduling) Let (G, S) be a hierarchical program and7’, C') a periodic
resource such thaig, 7', C,) is schedulable. (1) If = LET, then theeDF algorithm for
Vp,..(),c constructs a feasible schedule i@, 7', C, LET). (2) If § = RTw, then there
exists a hierarchical task grapfi’ with the same set of component graphsjasuch that

no schedule is feasible both fa@@, 7', C,RTW) and(G’, T', C, RTW).

81

Proof. (1) The schedule generated with = P,,;,(T) is feasible even if the pro-
vided capacityC' is ¢, (7). From Lemma 3, it follows that the schedule is feasible
for (G, T, C,LET). (2) Consider the hierarchical task graph shown in Fig. @)16Let
x € [—p/4, p/4] be a variable parameter of the task execution requirements not known to
the scheduler at the higher-level. Let, for instance, the hierarchical géaphd G’ from
the statement of Prop. 9 be as in Fig. 3i6with = —p/4 andz = p/4 respectively.
With RTW semantics, depending afpone or the other data precedence becomes more crit-
ical. The total requirement per hierarchical program is independent of the valugifer,
the functions that tightly abstract the hierarchical programs do not dependtbowever,
to construct a schedule that satisfies all data precedences, the scheduler would have to know

the value ofz. O

Consider again the example from Fig. 3.13. According to Fig. 3.1%, # 1 then the
required capacity for the hierarchical progrééh LET) is cer(T) = 0.776. Fig. 3.15a)
shows an instance of the resource mollek (1,0.776) for the first three periodd’, in
which the resource is respectively allocated at the beginning, at the end, and in the middle
of the period7'. The rest of Fig. 3.15 shows the hierarchical generation of the schedule.
If T =1, thenP,,;,(T) = (1,0.7), and from Fig. 3.14 we have, (1) = 0.22 and
c2,e7(0.7) = 0.25. Fig. 3.18b) shows the higher-level schedule: ther schedule for the
two periodic task$1, 0.22) and(0.7,0.25) in the partitions from Fig. 3.1@), i.e., it shows
the schedule fofG,, LET) and(G,, LET). Fig. 3.15¢) shows the lower-level schedule for
Gy, i.e., it shows the schedule for tasks = (2,0.16) andt4 = (720,100.34). Finally,

Fig. 3.18d) shows the same for tasks = (2,0.27) andt;; = (1,0.11).

The following two statements generalize Prop. 3 and Prop. 4.

Proposition 10 (Tightness) If there exists a functiongr,, that tightly abstractsG, RTw),

then there exists a functiofe, that tightly abstract4G, LET) and ugrw > uer-

Prop. 10 follows from Lemma 3 similar to the proof of Prop. 3.

82

L)
0 0.5 1 15 2 25 3

1
o I I
0 . L

)
0 0.5 1 15 2 25 3

1k
T o5k ‘ I l ‘ I
o
2 25 3
1
o] I [I l
o \ \
2 25 3

TIME

Figure 3.15.(a) Instance ofR (1,0. 776), (b) L: Go, D: Gy; (¢) L: t11, D: tiy; (d) L t3,
D: 1 (L=light, D=dark)

Proposition 11 There exists a hierarchical task graghsuch that in Prop. 10 strict in-

equality holds, i.e.ygrw — wer > 0.

Prop. 11 follows from the proof of Prop. 8(2). An example is the hierarchical task graph

from Fig. 3.16a), whosec, g, function is shown in Fig. 3.1(a), (b).

s N
¢ R

-
“ap 11 “ t12
. p/4+ x /4+x
“Ipa “ 6 b g
t t t ta1 tao
U ! 2 s /4 —x /4—zx

- J
a) b)

Figure 3.16. Intergroup precedence abstraction examplés fétrop. 8(2);(b) Prop. 9(2)

Lemma 3 generalizes Lemma 2 to the hierarchical framework.

Lemma 3 Let (7, C) be a periodic resource. (1) ItG, T, C,S) is schedulable for
S = {RTw, LET}, then there exists a tupleé € Q" such that(V¢, T', C, EDF) is schedu-
lable. (2) If there exists a tupl® € QF such that(Vp ., T, C, EDF) is schedulable, then
(G, T, C,LET) is schedulable.

Proof. (1) Follows directly from Def. 4. (2) We prove that the schedule for the task set
Vp ¢ is also a feasible schedule faiV, £), LET), which by Def. 4 makes$G, T', C, LET)

83

— C.

LET

Figure 3.17. (a) Component abstraction function for the hierarchical program in
Fig.3.16a); (b) Detailed view

schedulable. A schedule fov, £) is feasible withLET semantics if all tasks i individu-

ally satisfy their timing requirements. Note that each task is an element of the set from
the task hierarchy. We use induction on the structur@.cdht each level of the hierarchy a
feasible schedule fov» . makesG;, P;, ¢;(P;), LET) schedulable for each= 1, ..., k. At

the leaf level this condition guarantees schedulability of each task group of the hierfarchy.

3.6 Conclusion

We addressed the problem of abstracting interacting periodic real-time components in
the scope of hierarchical scheduling. We compared two semarticg,and LET, for
task precedences, within and between components, on single or distributed resources. The
results of the last two sections can be generalized for applications with both intergroup
and distributed task precedences. We recognized the latency vs. composability trade-off

between the two semantics. We showed that advantageous properties of a hierarchical

84

framework, separation and compositionality, can be achieved withahesemantics. A
natural way to extend the framework would be combining the two semantics, i.e., defining
a framework in which a particular semantics would be specified for each precedence con-
straint. TheLET semantics would typically be selected for less time-critical paths in the
application task graph. A potential solution for both low latency and tight abstractions is
a more complicated scheduling interface. Another approach may use a different resource
model. There are related efforts in this direction [58, 69]; how they can be used in the the

context of interacting components is a topic for future research.

85

Chapter 4

Interface Formalism for Real-time

Components

4.1 Introduction

As discussed in previous chapters, the increasing complexity of real-time and embed-
ded systems necessitates advanced design and maintenance procedures for the assurance
of timing requirements. Automatic tools are highly desired for such an error-prone and te-
dious process. Since in design exploration the timing performance estimation is performed
for a large number of design alternatives, the tools are required to be efficient. The sys-
tems are typically put together from several interacting software components that are often
provided by different providers. In addition to that, common modification of system re-
qguirements demands flexible procedures. In this chapter we develop efficent and flexible

interface-based framework for real-time component integration.

Component-based design simplifies the design process since system decomposition
provides a solution to the original large problem by solving several smaller problems. An-
other advantage of such an approach lies in the fact that component performance analy-

sis detects design errors before the components are implemented and composed. As we

86

noted before, the previous research in component-based real-time systems concentrated on
partitioning and scheduling frameworks that make both the implementation and temporal
behavior of a component independent of the presence of other components in the system
[16, 61]. More recent works present methods that abstract internal complexity of a real-
time component into a componeinterfacethat is subsequently used for the rest of the
design [68, 51, 2]. This research considersgigodic resourcenodel (7', C'), a resource
abstraction under which a component is guaranteed ta’getits of the resource every

T units of time. The methods show how to abstract a set of independent periodic tasks
with EDF or RM scheduling algorithms into a single periodic task. Later work [69] shows
how to abstract a set of independent periodic tasks intbthmded-delaynterface. The
bounded-delay resource model §), studied in [59, 56, 57], guarantees fractioof the

resource with at mosttime units of delay.

In this chapter we start with a different task group model and use a method, similar to
the one presented in [69], for abstracting such a group into a bounded-delay interface. The
task model consists of a set of aperiodic tasks each specified with an arrival rate function
and a relative deadline. The arrival rate function bounds the number of task requests in a
given interval of time. To abstract such a task group we consider only the bounded-delay
resource model with theDpF algorithm, although other mentioned results can be applied
in a different setting. We then consider such a task group as a part, i.e., a component,
of a larger real-time system specified with a set of task sequences that define task prece-
dence constraints. The objective of the chapter is to study automatic, efficient and flexible

component-based design of such a system.

To address the problem we apply concepts from interface theories [13, 14]. In this
formalism an interface of a component specifies what the component expects (assumes)
from its environment and what it provides back (guarantees) to it. This constraint should
be sufficient to check if two interfaces atempatible i.e., if the underlying components

work properly when composed together. In the real-time context ‘proper’ means satisfying

87

timing requirements, e.g. end-to-end latency. Since the system specification includes de-
pendencies between the tasks from different components, the interface cannot just contain
resource constraints as in previous works, but also dataflow propagation constraints. There-
fore, beside the resource model assumption, an interface also specifies the task sequence

arrival rate assumption and the latency guarantee.

We define arninterface algebraor real-time interfaces, a formal algebra that enables
tool support for our formalism [14]. Beside the compatibility relation, the algebra consists
of two operations and a relation. The interfazmmpositionoperation collects the inter-
faces and sums resource requirements of the underlying components. The other operation,
the interfaceconnectiornoperation relates components by interconnection. The refinement
relation aims at formalizing the relation between abstract and concrete versions of the same
component. A more refined version of a component may make a weaker input assumptions
and stronger output guarantees than a more abstract description. Therefore, in a design we

can always substitute a refined version for an abstract one.

One of the beneficial properties of the interface formalismmésemental designAc-
cording to this property the composition of interfaces can be performed in any order, i.e.,
it is associative. Beside having more flexible framework, this also means being able to
check compatibility and compute composition of the two interfaces without specifying in-
terfaces of other components. Note that task group abstraction procedures are generally not

associative.

Additionally, in component-based design, one wants to refine an interface towards an
implementation, independently of the design of other components. If all implementations
satisfy their respective interfaces, the components will properly work togetherindiee
pendent refinemempiroperty of the formalism states that in order to refine a given compo-

sition of two interfaces, it suffices to independently refine each interface and to compose

88

the obtained refinements. This property enables the system correctness to be established

during interface design, without global check after components are implemented.

Our formalism supports automatic interface compatibility and interface refinement
checking. The interfaces are stateless, i.e., represented by predicates, and, thus, check-
ing of the two properties is efficient. In this chapter we are concerned with defining the
algebra and showing how it can be used on a few examples of real-time applications of

moderate complexity.

Beside the theoretical work in compositional real-time scheduling frameworks, the in-
creased interest in real-time component-based systems has recently resulted in first imple-
mentations. In [77] the interface of a software component is extended to include real-time
assumptions and guarantees of the component. We use similar functional and temporal
specifications, except that we allow for multiple levels of service of a component, i.e., for
the component performance polymorphism. However, since the goal of [77] is reusability
across different platforms, the resource consumption specification is not part of the com-
ponent interface. So, the resource utilization computation is separated from the application
design which assumes virtual resources. Beside, no abstraction of resource requirements is

studied. Instead as units of reuse, we consider components more as units of design.

The approach taken in this chapter is most similar to the recent work [75]. That work
is the first research effort that formally combines the network calculus and interface design
theories in the real-time context. It is not limited to a particular task set characterization or
to a particular resource model. Opposite to the traditional real-time approaches, it allows
for the composition of software process components before the hardware resource compo-
nents are specified. In their work each component represents a task. There is no abstraction
of task groups into components, and no discussion of interface refinement, which is one of
the goals of our work. Also, the task model in [75] assumes independent tasks, so interface

compatibility checking does not have to take into account dataflow constraints. Finally,

89

they assume preemptive fixed-priority scheduling. However, although each component is
specified with a certain priority, the interface composition does not have to be performed

in a certain order.

In interface theory research [13, 15] the component interaction is specified using richer
interfaces. The temporal input/output behavior of a component is typically captured by an
automaton. Therefore, the automaton of the composite interface is constructed by pruning
all violating states from the product of the component automata. Such stateful approach is
a more general way to address multiple levels of component performance. However, in this

chapter we keep the interface formalism simple in order to focus more on real-time issues.

Outline of the Chapter. Sec. 4.2.1 informally introduces a real-time component stud-

ied in the chapter with its functional, temporal and resource parts. The temporal portion
of the component interface consists of a request arrival function and delay. The same
section introduces the resource portion of the interface in the form of the bounded-delay
resource model. How to obtain resource partition parameters for a group of tasks is pre-
sented in Sec. 4.2.2. We introduce interfaces in Sec. 4.3.1, and formally define an interface
algebra Sec. 4.3.2. Discussion of how interfaces can be used for efficient and automatic
component-based design and verification is left for Sec. 4.4. In particular, incremental
design is discussed in Sec. 4.4.1 and independent refinement in Sec. 4.4.2. Sec. 4.5 con-
siders the corresponding interface algebra for general task graphs that may contain cycles.
We work with simpler event models and under certain conditions we are able to prove the

associativity and independent refinement even in this case.

90

4.2 Real-Time Components

4.2.1 Resource Model

Functional model. Let atask sequence = t1, ... {; be a sequence of tasks with a
precedence constraint betwegrandt; ., (j = 1,...,k — 1). Although our arguments
can be generalized for trees of tasks, we keep the task sequence model for simplicity rea-
sons. We consider components as units for implementation, reuse and composition of task
sequences. The functional description of a component consists of a set of task sequences.
Two task sequences from the same component can contain the same task. Figure 4.1 shows
an example of a component with two task sequerngigsandi, ;. For the purposes of the
chapter it is not important whether task inputs/outputs are data processed by tasks or only
requests for task execution. The M and D blocks represent no tasks. Only in figures they
technically denote multiplexing and demultiplexing, i.e., task sequeh¢gandtyt3 are

interleaved and independent.

Figure 4.1. (a) Task graph; (b) Component

Arrival-delay temporal model. The temporal interface of a component is similar to
the interface of a component in [77], and consists of an arrival function and a maximum
delay for each sequence of the component. In fact, it consists of several pairs of arrival
function and delay, one for each level of service of the component, as formally defined in

Sec. 4.3.

An arrival function « of a task sequence is a function that bounds the number of the

91

invocations of the task sequence: for a time interval of lengte number of invocations

is bounded byu(7). In this chapter we concentrate on thersty arrival pattern which is
defined with the function(7) = o+ p- 7 for someo, p € R>(. Both periodic and sporadic
invocation patterns can be modeled by the bursty arrival functions. The expression for

gives the upper bound on the number of invocations. When required we consider integer
upper bound a(7)].
A numberd € R is adelayof a task sequence if all tasks of the sequence must be

completed withind units of time, i.e., a sequence output must be generated atdtiose

units after the occurrence of a sequence input.

Bounded-delay resource modellLet capacity0 < ¢ < 1 be a fraction of the resource
assigned to a component ahd> 0 the maximum time the component may have to wait to
receive this fraction. A resource is calledaunded-delay resource = (c, d) if for any
L > 0 it can guarantee allocations of at leastZ units of the resource in any interval of

the lengthZ + § [59].

The motivation for the bounded-delay resource model comes from the fact that the re-
source demand of a component cannot be precisely described only with a required fraction
of the resource. This is so, because different components may have considerably different
delay requirements [57]. The choice of the delay bodiadldresses the trade-off between

high context switch costs (smalléy and high task execution latencies (larggr

For a given bounded-delay resourBe= (¢,) the resourcesupply bound function
sbfr : Ryg — R>g mapst € Rsq into the minimum supply of the resourdeover all
time intervals of size. From the definition of the bounded-delay resource model it directly
follows:

0, if 7 <9,

sbfp(7) = sbf(.4)(T) =
c(r—9), ifr>0.

92

4.2.2 Task Group Composition

We first briefly review the results from [68, 69] for schedulability conditions under the
bounded-delay model arebr scheduling algorithm. Then we apply and generalize them

for the task model used in this chapter.

Let IV be a set of independent and preemptive tasks that share the same resource, and
let R be a bounded-delay resource model. We say(tiatR, EDF) is schedulabléf under
every instance of allocations of the resouftéhere exists a feasibledF schedule fori?/
[68]. If (W, R, EDF) is schedulable then the set of tagksunder the resourcg = (¢, d)
and theeDF scheduling algorithm can be abstracted as a single requirgmeit i.e., no
global knowledge of task internals is necessary. The discussion on how to schedule several

(¢, 9) resource requirements can be found in [57].

Let IV be a set of periodic tasks = (p;, e;), wherep; is the periodg; is the worst-case
execution time (wcet) requirement of the tasknd the deadline of each task is assumed to
be equal to its period. For a given set of taskshe resourceemand bound functiodbf :

R>9 — R>o mapst € R, into the maximum resource demand over all time intervals of

sizer. For theeDF scheduling algorithm we hawibt y (1) = >°, oy [7/p5] - €.

For the case of periodic workload®&, Thm. 1 in [69] gives the sufficient and necessary
condition for schedulability of W, R, EDF): (W, R, EDF) is schedulable iff for alD <
7 < 2. 1lcmy maximal resource demand is no greater than the minimum resource supply,
i.e.,dbf i (7) < sbfpg(7). In previous conditionlcmyy is the least common multiple of the

periods inWV.

Finally, Thm. 3 in [69] gives a general schedulability condition for the case of other
workload modelg¥ for whichdbf 1y, can be computed: W, R, EDF) is schedulable iff for

all 7 > 0 we havedbf (1) < sbf (7).

We apply this result for the case of the aperiodic workload defined with the task arrival

93

Wi ¢t | b 13 13 la3

o 1 1 3 1 1

p | 12| 1/3| 1/2+1/3 1/2 1/3

d | 213]| 2 1 2/3+1 2+1

e [|0.1]0.3 0.1 0.1+0.1| 0.3+0.1

Table 4.1. Temporal interface and wcet'’s for tasks in Fig(&.1

functions and delays. Lel/ be a set of taskg, = (q;,d;, ¢;), wheregq; is the arrival
function, d; the delay anc; the wcet of the task;, and letR = (¢,0) be the bounded-
delay resource model. To apply the theorem we first compute the demand bound function
of the taskt;. We note that there are at mast (7 — d;) | invocations of the task; that are

released and required to complete in an interval of time of siZéherefore, we have

O7 ifTde,

Laj(T —dj)] - ¢,

dbftj(T) = y ;
T > G

The demand bound function of the total workload 8étis dbf (1) = >, cy, dbfy, (7).
Thus, bothdbfy, and sbfy are known, and we can apply Thm. 3 [69] to check if

(W, R, EDF) is schedulable.

Given the task setV let ¢y be thecapacity functiorthat maps each bounded delay
d > 0 to the smallest resource fractiafy, (6) such that the componetV, R, EDF) is
schedulable witl? = (c¢w (0),6). Tab. 4.1 shows an instance of the task workload of the
component in Fig. 4.1, with each task modeled as a bursty arrival task. Fig. 4.2 shows
capacity functions for eachi’ consisting of only a single task/ = {¢;}. For such a
simple setlV/, the analytical expression fary, can be derived. For instance, we have

cw(0) = max{e; - p;, 0j-¢;/d;},0rd = inv(ew)(l) =d; —o; - €.

In the rest of the section we assume that capacity functions are computed in some
sufficiently large numben,. of points. Also, for two functionsg; and g, with arbitrary

domain setX and range seR, and for a relationp € {<,<,>,>}, we write g; ¢ go, if

94

CAPACITY - ¢

BOUNDED DELAY -3&

Figure 4.2. Capacity functions for Tab. 4.1

g1(z) ¢ go2(x) for all x € X. Forinstanceg; > 1 meansy;(x) > 1forallz € X.

Similarly, the functiory; + g, is defined with(g, + g2)(z) = g1(x) + g2(z) forall z € X.

Component composition.In the formalism that we present in the next section the ca-
pacity functioncy, represents a part of the interface of the component consisting of the task
set IW. In order to compose such components we need to compose resource assumptions
in the form of such capacity functions. For this we again recall Thm. 3 [69], but now for
the workload consisting of two bounded-delay tasis;, d1), (¢2,d2)}. It follows from
the theorem that this workload can be abstracted by the bounded-delay regauice
wherec = ¢; + ¢ andd = min{dy,d2}. This equation shows how to compute capacity
function of the component composition: If two components (worklodéig)and W, are
specified with their respective capacity functiong, and cy,, the sum of two functions,
cw, tew,, ensures schedulability of the composition. That is why, in our interface algebra
(Sec. 4.3.2), when we perform component composition we add the corresponding capacity
functions. Note that such an operation is associative. The task group composition, which

we previously explained in this subsection, does not have that property.

95

4.3 Task Sequence Interfaces

We start this section by motivating the assume-guarantee principle of the formalism and
introducing interface predicates that are used in compatibility and refinement checking. In
the subsection 4.3.2 we formally define interfaces and prove an important proposition about

independent refinement.

4.3.1 Informal Description

Let a component implement a single task sequence, i.e., let it have a single input port
¢ and a single output port. An interface is a constraint on the environment consisting of
an input assumption and an output guarantee parts [13, 14]. In our formalism the values
of the interface input and output ports are arrival functions. A & the set of all arrival
functions, i.e., the set of all monotonically increasing functians R>, — Rso. An
interface assumption may be that the input arrival functian A is bounded by a given
functiona € A, i.e.,i < a. Given the maximal delay € R, of the component, for
the arrival function of the output we have the output guaranteér) < i(r + d) for all
7 € R5p. This inequality holds because, if the delay is at mbshen for all input requests
in an interval ofr + d units, the outputs are produced in an interval of at leastits. Let

i be the function defined withf(7) = (7 + d).

More complex interface includes a measure of resource consumption. We assume that
such an interface also contains an input ponthose value is the capacity function of the
component. LefC be the set of all capacity functions, i.e., the set of all monotonically
increasing functions : R>, — [0, 1]. The resource capacity assumption-is> ¢. For-
mally, the input predicate of the interfaceris> ¢ A i < a, and the output predicate is
o < i%. This interface asserts that “the environment provides capacity largerthad

input requests upper bounded byand the component produces outputs with delay smaller

96

thand”. Fig. 4.3 graphically represents an interface of a component that implements single

sequence consisting only tagk

i < ag = 0 < i

r>c

Figure 4.3. Interface for single task sequence

Let a component implemenis € N, task sequences through pafig o;) of input-
output port§j = 1,..., n). The interface of such a component bounds arrival function
of 4; and delay; of o, for eachj = 1,..., n. Such a workload is still to be executed with
a single resource partition requirement given with a capacity funetiéfig. 4.4 shows an
interface with two single-task sequences and the corresponding predicates. Wewrite

for the interface obtained by task composition of tasks in thélget

Figure 4.4. Interface for multiple task sequences

We introduce two operations to construct more complex interfaces from the simpler
ones. Theompositioroperation puts together input-output ports of the two interfaces, and
sums their resource assumptions, i.e., their capacity functions, as presented at the end of
Sec. 4.2.2. For compatibility we check whether the sum is larger than 1. Fig. 4.5 shows the
interface resulting by composing an interface from Fig. 4.4 with an inteffigc&hus, the

interface describes three single-task sequerigess, andt;s.

Theconnectioroperation connects tasks of an interface into sequences. This operation

extends the set of interface sequences, i.e., previously present input-output ports are still

97

1 < =0y < i

19 < ap = 0y < i

i3 < ag = 03 < i
r>c+ e

Figure 4.5. Interface composition

part of the interface. Fig. 4.6 shows the interface from Fig. 4.5 after the two-task sequence
m = ti1ty IS appended using the connection operation. The figure shows that the resource
capacity assumption is not changed through connection, and that the delay guarantee of a
new sequence is computed as a sum of delays of individual tasks of the sequence. However,
the interface input assumptions describe the most general constraint on arrival rates of the
the extended set of sequences. In particular, there is a constraint for each task that occurs
in a sequence of the interface,+ i12 < aq, i + z‘f% < ay, andiz < a3. For instance, the

rate of requests for task sequences that cortaire., the sum of arrival functiong and

i1o (delayed ford;), is bounded bys,.

r>c+ e

Figure 4.6. Interface connection

In such a general definition of connection, i.e., with arbitrary arrival rates of tasks that
are contained in the connected sequence, the constraints are not of the simplefarm
To illustrate this we consider bursty arrival functions with a simple example of the two-
task connection sequenee= tt,. We assume thaf is specified with arrival function
a1 (1) = o1 + p1 - 7 and delayd;, andt, with ay(7) = 09 + po - 7 @andd,. If we assume

input arrival function of taski; and t, sequences to be 0, i.g;, = 0 andi, = 0, then

98

for the input arrival functioni;, of ¢ 7, sequence we have the constraifts < a; and
z’fg < ap. If we assume»(7) = o + p - T thisis equivalentte + p-7 < o1+ p1 - 7,
ando + p - (1 +dy) < 03 + py - 7. The possible values ef andp parameters of;, are
shown as a shaded area on the rightmost graph of Fig. 4.7. There is a tradeoff in choice of

the parameters, and this area cannot be specified iqsthe a;, form.

Figure 4.7. Bursty functions far &, sequence

If the connection operation with the sequeniggt; is applied on the interfacg; || F;
the resulting interfac¢ F || F, 3) @23 contains an input-output port for each of the se-
guences, t, t3, andt;»;. The input assumptions aie+ 03 < ay, i + z‘l“213 < ay, and
is+itm % < ag. Infact, the connection operation is defined with a set of sequences, each of
which does not contain a cycle of tasks. For instance, the inte(fadg™ ;) ®{m2, 721},

consists of the input assumptiofist+ 4,5 + zgf < @, i+ z’le + iy < ag, andig < as.

Finally, therefinementelation is defined as an implication from more abstract to more
refined interface, in order to be able to substitute a refined component for an abstract one. A
more refined version of a component makes weaker input assumptions and stronger output
guarantees than a more abstract description. In our context, an interface can be refined by
either decreasing capacity function, or increasing arrival function of a task, or decreasing a

deadline of a task.

In Sec. 4.3.2 we formally define the refinement relation and argue about its properties.
In the following paragraphs we illustrate component composition and interface refinement
at the task composition level. We first show examples of interface refinement through

modification of the capacity function, while keeping other interface parameters constant. In

99

a173(7'):1+T/2,(12,3(7'):1+’7’/3,d173:2/3+1,d2’3:2+1

F F, F, F,
EXprF 2 3B{m13, ma3 H(F1 2|| F5)B{m13, o3 H(F1 || F2|| F3)B{m13, mo3 }
CF Ca Cy G
ap (a1,37 02,3)
dp (di3,d3)

Table 4.2. Interface refinement

general, if initial task composition is performed with larger task sets, then refined interface
is obtained. The extreme case is when all tasks in the task graph are composed. The
other extreme case, when each task is considered as a separate component, results in more

abstract interface.

151

t2

Figure 4.8. (a) F, = Fio3®{ms, ms}; (b) Fp = (Fi2||F5)@{ms, ms}; (¢) Fo =
(Pl Fo|| Fs)@{ 13, T3}

Fig. 4.8 shows three interfacés, F), andF, of the component shown in Fig. 4.1. Task
composition is shown with rounded rectangles, and interface composition with dashed rect-
angles. The interface expressions and predicates are given in Tab. 4.2. In the example we
use the task graph and data from Fig. 4.1 and Tab. 4.1. We assume that only task sequences
t1t3 and tyt3, and not sequences for i = 1,2,3, are implemented by the component.
Therefore, we assumg = af" + a$. All three interfaces have the same arrival functions
(a1,3, a2,3) and delaysd, 3, d» 3). However, corresponding capacity functions c, andc,

are different and Fig. 4.9 shows that< ¢, < c.. Therefore, we havé, < F, < F..

100

o o o
~ ® © =
1

CAPACITY - ¢
o
@

o
@

o
IS
\

o

o

w

A}
\

o
N

L L L L L L L L ,
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
BOUNDED DELAY -3&

Figure 4.9. Capacity functions from Tab. 4.2

For some interfaces it is possible to increase arrival functions or decrease delays of
the interface task sequences while keeping resource capacity function constant. In some
cases it is even possible to add a new task sequence to the component without affecting
the capacity function. For instance, lgt = (a;,di,¢1) = (1 +7/2,1,0.2) andt, =
(ag,ds, e3) = (1 +7/2,2,0.2), i.e., let the two tasks differ only in delay. It can be showed
that the capacity functions, and ¢, », the capacity functions for independent task sets
{t:} and{#, t,} are equal,c; = ¢;» This comes as a consequence of the small delay
requirement’;. So, we have thak; , < F. As explained in the following subsection, the

definition of the refinement allows larger number of ports in the refined interface.

4.3.2 Interface Algebra

Let T be a set of tasks. fask sequence = t,1, . ..t is a finite sequence of different

taskst; € T, i.e., foralll <i < j <k we havet; # t;, and¢; has to complete beforg

starts execution.

AninterfaceF = (Sr, T}, Ap, Dp, cr) consists of:

e AsetSr of task sequences, and a gét of availabletasks.

101

The set of available taskg;! C T is a set of tasks available for the implementation
of the interfacer or its refinements. Let the sét- C T of tasks contain all tasks
in all sequences ofr, Tr = {t € 7 | m € Sr}. For each task sequengec Sp
there exist an input port, and an output pord,. Let I = {i, | 7 € S} U {r},

Or ={ox | m € Sp},andPr = Ir U Op. The type of a port € Ppis A if x # r,
andC if z = r. Let avaluationv be a function onPr that maps each porte Pr to

a value of the port type(x).

e A function A that maps each taske T into an arrival rate functiom »(¢) € A,
and a functionD that maps each tagke 7' into a delayDp(t) € Ry.
Given a task sequeneec Sp, let Dy () be the sum of delays of its taskSy(7) =

> ier Dr(t). By definition, for an empty task sequencee haveDy(e) = 0.

e A capacity functioncp € C.

Theinputpredicatepl, = ¢! (Sr, A, Dr, cr) Over input portsly is defined to be

op=r>ce A N\ D i < A1) (4.1)

teTrp nw=mi-t-m2€ESE

Theoutputpredicate)? = ¢° (S, Dr) over Py is defined to be

o9 = N\ on <P (4.2)

TESE

The interfacealgebrafor real-time components consists of:

e A partial binary function calle@omposition mapping two interfaceg’ and GG into

an interfacer’|| G.

The composition?|| G is defined if T/ N T, = 0, and if notcp + cq > 1, i.e., if
(cr+c)(0) < 1. If F||G is defined, therSr ¢ = SrU S, Ty, = T} U TS, and

CrG = min{cF + cq, 1}. In addition,AFHG(t) = AF(t) if t e Ty, andAFHG(t) =

102

Ag(t) ift e Tq. Slmllarly, DFHG<t) = DF(t) if t € Tp, andDF”G(t) = Dg(ﬁ) if

te Tqg.

e A partial binary function calle¢onnection mapping an interfacé’ and a setS of

task sequences to an interface>S.

The connectiorF® S is defined if T contains all tasks in all sequences%fi.e., if

for all sequences of S, every task of r is also an element of .

If F&S is defined, therfres = Sk U S, Thog = Tr, Ares = Ap, Dros = Dp,

andcrgs = cp.

e A binary relation= between interfaces, calledfinementIf /' < F then the inter-

face F' is said torefinethe interfacel”, and F' is said toabstract/”.

An interfaceF” refines a componerit if (a) Sp 2 S, (b) T4, = T, and (c) for
each valuatiorv on Py there exists a valuationf on Pr. such thatv = v’ on Py,

and both predicates.. = ¢%, and¢$, = ¢% are valid.

We next formally present four different ways for interface refinement. The interface

F = (Sp, Ar, Dr, cr) is refined by an interfacé” if one of the following:

e The connection operator is applied. Formalliy,= F&S < F, for each set of task
sequences.
The refinement condition (a) is satisfied singe = Sr U S O Sr, and (b) since
sz:/ = T;@S = T;f-
If in the refinement condition (c) we definé(z) = 0 for eachz € Pp \ Pr (i.e.,
arrival functions of all sequences frofh\ Sr are 0), we havel, = ¢ and¢®, =

#9, and thereforef” < F.

e The functionAr is modified toAr by increasing arrival functionl z(¢) for some

taskst in Tr,i.e.,F' = (Sp, Ap, Dp,cp) < F.

103

The refinement condition (c) is satisfied since for any valuatio®efrom Equ. 4.1
we have¢, = ¢'(Sp, Ap,Dp,cr) = ¢'(Sp,Ap,Dp,cp) = ¢5, and from

Equ. 4.2 we have?, = ¢9.

e The functionDy is modified toDp by decreasingr(t) for some tasks in T,
i.e., F' = (Sp,Ap,Dp/,cp) < F.
In this casegpl = ¢!(Sp, Ap, Dp, cp) = ¢'(Sp, Ap, Dpr, cp) = ¢L,, and¢$, =
¢°(Sk, D) = ¢°(Sp, Dr) = ¢7.

e The functioncr is decreased tog, i.e., F' = (Sg, Ap, Dp, cp) < F .
In this casepl = ¢'(Sp, Ar, Dr, cr) = ¢'(Sr, Ap, Dp, cp) = ¢h,, and¢Q, =
OF-

The next two propositions formalize the two properties that will further be explored in

the following section.

Proposition 12 (Incremental Design) For all interfacesF;, F», and F3, and all sets of

task sequences and S,

1. If (Fy||Fy)|| F5 is defined thenF,||(Fy| Fs) is defined, and(F||Fy)||Fs =
Py (F2| F3).

2. If (F1®5)®S,; is defined then(F1&5;)®S, is defined, and(F1&S5,)®S5 =
(F195)@ 5.

3. If (Fi||Fy)®S and Fi@S, are defined then(Fi@S)||F, is defined, and
(Fi||F)@8) = (FidS)|| F.

Proof.

1. The two expressions are defined7f; N Tp, = fforl1 < j < k < 3. The

equality follows from(Sp, U Sp,) U Sk, = Sp, U (Sg, U Sk,) and(cg, + cp,) + cp, =

104

cr, +(cr,+cry). Inaddition, bothd g,z 7, (1) @aNdA g, (7, 1) () are equald g, (¢)

if t € T, for j = 1,2, 3. Similar argument holds faDr, | 7,7, = Dr,|(F)73)-
2. (F1®S5))®S, = F1®(S; U S,) follows directly from the connection definition.

3. Similar to 1.

Proposition 13 (Independent Refinement)For all interfacesF, F’ and GG, and all setsS

of task sequences,

1. If F'||G is defined and”” < F, thenF’|| G is defined and”’||G < F||G.

2. If FoS is defined and™ < F, thenF'®S is defined and”®S < FS.

Proof.
To simplify notation of the proof we first introduce the following predicatgs:= r > cp,
¢ZF = /\tETF (ZW:Wl't-ﬂ?ESF ZEF(TH)) < AF(t)1 and(lﬁg = /\TK'GS O < 7;7?F(Tr)' Note that

Oy =y N O

1. SinceTy, N T4 = TEN TS, =0, andeg < cp, the interface|| G is defined.

(@) Sprj¢ = S U Sq 2 Sp U Se = Spya-

0) Thyo=Tp U TE=TEUTE =Ty

(c) If F' < F then for each valuation o there exists a valuation oA such
that the predicate’,, = ¢%, is valid, i.e., both¢}, = ¢%., and ¢i. = ¢4, are
valid. If ¢, = ¢ is valid for eachr, thencp > cp, and thereforecr ¢ =
cr +cq > e+ cq = g, Consequently, for eachthe predicat@ﬁ};”G = O
is valid. If F||G is defined therby, , = ¢% A ¢ andop, , = ¢F A ¢¢. So, if
both ¢, = ¢¢, andgb}HG = ¢ A @i, are valid, thert;b},HG = ¢% A ¢l is valid,
.., ¢y o = Pl IS valid. Similarly, if botho g, = ¢ andép, , = o7 A ¢ are

valid, theng g, , = ¢7 A og is valid, i.e..¢2, , = 67 is valid,

105

2. SinceF @S is defined andl'r O T, the interfacel”’ @S defined.
(@) Spras = S US D SpUS = Spas.
(b) T;/@S - T;' = TF+ = T;@S'
(c) If ¢} = ¢} is valid for eachr, thency > cp/, and thereforecrgs = cp >
crr = cpgs, Consequently, for each the predicatepy, ¢ = ¢ IS valid.
If both %, = ¢ and 9P = 0% A ¢F are valid, thenpf, s = o9 A o7
is valid, i.e., ¢9.s = 0% is valid. If F/ < F then¢? = ¢%, ie,
for each sequence of Sp the predicateo, < P implies the predicate
0, < i27™_ This impliesi’”™ < 7™ ie., Dp(7) < Dp(n). Since, for
eacht € Tp, we haver = t € Sp thenDp (t) < Dpg(t). Similarly, from
¢ = ¢% we havedp(t) > Ap(t) for eacht € Tr. For a givent € Trgg, if

.Dp(

) = ™ < Ar(t), and if we takei, = 0 for eachr € Sp/ \ (Sr U S),

we have

Z iPr(m) < Z iDr(m) < Ap(t) < Ap(t)

WGSF/@S WESF@S

Consequentlyp’ ;s = ¢hvasg-

Remark 1 If F(Fy, ..., Fy, S1,...,.5) is an interface computed by applying finitely many
composition and connection operations on interfadés..., F;, and task sequences
Siy...., 5, and F| < F, ... F. =< F, thenF(F|,...,F.,S,..,S) is defined and
F(F, ..., F,S51,....,8) 2 F(Fy, .., Fy, Si, ..., 5)).

106

4.4 Real-Time Component-Based Design

4.4.1 Incremental Design

Since the interface composition is associative, the order in which we can compose com-
ponents is arbitrary. Moreover, this means that compatibility can be checked even before
all interfaces are fully specified, i.e., before the system becomes closed. Formally, we can
check whethek > 0 interfaces are compatible, i.e., whetfi&x || . . . || Fiy_1|| Fx)01... k10
is defined, by constructing(7 || ... || Fi—1)6,..
tational complexity of this operation is typically less than, - ... - mp because incom-
patible levels of services are eliminated as soon as possible. This procedure can be further

improved by composing interfaces in a tree-like order, rather than in a linear order.

We demonstrate the efficiency due to the incremental design on a real-time robotic
application adapted from [27]. The application consists of three subsystems, command
(S1), measurements), and control §3) subsystem. There is a total of five task sequences
and 13 tasks. Tab. 4.3 shows details of each subsystem, and Fig. 4.10 and 4.12 show two

different component decompositions of the system.

The interfaces for the components were initially designed for three levels of service:
80%, 100% and 120% of nominal arrival rates given in Tab. 4.3. The execution times and

deadlines of the tasks were also part of the specification.

Let the system be composed out of componeht®8 andC' as shown in Fig. 4.10. Re-
sults of checking for compatibility of the corresponding interfaces are shown in Fig. 4.11.
Instead of showing entire capacity functions in the last two columns of the table we char-
acterize the functions with two numberg(0) is the resource capacity at delay 0 and
is the delay at which capacity has to be 1. The interfdg|| Fz)045 consists of 5 lev-
els of service, since 4 were eliminated due to incompatibility. Similarly, the interface for

the entire system consists of 11, and &bt= 27, levels of service. Note that computing

107

S Sl SQ S?)

! UP) T3 Ty s
t]t] tio | tis [for| too [tos || ta1 | ta2 | far [tao [tas || ts1 | te2

0.02 0.04 0.14 0.07 0.18
0.2/1.2/1.0(1.0[{ 2.0|0.3|/0.8/1.2/1.0/0.5/0.5|0.1|0.5
9.0627.7818.725.0814.248.462.044.912.98%6.444.461.344.21

1(1.16/1.64 1 [1.151.59 1 1.18 1 1.141.57] 1 1.23

3

SEESHE N R

Table 4.3. Task data for robotic application

the composition interfacéf || F'z|| Fc)0.45, i.€., checking for compatibility, involves both

composition and connection operations of our interface algebra.

Ar \ Bf \

ne (O oO)\foO)] o
S R
1, €|t o
L, &——{ = ———————>9
A ——— e

Figure 410(FA”FB”FC’)0AB

If the system is composed out of componenish and C' as shown in Fig. 4.12,
the resulting interface§F,|| F;)0., and (F,||Fy|| Fco)0q, are shown in Fig. 4.13. The ta-
ble shows that with this composition only two combinations of the service is attain-
able even though the properties of the arrival sequences and tasks are the same in both
cases. This confirms that, although interface composition is associative, the task compo-
sition is not. In particular, even thoudliF4||F)||Fc)0as = (Fal|(Fs||Fc))0as, and
(Ful F)NI Fc)a = (Full(Fy|| Fe))8ap, We have that Fu|| Fg|| Fe)0.as and(F, | || Fe)fa

are not equivalent.

108

(FallFB)0as (Fa||FB||Fc)fas

k SA SB C(O) (51 k SA SB SC C(O) (51
1{/80|80(0.691.8 1180/80(80|0.811.2
2 |/80[1000.711.80 | 2 ||80/80{1000.841.0C
3|80 12(}\0.731.8(3(/80/80[1200.870.80
4 100100}\0.850.8(4 118010080|0.831.2(
5 100120}\0.8'0.7(5 ||801001000.860.90
6 [/80[10012000.890.60
7 180{12080(/0.851.0C
8 [180[1201000.88.8¢
9 [/80[12012000.910.5(
10{10010080(0.9/0.10
11]10012080(0.990.0¢

Figure 4.11. Levels of service 0F 4| Fz)0ap and(F 4| Fg|| Fc)0an

4.4.2 Independent Refinement

The formalism presented in Sec. 4.3 enables compositional refinement, i.e., it en-
ables independent refinement from component interfaces to component implementations.
This means that in order to refine a given composition of interfaces, it suffices to inde-
pendently refine each interface and to compose the obtained refinements. Formally, if
(Fr]l.. [[Fr)0 2 FandF} X Fyforj =1...k, then(F{|...[|F})0 = F. This follows
from the definition of the refinement relation since a more refined version of a component
makes a weaker input assumptions and stronger output guarantees than a more abstract
description. The higher efficiency of such a procedure lies in the fact that now refinement
checks involve smaller interfaces. In that way, a single complex problem is reduced to

multiple simpler problems.

To illustrate this concept we discuss a design of a real-time application with randomly
generated parameters. The underlying graph in Fig. 4.15 shows an instance of a task prece-

dence graph consisting of 20 task sequences of length 5. We assumed that all tasks are

109

me = = = >
M, e = = = ?
U = o =9
m,® -— {50
T, ® S - =0
Figure 4.12.(F, || F|| Fe)bap
(Fall£5) 0 (Fall B[o) Oa

ke [Sa[S eO) &1 | [[Sa[Ss[Sc]e(0) &

.890.9 8080/80|0.90.1
2 801000.940.30 | 2 80/8011001.000.0C

[EY
o
o
0]
o
[o¢]
¢

[EY

Figure 4.13. Levels of service OF, || F})0u, and(F, || Fp|| Fo)Oup

divided into two sets of 20 tasks, such that 10 task sequences consist of tasks from one, and
remaining 10 task sequences of tasks from the other set. For each sequence and for each
of its 5 stages, one of 4 tasks was randomly selected. For each sequence the burst was 1
and the rate was randomly selected from the interval [0.025,0.05]. After duasid rate

p; were computed for each tagk the execution time of each taskwas chosen randomly

such that the sum of the terms p; - ¢; of tasks in each half of the design was in the interval

[0.4,0.5].

The specification for the entire application is an interfaceith a given capacity func-
tion ¢y for which cp(0) = 0.9 andcp(1) = 1. The design goal is to implement the system
as a composition of real-time components that refine the specification intétfatethat
purpose the specification interfaéeis represented as a compositibn= F1 || F, of two

interfaces F; and Fy, aimed for independent implementation. Due to the random character

110

of the application, the capacity functions are assumed to be eqyak- cr, = cr/2.

Therefore,cr,(0) = 0.45 andcg, (1) = 0.5 (i = 1,2).

Let F| be the composition of components that consist of individual tasks in the upper
part of the design. Lef), be the same for the lower part of the design. For a particular
instance of the random task graph the capacity functio#$ ahd 7 are shown in Fig. 4.14
with solid lines. The figure shows that the interfalcerefinest’, but F| does not refine
Fi. However, if task composition is performed at the stage level (see Fig. 4.15), i.e., with
four tasks in a component, the obtained composition intertgGerefinesF;, as shown
in Fig. 4.14 with dashed gray line. In our repeated simulation experiments with other
problem instances, there was also no need for considering composition of components
that consisted of more than four tasks. Moreover, the other part of the design may be
further independently refined by increasing the rate of the first task sequence as shown
with the capacity function fo#). In some instances potential increase of rate was up to
20%. In conclusion, according to compositional refinement procedure, composition of the

refinements/ || '}, refines the original specification interfage

4.5 Task Graph Interfaces

In this section we address the interface-based verification of real-time properties in sys-
tems with more complicated task dependencies. We study general task graphs that may
contain task cycles, i.e., functional cycles. Some examples of signal processing applica-
tions with task cycles and real-time requirements can be found in [23, 24]. However, it
should be noted that the related problem of performance cycles is also very relevant since
nonfunctional dependency cycles often occur in multiprocessor systems with communica-
tion sharing [62]. The objective here is similar to the one discussed with respect to the

task sequence case. We would like to have an interface-based theory that satisfies both the

111

0.6

CAPACITY - ¢

L L L L L L L L ,
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2
BOUNDED DELAY -&

Figure 4.14. Capacity functions fét,Fy’,F;,Fy

e ”2
e = 2
L R e = ey > NP AE 2
g 7403
el
e 2
< 0 0 2
€ A ‘n
F‘Z ? N 74 :' B:“ g
H NS

Figure 4.15. F||Fy < F

incremental design and independent refinement properties. We try to establish what is the

minimal but complete form of interface needed in this case.

The case of functional cycles, i.e., cycles of task precedence relations, turns out to be
more difficult to analyze [40]. The general input-output event model relationship is diffi-
cult to calculate and often requires complex event model propagation operations. In such
approaches, fixed-point calculation is usually necessary for models with cycles. Problems

occur because output event model is often too conservative to be used for a feedback input.

112

In [40] such an approach is taken for periodic models with jitter. However, the approach is

not sufficient for general task graphs. As discussed below, we extend the periodic with jitter
event model with phase information to better address graphs with cycles. Thus, we define
an interface with both phase and jitter information, and for the corresponding algebra we

show when it satisfies incremental design and independent refinement properties.

In this section we will assume that the occurrence of an event is modeled with a time
interval that describes its timing unpredictability. An interface expresses input-output de-
pendencies in the form of output time interval guarantees under certain input interval as-
sumptions. The semantics of such a specification allows one input time instant to be related
to multiple output time instants and vice versa. This form of interface is useful when ex-
act event instant can hardly be specified, but when its bounds are available. It contains
the graph of ports and a time interval for each port. In general, it may contain multiple
tuples of intervals, but no general relationship between input and output intervals is a part
of the interface. This affects composability, but allows for simple operations, i.e., simple

verification.

45.1 Component Model

A component implements an arbitrary directed graph of tasks. Each edge represents a
data (or event) precedence relationship. Each task may have single, multiple, or no inputs
and outputs. After a data, or event, becomes available at its input, the task consumes the
data, executes, and then produces the output data. Although in this work we do not consider
graphs where producer-consumer relations are not unitary (e.g., as in general Static Data
Flow models [50]), we believe that most conclusions can be extended also to these cases.
We assume that task communication is performed through input data buffers, that store the

arriving events before they can be processed. For instance, an event is stored while previous

113

events for the task are being processed, while the shared resource is being used for other

tasks, or while other synchronizing events are being waited upon.

For tasks with multiple inputs we assume so called AND type of task triggering.
Namely, a task is activated only when events are available at all incoming edges. We
do so because in graphs with cycles closed with OR type of triggering, an event at an open,
i.e., cycle-external input would lead to ever increasing number of events to be processed in
the cycle (see Fig. 4.17 d). Also, if the graph contains cycles, we assume that there exist
sufficient number of data/events on each cycle such that the execution does not block. To
address tasks with multiple inputs and task graphs with both the cycles and open inputs,
the algebra that will be presented in this chapter contains additional operatiojyithe
operation. This operation takes two input event streams, matches the corresponding events

for the AND type of triggering, and generates such the matched event stream.

In [63], one of the rare methods that addresses functional cycles in a compositional
manner, the event model is tiperiodic with jitter event model. This event model is not
as general as the one presented in Sec. 4.3. In such a model the eventppisrithe
same for all system ports, but different ports have different jitter values. The exact interval
of an event time uncertainty is not known, i.e., the event phase is not known. In such an
approach the cycles are analyzed by iterative propagation of input event parameters until all
event parameters along cycle converge. If even a single task on the cycle has response time
jitter, then after the first round of event model propagation the cycle-internal input jitter of
the AND-activated task will be larger than the cycle-external input jitter. The simple event
model allows for only a very conservative calculation of the jitter of the AND-activated
task which is equal to the maximum of the two jitters. Thus, the larger jitter is propagated
around the cycle again, resulting in an even larger jitter at the cycle-internal input of the
AND-activated task. Obviously, this method would not converge. However, in [63] it is

shown that for a restricted set of cyclic graphs (e.g. a cycle is allowed to have only one

114

external input) and under certain conditions that may be rather pessimistic, the fixed-point

computation approach can be avoided.

Figure 4.16. Periodic event model with jitter and phase

This problem is a consequence of the fact that event model propagation does not capture
correlations between the timing of events in different event streams, in particular, in input
event streams of the AND-activated task. We include a phase of an event stream, i.e., we
make the event timing uncertainty fixed with respect to the period instances. The phase
information increases the composability of models with task cycles, because, as will be
evident from our interface algebra, it allows for better jitter calculation for the the AND-
activated task. Thus, we limit the discussion here to a variant of the periodic event model
with jitter and phase. This means that the occurrence of an event is assumed (or guaranteed)
up to the time interval of the formn. - p+ d, m - p+ D], wherep is the period of the model,

m is the instance of the period, ard(d < p) and D define the lower and upper bound
of the interval. An event sequence instance specified with this event model is shown in
Fig. 4.16. Note that the standard periodic with jitter event models are defined with a single
value D — d for each event. We present the theory for the case when event jitter is less than
the period of the systemIX — d < p). However, most of the results hold even if jitter is

larger than the period, thus allowing for modeling of event bursts.

Fig. 4.17 a) shows a task, its input and output ports, and their event models. The full
circles for ports denote that the time intervals are precisely known up to the period instance,
i.e., the first input event occurs in the interyd; - p + d;, m; - p + D;] and the first output
event is generated in the intenjat, - p + d,, m, - p + D,]. Such a full information for

input ports is necessary for the correct join operation (Fig. 4.17 b). However, many input-

115

a) (ml')d,”D,'). > t D.(mo’dn’Do)

(my, d,, D)
b)
(my,.d,, D)
©) (m,d,D) = t —=0 (m, d,D,)

<
d :>>—‘>¢—>J

Figure 4.17. Simple graph components with port event models

output assertions of the assume-guarantee type only establish the delay between outputs and
inputs, and do not enforce exact time intervals, i.e., exact period instance of the intervals. In
such specifications the first event of a stream can occur in any period instarfcedepict

this kind of port dependency in figures we use empty circles, as shown in Fig. 4.17 c).
In particular, for eac € Nj if the first input event occurs in the intervill, + m;) -

p + d;, (n + m;) - p + D;] then the first output event is generated in the intefual+

me) - p + do, (n + m,) - p + D,]. In this case port values, determine only the period
latency between the corresponding event occurrences on different ports. That is why, in
our interface definition, we distinguish between two types of ports, locked - which makes
occurrence time specific to a single period (Fig. 4.17 a), and unlocked - which allows for
the occurrence in any period instance (Fig. 4.17 c). For the unlocked ports, the interface
does not specify exact port time intervals, but only the time difference between ports. Note
that all ports that are connected irrespective of the direction of dependencies have the same

port type. Fig. 4.17 d) shows how two connection operations represented with full arrows

116

can be applied on simple graphs from Fig. 4.17 a) and b) to generate a functional cycle with

a single external input.

To make the presentation simpler, we concentrate on the composition of event models,
and not on the resource models. Although this is not a constraint of the theory, we present
it as there is no resource sharing. So, we assume that allocation of tasks to processing
elements and resource scheduling policy is given, such that bounds on task response time
can be computed. For instance, if each task has its own dedicated resource, bounds on
response time equal bounds on execution time. In [78] a procedure for tight computation
of such intervals is given in the general case. Along the lines of the informal discussion

given in this section, we next formally define the interface for task graphs.

45.2 Interface

Let p € R.(be the constargeriodfor all interfaces.

AninterfaceF = (G, mp, dp, Dr, lp) consists of:

A directed graptGr = (P, pr), that consists of a set pbrts P and a set of direct
portdependenciesr C P2. Given G, let the set ofnput ports/y be the set of all
ports without predecessors, i.&, = {i € Pr |Vz € Pp . (z,1) ¢ pr}. Let the set

of output portsOr contain the remaining ports, i.€)r = Pr \ Ir.

A periodinstancefunctionmy : Pp — Z.

A lower-bound functiondr : Pr — R such that for al: € Pr it holds0 < dp(z) <

p. An upperbound functionDr : Pr — R such that for allz € Pp it holds

dr(z) < Dp(z) < dp(z) + p.

A lock function lp : Pp — B. If Ip(z) = 1 for a portz € Pp then for each

n € Ny the period instance of the—th eventz(n) on portz is given withmpg(z) +

117

n. We assume that for each two potits 2, € Pp, if the two ports belong to the
same weakly connected component®f, thenir(z;) = Ip(2,) (a directed graph is

weakly connected if it would be fully connected by ignoring the direction of edges).

The conditionDr(z) < dp(z) + p is introduced to make the event jitté(z) — dp(z)
smaller thanp. This means there are no event bursts, i.e., ho simultaneous occurrence
of events, on port. This constraint is introduced only to make the presentation simpler,
most results hold even if it is not satisfied. According to the definition above if there exists
z € Pr such thatiz(z) = 1, i.e., if portz is locked, then we havé.(z') = 1 for all

z’ € P whereP is a weakly connected component containingIn that case we also
write Ip(P) = 1 and say the componeti is locked. The simplest locked and unlocked
components are shown in Fig. 4.17 a) and c) respectively. To avoid a formal introduction
of initial events of a cycle, in following sections we also assume that for each cycle of
interface graphzr there exists a port € P of the cycle and an input pofte I such

that(Z, x) € pp.

Interface Semantics. We assume that the event sequence on each port is indexed
starting from the event index zero. L&t= [Ny, — RR] be the set of all infinite sequences
of real numbers. Each event occurrence is bounded in time by an interval specified with a
triple of numbers. Given numbers € Z, d € RandD € R, letS(m, d, D) be the set of
sequence§(m,d, D) ={seS|VneNy.(n+m)-p+d <s(n)<(n+m)-p+ D}.
Finally, let /7Ir be the weakly connected component partition(df, i.e., the set of all

weakly connected components Gf:.

The semanticsSr of an interfaceF is a set of signalss : P — S, i.e., a set
of tuples of event sequences, that satisfy the constraints. ofFormally, givenF =
(Gp,mp,dp, Dp,lp), s € Sp iff for each weakly connected componeft € [Ip we

have

118

e if [p(P) = 1 (P is locked), then for each port € P it holds s(z) €
S(mp(z), dp(z), Dp(z)), and

e if [p(P) = 0 (P is unlocked), then there exists a numherc Z such that for each

portz € Pitholdss(z) € S(m + mp(x), dr(z), Dr(z)).

According to this definition, for a locked post € Pr (Ir(z) = 1) and for eachn €

Ny, the timing uncertainty of the—th eventz(n) on portz is given with the interval

[(n 4+ mp(z)) - p+ dr(z),(n+ mp(z)) - p+ Dr(z)]. The difference in the two cases of

the previous definition is in the additional existential quantifier in the unlocked case that
enables the exact period instance of a port not to be specified. However, the vatue of
has to be the same for all portan the componenf. The uncertainty in the locked case
comes only in the form of a single interval, whereas in the locked case there are infinitely

many such intervals.

The semantic§ determines’r,dr,Dr, andir, but notpr and notm . The function
my IS determined for all locked ports, whereas for unlocked ports only the differences in
the function values between ports in the same weakly connected components. Therefore,

we have the following lemma:

Lemma4 Let F' = (Gp, mp,dr, Dp,lr) and E = (Gg, mg, dg, Dg, lg) be two inter-
faces. Ifllr = IIr (and consequentlyr = Pg), dp = dg, Dp = Dg, lp = Ig,
for each weakly connected componéhte [Ir and each two ports;, 2, € P it holds
mp(1) — mp(x) = mg(x) — me(zz), and for each locked port € Pp it holds

mp(z) = mg(z), then the two interfaces have the same semarfiies; Sg.

In the rest of the section we writgx for the restriction of the functiorf on a domain
setX. GivenP C Pr letSp p be the set of sequences frarestricted to ports irP, i.e.,

SF‘P:{SIZP—>S’E|$ESF.8,:S‘P}.

119

4.5.3 Interface Algebra

The algebra contains three operations and a relation. Two operat@nppsitiorand
connection and therefinementrelation are analogous to the task sequences case. The
third operation, thgoin operation, is related to tasks with multiple inputs, i.e., AND task

triggering.

Composition. The binary composition operatidhon two interfacest” and £ puts
together their ports without making new dependencies. The operation is illustrated in

Fig. 4.18.

Figure 4.18. Interface composition operation for graphs

Let F' = (GF, mg, dp, DF, ZF> andE = (GE, mg, dE, DE, ZE) Interfacel” = F”E is

defined if Pr N P = (). Inthat case?”’ = (Gpr, mp:, dp:, Dpr, I) Wwhere

GF/ = (PF’pr’) such thath/ = PrUPg andpFr = pr U pg,

® Mpi|\pp = My, ande’\PE = mg,

dp/\pp = dp, anddpp, = dg,

DF’\PF = Dp, andDF/‘pE = Dg, and

ZF’|PF = I, andlpl‘pE = Ig.

Connection. The unary connection operatien connects an output port of an interface

to an input port of the same interface, by taking out the input port from the set of ports and

120

establishing dependencies from the output port to the input port successors. An instance of

the connection operation is shown in Fig. 4.19.

Figure 4.19. Interface connection operation for graphs

To simplify notation, for two ports;;, z, € Pr we write pathp (1, 22) = 1ifin Gp
there exists a directed path from to z,, and path (z;, 22) = 0 otherwise. Also, for a
portz € Pp let Pp(x) € IIr be the weakly connected componént containing portz.

Finally, let Succr(z) be the set of all direct successorsmah Gr.

Let F/ = (Gp, mp, dp, Dp,lp), iy € Ir, ando; € Op. InterfaceF’ = F—(oy,%) is
defined if the following conditions are satisfied

1. dr(o1) > dr(ir),

2. Dp(01) < Dr(iy),

3. if path (i1, 01) = 0 and a)lr(i1) = lp(01) = 1 (both ports locked) or bPg (i) =

Pr(01) (both ports in the same connected component), theti;) = mg(0,), and

4. if pathp (i, 01) = 1, thenmp(i1) < mp(o).

According to condition 3a) if the two ports are locked, the connection operation requires
they have the same period instance valugs Conditions 3b) and 4 cover the cases in
which 7; and o; are contained in the same connected component. The condition 4 ad-
dresses the case when the connection operation introduces a new c§gldecause, by

definition, s, € I does not have a direct predecessotin

121

If the connection operation is defined, we hae = (Gp/, mp:, dpr, Dpr, lpr) =

F—(oy, 1) Where

e Gp = (Pp:,pp) such that a) ifpath(4,01) = 1 then Pr» = Pr andpp =
pr U ({01} x Succp(iy)), and b) if path (i, 01) = 0 then P = Pp \ {41} and
prr = pr \ ({in} x Succp (i) U ({or} x Succp (i),

e a)if [p(i1) = lp(0o1) = 1 0r Pp(iy) = Pp(o1) thenmp = mpp,,, b) if lp(i1) = 0
andPr (i) # Pr(o01) thenmp (z) = mp(z) + (mp(01) — mp(i)) for each portc €
PriN Pp(iy), andmg (z) = mp(z) for each portc € Pp/\ Pr(iy), and) iflp(i) =
1, lp(01) = 0andPr(iy) # Pr(o1) thenmp (z) = mp(z) + (mp(iy) — mp(o1)) for

each portc € Pp N Pr(o01), andmg (z) = mp(z) for each porte € Pp \ Pr(o01),
o dp = dF\PF/,
o Dp = DF‘pF,, and

e a)if lp(iy) = 10rix(o;) = 1thenir(z) = 1 for each portz € Pp N (Pp(i) U
Pr(01)), andlp (z) = lp(z) for each portr € Pp \ (Pr(i1) U Pr(01)), and b) if

lr(i) = lp(01) = 0 thenlr (z) = [r(z) for each porte € Pp..

According to this definition, only in case when the connection operation closes a cycle the
input ports; remains in the set of ports di’ with its edges, but with new dependencies
between the output por; and successors of included. In all other cases the edges from

i1 to its successors are substituted with edges fepwith i; removed. By our initial as-
sumption, for each cycle of interface graph- there exists a port € Pp of the cycle

and an input pori € Ir such that(i,z) € pr. Taking into account the connection op-
eration definition we have that this property is preserved under the connection operation.
Consequently, for each output pere Oy there exists an input port suéke I such that

path (i, 0) = 1. In fact, this property is preserved under all algebra operations.

122

From the above definition it also follows that when the operation is applied between two
weakly connected componen®s (i;) and Pr (o,), the period instance functionz values
are translated to the values of the locked component, or to the values of the component
Pr(0y) if both components are unlocked. The values of functidpsand Dy are the
same asir and Dy, respectively. If any of the two components is locked all ports in
these components will be locked after the connection operation, and if both components

are unlocked all ports in these components will be unlocked.

Join. The unary join operatios connects two output ports of an interface, matches the
corresponding event streams for the AND type of triggering, and adds the matched output
to the set of ports. To simplify the presentation the definition given here is limited to only

two output ports, but this can be generalized. The operation is illustrated in Fig. 4.20.

F F ~(o,,0,,0)

Figure 4.20. Interface join operation for graphs

Let F' = (GF,mF,dF,DF,ZF) and oy, 00 € Op. F' = F>‘(01,02,0) is defined if

o ¢ Prandifig(o) = lp(02) = 1. Inthat casd”’ = (Gg:, mp:, dpr, Dps, g) Where

e Gp = (Ppr,pp) such thatPr, = Pr U {0} andpp = pr U {(o01, 0), (02,0)},
e mp(0) =max{mp(01), mp(0y)}, and for each port € Pr, mp (z) = mp(z),

o dp(0) =max{mp(01)-p+ dp(01), mp(03) - p+ dr(0s)} —mp(0)-p, and for each

portz € Pr, dF/(il?) = dF(fU),

123

e Dpi(0) = max{mp(01) - p+ Dr(01), mp(03) - p + Dp(02)} — mp(0) - p, and for

each port: € Pp, Dp/(z) = Dp(z), and

e [(0) =1, and for each port € Pp, lp:(z) = Ip(z).

As it will be cleared from the proposition below, the values of functiens, d. and D

for port o are defined to respect the AND type of triggering. For instancepdkdunction

is due to the fact that an event on pordccurs with the later of the corresponding events on
portso; ando,. Note also that join operation is defined only if both output ports are locked.
If this is not the case, i.e., if the period instance of one of the output ports to perform the
join operation on is not locked, there would be infinitely many uncertainty intervals for the

matched output which requires more complicated form of the interface and operations.

The following proposition justifies the definition of operations, by relating semantics
of interfaces before and after operations. Note that operators given in the statement of the
proposition assume pointwise function operations. For instat\cg,) = s(i;) means for

eachn € Ny, s'(01)(n) = s(ir)(n).
Proposition 14 (Operation Semantics)For all interfacest’, £
1. If I/ = F||E is defined then
Spr={s": P — S| dsp € Sp.3sg € Sg . S‘/PF = sp and s|’PE = sp}t,

2. If F/ = F— (o4, 1) is defined then
Spr={s': Pp — S| 3Js € Sp.s" = sp, and (pathp(ir,01) =0 = s(o1) =
s(i1))}, and

3. If F' = F~(0y, 09, 0) is defined then
Spr =
{s': Ppr — S| 3s € Sp.3sp € SF.S‘/PF =5 A s'(0) =max{s(01), 52(02)}}.
Proof.

124

1. The composition operatiofi|| E does not modify the two interface graplis- and
Gg, and does not introduce dependencies between the two graphs. Also functions
m, d, D andl remain the same for each port of the composition. So, the semantics

of F'||E is the product of semantics éf and £.

2. Letlp(i) = lp(01) = 1 0or Pr(iy) = Pr(01). In this case, according to the definition
of the connection operation, all elements of interfateare the restriction oy
of the corresponding elements Bf which also mean§y = Sg|p,,. Assume first
path (i, 01) = 1 that satisfies conditio®r (i) = Pr(01), i.e., connection opera-
tion — (o1, %) generates a new cycle i@ip.. SincePr = Pp we haveSp = Sp
which is what the proposition states for this case. Asspaky (i, 0,) = 0, i.e., no
cycle is introduced by the connection operation. Since, by the connection condition,
dr(01) > dr(i) and Dp(01) < Dg(4), i.e.,[dr(01), Dr(01)] C [dp(i1), Dr(i)],
we have that for eack’ € Spjp,, there existss € Sy such thats’ = s, and
s(o1) = s(i1). Also, for eachs € Sp suchthats(o,) = s(4;) we haves;p,, € Sgip,,
If lr(i,) = 0andix(o,) = 1 and Pp(i;) # Pr(o01), we have that(o;) = s(4)
holds only if mg (7;) would be equal tang(0,). This is reflected irSg due to the
modifications ofmg andlz functions on the ports i’ (i;). The casdr(i;) = 1
and lp(0;) = 0 is treated analogously. Finally, #(i) = Ilp(01) = 0 and
Pr(iy) # Pr(01), we have that(o;) = s(i;) is satisfied for all integer values of
mp(11) = mp(01). The proposition is true even in this case since all the ports in

Pr(iy) and Pr(01) remain unlocked.

3. A necessary condition fo (o1, 02, 0) operation to be applied on interfadé is
lr(o1) = lp(02) = 1, i.e., o, and o, and respective weakly connected compo-
nents are locked. So, the fact thatand o, are in the same connected component
Of G'py(01,00,0) IS NOt @an additional restriction on semantics&f = Spy(o;,0,,0)-

That is why s’ € Sp iff there existss; € Sp such thats"PF = 5. The

125

only difference in elements of" and F'~(o;, 05, 0) is in port 0. For instance,
if mr(01) = mp(0y) then according to the definition of join operation we have
[dp:(0), Dpi(0)] = [max{dr(01), dr(02)},max{Dr(01), Dr(0,)}]. This is exactly
the interval of possible outcomes 88x{s,(01), $2(0,)} for all s, € Sp. Similar

argument holds ifng(01) # mp(02).

The idea behind the refinement relation between two interfaces is again to be able to
substitute a more refined interface for a more abstract interface. The requirements in the
following definition are analogous to those given for the task sequence interfaces except for
the third requirement. The first and fourth requirement allow for weaker input assumptions
in the refined interface, whereas the second and fifth requirement demand stronger output
guarantees for the refined interface. As shown in a proposition of the next subsection, in

case of general graphs the third requirement is necessary for the independent refinement
property.
Refinement.Let F' = (GF, mg, dF, DF, lF) andfF’ = (GF/, meg, dF/, DF/, ZF/).

F' refinesF, i.e., F'<F if and only if

1. Ip C Ip,

2. Op 2 Op,

w

. prr € pr,

N

. S, 2 Sk, and

5. for eachs € Sp, if 51, € Spy1,, thensjo, € Skjo,-

For instance, as shown in Fig. 4.21 0% = G/, mp = mp:, lp = g, fOr each input

porti € I itholdsdr (i) > dp/(i) andDr(i) < Dp (i), and for each output pott € Op

126

FY
0 0 P 0 P
d i) D,(i) d i) D) dfo) Dylo))
F
0 7 (R 0 P

Figure 4.21. Interface refinement relation for graphs

it holds dr(0) < dp/(0) andDg(0) > Dp:/(0), thenF’<F. Note that the form of the fifth
requirement of the refinement relation definition is not simplyjo, C Srjo,. Thisis to

allow a graph with unlocked ports be a refinement of the same graph with locked ports and
all other elements the same. In particularGif = Gr/, mp = mpr, dp = dpry, Dp = Dpr,

butir(z) = 1 andiz(z) = 0 for each portc € P, thenF'<F.

4.5.4 Interface Algebra Properties

Ideally, for incremental design for any two operatiang and op, of the algebra the
order of the operations does not matter, i.e., well defiiedp, o op, implies well defined
F o op, 0 opy, andF o op, o op, = F o op, o op,;. However, with this algebra we have
weaker propositions. For some cases, only if bbth op, o op, and F' o op, o op, are
defined, we havé’ o op, o op, = F o op, o op,. The following proposition makes clear
the character of associativity property in each possible case, with cases 2 and 3 being the

most relevant.

127

Proposition 15 (Incremental Design)Let 4,4, € Ir and oy, 05, 03,04 € Op. For all

interfacesrF, £/, and H,

1. (a) If(F| E)||H is defined thed'||(E| H) is defined, andF||E)||H = F||(E| H).
(b) If (F||E)—(o01,7) is defined then(F—(o1,4))||E is defined, and
(FlE)= (01,) = (F—(o01,)| E.
() If (F=(o1,09,0))||E is defined then(F| E)=(o1, 00, 0) is defined, and
(F(o01,09,0))|[|E = (F| E)>(o1, 02, 0).
(d) If (F||E)>=(01,09,0) is defined then(F>(o1,09,0))||E is defined, and
(F||E)> (01, 02,0) = (F>(01, 02,0))|| E.
2. (@) If Fy = (F—(01,1))—(02,%2) and Fy = (F—(o09,1))— (01, %) are defined,
thenSe |po\fivi} = SFalPe\{ii}-
(b) If (F=(02, 03,0))—(o01, %) is defined thefl F'— (o1, 7)) (02, 03, 0) is defined,
and(F (0, 03,0))—(01,4) = (F—(01, %)) (02, 03, 0).
3. (@) If (F>(01,09,0))~(03, 04, 0") is defined ther(F'>-(0s, 04, 0"))>(01, 02, 0) IS
defined, and F'> (o1, 02, 0))> (03, 04, 0") = (F'>(03, 04, 0")) (01, 02, 0).
(b) If Fy = (F'>(o01, 02, 0))>=(0, 03, o) is defined thed, = (F'>-(oy, 03, 0))(0, 02, 0')

is defined, andr, |p;. \ (0} = SFy| Py, \ {0}
Proof.

1. (a) Both interfaces are defined if any two port setsPpf Pr and Py have no
common elements. The composition operation does not modify any element of
individual component interfaces.

(b) If (F||E)—(01, i) is defined ther F'— (o1, 4,))||E is defined becausg and

o, are elements oPr but not of Py since F|| E is defined. The composition

128

with £ does not make changes in elementgofso the operation order does

not matter.

Note that if(F— (o1, 4))|| £ is defined then it does not meéR|| E)— (o1, 1)

is defined. For instance, considgre Py andi; ¢ Pp_.(o,,i;)-

(€) If (F'>(o01,09,0))||E is defined theno ¢ Pr ando ¢ Py sinceo €
F'~(01, 02, 0). Therefore,o ¢ Ppjg. The>(o1, 02, 0) Operation involves only
F and since the composition operation does not change component graphs and

other interface elements, the order does not matter.

(d) Follows similar to previous point sineg, o, € Pr by proposition statement.

2. (a) Since the input port of a connection operation is taken out of the set of ports
the two connection operations of the proposition are defined only # .
Note that if F; is defined therF; is not necessarily defined. For instance, when
two chainspath(ii, 02) and path(iz, 01) of locked ports are connected into a
cycle by the two successive operations such th@t) < m(o,) the operation
— (01,1) is possible only after the path froimto o, is established through the
operation—(oz, 7).
We first assume no cycle is created by the operations and use Lemma 4. By
the connection operation definition we halle = Ir \ {74,5} = I, and
Or, = Or = Op,. Since a connection operation does not modify set of suc-
cessorsSuccr (i) of an input porti, we havepr, = pr \ ({i1} x Succp(ip)) \
({i2} x Succp(i2)) U ({01} x Succr(iy)) U ({02} X Succr(iz)) = pr,. COnse-
quently, the two interface graphs are equ&), = Gr,. Thed andD functions
are not modified by connection operatiofy;, = drpp, = dp|py, = dr, and
Dp, = Dp|p,, = Dr|p,, = Dr,. The functioniy, (resp.lr,) is determined by
the function/r and by the partition setlr, (resp./lg,). Since Gp, = Gp,,

ie., lIp, = Ilp, we havelp, = lp,. Let P € Iy, = Illp,, *+ € P and

129

lp,(z) = lg,(z) = 1. If also lz(z) = 1 then no connection operation mod-
ifies period instance function fat, i.e., mp () = mp(z) = mp,(z). If
Ir(z) = 0 then the value ofr for at least one of the portg, oy, Or oy is

1, and thus the value ofir of that port uniquely determines bothy, (z) and
mp,(z), 1.e.,mp, () = mp,(z). Let P € IIr, = Ilp, andz;, 2, € P such that
lp,(21) = lp, (1) = 0 andlp, (23) = lp,(22) = 0. Sincez; andz, are elements
of the same weakly connected compongrthere is an undirected path fram

to ,, both in Gr, and G,, that may also contain, ando,. For instance, the
path contain®; and o, if there exists no weakly connected componentipf
that contains both; andz,. Although it is not necessarilyiz, (z1) = mpg, ()

or mp, (1) = mp,(22), we havemp, (z1) — mp, (22) = mpg, (1) — mg,(22), be-
cause no connection operation modifies difference betweealues of already
connected ports. For instance, if (i there exists a path from, to o, then
mp, (21) —mp, (01) = mp(z1) —mp(01) = mp,(21) — mg,(0). From Lemma 4
follows Sy, = Sp,, 1.€.,S5, 1Py {ir,in} = Skl Pe\{iria}-

If there exists a path fronk to o, in Gy the connection operation: (o, 7)
does not break it. Therefore, jfuth(iz, 0o) = 1 (resp.pathp (i, 01) = 1)
then pathp_(,, i)(%2,00) = 1 (resp. pathp_,, (i, 00) = 1). If
pathp(iy, 02) = 0 butpathp_,, ;) (i2, 02) = 1 then it meangath (i, 0,) = 1
and pathp(i,0,) = 1. Consequently, in this case we also have
pathp_, o, (71,01) = 1. Thus, in all cases we have that a cycle exists in
Fy iff it exists in F». The two interface graphs ai@r, and Gz, may differ
only in input portsi; and i, and edges coming from them. Since the entire

argument given above can be repeated for ports otherithand i;, we have
SF1|Pe\{ityia} = SFa|Pp\{iniz}-
(b) If F'>~(02, 03,0) is defined theno ¢ Pp. Therefore, sincer; € Pr by

proposition statementy; # o. The elements of interfaceB~(o, 03, 0)

130

and F' are equal for all ports oP». Thus conditions needed for the connec-
tion operation—(oy,7,) are the same fof'> (o9, 03, 0) and F. In addition,
9raphs G(py(05,05,0))—(01,i1) AN G(F_(01,i1))>(0s,05,0) @€ €qual. The same is
true for functionsm, d, D, and!. For instance, for alk € Pr U {o} itis

U Fs(03,03,0))—(01,i1) (T) = lF—(01,i1))>(02,03,0) (%) SINCEIR(02) = Ip(03) = 1 by
the definition of join operation.

Note that if(F— (01, 1)) (02, 03, 0) is defined ther{ F'>-(0, 03, 0))— (01, %)

is not necessarily defined. For instance, it can lpéo,) = 0 and

lF—>(01,i1)(02) =1, bUt(F}(OQ, 03, 0))—>(01, 21) is not defined.

3. (@) If (F'>(o01,02,0))~(03,04,0") is defined thero ¢ {o3,04} Sinceo ¢ Pp
and 03,0, € Pp by proposition statement. Similarly, we haye, o’} N
{01, 02, 03, 04} = (). In addition,o’ # o and thus(F'> (03, 04, 0'))=(01, 02, 0)
is defined. The order does not matter because each join operation just modifies

the parameters of eitheror o'.

(b) If (F=(o01,02,0))=(0, 03,0") is defined theq o, 0o’} N {01, 02,03} = 0. Note
that |, # F, sinceGr, # Gp,. In generalSp, # Sk, because, for instance,
dr,(0) # dr,(0). However,Sp, p, \(o} = Sry|Ps,\{0} due to the associativity
of max function. For instanceir, (0o') = max{mpg(0) - p + dr(0), mg(03) - p +
dr(03)} —max{mp(0), mr(0s)} - p=
max{max{mp(01), mp(02)} - p + max{mp(o1) - p + dr(01), mp(09) -

p + dp(02)} — max{mp(01), mp(02)} - p,me(os) - p + dp(os)} —
max{max{mp(01), mp(02)}, mp(03)} - p=
max{mp(01) - p + dp(01),mp(03) - p + dp(03), mp(03) - p + dp(03)} —

max{mp(01), mp(02), mp(03)} - p = dp,(0).

131

The following lemma, similar in form to Lemma 4, gives refinement sufficient condition

entirely based on interfacE and /'’ elements.

Lemmab Let F = (G, mp,dp, Dp,lp) and F' = (Ggr, mp:, dpr, Dpr, lpr) be two in-
terfaces such thalyy C Ip, O O Op and pp C pp. F' refinesF, ie., F'<F
iff for each input port: € Ip it holds dp(i) > dp (i) and Dg(i) < D (i), for
each output porto € Op it holds drp(0) < dp(0) and Dr(o) > Dp/(0), for each
weakly connected componeht € Il and each two portg;,z, € P’ N Pp it holds
mp(21) — mp(22) = mp(x) — mp(22), and for each portr € Pp N Pp such that

lp(z) =1itholdsiy(z) = 1 andmp(z) = mp(z).

Proof. We first prove properties 4 and 5 of the refinement relation definition if all
conditions of the lemma are satisfied. If for each input pogt I we havedp(i) >
dr (1) and Dp(i) < Dpi(7), i.e., [dr(i), Dr(i)] C [dp(i), De(7)], we would directly
haveSr|;,, € Sp,, if for each portz € Pp it holds Ip(z) = Im(z) and mp(z) =
mp(x). According to the lemma assumption these conditions are satisfied for locked ports
z (lp(z) = 1). If ppr C pr we havellp < I, i.e., for each weakly componeft € [
of G there exists a weakly connected componerg /1 of Gr such thatP’ C P. Thus
for all unlocked portsy, 2, € P/, i.e.,l(z) = (%) = 0, Spj1,, € Spryy,, follows from
the interface semantics definition and lemma assumptiptiz;) — mp: (1) = mp(z;) —
mp(x2). Similar argument holds for property 5 if for each output poré Or we have

dF(O) < dF/(O) ande(o) > DF/(O), i.e.,[dF<O)7 DF(O)] D) [dF/(O), DF/(O)]

For the opposite direction we assumie< F' and prove constraints of the lemma. From
the refinement constraidtz;,, C Sr/ 7, and with similar reasoning as above it follows
that for each input port € Ip it holds dp(i) > dp/(i) and Dp(i) < Dp (i). Also, if
F'<F then from the requirement 5 we hadg(o) < dp(0) and Dr(0) > Dgi(0) for

each output pord € Op.

132

From the constrainSp;,, C Sp;,, it also follows that for each input poit € Iz
such thatlz (i) = 1 itis alsolr(i:) = 1, otherwise interfacé’ will allow for more input
behaviors. Remember, for each output porE Op there exists an input poit € I
such that there exists a path @y from i to o. If port o is locked (o) = 1) than also
lr(i) = 1 and, as explained abovi,(i) = 1. Sincepr C pr there exists a path fromto
o alsoinGr, and, thudr (o) = 1. Therefore, for each € Pp N Pp such thatp (z) = 1it
is alsolp(z) = 1. In addition,mr(z) = mg (z) holds, otherwise either requirement 4 or 5
of the refinement relatioA” < ¥ would not hold depending on whethers I orz € Op.
Letz, 2, € Pr N Pr be two ports from the same weakly connected compone6t-af If
mp (z1) — mp(12) = mp(z1) — mp(2,) does not hold then either requirement 4 or 5 would
not hold depending on the input/output character of pgrendz,. Note that ports; and

1, can be locked irf” even though they are unlocked ifi. O

Proposition 16 (Independent Refinement)Let i; € Ir and oy, 0, € Op. For all inter-

facesF, F/, and F

1. If F'<F, F||F and F'|| E are defined, theGF’||E)=<(F||E),

2. If F'<F, F—(oy1, 1) andF'— (o1, iy) are defined, thetW’— (o1, 1)) < (F— (01, 41)),

and

3. fF'<F, F~(o01, 09,0) andF’'>=(o1, 09, 0) are defined, theOF’ (o1, 02, 0)) X(F>(01, 02, 0)).

Proof.

1. The condition demand®’||E to be defined becausg|| £ can be defined, but not
F'||E,e.qg. ifPp N (O \ Or) # 0.
From the definition of the composition operatialyz = Pr U Pp andppz =
prUpg, itdirectly follows I/ g = Iz Ul C IpUlg = Ipg, Op g = OpUOg 2
Or U Og = Opg, andpp g = pr U pp C pr U pg = pr|E-

133

Sincelrr C Pr andlp C Py we haveSpg1,, = Srj1,, € Srir,, = Seg|1,,
and Spgjr, = Spi, = Seypi,. ConsequentlySegr,,, = Srieiu C
SpiBluty = Spr|B|L, - Finally, for eachs € Spyp, i 51, , = S0, €
SFIIEIIME thens,, € Spyr,, and according to the definition of the refinement re-
lation 50, € Srjo,. In addition, we havesp, € Sgjo,. Therefore, we have

510p1r = S|0rpUOE € SFHE\OFUOE = SFHE\OFHE'

. According to the definition of the connection operatiofy_.,,) = Ir
(resp. Ipr—(oy,isy = Ip) if pathyp(ii,01) = 1 (resp.pathp (i1,01) = 1), and
Ir oy = Ir \ {i} (resp.lp— (o) = Ip \ {@}) otherwise. Note that if
path g (i, 01) = 1, such a path also exists ifir, because of the refinement condi-
tion ppr C pp. Inthat case/p (i) = I C Ir = Ip_(0,,i,), @lS0 by a condition
of the relationF’<F'. Other cases follow similarly.

By the definition of connection operation and refinement relation we have
Or' —(o1,i1) = Orr 2 Or = Op_(0,i1)-

The argument for the dependency relatiois similar to the one made for inputs. In
the case when botputh (i1, 01) = 1 andpath . (i1, 01) = 1, we havepp_ (o, ;1) =
prrU({o1} x Succp(i1)) C prU({o1} x Succrp(ih)) = pr—(o,i), DECAUS@R C pp

andSuccp (1) C Succp(i).

We use Lemma 5 to prove requirements 4 and 5 of the refinement relation
(F'—(01,4))=2(F—(o01,7)). The connection operation does not modify functions

d and D, so fromF’<F and Lemma 5 we have for each input porE Ip ., ;)

it holds dp_.(0,,i,)(2) > dpr—oy,i)(1) @NA Dp_(,.i)(7) < Dpr—(o,i)(i), and

for each output porb € Op_.(,, i) it holds dp_ (o, 5)(0) < dpr—(o,,)(0) @and
Dp—(01,)(0) 2 Dprs(or,i) (0)-

Let P’ € IIpi_(,,,:,) and letz € P’ be such thatp/_,(,, ;)(z) = 1. We first prove

ZFH(01,1'1)($) =1 ande"’(Ol,il)('x> = mFH(Ohﬁ)(x)'

134

Leto;, ¢ P’. Thus, the connection operatien(o;, i) applied on/” does not modify
P’ including z, i.e., lz(z) = 1. According to Lemma 5 it hold$(z) = 1 and
mp(x) = mp(z). The connection operation does not change the valueaoti m

functions on locked ports, i.€g_.(,,,i)(2) = L andmg: (o, i) () = Mp_(01,i)(2)-

Let o € P’. Since P’ is locked, porti; or port o; or both are locked inf”,
i.e., lp(iy) = 1orlp(o) = 1. If Iz (z) = 1, then the argument follows as
above. Thus, letp/(z) = 0, and assumég (o) = 1 and i (i;) = 0, i.e,
portsz andi; are in the same weakly connected componen&ef. Other cases
follow analogously. Due to the property of connection for unlocked ports we
have mp_(o,,0)(2) — Mpr_(01,i)(01) = mp(x) — mp (i) and mp_ (o, i) () —
ME_(0y,i)(01) = mp(x) — mp(i1). Sincelp(01) = 1, we also havér(o;) = 1 and
thereforemp: (o, i1)(01) = mp:(01) = mp(01) = Mp_(0,,i)(01). Due to Lemma 5
property for unlocked ports we haveg (z) — mp(i1) = mp(z) — mg(i;). Con-
sequentlymp:_(o,,i) (%) = Mp_(0,,i)(2). Sincepp C pp portsz andis; are also
in the same weakly connected componentigf. Thus, fromiz(o;) = 1 it follows
lp—(o1,i)(7) = 1.

Let 2, 2 € P' N Pp_ (o). Sincer; andz, are elements of the same weakly con-
nected componen®’ there is an undirected path from to z,, both in Gp (5,)
and Gp_.(o,,5) (due 10 pp—(0,5) S Pro(ori)).- ASSUMeo; € P. We have
ME—(01,i) (T1) = Mpr(o,i)(12) = Mp_(0y,i)(T1) — Mp_(0,,i)(22) DECAUSE CON-
nection operation does not modify difference betweefunction values of already
connected ports. For instance, if iz there exists a path from; to o, then
ME - (0y,i0)(TL) = MEr (o) (01) = mpi(71) — mpi(01) = mp(21) — mp(o1) =
ME—(01,i) (1) — Mp_(0y,i1)(01). The middle equation of the previous expression is
a consequence of Lemma 5. df ¢ P’ we can directly apply Lemma 5 since the

connection operation does not affect partand,.

From all above arguments and Lemma 5 folloW8— (o1, 41)) < (F'— (01, 71)).

135

3. According to the definition of the join operation and refinement relation,
Iprs(o1,00,0) = Ir € Ip = Ipe(o1,00,0)s OF's(01,00,00 = O U{0} 2 Op U {0} =
OF>(01,02,0)» @NAPEr- (0,,00,0) = prr U {(01,0), (02,0)} C prU{(01,0),(02,0)} =
PF—(o01,i1)

We use Lemma 5 to prove requirements 4 and 5 of the refinement relation
(F'>(01, 02, 0))=2(F>(01, 09, 0)). The join operation sets only the values for port

o. From the definition ofF’>~(oy, 02,0) we havelp (0,) = Ilp(02) = 1 and
IFr(01,00,0)(0) = lps(01,00,0)(0) = 1. From Lemma 5 we haveiz(01) = mp(01)

and mg:(02) = mp(02). ThUS Mpry(o).0,.00(0) = max{mp(01), mp(02)} =
max{mp(01), mp(02)} = Mps(0y,0,,0)(0). In addition, sincedp(o;) < dp/(0;) and
dp(02) < dp/(02), We havedp:(o,.0,,0)(0) = max{mp(01) - p + dp:(01), mp:(02) -

P+ dpi(02)} — Mpre(oy,00,0)(0) - p > max{mp(01) - p + dp(01), mr(0s) - p +
dp(02)} = ME(01,00,0)(0) - D = dpw(o1,00,0)(0). Similarly, sinceDp(01) > Dpi(01)
andDp(02) > Dpi(02), We haveDp, (o, 0,,0)(0) > Dpre(01,05,0)(0). From all above

arguments and Lemma 5 follow$” > (01, 02, 0)) =X (F>(o01, 02, 0)).

So, we proved that even in case of task graphs, in order to refine a given composition
of interfaces, it suffices to independently refine each interface and to compose the obtained

refinements.

Example. We demonstrate the independent refinement property on the task graph
shown in Fig. 4.22. Assume tasks t, and ;3 are allocated to processor and ¢4, t;
andtg to processor,. Letr; andr, have the same processing power and let all tasks have
the same execution time requirements. In particular, let for each task the uncertainty inter-
val of execution time, i.e., the time needed to process the task if the task had a dedicated
resource, bée;, £;] = [2,3] for eachl < j < 6. We also assume that both processors

schedule tasks according to the preemptive fixed-priority mechanism where lower task in-

136

Figure 4.22. Example task graph

dex corresponds to higher priority. Finally, the period of the system4s 20 and event
models for inputs arém(i,), d(i), D(i1)) = (0,0,1) = (m(ia), d(i2), D(i2)), i.e., both

input events occur within interval [0,1] every period. Fig. 4.23 a) shéwghe interface

of the component that implements task graph from Fig. 4.22, constructed from interfaces
of the individual tasks. If the tasks are considered separately, i.e., if task dependencies are
ignored, then taking into account priorities of the tasks on processtr the intervals of

task response times we have , W1| = [eq, Er] = [2, 3], [wa, W3] = [ea, By + E5] = [2, 6]

and [ws, Ws] = [es, By + By + Es] = [2,9]. Thus, when composition, connection and
join operations are applied (shown with full arrows in Fig. 4.23 a), for the output of task
ts we havedp, (03) = d(i) + es + e3 = 4 and D, (03) = Dp, (i) + Fy + E3 = 16.
Similarly, for output porto we obtaindg, (o) = 8 and Dg, (o) = 25. Fig. 4.23 b) shows

F5, the interface obtained if dependencies between tasks on processerknown before
interface operations are applied. The facts that taslan preempt eithet or #; but not

both, and that, cannot preempts;, can be used in this case to compute stronger guar-
antee, i.e., smaller uncertainty interval for the output of tgskn particular,dr,(03) =

d(iy) +e1+es+e3=6andDg,(03) = Dp, (i) + E1 + Es + E5 = 10, anddg, (o) = 10

and Dr, (o) = 19. Thus, as a consequence|af,(os), Dg,(03)] C [dr, (03), Dp, (03)] We

have|dr,(0), Dg,(0)] C [dr,(0), Dr,(0)], i.e., F5<F,. Finally, if task graph on processor

137

ro is considered from the beginning as shown in Fig. 4.23 c), we ohfgiv) = 10 and

DF1<0) =16, i.e.,ngngFl.

4.6 Conclusion

We started this chapter by showing how a group of tasks, each defined with an ar-
rival rate curve, a delay, and a worst-case execution requirement, can be abstracted into a
bounded-delay resource model. In order to use such abstracted components in a larger real-
time system comprising of multiple task sequences we introduced component interfaces.
A formal interface algebra allows for automatic procedures that enable component integra-
tion. We motivated and proved two properties of such a framework, incremental design and
independent refinement. Next we formalized a similar interface theory, but for richer task
models, those in which the underlying task precedence graph can be an arbitrary graph.
This was studied for periodic event model with jitter and phase. Even such a less general
event stream representation results in an algebra that is not as flexible as the one in case
of task sequences. However, we proved that if pertinent interface compositions are defined
both associativity and independent refinement properties hold even for components that
implement general task graphs including cyclic graphs. In this context, it remains unclear
how to address more complicated event stream specifications, such as event streams spec-
ified with general lower and upper arrival rate functions. The composition with abstracted
components inevitably incurs higher resource utilization and, therefore, effectiveness of
composition can be compromised. We leave the question of how tight the entire frame-
work is for some future work. In addition, interesting problems for future investigations
arise when more complex, temporally adaptive interactions between real-time components

require extension to an automaton-based interface formalism.

138

Figure 4.23. Independent refinement for the task graph in Fig. 4.22

139

Chapter 5

Conclusions and Outlook

This thesis presents several methods for compositional design and verification of real-
time systems. We formally address higher layers of design, in particular, task and distri-
bution layers. All studied models of computation include inter- or intra-component task
communication. Some of the problems discussed include: code generation and schedul-
ing with limited coordination, verification procedures for interface compliance checking,
abstraction of component resource requirements, composition of resource requirements,
composability tradeoffs, associativity of interface operators and independent component
implementability. A common thread for all methods is an objective to work with a minimal

but complete interface needed for a model or problem being considered.

Although the general goal for all compositional methods is the same, i.e., to simplify
solution to the original large problem by solving several smaller problems, the problems
and solutions in different chapters of the thesis are in several aspects considerably different.
Chapter 2 and 3 study time-triggered, whereas Chapter 4 event-triggered models of com-
putation. While the problems in the first two chapters try to estimate several composability
measures, e.g. performance tradeoffs or complexity of composability checking and inter-

face compliance, the problems in the last chapter are predominantly of qualitative nature.

140

The methods that involve LET semantics try to establish time predictability by reducing
sensitivity to unknown system information, whereas interface-based methods try to match

implementation concepts with analysis.

In principle, some of these methods can be integrated within the existing tools. As
discussed in Chapter 3 the LET semantics is very similar to the RTW semantics used in
Simulink. However, Simulink tools currently concentrate on code generation and not on
formal performance analysis. On the other hand, scheduling analysis has found its way into
industrial practice, e.g. [74]. The methods that are available are typically global holistic
methods, and, as such, are largely ignored due to complexity. Attempts to use SymTA/S
approach within the Autosar project are good signs for the compositional and hierarchical
methods. The methods that tackle cyclic component dependencies, including the results in

this thesis, are still very limited in reach.

The timing verification techniques should not only be reliable, but also precise. More
complex models or requirement specifications ask for more complex analyses, a tradeoff
that must be carefully considered. In particular, currently there are no research results that
study tradeoffs between timing predictability (difference between estimated and measured
timing) and computational complexity of the analysis. It is often argued that formal per-
formance analysis results in conservative designs. However, this criticism is only patrtially
true, since, as noted in [39], over-provisioning in simulation and test methods can often re-
sult in designs with much more conservative outcomes. On the other hand, formal analyses
require far less computation time, which renders them very effective for rapid design-space

exploration.

A drawback of formal performance methods discussed in this thesis is their bad corre-
lation with lower layers of system design, such as single task timing analysis and compiler
optimizations. Similarly, the timing consequences of interrupts occurring at unknown pro-

gram states can hardly be estimated with high accuracy. So, often it is difficult to find

141

good event models with sufficient precision. In addition, many properties of distributed
real-time systems cannot be modeled easily, so links to upper system layers may also be

open problems.

To simplify integration, most real-time communication protocols are static time-
division protocols. On the other hand, more and more applications are becoming dynamic
in character. For instance, the application throughput varies during the execution and can-
not be easily predicted in advance. For such applications static protocols lead to both large
buffer sizes and long response times. Thus, the challenge here would be to have dynamic

resource reservation and reclaiming together with performance guarantees.

Despite the current limitations of system-level formal timing analysis techniques, we
believe that the increasing number of performance dependencies in complex systems will
lead designers to accept performance analysis, probably by matching them with moder-
ately restrictive implementation methods. This might be the way to achieve both good

performance and productivity, and time predictability with specified precision.

142

Bibliography

[1]
[2]

[3]
[4]

[5]

Absint. In http://www.absint.com/ait/

L. Aimeida and P. Pedreiras. Scheduling within temporal partitions: Response-time
analysis and server design. BMSOFT pages 95-103. ACM Press, 2004.

AUTOSAR. Inwww.autosar.org/

A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli.
Heterogeneous reactive systems modeling: capturing causality and the correctness of
loosely time-triggered architectures (Itta). BEMSOFT pages 220-229. ACM Press,
2004.

A. Benveniste, B. Caillaud, and P. L. Guernic. Compositionality in dataflow syn-
chronous languages: Specification and distributed code generatformation and
Computation163:125-171, 2000.

[6] A. Benveniste, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Hetero-

[7]

[8]

[9]

[10]

[11]

geneous reactive systems modeling and correct-by-construction deploym&- In
SOFT, pages 35-50, 2003.

J.-Y. L. Boudec and P. ThiranNetwork calculus: a theory of deterministic queuing
systems for the interneSpringer-Verlag New York, 2001.

P. Brucker, S. Kravchenko, and Y. Sotskov. Preemptive job-shop scheduling problems
with a fixed number of jobsMathematical Methods of Operations Researk®.41—
76, 1999.

G. C. Buttazzo. Rate monotonic vs. edf: Judgment dReal-Time System29:5-26,
2005.

P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
simulink to scade/lustre to tta: a layered approach for distributed embedded appli-
cations. InNLCTES pages 153-162, 2003.

S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler. Interface-based
rate analysis of embedded systemsRIFiSSpages 25-34, 2006.

143

[12] S. Chatterjee and J. K. Strosnider. Distributed pipeline scheduling: A framework for
distributed, heterogeneous real-time system desifne. Computer JournaB8:271—
285, 1995.

[13] L. de Alfaro and T. A. Henzinger. Interface automata. HEBEC / SIGSOFT FSE
pages 109-120, 2001.

[14] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In EMSOFT volume 2211 ofLecture Notes in Computer Sciengages 148-165.
Springer, 2001.

[15] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces.EMSOFT
volume 2491 ot ecture Notes in Computer Scienpages 108-122. Springer, 2002.

[16] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment.
In RTSSpages 308-319. IEEE Computer Society, 1997.

[17] B. P. Douglass. Real-time uml. FTRTFT, pages 53-70, 2002.

[18] dSPACE. Inhttp://www.dspaceinc.com/ww/en/inc/home/products/hw
/accessories/autobox.cfm

[19] A. Easwaran, |. Shin, O. Sokolsky, and I. Lee. Incremental schedulability analysis of
hierarchical real-time components. BMSOFT pages 272—-281, 2006.

[20] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) machine. In
DAC, pages 264-265, 2007.

[21] Embedded-Market-Forecasters.hittp://www.embeddedforecast.com
[22] H.-G. Frischkorn. Automotive software systems A8W pages 0-25, 2004.

[23] S. Goddard. Analyzing the real-time properties of a dataflow execution paradigm
using a synthetic aperture radar applicationlHBE Real Time Technology and Ap-
plications Symposiunpages 60-71, 1997.

[24] S. Goddard and K. Jeffay. Managing latency and buffer requirements in processing
graph chainsThe Computer Journa#t4:486-503, 2001.

[25] G. GoRler and A. L. Sangiovanni-Vincentelli. Compositional modeling in metropolis.
In EMSOFT pages 93-107, 2002.

[26] N. Halbwachs.Synchronous Programming of Reactive SysteKlawer Academic
Publishers, 1992.

[27] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority
scheduling of hard real-time system&EE Transactions on Software Engineering
20(1):13-28, 1994.

144

[28] B. Hardung, T. Koelzow, and A. Krueger. Reuse of software in distributed embedded
automotive systems. IBEMSOFT pages 203-210. ACM Press, 2004.

[29] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis - the symta/s appro#eE.Proceedings Computers and Digital
Techniquesl52(2):149-166, 2005.

[30] T. A. Henzinger, Christoph, M. Kirsch, M. A. Sanvido, and W. Pree. From control
models to real-time code using giotto. BEMSOFT Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2002.

[31] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language
for embedded programmingroceedings of the IEED1:84-99, 2003.

[32] T. A. Henzinger and C. M. Kirsch. The embedded machine: predictable, portable
real-time codeSIGPLAN Not.37(5):315-326, 2002.

[33] T. A. Henzinger, C. M. Kirsch, R. Majumdar, and S. Matic. Time-safety checking for
embedded programs. EMSOFT pages 76-92, 2002.

[34] T. A. Henzinger, C. M. Kirsch, and S. Matic. Schedule-carrying codeEMBSOFT
pages 241-256, 2003.

[35] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable code generation for dis-
tributed giotto. INLCTES pages 21-30, 2005.

[36] T. A. Henzinger and S. MaticDistributed Schedule-Carrying Codé.ech. Report
UCB//CSD-04-1360, University of California at Berkeley, EECS Department, 2004.

[37] T. A. Henzinger and S. Matic. An interface algebra for real-time components. In
IEEE Real Time Technology and Applications Sympospages 253-266, 2006.

[38] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-accurate real-time
software. INEUC, pages 449-458, 2006.

[39] M. Jersak, K. Richter, and R. Ernst. Performance analysis for complex embedded
applications.International Journal of Embedded Systehd -2):33-49, 2006.

[40] M. Jersak, K. Richter, R. Ernst, J.-C. Braam, Z.-Y. Jiang, and F. Wolf. Formal methods
for integration of automotive software. DATE, pages 20045-20050, 2003.

[41] K. Karplus and A. Strong. Digital synthesis of plucked-string and drum timbres.
Computer Music JournaP(7):43-55, 1983.

[42] C. Kirsch, M. A. Sanvido, and T. A. Henzinger. A programmable microkernel for
real-time systems. INEE, pages 35-45. ACM Press, 2005.

[43] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations.Kluwer Academic Publishers, 1997.

145

[44] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered ethernet
(tte) design. INSORC pages 22—-33, 2005.

[45] H. Kopetz and G. Bauer. The time-triggered architecti?mceedings of the IEEE
91(1), 2003.

[46] H. Kopetz and N. Suri. Compositional design of rt systems: A conceptual basis for
specification of linking interfaces. ISORGC pages 51-60. IEEE Computer Society,
2003.

[47] S. Lankes, A. Jabs, and M. Reke. A time-triggered ethernet protocol for real-time
corba. InNISORC pages 215-222, 2002.

[48] E. A. Lee. Overview of the Ptolemy Projectech. Report UCB/ERL M01/11, Uni-
versity of California at Berkeley, EECS Department, 2001.

[49] E. A. Lee. Absolutely positively on time: What would it takePEEE Computer
38(7):85—-87, 2005.

[50] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processingEEE Transactions on Computin@6:24—35,
1987.

[51] G. Lipariand E. Bini. Resource partitioning among real-time applicationrSCORTS
pages 151-158. IEEE Computer Society, 2003.

[52] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical framework
for component-based real-time systems CBSE volume 3054 ol ecture Notes in
Computer Sciengg@ages 209-216. Springer, 2004.

[53] S. Matic and T. A. Henzinger. Trading end-to-end latency for composabilifgTIBS
pages 99-110, 2005.

[54] S. Matic and T. A. Henzinger. An interface algebra for real-time graph&MgEO,
2007.

[55] Mentor-Graphics. Ittp://www.mentor.com/products/fv/hwsaverification
/seamless/index.cfm

[56] A. K. Mok and A. X. Feng. Towards compositionality in real-time resource partition-
ing based on regularity bounds. RTS$pages 129-138. IEEE Computer Society,
2001.

[57] A. K. Mok and A. X. Feng. A model of hierarchical real-time virtual resources. In
RTSS$pages 26—-35. IEEE Computer Society, 2002.

[58] A. K. Mok and A. X. Feng. Real-time virtual resource: A timely abstraction for
embedded systems. EMSOFT volume 2491 of ecture Notes in Computer Science
pages 182-196. Springer, 2002.

146

[59] A. K. Mok, A. X. Feng, and D. Chen. Resource partition for real-time systems. In
RTAS pages 75-84. IEEE Computer Society, 2001.

[60] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systemsCDES pages 187-192, 2002.

[61] J. Regehr and J. A. Stankovic. HIs: A framework for composing soft real-time sched-
ulers. INRTSSpages 3—-14. IEEE Computer Society, 2001.

[62] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc performance verifi-
cation. |[EEE Computer36(4):60-67, 2003.

[63] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling
analysis in platform design. IDAC, pages 287-292, 2002.

[64] J. Rushby.Partitioning for Avionics Architectures: Requirements, Mechanisms, and
Assurance NASA Report CR-1999-209347, NASA Langley Research Center, 1999.

[65] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis of hierar hical
fixed-priority scheduling. IECRTS pages 173-181, 2002.

[66] Semiconductor-Industry-Association. The international technology roadmap for
semiconductors. lhttp://www.itrs.net/Links/2001ITRS/ExecSum,.ga601.

[67] S. Shigero, M. Takashi, and H. Kei. On the schedulability conditions on partial time
slots. INRTCSApages 166-173, 1999.

[68] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees.
In RTSSpages 2—-13. IEEE Computer Society, 2003.

[69] I. Shin and I. Lee. Compositional real-time scheduling frameworkRTisS pages
57-67. IEEE Computer Society, 2004.

[70] The-Flexray-Consortium. Ihttp://www.flexray-group.com

[71] The-MathWorks. Models with multiple sample rates. Real-Time Workshop User
Guide pages 1-34, 2005.

[72] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for composing real-
time systems. liEMSOFT pages 34-43, 2006.

[73] L. Thiele and R. Wilhelm. Design for timing predictabilitReal-Time System28(2-
3):157-177, 2004.

[74] Tri-Pacific-Software. Imttp://www.tripac.com/html/prod-fact-rrm.html

[75] E. Wandeler and L. Thiele. Real-time interfaces for interface-based design of real-
time systems with fixed priority scheduling. EMSOFT pages 80-89. ACM Press,
2005.

147

[76] E. Wandeler and L. Thiele. Interface-based design of real-time systems with hier-
archical scheduling. IWEEE Real Time Technology and Applications Symposium
pages 243-252, 2006.

[77] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao. Real-time component-based sys-
tems. INRTAS pages 428-437. IEEE Computer Society, 2005.

[78] T.-Y. Yen and W. Wolf. Performance estimation for real-time distributed embedded
systemslEEE Trans. Parallel Distrib. Syst9(11):1125-1136, 1998.

[79] V. Yodaiken. Rtlinux manifesto. Ihinux Expg 1999.

[80] M. Zennaro and R. Sengupta. Distributing synchronous programs using bounded
queues. IIEMSOFT pages 325-334, 2005.

[81] Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-synchronized dis-
tributed real-time systems. RTAS pages 259-268, 2007.

[82] Y. Zhou and E. A. Lee. A causality interface for deadlock analysis in dataflow. In
EMSOFT pages 44-52, 2006.

[83] D. Ziegenbein, M. Jersak, K. Richter, and R. Ernst. Breaking down complexity for
reliable system-level timing validation. EDP, 2002.

[84] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, and R. Ernst. Interval-based analysis
of software processes. ICTES/OM pages 94-101, 2001.

148

