
Compositionality in Deterministic Real-Time
Embedded Systems

Slobodan Matic

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-12

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-12.html

February 11, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Compositionality in Deterministic Real-Time Embedded Systems

by

Slobodan Matic

B.S. (University of Belgrade)

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Thomas A. Henzinger, Chair
Professor Edward A. Lee
Professor Raja Sengupta

Spring 2008

The dissertation of Slobodan Matic is approved.

Chair Date

Date

Date

University of California, Berkeley

Spring 2008

iii

Abstract

Compositionality in Deterministic Real-Time Embedded Systems

by

Slobodan Matic

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Thomas A. Henzinger, Chair

Many computing applications, especially those in safety critical embedded systems,

require highly predictable timing properties. However, time is often not present in the

prevailing computing and networking abstractions. In fact, most advances in computer

architecture, software, and networking favor average-case performance over timing pre-

dictability. This thesis studies several methods for the design of concurrent and/or dis-

tributed embedded systems with precise timing guarantees. The focus is on flexible and

compositional methods for programming and verification of the timing properties. The

presented methods together with related formalisms cover two levels of design:

- Programming language/model level. We propose the distributed variant of Giotto, a

coordination programming language with an explicit temporal semantics - the logical ex-

ecution time (LET) semantics. The LET of a task is an interval of time that specifies the

time instants at which task inputs and outputs become available (task release and termi-

nation instants). The LET of a task is always non-zero. This allows us to communicate

values across the network without changing the timing information of the task, and without

introducing nondeterminism. We show how this methodology supports distributed code

1

generation for distributed real-time systems. The method gives up some performance in

favor of composability and predictability. We characterize the tradeoff by comparing the

LET semantics with the semantics used in Simulink.

- Abstract task graph level. We study interface-based design and verification of appli-

cations represented with task graphs. We consider task sequence graphs with general event

models, and cyclic graphs with periodic event models with jitter and phase. Here an inter-

face of a component exposes time and resource constraints of the component. Together with

interfaces we formally define interface composition operations and the refinement relation.

For efficient and flexible composability checking two properties are important: incremen-

tal design and independent refinement. According to the incremental design property the

composition of interfaces can be performed in any order, even if interfaces for some com-

ponents are not known. The refinement relation is defined such that in a design we can

always substitute a refined interface for an abstract one. We show that the framework sup-

ports independent refinement, i.e., the refinement relation is preserved under composition

operations.

Professor Thomas A. Henzinger
Dissertation Committee Chair

2

Contents

Contents i

List of Figures iv

List of Tables vii

Acknowledgements viii

1 Introduction 1

1.1 Motivation . 1

1.2 Composable Code Generation for Distributed Systems 5

1.3 Component Resource Abstraction and Tradeoffs 9

1.4 Interface-based Formalisms for Real-time Components 12

1.5 Thesis Organization and Contributions . 17

2 Composable Code Generation for Distributed Giotto 19

2.1 Introduction . 19

2.2 Giotto Language . 24

2.3 Composable Design with Giotto . 30

2.4 Timing Interfaces . 36

2.5 Implementation . 40

2.6 Compositional SCC Analysis . 42

2.6.1 Giotto-Generated Distributed SCC 42

2.6.2 Formal Distributed SCC Semantics 46

2.6.3 Interface Compliance and Time Safety 48

i

2.6.4 Distributed Code Generation Correctness 52

2.7 Conclusion . 56

3 Component Resource Abstraction and Tradeoffs 58

3.1 Introduction . 58

3.2 Multirate Task Programs . 61

3.3 Task Group Abstraction . 65

3.3.1 Independent Task Set Abstraction 65

3.3.2 Intragroup Task Precedence Abstraction 67

3.4 Distributed Task Precedence Abstraction 71

3.5 Hierarchical Intergroup Abstraction . 76

3.6 Conclusion . 84

4 Interface Formalism for Real-time Components 86

4.1 Introduction . 86

4.2 Real-Time Components . 91

4.2.1 Resource Model . 91

4.2.2 Task Group Composition . 93

4.3 Task Sequence Interfaces . 96

4.3.1 Informal Description . 96

4.3.2 Interface Algebra . 101

4.4 Real-Time Component-Based Design . 107

4.4.1 Incremental Design . 107

4.4.2 Independent Refinement . 109

4.5 Task Graph Interfaces . 111

4.5.1 Component Model . 113

4.5.2 Interface . 117

4.5.3 Interface Algebra . 120

4.5.4 Interface Algebra Properties . 127

4.6 Conclusion . 138

5 Conclusions and Outlook 140

ii

Bibliography 143

iii

List of Figures

2.1 Audio mixer Giotto programGA . 25

2.2 Data dependency graph for the programGA 25

2.3 Additional mode for the Giotto programGA 27

2.4 E code blocks for the programGA . 28

2.5 S code blocks for the programGA . 29

2.6 E code modules for the programGA compiled by Alg. 1 36

2.7 Timing interface for the programGA . 38

2.8 S code modules for the programGA . 40

2.9 Cycle of the communication protocol [19] 41

2.10 Graph related toPs,h for GA with additional modem2 50

3.1 RTW: fast to slow data transfer -(a) task graph;(b) task and signal timeline
for m = 2 . 62

3.2 RTW: slow to fast data transfer -(a) task graph;(b) task and signal timeline
for m = 2 . 62

3.3 LET data transfer -(a) task graph;(b) task and signal timeline forp1 =
p2/2 = p . 63

3.4 Supply and demand bound functions . 66

3.5 Hierarchical scheduling framework . 67

3.6 (a) Task graph;(b) RTW schedule;(c) LET schedule (RR schedule) 69

3.7 Abstraction functions for Fig. 3.6(a) . 70

3.8 Relative difference betweenRTW and LET semantics w.r.t. latency and
composability . 70

3.9 Teleconferencing application task graph 72

3.10 Example form = 2 resources:(a) task graph;(b) resource partition 74

iv

3.11 Resource partition for Prop. 6 . 75

3.12 LET abstraction functions for Fig. 3.9 . 76

3.13 Video stream hierarchical abstraction . 77

3.14 LET abstraction functions for Fig. 3.13 . 80

3.15 (a) Instance ofR = (1, 0.776); (b) L: G2, D: G1; (c) L: t11, D: t14; (d) L:
t13, D: t12 (L=light, D=dark) . 83

3.16 Intergroup precedence abstraction examples for(a) Prop. 8(2);(b) Prop. 9(2) 83

3.17 (a) Component abstraction function for the hierarchical program in
Fig.3.16(a); (b) Detailed view . 84

4.1 (a) Task graph; (b) Component . 91

4.2 Capacity functions for Tab. 4.1 . 95

4.3 Interface for single task sequence . 97

4.4 Interface for multiple task sequences . 97

4.5 Interface composition . 98

4.6 Interface connection . 98

4.7 Bursty functions fort1t2 sequence . 99

4.8 (a) Fa = F1,2,3⊕{π13, π23}; (b) Fb = (F1,2‖F3)⊕{π13, π23}; (c) Fc =
(F1‖F2‖F3)⊕{π13, π23} . 100

4.9 Capacity functions from Tab. 4.2 . 101

4.10 (FA‖FB‖FC)θAB . 108

4.11 Levels of service of(FA‖FB)θAB and(FA‖FB‖FC)θAB 109

4.12 (Fa‖Fb‖FC)θab . 110

4.13 Levels of service of(Fa‖Fb)θab and(Fa‖Fb‖FC)θab 110

4.14 Capacity functions forF ′
1,F

′′
1 ,F ′

2,F
′′
2 . 112

4.15 F ′′
1 ‖F ′

2 ¹ F . 112

4.16 Periodic event model with jitter and phase 115

4.17 Simple graph components with port event models 116

4.18 Interface composition operation for graphs 120

4.19 Interface connection operation for graphs 121

4.20 Interface join operation for graphs . 123

4.21 Interface refinement relation for graphs 127

4.22 Example task graph . 137

v

4.23 Independent refinement for the task graph in Fig. 4.22 139

vi

List of Tables

3.1 Example teleconferencing application data 72

4.1 Temporal interface and wcet’s for tasks in Fig. 4.1(a) 94

4.2 Interface refinement . 100

4.3 Task data for robotic application . 108

vii

Acknowledgements

For every ailment under the sun,

There is a remedy, or there is none;

If there be one, try to find it;

If there be none, never mind it.

Mother Goose rhyme

My coming from troubled but revived Serbia, only few weeks before September 11th,

was a departure from the safety of a familiar environment and the only way to become

aware of one’s own virtues and vices. One better drown learning to swim than spend the

entire life sitting on the shore watching ships pass by. No doubt, the University of Cali-

fornia at Berkeley and its EECS Department were offering much more than one can chew.

Professors, students and researchers striving to live up to their potential while being occu-

pied with intellectual feats and scholarly combats. And Ruth Gjerde, who listens to students

attentively, nods with compassion, and navigates them through administrative mazes. Liv-

ing in the International House Berkeley for three years reinforced my will to understand

both other cultures and my own culture through the other’s perspectives. Serbia is one of

those places located on the cusps of a few cultural divides, and thus challenged after every

major shift of power in the world. I am grateful to all the people, on all sides of all divides,

who ever felt the need or even struggled to keep communication open while standing up

for their own principles.

This thesis is the result of research under the guidance of Prof. Thomas Henzinger.

There is no memory of working with him more vivid than the time spent in problem solving

discussions. And these have all the potential to be fruitful. Beforehand, there is just enough

pressure put upon a student to focus and come prepared. During a discussion, the exchange

of arguments is conducted almost with a belief that the most important problem in the

viii

world is being unraveled. Prof. Henzinger looks absorbed in the problem as if there were

no other meetings waiting. And each time a step forward, no matter how small, is being

taken. Afterwards, the student is encouraged even to go risky and remains full of hope,

at least until the next meeting. Some argue that, in research, feeling confused is essential

to progress. I always admired Prof. Henzinger’s fortitude to feel lost at first, only to be

able to regroup on the spot and reap the results a few moments later. And I can clearly see

the marker in his hands, coming back and forth to the whiteboard, on and on, while he is

thinking out loud and recollecting his thoughts before he starts to write. I am thankful to

him for sharing his ideas, intuition, vision and work ethic.

When Prof. Henzinger decided to move to Switzerland, he generously offered his stu-

dents either to come with him and work at the EPF Lausanne, or to stay at and get the

degree from UC Berkeley, or to do something in between. I have never regretted choosing

the third option and have only benefited from both environments and his continuing sup-

port. Incidentally, if it hadn’t been for him, I would have never had a chance to come close

to the ominous but so beguiling north face of Matterhorn. I cherish those paper deadline

moments when Prof. Henzinger calls me in Berkeley at 1am Europe time and comments on

everything from the definite article usage in English language to the cogent reformulation

of propositions. And I also never forgot the positive appraisal he gave after my first EM-

SOFT presentation, knowing what burden for me public speaking could be at that moment.

He has this delicate sense to know when to show his laissez-faire attitude and when to push

a student in a certain direction. A good advisor has to help students both accept the fact

that they may not be the best and develop the belief that they can still do well and keep

maturing if they work hard. I am not sure whether Prof. Henzinger agrees with the simple

yet often elusive message that the verses of the rhyme given above convey, but working

with him helped such a sentiment become closer to my mind.

All research for this thesis was done within the Center for Hybrid and Embedded Soft-

ware Systems. Around Cory Hall, and the Donald O. Pederson Center in particular, I got

ix

to know and interact with so many fascinating people, and I feel obliged to keep valuable

memories of them all. Unfortunately, due to the inevitable limits of human interaction, for

most of them I only scratched a bit of what they have to offer. Prof. Edward Lee used

to advise me even before he kindly accepted to be my Berkeley co-advisor. Not only are

his advanced material lectures smooth as silk, but he emanates a tremendous passion for

knowledge and discovery. He seems so open to appreciate other people’s work, integrate it

with his own and already known research, and pass it to others. Towards research he almost

comes as playful, clearly demonstrating how joy of research often means the joy of truly

understanding ideas and concepts. I will remember Prof. Christoph Kirsch, a postdoc in

my early days at Berkeley, for helping me define problems, putting up with my ideas, and

initially serving as an interpreter between Prof. Henzinger and me.

With my office mates, Krishnendu Chatterjee and Arindam Chakrabarti, I shared much

more than piles of papers, office commandments or courteous talk. That blissful Yosemite

trip all with its 270◦ car rotation accident comes to mind. I find disheartening that, de-

spite good will and intention, we did not get to work on a problem together, and do hope

we somehow correct this in future. Krishnendu, so breezy yet engrossed, so “never do

anything” yet weeks ahead of all deadlines, so self accomplished yet without a breath of

arrogance. With Arindam I spent countless hours in social and economic discussions, often

not knowing what stand Arindam would take in an argument and thus enjoying every sec-

ond of it even more. I am thankful to him for disturbing my narrow perception of the role

of the free market. Rational people may reasonably disagree on a matter, but despite that,

it always seemed that both of us yearned to share those daily stories that had captivated

us. I do realize, sadly, that one is offered only few lifetime opportunities to make such a

meaningful connection with a friend.

I hope never to forget what, while staying in Berkeley, I learned to deem very precious:

mid-afternoon fog rolling over the northern crest of Berkeley Hills, the Bridge and its sym-

bolism, reflection of Alta Peak over Pear Lake in Sequoia National Park, small collection of

x

Giacometti’s sculptures in San Francisco Museum of Modern Art, homeless old lady that I

kept seeing in the middle of the night on the corner of Telegraph and Channing, Bay Area

citizens’ activism, KGO 810 news talk and Gene Burns’ commentary, Aspan Dahmubed’s

April Fools’ Day “love” letter, soft and distant sounds of Sunday 6pm Campanile concerts

and swarms of students around Sather Gate at noon.

I revere my parents, Milena and Milivoje, for empowering me to accept immaterial

wealth and values, and for embedding me with moral virtues of hard work and diligence. I

salute them hoping they can hear the message that I am still on track of the dream they had

for me (Slobodan - the one who is free, Serbian). My siblings, Radina and Ljubisa, are the

foremost ones to follow example of and permanent sources of both benevolent critique and

motivation. Living with all of them bestowed upon me a unique blend of soulful empathy

and existential felicity. Throughout these years I constantly felt frustrated for not being

able to explain them exactly the relevance of the research problems I was working on.

Therefore, although I know they always stood by me, it somehow feels not right to say this

thesis is devoted to them. I would rather now pledge my word that I shall devote more time

to them in future. My work was, however, worth their sacrifice of being far away from me.

That they should have no doubt about. No matter how (in)significant this work may be in

the grand scheme of things, it means so much to me. I feel very fortunate.

xi

xii

Chapter 1

Introduction

1.1 Motivation

Embedded computing systems are nowadays common in most spheres of life. In fact,

as popular definition suggests, everywhere where computation is subject to physical con-

straints. It is estimated that an average American comes into contact with about a hundred

embedded computers per day, and that by the year 2010 software for embedded computers

will account for 90% of all software being written. The design of such a system asks for a

specified behavior to be mapped on a computing platform under certain constraints. In the

application domains such as automotive, mechatronics, and multimedia, power consump-

tion and size constraints are commonly not of the highest concern. Instead,time related

constraintssuch as latency, deadline, throughput, response-time predictability are required

by specification. For instance, in safety-critical systems the deterministic and timely re-

sponse is often required for fault-tolerance. A common way to achieve it is through replica

determinism that demands the redundant system nodes to take the same decision at about

the same time.

Lee observes in [49] that time is not present in the prevailing computing and network-

1

ing abstractions used to design embedded systems. Unfortunately, this is true not only

for hardware components, but also for software components such as operating systems,

middleware concepts, and even design tools. In fact, the vast majority of dynamic or vir-

tual features designed to increase the average-case performance have detrimental effects

on timing predictability. Moreover, there are common examples in which a decrease of the

average-case latency results with an increase of the worst-case latency. As Ziegenbein et al.

note in [84] with respect to multiprocessor scheduling anomalies, in some cases the best-

case performance needs to be considered simultaneously. In general, time predictability is

defined as the difference between estimated upper and lower bound of an event time, or as

the difference between estimated and measured worst-case times. In this thesis we consider

systems in which timing predictability is far more important than average performance.

Theile and Wilhelm notice that most cases of low timing predictability fall in two cat-

egories,unknown external interferenceandlimited analyzability[73]. In the former case,

low predictability is caused by the limited knowledge or unavailability of the system infor-

mation relevant for the implementation. For instance, inter-arrival event times or the un-

derlying scheduling mechanism are unknown during the system design. In the latter case,

system components and their parameters are substantially known, but such a knowledge

is too complex to be analyzed effectively. For instance, many microprocessor architecture

techniques like out-of-order execution or cache replacement strategies are too complicated

for the time bounds to be estimated. Thus, there are at least two ways to attack the tim-

ing predictability problem in embedded systems: reduce the sensitivity to unknown system

information (see, e.g., [31, 81]), and, use architectures or implementation techniques that

can be analyzed more easily ([38, 20]). The elements of both strategies can be found in

solutions for the problems we address in this thesis.

Both [49] and [73] analyze system architecture layers pertinent to time determinism.

[73] lists four layers: hardware architecture (includes all design aspects below the instruc-

tion set), single task software development (code synthesis, intratask analysis and opti-

2

mization tools), task level (scheduling, shared resources, intertask synchronization), and

distributed operation (distributed resources, end-to-end deadlines). In this study we focus

on the methods addressing the two uppermost layers in this classification.

The step in the design process during which system performance, including power and

timing, is validated against its specification is calledperformance verification. This step is

often performed simultaneously with design-space exploration. According to a recent Em-

bedded Market Forecasters [21] analysis, one quarter of embedded system designs missed

the project schedule by at least 50%, about one third missed at least 50% of functional

specifications, and more than 70% missed performance specifications by at least 30%. As

discussed in the International Technology Roadmap for Semiconductors [66], the perfor-

mance verification is already named as one of the top three issues in system-on-chip design.

The current industrial practice in performance verification is almost exclusively limited

to (cycle-true) simulation and prototype testing. The examples include Seamless [55] in

system-on-chip and AutoBox [18] in automotive domains. Even though simulation often

seems viable for functional verification it is less so for the validation of performance, in

particular, timing. Two major reasons are often quoted. The corner-case simulation vectors

that result in worst-case performance are often not intuitive and, thus, very difficult to

find, which makes the simulation procedure very time-consuming. Second, these methods

require executable code, which can often be provided only in the later stages of design.

On the other hand, formal performance validation methods are yet to get significant

attention from industry. The tools that do exist are typically only applied to individual

component analysis, because system-level heterogeneity and complexity are still difficult

to capture precisely in most formalisms. In principle, formal timing analysis should give

both bounds for critical scenarios and the corner-case vectors that produce the scenario.

Also, formal performance analysis seems suitable for design-space exploration since it runs

considerably faster than simulation. Most of existing methods of formal timing analysis fall

3

in two categories,code execution timeanalysis andresource sharinganalysis. The former

methods are based on program path analysis and cycle-true processor modeling, and the

latter on the research in scheduling for real-time operating systems. Notable industry-level

examples are tools aiT [1] for C-code worst-case execution time analysis, and RapidRMA

[74] for rate monotonic fixed priority scheduling.

Beside the fact that the applications are becoming more complex in the number, char-

acter and interaction of consisting components, what makes the timing determinism in

embedded systems specific and less tractable? Up until recently, in traditional hardware

design, system timing was guaranteed by hierarchical composition of individual hardware

subsystems. This was possible since the component control was mostly single threaded.

However, the reactive character of embedded software requires preemption and correspond-

ing scheduling strategies. It is well-known (see, for instance, the work of Richter et al. [62])

that preemptive and time-driven scheduling introduces timingdependenciesbetween com-

ponents that are functionally independent. Recent system-on-chip designs use networks

to connect multiple programmable processor cores with specialized hardware subsystems.

Optimizationof performance in such systems, e.g. optimization of power consumption,

requires component specialization which increases system heterogeneity.Heterogeneous

platforms, on the other hand, add to the problem complexity through combined effects of

different scheduling strategies needed for different components. If distributed embedded

systems are considered additional resource sharing is involved for communication, often

with event buffering and bursts. All these factors render standard approaches to resource

sharing ineffective.

Embedded systems are complex as a whole, but very often consist of smaller modules

minimally interacting with each other. Such a structure makes embedded systems amenable

to component-based design. This approach provides a means for decomposing a system

into components, enabling the reduction of a complex design problem into multiple simpler

design problems. Thus, in contrast to holistic methodologies, in this approach there is no

4

need to perform global analysis for every system configuration. It is often argued that, as the

system complexity increases, component “cut-and-paste” methodologies are the only way

to reach design productivity, because designers must work at higher levels of abstraction,

reusing already designed and verified components.

Heterogeneous component-based frameworks (e.g. Ptolemy [48], Metropolis [25],

UML [17]) are currently primarily used for functional verification and for performance

analysis they need to be extended with analytical models. This is important because in

component-based designs it is mostly the case that only local performance problems have

the potential to impact other parts of the system. As noted in [62], functional problems are

typically confined because of the practice to modularize functions such that most interde-

pendencies are localized. However, there is no simple performance modularization, since

performance interdependencies are introduced even between functionally independent pro-

cesses.

This thesis studies several methods for the component-based design of systems with

precise timing requirements. The focus is on formal flexible and scalable methods for

programming and verification of timing properties. We address issues such as mod-

els of computation, design principles, qualitative properties of composition, and perfor-

mance/predictability/efficiency tradeoffs. In the following sections we describe the prob-

lems with more details, briefly explain our solutions, and review the related work.

1.2 Composable Code Generation for Distributed Sys-

tems

According to Frischkorn in [22], by 2015 up to 40% of the costs of an automotive ve-

hicle will be driven by electronics and software. About 60% of all development costs for a

car electronic control unit will be related to software. In addition, while the number of pro-

5

cessors is expected to level in the range 60-70, the growth rate of software functions will be

300%. This is closely related to one of the goals of Autosar [3], a huge project in automo-

tive industry: to decouple growth rate of number of functions from growth rate of number

of electronic components. Similar trend exists in avionics software, where previously each

control subsystem had its own dedicated resource, whereas new solutions increasingly offer

a common computing platform for multiple functions.

Clearly, software integration issues will play the major role in design of such distributed

control systems. Note that in standard design techniques, e.g. in those that use simulation

for performance validation, the design errors often show up only during system integration.

In addition, different software parts are often developed by different suppliers. Thus, the

integrator should also have a freedom in choosing between in-house and externally devel-

oped components. In the Autosar project, the description of software components, their

interfaces, resource needs and network topologies are based on Unified Modeling Lan-

guage, a generalized specification language for object modeling. In this thesis we address

similar issues by using a coordination language Giotto [31] extended with suitably defined

component timing interfaces.

There exists a vast literature on synchronous-reactive design and a part of it targets

distributed deterministic systems (see, for instance, the works of Benveniste and his col-

laborators [5, 6, 4]). This methodology is primarily successful at the specification level. In

globally synchronous specifications, parallel components are assumed to execute at exactly

the same points in time enforced by perfect clocks. Also, execution and communication are

assumed to be timeless. Synchronous reactive programs written in Lustre have been com-

piled globally for distributed real-time systems [10], but this approach of Caspi et al. re-

solves underlying scheduling problems through integer linear programming, a method that

is not compositional. Two often quoted problems that prevent synchronous specifications to

scale well to distributed implementations are large variance in component computation or

communication times and the difficulty of maintaining a global notion of time. To address

6

the former problem the clock typically has to run as slow as the slowest system compo-

nent. In addition, in a distributed implementation, the synchronous communication lines

between system components are often replaced with asynchronous ones and designers have

to insure that such a composition does not change the semantics. The desynchronization

procedure introduced by Benveniste et al. in [5] is a formal technique to replace the syn-

chronous communication lines with unbounded buffers. The procedure has been applied

from loosely time-triggered architectures [6] to traffic signal control systems [80].

On the other hand, the global timing in a properly implemented distributed synchronous

system can be predictable and fault-tolerant, although such a design often becomes inef-

ficient. In fact, most software architectures and communication protocols used in safety-

critical distributed real-time systems are time-triggered, i.e., all actions are initiated by

temporal events that follow a global statically computed schedule. As argued by Kopetz

et al. in [45, 44], such conservative designs attempt to avoid nonfunctional dependencies

between components, and thus, support independent verification of each component. The

time-triggered approach is preferred for its compositionality, but it becomes inefficient with

increasing system complexity, especially if the network traffic is irregular. According to

Richter et al. [62] it results in larger buffer size requirements, smaller utilization factors and

larger power consumption. This overhead often drives designers towards asynchronous or

event-triggered solutions. Some recent solutions use global time synchronization but sup-

port event-triggered processing, where the schedule unfolds dynamically during runtime,

depending on the occurrences of different events. For instance, to preserve discrete-event

model semantics in such a setting Zhao et al. [81] develops theoretical concept of relevant

dependency. However, distributed Giotto can be thought of as purely software-based time-

triggered architecture. Consequently, in our research on flexibility in software integration

the focus is not on performance parameters.

Thesis Work. We present a compositional approach to the implementation of hard

real-time software running on a distributed platform. We explain how several code suppli-

7

ers, coordinated by a system integrator, can independently generate different parts of the

distributed software. The purpose of our effort [34, 36, 35] is to provide the application pro-

grammer with a programming interface that hides most of the implementation details (e.g.

scheduling, handling of shared resources), but provides useful services (e.g. component

communication and synchronization).

The task structure, interaction, and timing is specified as a Giotto program. Giotto

is an example of a methodology based on a restricted model that attempts to reduce the

sensitivity of unknown system information such as task execution time. A Giotto program

executes a periodic set of LET (Logical Execution Time) tasks and the set of tasks, or their

periods, may change whenever a Giotto mode switch occurs. Instead of just a deadline, a

LET task has a release and a termination time: the release time specifies the exact time at

which the task inputs are made available to the task; the termination time specifies when

the task outputs become available to other tasks. Therefore, the times when a LET task

reads and writes data are decoupled from the task execution. The LET of a task is always

non-zero. This allows us to communicate values across the network without changing the

timing information of the task, and without introducing nondeterminism. Thus, LET tasks

can be replaced and composed without modifying their behavior or timing.

We demonstrate how Giotto can be implemented on a distributed platform by dis-

tributed compilation with little global coordination. Each supplier is given a part of the

Giotto program and a timing interface, from which the supplier generates task and schedul-

ing code. The timing interface specifies the time slots that can be used by the supplier for

computation on the hosts, and the time slots that can be used by the supplier for commu-

nication over the network. The integrator then checks, individually for each supplier, in

pseudo-polynomial time, if the supplied code complies to the timing interface and meets,

on the given hardware, the release and termination times specified by the Giotto program.

If all checks succeed, then the supplied software parts are guaranteed to work together and

8

implement the original Giotto program. We demonstrate the feasibility of the approach by

a prototype implementation.

A supplier may be replaced by another one, and as long as the code produced by the new

supplier complies to its component specification and timing interface, it will work together

properly with all other code in the system. Likewise, if new functionality is added to the

system, say by adding a new supplier, as long as the new software passes the two checks

(interface compliance and time safety), it will not change the behavior (neither functionality

nor timing) of the original system in any way. The advantage of our approach lies in the

fact that the two checks can be performed automatically, and the system integrator need not

rely exclusively on testing to see if the upgraded system behaves correctly.

1.3 Component Resource Abstraction and Tradeoffs

A general methodology for temporal protection in traditional real-time systems research

is the resource reservation framework studied, for instance, by Lipari [51] and Almeida [2].

The idea is that each task, or a component of tasks, is assigned a server that is reserved a

fraction of the processor available bandwidth: if a task tries more than it has been assigned,

it is slowed down. This way one can isolate the unpredictability of execution times of

different tasks or streams of tasks from each other. In such solutions, a failing component

cannot influence the behavior of other components in the system, since there is a temporal

isolation between components.

Recently, these methods were extended to hierarchical scheduling systems which con-

sist of real-time components arranged in a scheduling hierarchy [56, 57, 61, 65]. This is

a form of “divide and conquer” technique, where resource partitioning is performed over

multiple levels. Each component consists of a real-time task workload and a scheduling

policy for the workload. A resource is allocated by a higher to a lower scheduling level

9

through ascheduling interface. The interface specifies the resource requirement from the

lower level and the resource guarantee from the higher-level scheduler. A hierarchical

scheduling framework should exhibitseparationamong levels, i.e., the interface should be

minimal. Moreover, the main benefits of hierarchical scheduling arise if the framework is

fully compositional, i.e., if properties established at the lower also hold at the higher level.

These methods demonstrate how to perform composition of components in a hierar-

chical scheduling framework, but do not address the problem of generating the timing

properties of a component. Shin et al. [68] defines this problem asabstractingthe collec-

tive real-time requirements of a component as a single real-time requirement. This single

requirement should be a sufficient and necessary requirement for all the collective require-

ments of the component. Abstraction of the internal complexity of a task group into a

single requirement is used to reduce scheduling difficulties in the hierarchical scheduling

framework.

Early work in task group abstraction by Lipari [51] or Shin [68] considers theperiodic

resource model(T, C), a resource abstraction under which a component is guaranteed to get

C units of the resource everyT units of time. This research showed how to abstract a group

of independent periodic tasks with EDF (Earliest Deadline First) or RM (Rate Monotonic)

scheduling algorithms into a single periodic task characterized with a pair(T, C). The ex-

act procedures were given in [51] for a component with RM scheduling, and in [68] for

a component with EDF scheduling. The compositionality of the framework was demon-

strated by combining multiple scheduling interfaces into a single higher-level interface.

The work by Easwaran et al. [19] is specific because the component at the topmost level

can select a value for periodT that minimizes the resource demand of the system. The

corresponding periodic resource model is exported to the operating system for scheduling

and the chosen value for period is propagated to all the components in the system where

resource capacities are given by the corresponding interfaces. The component model by

Almeida et al. [2] refines the periodic resource model by including release jitter, deadlines

10

earlier than periods and synchronization blocking. In addition, this is one of the rare efforts

to study trade-offs between complexity and tightness of abstraction.

In [59] Mok et al. introduce another resource partition model, thebounded-delay re-

source model. The bounded delay resource model(c, δ), guarantees fractionc of the re-

source with at mostδ time units of delay. This model is suitable when different components

aimed at the same resource have considerably different latency requirements. Later work

[69] by Shin shows how to abstract a set of independent periodic tasks into a bounded-delay

interface. They also show how to use the bounded-delay model together with the periodic

model as scheduling interface models, i.e., they show how to abstract a set of periodic and

bounded-delay tasks into a single periodic or bounded-delay task.

Thesis Work. We showed that the previous results ([68, 69]) can be extended for

supporting interacting tasks with data dependencies. We assume that all applications that

execute on the considered resources are specified in the conventional periodictaskmodel

with an underlying task precedence graph. We study the periodicresourcemodel for hier-

archical scheduling model in the presence of dataflow constraints between the tasks within

a group (intragroup dependencies), and between tasks in different groups (intergroup de-

pendencies) [53].

We consider two natural semantics for dataflow constraints, namely, RTW (Real-Time

Workshop) semantics and LET (logical execution time) semantics. While RTW follows

the semantics of real-time code generated from a Simulink environment ([71]), LET has

been used in Giotto domain-specific language, as discussed above. The most important

semantics difference between the two models is as follows. The RTW scheme transfers

the output of a task as soon as the task completes execution. The LET scheme makes the

output of a task available at the prespecified time, namely, at the relative deadline defined

by the task period.

We show that while RTW semantics offers better end-to-end latency on the task group

11

level, LET semantics allows tighter resource bounds in the abstraction hierarchy and there-

fore provides better composability properties. This result holds both for intragroup and

intergroup dependencies, as well as for shared and for distributed resources. In addition,

for a suitable chosen composability metrics, we prove some bounds on the composability

difference between the two models. Finally, we show that, in contrast to the RTW seman-

tics, the LET semantics both exhibits separation between levels and is fully compositional.

1.4 Interface-based Formalisms for Real-time Compo-

nents

Although the performance verification community has different techniques than the

real-time systems community, the goals are often similar [83]: to achieve high productivity,

designers must work at higher levels of abstraction, reusing already designed and verified

components. The goal of abstraction is to be able to verify correctness using the abstract

interface without implementation or prototype. Thus, in both communities, the validation

task is decomposed into theanalysisof individual processes for which formal analysis

techniques are known and on thecompositionof the results in order to obtain system-level

timing information. However, the methods they use differ in either the analysis, or the

composition parts, or both.

A group of methods by Ernst and his group integrate local analysis with a global event-

flow based analysis, typically using existing models and analysis techniques [40, 63, 29].

To avoid traps of simulation these methods do not consider each event individually, but

abstract events toevent streams. Activating events may be aperiodic by nature, e.g. alarms,

or periodic with jitter, e.g. packets in a communication protocol. Even strictly periodic

task activation can be seen as event-driven, since it is the result of the expiration of a

timer. Event streams are represented by standard event models, and the corresponding

12

compositional analysis methodology is based on the event propagation models. In most

cases, the analysis requires only a few simple properties of event streams, such as event

period, maximum jitter, or event burst. In such a context, global schedulability can be seen

as flow-analysis problem for event streams that can be solved iteratively using event stream

propagation. In principle, based on event stream manipulation one can identify worst-case

scenarios, potentially even buffer overflows and missed deadlines as a result of transient

overload.

In [40] the local analysis techniques are composed on the system level by connecting

their input and output event streams. For such a compositional approach, it is required

that the output event models of one component be compatible with the input event models

of the connected components. Incompatible event models may also need to be connected

by the overall application and communication structure. For instance, an aperiodic event

model is to be connected to a periodic one. To overcome this problem certain transfor-

mation functions are defined and applied in order to adapt event models. In general, the

method allows local scheduling results from the real-time systems research to be used,

which is a major advantage over holistic analysis approaches such as the one by Pop et al.

[60]. Another difference to the holistic approach is that the formal event stream equations

are much better structured with respect to the architecture. The SymTA/S tool is based

on this approach [29]. It supports heterogeneous architectures, complex task dependen-

cies and context aware analysis, and it determines system-level performance data such as

end-to-end latencies, bus and processor utilization, and worst-case scheduling scenarios.

Furthermore, SymTA/S combines optimization algorithms with system sensitivity analysis

for rapid design space exploration.

A similar compositional performance analysis approach is based on thereal-time calcu-

lus by Thiele and his group [75, 11, 76, 72]. This approach is geared towards performance

analysis of embedded and network processors and uses the event model representation

known from the network calculus theory developed by Boudec et al. [7]. The work [75]

13

by Wandeler et al. is the first research effort that formally combines the network calculus

and interface design theories in the real-time context. Each component represents a task,

so there is no abstraction of task groups into components. Also, the task model in [75]

assumes independent tasks, so interface compatibility checking does not have to take into

account dataflow constraints. Finally, they assume preemptive fixed-priority scheduling,

where each component (task) is specified with a certain priority. The research in [76] ex-

tends this work for other scheduling algorithms such as EDF and polling servers, whereas

[72] moves from static interfaces by introducing formalism that can adapt system guaran-

tees according to the system environment.

This approach is not limited to a particular task set characterization (e.g. periodic task

set) or to a particular resource model (e.g. bounded-delay model). In contrast, they use

network calculus notions of upper and lower bound event arrival curves for event streams,

and service curves for resource modeling. This generality comes with a price. Since the

event stream models are not the standard ones, new scheduling analysis procedures for the

local components have to be developed. So, the existing work in real-time system research

cannot be reused. Furthermore, the complexity of the equations makes the approach less

intuitive than some simple local techniques such as rate monotonic analysis. As often

advocated, a system-level analysis, especially a compositional or hierarchical one, should

be comprehensible to be successful.

Thesis Work. In the area of interface-based timing verification we present an assume-

guarantee interface algebra for real-time components [37]. This approach is based on inter-

face theory methodology [13, 14] by de Alfaro et al. In general, the input/output behavior

of a system component is captured by an automaton. Two interfaces are compatible if there

is a way to use them together such that their input expectations are met. Thus, the interface

automaton of a composition is constructed by pruning all violating states from the product

of the component automata. In particular, the timed interfaces theory [15] can be applied

when timing of inputs and outputs are important. A timed interface is specified as a timed

14

game between two players, representing the inputs and outputs of the component. How-

ever, in the results presented here, and since we always abstract events into a suitable event

stream that can be represented by a simple predicate, the form of the interface is stateless,

and thus the composition is much simpler. Our approach is also similar to the real-time

interfaces approach of Wandeler et al. [75]. However, for the components we do not use

general event and resource models, but only those for which effective resource abstraction

results can be derived. Thus, we can extend and reuse some of the theory discussed in

Sec. 1.3. The objective is to enable automatic, efficient, and flexible composition of such

real-time interfaces.

In the first problem we address in this area, a component implements a set oftask

sequencesthat share a resource. The arrival rate function bounds the number of task (se-

quence) requests in a given interval of time. We show how to abstract such a task group

using the bounded-delay or periodic resource models. Then we consider such a task group

as a part, i.e., a component, of a larger real-time system specified with a set of task se-

quences that define task precedence constraints.

Due to the task dependencies between different components, the interface cannot just

contain resource constraints, but also dataflow propagation constraints. A component inter-

face consists of an arrival rate function and a latency for each task sequence, and a capacity

function for each shared resource. A capacity function defines a fraction of processing

power that is reserved for the component, or, more generally, a resource partition model

such as bounded-delay model. The interface specifies that the component guarantees cer-

tain task latencies depending on assumptions about task arrival rates and allocated resource

capacities. Together with interfaces we formally define interface composition operations,

and the compatibility and refinement relation. Interface compatibility can be checked on

partial designs, even when some component interfaces are yet unknown. In this case in-

terface composition computes as new assumptions the weakest constraints on the unknown

components that are necessary to satisfy the specified guarantees.

15

For efficient and flexible composability checking two properties are important: incre-

mental design and independent refinement. According to theincremental design property

the composition of interfaces can be performed in any order, i.e., it is associative, even if

interfaces for some components are not known. Note that resource abstraction procedures

described in Sec. 1.3 and most of other approaches described in Sec. 1.4 are not associative.

However, we prove that our interface algebra satisfies the incremental design property. The

refinement relation is defined such that in a design we can always substitute a refined inter-

face for an abstract one. We show that the framework supportsindependent refinement, i.e.,

the refinement relation is preserved under composition operations. Our algebra thus for-

malizes an interface-based design methodology that supports both the incremental addition

of new components and the independent stepwise refinement of existing components.

Little previous work exists that considers compositional performance analysis in the

presence of complex task dependencies that include cycles. However, this is an important

problem in practice since nonfunctional dependency cycles are often introduced by com-

munication sharing as noted by Richter et al. [62]. The research presented by Yen et al.

in [78] or Goddard et al. [24, 23] are notable examples, but these are holistic methods

in real-time tradition, that do not allow compositional analysis. Zhou et al. [82] studies

causality interfaces for general dataflow model, but the approach is targeted towards dead-

lock detection, and does not include real-time properties. In the SymTA/S tool limited set

of cyclic graphs is allowed [63] in the models. For instance, a cycle can have only one

external input. The cycles are analyzed by iterative propagation of event streams until the

event stream parameters converge or until a process misses a deadline or exceeds a buffer

bound. The iteration process terminates because the event timing uncertainty grows mono-

tonically with every iteration, but that typically ends in uncompatibility error rather than in

a fixed-point solution that satisfies interface constraints.

In the final part of the thesis we study interface-based verification of general task

graphs, arbitrary directed graphs where each node represents a task, and each edge rep-

16

resents the data flow between tasks [54]. Since input degree of a node can be greater

than one, a task may execute only after data is available on all input edges (AND type of

task triggering). The graph is allowed to have cycles, i.e., we allow for cyclic functional

dependencies between tasks. We assume that the primary inputs of a task graph are spec-

ified with event arrival curves that bound the number of task executions. In particular, we

concentrate on periodic event models with jitter and burst. In order to avoid iteration prob-

lems of [63] one has to specify also phase information between events in different event

streams. Therefore, our objective is to define the form of interface and interface operations

that would enable flexible interface-based design similar to the case of task sequences. In

this case, three operations are needed for construction of composite task graphs, the com-

position, connection, and join operations. Finally, we study requirements that enable the

incremental design and independent refinement properties discussed above.

1.5 Thesis Organization and Contributions

We now present the organization of the thesis and the main results of each chapter.

• In Chapter 2 we present a compositional approach for the implementation of hard

real-time software running on a distributed platform. We explain how several code

suppliers, coordinated by a system integrator, can generate parts of the distributed

software in a distributed manner. We present the algorithm that generates the neces-

sary Giotto code and timing interface for each host and each supplier. We also present

pseudo-polynomial checks for interface compliance (w.r.t. a timing interface) and

time safety (w.r.t. the worst-case execution times of tasks), and formally prove the

distributed Giotto compiler correct. The feasibility of the approach is demonstrated

by a prototype implementation. A preliminary version of this Chapter appeared in

[35].

17

• In Chapter 3 we first study the abstraction of a task group that executes on a single

resource and with precedence constraints among tasks within the group (intragroup

task precedences). We show the tightness difference in favor of the LET seman-

tics. For the case of a task group distributed over several resources we characterize

how large the gap in the tightness of abstractions between the two schemes, RTW

and LET, can be. In the context of higher levels of the hierarchical scheduling frame-

work, we allow for the task precedences among different task groups (intergroup task

precedences). The LET semantics again results in tighter and simpler abstractions.

In addition, and contrary to the RTW semantics, we show that the LET semantics

enables a compositional framework with separation between levels. The results of

this Chapter were published in [53].

• In Chapter 4 we first study real-time components consisting of task sequences [37].

We give procedure to obtain resource partition parameters for a group of aperiodic

tasks given with arrival rates and deadlines. The right form of the interface and corre-

sponding algebra are presented and discussed. We formally prove that the framework

satisfies incremental design and independent refinement properties. The approach is

then extended for the case of task graph components that include task cycles [54].

Due to the different event model a different interface algebra has to be defined. The

two properties adapted to allow cycles are shown to hold even for this interface-based

design methodology.

• Chapter 5 concludes the thesis and gives some pointers for future research. The

relevant problems and concluding remarks are given at the end of each chapter.

18

Chapter 2

Composable Code Generation for

Distributed Giotto

2.1 Introduction

In this chapter we suggest that the competing goals oftimely executionandcompos-

able designcan be achieved together by adopting a software solution that requires only

basic hardware services such as clock synchronization and redundancy management. We

base our work on the LET (logical execution time) paradigm, and the LET-based language

Giotto, previously proposed as a software model that guarantees predictable real-time exe-

cution and at the same time supports portable, composable code [31]. The chapter demon-

strates how Giotto can be implemented on a distributed platform by distributed compilation

with little global coordination. In this way, Giotto offers a framework for the compositional

design of hard real-time systems.

Giotto is a domain-specific language for control applications [31]. A Giotto program

executes a periodic set of LET tasks, and the set of tasks, or their periods, may change

whenever a Giotto mode switch occurs. Instead of just a deadline, a LET task has arelease

19

and atermination time: the release time specifies the exact time at which the task inputs

are made available to the task; the termination time specifies when the task outputs become

available to other tasks. The task must start running, may be preempted, and must complete

execution during its LET, which is the time from release to termination. Thus the times

when a LET task reads and writes data are decoupled from the task execution. LET avoids

race conditions, and thus ensures the predictable, deterministic execution of a set of real-

time tasks. LET tasks can be replaced and composed without modifying their behavior or

timing. Since LET is an abstract programming model, the compiler must ensure that the

generated code satisfies the LET assumption. This can be achieved by compiling Giotto

into schedule-carrying code(SCC) [35] for a pair of virtual machines: the E (embedded)

machine mediates between tasks and the physical environment [32]; the S (scheduling)

machine mediates between tasks and the CPU [35]. E code specifies when sensors and task

inputs are read, and when actuators and task outputs are written; S code specifies when

a task is executed on the CPU. We have implemented the E and S machine as part of a

high-performance microkernel for real-time systems [42], and used Giotto to successfully

implement flight control systems for model helicopters [30].

A Giotto program specifies the functional and timing behavior of a dynamic set of tasks,

for example, the tasks of an automotive control system. Such a system is typically executed

by an on-board network with several hosts (CPUs). Moreover, such a system is typically put

together from several parts, which correspond to different control problems, for example,

fuel injection and anti-lock brake control. While the different software parts may interact,

they are often developed by differentsuppliers: the brake supplier will deliver its own

software, etc. Furthermore, to optimize the use of computational resources, there need not

be a one-to-one correspondence between hosts and suppliers. The contracting company,

or integrator (e.g., the car manufacturer), then faces the challenge of putting together and

maintaining the entire system. Using today’s methodologies, a simple modification in the

software of a single supplier may induce a series of modifications in the whole system.

20

For example, a change of timing attributes (e.g., task execution times) in one software

component may cause the schedule of other components to change. We show how this

problem can be avoided using Giotto.

We view the Giotto program as the overall system specification (timing and task inter-

action). Each supplier is given a part of the Giotto program with the charge to implement

the corresponding tasks. This information can be regarded as acomponent specification.

So that all supplied software parts will fit together, each supplier also receives timing in-

formation in the form of atiming interface. The timing interface specifies the time slots

that can be used by the supplier for computation on the hosts, and the time slots that can be

used by the supplier for communication over the network. From a component specification

and a timing interface each supplier produces code. The integrator then checks that the pro-

duced code complies to the timing interface and meets, on the given hardware, the release

and termination times specified by the Giotto program. The first check is calledinterface

compliance; the second,time safety. Both checks are local for each piece of supplied code

and can be performed in pseudo-polynomial time. If all checks go through, the integrator

is assured that all supplied software parts fit together and correctly implement the original

Giotto program (note that correctness includes the satisfaction of all real-time constraints).

The distributed implementation of hard real-time systems is a key challenge in modern

control systems, especially in automobile (drive-by-wire) and aircraft (fly-by-wire) con-

trol. Much of the work in this area has been devoted to hardware-focused solutions, such

as the time-triggered architecture [43], which guarantees hard real-time constraints across

a distributed system by strict adherence to clock-synchronized networking protocols. The

cost of such a solution is paid in terms of flexibility, and even recent efforts in the au-

tomotive industry (FlexRay, Autosar [70, 3]) require that all component processes, their

dependencies, and their timing profiles be known in advance. Essentially, we build a fully

software-based instance of the time-triggered paradigm. Instead of having the hardware

and network protocol enforce all timing interfaces, each timing interface is enforced sepa-

21

rately by the compiler (during distributed code generation by the suppliers) and by program

analysis (during code integration by the integrator). The LET assumption is crucial to this

approach. The LET (release to termination) of a task is always non-zero. This allows

us to communicate values across the network without changing the timing of a task, and

without introducing nondeterminism, as long as the timing interface ensures that all values

are available in time to meet all task release and termination times, and all sensor read

and actuator update times. By contrast, the synchrony assumption used by other real-time

languages [26] does not offer this flexibility, and hence an important approach to distribut-

ing synchronous programs is based on the Globally Asynchronous, Locally Synchronous

paradigm [4].

We obtain the benefits of the time-triggered paradigm in terms of real-time assurance,

and at the same time achieve a high degree of flexibility. For example, a supplier may be

replaced by another one, and as long as the code produced by the new supplier complies

to its component specification and timing interface, it will work together properly with all

other code in the system. Likewise, if new functionality is added to the system, say by

adding a new supplier, as long as the new software passes the two checks (interface com-

pliance and time safety), it will not change the behavior (neither functionality nor timing)

of the original system in any way. This is because interface compliance succeeds only if

the original set of timing interfaces can accommodate an additional timing interface with

sufficient capacity, and time safety succeeds only if the original set of hosts can accommo-

date the new tasks. The advantage of our approach lies in the fact that the two checks can

be performed automatically, and the system integrator need not rely exclusively on testing

to see if the upgraded system behaves correctly.

Previously, Giotto had only been compiled for single-CPU systems [33]. The contri-

bution of this chapter is two-fold: we describe a methodology that supports (1)distributed

real-time code generation for (2)distributedreal-time systems. Multiple suppliers (1) can

independently compile different parts of a Giotto program to run on a system of multiple

22

CPUs (2). Because of the time-driven nature of our timing interfaces, (1) immediately

enables (2) on clock-synchronized systems. Other approaches for (2), however, may not

necessarily support (1); for example, synchronous reactive programs written in Lustre have

been compiled globally for distributed real-time systems [10]. Aimed at (1) are scheduling

techniques that address the problem of dividing tasks into groups, and scheduling tasks

within groups [58, 68]: the challenge is to develop compositional schemes for resource

partitioning such that each task group may be programmed as if it had dedicated access to

the resource and may be tested for schedulability without global task knowledge. However,

these techniques typically assume a single CPU and no interaction between tasks. In dis-

tributed real-time systems there are efforts [46] to define minimal but complete interfaces

that link components together. In avionics software, where previously each control sub-

system had its own dedicated resource, new solutions are proposed which offer a common

computing platform for multiple functions; [64] presents requirements for the temporal

partitioning of such a platform. The car manufacturers’ and suppliers’ perspectives on em-

bedded software reuse are described in [28], which presents a general framework in which

different software components can be classified according to their degree of reusability,

albeit without considering real-time communication in detail.

Outline of the Chapter. In Sec. 2.2 we present a brief review of Giotto and introduce

a running example that we will use throughout this chapter. In Sec. 2.3 we discuss the

algorithm that generates from a given Giotto program virtual machine code (SCC) for each

host and each supplier. In Sec. 2.4 we introduce timing interfaces and show how they

can be composed. Sec. 2.5 describes our prototype implementation of distributed Giotto.

In Sec. 2.6 we give the formal semantics of distributed SCC, we analyze distributed SCC

generated from Giotto, present pseudo-polynomial checks for interface compliance (w.r.t. a

timing interface) and time safety (w.r.t. the worst-case execution times of tasks), and prove

the distributed Giotto compiler correct.

23

2.2 Giotto Language

We give a brief introduction to Giotto and refer to [31] for details. A simple example of

a Giotto programGA is shown in Fig. 2.1. For now ignore the distribution annotations given

in the brackets to the right of the program. In this audio application a prerecorded PCM-

format audio file is read, processed, analyzed, and reproduced by three real-time tasks.

TheGenerator task synthesizes the digital audio samples of the sound that resembles the

plucking of a string. This is done according to the Karplus-Strong algorithm [41], where the

period of the task determines the pitch of the generated sound. TheMixer task merges the

file samples with the synthesized samples amplifying the string pluck sound. TheAnalyzer

task computes a short-time Fourier series of the mix sound.

A Giotto program begins with port declarations. A port is a typed variable. The set

Ports is partitioned into the following four sets: a setSensePorts of sensor ports, a

setActPorts of actuator ports, a setInPorts of task input ports, and a setOutPorts of

task output ports. The sensor ports include the integer-typed portpc, a discrete clock. In

Fig. 2.1 the sensor portAudioSampler represents a vector of audio file samples, the actua-

tor portMixPlayer a vector of final waveform samples, and the task output portsSpectrum,

MixSound , andStringSound , respectively, represent vectors of Fourier coefficients, mix

samples, and string samples. The Fig. 2.2 shows the data dependency graph for the tasks

(rectangles with rounded corners), the sensor, and the actuator.

Each sensor (resp. actuator) portp is read (resp. written) by a device driverdev [p]. Each

task output port is double-buffered, i.e., it is implemented by two copies, a local copy that

is used by the task only, and a global copy that is accessible to the rest of the program

including other tasks. The copy drivercopy [p] copies data from the local copy to the global

copy of the task output portp.

Giotto has two kinds of computational activities, tasks and drivers. Tasks are released

and their execution take time, while drivers are executed in logically zero time. A Giotto

24

sensor
AudioSampler uses dev [AudioSampler];

actuator
MixPlayer uses dev [MixPlayer];

output
Spectrum uses copy [Spectrum];
MixSound uses copy [MixSound];
StringSound uses copy [StringSound];

task
Analyzer(In1) output(Spectrum);
Mixer(In2) output(MixSound);
Generator(In3) output(StringSound);

driver
InDrv 1(MixSound) output(In1);
InDrv 2(AudioSampler , StringSound) output(In2);
InDrv 3() output(In3);
ActDrv(MixSound) output(MixPlayer);

start m1 {
modem1 () period 8 {
actfreq 2 do MixPlayer(ActDrv);
taskfreq 1 do Analyzer(InDrv 1);
taskfreq 2 do Mixer(InDrv 2);
taskfreq 1 do Generator(InDrv 3); }
}

[s1, h1]

[s1, h1]

[s1, h1]
[s2, h2]
[s3, h2]

Figure 2.1. Audio mixer Giotto programGA

taskt has a setIn[t] ⊆ InPorts of input ports, a setOut [t] ⊆ OutPorts of output ports,

and a task functiontask [t] from the input to the output ports. The task function represents

the result of the computational activity performed by the task. For example, the taskMixer

is defined with input portIn2, output portMixSound , and task functiontask [Mixer]. Let

Tasks be the set of tasks. In addition to the device and copy drivers described above, drivers

can be used to transport data between ports and to initiate mode changes. A Giotto driver

Figure 2.2. Data dependency graph for the programGA

25

d has a setSrc[d] ⊆ Ports of source ports, a setDst [d] ⊆ Ports of destination ports,

a driver functiondrv [d] from the source to the destination ports, and an optional boolean

condition on the source ports to control mode switching. For instance,AudioSampler and

StringSound are the source ports andIn2 is the destination port of the driverInDrv 2. Let

Drvs be the set of drivers.

A Giotto program is defined with a set of modes, each of which consists of a set of

periodic tasks. In each mode the invocation of tasks is repeated after a fixed amount of

time we call the mode period. The task set can change at transitions (switches) from one

mode to another. LetModes be the set of modes, containing a start modestart ∈ Modes.

A Giotto modem has a periodπ[m] ∈ N>0, a set of task invocations, a set of actuator

updates, and a set of mode switches. Each task invocation(ωtask , t, d) consists of a task

frequencyωtask ∈ N>0 relative to the mode period, a taskt, and a task input driverd, which

loads the task inputs. In our example there is only one modem1 with the periodπ[m1] = 8

time units, in this case milliseconds. The audio file is discretized at the rate of 11Khz, and

44 of its samples are read every 4ms. The mix sound is also processed with the period

of 4ms, so the frequency of theMixer task is 2, and one of the three task invocations of

modem1 is (2,Mixer , InDrv 2). The LET character of theMixer task implies that, even if

it completes earlier, its outputMixSound is made available through thecopy [MixSound]

driver exactly at 4ms. Each actuator update(ωact , d) consists of an actuator frequency

ωact ∈ N>0, and an actuator driverd. Each mode switch(ωswitch ,m
′, d) consists of a

switch frequencyωswitch ∈ N>0, a target modem ′ ∈ Modes, and a mode driverd which

uses the boolean condition on its source ports to control the mode switch. For the single

modem1 of the example, we have one actuator update(2,ActDrv) and no mode switches.

In the rest of the chapter we will refer to the single-mode program in Fig. 2.1. However, if,

for instance, we want to be able to switch to a modem2 in which taskMixer is executed

twice as fast, i.e. withωtask=4, the programGA should also contain code form2 shown in

Fig. 2.3.

26

modem2 () period 8 {
exitfreq 4 do m1 (ModeDrv2);
actfreq 4 do MixPlayer(ActDrv);
taskfreq 1 do Analyzer(InDrv 1);
taskfreq 4 do Mixer(InDrv 2);
taskfreq 1 do Generator(InDrv 3); }

Figure 2.3. Additional mode for the Giotto programGA

For a modem, the least common multiple of the task, actuator, and mode-switch fre-

quencies ofm is called the number ofunitsof m, and is denotedωmax [m]. The duration

of a unit isγ[m] = π[m]/ωmax [m]. For the compilation procedure we need the following

sets that can, given a modem ∈ Modes and an integer unit0 ≤ k < ωmax [m], be directly

determined from the Gitto program. The settaskInvocations(m, k) contains all task invo-

cations of modem that are released at unitk, i.e., for whichk ·γ[m] is an integer multiple of

π[m]/ωtask . For instance,γ[m1] = 4 andtaskInvocations(m1 , 1) = {(2,Mixer , InDrv 2)},
because theMixer task is the only task that is released at unit 1 ofm1 , i.e., at time 4ms.

An output port is in the settaskOutPorts(m, k) if in mode m it is updated at unitk,

i.e., if it is a task output port of a task intaskInvocations(m, k). A sensor port is in the set

senPorts(m, k) if in modem it is read at unitk, i.e., if it is a source port of an input driver of

a task intaskInvocations(m, k). The setactDrivers(m, k) contains all actuator drivers of

modem that are invoked at unitk. Finally, an actuator port is in the setactPorts(m, k) if in

modem it is updated at unitk, i.e., if it is a destination port of a driver inactDrivers(m, k).

For instance,senPorts(m1 , 1) = {AudioSampler} andactPorts(m1 , 1) = {MixPlayer}.

E Code, S Code, and Schedule-Carrying Code.In [31] we presented the execution

of a Giotto program on a single processor through the interpretation of code compiled

for two virtual machines,embeddedand schedulingmachine. The embedded machine

[32] handles sensors, actuators, and all task requests. It runsE codethat specifies the

timing and control flow of Giotto tasks and drivers. The embedded machine has three

non-control-flow instructions. Acall(d) instruction immediately invokes a driverd . A

27

release(t) instruction releases a taskt and proceeds to the next E code instruction. A

future(`, a) instruction marks the E code at the addressa for execution after̀ ms elapse.

The positive integer̀ specifies a time trigger, the simplest and only form of trigger that we

consider in this chapter. In order to handle multiple active triggers, the embedded machine

maintains a trigger queue. The Giotto compiler generates a block of E code instructions for

each unit of each program mode.

For example, in Fig. 2.4, the block of E code for unit 0 of modem1 is identified by

the labelE (m1 , 0). It initiates the execution of the copy drivers that update the three task

output ports, and the execution of the audio player device driver. Then the audio sampler

device driver and the three task input drivers update the input ports of the three tasks that

are released next. Note the order of drivercall instructions: copy drivers are followed

by device drivers, followed by task input drivers. Finally, a time trigger with address label

E (m1 , 1) is activated. So, after 4ms the embedded machine executes the block of E code

starting at the addressE (m1 , 1). The last instruction of this block activates another 4ms

trigger, now with addressE (m1 , 0). In this way the execution of each of the two blocks is

repeated every 8ms. Note that the task and driver functions are external to the embedded

machine and must be implemented in some other language.

E (m1 , 0):
call(copy [Spectrum])
call(copy [MixSound])
call(copy [StringSound])
call(ActDrv)
call(dev [MixPlayer])
call(dev [AudioSampler])
call(InDrv 1)
call(InDrv 2)
call(InDrv 3)
release(Analyzer)
release(Mixer)
release(Generator)
future(4,E (m1 , 1))

E (m1 , 1):
call(copy [MixSound])
call(ActDrv)
call(dev [MixPlayer])
call(dev [AudioSampler])
call(InDrv 2)
release(Mixer)
future(4,E (m1 , 0))

Figure 2.4. E code blocks for the programGA

28

S (m1 , 0):
dispatch(Mixer , 4)
dispatch(Generator , 4)
dispatch(Analyzer , 4)

S (m1 , 1):
dispatch(Mixer , 4)
dispatch(Generator , 4)
dispatch(Analyzer , 4)

Figure 2.5. S code blocks for the programGA

The scheduling machine [31] determines when, and in what order, tasks released by

the E code are executed (dispatched). It replaces the system task scheduler, since the code

that it runs,S code, defines a schedule according to which, at run time, a simple dispatcher

selects which task to execute. The scheduling machine also has three instructions, one of

which is call(d) as for the embedded machine. Adispatch(t , `) instruction resumes

(or starts) the execution of a released taskt until ` ms elapse, measured from the start

instant of the current S code block. The integer` specifies the simplest and the only form

of timeoutsthat we consider in this chapter. The task executes until either it completes or

the timeout becomes true, whichever happens first, and after that the scheduling machine

proceeds to the next instruction. Anidle(`) instruction causes the scheduling machine to

idle until the timeout̀ becomes true. Each block of E code is annotated with a block of

S code which starts execution in a separate thread after the last instruction of the E code

block. An important difference between E and S code is that each E code block executes

instructions instantaneously, whereas each block of S code executes over time. We call the

resulting code, consisting of both E and S code blocks,schedule-carrying code(SCC). The

example S code in Fig. 2.5 contains a possible schedule for the Giotto programGA. The

block of S code at the labelS (m1 , 0) is interpreted after the block of E code at the label

E (m1 , 0). It starts with the execution of theMixer task followed by the other two tasks.

The task executing at 4ms is suspended and resumed with the correspondingdispatch

instruction in theS (m1 , 1) block. We note that an S code instruction that dispatches a

task not yet released is simply ignored. With the SCC code in Fig. 2.4 and 2.5 theMixer

task is executed twice every 8ms, and the tasksGenerator andAnalyzer once, exactly as

specified by the Giotto programGA.

29

2.3 Composable Design with Giotto

Distributed Code Generation Flow. In our distributed model the systemintegrator

generates a Giotto programG to be implemented by a setS of supplierson a setH of

hosts. A supplier is an independent code developer. A host is a self-contained computa-

tional element with its own processor, memory, and communication interface. We assume

that hosts are connected by a shared bus or a broadcast network. Hosts communicate by

exchanging messages containing port values. For a portp ∈ Ports, let µ[p] be the message

with the portp value.

The integrator assigns each task and each driver defined inG to a particular host and

supplier. For a taskt ∈ Tasks let h̄(t) (resp. s̄(t)) be the host (resp. supplier) which

executes (resp. implements) taskt. We similarly definēh(d) and̄s(d) for a driverd ∈ Drvs.

Let Taskss,h (resp.Drvss,h) be the set of all tasks (resp. drivers) assigned to suppliers on

host h. We require that a task and its input and copy drivers be assigned to the same

supplier on the same host. Also, an actuator driver and the corresponding device driver

must be assigned to the same supplier on the same host. With such an assignment the

integrator also allocates each port ofG to a particular host and supplier. Ifp ∈ Ports is a

sensor or an actuator port, thens̄(p) = s̄(dev[p]) andh̄(p) = h̄(dev[p]). If p is taskt input

or output port, i.e., ifp ∈ In[t] ∪ Out [t], thens̄(p) = s̄(t) andh̄(p) = h̄(t). Finally, each

messageµ[p] is associated with a suppliers̄(p) and host̄h(p), namely, the sending supplier

and host. LetMsgss,h be the set of all messages that are associated with suppliers on host

h.

In the rest of the chapter we assume that the example Giotto programGA, a streaming

audio application, is to be implemented by three suppliers on two hosts. In Fig. 2.1 each

annotation given in brackets to the right of a port denotes the supplier and the host to which

the port is allocated. The assignment for tasks is shown in Fig. 2.2. The audio file is read

on hosth1, and every 4ms 44 of its samples are sent to hosth2 for processing. TheMixer

30

andGenerator tasks, implemented respectively by the supplierss2 ands3, run onh2. After

receiving the samples fromh1, the taskMixer merges them with the generated samples, and

within the same 4ms, the resultingMixSound samples are sent back to hosth1. The final

waveform is there reproduced and analyzed by theAnalyzer task implemented by supplier

s1. The sets of tasks, drivers, and messages that are associated, for instance, withs2 on

h2 areTaskss2,h2 = {Mixer}, Drvss2,h2 = {InDrv 2, copy [MixSound]}, andMsgss2,h2
=

{µ[MixSound]}.

For each suppliers ∈ S and each hosth ∈ H , the integrator gives out (see the next

sections for formal definitions)

1. an E code moduleEs,h that describes the timing and control flow of driver, task, and

message invocations for suppliers on hosth, and

2. a timing interfaceTs,h that specifies the computation and transmission time instants

on hosth that are available for suppliers.

Once a suppliers receives the E code moduleEs,h and timing interfaceTs,h for hosth it

generates

1. an S code moduleSs,h for hosth,

2. functionality code for all tasksTaskss,h and driversDrvss,h (sequential functions

written in, e.g., native C code), and

3. worst-case execution (transmission) time estimatesws,h for the tasks inTaskss,h

(messages inMsgss,h).

Provided with the wcet’s and transmission times the integrator then verifies each gener-

ated S code module against the corresponding timing interface and E code module. In this

way the integrator can check the composability of all supplied S code modules and ensure

that the resulting distributed SCC program satisfies the semantics (including the timing) of

31

the original Giotto programG . Moreover, once a supplier modifies its S code module on

a host, to check if Giotto semantics is preserved, it is sufficient to check only if the new

module complies to its timing interface.

From Giotto to Distributed E Code. Let P be entire distributed SCC program. The

setPortsP of distributed SCC ports contains additional ports (Ports ⊆ PortsP) needed to

store the data sent over the network. Namely, if according to the Giotto programG and

port-to-host allocation a value of the portp ∈ Ports is needed as input to a driver on a host

h different from the originating host̄h(p), i.e., if a message with the value ofp must be sent

over the network, then the hosth must keep its own copyph of portp.

For a given portp, let the setrecHosts(p) be the set of hosts that need to receive mes-

sages with portp values during program execution in at least one mode, i.e., the set of hosts

on which a task input, actuator, or mode switch driverd is executed in at least one mode,

such thatp is a source port ofd. The host̄h(p) to which the portp is allocated is not in

recHosts(p). For a given taskt, let the setsendOutPorts(t) be the set of taskt output ports

p for which there are hosts that must receive the message with the portp value (i.e., those

with recHosts(p) 6= ∅).

According to Giotto semantics, each taskt input (resp. copy) driver reads (resp. writes)

input (resp. output) ports at the release (resp. termination) time instants defined by the

beginning (resp. end) of the taskt period. In the distributed SCC implementation each copy

driver is still executed at the end of the task period by an E code instruction. However, each

task input driver is executed by an S code instruction and it is delayed if its source ports

need to be sent over the network first. In general, in each task period, the transmission of

sensor ports preceeds task execution, which preceeds the transmission of task output ports.

More precisely, letd be the task input driver for a taskt asigned to hosth. For all sensor

portsp ∈ Src[d] such that̄h(p) 6= h, a messageµ[p] is received ath. The completion of

32

the messageµ[p] transmission updates on each hosth ′ ∈ recHosts(p) (including h) the

sensor portph′ . The taskt input driver readsph (and other ports), applies its function,

and writes to the taskt input ports. It succeeds all sensor port messages and preceeds

the taskt execution. The completion of the taskt writes to the local copy of the taskt

output ports. The dispatch of the task output port messageµ[p′] for p′ ∈ Out [t] succeeds

the taskt completion. The completion of the task output port messageµ[p′] writes on

each of the hosts inh ′′ ∈ recHosts(p′) to the task output portp′h ′′ . Finally, at eachh ′′ ∈
recHosts(p′) ∪ {h}, thecopy [p′h ′′] driver copies local into global task output ports at the

end of the taskt period (i.e., at the termination time of the task).

We assume that the transmission of a sensor port value is performed in a time interval

of lengthε after the time instant the sensor is read. Thelatencyvalueε must be determined

at compile time and for simplicity we also assume that this value is the same for all ports.

If a task reads a sensor port that needs to be received, then the task input driver is called

exactlyε time instants after the task is released. Otherwise, it is executed at the time the

task is released. Symetrically, the transmission of task output ports is performed in a time

interval of lengthε before the task is terminated (i.e., before its period expires). We require

that the timeε be less than or equal to the mode unit timeγ[m] = π[m]/ωmax [m] for each

modem. This implies that the task input driver is always called before its input ports can

be updated with new values.

Given a Giotto program, Algorithm 1 generates all E code modulesEs,h executing in

modem. This is done in parallel for each suppliers ∈ S and each hosth ∈ H . The

while loop generates a block of E code for each unitk of modem. The E code compiler

commandemit(s , h, instr) generates the E code instructioninstr for suppliers on hosth.

The compiler first generatescall instructions to the task output (copy) drivers, actuator

drivers, and actuator device drivers. Line 10 refers to [33] for details on generating a block

of E code instructions that addresses mode switching; this is orthogonal to the issues dis-

cussed in this chapter. The last segment handlescall instructions for sensor device drivers,

33

Algorithm 1 The distributed Giotto compiler (modem)
k := 0; γ[m] := π[m]/ωmax [m];

while k < ωmax [m] do

∀s ∈ S . ∀h ∈ H : link Es,h(m, k) to next address ofEs,h ;

∀p ∈ taskOutPorts(m, k).∀h ∈ recHosts(p) ∪ {h̄(p)}.∀s ∈S :

5: emit(s, h, call(copy [ph]));

∀d ∈ actDrivers(m, k):

emit (̄s(d), h̄(d), call(d));

∀p ∈ actPorts(m, k):

emit (̄s(p), h̄(p), call(dev [p]));

10: ModeSwitchCompilationAlgorithm[33]

∀p ∈ senPorts(m, k):

emit (̄s(p), h̄(p), call(dev [p]));

if recHosts(p) 6= ∅ then

emit (̄s(p), h̄(p), release(µ[p]; ε));

15: ∀(·, t, d) ∈ taskInvocations(m, k):

ε1 := 0; ε2 := 0;

if Src[d] ∩ senPorts(m, k) 6= ∅ then ε1 := ε;

if sendOutPorts(t) 6= ∅ then ε2 := ε;

emit (̄s(t), h̄(t), release(ε1; t; ε2));

20: ∀p ∈ sendOutPorts(t) :

emit (̄s(t), h̄(t), release(ε; µ[p]));

∀s ∈ S . ∀h ∈ H :

emit(s, h, future(γ[m],Es,h(m, (k + 1) mod ωmax [m])));

∀s ∈ S . ∀h ∈ H : emit(s, h, return);

25: k := k + 1;

end while

34

the invocation of tasks and messages, and the future invocation of the embedded machine

at the next unit. Therelease instructions in the algorithm (lines 14, 19 and 21) are of a

special form not needed for single-processor SCC. They indirectly contain precedence con-

straints that are necessary for correct communication by explicitly specifying the latency

time ε. This number does not affect the program execution itself, but a supplier needs it in

order to construct a correct schedule, i.e., S code module.

We treat messages sent over the network similar to tasks. So, in order to simplify nota-

tion we also use the same SCC instructions for messages. The instructionrelease(µ[p]; ε)

releases the messageµ[p] with the sensor portp value, but demands that the message trans-

mission be completed by timeε from the release. The instructionrelease(ε1; t; ε2) re-

leases the taskt with the constraint that the task be dispatched no earlier than timeε1 after

the release, and completed at the latestε2 time before the taskt termination time. The

instructionrelease(ε; µ[p]) releases the message with taskt output portp, with the con-

straint that the message be sent no earlier thanε time before the taskt termination. The final

future instruction causes the embedded machine to wait for timeγ[m] and then execute

the E code for the next unit.

Fig. 2.6 shows the E code modules compiled by Alg. 1 from the audio mixer Giotto

programGA. The code for different suppliers on the same host is separated by a single

horizontal line, and the code for different hosts is separated by two lines. The latency is

chosen to beε = 1ms. For instance, the commandrelease(µ[AudioSampler]; 1) releases

the message with the sensor portAudioSampler value, but also specifies a constraint that

the message must be sent before 1ms expires.

Note that the code generation scheme of Alg. 1 implies the order of execution: copy

drivers are followed by actuator drivers, mode switch drivers, and task input drivers, in that

order. However, E code blocks compiled for the same host and same unit of a mode are fully

composable, i.e., they can be executed in any order. If the task output portp ∈ OutPorts

35

Es1,h1(m1 , 0):
call(copy [MixSoundh1])
call(copy [Spectrum])
call(drv [ActDrv])
call(dev [MixPlayer])
call(dev [AudioSampler])
release(µ[AudioSampler]; 1)
release(0;Analyzer ; 0)
future(4,Es1,h1(m1 , 1))

Es1,h1(m1 , 1):
call(copy [MixSoundh1])
call(drv [ActDrv])
call(dev [MixPlayer])
call(dev [AudioSampler])
release(µ[AudioSampler]; 1)
future(4,Es1,h1(m1 , 0))

Es2,h2(m1 , 0):
call(copy [MixSound])
call(copy [StringSound])
release(1;Mixer ; 1)
release(1; µ[MixSound])
future(4,Es2,h2(m1 , 1))

Es2,h2(m1 , 1):
call(copy [MixSound])
release(1;Mixer ; 1)
release(1; µ[MixSound])
future(4,Es2,h2(m1 , 0))

Es3,h2(m1 , 0):
call(copy [MixSound])
call(copy [StringSound])
release(0;Generator ; 0)
future(4,Es3,h2(m1 , 1))

Es3,h2(m1 , 1):
call(copy [MixSound])
future(4,Es3,h2(m1 , 0))

Figure 2.6. E code modules for the programGA compiled by Alg. 1

is a source port of an actuator, mode switch, or task input driver that executes at a hosth in

a modem, thenh ∈ recHosts(p) ∪ {h̄(p)}. The set of hosts that receive portp data does

not depend on the program mode. This means that a message with the portp value is sent

to the hosth even if the program executes in a mode in whichp is not a source port to any

driver onh. This is so because in a mode wherep is used,p must have a corect value even

in the first period of execution in the mode.

2.4 Timing Interfaces

As presented in Section 2.3, each supplier obtains for each host an E code module spec-

ifying the release times of the tasks (resp. messages) that it implements, and for which it

has to determine the times of execution (resp. transmission). Since both computation and

36

communication resources are shared, this information must be accompanied by a temporal

specification that provides exclusive time windows for task execution (resp. message trans-

mission). This specification, which we call timing interface, is also given to each supplier.

A timing interface defines the available computation and communication time windows,

but not when to perform a particular action within these windows. This gives flexibility to

a supplier, especially if multiple tasks are assigned to a supplier on a host. It also enables

timing modifications that are local to a supplier and host, if a modification in the corre-

sponding E module (e.g., adding a task) is made. In the next sections we show that the

timing interface contains all information necessary for correct distributed code generation.

Formally, a suppliers ∈ S on hosth ∈ H receives for each modem ∈ Modes of

the Giotto programG a timing interface, a pair of predicatesTm
s,h = (Dm

s,h , X
m
s,h). The

predicatesDm
s,h , X

m
s,h : {0, ..., π[m]− 1} → {0, 1} are defined as follows:

• Dm
s,h(`) = 1 iff in mode m at time` suppliers on hosth may execute a task from

Taskss,h ;

• Xm
s,h(`) = 1 iff in mode m at time` suppliers on hosth may send a message from

Msgss,h .

Let Ts,h = {Tm
s,h |m ∈ Modes} andT = {Ts,h |s ∈ S , h ∈ H }.

Fig. 2.7 shows a graphical representation of a timing interface for the programGA

from Fig. 2.1. The computation slots are shaded light; for these time units the correspond-

ing predicateD is equal to 1. Recall the E moduleEs1,h1 of Fig. 2.6, in particular the blocks

labeledEs1,h1(m1 , 0) andEs1,h1(m1 , 1). The timing interface given to suppliers1 on host

h1 can be interpreted as follows. The taskAnalyzer may be executed at any time in the

intervals (1,3) and (5,7)ms (modulo 8ms, which is the period of the modem1). Further-

more, the 0ms-sample of theAudioSampler sensor value may be sent at any time in the

interval (0,1)ms, and the 4ms-sample of the same sensor may be sent in (4,5)ms.

37

0 1 4 832

Ts2,h2

Ts1,h1

Ts3,h2

D

X

Figure 2.7. Timing interface for the programGA

We assume that all hosts are clock-synchronized, so that communication is performed

according to the Time Division Multiple Access (TDMA) protocol: in each time slot only

one node is allowed to send data while all other nodes can listen for data. We have defined

timing interface considering a simple communication architecture, where each host has

only one processor for both computation and communication tasks. A host with an addi-

tional dedicated communication processor, e.g., a node in the Time-Triggered Architecture

[43], can be modeled as two hosts.

We next defineinterface feasibility, a property needed for the composition of SCC

modules. First, we require that the timing interface windows for the same resource but

different suppliers must be disjoint, i.e., at every time instant on each host at most one

supplier may execute a task, and at most one of the suppliers may send a message. Second,

when a host is supposed to receive data, no task execution is allowed. In particular, for

sensor port data this is true in the latency time window (ε-window) after the data is read,

and for task output port data, in theε-window before the task termination time. Both

properties are satisfied for the interface shown in Fig. 2.7.

Formally, a timing interfaceT = (D, X) is feasiblefor a Giotto programG if the

following two conditions are satisfied:

• (Resource Sharing) For all modesm ∈ Modes, supplierss1, s2 ∈S (with s1 6= s2),

hostsh1, h2 ∈ H (with h1 6= h2), and times̀ ∈ {0, ..., π[m]− 1},

– at most one ofDm
s1,h1

(`), Dm
s2,h1

(`), Xm
s1,h1

(`), andXm
s2,h1

(`) is equal to 1, and

38

– at most one ofXm
s1,h1

(`), Xm
s2,h1

(`), Xm
s1,h2

(`), andXm
s2,h2

(`) is equal to 1.

• (Data Reception) For all modesm ∈ Modes, unitsk ∈ {0, ..., ωmax [m] − 1}, ports

p ∈ SensePorts ∪OutPorts, and times̀ ∈ N0, if either

– p ∈ senPorts(m, k) andk · γ[m] ≤ ` < k · γ[m] + ε, or

– p ∈ taskOutPorts(m, k + 1) and(k + 1) · γ[m]− ε ≤ ` < (k + 1) · γ[m],

and if Xm
s̄(p),h̄(p)

(`) = 1, thenDm
s,h(`) = 0 for each suppliers ∈ S and hosth ∈

recHosts(p).

Given a Giotto program and a set of timing interfaces, one for each supplier, host, and

mode, the feasibility conditions can be checked independently for each interface.

Earliest-Deadline-First S Code. Provided with the pattern of task and message re-

leases in an E code moduleEs,h , and available time windows in a timing interfaceTs,h , the

suppliers generates the schedule for hosth, i.e., order and timing of tasks and messages

on h, and encodes it as an S code moduleSs,h . We briefly explain a potential generation

scheme forSs,h . Even with the timing constraints imposed byTs,h , it can be shown that

the Earliest Deadline First (EDF) strategy is an optimal strategy with respect to schedule

feasibility, i.e., if tasks and messages are schedulable inTs,h time windows by some strat-

egy, then they are also schedulable by the EDF strategy. The release and deadline times of

tasks and messages to be implemented by a suppliers on a hosth in modem are implicitly

contained in the E code moduleEs,h . So, the suppliers can always check EDF strategy

and, if feasible, generate the S code moduleSs,h according to the following scheme.

Let, for instance, an interval[`1, `2) ⊆ [0, π[m]), with integer bounds̀1, `2 ∈ N0, be a

computation window of the timing interfaceTm
s,h , i.e., let for all` ∈ [`1, `2) beDm

s,h(`) = 1.

Let t1, t2, ..., t|Taskss,h | be the EDF permutation of tasksTaskss,h at unitk of modem (the

task t1 has the earliest deadline). The EDF S code moduleSs,h contains the following

sequence of instructions:

39

idle(`1 − kγ[m])
dispatch(t1, `2 − kγ[m])
dispatch(t2, `2 − kγ[m])
...
dispatch(t|Taskss,h |, `2 − kγ[m])

The entire EDF S code module consists of such code segments for each computation or

communication slot of the timing interface. The Fig. 2.8 shows EDF S code modules for

Giotto programGA generated using timing interface shown in Fig. 2.7.

Ss1,h1(m1 , 0):
call(InDrv 1)
dispatch(µ[MixPlayer], 1)
idle(1)
dispatch(Analyzer , 3)

Ss1,h1(m1 , 1):
dispatch(µ[MixPlayer], 1)
idle(1)
dispatch(Analyzer , 3)

Ss2,h2(m1 , 0):
idle(1)
call(InDrv 2)
dispatch(Mixer , 2)
idle(3)
dispatch(µ[MixSound], 4)

Ss2,h2(m1 , 1):
idle(1)
call(InDrv 2)
dispatch(Mixer , 2)
idle(3)
dispatch(µ[MixSound], 4)

Ss3,h2(m1 , 0):
call(InDrv 3)
idle(2)
dispatch(Generator , 3)

Ss3,h2(m1 , 1):
idle(2)
dispatch(Generator , 3)

Figure 2.8. S code modules for the programGA

2.5 Implementation

Our test system consists of several off-the-shelf PC hosts with 200Mhz PentiumPro

processors and 128MB RAM. All hosts are equipped with standard 100Mbit Ethernet net-

work cards and are locally connected. The underlying operating system is RTLinux, where

standard Linux runs under the control of a real-time kernel as the lowest priority task [79].

In contrast to Linux fair time-sharing scheduling, RTLinux uses a simple priority-based

40

preemptive scheduler, thus permitting real-time functions to operate in a predictable and

low-latency environment. In our tests the maximum scheduling latency was about 30µs.

Real-time communication is attained through a special network driver [47] that pre-

cludes the standard Ethernet CSMA/CD protocol by establishing a TDMA-based time-

triggered protocol, where each node has exclusive access to the network within its sched-

uled time slot. A software-based synchronization of the hosts is carried out by controlling

the period of a thread that performs send and receive network operations. The control algo-

rithm uses the arrival times of incoming data packets. The communication cycle is shown

in Fig. 2.9. For the purposes of synchronization, one of the hosts is designated as master

and all others as clients. In each cycle the master sends a sync packet with the id of the

client that is supposed to respond by sending a resync packet in the next slot. The subse-

quent slots are reserved for each of the hosts to send actual data packets. IfT0 is the time

of a single slot, andN is the number of hosts operating under the time-triggered protocol,

then the cycle repeats after timeT0 · (N + 2).

Figure 2.9. Cycle of the communication protocol [19]

In general, the protocol latency, i.e., the time between the send call of the network

driver and the arrival of the data packet, depends on the time instant at which the call is

made. However, the driver provides a function that synchronizes the sending thread with

the network schedule, i.e., the driver resumes the thread when it reaches the exclusive time

slot to send a message. This mechanism enables the precise timing in the interpretation

of the SCC instructions (including message dispatch) with respect to the global time. The

distributed SCC virtual machine is built as a dynamically loadable RTLinux kernel module.

For the code of each supplier the machine maintains a context data structure similar to the

non-distributed implementation described in [42]. To implement distributed SCC correctly

we make use of special RTLinux calls that suspend and resume task threads.

41

To test the virtual machine we implemented the audio applicationGA through the dis-

tributed SCC program shown in Fig. 2.6 and 2.8. Note that in Fig. 2.8 eachdispatch

instruction with a task (resp. messsage) as an argument executes in computation (resp.

communication) slots shown in Fig. 2.7. In this setup each time slot lastsT0 = 1ms,

and an entire communication cycle lasts4ms (N=2). In this configuration the maximum

bandwidth available to each host is 2.86Mbit/s. The tests show that the sound card is fed

continuously with samples. The audio reproduced back ath1 plays without any noticable

interruption or other sound defects.

The estimated overhead of the network driver synchronization thread is 25µs. The

overhead of the virtual machine, i.e., the time it takes to go through the machine event loop

with two trigger and thread instances, is less than 12µs (divided roughly equally between E

and S parts). Since the machine is invoked at 1khz, the system overhead is about3.7%. The

actuator jitter is less than 2µs, since in Giotto a task output is written at the task termination

time. In these measurements we used the Pentium time stamp counter, the most precise PC

clock.

2.6 Compositional SCC Analysis

We first characterize distributed SCC program compiled from a Giotto programG ac-

cording to the scheme presented in Section 2.3. The program is represented as a state

transition system that is then used to verify correctness of such an implementation ofG .

2.6.1 Giotto-Generated Distributed SCC

We start by describing E and S code modules separately, and then define entire dis-

tributed SCC program. LetG be a Giotto program,Modes the set of modes ofG , andM

the size ofModes. We assume that for each input Giotto programM is bounded by a con-

42

stant. Letgs,h be equal to|Taskss,h |+ |Msgss,h |+ |Drvss,h |, i.e., letgs,h represent the size

of the part of programG allocated to suppliers on hosth. Let a node of a directed graph

without predecessor (resp. successor) be called a source (resp. sink) node of the graph.

A G-generated E moduleEs,h consists of a directed acyclic control-flow graph

(V E
s,h , E

E
s,h), two edge-labeling functionsκ andλ and a node-labeling functionη. Each

edgee ∈ EE
s,h is labeled with an instructionκ(e) and an argumentλ(e), and each node

v ∈ V E
s,h is labeled with a pairη(v) = (m, k), such thatm is a mode fromModes andk is a

unit od modem, i.e. k ∈ {0, ..., ωmax [m]}. The graph(V E
s,h , E

E
s,h) has following properties:

• Each path from a source to a sink consists of

– a sequence ofO(gs,h) edgese, each withκ(e) = call instruction that calls a

driverλ(e) from Drvss,h , followed by

– a sequence ofO(gs,h) edgese, each withκ(e) = release instruction that

releases a task or messageλ(e) from Taskss,h ∪Msgss,h , and followed by

– a single edgee with κ(e) = future instruction and an argumentλ(e) = (δ, v′)

that marks a sourcev′ of V E
s,h for execution afterδ ∈ N>0 units of time.

• For each modem ∈ Modes and each unitk ∈ {0, ..., ωmax [m]} there exists

– exactly one source nodev such thatη(v) = (m, k), and

– at most one nodev such thatη(v) = (m, k) andv has more than one successor;

such nodev has less thanM successors.

Let all numbers inG , i.e., mode periods as well as task and actuator frequencies and

ωmax [m] be bounded byn. For instance, for the Giotto programGA, n is equal to 8.

The number of sources of(V E
s,h , E

E
s,h) is O(M · n), and the number of sinks isO(M 2 · n).

Since we consider the number of modes to be fixed, we have that size ofV E
s,h is O(gs,h · n).

43

A G-generated S moduleSs,h consists of a control-flow directed graph(V S
s,h , E

S
s,h), two

node-labeling functionsρ andν, and an edge-labeling functionλ. We require that the graph

(V S
s,h , E

S
s,h) consists of chains of total lengthO(gs,h · n). Each control locationu ∈ V is

labeled by one of the following:

• ρ(u) = dispatch, ν(u) ∈ Taskss,h ∪Msgss,h and nodeu has a successoru′ such

thatλ(u, u′) ∈ N>0. If ν(u) ∈ Taskss,h the execution ofu dispatches the taskν(u).

Control proceeds tou′ if ν(u) completes or the firstλ(u, u′) time units pass from the

time at which the thread with this control location was created. Ifν(u) ∈ Msgss,h

then the analogous explanation holds for the transmission of the messageν(u).

• ρ(u) = idle andu has a successoru′ such thatλ(u, u′) ∈ N>0. The execution of

u idles the processorh until λ(u, u′) ∈ N>0 time units pass from the time of thread

creation.

• ρ(u) = call andu has a successoru′ such thatλ(u, u′) ∈ Drvss,h . The execution

of (u, u′) calls driverλ(u, u′).

• ρ(u) = O andu has no successor indicates thread termination.

A G-generated SCC modulePs,h for a suppliers and a hosth consists of aG-generated

E moduleEs,h , a G-generated S moduleSs,h , and anannotation functionΦs,h that maps

each sink of the control graph ofEs,h to a node in the control graph ofSs,h . When the

E code execution arrives at a sinkv, this creates a new thread of S code which starts at

control locationΦs,h(v). Let V E
h be the union of node setsV E

s,h over all supplierss ∈ S ,

i.e. the set of all E code control locations on hosth. Each functionΦs,h maps a sink node

v′ ∈ V E
s,h to a source nodeΦs,h(v

′) ∈ V S
s,h such that if(v, v′) ∈ EE

s,h , κ(v, v′) = future and

λ(v, v′) = (`, ·) then the chain in(V S
s,h , E

S
s,h) that starts from nodeΦs,h(v

′) does not contain

numbers, i.e., clock timeouts indispatch andidle instructions, larger thaǹ. According

to the last condition, if the next E code instruction is executed after` time units, then the

44

chain of S code instructions describes the schedule for at most the next` time units. Note

that if G is a single-mode program then both(V E
s,h , E

E
s,h) and(V S

s,h , E
S
s,h) consist of chains

of sizeO(gs,h).

Lastly, aG-generated distributed SCC programP over a setS of suppliers and a set

H of hosts is a function that assigns to eachs ∈ S and eachh ∈ H a G-generated SCC

modulePs,h for a suppliers and a hosth.

Semantics. A state of aG-generated distributed SCC programP consists of a port

valuation functionr that maps each port inPortsP to a value of the appropriate type, a

program counter functionv that assigns to each hosth ∈ H a control nodevh ∈ V E
h , a

status functionc : Tasks ∪Msgs → N0∪{⊥}, a trigger functionτ that assigns to each host

h ∈ H a queueτh ⊆ (N0× V E
h)∗ of future invocations, and a thread functionθ that assigns

to each hosth ∈ H a setθh of threads. Each thread(u, δ) ∈ θh consists of a program

counteru ∈ V S
h and a numberδ ∈ N0 of time units for which the thread has been executed.

Let c be the function such that for each taskt ∈ Tasks, the statusc(t) ∈ N0 indicates that

t has been released and executed forc(t) ≥ 0 time units; the statusc(t) = ⊥ indicates

that t has been completed (or not yet released). For a messageµ ∈ Msgs, c(µ) is defined

analogously for the message release and transmission.

Section 2.6.2 presents the semantics of a distributed SCC programP by defining a

transition system on the space of states ofP . Each transition represents either the execution

of an E or S code instruction on one of the hosts, or a time step. A series ofE transitions

corresponding to a block of E code instructions are taken when a trigger becomes true. A

completion S transitionis taken when a task or message completes; atimeout S transition

when a timeout ondispatch or idle instruction becomes true; and atransient S transition

when an S codecall instruction is executed. The transition rules impose an order on

transitions of different type. For instance, if an E transition and a timeout S transition occur

at the same time, then an enabled trigger must be processed before any expired timeout is

45

handled, because the E code may release tasks that require immediate dispatching service

from the S code.

For a given initial stateq0, a trace of the distributed SCC programP is an infinite

sequenceq0, q1, . . . of states ofP such that for alli ∈ N0, there exists a transition fromqi

to qi+1. Let ws,h : Taskss,h ∪Msgss,h → N>0 be the worst case execution or transmission

time (wcet) function for the tasks and messages of suppliers ∈ S on hosth ∈ H and

let w be the set of such functions for all suppliers and all hosts. A trace ofP is anw-

trace if for each suppliers ∈ S , hosth ∈ H , and each invocation of a task or message

x ∈ Taskss,h ∪Msgss,h , x completes with execution (transmission) time at mostws,h(x).

2.6.2 Formal Distributed SCC Semantics

In [34] we give an operational semantics of schedule-carrying code by defining a state-

transition system in which all port values are abstracted away. Here we are interested

in the input-output behavior ofdistributedSCC, so we extend the formalism by taking

into account port values and the distributed nature of code. We present the interleaving

semantics for SCC modules of all suppliers on all hosts. To use the same notation for

messages as for tasks, let the message input portsIn[µ[p]] formally be{p}, let message

output portsOut [µ[p]] be{ph | h ∈ recHosts(p)} and let a message functiontask [µ[p]] be

identity function from the message input to output ports.

The stateq = (r , v, c, τ, θ) has atransition to the stateq′ = (r ′, v′, c′, τ ′, θ′) if one of

the following:

Completion S transition. The stateq is completion enabling, that is, there exist a hosth ∈
H and a thread(u, δ) ∈ θh such thatc(ν(u)) = ⊥ andρ(u) = dispatch. Let the suc-

cessor ofu beu′. Thenr ′ = r except thatr ′(Out [ν(u)]) = task [ν(u)](r(In[ν(u)])),

(v′, c′, τ ′) = (v, c, τ) andθ′ = θ except thatθ′h = (θh\{(u, δ)}) ∪ {(u′, δ)}.

46

Transient S transition. The stateq is not completion enabling buttransient enabling,

that is, there exist a hosth ∈ H and a thread(u, δ) ∈ θh , such thatρ(u) =

call, and the successoru is u′. Then r ′ = r except thatr ′(Dst [λ(u, u′)]) =

drv [λ(u, u′)](r(Src[λ(u, u′)])), (v′, c′, τ ′) = (v, c, τ) andθ′ = θ except thatθ′h =

(θh\{(u, δ)}) ∪ {(u′, δ)}.

E transition. The stateq is neither completion nor transient enabling butE enabling, that

is, there exists a hosth ∈ H and either (1)vh has no successor and(0, ·) ∈ τh , or

(2) vh has a successorv′h . If (1) let (0, v̄) be the first such pair inτh . Thenp = p′,

v′ = v except thatv′h = v̄, c′ = c, τ ′ = τ except thatτ ′h = τh \ {(0, v̄)} and

θ′ = θ. If (2) then one of the following: (a)κ(vh , v
′
h) = call andr ′ = r except

that r ′(Dst [λ(vh , v
′
h)]) = drv [λ(vh , v

′
h)](r(Src[λ(vh , v

′
h)])), c′ = c andτ ′ = τ ; (b)

κ(vh , v
′
h) = release andr ′ = r , c′ = c except thatc′(λ(vh , v

′
h)) = 0, τ ′ = τ ; (c)

κ(vh , v
′
h) = future andr = r ′, c′ = c andτ ′ = τ except thatτ ′h = τh ◦ {λ(vh , v

′
h)}.

In all three cases, ifv′h is a sink, thenθ′ = θ except thatθ′h = θh ∪ {(Φh(v
′
h), 0)}; if

v′h is not a sink, thenθ′ = θ.

Timeout S transition. The stateq is neither completion nor transient nor E enabling but

timeout enabling, that is, there exist a hosth ∈ H and a thread(u, δ) ∈ θh such that

ρ(u) ∈ {dispatch, idle}, the successor ofu is u′, λ(u, u′) ∈ N0 andλ(u, u′) ≤ δ.

Then(r ′, v′, c, τ ′) = (r , v, c, τ), θ = θ′ except thatθ′h = (θh\{(u, δ)}) ∪ {(u′, δ)}.

Time transition. The stateq is neither completion nor transient nor E nor timeout en-

abling. Thenr ′(p) = r(p) for all p ∈ PortsP \ {pc} and r ′(pc) = r(pc) + 1.

For ` = r(pc) we call functionr` = r the port valuation at time`. For this

transition it also holdsv′ = v and for eachh ∈ H we have: (1) the queue

τ ′h results fromτh by replacing each trigger binding(δ, u) by (δ − 1, u), (2) the

thread setθ′h results fromθh by replacing each thread(u, δ) by (u, δ + 1), (3) let

Xh = {x | (u, ·) ∈ θh , ρ(u) = dispatch, ν(u) = x} and letx̄ ∈ Xh be a task

47

or message to be executed onh; if x ∈ Taskss,h ∪ Msgss,h for somes ∈ S , then

c′(x) = c(x)+1 or c′(x) = ⊥ if x = x̄, andc′(x) = c(x) if x 6= x̄; in casec′(x) = ⊥
we say that on the transition(q, q′), task or messagex completesafter execution

time c(x) + 1.

2.6.3 Interface Compliance and Time Safety

For the compositional analysis of a distributed SCC program we need the following

two properties. LetG be a multiple-mode Giotto program,Ts,h a timing interface for a

suppliers and a hosth, Ps,h aG-generated SCC module, andws,h a wcet function.

The modulePs,h interface-complieswith Ts,h if all dispatch instructions ofPs,h exe-

cute in time intervals provided byTs,h . In our example each SCC modulePs,h defined by

the E and S code blocks in Fig. 2.6 and 2.8 interface-complies with the timing interface

Ts,h shown in Fig. 2.7 because the S code in Fig. 2.8 was generated as EDF S code with

respect to this interface.

The modulePs,h is time-safeif (1) no driver reads from output ports of a task (resp.

message) assigned to suppliers on hosth before it completes execution (resp. transmis-

sion), and (2) no driver writes to input ports of a task (resp. message) after it starts execution

(resp. transmission). This requirement ensures that all task release and termination times of

the original Giotto program are maintained [33]. Let, for instance, the worst case execution

(resp. transmission) times of all tasks (resp. messages) be 1ms. Each SCC modulePs,h

defined by the E and S code blocks in Fig. 2.6 and 2.8 is time-safe. For example, inPs2,h2,

input ports of taskMixer are written at time 1ms (InDrv 2 driver), its output ports are read

at 4ms (copy[MixSound] driver), and the task starts execution at 1ms, but completes before

time 2ms.

We give the formal definitions of the two properties on the program state to be clear

that they can be checked in constant time:

48

• A state of a distributed SCC programP with a program counter functionv and thread

function θ violatesinterface compliance withTs,h = (Ds,h , Xs,h) if there exists a

thread(u, δ) ∈ θh such thatρ(u) = dispatch, η(vh) = (m, k), and either (1)ν(u) ∈
Taskss,h andDm

s,h(kγ[m]+ δ) = 0, or (2)ν(u) = Msgss,h andXm
s,h(kγ[m]+ δ) = 0.

We say that (Ps,h ,ws,h) interface-complieswith Ts,h if for all ws,h-tracesψ of {Ps,h}
no state ofψ violates interface compliance withTs,h .

• A state of a distributed SCC programP with a program counter functionv, status

function c, and thread functionθ violatestime safety on(s , h) if there exists a task

or messagex ∈ Taskss,h ∪Msgss,h such that either (a)vh has a successorv′h with

κ(vh , v
′
h) = call andλ(vh , v

′
h) = d (E code driver), or (b) there exists a thread

(u, ·) ∈ θh with ρ(u) = call, u has a successoru′, andλ(u, u′) = d (S code

driver), and one of the following: (1)Src[d] ∩ Out [x] 6= ∅ andc(x) 6= ⊥, or (2)

Dst [d] ∩ In[x] 6= ∅ and c(x) 6= 0. We say that (Ps,h ,ws,h) is time-safeif for all

ws,h-tracesψ of {Ps,h} no state ofψ violates time safety on(s , h).

Checking Interface Compliance and Time Safety.The paper [34] discusses time

safety checking for single-mode, single-CPU Giotto programs. These results are here gen-

eralized to both the distributed and multiple-mode settings. For distributed single-mode

programs we give an efficent algorithm that checks ifPs,h complies to a given interface

and if it is time-safe. For distributed multi-mode programs we give a sufficient condition

that can be efficiently checked.

Let a G-generated SCC module be given with aG-generated E moduleEs,h , a G-

generated S moduleSs,h , and an annotation functionΦs,h . We first construct a directed

graphPs,h by connecting the control graphs ofEs,h andSs,h through edges from each sink

of V E
s,h (resp.V S

s,h) to a source ofV S
s,h (resp.V E

s,h) determined by the mapΦs,h and control

flow of Es,h . If G is a single-mode program each graphPs,h is a chain.

We next argue that graphPs,h is an acyclic graph even ifG is a multi-mode program.

49

For instance, let Giotto programGA have both modem1 and modem2 given in Fig. 2.3.

The Fig. 2.10 shows a graph in which each edge abstracts a chain ofO(gs,h) edges of

the graphPs,h . As discussed with respect to the Algorithm 1 and as defined by the Giotto

semantics, for a mode switch the compiler computes the unit of the destination mode as

close as possible to the end of the mode’s period. This means that the time until the end

cannot increase when mode switch is performed. Since there can be no multiple switches

at the same time instant, i.e. in each visited mode time has to progress for some nonzero

time, this actually means that time until the end of target mode’s period has to decrease.

Therefore, if there was a mode switch from modem at unitk1 and at some later instant the

program performs another mode switch now to the modem at unitk2 thenk1 < k2. Note

also that in constructingEP
s,h we ignore mode switches with unit zero of target mode. This

is because at such mode switch there will be no active task that already executed for some

time and further behavior is as if the program started its execution at that time instant. The

last two conclusions together show thatPs,h is an acyclic directed graph.

(m2 , 0)

(m1 , 0)

(m2 , 1) (m2 , 2)

(m1 , 1)

(m2 , 3)

Figure 2.10. Graph related toPs,h for GA with additional modem2

We next construct a state-transition graph by annotating each node of the graphPs,h

with a particular state of the SCC modulePs,h . The graphPs,h is acyclic, so the nodes

can be sorted and processed in topological order. Each source node ofPs,h (for each mode

there is exactly one such node) is annotated with the state in which the trigger queue and

thread set is empty and the status function maps eachx ∈ Taskss,h ∪Msgss,h to⊥ (recall

that c(x) = ⊥ means thatx has not yet been released). For the other nodes ofPs,h we

proceed by transforming the state of their immediate predecessors. We do so by performing

50

one or more transition steps defined by the semantics of SCC programs (App. A). Task

execution-time nondeterminism in time transition steps is eliminated by assuming that each

task (or message)x completes exactly after the time given by the wcetws,h(x). If a node

v has more than one predecessorv′, then the status function value at nodev, for each

x ∈ Taskss,h ∪ Msgss,h , is the least value among the status function values forx at all

predecessorsv′. So, for the nodes with more than one incoming edge, we compute the task

execution time pointwise and conservatively.

Checking the states of the graphPs,h offers a sufficent condition for time safety and

interface compliance of all executions of the distributed SCC modulePs,h . If no state of

the graphPs,h violates time safety and interface compliance, then theG-generated SCC

module(Ps,h , ws,h) interface-complies withTs,h and is time-safe. If this is not the case

then, for a general Giotto programG , we cannot conclude that SCC module(Ps,h , ws,h)

does not interface-comply withTs,h (or is not time-safe). This is because in the state

construction ofPs,h different incoming edges of a node may impose conservative approx-

imations on different tasks. Also, there may be unreachable modes [33]. However, ifG is

a single-mode program, then the state-transition graphPs,h is a disconnected chain. So, if

Ps,h does not interface-comply or is not time-safe at some stateq, then the trace along the

chain up toq is a counterexample. The size ofPs,h is O(gs,h · n), because both(V E
s,h , E

E
s,h)

and(V S
s,h , E

S
s,h) are of the same size. Constructing the transition graphPs,h , annotating it

with states, and checking its states can be done inO(gs,h · n) time. Therefore, we have the

following proposition:

Proposition 1 LetG be a single-mode Giotto program with all numbers bounded byn. Let

gs,h andTs,h be the size of the part ofG and the timing interface assigned to suppliers on

hosth. LetPs,h andws,h be theG-generated SCC module and wcet function for supplier

s on hosth. It can be checked in timeO(gs,h · n) whether(Ps,h , ws,h) interface-complies

with Ts,h and is time-safe.

51

Note that for multi-mode Giotto the pseudo-polynomial check is sufficient but not nec-

essary.

2.6.4 Distributed Code Generation Correctness

We show that LET semantics of a Giotto program is preserved by the distibuted

SCC program generated according to Alg. 1 if each SCC module satisfies interface compli-

ance and time safety. If an SCC program preserves the LET semantics of a Giotto program

we say that itimplementsthe Giotto program, and this property is what we define first.

Let G be a Giotto program, letT = {Ts,h | s ∈ S and h ∈ H } be a feasible interface

for G , let P = {Ps,h | s ∈ S and h ∈ H } be aG-generated distributed SCC program, and

let w = {ws,h | s ∈ S and h ∈ H } be a wcet function forP .

Let rG
` andrP

` be the port valuation functions at time` ∈ N0 for G andP [31]. A trace

of P and a trace ofG areinput-compatible(resp.output-compatible) if they have the same

sensor (resp. actuator) port values at the same times, i.e., ifrG
` (p) = rP

` (p) for each sensor

port p ∈ SensePorts (resp.p ∈ ActPorts) and each time instant̀ ∈ N0. We say that

(P ,w) implementsthe Giotto programG if for every w-trace ofP and every trace ofG ,

input-compatibility implies output-compatibility (i.e., if, for all sensor inputs, they produce

the same actuator outputs at the same times).

We say that (P ,w) interface-complies toT if for each suppliers ∈ S and hosth ∈ H ,

theG-generated SCC module (Ps,h ,ws,h) interface-complies withTs,h . We say that (P ,w)

is time-safe if (Ps,h ,ws,h) is time-safe for eachs ∈ S andh ∈ H .

Proposition 2 Let G be a Giotto program, letT be a feasible timing interface forG , let

P be the distributed SCC programG-generated according to Alg. 1, and letw be a wcet

function. If (P ,w) interface-complies toT and is time-safe, then (P ,w) implementsG .

We first give informal explanation why interface feasibility, interface compliance, and

52

time safety ensure correctness of the implementation. If interface feasibility condition is

not satisifed, e.g. time windows on a host are not disjoint, even if each supplier produces

interface-compliant and time-safe code, the host may be overloaded and miss deadlines de-

fined by LET semantics. A similar outcome is possible if the interface is feasible, and each

supplier on each host generates an SCC module that is individually time-safe, but it ignores

the interface. Lastly, if a module does not satisfy any of the two time safety conditions, e.g.

a time slot in the interface is not sufficently large, a task or message invocation may result

in incorrect output.

Proof. Note first that the resource sharing property ofT and interface compliance

property of (P ,w) ensure that for each state of (P ,w) and each hosth ∈ H there exists

at most one thread(u, ·) in θh such thatρ(u) = dispatch. Also, the resource sharing

property ofT and interface compliance property of (P ,w) ensure that for each state of

(P ,w) there exists at most one thread(u, ·) in
⋃

h∈H θh such thatρ(u) = dispatch and

ν(u) ∈ Msgs. So, if T is feasible and (P ,w) interface-complies toT then there are no

resource sharing conflicts.

We prove the input-output equivalence of the two programs under the interface com-

pliance and time safety assumptions. We first show that traces ofG andP match on task

output port values.

Lemma 1 If p ∈ OutPorts, h ∈ recHosts(p)∪{h̄(p)}, thenrG
` (p) = rP

` (ph) for any time

` ∈ N0.

Proof.[Lemma] We use induction on timè. For time` = 0 the statement holds because

the initialization driverinit [p] is called on̄h(p) andinit [ph] is called on allh ∈ recHosts(p)

(E transitions withcall instructions). They setp andph to initial rG
0 (p) value.

Sincep ∈ OutPorts there exists a taskt such thatp ∈ Out [t] and t ∈ Taskss,h̄(p)

for somes ∈ S . In the code generated by the Algorithm 1 the global copyrP(ph) of

53

the task output portp on hosth is updated only by the invocation of the drivercopy [ph]

(call E transition) ift ∈ taskOutPorts(m, k) for a modem and a unitk, i.e. when task

t logically completes. Note that according to the Giotto semanticsrG(p) is also updated

only if t ∈ taskOutPorts(m, k), so we only have to prove thatrP(ph) is modified with a

correct value.

Let ` be any time instant at whichcall(copy [ph]) instruction is executed, i.e. for which

t ∈ taskOutPorts(m, k) for some modem ∈ Modes and unitk of m. Assume that lemma

holds for all integers less thaǹ.

1. h = h̄(p) :

Let `′ be the last time instant taskt was released beforè. Let the mode and

the unit of the correspondingrelease E transition bem ′ and k′ respectively,

t ∈ taskOutPorts(m ′, k′). Letd be the taskt input driver, i.e.(·, t, d) ∈ Invokes [m ′],

and letp′ be an input port ofd, p′ ∈ Dst [d]. By the definition of therecHosts operator

we haveh ∈ recHosts(p′) ∪ {h̄(p′)}.

• If p′ ∈ OutPorts by induction hypothesis we also haverG
`′ (p

′) = rP
`′ (p

′
h).

• If p′ ∈ SensePorts andh̄(p′) = h the portp′ is updated on the hosth at time

`′ by execution ofdev [p′] driver (call E transition) and by input-compatibility

assumption we haverG
`′ (p

′) = rP
`′ (p

′
h) = rP

`′ (p
′).

• Let p′ ∈ SensePorts andh ∈ recHosts(p′). According to the Algorithm 1

and input-compatibility the driverdev [p′] is invoked at the unitk′ on the host

h̄(p′) and the messageµ(p′) with the portp′ valuerG
`′ (p

′) is releasedrelease

E transition). If the program (P ,w) is time-safe, then (Ps,h ,w) is also time-safe.

Therefore, the message transmission completes before time`′ + ε because at

this time instant driverd is called and sharing property should not hold. By as-

sumption, the data reception property is satisfied throughout the message trans-

mission, so the message completion S transition correctly updates the portp′h .

54

So, for allp′ ∈ Dst [d] we haverG
`′ (p

′) = rP
`′+ε(p

′). We assume that timeε is less than

a time stepγ[m′] so the message transmission is completed before any potential mode

switch from modem ′. If the time safety property is satisfied the taskt is dispatched

after`′ + ε, but completed (completion S transition) by time`− ε at which the local

copy ofp is updated. So,rG
` (p) = rP

` (p) for all p ∈ Out [t]. Sinceh = h̄(p) we have

rG
` (p) = rP

` (ph).

2. h ∈ recHosts(p) :

By the similar argument as above it can be proved thatrG
` (p) = rP

` (p). According to

the Algorithm 1 on the host̄h(p) the message with the portp valuerG
` (p) is released

(release E transition). Again, time safety and data reception properties ensure that

the message is transmitted to the hosth after the taskt completes but before timè.

Sinceh ∈ recHosts(p) the drivercopy [ph] is invoked on the hosth at time` and we

haverG
` (p) = rP

` (ph).

So, if the programsG and (P ,w) are input-compatible the lemma above holds. To

prove the output-compatibility of the two programs consider a portp ∈ ActPorts and let

h = h̄(p). The code inP generated by the Algorithm 1 updatesp in modem at unitk only

if p ∈ actPorts(m, k). The same is true for the execution of the Giotto programG . Let d

be an actuator driver such thatp ∈ Dst [d]. Since each driver input portp′ ∈ Src[d] is also

in the set of task output portsOutPorts and since by the definition of therecHosts operator

h ∈ recHosts(p′)∪{h̄(p′)} by the lemma we haverG
` (p′) = rP

` (p′h). After applying driver

functiondrv [d] onDst [d], which updatesp onh, we haverG
` (p) = rP

` (ph) = rP
` (p). 2

The compositional nature of interface compliance and time safety of (P ,w) ensures that

if, for somes ∈ S andh ∈ H , one modulePs,h is modified, then forP to implementG it

is sufficient to check if (Ps,h ,ws,h) interface-complies withTs,h and if it is time-safe. So,

combining propositions 1 and 2 we have:

55

Corollary 1 Let G be a single-mode Giotto program of sizeg with all numbers bounded

by n. It can be checked in timeO(g · n) if (P , w) implementsG . Moreover, if(Ps,h ,ws,h)

is modified for a single suppliers and hosth, then it can be checked in timeO(gs,h · n) if

(P , w) still implementsG .

Again, for multi-mode Giotto the pseudo-polynomial check is sufficient but not neces-

sary. Note that(Ps,h ,ws,h) can be modified either by modifyingEs,h (i.e., modifying task

invocation and/or environment interaction),Ss,h (schedule), orws,h (wcet). Suppose that in

the audio example the integrator wants to assign additional functionality to suppliers3 on

hosth2, say mix with another synthesized sound with a pitch twice as high. Suppliers3 im-

plements a new taskGenerator2 (of two times higher frequency) with input driverInDrv 4,

and modifies the S moduleSs3,h2 as shown below. Then, for correctness of the entire pro-

gramP , only the modified modulePs3,h2 needs to be checked for interface compliance and

time safety.

Ss3,h2(m1 , 0):
call(InDrv 3)
call(InDrv 4)
idle(2)
dispatch(Generator 2, 3)
dispatch(Generator , 3)
idle(4)

Ss3,h2(m1 , 1):
call(InDrv 4)
idle(2)
dispatch(Generator 2, 3)
dispatch(Generator , 3)
idle(4)

2.7 Conclusion

We introduced timing interfaces and showed how they can be used to distribute the

code generation for Giotto programs and distributed target platforms. The integration of

the individually compiled components is performed by individually checking the interface

compliance and time safety of each component. Given a timing interface, EDF S code

was proved an optimal strategy with respect to schedule feasibility. Hence our approach

guarantees global timing requirements without solving a global scheduling problem: as

56

part of the continuing effort of the Giotto project to trade performance for predictability and

composability, the burden is shifted to the generation of timing interfaces. The following

chapter explores the related tradeoffs further.

57

Chapter 3

Component Resource Abstraction and

Tradeoffs

3.1 Introduction

As the number of applications that share the same resources increases, the integration

of software components in real-time or embedded systems becomes more pertinent. In this

chapter we further study composability and resource abstraction of the LET programming

model introduced in the previous chapter, comparing it with some other commonly used

models of computation.

A key challenge is to have real-time assurance and, at the same time, a high degree

of flexibility in component integration. This problem is addressed within anopenreal-

time system [16] that consists of mutuallyindependentcomponents with sets of tasks of

different time criticality. Research in open real-time systems concentrates on partitioning

and scheduling schemes that make both the implementation and temporal behavior of a

component independent of the presence of other components in the system. However,

embedded real-time systems, e.g., automotive [46] or aircraft [64] systems, are often put

58

together from severalinteractingsoftware components corresponding to different control

loops. The problem is even more demanding when components have to be implemented by

different suppliers [28].

In an open system, schedulability analysis and the admission test for a task group cannot

depend on the properties of any other task group in the system. In recent years work in the

composition for open systems has shifted towardshierarchicalscheduling frameworks [56,

59, 67, 61], which extend resource partitioning over multiple levels. In such a framework

a resource is often allocated by a higher to a lower scheduling level through ascheduling

interface. The interface specifies the resource requirement from the lower level and the

resource guarantee from the higher-level scheduler. A hierarchical scheduling framework

should exhibitseparationamong levels, i.e., the interface should be minimal. Moreover,

the main benefits of hierarchical scheduling arise if the framework iscompositional, i.e., if

properties established at the lower also hold at the higher level.

Abstractionof the internal complexity of a task group into a single requirement can

be used to ensure the favorable properties and to reduce scheduling difficulties in the hi-

erarchical scheduling framework. Early work in task group abstraction [68, 51] considers

the periodic resourcemodel(T ,C), a resource abstraction under which a component is

guaranteed to getC units of the resource everyT units of time. This research showed how

to abstract a group of independent periodic tasks with EDF or RM scheduling algorithms

into a single periodic task. The compositionality of the framework was demonstrated by

combining multiple scheduling interfaces into a single higher-level interface. Whereas

these initial efforts with the periodic resource model addressed only independent periodic

tasks, more recent efforts considered sets of tasks with blocking synchronization operations

[2, 52].

In this chapter we study, under the same periodic resource model, hierarchies of tasks

with data dependencies. Namely, we assume that all applications that execute on the con-

59

sidered resources are specified in the conventional periodic task model with an underlying

task precedence graph. We first (Sec. 3.2) discuss two different application interpreta-

tions, i.e., we present two semantics,RTW and LET, which differ in the propagation of

data between tasks. WhileLET was introduced in Chapter 2,RTW follows the semantics

of real-time code generated from a Simulink environment [71]. TheRTW scheme transfers

the output of a task as soon as the task completes execution. TheLET scheme makes the

output of a task available at the prespecified time, namely, at the relative deadline defined

by the task period. Compared to theRTW semantics, this typically increases the latency.

The composition with abstracted components inevitably incurs higher resource utiliza-

tion than the component utilization sum. Therefore, effectiveness of composition can be

compromised. If component abstraction is too coarse, only a few components can be cor-

rectly composed, and the rest may be disallowed on the admission test, even when actual

required resource utilization is low. Therefore, we focus ontight abstractions, i.e., ab-

stractions that minimize lower level resource requirements. We show that the tightness

of abstractions, and therefore composability, depends on the application semantics. So,

although at the lower levels the end-to-end latency is less for theRTW semantics, at the

higher levels, when task group abstraction is taken into account, theLET semantics permits

tighter abstractions.

Outline of the Chapter. We compare the composability of the two data transfer seman-

tics in several scenarios. Sec. 3.3 studies the abstraction of a task group that executes on a

single resource and with precedence constraints among tasks within the group (intragroup

task precedences). We show that the tightness difference in favor of theLET semantics can

come from the underlying scheduling algorithm used to implement a particular semantics.

Sec. 3.4 generalizes the result for the case of a task group distributed over several resources.

We characterize how large the gap in the tightness of abstractions between the two schemes,

RTW andLET, can be. Moreover, we show that withLET semantics both abstraction and

scheduling is simpler. This is important for hierarchical open systems, since complicated

60

interaction between scheduling levels increases unpredictability in task execution. Finally,

Sec. 3.5 studies higher levels of the hierarchical scheduling framework. In this context task

precedences among different task groups are allowed (intergrouptask precedences). The

LET semantics again results in tighter and simpler abstractions. In addition, and contrary to

theRTW semantics, theLET semantics enables a compositional framework with separation

between levels.

3.2 Multirate Task Programs

LetQ be a finite set of numbers that are all multiples of a certain sufficiently small unit

rational number, and letR be the set of real numbers. Ataskt = (p, e) consists of a period

p ∈ Q and a worst-case execution time requiremente ∈ R. A task graphG = (V ,E)

is a directed graph with a set of tasksV and a set of task data dependenciesE ⊆ V 2. In

general, a program may exhibit multirate behavior because each task is characterized by

its own period. Therefore, the program is fully specified only with the semantics of data

transfer between tasks. In this chapter we assume that all task graph edges comply with the

same semantics. In particular, we focus on two dataflow semantics,RTW andLET.

Real-Time Workshop semantics.Real-Time Workshop (RTW) [71] is a tool for au-

tomatic code generation in the MATLAB/Simulink environment. For a given task graph

the tool generates multithreaded code, one thread per each sample time of the graph. The

code is supposed to run on an RTOS that offers a priority based preemption mechanism.

Each task is assigned to a thread based on its period, and the schedule within a thread is

constructed from the task dependencies. The rate monotonic(RM) scheduler invokes the

generated code, enabling preemption between rates.

To make multirate models operate correctly in real time, the program is implicitly modi-

fied by placingrate transitionblocks, hold or delay blocks, between tasks that have unequal

61

e1

m · p

e2

t2

0 p

t2

2p

t1

p
t1

h

i2

a) b)

Figure 3.1.RTW: fast to slow data transfer -(a) task graph;(b) task and signal timeline for
m = 2

periods. The rate transition blocks are assumed to execute in negligible time. Consider the

data dependency shown in Fig. 3.1(a), where the period of the data consumer taskt2 is a

multiple of the period of the data producer taskt1. A problem of data integrity exists when

the input to taskt2 changes after its execution starts. Also, the output is nondeterministic

and depends on how latet2 starts. Adding a hold blockh ensures that the second invoca-

tion of t1 does not overwrite the data. The hold block executes with the slower period of

t2, but with the higher priority of the faster taskt1. In that way, it executes before taskt2

and its output value is held constant whilet2 executes. Beside the schedule for the tasks,

Fig. 3.1(b) shows the input signali2 of t2 over time, assuming incrementing functionality

of t1.

b)a)

e1

p

e2

t2

0

d

i2

t1

t2

p 2p

m · p

t1

Figure 3.2.RTW: slow to fast data transfer -(a) task graph;(b) task and signal timeline for
m = 2

In the inverse case shown in Fig. 3.2, the period of the data producer taskt1 is a multiple

of the period of the data consumer taskt2. The delay rate transition blockd compensates

for the varying execution time oft1, i.e., it makes the time of data transfer deterministic no

matter how earlyt1 completes. The delay block executes with the period oft1, but with the

higher priority, so that its output value is written before required invocations oft2.

The RTW rate transition mechanism limits the set of syntactically correct programs.

62

First, the period of each task must be an integer multiple of a base period (e.g., the smallest

period). Second, each cycle of the task graphG must contain a dependency resolved with

a delay block.

t2

e1

b)

p2

e2

a)

t2

i2

hd

0 p 2p

t1

p1

t1

Figure 3.3.LET data transfer -(a) task graph;(b) task and signal timeline forp1 = p2/2 =
p

Logical Execution Time semantics.According to the logical execution time(LET)

concurrency model defined in the scope of the Giotto programming language [31], each

task has areleaseand aterminationtime: the release time specifies the exact time at which

the task inputs are made available to the task; the termination time specifies when the task

outputs become available to other tasks. The task must start running, may be preempted,

and must complete execution during itsLET, which is the time from release to termination.

Thus the times when a task reads and writes data are decoupled from the task execution.

For the periodic tasks that we consider in this chapter, release and termination time instants

of a task are equal to multiples of the task period. TheLET model is an abstract program-

ming model that does not prescribe any particular scheduling strategy. This is shown in

Fig. 3.3(b) with dashed box throughout a period of a task. Of course, it must be ensured

that the generated code satisfies theLET assumption.

For data precedences withLET semantics, a data transfer occurs at release/termination

time instants, which abstracts away precedence constraints and makes tasks independently

schedulable. EveryLET precedence can be modeled as a sequence of a delayd and a hold

h block as shown in Fig. 3.3(a). The delay block executes with the period of the data

producert1 delaying its output until its termination time. The hold block executes with the

period of the data consumert2 holding its input value during itsLET. TheLET semantics

63

imposes no limitations on the program, i.e., task periods need not be harmonic and the task

graph may be an arbitrary directed graph.

RTW versusLET . We end this section by comparing the two semantics with respect to

latency and synchronization requirements. These properties will favor theRTW semantics.

In the remaining sections we will compare the two semantics with respect to composability,

which makes theLET semantics look better.

The end-to-end latencyD of a sequence ofn taskstj with task precedences(tj−1, tj)

for eachj = 2, ..., n, is the time between the release of taskt1 and the completion of tasktn.

Unlike theRTW semantics, with theLET semantics each fast to slow precedence constraint

increases the end-to-end latency by the period of the data producer task. In the worst case

all task precedences in the sequence are such, i.e., letpj = mj · pj−1 for j = 2, ..., n and

mj ≥ 1. With theRTW semantics, the end-to-end latencyDRTW of the sequence is bounded

by pn. With theLET semantics, the latencyDLET is bounded byp1 + · · ·+pn. So, if all tasks

have the same period, i.e., ifmj = 1, then the worst-case latency with theRTW semantics

is n times smaller than the latency with theLET semantics.

Moreover, the latency of the sequence in theRTW case depends on the worst-case exe-

cution times of tasks and, as such, can be arbitrarily small. On the other hand, the latency

in theLET case depends on the logical execution times of tasks, i.e., on the task periods, no

matter how small actual execution times are. This difference is important for the case when

a single task graph has a dedicated resource. However, in the case of a partitioned resource,

as discussed in [68], the feasibility problem is more relevant than the latency minimization

problem. Note that even the latency of theRTW can be reduced either by compromising

determinism, or by more complicated synchronization or dataflow models [50, 24].

RTW andLET semantics differ also in their synchronization and memory requirements.

Let taskt1 precede taskt2, and letp2 = m · p1. In p2 time units ofRTW execution, the hold

synchronization block is invoked only once. In the same time interval ofLET execution, the

64

hold block is invoked once and the delay blockm times. However, both blocks represent

data transfers and typically execute in negligible amounts of time.

The memory required for the execution of the program withn tasks andRTW semantics

is bounded byn. The same program withLET semantics requires memory twice as large,

since the output data must be stored even after a task completes. Moreover, this memory

is used all the time during program execution, while in theRTW case memory needed for

a task is used only during task execution. A more detailed study of memory requirements

for a run-time system with theLET semantics is presented in [42].

3.3 Task Group Abstraction

3.3.1 Independent Task Set Abstraction

We first briefly present results from [68] for schedulability of a set of independent tasks

under a periodic resource. A resource can be modeled as aperiodic resourceR = (T ,C)

if it can guarantee allocations of at leastC time units everyT time units. The model does

not specify how the guaranteedC time units are distributed over a time interval of sizeT .

An instanceof the periodic resource is any time trace of resource allocations that satisfies

the guarantee(T ,C). For a given periodic resourceR = (T ,C), the resourcesupply

bound functionsbfR : R → R mapsτ ∈ R into the minimum supply of the resource

R over all time intervals of sizeτ . For details on computing the supply bound function

the reader is referred to [68]. As an example, Fig. 3.4 shows the supply bound function

sbfR for the periodic resourceR = (8, 7). Let V be the set of independent, periodic,

and preemptive tasks. For a given set of tasksV , the resourcedemand bound function

dbfV : R → R mapsτ ∈ R into the maximum resource demand over all time intervals

of sizeτ . If the scheduling algorithm is earliest deadline first(EDF), we havedbfV (τ) =

∑
ti∈V bτ/pic · ei, whereti = (pi, ei). For the rate monotonic scheduling algorithm(RM),

65

the demand bound function is calculated for each taskti as a cumulative resource demand

of the task over an interval of timeτ , i.e.,dbfV (τ, ti) = ei +
∑

tk∈V (ti)
dτ/pke · ek, where

V (ti) is the set of tasks of higher priority thanti.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40
sbf

R

dbf
V

Figure 3.4. Supply and demand bound functions

We say that the scheduling model(V ,T ,C ,A) is schedulableif under every instance

of allocations of the periodic resource(T ,C), there exists a feasible schedule for the task

set V with the scheduling algorithmA. Theorems 1 and 2 in [68] give sufficient and

necessary conditions for the schedulability of(V ,T ,C ,A) with EDF or RM scheduling

algorithms. LetlcmV be the least common multiple of the periods of tasks inV . A

scheduling model(V ,T ,C , EDF) is schedulable if and only if for all0 < τ ≤ 2 ·lcmV , the

maximal resource demand is no greater than the minimum resource supply, i.e.,dbfV (τ) ≤
sbf(T ,C)(τ). For instance, ifV is the set of three tasksV = {(24, 8), (8, 2), (16, 4)}, then

Fig. 3.4 shows the demand bound functiondbfV , and also illustrates that(V ,T ,C , EDF)

is schedulable if(T ,C) = (8, 7). A scheduling model(V ,T ,C , RM) is schedulable if and

only if for all tasksti ∈ V , there exists0 < τi ≤ pi such thatdbfV (τi, ti) ≤ sbf(T ,C)(τi).

In a hierarchical scheduling framework (Fig. 3.5), a separate scheduling problem is

solved at each level of the hierarchy. If(V ,T ,C ,A) is schedulable, then the set of inde-

pendent periodic tasksV under resource(T ,C) and algorithmA can be abstracted as a

single periodic task(T ,C). So, in a hierarchical scheduling framework, the higher-level

66

e22e21
C2

t21 t22
T2p21 p22

T2

C2C1

g1 g2
T1

t12
e12e11

C1

t11
T1p11 p12

Figure 3.5. Hierarchical scheduling framework

scheduler allocates partitions for the setV as it was a periodic task(T ,C). In figures we

represent abstractions as rounded boxes, in this case characterized by(T ,C) pairs.

3.3.2 Intragroup Task Precedence Abstraction

In this subsection we add precedences to a set of periodic tasks that execute on a single

resource. Whereas here we consider a single group of tasks represented by a task graph,

later we will discuss multiple, hierarchically structured task groups with precedences be-

tween them. We use the term “program” to capture tasks, constraints (timing and prece-

dences), and the task graph dataflow semantics. Formally, aprogram(G , S) consists of

a task graphG = (V ,E) and semanticsS ∈ {RTW, LET}. For instance, the task graph

shown in Fig. 3.6(a) is defined withG0 = ({t1, t2, t3}, {(t1, t2), (t2, t3)}).

Definition 1 (Program schedulability) If under all instances of the periodic resource

(T ,C), there exists a schedule feasible for task graphG with semanticsS the schedul-

ing model(G ,T ,C , S) is schedulable.

We assume that a child scheduler, when communicating resource requirements to its

parent scheduler, provides not only a single pair(T ,C), but a set of pairs, and, in particular,

a function with the domain setQ that maps each period to an execution time requirement

(capacity). Such a function enables a tighter hierarchy than a single pair, and also avoids

computation of the optimal pair at the child scheduler (e.g., when the switching overhead is

67

not known). We assume context switching time takes negligible time. This can be avoided

by adding the appropriate overhead to task execution time.

Definition 2 (Program abstraction) A functionc : Q → R tightly abstractsprogram

(G , S) if c maps each periodT into the smallest capacityC such that(G ,T ,C , S) is

schedulable.

If the functionc tightly abstracts the program(G , S), then theabstraction utilization

functionu : Q → R of (G , S) maps each periodT into u(T) = c(T)/T . In the rest of

the chapter, for two functions,f1 andf2, with arbitrary domain setA and range setR, and

for a relationσ ∈ {<,≤, >,≥}, we writef1 σ f2, if f1(a) σ f2(a) for all a ∈ A. Note that

the abstraction utilization functionu satisfies0 ≤ u ≤ 1.

The results summarized in Sec. 3.3.1 cannot be used directly on task graphs because

precedence constraints with semantics must be taken into account. As explained in Sec. 3.2,

the RTW method uses fixed priority scheduling of tasks to maintain the order of task ex-

ecution. TheLET method is not restricted to any scheduling algorithm, and, in principle,

its semantics can be implemented with theEDF algorithm where precedences are ignored.

Thus, benefits of better schedulability, may in compositional scheduling frameworks be

turned into tighter abstraction. However, if theEDF algorithm is not an option [9], some

other, simpler scheduling algorithm might also give a tighter abstraction. For example, if

the periods of all tasks have a common divisord, then a simple round robin (RR) technique

may be used. For each task(pi, ei), let ki = pi/d. A quantum ofei/ki time units is allo-

cated to a task in each round. In this case the demand bound function for theRR scheduling

algorithm isdbfV (τ) =
∑

ti∈V bτ/pi · kic · ei/ki.

Example. Fig. 3.7 shows the functions that tightly abstract the program from

Fig. 3.6(a) for different semantics, i.e., scheduling algorithms. As expected, the tightest

abstraction is for theEDF scheduling algorithm, i.e.,EDF for LET semantics. For this ex-

ample, theRR algorithm forLET semantics gives the abstraction function that lies between

68

240 48

t1

2
t28

4
1624c

t1
8

t3

a) c)b)
0

t3

t2

t1

4824

t3

t2

Figure 3.6.(a) Task graph;(b) RTW schedule;(c) LET schedule (RR schedule)

EDF andRTW abstraction functions. In particular, forT = 7.5, the required capacities are

cEDF(T) = 6.5, cRR(T) = 6.83, andcRTW(T) = 7.1.

We performed simulations to evaluate the difference between the two semantics with

respect to latency and composability properties. In all simulations we assumed a chain

of tasks as the task graph. The size of the chain, i.e., the task workload size, was the

parameter of the simulation. The periods of the tasks were randomly assigned from the

range [1,20), and the task execution times were chosen such that total workload utilization

was in the range [0.3,0.7]. For each pair of successive tasks in a task chain one period was

the multiple of the other period, because of the limitation of theRTW dataflow model. For

each workload size we ran simulations on 300 task graphs for bothRTW andLET semantics

(underEDF), and the relative difference, averaged over all task graphs, is shown in Fig. 3.8.

The relative difference in end-to-end latency was calculated using the delay between the

release of the first task and the worst-case completion time instant of the last task in the task

chain. Under a shared periodic resource the delay for both semantics is determined by task

periods. The relative difference in composability was calculated as the relative difference

in the abstraction functions taken at the smallest period of chain tasks.

We now formalize the observed abstraction gap for a shared single resource, so that it

can be compared with the distributed case in Sec. 3.4, and to use it as a base case for our

hierarchical scheduling framework discussed in Sec. 3.5.

Lemma 2 Let G = (V ,E) be a task graph and(T ,C) a periodic resource. (1) If

69

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

T

C

c
RTW

c
LET

c
RR

f(T) = T

Figure 3.7. Abstraction functions for Fig. 3.6(a)

2 3 4 5 6 7 8 9 10
0.04

0.06

0.08

0.1

0.12

0.14

0.16

TASK CHAIN SIZE

R
E

L
A

T
IV

E
 D

IF
F

E
R

E
N

C
E

(L
LET

−L
RTW

)/L
RTW

(c
RTW

−c
LET

)/c
RTW

Figure 3.8. Relative difference betweenRTW andLET semantics w.r.t. latency and com-
posability

(G ,T ,C , S) is schedulable forS = {RTW, LET}, then (V ,T ,C , EDF) is schedulable.

(2) If (V ,T ,C , EDF) is schedulable, then(G ,T ,C , LET) is schedulable.

Proof . (1) If (G ,T ,C , S) is schedulable, then schedulability is preserved by removing

all precedence constraints to obtain(V ,T ,C , S). Since for independent tasksEDF is

the optimal scheduling algorithm even under a partitioned resource [56], it follows that

(V ,T ,C , EDF) is schedulable. (2) If the independent task set(V ,T ,C , EDF) is schedula-

ble, thenG is schedulable with theLET semantics even with task precedence constraints,

since the concurrent task instances are independent.2

70

Proposition 3 (Tightness) LetG be a task graph. If there exists a functioncRTW that tightly

abstracts(G , RTW), then there exists a functioncLET that tightly abstracts(G , LET) and

uRTW − uLET ≥ 0.

Proof . Let G = (V ,E) and suppose thatcRTW tightly abstracts(G , RTW). For all

T ∈ Q, we have that(G ,T , cRTW(T), RTW) is schedulable. From Lemma 2 it follows

that (V ,T , cRTW(T), EDF) is schedulable, and consequently, that(G ,T , cRTW(T), LET) is

schedulable. So,cLET(T) is defined and can only be smaller thancRTW(T). 2

Proposition 4 There exists a task graphG such that in Prop. 3 strict inequality holds, i.e.,

uRTW − uLET > 0.

Similar to the case with a dedicated resource (e.g., [9]), a task graphG with a pair of tasks

t1 andt2 whose periodsp1 andp2 are not in a harmonic relation (i.e., there exists nom ≥ 1

such thatp2 = m · p1 or p1 = m · p2) can satisfy the proposition. An example is the task

graph in Fig. 3.6(a), with cRTW andcLET shown in Fig. 3.7.

3.4 Distributed Task Precedence Abstraction

In this section tasks are distributed over a set of resources. We still consider abstractions

of a task graph, i.e. a single task group with task precedence constraints. We again show

that theLET approach provides tighter abstraction, and therefore, better composability.

In this case the benefits do not only come from the fixed-priority scheduling of theRTW

approach. To motivate the problem, consider a teleconferencing application with video and

audio streams studied in [12]. The task graph is shown in Fig. 3.9 and the task parameters

in Tab. 3.1. The application is distributed over five resources, and the goal is to find its tight

abstraction.

LetR = {r1, ..., rm} be a set of computational resources on which tasks from the task

71

e21

p22

e22

p24

e24

p23

e23

p21

e11

p12

e12

p14

e14

p13

e13

p25

e25

r1

p11
t11

t21

r1
t12

t22

t13

t23

t14

t24 t25
r4 r5r3r2

r2 r3 r4c R

Figure 3.9. Teleconferencing application task graph

Video Tasks Get frame IO route IO route Display
tij t11 t12 t13 t14

Resourcerj Disk Sparc FDDI PC
Periodpij 2 2 1 720
Exec. timeeij 0.66 1.11 0.44 401.38

Audio Tasks Get sample LP filter IO route IO route DA conv.
tij t21 t22 t23 t24 t25

Resourcerj Disk Sparc FDDI PC DSP
Periodpij 384 384 768 3 3
Exec. timeeij 0.73 18.43 0.49 0.49 0.60

Table 3.1. Example teleconferencing application data

graphG execute, and letm be the size ofR. A task is preallocated to a resource and there

is no task migration. So, each task is defined with a triple(p, e, r), wherer ∈ R. If a

task graphG consists of tasks defined with such triples andS is a semantics, we refer to

(G , S) as adistributedprogram. We assume that communication between tasks can either

be modeled as a task or it takes a negligible amount of time.

In the multi-resource case each resource has its own independent periodic model, so

the periodT ∈ Qm and the capacityC ∈ Rm arem-tuples. We assume that the scheduler

allocates different resources independently, i.e., it only ensures that for each resource the

periodic requirement is individually satisfied. First note that the program schedulability

definition remains exactly the same as Def. 1 for a single resource. To define tight abstrac-

tion in this case, we have to consider minimal capacity with respect to some metric, and here

we use a simple multi-resource utilization metric. Given a tupleT = (T1, ...,Tm) ∈ Qm

and a tupleC = (C1, ...,Cm) ∈ Rm , let µ(T ,C) =
∑m

j=1
Cj

Tj
.

72

Definition 3 (Multi-resource program abstraction) A functionc : Qm → Rm tightly

abstractsdistributed program(G , S) if c maps each periodT ∈ Qm into the capacity

C ∈ Rm such that

1. (G ,T ,C , S) is schedulable;

2. for eachC ′ ∈ Rm such that(G ,T ,C ′, S) is also schedulable, we haveµ(T ,C ′) ≥
µ(T ,C).

If the functionc tightly abstracts the program(G , S), then themulti-resource abstrac-

tion utilization functionu : Qm → R of (G , S) is defined byu(T) = µ(T , c(T)). Note

that, for a given program(G , S), while there may be several functionsc that tightly abstract

(G , S), the multi-resource abstraction utilization functionu of (G , S) is unique. Also, the

functionu satisfies0 ≤ u ≤ m.

Proposition 5 (Tightness) LetG be a task graph. If there exists a functioncRTW that tightly

abstracts(G , RTW), then there exists a functioncLET that tightly abstracts(G , LET) and

uRTW − uLET ≥ 0.

Proof . With an argument similar to the proof of Prop. 3, it can be shown that for

eachT ∈ Qm , if (G ,T , cRTW(T), RTW) is schedulable, then(G ,T , cRTW(T), LET) is

also schedulable. Consequently, for eachT ∈ Qm , uLET(T) is smaller or equal to

µ(T , cRTW(T)) = uRTW(T). 2

Consider the task graphG in Fig. 3.10(a), distributed overm = 2 resources, and

notice that the tasks have equal periodp. Computing the abstraction utilization function

uRTW is more difficult thanuLET, because the capacity required for resourcer2 depends on

the capacity for resourcer1. The worst case is when resourcer1 is allocated at the end of a

periodp, and resourcer2 is allocated at the beginning (see Fig. 3.10(b)). If x ∈ [e2, p − e1]

and the capacity forr1 is e1 + x, then the capacity forr2 has to be at leastp − x + e2, so

73

that t2 completes on time. Based on this task graph, we show in the following proposition

that the difference between the abstraction utilization functions for the two semantics can

be as large asm− 1.

0 pp

e2p − x

e1 x

t2, r2

t1, r1

0

e1 e2

p
t1 t2

pr1c r2

b)a)

R

Figure 3.10. Example form = 2 resources:(a) task graph;(b) resource partition

Proposition 6 For all ε > 0, there exists a task graphG and a periodT ∈ Qm such that

uRTW(T)− uLET(T) is within ε of m − 1.

Proof . Let G = (V ,E) be a chain ofm tasks with the same periodp assigned tom

different resources, i.e., a generalization of the task graph from Fig. 3.10(a). Let V be the

task set obtained fromV by modifying, for eachj = 1, ...,m, task(p, ej, rj) ∈ V into task

(p, ej, rj) ∈ V , whereej = ej + xj if j = 1, andej = p − xj−1 + ej + xj if 1 < j < m,

andej = p − xj−1 + ej if j = m (see Fig. 3.11). LetT = (p, ..., p). Then(G ,T ,C , RTW)

is schedulable if and only if(V ,T ,C , EDF) is schedulable andxj ∈ [ej+1, p − ej] for each

j = 1, ...,m − 1. If e1 is close top, andej is close to 0 for eachj = 2, ...,m, thenej is

close top for eachj = 1, ...,m. Consequently,uRTW(T) can be arbitrarily close tom. We

also have that(G ,T ,C , LET) is schedulable if and only if(V ,T ,C , EDF) is schedulable.

Sincee1 can be arbitrarily close top, andej arbitrarily close to 0 for eachj = 2, ...,m,

uLET(T) can be arbitrarily close to 1.2

Remark 1 If we assume that for all tasks(pj, ej, rj) of the task graphG in Prop. 6 the

execution timeej is less thanp/m, then we can consider a pipelined execution, i.e., the

task graphG ′ which differs fromG in that each task periodpj (for j = 1, ...,m) is equal to

p/m. Such a task graph withLET semantics has the same latency as the original task graph

74

0 pp0

t1, r1

t2, r2

...
tm−1,

tm, rm

p − xm−2

p − xm−1

e1 x1

e2 x2

em−1

em

p − x1

rm−1
xm−1

Figure 3.11. Resource partition for Prop. 6

with RTW semantics. Moreover, abstraction is still tighter forLET: uRTW(T)− u ′LET(T) can

be arbitrarily close to((m − 1)p +
∑

ej − m
∑

ej)/p, and thus can be greater than 0,

sincep −∑
ej ≥ 0. 2

Remark 2 Although Prop. 6 holds form > 1, its form form = 1 is similar to Prop.4.

However, Prop. 4 holds globally with strict inequality, which is not the case for Prop. 6

since bothuRTW anduLET approachm as the argumentT becomes large.2

We next argue that abstraction and scheduling for tasks with precedences and multiple

shared resources are simpler with theLET semantics. LetG = (V ,E) be a task graph, and

let Vj ⊆ V (for j = 1, ...,m) be the set of all tasks allocated to the resourcerj. Let the

task graphGj = (Vj,E ∩ V 2
j) be therj-task graph, and letcj : Q→ R be a function that

tightly abstracts(Gj, S).

Proposition 7 (Abstraction) (1) The function cLET that maps each periodT =

(T1, ...,Tm) to cLET(T) = (c1(T1), ..., cm(Tm)), tightly abstracts(G , LET). (2) There

exist two task graphsG andG ′ with the samerj-task graph for eachj = 1, ..., m, such

that the functions that tightly abstract(G , RTW) and(G ′, RTW) are not equal.

75

Consider, for instance, Fig. 3.12. The functioncLET that tightly abstracts the telecon-

ferencing program from Fig. 3.9 is defined by them = 5 single-variable functionscj,LET

computed independently for each resourcerj as discussed in Sec. 3.3.2. According to

Prop. 7(2), knowing all functionscj,RTW is not sufficient to construct the functioncRTW. An

example for the task graphG in Prop. 7(2) is the graph from Fig. 3.10(a), and for the task

graphG ′, the same graph without the edge betweent1 andt2.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

C

c
1,LET

c
2,LET

c
3,LET

c
4,LET

c
5,LET

f(T) = T

Figure 3.12.LET abstraction functions for Fig. 3.9

Note that the complexity of a scheduling problem on distributed task graphs, asking

whether an end-to-end latency requirement is satisfied, depends on the choice of semantics.

For theRTW semantics the problem is similar to the job-shop scheduling problem, and is

NP-hard even in simple variants [8]. If theLET semantics is acceptable, then the scheduling

problem can be decomposed into a set of simple single-resource scheduling problems. This

simplicity is favorable for program admission tests.

3.5 Hierarchical Intergroup Abstraction

In this section we allow for the existence of precedences between different task groups,

i.e., different task graphs. We discuss tightness and the construction of abstractions for such

task graphs. To simplify the presentation we restrict the discussion to the single-resource

76

case. We define a hierarchical scheduling framework that takes into account precedence

constraints. In this framework the separation property between parent and children levels

is not satisfied, i.e., the parent scheduler has to know the details of the entire hierarchy

below it. However, we formally show that the separation property holds withLET, albeit

not with RTW semantics.

We use the term “program” for the first level of a hierarchy, and “hierarchical program”

for higher levels. So, programs are composed into hierarchical programs, and these are

composed into higher-level hierarchical programs. LetG = (V ,E) be aflat task graph,

a graph defined with the setV of all tasks and the setE of all precedences. We first

inductively define atask hierarchy. (1) Every set of tasksH ⊆ V is a task hierarchy onG .

In this case, the set of verticesV of the task hierarchyH is equal toH. (2) If Hj is a task

hierarchy onG with a set of verticesVj for eachj = 1, ..., k, and all sets of vertices are

mutually disjoint, then the collectionH = {H1, ...,Hk} is a task hierarchy onG . In this

case, the set of verticesV of a task hierarchyH is the union of the sets of vertices of its

elements, i.e.,V = ∪k
j=1Vj.

A hierarchical task graphG = (H, E) on the flat task graphG consists of a task

hierarchyH on G with a set of verticesV and the set of precedencesE = E ∩ V2. A

hierarchical program(G, S) on the flat task graphG consists of a hierarchical task graph

G onG and a semanticsS ∈ {RTW, LET}.

e12

p14

e14

p13p12

e13

p11
t11 t12 t13 t14

c1
c

c2

e11

Figure 3.13. Video stream hierarchical abstraction

Example. Assume that the video stream from the teleconferencing application

(Sec. 3.4) executes entirely on the same resource, and that all execution times are scaled

down 4 times. Fig. 3.13 gives an example of task groups with intergroup precedences.

77

There arek = 2 task groups at the leaf level of the hierarchy, and note that there is a prece-

dence between the groups in each direction. The flat task graphG = (V ,E) is defined

with V = {t11, t12, t13, t14} andE = {(t11, t12), (t12, t13), (t13, t14)}. There are three task

hierarchiesH1 = {t11, t14},H2 = {t12, t13}, andH = {H1,H2} = {{t11, t14}, {t12, t13}}.
The corresponding sets of vertices areV1 = {t11, t14}, V2 = {t12, t13}, V = V , and the sets

of precedences areE1 = ∅, E2 = {(t12, t13)}, andE = E . Finally, the three hierarchical

task graphs defined by the hierarchy areG1 = (H1, E1), G2 = (H2, E2), andG = (H, E). 2

Note that if in a hierarchical task graphG = (V , E), the task hierarchyH is equal to a

subset of tasksV , thenG reduces to a subgraph ofG , and the hierarchical program(G, S)

reduces to a program as defined in 3.3.2. An example is the hierarchical task graphG2. For

such a hierarchical program, Def. 1 defines schedulability and Def. 2 defines abstraction

functions. We use these definitions as a base case for Def. 4 and Def. 5, which respectively

define the same properties for higher-level hierarchical programs. The following conven-

tion holds for all remaining propositions in this section.

Convention. Let (G, S) be a hierarchical program on a flat task graphG with

G = (H, E) andH = {H1, ...,Hk}. Let V be the set of vertices ofH, and letE (resp.Ej)

be the set of precedences ofH (resp.Hj). Let Gj = (Hj, Ej) for j = 1, ..., k; we refer

to {G1, ...,Gk} as the set ofcomponent graphsof G. Let C = (c1, ..., ck) be a tuple

of functions such that for eachj = 1, ..., k the functioncj : Q → R tightly abstracts

the hierarchical program(Gj, S). Given a tupleP = (P1, ...,Pk) ∈ Qk and a tuple

C = (c1, ..., ck) of functionscj : Q → R, let VP ,C be the set of independent tasks defined

with VP ,C = {(Pj, cj(Pj)) | j = 1, ..., k}. 2

In a hierarchical scheduling framework, a separate scheduling problem is solved at

each level of the hierarchy. We assume that the scheduler at the level of a hierarchical

78

program((H, E), S), knows only about the precedences inE , but not about the entire set

E . The scheduler has to determine a schedule that satisfies both the requirements of the

components, i.e., the requirements of the task setVP ,C for some tupleP , and all prece-

dences introduced up to this level, i.e., the requirements of the program((V , E), S). In

the example from Fig. 3.13 there are two levels of scheduling. Letc1 andc2 be the func-

tions that respectively abstract programsG1 andG2. The higher-level scheduler has to

satisfy the requirements of the entire program(G , S), but also the requirements of the task

set{(P1, c1(P1)), (P2, c2(P2))} for some rationalsP1 andP1. Since components do not

specify resource requirements as a single(T ,C) pair, the following definition contains an

additional existential quantifier.

Definition 4 (Hierarchical program schedulability) If under all instances of a given pe-

riodic resource(T ,C), there exist a tupleP ∈ Qk and a schedule feasible both for the

set of independent tasksVP ,C and the program((V , E), S), we say that(G,T ,C , S) is

schedulable.

Definition 5 (Hierarchical program abstraction) A functionc : Q→ R tightly abstracts

a hierarchical program(G, S) if c maps each periodT into the smallest capacityC such

that (G,T ,C , S) is schedulable.

The following proposition shows that the hierarchical scheduling framework iscompo-

sitional for theLET semantics, but not for theRTW semantics, because in theLET case, the

abstraction function (i.e., timing properties) for the composition can be established from

independent abstraction functions for the components. In the case ofLET semantics, we

show how to construct a function that tightly abstracts a hierarchical program from the tu-

ple C of functions that tightly abstract hierarchical programs at the next lower level of the

hierarchy. GivenT ∈ Q, let

cmin(T) = min
P∈Qk

{c ′(T) | c′ : Q→ R tightly abstracts VP ,C}.

79

Consider the example from Fig. 3.13, and Fig. 3.14. The two functions drawn with

dash lines,c1,LET andc2,LET, are tight abstractions of the leaf-level hierarchical programs

(G1, LET) and(G2, LET), respectively. These are computed as explained in Sec. 3.3.2. The

third function,cLET, which tightly abstracts(G, LET), is the functioncmin from the above

expression computed usingc1,LET andc2,LET. Beside this, the following proposition also

shows that, in general, knowing the tuple of functionscj,RTW is not sufficient to construct

the functioncRTW that tightly abstracts(G, RTW).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T

C

c
LET

c
1,LET

c
2,LET

f(T) = T

Figure 3.14.LET abstraction functions for Fig. 3.13

Proposition 8 (Abstraction) (1) The functioncLET that maps each periodT to cLET(T) =

cmin(T), tightly abstracts(G, LET). (2) There exist two hierarchical task graphsG and

G ′ with the same set of component graphs, such that the functions that tightly abstract

(G, RTW) and(G ′, RTW) are not equal.

Proof . (1) GivenT ∈ Qk, we first prove that(G,T , cmin(T), LET) is schedulable.

From the definition of the functioncmin, let P ∈ Qk and a functionc ′ be such thatc ′

tightly abstractsVP ,C andc ′(T) = cmin(T). From Def. 2, it follows thatVP ,C is schedu-

lable under each instance of the periodic resource(T , c ′(T)) = (T , cmin(T)). From

Lemma 3 it follows that(G,T , cmin(T), LET) is schedulable. Assume that there exists

C < cmin(T) such that(G,T ,C , LET) is schedulable. By Def. 4, there existsP ∈ Qk

80

such that(VP ,C,T ,C , LET) is schedulable. Letc′ be the function that tightly abstracts

VP ,C. From Def. 2, we havec′(T) ≤ C and from definition of the functioncmin, we have

cmin(T) ≤ c ′(T). This is a contradiction.

(2) Consider the example shown in Fig. 3.16(a). Let G0 = ({t1, t2, t3},
{(t1, t2), (t2, t3)}) and G = ({{t1, t2}, {t3}}, {(t1, t2), (t2, t3)}). Let c0,S (resp.,cS) be

the function that tightly abstracts hierarchical program(G0, S) (resp.,(G, S)). Fig. 3.17(b)

shows thatc0,LET < cLET < c0,RTW. On the other hand,c0,RTW ≤ cRTW, sinceG0 is a leaf-level

task graph containing the same tasks asG. LetG ′ = ({{t1, t2}, {t3}}, {(t1, t2), (t3, t2)}) be

the hierarchical task graph equal toG, except that the edge(t2, t3) is of opposite direction.

The function that tightly abstracts(G ′, RTW) is equal tocLET < cRTW, since both edges in the

hierarchical task graphG ′ introduce delays. This means that knowing only the functions

that tightly abstract the lower-level hierarchical programs, and not the direction of all

edges, is not sufficient to computecRTW. 2

The next proposition shows that the hierarchical scheduling framework exhibitssepa-

ration for theLET semantics, because for scheduling only component abstractions, and not

component internals, are sufficient. For theRTW semantics, in general, knowing the tuple

of functionscj,RTW is not sufficient to construct a feasible schedule. We explain how to

construct the composite schedule in the case ofLET semantics. GivenT ∈ Q, letPmin(T)

beP ∈ Qk such that for a functionc ′ that tightly abstractsVP ,C we havec ′(T) = cmin(T),

i.e., let it be equal to theP that minimizes the expression defining the functioncmin.

Proposition 9 (Scheduling) Let (G, S) be a hierarchical program and(T ,C) a periodic

resource such that(G,T ,C , S) is schedulable. (1) IfS = LET, then theEDF algorithm for

VPmin(T),C constructs a feasible schedule for(G,T ,C , LET). (2) If S = RTW, then there

exists a hierarchical task graphG ′ with the same set of component graphs asG, such that

no schedule is feasible both for(G,T ,C , RTW) and(G ′,T ,C , RTW).

81

Proof . (1) The schedule generated withP = Pmin(T) is feasible even if the pro-

vided capacityC is cmin(T). From Lemma 3, it follows that the schedule is feasible

for (G,T ,C , LET). (2) Consider the hierarchical task graph shown in Fig. 3.16(b). Let

x ∈ [−p/4, p/4] be a variable parameter of the task execution requirements not known to

the scheduler at the higher-level. Let, for instance, the hierarchical graphsG andG ′ from

the statement of Prop. 9 be as in Fig. 3.16(b) with x = −p/4 andx = p/4 respectively.

With RTW semantics, depending onx, one or the other data precedence becomes more crit-

ical. The total requirement per hierarchical program is independent of the value forx, i.e.,

the functions that tightly abstract the hierarchical programs do not depend onx. However,

to construct a schedule that satisfies all data precedences, the scheduler would have to know

the value ofx. 2

Consider again the example from Fig. 3.13. According to Fig. 3.14, ifT = 1 then the

required capacity for the hierarchical program(G, LET) is cLET(T) = 0.776. Fig. 3.15(a)

shows an instance of the resource modelR = (1, 0.776) for the first three periodsT , in

which the resource is respectively allocated at the beginning, at the end, and in the middle

of the periodT . The rest of Fig. 3.15 shows the hierarchical generation of the schedule.

If T = 1, thenPmin(T) = (1, 0.7), and from Fig. 3.14 we havec1,LET(1) = 0.22 and

c2,LET(0.7) = 0.25. Fig. 3.15(b) shows the higher-level schedule: theEDF schedule for the

two periodic tasks(1, 0.22) and(0.7, 0.25) in the partitions from Fig. 3.15(a), i.e., it shows

the schedule for(G1, LET) and(G2, LET). Fig. 3.15(c) shows the lower-level schedule for

G1, i.e., it shows the schedule for taskst11 = (2, 0.16) andt14 = (720, 100.34). Finally,

Fig. 3.15(d) shows the same for taskst12 = (2, 0.27) andt13 = (1, 0.11).

The following two statements generalize Prop. 3 and Prop. 4.

Proposition 10 (Tightness) If there exists a functioncRTW that tightly abstracts(G, RTW),

then there exists a functioncLET that tightly abstracts(G, LET) anduRTW ≥ uLET.

Prop. 10 follows from Lemma 3 similar to the proof of Prop. 3.

82

0 0.5 1 1.5 2 2.5 3
0

0.5

1

a)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

b)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

c)

0 0.5 1 1.5 2 2.5 3
0

0.5

1
d)

TIME

Figure 3.15.(a) Instance ofR = (1, 0.776); (b) L: G2, D: G1; (c) L: t11, D: t14; (d) L: t13,
D: t12 (L=light, D=dark)

Proposition 11 There exists a hierarchical task graphG such that in Prop. 10 strict in-

equality holds, i.e.,uRTW − uLET > 0.

Prop. 11 follows from the proof of Prop. 8(2). An example is the hierarchical task graph

from Fig. 3.16(a), whosecLET function is shown in Fig. 3.17(a), (b).

p

a)

c
c2

4
t2

p/4 + x

p8
4 p/4− x

c
c1 p

p

c2

b)

p/4 + x

p/4− x

t11

t21

t12

t22t1 t3
4

c1 24 16

Figure 3.16. Intergroup precedence abstraction examples for(a) Prop. 8(2);(b) Prop. 9(2)

Lemma 3 generalizes Lemma 2 to the hierarchical framework.

Lemma 3 Let (T ,C) be a periodic resource. (1) If(G,T ,C , S) is schedulable for

S = {RTW, LET}, then there exists a tupleP ∈ Qk such that(VP ,C,T ,C , EDF) is schedu-

lable. (2) If there exists a tupleP ∈ Qk such that(VP ,C,T ,C , EDF) is schedulable, then

(G,T ,C , LET) is schedulable.

Proof . (1) Follows directly from Def. 4. (2) We prove that the schedule for the task set

VP ,C is also a feasible schedule for((V , E), LET), which by Def. 4 makes(G,T ,C , LET)

83

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

T

C

c
LET

c
0,RTW

c
0,LET

c
1,LET

c
2,LET

f(T) = T

3 3.5 4 4.5 5
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

T

C

c
LET

c
0,RTW

c
0,LET

c
1,LET

c
2,LET

f(T) = T

a) b)

Figure 3.17. (a) Component abstraction function for the hierarchical program in
Fig.3.16(a); (b) Detailed view

schedulable. A schedule for(V , E) is feasible withLET semantics if all tasks inV individu-

ally satisfy their timing requirements. Note that each task inV is an element of the set from

the task hierarchy. We use induction on the structure ofG. At each level of the hierarchy a

feasible schedule forVP ,C makes(Gj,Pj, cj(Pj), LET) schedulable for eachj = 1, ..., k. At

the leaf level this condition guarantees schedulability of each task group of the hierarchy.2

3.6 Conclusion

We addressed the problem of abstracting interacting periodic real-time components in

the scope of hierarchical scheduling. We compared two semantics,RTW and LET, for

task precedences, within and between components, on single or distributed resources. The

results of the last two sections can be generalized for applications with both intergroup

and distributed task precedences. We recognized the latency vs. composability trade-off

between the two semantics. We showed that advantageous properties of a hierarchical

84

framework, separation and compositionality, can be achieved with theLET semantics. A

natural way to extend the framework would be combining the two semantics, i.e., defining

a framework in which a particular semantics would be specified for each precedence con-

straint. TheLET semantics would typically be selected for less time-critical paths in the

application task graph. A potential solution for both low latency and tight abstractions is

a more complicated scheduling interface. Another approach may use a different resource

model. There are related efforts in this direction [58, 69]; how they can be used in the the

context of interacting components is a topic for future research.

85

Chapter 4

Interface Formalism for Real-time

Components

4.1 Introduction

As discussed in previous chapters, the increasing complexity of real-time and embed-

ded systems necessitates advanced design and maintenance procedures for the assurance

of timing requirements. Automatic tools are highly desired for such an error-prone and te-

dious process. Since in design exploration the timing performance estimation is performed

for a large number of design alternatives, the tools are required to be efficient. The sys-

tems are typically put together from several interacting software components that are often

provided by different providers. In addition to that, common modification of system re-

quirements demands flexible procedures. In this chapter we develop efficent and flexible

interface-based framework for real-time component integration.

Component-based design simplifies the design process since system decomposition

provides a solution to the original large problem by solving several smaller problems. An-

other advantage of such an approach lies in the fact that component performance analy-

sis detects design errors before the components are implemented and composed. As we

86

noted before, the previous research in component-based real-time systems concentrated on

partitioning and scheduling frameworks that make both the implementation and temporal

behavior of a component independent of the presence of other components in the system

[16, 61]. More recent works present methods that abstract internal complexity of a real-

time component into a componentinterfacethat is subsequently used for the rest of the

design [68, 51, 2]. This research considers theperiodic resourcemodel(T ,C), a resource

abstraction under which a component is guaranteed to getC units of the resource every

T units of time. The methods show how to abstract a set of independent periodic tasks

with EDF or RM scheduling algorithms into a single periodic task. Later work [69] shows

how to abstract a set of independent periodic tasks into thebounded-delayinterface. The

bounded-delay resource model(c, δ), studied in [59, 56, 57], guarantees fractionc of the

resource with at mostδ time units of delay.

In this chapter we start with a different task group model and use a method, similar to

the one presented in [69], for abstracting such a group into a bounded-delay interface. The

task model consists of a set of aperiodic tasks each specified with an arrival rate function

and a relative deadline. The arrival rate function bounds the number of task requests in a

given interval of time. To abstract such a task group we consider only the bounded-delay

resource model with theEDF algorithm, although other mentioned results can be applied

in a different setting. We then consider such a task group as a part, i.e., a component,

of a larger real-time system specified with a set of task sequences that define task prece-

dence constraints. The objective of the chapter is to study automatic, efficient and flexible

component-based design of such a system.

To address the problem we apply concepts from interface theories [13, 14]. In this

formalism an interface of a component specifies what the component expects (assumes)

from its environment and what it provides back (guarantees) to it. This constraint should

be sufficient to check if two interfaces arecompatible, i.e., if the underlying components

work properly when composed together. In the real-time context ’proper’ means satisfying

87

timing requirements, e.g. end-to-end latency. Since the system specification includes de-

pendencies between the tasks from different components, the interface cannot just contain

resource constraints as in previous works, but also dataflow propagation constraints. There-

fore, beside the resource model assumption, an interface also specifies the task sequence

arrival rate assumption and the latency guarantee.

We define aninterface algebrafor real-time interfaces, a formal algebra that enables

tool support for our formalism [14]. Beside the compatibility relation, the algebra consists

of two operations and a relation. The interfacecompositionoperation collects the inter-

faces and sums resource requirements of the underlying components. The other operation,

the interfaceconnectionoperation relates components by interconnection. The refinement

relation aims at formalizing the relation between abstract and concrete versions of the same

component. A more refined version of a component may make a weaker input assumptions

and stronger output guarantees than a more abstract description. Therefore, in a design we

can always substitute a refined version for an abstract one.

One of the beneficial properties of the interface formalism isincremental design. Ac-

cording to this property the composition of interfaces can be performed in any order, i.e.,

it is associative. Beside having more flexible framework, this also means being able to

check compatibility and compute composition of the two interfaces without specifying in-

terfaces of other components. Note that task group abstraction procedures are generally not

associative.

Additionally, in component-based design, one wants to refine an interface towards an

implementation, independently of the design of other components. If all implementations

satisfy their respective interfaces, the components will properly work together. Theinde-

pendent refinementproperty of the formalism states that in order to refine a given compo-

sition of two interfaces, it suffices to independently refine each interface and to compose

88

the obtained refinements. This property enables the system correctness to be established

during interface design, without global check after components are implemented.

Our formalism supports automatic interface compatibility and interface refinement

checking. The interfaces are stateless, i.e., represented by predicates, and, thus, check-

ing of the two properties is efficient. In this chapter we are concerned with defining the

algebra and showing how it can be used on a few examples of real-time applications of

moderate complexity.

Beside the theoretical work in compositional real-time scheduling frameworks, the in-

creased interest in real-time component-based systems has recently resulted in first imple-

mentations. In [77] the interface of a software component is extended to include real-time

assumptions and guarantees of the component. We use similar functional and temporal

specifications, except that we allow for multiple levels of service of a component, i.e., for

the component performance polymorphism. However, since the goal of [77] is reusability

across different platforms, the resource consumption specification is not part of the com-

ponent interface. So, the resource utilization computation is separated from the application

design which assumes virtual resources. Beside, no abstraction of resource requirements is

studied. Instead as units of reuse, we consider components more as units of design.

The approach taken in this chapter is most similar to the recent work [75]. That work

is the first research effort that formally combines the network calculus and interface design

theories in the real-time context. It is not limited to a particular task set characterization or

to a particular resource model. Opposite to the traditional real-time approaches, it allows

for the composition of software process components before the hardware resource compo-

nents are specified. In their work each component represents a task. There is no abstraction

of task groups into components, and no discussion of interface refinement, which is one of

the goals of our work. Also, the task model in [75] assumes independent tasks, so interface

compatibility checking does not have to take into account dataflow constraints. Finally,

89

they assume preemptive fixed-priority scheduling. However, although each component is

specified with a certain priority, the interface composition does not have to be performed

in a certain order.

In interface theory research [13, 15] the component interaction is specified using richer

interfaces. The temporal input/output behavior of a component is typically captured by an

automaton. Therefore, the automaton of the composite interface is constructed by pruning

all violating states from the product of the component automata. Such stateful approach is

a more general way to address multiple levels of component performance. However, in this

chapter we keep the interface formalism simple in order to focus more on real-time issues.

Outline of the Chapter. Sec. 4.2.1 informally introduces a real-time component stud-

ied in the chapter with its functional, temporal and resource parts. The temporal portion

of the component interface consists of a request arrival function and delay. The same

section introduces the resource portion of the interface in the form of the bounded-delay

resource model. How to obtain resource partition parameters for a group of tasks is pre-

sented in Sec. 4.2.2. We introduce interfaces in Sec. 4.3.1, and formally define an interface

algebra Sec. 4.3.2. Discussion of how interfaces can be used for efficient and automatic

component-based design and verification is left for Sec. 4.4. In particular, incremental

design is discussed in Sec. 4.4.1 and independent refinement in Sec. 4.4.2. Sec. 4.5 con-

siders the corresponding interface algebra for general task graphs that may contain cycles.

We work with simpler event models and under certain conditions we are able to prove the

associativity and independent refinement even in this case.

90

4.2 Real-Time Components

4.2.1 Resource Model

Functional model. Let a task sequenceπ = t1t2 . . . tk be a sequence of tasks with a

precedence constraint betweentj andtj+1, (j = 1, . . . , k − 1). Although our arguments

can be generalized for trees of tasks, we keep the task sequence model for simplicity rea-

sons. We consider components as units for implementation, reuse and composition of task

sequences. The functional description of a component consists of a set of task sequences.

Two task sequences from the same component can contain the same task. Figure 4.1 shows

an example of a component with two task sequencest1t3 andt2t3. For the purposes of the

chapter it is not important whether task inputs/outputs are data processed by tasks or only

requests for task execution. The M and D blocks represent no tasks. Only in figures they

technically denote multiplexing and demultiplexing, i.e., task sequencest1t3 andt2t3 are

interleaved and independent.

t3t1

t3t2

b)

t1

t2

t3

a)

M D

Figure 4.1.(a) Task graph; (b) Component

Arrival-delay temporal model. The temporal interface of a component is similar to

the interface of a component in [77], and consists of an arrival function and a maximum

delay for each sequence of the component. In fact, it consists of several pairs of arrival

function and delay, one for each level of service of the component, as formally defined in

Sec. 4.3.

An arrival functiona of a task sequence is a function that bounds the number of the

91

invocations of the task sequence: for a time interval of lengthτ the number of invocations

is bounded bya(τ). In this chapter we concentrate on thebursty arrivalpattern which is

defined with the functiona(τ) = σ+ρ ·τ for someσ, ρ ∈ R≥0. Both periodic and sporadic

invocation patterns can be modeled by the bursty arrival functions. The expression fora

gives the upper bound on the number of invocations. When required we consider integer

upper boundba(τ)c.

A numberd ∈ R is a delayof a task sequence if all tasks of the sequence must be

completed withind units of time, i.e., a sequence output must be generated at mostd time

units after the occurrence of a sequence input.

Bounded-delay resource model.Let capacity0 ≤ c ≤ 1 be a fraction of the resource

assigned to a component andδ ≥ 0 the maximum time the component may have to wait to

receive this fraction. A resource is called abounded-delay resourceR = (c, δ) if for any

L > 0 it can guarantee allocations of at leastc · L units of the resource in any interval of

the lengthL + δ [59].

The motivation for the bounded-delay resource model comes from the fact that the re-

source demand of a component cannot be precisely described only with a required fraction

of the resource. This is so, because different components may have considerably different

delay requirements [57]. The choice of the delay boundδ addresses the trade-off between

high context switch costs (smallerδ) and high task execution latencies (largerδ).

For a given bounded-delay resourceR = (c, δ) the resourcesupply bound function

sbfR : R≥0 → R≥0 mapsτ ∈ R≥0 into the minimum supply of the resourceR over all

time intervals of sizeτ . From the definition of the bounded-delay resource model it directly

follows:

sbfR(τ) = sbf(c,δ)(τ) =





0, if τ ≤ δ,

c(τ − δ), if τ > δ.

92

4.2.2 Task Group Composition

We first briefly review the results from [68, 69] for schedulability conditions under the

bounded-delay model andEDF scheduling algorithm. Then we apply and generalize them

for the task model used in this chapter.

Let W be a set of independent and preemptive tasks that share the same resource, and

let R be a bounded-delay resource model. We say that(W ,R, EDF) is schedulableif under

every instance of allocations of the resourceR there exists a feasibleEDF schedule forW

[68]. If (W ,R, EDF) is schedulable then the set of tasksW under the resourceR = (c, δ)

and theEDF scheduling algorithm can be abstracted as a single requirement(c, δ), i.e., no

global knowledge of task internals is necessary. The discussion on how to schedule several

(c, δ) resource requirements can be found in [57].

LetW be a set of periodic taskstj = (pj, ej), wherepj is the period,ej is the worst-case

execution time (wcet) requirement of the tasktj and the deadline of each task is assumed to

be equal to its period. For a given set of tasksW the resourcedemand bound functiondbf :

R≥0 → R≥0 mapsτ ∈ R≥0 into the maximum resource demand over all time intervals of

sizeτ . For theEDF scheduling algorithm we havedbfW (τ) =
∑

tj∈W bτ/pjc · ej.

For the case of periodic workloadsW , Thm. 1 in [69] gives the sufficient and necessary

condition for schedulability of(W ,R, EDF): (W ,R, EDF) is schedulable iff for all0 <

τ ≤ 2 · lcmW maximal resource demand is no greater than the minimum resource supply,

i.e.,dbfW (τ) ≤ sbfR(τ). In previous conditionlcmW is the least common multiple of the

periods inW .

Finally, Thm. 3 in [69] gives a general schedulability condition for the case of other

workload modelsW for whichdbfW can be computed:(W ,R, EDF) is schedulable iff for

all τ > 0 we havedbfW (τ) ≤ sbfR(τ).

We apply this result for the case of the aperiodic workload defined with the task arrival

93

W t1 t2 t3 t13 t23

σ 1 1 3 1 1
ρ 1/2 1/3 1/2+1/3 1/2 1/3
d 2/3 2 1 2/3+1 2+1
e 0.1 0.3 0.1 0.1+0.1 0.3+0.1

Table 4.1. Temporal interface and wcet’s for tasks in Fig. 4.1(a)

functions and delays. LetW be a set of taskstj = (aj, dj, ej), whereaj is the arrival

function,dj the delay andej the wcet of the tasktj, and letR = (c, δ) be the bounded-

delay resource model. To apply the theorem we first compute the demand bound function

of the tasktj. We note that there are at mostbaj(τ − dj)c invocations of the tasktj that are

released and required to complete in an interval of time of sizeτ . Therefore, we have

dbftj(τ) =





0, if τ ≤ dj,

baj(τ − dj)c · ej, if τ > dj.

The demand bound function of the total workload setW is dbfW (τ) =
∑

tj∈W dbftj(τ).

Thus, bothdbfW and sbfR are known, and we can apply Thm. 3 [69] to check if

(W ,R, EDF) is schedulable.

Given the task setW let cW be thecapacity functionthat maps each bounded delay

δ ≥ 0 to the smallest resource fractioncW (δ) such that the component(W ,R, EDF) is

schedulable withR = (cW (δ), δ). Tab. 4.1 shows an instance of the task workload of the

component in Fig. 4.1, with each task modeled as a bursty arrival task. Fig. 4.2 shows

capacity functions for eachW consisting of only a single taskW = {tj}. For such a

simple setW , the analytical expression forcW can be derived. For instance, we have

cW (0) = max{ej · ρj , σj · ej/dj}, or δ1 = inv(cW)(1) = dj − σj · ej.

In the rest of the section we assume that capacity functions are computed in some

sufficiently large numberNc of points. Also, for two functions,g1 andg2, with arbitrary

domain setX and range setR, and for a relationφ ∈ {<,≤, >,≥}, we writeg1 φ g2, if

94

0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BOUNDED DELAY − δ

C
A

P
A

C
IT

Y
 −

 c

c
1

c
2

c
3

c
13

c
23

Figure 4.2. Capacity functions for Tab. 4.1

g1(x) φ g2(x) for all x ∈ X. For instance,g1 > 1 meansg1(x) > 1 for all x ∈ X.

Similarly, the functiong1 + g2 is defined with(g1 + g2)(x) = g1(x) + g2(x) for all x ∈ X.

Component composition.In the formalism that we present in the next section the ca-

pacity functioncW represents a part of the interface of the component consisting of the task

setW . In order to compose such components we need to compose resource assumptions

in the form of such capacity functions. For this we again recall Thm. 3 [69], but now for

the workload consisting of two bounded-delay tasks,{(c1, δ1), (c2, δ2)}. It follows from

the theorem that this workload can be abstracted by the bounded-delay resource(c, δ),

wherec = c1 + c2 andδ = min{δ1, δ2}. This equation shows how to compute capacity

function of the component composition: If two components (workloads)W1 andW2 are

specified with their respective capacity functionscW1 andcW2, the sum of two functions,

cW1+cW2, ensures schedulability of the composition. That is why, in our interface algebra

(Sec. 4.3.2), when we perform component composition we add the corresponding capacity

functions. Note that such an operation is associative. The task group composition, which

we previously explained in this subsection, does not have that property.

95

4.3 Task Sequence Interfaces

We start this section by motivating the assume-guarantee principle of the formalism and

introducing interface predicates that are used in compatibility and refinement checking. In

the subsection 4.3.2 we formally define interfaces and prove an important proposition about

independent refinement.

4.3.1 Informal Description

Let a component implement a single task sequence, i.e., let it have a single input port

i and a single output porto. An interface is a constraint on the environment consisting of

an input assumption and an output guarantee parts [13, 14]. In our formalism the values

of the interface input and output ports are arrival functions. LetA be the set of all arrival

functions, i.e., the set of all monotonically increasing functionsa : R≥0 → R≥0. An

interface assumption may be that the input arrival functioni ∈ A is bounded by a given

function a ∈ A, i.e., i ≤ a. Given the maximal delayd ∈ R≥0 of the component, for

the arrival function of the outputo we have the output guaranteeo(τ) ≤ i(τ + d) for all

τ ∈ R≥0. This inequality holds because, if the delay is at mostd, then for all input requests

in an interval ofτ + d units, the outputs are produced in an interval of at leastτ units. Let

id be the function defined withid(τ) = i(τ + d).

More complex interface includes a measure of resource consumption. We assume that

such an interface also contains an input portr whose value is the capacity function of the

component. LetC be the set of all capacity functions, i.e., the set of all monotonically

increasing functionsc : R≥0 → [0, 1]. The resource capacity assumption isr ≥ c. For-

mally, the input predicate of the interface isr ≥ c ∧ i ≤ a, and the output predicate is

o ≤ id. This interface asserts that “the environment provides capacity larger thanc and

input requests upper bounded bya and the component produces outputs with delay smaller

96

thand”. Fig. 4.3 graphically represents an interface of a component that implements single

sequence consisting only taskt1.

a1

c1

F1

d1t1
i1

r

o1 o1 ≤ id1
1i1 ≤ a1

r ≥ c1

Figure 4.3. Interface for single task sequence

Let a component implementsn ∈ N>0 task sequences through pairs(ij, oj) of input-

output ports(j = 1, . . . , n). The interface of such a component bounds arrival functionaj

of ij and delaydj of oj for eachj = 1, . . . , n. Such a workload is still to be executed with

a single resource partition requirement given with a capacity functionc. Fig. 4.4 shows an

interface with two single-task sequences and the corresponding predicates. We writeFW

for the interface obtained by task composition of tasks in the setW .

c2,3

a3 d3

a2 d2

F2,3

t2
t3

o2 ≤ id2
2

o3 ≤ id3
3

i2
i3

r

o2

o3
i2 ≤ a2

i3 ≤ a3

r ≥ c2,3

Figure 4.4. Interface for multiple task sequences

We introduce two operations to construct more complex interfaces from the simpler

ones. Thecompositionoperation puts together input-output ports of the two interfaces, and

sums their resource assumptions, i.e., their capacity functions, as presented at the end of

Sec. 4.2.2. For compatibility we check whether the sum is larger than 1. Fig. 4.5 shows the

interface resulting by composing an interface from Fig. 4.4 with an interfaceF3. Thus, the

interface describes three single-task sequences,t1, t2, andt3.

Theconnectionoperation connects tasks of an interface into sequences. This operation

extends the set of interface sequences, i.e., previously present input-output ports are still

97

a3 d3t3

c1 + c2,3

F1||F2,3

a1 d1t1
a2 d2t2

o1 ≤ id1
1

o2 ≤ id2
2

o3 ≤ id3
3

i1
i2
i3

r

o1

o2

o3

i1 ≤ a1

i2 ≤ a2

i3 ≤ a3

r ≥ c1 + c2,3

Figure 4.5. Interface composition

part of the interface. Fig. 4.6 shows the interface from Fig. 4.5 after the two-task sequence

π = t1t2 is appended using the connection operation. The figure shows that the resource

capacity assumption is not changed through connection, and that the delay guarantee of a

new sequence is computed as a sum of delays of individual tasks of the sequence. However,

the interface input assumptions describe the most general constraint on arrival rates of the

the extended set of sequences. In particular, there is a constraint for each task that occurs

in a sequence of the interface,i1 + i12 ≤ a1, i2 + id1
12 ≤ a2, andi3 ≤ a3. For instance, the

rate of requests for task sequences that containt2, i.e., the sum of arrival functionsi2 and

i12 (delayed ford1), is bounded bya2.

d3t3

c1 + c2,3

d2t2

d1t1 o1 ≤ id1
1

i1
i12
i2
i3

r

o1

o3
o2 ≤ id2

2
o3 ≤ id3

3

o12 ≤ id1+d2
12

r ≥ c1 + c2,3

(F1||F2,3)⊕S12

t12
o12

o2
d1 + d2

Figure 4.6. Interface connection

In such a general definition of connection, i.e., with arbitrary arrival rates of tasks that

are contained in the connected sequence, the constraints are not of the simple formi ≤ a.

To illustrate this we consider bursty arrival functions with a simple example of the two-

task connection sequenceπ = t1t2. We assume thatt1 is specified with arrival function

a1(τ) = σ1 + ρ1 · τ and delayd1, andt2 with a2(τ) = σ2 + ρ2 · τ andd2. If we assume

input arrival function of taskt1 and t2 sequences to be 0, i.e.,i1 = 0 and i2 = 0, then

98

for the input arrival functioni12 of t1t2 sequence we have the constraintsi12 ≤ a1 and

id1
12 ≤ a2. If we assumei12(τ) = σ + ρ · τ this is equivalent toσ + ρ · τ ≤ σ1 + ρ1 · τ ,

andσ + ρ · (τ + d1) ≤ σ2 + ρ2 · τ . The possible values ofσ andρ parameters ofi12 are

shown as a shaded area on the rightmost graph of Fig. 4.7. There is a tradeoff in choice of

the parameters, and this area cannot be specified in thei12 ≤ a12 form.

0

0

σ1

ρ

σ

ρ1 0

0

ρ

σ

ρ2

σ2

0

0

ρ

σ

ρ2

σ2
σ1

ρ1

σ2 − ρ · d1

Figure 4.7. Bursty functions fort1t2 sequence

If the connection operation with the sequencet1t2t3 is applied on the interfaceF1‖F2,3

the resulting interface(F1‖F2,3)⊕π123 contains an input-output port for each of the se-

quencest1, t2, t3, andt123. The input assumptions arei1 + i123 ≤ a1, i2 + id1
123 ≤ a2, and

i3+id1+d2
123 ≤ a3. In fact, the connection operation is defined with a set of sequences, each of

which does not contain a cycle of tasks. For instance, the interface(F1‖F2,3)⊕{π12, π21},
consists of the input assumptionsi1 + i12 + id2

21 ≤ a1, i2 + id1
12 + i21 ≤ a2, andi3 ≤ a3.

Finally, therefinementrelation is defined as an implication from more abstract to more

refined interface, in order to be able to substitute a refined component for an abstract one. A

more refined version of a component makes weaker input assumptions and stronger output

guarantees than a more abstract description. In our context, an interface can be refined by

either decreasing capacity function, or increasing arrival function of a task, or decreasing a

deadline of a task.

In Sec. 4.3.2 we formally define the refinement relation and argue about its properties.

In the following paragraphs we illustrate component composition and interface refinement

at the task composition level. We first show examples of interface refinement through

modification of the capacity function, while keeping other interface parameters constant. In

99

a1,3(τ) = 1 + τ/2, a2,3(τ) = 1 + τ/3, d1,3 = 2/3 + 1, d2,3 = 2 + 1
F Fa Fb Fc

Expr.F1,2,3⊕{π13, π23}(F1,2‖F3)⊕{π13, π23}(F1‖F2‖F3)⊕{π13, π23}
cF ca cb αc

aF (a1,3, a2,3)
dF (d1,3, d2,3)

Table 4.2. Interface refinement

general, if initial task composition is performed with larger task sets, then refined interface

is obtained. The extreme case is when all tasks in the task graph are composed. The

other extreme case, when each task is considered as a separate component, results in more

abstract interface.

¹¹

c)

t2

t1

t3

b)a)

t3

t2

t1

t3

t2

t1

DMDMDM

Figure 4.8. (a) Fa = F1,2,3⊕{π13, π23}; (b) Fb = (F1,2‖F3)⊕{π13, π23}; (c) Fc =
(F1‖F2‖F3)⊕{π13, π23}

Fig. 4.8 shows three interfacesFa, Fb andFc of the component shown in Fig. 4.1. Task

composition is shown with rounded rectangles, and interface composition with dashed rect-

angles. The interface expressions and predicates are given in Tab. 4.2. In the example we

use the task graph and data from Fig. 4.1 and Tab. 4.1. We assume that only task sequences

t1t3 and t2t3, and not sequencesti for i = 1, 2, 3, are implemented by the component.

Therefore, we assumea3 = ad1
1 + ad2

2 . All three interfaces have the same arrival functions

(a1,3, a2,3) and delays(d1,3, d2,3). However, corresponding capacity functionsca, cb andcc

are different and Fig. 4.9 shows thatca ≤ cb ≤ cc. Therefore, we haveFa ¹ Fb ¹ Fc.

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BOUNDED DELAY − δ

C
A

P
A

C
IT

Y
 −

 c

c
a

c
b

c
c

c
d

c
e

Figure 4.9. Capacity functions from Tab. 4.2

For some interfaces it is possible to increase arrival functions or decrease delays of

the interface task sequences while keeping resource capacity function constant. In some

cases it is even possible to add a new task sequence to the component without affecting

the capacity function. For instance, lett1 = (a1, d1, e1) = (1 + τ/2, 1, 0.2) and t2 =

(a2, d2, e2) = (1 + τ/2, 2, 0.2), i.e., let the two tasks differ only in delay. It can be showed

that the capacity functionsc1 and c1,2, the capacity functions for independent task sets

{t1} and {t1, t2} are equal,c1 = c1,2 This comes as a consequence of the small delay

requirementd1. So, we have thatF1,2 ¹ F1. As explained in the following subsection, the

definition of the refinement allows larger number of ports in the refined interface.

4.3.2 Interface Algebra

Let T be a set of tasks. Atask sequenceπ = t1t2 . . . tk is a finite sequence of different

taskstj ∈ T , i.e., for all1 ≤ i < j ≤ k we haveti 6= tj, andti has to complete beforetj

starts execution.

An interfaceF = (SF ,T+
F ,AF , DF , cF) consists of:

• A setSF of task sequences, and a setT+
F of availabletasks.

101

The set of available tasksT+
F ⊆ T is a set of tasks available for the implementation

of the interfaceF or its refinements. Let the setTF ⊆ T+
F of tasks contain all tasks

in all sequences ofSF , TF = {t ∈ π | π ∈ SF}. For each task sequenceπ ∈ SF

there exist an input portiπ and an output portoπ. Let IF = {iπ | π ∈ SF} ∪ {r},
OF = {oπ | π ∈ SF}, andPF = IF ∪ OF . The type of a portx ∈ PF isA if x 6= r ,

andC if x = r . Let avaluationv be a function onPF that maps each portx ∈ PF to

a value of the port typev(x).

• A function AF that maps each taskt ∈ TF into an arrival rate functionAF (t) ∈ A,

and a functionDF that maps each taskt ∈ TF into a delayDF (t) ∈ R≥0.

Given a task sequenceπ ∈ SF , let DF (π) be the sum of delays of its tasks,DF (π) =

∑
t∈π DF (t). By definition, for an empty task sequenceε we haveDF (ε) = 0.

• A capacity functioncF ∈ C.

The inputpredicateφI
F = φI (SF ,AF , DF , cF) over input portsIF is defined to be

φI
F = r ≥ cF ∧

∧
t∈TF

(
∑

π=π1·t ·π2∈SF

iDF (π1)
π ≤ AF (t)). (4.1)

TheoutputpredicateφO
F = φO(SF , DF) overPF is defined to be

φO
F =

∧
π∈SF

oπ ≤ iDF (π)
π . (4.2)

The interfacealgebrafor real-time components consists of:

• A partial binary function calledcomposition, mapping two interfacesF andG into

an interfaceF‖G .

The compositionF‖G is defined ifT+
F ∩ T+

G = ∅, and if notcF + cG > 1, i.e., if

(cF + cG)(0) ≤ 1. If F‖G is defined, thenSF‖G = SF ∪SG , T+
F‖G = T+

F ∪T+
G , and

cF‖G = min{cF + cG , 1}. In addition,AF‖G(t) = AF (t) if t ∈ TF , andAF‖G(t) =

102

AG(t) if t ∈ TG . Similarly,DF‖G(t) = DF (t) if t ∈ TF , andDF‖G(t) = DG(t) if

t ∈ TG .

• A partial binary function calledconnection, mapping an interfaceF and a setS of

task sequences to an interfaceF⊕S .

The connectionF⊕S is defined ifTF contains all tasks in all sequences ofS , i.e., if

for all sequencesπ of S , every taskt of π is also an element ofTF .

If F⊕S is defined, thenSF⊕S = SF ∪ S , T+
F⊕S = T+

F , AF⊕S = AF , DF⊕S = DF ,

andcF⊕S = cF .

• A binary relation¹ between interfaces, calledrefinement. If F ′ ¹ F then the inter-

faceF ′ is said torefinethe interfaceF , andF is said toabstractF ′.

An interfaceF ′ refines a componentF if (a) SF ′ ⊇ SF , (b) T+
F ′ = T+

F , and (c) for

each valuationv on PF there exists a valuationv ′ on PF ′ such thatv = v ′ on PF ,

and both predicatesφI
F ⇒ φI

F ′ andφO
F ′ ⇒ φO

F are valid.

We next formally present four different ways for interface refinement. The interface

F = (SF ,AF , DF , cF) is refined by an interfaceF ′ if one of the following:

• The connection operator is applied. Formally,F ′ = F⊕S ¹ F , for each set of task

sequencesS .

The refinement condition (a) is satisfied sinceSF ′ = SF ∪ S ⊇ SF , and (b) since

T+
F ′ = T+

F⊕S = T+
F .

If in the refinement condition (c) we definev ′(x) = 0 for eachx ∈ PF ′ \ PF (i.e.,

arrival functions of all sequences fromS \ SF are 0), we haveφI
F ′ = φI

F andφO
F ′ =

φO
F , and therefore,F ′ ¹ F .

• The functionAF is modified toAF ′ by increasing arrival functionAF (t) for some

taskst in TF , i.e.,F ′ = (SF ,AF ′ , DF , cF) ¹ F .

103

The refinement condition (c) is satisfied since for any valuation onPF from Equ. 4.1

we haveφI
F = φI (SF ,AF , DF , cF) ⇒ φI (SF ,AF ′ , DF , cF) = φI

F ′, and from

Equ. 4.2 we haveφO
F ′ = φO

F .

• The functionDF is modified toDF ′ by decreasingDF (t) for some taskst in TF ,

i.e.,F ′ = (SF ,AF , DF ′ , cF) ¹ F .

In this case,φI
F = φI (SF ,AF , DF , cF) ⇒ φI (SF ,AF , DF ′ , cF) = φI

F ′ , andφO
F ′ =

φO(SF , DF ′) ⇒ φO(SF , DF) = φO
F .

• The functioncF is decreased tocF ′, i.e.,F ′ = (SF ,AF , DF , cF ′) ¹ F .

In this case,φI
F = φI (SF ,AF , DF , cF) ⇒ φI (SF ,AF , DF , cF ′) = φI

F ′ , andφO
F ′ =

φO
F .

The next two propositions formalize the two properties that will further be explored in

the following section.

Proposition 12 (Incremental Design)For all interfacesF1, F2, and F3, and all sets of

task sequencesS1 andS2

1. If (F1‖F2)‖F3 is defined thenF1‖(F2‖F3) is defined, and(F1‖F2)‖F3 =

F1‖(F2‖F3).

2. If (F1⊕S1)⊕S2 is defined then(F1⊕S2)⊕S1 is defined, and(F1⊕S1)⊕S2 =

(F1⊕S2)⊕S1.

3. If (F1‖F2)⊕S1 and F1⊕S1 are defined then(F1⊕S1)‖F2 is defined, and

(F1‖F2)⊕S1 = (F1⊕S1)‖F2.

Proof.

1. The two expressions are defined ifTFj
∩ TFk

= ∅ for 1 ≤ j < k ≤ 3. The

equality follows from(SF1 ∪SF2)∪SF3 = SF1 ∪ (SF2 ∪SF3) and(cF1 + cF2)+ cF3 =

104

cF1 +(cF2 +cF3). In addition, bothA(F1‖F2)‖F3(t) andAF1‖(F2‖F3)(t) are equalAFj
(t)

if t ∈ TFj
for j = 1, 2, 3. Similar argument holds forD(F1‖F2)‖F3 = DF1‖(F2‖F3).

2. (F1⊕S1)⊕S2 = F1⊕(S1 ∪ S2) follows directly from the connection definition.

3. Similar to 1.

Proposition 13 (Independent Refinement)For all interfacesF , F ′ andG , and all setsS

of task sequences,

1. If F‖G is defined andF ′ ¹ F , thenF ′‖G is defined andF ′‖G ¹ F‖G .

2. If F⊕S is defined andF ′ ¹ F , thenF ′⊕S is defined andF ′⊕S ¹ F⊕S .

Proof.

To simplify notation of the proof we first introduce the following predicates:φr
F = r ≥ cF ,

φi
F =

∧
t∈TF

(
∑

π=π1·t ·π2∈SF
i
DF (π1)
π) ≤ AF (t), andφO

S =
∧

π∈S oπ ≤ i
DF (π)
π . Note that

φI
F = φr

F ∧ φi
F .

1. SinceT+
F ′ ∩ T+

G = T+
F ∩ T+

G = ∅, andcF ′ ≤ cF , the interfaceF‖G is defined.

(a)SF ′‖G = SF ′ ∪ SG ⊇ SF ∪ SG = SF‖G .

(b) T+
F ′‖G = T+

F ′ ∪ T+
G = T+

F ∪ T+
G = T+

F‖G .

(c) If F ′ ¹ F then for each valuation onPF there exists a valuation onP ′
F such

that the predicateφI
F ⇒ φI

F ′ is valid, i.e., bothφr
F ⇒ φr

F ′ and φi
F ⇒ φi

F ′ are

valid. If φr
F ⇒ φr

F ′ is valid for eachr , thencF ≥ cF ′, and therefore,cF‖G =

cF + cG ≥ cF ′ + cG = cF ′‖G , Consequently, for eachr the predicateφr
F‖G ⇒ φr

F ′‖G

is valid. If F‖G is defined thenφi
F‖G = φi

F ∧ φi
G andφO

F‖G = φO
F ∧ φO

G . So, if

bothφi
F ⇒ φi

F ′ andφi
F‖G = φi

F ∧ φi
G are valid, thenφi

F ′‖G = φi
F ′ ∧ φi

G is valid,

i.e.,φi
F‖G ⇒ φi

F ′‖G is valid. Similarly, if bothφO
F ′ ⇒ φO

F andφO
F ′‖G = φO

F ′ ∧ φO
G are

valid, thenφO
F‖G = φO

F ∧ φO
G is valid, i.e.,φO

F ′‖G ⇒ φO
F‖G is valid.

105

2. SinceF⊕S is defined andTF ′ ⊇ TF , the interfaceF ′⊕S defined.

(a)SF ′⊕S = SF ′ ∪ S ⊇ SF ∪ S = SF⊕S .

(b) T+
F ′⊕S = T+

F ′ = T+
F = T+

F⊕S .

(c) If φr
F ⇒ φr

F ′ is valid for eachr , thencF ≥ cF ′, and therefore,cF⊕S = cF ≥
cF ′ = cF ′⊕S , Consequently, for eachr the predicateφr

F⊕S ⇒ φr
F ′⊕S is valid.

If both φO
F ′ ⇒ φO

F and φO
F ′⊕S = φO

F ′ ∧ φO
S are valid, thenφO

F⊕S = φO
F ∧ φO

S

is valid, i.e., φO
F ′⊕S ⇒ φO

F⊕S is valid. If F ′ ¹ F then φO
F ′ ⇒ φO

F , i.e.,

for each sequenceπ of SF the predicateoπ ≤ i
DF ′ (π)
π implies the predicate

oπ ≤ i
DF (π)
π . This impliesi

DF ′ (π)
π ≤ i

DF (π)
π , i.e., DF ′(π) ≤ DF (π). Since, for

eacht ∈ TF , we haveπ = t ∈ SF then DF ′(t) ≤ DF (t). Similarly, from

φi
F ⇒ φi

F ′ we haveAF ′(t) ≥ AF (t) for eacht ∈ TF . For a givent ∈ TF⊕S , if
∑

π=π1·t ·π2∈SF
i
DF (π1)
π ≤ AF (t), and if we takeiπ = 0 for eachπ ∈ SF ′ \ (SF ∪ S),

we have

∑
π∈SF ′⊕S

iDF ′ (π1)
π ≤

∑
π∈SF⊕S

iDF (π1)
π ≤ AF (t) ≤ AF ′(t)

Consequently,φi
F⊕S ⇒ φi

F ′⊕S .

Remark 1 If F(F1, ...,Fk, S1, ..., Sl) is an interface computed by applying finitely many

composition and connection operations on interfacesF1, ...,Fk and task sequences

S1, ..., Sl, and F ′
1 ¹ F1, ... F ′

k ¹ Fk, then F(F ′
1, ...,F

′
k, S1, ..., Sl) is defined and

F(F ′
1, ...,F

′
k, S1, ..., Sl) ¹ F(F1, ...,Fk, S1, ..., Sl).

106

4.4 Real-Time Component-Based Design

4.4.1 Incremental Design

Since the interface composition is associative, the order in which we can compose com-

ponents is arbitrary. Moreover, this means that compatibility can be checked even before

all interfaces are fully specified, i.e., before the system becomes closed. Formally, we can

check whetherk > 0 interfaces are compatible, i.e., whether(F1‖ . . . ‖Fk−1‖Fk)θ1,...,k−1θk

is defined, by constructing((F1‖ . . . ‖Fi−1)θ1,...,i−1)‖Fi)θi for i = 1, . . . , k. The compu-

tational complexity of this operation is typically less thanmF1 · . . . · mFk
because incom-

patible levels of services are eliminated as soon as possible. This procedure can be further

improved by composing interfaces in a tree-like order, rather than in a linear order.

We demonstrate the efficiency due to the incremental design on a real-time robotic

application adapted from [27]. The application consists of three subsystems, command

(S1), measurement (S2), and control (S3) subsystem. There is a total of five task sequences

and 13 tasks. Tab. 4.3 shows details of each subsystem, and Fig. 4.10 and 4.12 show two

different component decompositions of the system.

The interfaces for the components were initially designed for three levels of service:

80%, 100% and 120% of nominal arrival rates given in Tab. 4.3. The execution times and

deadlines of the tasks were also part of the specification.

Let the system be composed out of componentsA, B andC as shown in Fig. 4.10. Re-

sults of checking for compatibility of the corresponding interfaces are shown in Fig. 4.11.

Instead of showing entire capacity functions in the last two columns of the table we char-

acterize the functions with two numbers:c(0) is the resource capacity at delay 0 andδ1

is the delay at which capacity has to be 1. The interface(FA‖FB)θAB consists of 5 lev-

els of service, since 4 were eliminated due to incompatibility. Similarly, the interface for

the entire system consists of 11, and not33 = 27, levels of service. Note that computing

107

S S1 S2 S3

π π1 π2 π3 π4 π5

t t11 t12 t13 t21 t22 t23 t31 t32 t41 t42 t43 t51 t52

ρ 0.02 0.04 0.14 0.07 0.18
e 0.2 1.2 1.0 1.0 2.0 0.3 0.8 1.2 1.0 0.5 0.5 0.1 0.5
d 9.0627.7818.725.0814.248.462.044.912.986.444.461.344.21
σ 1 1.16 1.64 1 1.151.59 1 1.18 1 1.141.57 1 1.23

Table 4.3. Task data for robotic application

the composition interface,(FA‖FB‖FC)θAB, i.e., checking for compatibility, involves both

composition and connection operations of our interface algebra.

C

A B
π

1

π
2

π
3

π
4

π
5

Figure 4.10.(FA‖FB‖FC)θAB

If the system is composed out of componentsa, b and C as shown in Fig. 4.12,

the resulting interfaces(Fa‖Fb)θab and (Fa‖Fb‖FC)θab are shown in Fig. 4.13. The ta-

ble shows that with this composition only two combinations of the service is attain-

able even though the properties of the arrival sequences and tasks are the same in both

cases. This confirms that, although interface composition is associative, the task compo-

sition is not. In particular, even though((FA‖FB)‖FC)θAB = (FA‖(FB‖FC))θAB, and

((Fa‖Fb)‖FC)θab = (Fa‖(Fb‖FC))θab, we have that(FA‖FB‖FC)θAB and(Fa‖Fb‖FC)θab

are not equivalent.

108

(FA‖FB)θAB

k SA SB c(0) δ1

1 80 80 0.691.80
2 801000.711.80
3 801200.731.80
4 1001000.850.80
5 1001200.870.70

(FA‖FB‖FC)θAB

k SA SB SC c(0) δ1

1 80 80 80 0.811.20
2 80 801000.841.00
3 80 801200.870.80
4 8010080 0.831.20
5 801001000.860.90
6 801001200.890.60
7 8012080 0.851.00
8 801201000.880.80
9 801201200.910.50
10 10010080 0.970.10
11 10012080 0.990.00

Figure 4.11. Levels of service of(FA‖FB)θAB and(FA‖FB‖FC)θAB

4.4.2 Independent Refinement

The formalism presented in Sec. 4.3 enables compositional refinement, i.e., it en-

ables independent refinement from component interfaces to component implementations.

This means that in order to refine a given composition of interfaces, it suffices to inde-

pendently refine each interface and to compose the obtained refinements. Formally, if

(F1‖ . . . ‖Fk)θ ¹ F andF ′
j ¹ Fj for j = 1 . . . k, then(F ′

1‖ . . . ‖F ′
k)θ ¹ F . This follows

from the definition of the refinement relation since a more refined version of a component

makes a weaker input assumptions and stronger output guarantees than a more abstract

description. The higher efficiency of such a procedure lies in the fact that now refinement

checks involve smaller interfaces. In that way, a single complex problem is reduced to

multiple simpler problems.

To illustrate this concept we discuss a design of a real-time application with randomly

generated parameters. The underlying graph in Fig. 4.15 shows an instance of a task prece-

dence graph consisting of 20 task sequences of length 5. We assumed that all tasks are

109

C

A B
π

1

π
2

π
3

π
4

π
5

Figure 4.12.(Fa‖Fb‖FC)θab

(Fa‖Fb)θab

k Sa Sb c(0) δ1

1 80 80 0.850.90
2 801000.940.30

(Fa‖Fb‖FC)θab

k Sa Sb SC c(0) δ1

1 8080 80 0.970.10
2 80801001.000.00

Figure 4.13. Levels of service of(Fa‖Fb)θab and(Fa‖Fb‖FC)θab

divided into two sets of 20 tasks, such that 10 task sequences consist of tasks from one, and

remaining 10 task sequences of tasks from the other set. For each sequence and for each

of its 5 stages, one of 4 tasks was randomly selected. For each sequence the burst was 1

and the rate was randomly selected from the interval [0.025,0.05]. After burstσi and rate

ρi were computed for each taskti, the execution time of each taskei was chosen randomly

such that the sum of the termsσi ·ρi ·ei of tasks in each half of the design was in the interval

[0.4,0.5].

The specification for the entire application is an interfaceF with a given capacity func-

tion cF for which cF (0) = 0.9 andcF (1) = 1. The design goal is to implement the system

as a composition of real-time components that refine the specification interfaceF . To that

purpose the specification interfaceF is represented as a compositionF = F1‖F2 of two

interfaces,F1 andF2, aimed for independent implementation. Due to the random character

110

of the application, the capacity functions are assumed to be equal,cF1 = cF2 = cF/2.

Therefore,cFi
(0) = 0.45 andcFi

(1) = 0.5 (i = 1, 2).

Let F ′
1 be the composition of components that consist of individual tasks in the upper

part of the design. LetF ′
2 be the same for the lower part of the design. For a particular

instance of the random task graph the capacity functions ofF ′
1 andF ′

2 are shown in Fig. 4.14

with solid lines. The figure shows that the interfaceF ′
2 refinesF2, but F ′

1 does not refine

F1. However, if task composition is performed at the stage level (see Fig. 4.15), i.e., with

four tasks in a component, the obtained composition interfaceF ′′
1 , refinesF1, as shown

in Fig. 4.14 with dashed gray line. In our repeated simulation experiments with other

problem instances, there was also no need for considering composition of components

that consisted of more than four tasks. Moreover, the other part of the design may be

further independently refined by increasing the rate of the first task sequence as shown

with the capacity function forF ′′
2 . In some instances potential increase of rate was up to

20%. In conclusion, according to compositional refinement procedure, composition of the

refinements,F ′′
1 ‖F ′

2, refines the original specification interfaceF .

4.5 Task Graph Interfaces

In this section we address the interface-based verification of real-time properties in sys-

tems with more complicated task dependencies. We study general task graphs that may

contain task cycles, i.e., functional cycles. Some examples of signal processing applica-

tions with task cycles and real-time requirements can be found in [23, 24]. However, it

should be noted that the related problem of performance cycles is also very relevant since

nonfunctional dependency cycles often occur in multiprocessor systems with communica-

tion sharing [62]. The objective here is similar to the one discussed with respect to the

task sequence case. We would like to have an interface-based theory that satisfies both the

111

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.35

0.4

0.45

0.5

0.55

0.6

BOUNDED DELAY − δ

C
A

P
A

C
IT

Y
 −

 c

F‘
1

F‘‘
1

F‘
2

F‘‘
2

Figure 4.14. Capacity functions forF ′
1,F

′′
1 ,F ′

2,F
′′
2

F‘‘
1

F‘
2

Figure 4.15.F ′′
1 ‖F ′

2 ¹ F

incremental design and independent refinement properties. We try to establish what is the

minimal but complete form of interface needed in this case.

The case of functional cycles, i.e., cycles of task precedence relations, turns out to be

more difficult to analyze [40]. The general input-output event model relationship is diffi-

cult to calculate and often requires complex event model propagation operations. In such

approaches, fixed-point calculation is usually necessary for models with cycles. Problems

occur because output event model is often too conservative to be used for a feedback input.

112

In [40] such an approach is taken for periodic models with jitter. However, the approach is

not sufficient for general task graphs. As discussed below, we extend the periodic with jitter

event model with phase information to better address graphs with cycles. Thus, we define

an interface with both phase and jitter information, and for the corresponding algebra we

show when it satisfies incremental design and independent refinement properties.

In this section we will assume that the occurrence of an event is modeled with a time

interval that describes its timing unpredictability. An interface expresses input-output de-

pendencies in the form of output time interval guarantees under certain input interval as-

sumptions. The semantics of such a specification allows one input time instant to be related

to multiple output time instants and vice versa. This form of interface is useful when ex-

act event instant can hardly be specified, but when its bounds are available. It contains

the graph of ports and a time interval for each port. In general, it may contain multiple

tuples of intervals, but no general relationship between input and output intervals is a part

of the interface. This affects composability, but allows for simple operations, i.e., simple

verification.

4.5.1 Component Model

A component implements an arbitrary directed graph of tasks. Each edge represents a

data (or event) precedence relationship. Each task may have single, multiple, or no inputs

and outputs. After a data, or event, becomes available at its input, the task consumes the

data, executes, and then produces the output data. Although in this work we do not consider

graphs where producer-consumer relations are not unitary (e.g., as in general Static Data

Flow models [50]), we believe that most conclusions can be extended also to these cases.

We assume that task communication is performed through input data buffers, that store the

arriving events before they can be processed. For instance, an event is stored while previous

113

events for the task are being processed, while the shared resource is being used for other

tasks, or while other synchronizing events are being waited upon.

For tasks with multiple inputs we assume so called AND type of task triggering.

Namely, a task is activated only when events are available at all incoming edges. We

do so because in graphs with cycles closed with OR type of triggering, an event at an open,

i.e., cycle-external input would lead to ever increasing number of events to be processed in

the cycle (see Fig. 4.17 d). Also, if the graph contains cycles, we assume that there exist

sufficient number of data/events on each cycle such that the execution does not block. To

address tasks with multiple inputs and task graphs with both the cycles and open inputs,

the algebra that will be presented in this chapter contains additional operation, thejoin

operation. This operation takes two input event streams, matches the corresponding events

for the AND type of triggering, and generates such the matched event stream.

In [63], one of the rare methods that addresses functional cycles in a compositional

manner, the event model is theperiodic with jitter event model. This event model is not

as general as the one presented in Sec. 4.3. In such a model the event periodp is the

same for all system ports, but different ports have different jitter values. The exact interval

of an event time uncertainty is not known, i.e., the event phase is not known. In such an

approach the cycles are analyzed by iterative propagation of input event parameters until all

event parameters along cycle converge. If even a single task on the cycle has response time

jitter, then after the first round of event model propagation the cycle-internal input jitter of

the AND-activated task will be larger than the cycle-external input jitter. The simple event

model allows for only a very conservative calculation of the jitter of the AND-activated

task which is equal to the maximum of the two jitters. Thus, the larger jitter is propagated

around the cycle again, resulting in an even larger jitter at the cycle-internal input of the

AND-activated task. Obviously, this method would not converge. However, in [63] it is

shown that for a restricted set of cyclic graphs (e.g. a cycle is allowed to have only one

114

external input) and under certain conditions that may be rather pessimistic, the fixed-point

computation approach can be avoided.

0
 p
 2p
 3p

d
 D

Figure 4.16. Periodic event model with jitter and phase

This problem is a consequence of the fact that event model propagation does not capture

correlations between the timing of events in different event streams, in particular, in input

event streams of the AND-activated task. We include a phase of an event stream, i.e., we

make the event timing uncertainty fixed with respect to the period instances. The phase

information increases the composability of models with task cycles, because, as will be

evident from our interface algebra, it allows for better jitter calculation for the the AND-

activated task. Thus, we limit the discussion here to a variant of the periodic event model

with jitter and phase. This means that the occurrence of an event is assumed (or guaranteed)

up to the time interval of the form[m ·p +d ,m ·p +D], wherep is the period of the model,

m is the instance of the period, andd (d < p) andD define the lower and upper bound

of the interval. An event sequence instance specified with this event model is shown in

Fig. 4.16. Note that the standard periodic with jitter event models are defined with a single

valueD −d for each event. We present the theory for the case when event jitter is less than

the period of the system (D − d < p). However, most of the results hold even if jitter is

larger than the period, thus allowing for modeling of event bursts.

Fig. 4.17 a) shows a task, its input and output ports, and their event models. The full

circles for ports denote that the time intervals are precisely known up to the period instance,

i.e., the first input event occurs in the interval[mi · p + di ,mi · p + Di] and the first output

event is generated in the interval[mo · p + do ,mo · p + Do]. Such a full information for

input ports is necessary for the correct join operation (Fig. 4.17 b). However, many input-

115

(
m

o

, d

o

, D

o

)
t
(
m

i

, d

i

, D

i

)

(
m

o

, d

o

, D

o

)
AND

(
m

i
1

, d

i
1

, D

i
1

)

(
m

i
2

, d

i
2

, D

i
2

)

a)

b)

d)

t

c)
 t
 (
m

o

, d

o

, D

o

)
(
m

i

, d

i

, D

i

)

Figure 4.17. Simple graph components with port event models

output assertions of the assume-guarantee type only establish the delay between outputs and

inputs, and do not enforce exact time intervals, i.e., exact period instance of the intervals. In

such specifications the first event of a stream can occur in any period instancem. To depict

this kind of port dependency in figures we use empty circles, as shown in Fig. 4.17 c).

In particular, for eachn ∈ N0 if the first input event occurs in the interval[(n + mi) ·
p + di , (n + mi) · p + Di] then the first output event is generated in the interval[(n +

mo) · p + do , (n + mo) · p + Do]. In this case port valuesm determine only the period

latency between the corresponding event occurrences on different ports. That is why, in

our interface definition, we distinguish between two types of ports, locked - which makes

occurrence time specific to a single period (Fig. 4.17 a), and unlocked - which allows for

the occurrence in any period instance (Fig. 4.17 c). For the unlocked ports, the interface

does not specify exact port time intervals, but only the time difference between ports. Note

that all ports that are connected irrespective of the direction of dependencies have the same

port type. Fig. 4.17 d) shows how two connection operations represented with full arrows

116

can be applied on simple graphs from Fig. 4.17 a) and b) to generate a functional cycle with

a single external input.

To make the presentation simpler, we concentrate on the composition of event models,

and not on the resource models. Although this is not a constraint of the theory, we present

it as there is no resource sharing. So, we assume that allocation of tasks to processing

elements and resource scheduling policy is given, such that bounds on task response time

can be computed. For instance, if each task has its own dedicated resource, bounds on

response time equal bounds on execution time. In [78] a procedure for tight computation

of such intervals is given in the general case. Along the lines of the informal discussion

given in this section, we next formally define the interface for task graphs.

4.5.2 Interface

Let p ∈ R>0 be the constantperiodfor all interfaces.

An interfaceF = (GF ,mF , dF ,DF , lF) consists of:

• A directed graphGF = (PF , ρF), that consists of a set ofportsPF and a set of direct

port dependenciesρF ⊆ P2
F . GivenGF , let the set ofinput portsIF be the set of all

ports without predecessors, i.e.,IF = {i ∈ PF | ∀x ∈ PF . (x , i) /∈ ρF}. Let the set

of output portsOF contain the remaining ports, i.e.,OF = PF \ IF .

• A period instancefunctionmF : PF → Z.

• A lower-bound functiondF : PF → R such that for allx ∈ PF it holds0 ≤ dF (x) <

p. An upper-bound functionDF : PF → R such that for allx ∈ PF it holds

dF (x) ≤ DF (x) < dF (x) + p.

• A lock function lF : PF → B. If lF (x) = 1 for a port x ∈ PF then for each

n ∈ N0 the period instance of then−th eventx (n) on portx is given withmF (x) +

117

n. We assume that for each two portsx1, x2 ∈ PF , if the two ports belong to the

same weakly connected component ofGF , thenlF (x1) = lF (x2) (a directed graph is

weakly connected if it would be fully connected by ignoring the direction of edges).

The conditionDF (x) < dF (x) + p is introduced to make the event jitterDF (x) − dF (x)

smaller thanp. This means there are no event bursts, i.e., no simultaneous occurrence

of events, on portx . This constraint is introduced only to make the presentation simpler,

most results hold even if it is not satisfied. According to the definition above if there exists

x ∈ PF such thatlF (x) = 1, i.e., if port x is locked, then we havelF (x ′) = 1 for all

x ′ ∈ P whereP is a weakly connected component containingx . In that case we also

write lF (P) = 1 and say the componentP is locked. The simplest locked and unlocked

components are shown in Fig. 4.17 a) and c) respectively. To avoid a formal introduction

of initial events of a cycle, in following sections we also assume that for each cycle of

interface graphGF there exists a portx ∈ PF of the cycle and an input porti ∈ IF such

that(i , x) ∈ ρF .

Interface Semantics. We assume that the event sequence on each port is indexed

starting from the event index zero. LetS = [N0 → R] be the set of all infinite sequences

of real numbers. Each event occurrence is bounded in time by an interval specified with a

triple of numbers. Given numbersm ∈ Z, d ∈ R andD ∈ R, letS(m, d ,D) be the set of

sequencesS(m, d ,D) = {s ∈ S | ∀n ∈ N0 . (n + m) · p + d ≤ s(n) ≤ (n + m) · p + D}.
Finally, let ΠF be the weakly connected component partition ofGF , i.e., the set of all

weakly connected components ofGF .

The semanticsSF of an interfaceF is a set of signalss : PF → S, i.e., a set

of tuples of event sequences, that satisfy the constraints ofF . Formally, givenF =

(GF ,mF , dF ,DF , lF), s ∈ SF iff for each weakly connected componentP ∈ ΠF we

have

118

• if lF (P) = 1 (P is locked), then for each portx ∈ P it holds s(x) ∈
S(mF (x), dF (x),DF (x)), and

• if lF (P) = 0 (P is unlocked), then there exists a numberm ∈ Z such that for each

port x ∈ P it holdss(x) ∈ S(m + mF (x), dF (x),DF (x)).

According to this definition, for a locked portx ∈ PF (lF (x) = 1) and for eachn ∈
N0, the timing uncertainty of then−th eventx (n) on port x is given with the interval

[(n + mF (x)) · p + dF (x), (n + mF (x)) · p + DF (x)]. The difference in the two cases of

the previous definition is in the additional existential quantifier in the unlocked case that

enables the exact period instance of a port not to be specified. However, the value ofm

has to be the same for all portsx in the componentP . The uncertainty in the locked case

comes only in the form of a single interval, whereas in the locked case there are infinitely

many such intervals.

The semanticsSF determinesPF ,dF ,DF , andlF , but notρF and notmF . The function

mF is determined for all locked ports, whereas for unlocked ports only the differences in

the function values between ports in the same weakly connected components. Therefore,

we have the following lemma:

Lemma 4 Let F = (GF ,mF , dF ,DF , lF) and E = (GE ,mE , dE ,DE , lE) be two inter-

faces. IfΠF = ΠE (and consequentlyPF = PE), dF = dE , DF = DE , lF = lE ,

for each weakly connected componentP ∈ ΠF and each two portsx1, x2 ∈ P it holds

mF (x1) − mF (x2) = mE (x1) − mE (x2), and for each locked portx ∈ PF it holds

mF (x) = mE (x), then the two interfaces have the same semantics,SF = SE .

In the rest of the section we writef|X for the restriction of the functionf on a domain

setX. GivenP ⊆ PF let SF |P be the set of sequences fromS restricted to ports inP , i.e.,

SF |P = {s ′ : P → S | ∃s ∈ SF . s ′ = s|P}.

119

4.5.3 Interface Algebra

The algebra contains three operations and a relation. Two operations,compositionand

connection, and therefinementrelation are analogous to the task sequences case. The

third operation, thejoin operation, is related to tasks with multiple inputs, i.e., AND task

triggering.

Composition. The binary composition operation‖ on two interfacesF andE puts

together their ports without making new dependencies. The operation is illustrated in

Fig. 4.18.

i

1

i

2

o

1

F

i

3

i

4

o

2

E

o

1

F||E

i

3

i

4

o

2

i

1

i

2

||
 =

Figure 4.18. Interface composition operation for graphs

Let F = (GF ,mF , dF ,DF , lF) andE = (GE ,mE , dE ,DE , lE). InterfaceF ′ = F‖E is

defined ifPF ∩ PE = ∅. In that caseF ′ = (GF ′ ,mF ′ , dF ′ ,DF ′ , lF ′) where

• GF ′ = (PF ′ , ρF ′) such thatPF ′ = PF ∪ PE andρF ′ = ρF ∪ ρE ,

• mF ′|PF
= mF , andmF ′|PE

= mE ,

• dF ′|PF
= dF , anddF ′|PE

= dE ,

• DF ′|PF
= DF , andDF ′|PE

= DE , and

• lF ′|PF
= lF , andlF ′|PE

= lE .

Connection.The unary connection operation→ connects an output port of an interface

to an input port of the same interface, by taking out the input port from the set of ports and

120

establishing dependencies from the output port to the input port successors. An instance of

the connection operation is shown in Fig. 4.19.

o

1

F

i

3

i

4

o

2

i

1

i

2
 (
o

1

,
i

3

)
 =

i

4

i

1

i

2

o

2

o

1

F
(
o

1

,
i

3

)

Figure 4.19. Interface connection operation for graphs

To simplify notation, for two portsx1, x2 ∈ PF we write pathF (x1, x2) = 1 if in GF

there exists a directed path fromx1 to x2, andpathF (x1, x2) = 0 otherwise. Also, for a

port x ∈ PF let PF (x) ∈ ΠF be the weakly connected componentGF containing portx .

Finally, letSuccF (x) be the set of all direct successors ofx in GF .

Let F = (GF ,mF , dF ,DF , lF), i1 ∈ IF , ando1 ∈ OF . InterfaceF ′ = F→(o1, i1) is

defined if the following conditions are satisfied

1. dF (o1) ≥ dF (i1),

2. DF (o1) ≤ DF (i1),

3. if pathF (i1, o1) = 0 and a)lF (i1) = lF (o1) = 1 (both ports locked) or b)PF (i1) =

PF (o1) (both ports in the same connected component), thenmF (i1) = mF (o1), and

4. if pathF (i1, o1) = 1, thenmF (i1) ≤ mF (o1).

According to condition 3a) if the two ports are locked, the connection operation requires

they have the same period instance valuesmF . Conditions 3b) and 4 cover the cases in

which i1 and o1 are contained in the same connected component. The condition 4 ad-

dresses the case when the connection operation introduces a new cycle inGF because, by

definition,i1 ∈ IF does not have a direct predecessor inGF .

121

If the connection operation is defined, we haveF ′ = (GF ′ ,mF ′ , dF ′ ,DF ′ , lF ′) =

F→(o1, i1) where

• GF ′ = (PF ′ , ρF ′) such that a) ifpathF (i1, o1) = 1 then PF ′ = PF and ρF ′ =

ρF ∪ ({o1} × SuccF (i1)), and b) ifpathF (i1, o1) = 0 thenPF ′ = PF \ {i1} and

ρF ′ = ρF \ ({i1} × SuccF (i1)) ∪ ({o1} × SuccF (i1)),

• a) if lF (i1) = lF (o1) = 1 or PF (i1) = PF (o1) thenmF ′ = mF |PF ′ , b) if lF (i1) = 0

andPF (i1) 6= PF (o1) thenmF ′(x) = mF (x)+ (mF (o1)−mF (i1)) for each portx ∈
PF ′∩PF (i1), andmF ′(x) = mF (x) for each portx ∈ PF ′ \PF (i1), and c) iflF (i1) =

1, lF (o1) = 0 andPF (i1) 6= PF (o1) thenmF ′(x) = mF (x) + (mF (i1)−mF (o1)) for

each portx ∈ PF ′ ∩ PF (o1), andmF ′(x) = mF (x) for each portx ∈ PF ′ \ PF (o1),

• dF ′ = dF |PF ′ ,

• DF ′ = DF |PF ′ , and

• a) if lF (i1) = 1 or lF (o1) = 1 then lF ′(x) = 1 for each portx ∈ PF ′ ∩ (PF (i1) ∪
PF (o1)), andlF ′(x) = lF (x) for each portx ∈ PF ′ \ (PF (i1) ∪ PF (o1)), and b) if

lF (i1) = lF (o1) = 0 thenlF ′(x) = lF (x) for each portx ∈ PF ′.

According to this definition, only in case when the connection operation closes a cycle the

input port i1 remains in the set of ports ofF ′ with its edges, but with new dependencies

between the output porto1 and successors ofi1 included. In all other cases the edges from

i1 to its successors are substituted with edges fromo1 with i1 removed. By our initial as-

sumption, for each cycle of interface graphGF there exists a portx ∈ PF of the cycle

and an input porti ∈ IF such that(i , x) ∈ ρF . Taking into account the connection op-

eration definition we have that this property is preserved under the connection operation.

Consequently, for each output porto ∈ OF there exists an input port suchi ∈ IF such that

pathF (i , o) = 1. In fact, this property is preserved under all algebra operations.

122

From the above definition it also follows that when the operation is applied between two

weakly connected componentsPF (i1) andPF (o1), the period instance functionmF ′ values

are translated to the values of the locked component, or to the values of the component

PF (o1) if both components are unlocked. The values of functionsdF ′ andDF ′ are the

same asdF and DF , respectively. If any of the two components is locked all ports in

these components will be locked after the connection operation, and if both components

are unlocked all ports in these components will be unlocked.

Join. The unary join operationÂ connects two output ports of an interface, matches the

corresponding event streams for the AND type of triggering, and adds the matched output

to the set of ports. To simplify the presentation the definition given here is limited to only

two output ports, but this can be generalized. The operation is illustrated in Fig. 4.20.

o

1

F

i

3

i

4

o

2

i

1

i

2
 (
o

1

,
o

2

,
o
)
 =

i

1

i

2

o

2

o

1

F
(
o

1

,
o

2

,
o
)

i

3

i

4

o

Figure 4.20. Interface join operation for graphs

Let F = (GF ,mF , dF ,DF , lF) ando1, o2 ∈ OF . F ′ = FÂ(o1, o2, o) is defined if

o /∈ PF and if lF (o1) = lF (o2) = 1. In that caseF ′ = (GF ′ ,mF ′ , dF ′ ,DF ′ , lF ′) where

• GF ′ = (PF ′ , ρF ′) such thatPF ′ = PF ∪ {o} andρF ′ = ρF ∪ {(o1, o), (o2, o)},

• mF ′(o) = max{mF (o1),mF (o2)}, and for each portx ∈ PF , mF ′(x) = mF (x),

• dF ′(o) = max{mF (o1) · p + dF (o1),mF (o2) · p + dF (o2)}−mF ′(o) · p, and for each

port x ∈ PF , dF ′(x) = dF (x),

123

• DF ′(o) = max{mF (o1) · p + DF (o1),mF (o2) · p + DF (o2)} − mF ′(o) · p, and for

each portx ∈ PF , DF ′(x) = DF (x), and

• lF ′(o) = 1, and for each portx ∈ PF , lF ′(x) = lF (x).

As it will be cleared from the proposition below, the values of functionsmF ′, dF ′ andDF ′

for porto are defined to respect the AND type of triggering. For instance, themax function

is due to the fact that an event on porto occurs with the later of the corresponding events on

portso1 ando2. Note also that join operation is defined only if both output ports are locked.

If this is not the case, i.e., if the period instance of one of the output ports to perform the

join operation on is not locked, there would be infinitely many uncertainty intervals for the

matched output which requires more complicated form of the interface and operations.

The following proposition justifies the definition of operations, by relating semantics

of interfaces before and after operations. Note that operators given in the statement of the

proposition assume pointwise function operations. For instance,s ′(o1) = s(i1) means for

eachn ∈ N0, s ′(o1)(n) = s(i1)(n).

Proposition 14 (Operation Semantics)For all interfacesF , E

1. If F ′ = F‖E is defined then

SF ′ = {s ′ : PF ′ → S | ∃sF ∈ SF . ∃sE ∈ SE . s ′|PF
= sF and s ′|PE

= sE},

2. If F ′ = F→(o1, i1) is defined then

SF ′ = {s ′ : PF ′ → S | ∃s ∈ SF . s ′ = s|PF ′ and (pathF (i1, o1) = 0 =⇒ s(o1) =

s(i1))}, and

3. If F ′ = FÂ(o1, o2, o) is defined then

SF ′ =

{s ′ : PF ′ → S | ∃s1 ∈ SF .∃s2 ∈ SF .s ′|PF
= s1 ∧ s ′(o) = max{s2(o1), s2(o2)}}.

Proof.

124

1. The composition operationF‖E does not modify the two interface graphsGF and

GE , and does not introduce dependencies between the two graphs. Also functions

m, d , D andl remain the same for each port of the composition. So, the semantics

of F‖E is the product of semantics ofF andE .

2. Let lF (i1) = lF (o1) = 1 or PF (i1) = PF (o1). In this case, according to the definition

of the connection operation, all elements of interfaceF ′ are the restriction onPF ′

of the corresponding elements ofF , which also meansSF ′ = SF |PF ′ . Assume first

pathF (i1, o1) = 1 that satisfies conditionPF (i1) = PF (o1), i.e., connection opera-

tion →(o1, i1) generates a new cycle inGF ′. SincePF ′ = PF we haveSF ′ = SF

which is what the proposition states for this case. AssumepathF (i1, o1) = 0, i.e., no

cycle is introduced by the connection operation. Since, by the connection condition,

dF (o1) ≥ dF (i1) andDF (o1) ≤ DF (i1), i.e., [dF (o1),DF (o1)] ⊆ [dF (i1),DF (i1)],

we have that for eachs ′ ∈ SF |PF ′ there existss ∈ SF such thats ′ = s|PF ′ and

s(o1) = s(i1). Also, for eachs ∈ SF such thats(o1) = s(i1) we haves|PF ′ ∈ SF |PF ′ .

If lF (i1) = 0 and lF (o1) = 1 andPF (i1) 6= PF (o1), we have thats(o1) = s(i1)

holds only ifmF ′(i1) would be equal tomF (o1). This is reflected inSF ′ due to the

modifications ofmF ′ andlF ′ functions on the ports inPF (i1). The caselF (i1) = 1

and lF (o1) = 0 is treated analogously. Finally, iflF (i1) = lF (o1) = 0 and

PF (i1) 6= PF (o1), we have thats(o1) = s(i1) is satisfied for all integer values of

mF ′(i1) = mF (o1). The proposition is true even in this case since all the ports in

PF (i1) andPF (o1) remain unlocked.

3. A necessary condition forÂ(o1, o2, o) operation to be applied on interfaceF is

lF (o1) = lF (o2) = 1, i.e., o1 and o2 and respective weakly connected compo-

nents are locked. So, the fact thato1 ando2 are in the same connected component

of GFÂ(o1,o2,o) is not an additional restriction on semantics ofSF ′ = SFÂ(o1,o2,o).

That is why s ′ ∈ SF ′ iff there existss1 ∈ SF such thats ′|PF
= s1. The

125

only difference in elements ofF and FÂ(o1, o2, o) is in port o. For instance,

if mF (o1) = mF (o2) then according to the definition of join operation we have

[dF ′(o),DF ′(o)] = [max{dF (o1), dF (o2)}, max{DF (o1),DF (o2)}]. This is exactly

the interval of possible outcomes ofmax{s2(o1), s2(o2)} for all s2 ∈ SF . Similar

argument holds ifmF (o1) 6= mF (o2).

2

The idea behind the refinement relation between two interfaces is again to be able to

substitute a more refined interface for a more abstract interface. The requirements in the

following definition are analogous to those given for the task sequence interfaces except for

the third requirement. The first and fourth requirement allow for weaker input assumptions

in the refined interface, whereas the second and fifth requirement demand stronger output

guarantees for the refined interface. As shown in a proposition of the next subsection, in

case of general graphs the third requirement is necessary for the independent refinement

property.

Refinement.Let F = (GF ,mF , dF ,DF , lF) andF ′ = (GF ′ ,mF ′ , dF ′ ,DF ′ , lF ′).

F ′ refinesF , i.e.,F ′¹F if and only if

1. IF ′ ⊆ IF ,

2. OF ′ ⊇ OF ,

3. ρF ′ ⊆ ρF ,

4. SF ′|IF ′ ⊇ SF |IF ′ , and

5. for eachs ∈ SF ′, if s|IF ′ ∈ SF |IF ′ thens|OF
∈ SF |OF

.

For instance, as shown in Fig. 4.21, ifGF = GF ′, mF = mF ′, lF = lF ′ , for each input

port i ∈ IF ′ it holdsdF (i) ≥ dF ′(i) andDF (i) ≤ DF ′(i), and for each output porto ∈ OF

126

i

1

i

2

o

1

F’

i

1

i

2

o

1

F

0
 p

d

F’

(
i

1

)
 D

F’

(
i

1

)

0
 p

d

F

(
i

1

)
 D

F

(
i

1

)

0
 p

d

F’

(
i

2

)
 D

F’

(
i

2

)

0
 p

d

F

(
i

2

)
 D

F

(
i

2

)

0
 p

d

F’

(
o

1

)
 D

F’

(
o

1

)

0
 p

d

F

(
o

1

)
 D

F

(
o

1

)

F’

F

Figure 4.21. Interface refinement relation for graphs

it holdsdF (o) ≤ dF ′(o) andDF (o) ≥ DF ′(o), thenF ′¹F . Note that the form of the fifth

requirement of the refinement relation definition is not simplySF ′|OF
⊆ SF |OF

. This is to

allow a graph with unlocked ports be a refinement of the same graph with locked ports and

all other elements the same. In particular, ifGF = GF ′ , mF = mF ′, dF = dF ′, DF = DF ′,

but lF (x) = 1 andlF ′(x) = 0 for each portx ∈ PF , thenF ′¹F .

4.5.4 Interface Algebra Properties

Ideally, for incremental design for any two operationsop1 andop2 of the algebra the

order of the operations does not matter, i.e., well definedF ◦op1 ◦op2 implies well defined

F ◦ op2 ◦ op1, andF ◦ op1 ◦ op2 = F ◦ op2 ◦ op1. However, with this algebra we have

weaker propositions. For some cases, only if bothF ◦ op1 ◦ op2 andF ◦ op2 ◦ op1 are

defined, we haveF ◦ op1 ◦ op2 = F ◦ op2 ◦ op1. The following proposition makes clear

the character of associativity property in each possible case, with cases 2 and 3 being the

most relevant.

127

Proposition 15 (Incremental Design)Let i1, i2 ∈ IF and o1, o2, o3, o4 ∈ OF . For all

interfacesF , E , andH ,

1. (a) If (F‖E)‖H is defined thenF‖(E‖H) is defined, and(F‖E)‖H = F‖(E‖H).

(b) If (F‖E)→(o1, i1) is defined then (F→(o1, i1))‖E is defined, and

(F‖E)→(o1, i1) = (F→(o1, i1))‖E .

(c) If (FÂ(o1, o2, o))‖E is defined then(F‖E)Â(o1, o2, o) is defined, and

(FÂ(o1, o2, o))‖E = (F‖E)Â(o1, o2, o).

(d) If (F‖E)Â(o1, o2, o) is defined then(FÂ(o1, o2, o))‖E is defined, and

(F‖E)Â(o1, o2, o) = (FÂ(o1, o2, o))‖E .

2. (a) If F1 = (F→(o1, i1))→(o2, i2) andF2 = (F→(o2, i2))→(o1, i1) are defined,

thenSF1|PF\{i1,i2} = SF2|PF\{i1,i2}.

(b) If (FÂ(o2, o3, o))→(o1, i1) is defined then(F→(o1, i1))Â(o2, o3, o) is defined,

and(FÂ(o2, o3, o))→(o1, i1) = (F→(o1, i1))Â(o2, o3, o).

3. (a) If (FÂ(o1, o2, o))Â(o3, o4, o
′) is defined then(FÂ(o3, o4, o

′))Â(o1, o2, o) is

defined, and(FÂ(o1, o2, o))Â(o3, o4, o
′) = (FÂ(o3, o4, o

′))Â(o1, o2, o).

(b) If F1 = (FÂ(o1, o2, o))Â(o, o3, o
′) is defined thenF2 = (FÂ(o1, o3, o))Â(o, o2, o

′)

is defined, andSF1|PF1
\{o} = SF2|PF2

\{o}.

Proof.

1. (a) Both interfaces are defined if any two port sets ofPF , PE andPH have no

common elements. The composition operation does not modify any element of

individual component interfaces.

(b) If (F‖E)→(o1, i1) is defined then(F→(o1, i1))‖E is defined becausei1 and

o1 are elements ofPF but not ofPE sinceF‖E is defined. The composition

128

with E does not make changes in elements ofF , so the operation order does

not matter.

Note that if(F→(o1, i1))‖E is defined then it does not mean(F‖E)→(o1, i1)

is defined. For instance, consideri1 ∈ PE andi1 /∈ PF→(o1,i1).

(c) If (FÂ(o1, o2, o))‖E is defined theno /∈ PF and o /∈ PE since o ∈
FÂ(o1, o2, o). Therefore,o /∈ PF‖E . TheÂ(o1, o2, o) operation involves only

F and since the composition operation does not change component graphs and

other interface elements, the order does not matter.

(d) Follows similar to previous point sinceo1, o2 ∈ PF by proposition statement.

2. (a) Since the input port of a connection operation is taken out of the set of ports

the two connection operations of the proposition are defined only ifi1 6= i2.

Note that ifF1 is defined thenF2 is not necessarily defined. For instance, when

two chainspath(i1, o2) andpath(i2, o1) of locked ports are connected into a

cycle by the two successive operations such thatm(i1) < m(o1) the operation

→(o1, i1) is possible only after the path fromi1 to o1 is established through the

operation→(o2, i2).

We first assume no cycle is created by the operations and use Lemma 4. By

the connection operation definition we haveIF1 = IF \ {i1, i2} = IF2 and

OF1 = OF = OF2. Since a connection operation does not modify set of suc-

cessorsSuccF (i) of an input porti , we haveρF1 = ρF \ ({i1} × SuccF (i1)) \
({i2}× SuccF (i2))∪ ({o1} × SuccF (i1))∪ ({o2}× SuccF (i2)) = ρF2. Conse-

quently, the two interface graphs are equal,GF1 = GF2. Thed andD functions

are not modified by connection operation:dF1 = dF |PF1
= dF |PF2

= dF2 and

DF1 = DF |PF1
= DF |PF2

= DF2. The functionlF1 (resp.lF2) is determined by

the functionlF and by the partition setΠF1 (resp.ΠF2). SinceGF1 = GF2,

i.e., ΠF1 = ΠF2 we havelF1 = lF2. Let P ∈ ΠF1 = ΠF2, x ∈ P and

129

lF1(x) = lF2(x) = 1. If also lF (x) = 1 then no connection operation mod-

ifies period instance function forx , i.e., mF1(x) = mF (x) = mF2(x). If

lF (x) = 0 then the value oflF for at least one of the portsi1, o1, i2 or o2 is

1, and thus the value ofmF of that port uniquely determines bothmF1(x) and

mF2(x), i.e.,mF1(x) = mF2(x). Let P ∈ ΠF1 = ΠF2 andx1, x2 ∈ P such that

lF1(x1) = lF2(x1) = 0 andlF1(x2) = lF2(x2) = 0. Sincex1 andx2 are elements

of the same weakly connected componentP there is an undirected path fromx1

to x2, both inGF1 andGF2, that may also containo1 ando2. For instance, the

path containso1 ando2 if there exists no weakly connected component ofGF

that contains bothx1 andx2. Although it is not necessarilymF1(x1) = mF2(x1)

or mF1(x2) = mF2(x2), we havemF1(x1)−mF1(x2) = mF2(x1)−mF2(x2), be-

cause no connection operation modifies difference betweenm values of already

connected ports. For instance, if inGF there exists a path fromx1 to o1 then

mF1(x1)−mF1(o1) = mF (x1)−mF (o1) = mF2(x1)−mF2(o1). From Lemma 4

follows SF1 = SF2, i.e.,SF1|PF\{i1,i2} = SF2|PF\{i1,i2}.

If there exists a path fromi2 to o2 in GF the connection operation→(o1, i1)

does not break it. Therefore, ifpathF (i2, o2) = 1 (resp.pathF (i1, o1) = 1)

then pathF→(o1,i1)(i2, o2) = 1 (resp. pathF→(o2,i2)(i1, o1) = 1). If

pathF (i2, o2) = 0 butpathF→(o1,i1)(i2, o2) = 1 then it meanspathF (i2, o1) = 1

and pathF (i1, o2) = 1. Consequently, in this case we also have

pathF→(o2,i2)(i1, o1) = 1. Thus, in all cases we have that a cycle exists in

F1 iff it exists in F2. The two interface graphs areGF1 andGF2 may differ

only in input portsi1 and i2 and edges coming from them. Since the entire

argument given above can be repeated for ports other theni1 and i2, we have

SF1|PF\{i1,i2} = SF2|PF\{i1,i2}.

(b) If FÂ(o2, o3, o) is defined theno /∈ PF . Therefore, sinceo1 ∈ PF by

proposition statement,o1 6= o. The elements of interfacesFÂ(o2, o3, o)

130

andF are equal for all ports ofPF . Thus conditions needed for the connec-

tion operation→(o1, i1) are the same forFÂ(o2, o3, o) andF . In addition,

graphsG(FÂ(o2,o3,o))→(o1,i1) and G(F→(o1,i1))Â(o2,o3,o) are equal. The same is

true for functionsm, d , D , and l . For instance, for allx ∈ PF ∪ {o} it is

l(FÂ(o2,o3,o))→(o1,i1)(x) = l(F→(o1,i1))Â(o2,o3,o)(x) sincelF (o2) = lF (o3) = 1 by

the definition of join operation.

Note that if(F→(o1, i1))Â(o2, o3, o) is defined then(FÂ(o2, o3, o))→(o1, i1)

is not necessarily defined. For instance, it can belF (o2) = 0 and

lF→(o1,i1)(o2) = 1, but(FÂ(o2, o3, o))→(o1, i1) is not defined.

3. (a) If (FÂ(o1, o2, o))Â(o3, o4, o
′) is defined theno /∈ {o3, o4} sinceo /∈ PF

and o3, o4 ∈ PF by proposition statement. Similarly, we have{o, o ′} ∩
{o1, o2, o3, o4} = ∅. In addition,o ′ 6= o and thus(FÂ(o3, o4, o

′))Â(o1, o2, o)

is defined. The order does not matter because each join operation just modifies

the parameters of eithero or o ′.

(b) If (FÂ(o1, o2, o))Â(o, o3, o
′) is defined then{o, o ′} ∩ {o1, o2, o3} = ∅. Note

thatF1 6= F2 sinceGF1 6= GF2. In general,SF1 6= SF2 because, for instance,

dF1(o) 6= dF2(o). However,SF1|PF1
\{o} = SF2|PF2

\{o} due to the associativity

of max function. For instance,dF1(o
′) = max{mF (o) · p + dF (o),mF (o3) · p +

dF (o3)} − max{mF (o),mF (o3)} · p=

max{max{mF (o1),mF (o2)} · p + max{mF (o1) · p + dF (o1),mF (o2) ·
p + dF (o2)} − max{mF (o1),mF (o2)} · p,mF (o3) · p + dF (o3)} −
max{max{mF (o1),mF (o2)},mF (o3)} · p=

max{mF (o1) · p + dF (o1),mF (o2) · p + dF (o2),mF (o3) · p + dF (o3)} −
max{mF (o1),mF (o2),mF (o3)} · p = dF2

(o ′).

2

131

The following lemma, similar in form to Lemma 4, gives refinement sufficient condition

entirely based on interfaceF andF ′ elements.

Lemma 5 Let F = (GF ,mF , dF ,DF , lF) and F ′ = (GF ′ ,mF ′ , dF ′ ,DF ′ , lF ′) be two in-

terfaces such thatIF ′ ⊆ IF , OF ′ ⊇ OF and ρF ′ ⊆ ρF . F ′ refinesF , i.e., F ′¹F

iff for each input porti ∈ IF ′ it holds dF (i) ≥ dF ′(i) and DF (i) ≤ DF ′(i), for

each output porto ∈ OF it holds dF (o) ≤ dF ′(o) and DF (o) ≥ DF ′(o), for each

weakly connected componentP ′ ∈ ΠF ′ and each two portsx1, x2 ∈ P ′ ∩ PF it holds

mF ′(x1) − mF ′(x2) = mF (x1) − mF (x2), and for each portx ∈ PF ′ ∩ PF such that

lF ′(x) = 1 it holds lF (x) = 1 andmF (x) = mF ′(x).

Proof. We first prove properties 4 and 5 of the refinement relation definition if all

conditions of the lemma are satisfied. If for each input porti ∈ IF ′ we havedF (i) ≥
dF ′(i) andDF (i) ≤ DF ′(i), i.e., [dF (i),DF (i)] ⊆ [dF ′(i),DF ′(i)], we would directly

haveSF |IF ′ ⊆ SF ′|IF ′ if for each portx ∈ PF ′ it holds lF (x) = lF ′(x) andmF (x) =

mF ′(x). According to the lemma assumption these conditions are satisfied for locked ports

x (lF (x) = 1). If ρF ′ ⊆ ρF we haveΠF ′ ≤ ΠF , i.e., for each weakly componentP ′ ∈ ΠF ′

of GF ′ there exists a weakly connected componentP ∈ ΠF of GF such thatP ′ ⊆ P . Thus

for all unlocked portsx1, x2 ∈ P ′, i.e., l(x1) = l(x2) = 0, SF |IF ′ ⊆ SF ′|IF ′ follows from

the interface semantics definition and lemma assumptionmF ′(x1)−mF ′(x2) = mF (x1)−
mF (x2). Similar argument holds for property 5 if for each output porto ∈ OF we have

dF (o) ≤ dF ′(o) andDF (o) ≥ DF ′(o), i.e., [dF (o),DF (o)] ⊇ [dF ′(o),DF ′(o)].

For the opposite direction we assumeF ′¹F and prove constraints of the lemma. From

the refinement constraintSF |IF ′ ⊆ SF ′|IF ′ and with similar reasoning as above it follows

that for each input porti ∈ IF ′ it holds dF (i) ≥ dF ′(i) andDF (i) ≤ DF ′(i). Also, if

F ′¹F then from the requirement 5 we havedF (o) ≤ dF ′(o) andDF (o) ≥ DF ′(o) for

each output porto ∈ OF .

132

From the constraintSF |IF ′ ⊆ SF ′|IF ′ it also follows that for each input porti ∈ IF ′

such thatlF ′(i) = 1 it is also lF (i) = 1, otherwise interfaceF will allow for more input

behaviors. Remember, for each output porto ∈ OF ′ there exists an input porti ∈ IF ′

such that there exists a path inGF ′ from i to o. If port o is locked (lF ′(o) = 1) than also

lF ′(i) = 1 and, as explained above,lF (i) = 1. SinceρF ′ ⊆ ρF there exists a path fromi to

o also inGF , and, thuslF (o) = 1. Therefore, for eachx ∈ PF ′ ∩PF such thatlF ′(x) = 1 it

is alsolF (x) = 1. In addition,mF (x) = mF ′(x) holds, otherwise either requirement 4 or 5

of the refinement relationF ′¹F would not hold depending on whetherx ∈ IF ′ or x ∈ OF .

Let x1, x2 ∈ PF ′ ∩ PF be two ports from the same weakly connected component ofGF ′. If

mF ′(x1)−mF ′(x2) = mF (x1)−mF (x2) does not hold then either requirement 4 or 5 would

not hold depending on the input/output character of portsx1 andx2. Note that portsx1 and

x2 can be locked inF even though they are unlocked inF ′. 2

Proposition 16 (Independent Refinement)Let i1 ∈ IF and o1, o2 ∈ OF . For all inter-

facesF , F ′, andE

1. If F ′¹F , F‖E andF ′‖E are defined, then(F ′‖E)¹(F‖E),

2. If F ′¹F , F→(o1, i1) andF ′→(o1, i1) are defined, then(F ′→(o1, i1))¹(F→(o1, i1)),

and

3. If F ′¹F , FÂ(o1, o2, o) andF ′Â(o1, o2, o) are defined, then(F ′Â(o1, o2, o))¹(FÂ(o1, o2, o)).

Proof.

1. The condition demandsF ′‖E to be defined becauseF‖E can be defined, but not

F ′‖E , e.g. ifPE ∩ (O ′
F \OF) 6= ∅.

From the definition of the composition operation,PF‖E = PF ∪ PE andρF‖E =

ρF ∪ρE , it directly followsIF ′‖E = IF ′∪IE ⊆ IF ∪IE = IF‖E , OF ′‖E = OF ′∪OE ⊇
OF ∪OE = OF‖E , andρF ′‖E = ρF ′ ∪ ρE ⊆ ρF ∪ ρE = ρF‖E .

133

SinceIF ′ ⊆ PF andIE ⊆ PE we haveSF‖E |IF ′ = SF |IF ′ ⊆ SF ′|IF ′ = SF ′‖E |IF ′ ,

and SF‖E |IE = SE |IE = SF ′‖E |IE . Consequently,SF‖E |IF ′‖E = SF‖E |IF ′∪IE ⊆
SF ′‖E |IF ′∪IE = SF ′‖E |IF ′‖E . Finally, for eachs ∈ SF ′‖E , if s|IF ′‖E = s|IF ′∪IE ∈
SF‖E |IF ′‖E thens|IF ′ ∈ SF |IF ′ and according to the definition of the refinement re-

lation s|OF
∈ SF |OF

. In addition, we haves|OE
∈ SE |OE

. Therefore, we have

s|OF‖E = s|OF∪OE
∈ SF‖E |OF∪OE

= SF‖E |OF‖E .

2. According to the definition of the connection operation,IF→(o1,i1) = IF

(resp. IF ′→(o1,i1) = IF ′) if pathF (i1, o1) = 1 (resp. pathF ′(i1, o1) = 1), and

IF→(o1,i1) = IF \ {i1} (resp. IF ′→(o1,i1) = IF ′ \ {i1}) otherwise. Note that if

pathF ′(i1, o1) = 1, such a path also exists inGF , because of the refinement condi-

tion ρF ′ ⊆ ρF . In that case,IF ′→(o1,i1) = IF ′ ⊆ IF = IF→(o1,i1), also by a condition

of the relationF ′¹F . Other cases follow similarly.

By the definition of connection operation and refinement relation we have

OF ′→(o1,i1) = OF ′ ⊇ OF = OF→(o1,i1).

The argument for the dependency relationρ is similar to the one made for inputs. In

the case when bothpathF (i1, o1) = 1 andpathF ′(i1, o1) = 1, we haveρF ′→(o1,i1) =

ρF ′∪({o1}×SuccF ′(i1)) ⊆ ρF ∪({o1}×SuccF (i1)) = ρF→(o1,i1), becauseρF ′ ⊆ ρF

andSuccF ′(i1) ⊆ SuccF (i1).

We use Lemma 5 to prove requirements 4 and 5 of the refinement relation

(F ′→(o1, i1))¹(F→(o1, i1)). The connection operation does not modify functions

d andD , so fromF ′¹F and Lemma 5 we have for each input porti ∈ IF ′→(o1,i1)

it holds dF→(o1,i1)(i) ≥ dF ′→(o1,i1)(i) and DF→(o1,i1)(i) ≤ DF ′→(o1,i1)(i), and

for each output porto ∈ OF→(o1,i1) it holds dF→(o1,i1)(o) ≤ dF ′→(o1,i1)(o) and

DF→(o1,i1)(o) ≥ DF ′→(o1,i1)(o).

Let P ′ ∈ ΠF ′→(o1,i1) and letx ∈ P ′ be such thatlF ′→(o1,i1)(x) = 1. We first prove

lF→(o1,i1)(x) = 1 andmF ′→(o1,i1)(x) = mF→(o1,i1)(x).

134

Let o1 /∈ P ′. Thus, the connection operation→(o1, i1) applied onF ′ does not modify

P ′ including x , i.e., lF ′(x) = 1. According to Lemma 5 it holdslF (x) = 1 and

mF ′(x) = mF (x). The connection operation does not change the value ofl andm

functions on locked ports, i.e.,lF→(o1,i1)(x) = 1 andmF ′→(o1,i1)(x) = mF→(o1,i1)(x).

Let o1 ∈ P ′. SinceP ′ is locked, porti1 or port o1 or both are locked inF ′,

i.e., lF ′(i1) = 1 or lF ′(o1) = 1. If lF ′(x) = 1, then the argument follows as

above. Thus, letlF ′(x) = 0, and assumelF ′(o1) = 1 and lF ′(i1) = 0, i.e.,

portsx and i1 are in the same weakly connected component ofGF ′. Other cases

follow analogously. Due to the property of connection for unlocked ports we

havemF ′→(o1,i1)(x) − mF ′→(o1,i1)(o1) = mF ′(x) − mF ′(i1) and mF→(o1,i1)(x) −
mF→(o1,i1)(o1) = mF (x) −mF (i1). SincelF ′(o1) = 1, we also havelF (o1) = 1 and

thereforemF ′→(o1,i1)(o1) = mF ′(o1) = mF (o1) = mF→(o1,i1)(o1). Due to Lemma 5

property for unlocked ports we havemF ′(x) − mF ′(i1) = mF (x) − mF (i1). Con-

sequently,mF ′→(o1,i1)(x) = mF→(o1,i1)(x). SinceρF ′ ⊆ ρF portsx andi1 are also

in the same weakly connected component ofGF . Thus, fromlF (o1) = 1 it follows

lF→(o1,i1)(x) = 1.

Let x1, x2 ∈ P ′ ∩ PF→(o1,i1). Sincex1 andx2 are elements of the same weakly con-

nected componentP ′ there is an undirected path fromx1 to x2, both inGF ′→(o1,i1)

and GF→(o1,i1) (due to ρF ′→(o1,i1) ⊆ ρF→(o1,i1)). Assumeo1 ∈ P ′. We have

mF ′→(o1,i1)(x1) − mF ′→(o1,i1)(x2) = mF→(o1,i1)(x1) − mF→(o1,i1)(x2) because con-

nection operation does not modify difference betweenm function values of already

connected ports. For instance, if inGF ′ there exists a path fromx1 to o1 then

mF ′→(o1,i1)(x1) − mF ′→(o1,i1)(o1) = mF ′(x1) − mF ′(o1) = mF (x1) − mF (o1) =

mF→(o1,i1)(x1) − mF→(o1,i1)(o1). The middle equation of the previous expression is

a consequence of Lemma 5. Ifo1 /∈ P ′ we can directly apply Lemma 5 since the

connection operation does not affect portsx1 andx2.

From all above arguments and Lemma 5 follows(F ′→(o1, i1))¹(F→(o1, i1)).

135

3. According to the definition of the join operation and refinement relation,

IF ′Â(o1,o2,o) = IF ′ ⊆ IF = IFÂ(o1,o2,o), OF ′Â(o1,o2,o) = OF ′ ∪ {o} ⊇ OF ∪ {o} =

OFÂ(o1,o2,o), andρF ′Â(o1,o2,o) = ρF ′ ∪ {(o1, o), (o2, o)} ⊆ ρF ∪ {(o1, o), (o2, o)} =

ρF→(o1,i1).

We use Lemma 5 to prove requirements 4 and 5 of the refinement relation

(F ′Â(o1, o2, o))¹(FÂ(o1, o2, o)). The join operation sets only the values for port

o. From the definition ofF ′Â(o1, o2, o) we havelF ′(o1) = lF ′(o2) = 1 and

lF ′Â(o1,o2,o)(o) = lFÂ(o1,o2,o)(o) = 1. From Lemma 5 we havemF ′(o1) = mF (o1)

and mF ′(o2) = mF (o2). Thus mF ′Â(o1,o2,o)(o) = max{mF ′(o1),mF ′(o2)} =

max{mF (o1),mF (o2)} = mFÂ(o1,o2,o)(o). In addition, sincedF (o1) ≤ dF ′(o1) and

dF (o2) ≤ dF ′(o2), we havedF ′Â(o1,o2,o)(o) = max{mF ′(o1) · p + dF ′(o1),mF ′(o2) ·
p + dF ′(o2)} − mF ′Â(o1,o2,o)(o) · p ≥ max{mF (o1) · p + dF (o1),mF (o2) · p +

dF (o2)} − mFÂ(o1,o2,o)(o) · p = dFÂ(o1,o2,o)(o). Similarly, sinceDF (o1) ≥ DF ′(o1)

andDF (o2) ≥ DF ′(o2), we haveDFÂ(o1,o2,o)(o) ≥ DF ′Â(o1,o2,o)(o). From all above

arguments and Lemma 5 follows(F ′Â(o1, o2, o))¹(FÂ(o1, o2, o)).

2

So, we proved that even in case of task graphs, in order to refine a given composition

of interfaces, it suffices to independently refine each interface and to compose the obtained

refinements.

Example. We demonstrate the independent refinement property on the task graph

shown in Fig. 4.22. Assume taskst1, t2 and t3 are allocated to processorr1 and t4, t5

andt6 to processorr2. Let r1 andr2 have the same processing power and let all tasks have

the same execution time requirements. In particular, let for each task the uncertainty inter-

val of execution time, i.e., the time needed to process the task if the task had a dedicated

resource, be[ej, Ej] = [2, 3] for each1 ≤ j ≤ 6. We also assume that both processors

schedule tasks according to the preemptive fixed-priority mechanism where lower task in-

136

i

2
 o

i

1

t

1

t

2

t

3

t

4

t

5

t

6

Figure 4.22. Example task graph

dex corresponds to higher priority. Finally, the period of the system isp = 20 and event

models for inputs are(m(i1), d(i1),D(i1)) = (0, 0, 1) = (m(i2), d(i2),D(i2)), i.e., both

input events occur within interval [0,1] every period. Fig. 4.23 a) showsF1, the interface

of the component that implements task graph from Fig. 4.22, constructed from interfaces

of the individual tasks. If the tasks are considered separately, i.e., if task dependencies are

ignored, then taking into account priorities of the tasks on processorr1, for the intervals of

task response times we have[w1,W1] = [e1, E1] = [2, 3], [w2,W2] = [e2, E1 + E2] = [2, 6]

and [w3,W3] = [e3, E1 + E2 + E3] = [2, 9]. Thus, when composition, connection and

join operations are applied (shown with full arrows in Fig. 4.23 a), for the output of task

t3 we havedF1(o3) = d(i1) + e2 + e3 = 4 andDF1(o3) = DF1(i1) + E2 + E3 = 16.

Similarly, for output porto we obtaindF1(o) = 8 andDF1(o) = 25. Fig. 4.23 b) shows

F2, the interface obtained if dependencies between tasks on processorr1 are known before

interface operations are applied. The facts that taskt1 can preempt eithert2 or t3 but not

both, and thatt2 cannot preemptt3, can be used in this case to compute stronger guar-

antee, i.e., smaller uncertainty interval for the output of taskt3. In particular,dF2(o3) =

d(i1) + e1 + e2 + e3 = 6 andDF2(o3) = DF1(i1) + E1 + E2 + E3 = 10, anddF2(o) = 10

andDF1(o) = 19. Thus, as a consequence of[dF2(o3),DF2(o3)] ⊆ [dF1(o3),DF1(o3)] we

have[dF2(o),DF2(o)] ⊆ [dF1(o),DF1(o)], i.e.,F2¹F1. Finally, if task graph on processor

137

r2 is considered from the beginning as shown in Fig. 4.23 c), we obtaindF2(o) = 10 and

DF1(o) = 16, i.e.,F3¹F2¹F1.

4.6 Conclusion

We started this chapter by showing how a group of tasks, each defined with an ar-

rival rate curve, a delay, and a worst-case execution requirement, can be abstracted into a

bounded-delay resource model. In order to use such abstracted components in a larger real-

time system comprising of multiple task sequences we introduced component interfaces.

A formal interface algebra allows for automatic procedures that enable component integra-

tion. We motivated and proved two properties of such a framework, incremental design and

independent refinement. Next we formalized a similar interface theory, but for richer task

models, those in which the underlying task precedence graph can be an arbitrary graph.

This was studied for periodic event model with jitter and phase. Even such a less general

event stream representation results in an algebra that is not as flexible as the one in case

of task sequences. However, we proved that if pertinent interface compositions are defined

both associativity and independent refinement properties hold even for components that

implement general task graphs including cyclic graphs. In this context, it remains unclear

how to address more complicated event stream specifications, such as event streams spec-

ified with general lower and upper arrival rate functions. The composition with abstracted

components inevitably incurs higher resource utilization and, therefore, effectiveness of

composition can be compromised. We leave the question of how tight the entire frame-

work is for some future work. In addition, interesting problems for future investigations

arise when more complex, temporally adaptive interactions between real-time components

require extension to an automaton-based interface formalism.

138

i

2
 o

i

1

t

1

t

2

t

3

t

4

t

5

t

6

a)
 F

1

i

2
 o

i

1

t

1

t

2

t

3

t

4

t

5

t

6

b)
 F

2

i

2
 o

i

1

t

1

t

2

t

3

t

4

t

5

t

6

c)
 F

3

o

3

o

3

o

3

Figure 4.23. Independent refinement for the task graph in Fig. 4.22

139

Chapter 5

Conclusions and Outlook

This thesis presents several methods for compositional design and verification of real-

time systems. We formally address higher layers of design, in particular, task and distri-

bution layers. All studied models of computation include inter- or intra-component task

communication. Some of the problems discussed include: code generation and schedul-

ing with limited coordination, verification procedures for interface compliance checking,

abstraction of component resource requirements, composition of resource requirements,

composability tradeoffs, associativity of interface operators and independent component

implementability. A common thread for all methods is an objective to work with a minimal

but complete interface needed for a model or problem being considered.

Although the general goal for all compositional methods is the same, i.e., to simplify

solution to the original large problem by solving several smaller problems, the problems

and solutions in different chapters of the thesis are in several aspects considerably different.

Chapter 2 and 3 study time-triggered, whereas Chapter 4 event-triggered models of com-

putation. While the problems in the first two chapters try to estimate several composability

measures, e.g. performance tradeoffs or complexity of composability checking and inter-

face compliance, the problems in the last chapter are predominantly of qualitative nature.

140

The methods that involve LET semantics try to establish time predictability by reducing

sensitivity to unknown system information, whereas interface-based methods try to match

implementation concepts with analysis.

In principle, some of these methods can be integrated within the existing tools. As

discussed in Chapter 3 the LET semantics is very similar to the RTW semantics used in

Simulink. However, Simulink tools currently concentrate on code generation and not on

formal performance analysis. On the other hand, scheduling analysis has found its way into

industrial practice, e.g. [74]. The methods that are available are typically global holistic

methods, and, as such, are largely ignored due to complexity. Attempts to use SymTA/S

approach within the Autosar project are good signs for the compositional and hierarchical

methods. The methods that tackle cyclic component dependencies, including the results in

this thesis, are still very limited in reach.

The timing verification techniques should not only be reliable, but also precise. More

complex models or requirement specifications ask for more complex analyses, a tradeoff

that must be carefully considered. In particular, currently there are no research results that

study tradeoffs between timing predictability (difference between estimated and measured

timing) and computational complexity of the analysis. It is often argued that formal per-

formance analysis results in conservative designs. However, this criticism is only partially

true, since, as noted in [39], over-provisioning in simulation and test methods can often re-

sult in designs with much more conservative outcomes. On the other hand, formal analyses

require far less computation time, which renders them very effective for rapid design-space

exploration.

A drawback of formal performance methods discussed in this thesis is their bad corre-

lation with lower layers of system design, such as single task timing analysis and compiler

optimizations. Similarly, the timing consequences of interrupts occurring at unknown pro-

gram states can hardly be estimated with high accuracy. So, often it is difficult to find

141

good event models with sufficient precision. In addition, many properties of distributed

real-time systems cannot be modeled easily, so links to upper system layers may also be

open problems.

To simplify integration, most real-time communication protocols are static time-

division protocols. On the other hand, more and more applications are becoming dynamic

in character. For instance, the application throughput varies during the execution and can-

not be easily predicted in advance. For such applications static protocols lead to both large

buffer sizes and long response times. Thus, the challenge here would be to have dynamic

resource reservation and reclaiming together with performance guarantees.

Despite the current limitations of system-level formal timing analysis techniques, we

believe that the increasing number of performance dependencies in complex systems will

lead designers to accept performance analysis, probably by matching them with moder-

ately restrictive implementation methods. This might be the way to achieve both good

performance and productivity, and time predictability with specified precision.

142

Bibliography

[1] AbsInt. In http://www.absint.com/ait/.

[2] L. Almeida and P. Pedreiras. Scheduling within temporal partitions: Response-time
analysis and server design. InEMSOFT, pages 95–103. ACM Press, 2004.

[3] AUTOSAR. In www.autosar.org/.

[4] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli.
Heterogeneous reactive systems modeling: capturing causality and the correctness of
loosely time-triggered architectures (ltta). InEMSOFT, pages 220–229. ACM Press,
2004.

[5] A. Benveniste, B. Caillaud, and P. L. Guernic. Compositionality in dataflow syn-
chronous languages: Specification and distributed code generation.Information and
Computation, 163:125–171, 2000.

[6] A. Benveniste, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Hetero-
geneous reactive systems modeling and correct-by-construction deployment. InEM-
SOFT, pages 35–50, 2003.

[7] J.-Y. L. Boudec and P. Thiran.Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag New York, 2001.

[8] P. Brucker, S. Kravchenko, and Y. Sotskov. Preemptive job-shop scheduling problems
with a fixed number of jobs.Mathematical Methods of Operations Research, 49:41–
76, 1999.

[9] G. C. Buttazzo. Rate monotonic vs. edf: Judgment day.Real-Time Systems, 29:5–26,
2005.

[10] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
simulink to scade/lustre to tta: a layered approach for distributed embedded appli-
cations. InLCTES, pages 153–162, 2003.

[11] S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, and E. Wandeler. Interface-based
rate analysis of embedded systems. InRTSS, pages 25–34, 2006.

143

[12] S. Chatterjee and J. K. Strosnider. Distributed pipeline scheduling: A framework for
distributed, heterogeneous real-time system design.The Computer Journal, 38:271–
285, 1995.

[13] L. de Alfaro and T. A. Henzinger. Interface automata. InESEC / SIGSOFT FSE,
pages 109–120, 2001.

[14] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design.
In EMSOFT, volume 2211 ofLecture Notes in Computer Science, pages 148–165.
Springer, 2001.

[15] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. InEMSOFT,
volume 2491 ofLecture Notes in Computer Science, pages 108–122. Springer, 2002.

[16] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment.
In RTSS, pages 308–319. IEEE Computer Society, 1997.

[17] B. P. Douglass. Real-time uml. InFTRTFT, pages 53–70, 2002.

[18] dSPACE. Inhttp://www.dspaceinc.com/ww/en/inc/home/products/hw
/accessories/autobox.cfm.

[19] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental schedulability analysis of
hierarchical real-time components. InEMSOFT, pages 272–281, 2006.

[20] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) machine. In
DAC, pages 264–265, 2007.

[21] Embedded-Market-Forecasters. Inhttp://www.embeddedforecast.com.

[22] H.-G. Frischkorn. Automotive software systems. InASW, pages 0–25, 2004.

[23] S. Goddard. Analyzing the real-time properties of a dataflow execution paradigm
using a synthetic aperture radar application. InIEEE Real Time Technology and Ap-
plications Symposium, pages 60–71, 1997.

[24] S. Goddard and K. Jeffay. Managing latency and buffer requirements in processing
graph chains.The Computer Journal, 44:486–503, 2001.

[25] G. Gößler and A. L. Sangiovanni-Vincentelli. Compositional modeling in metropolis.
In EMSOFT, pages 93–107, 2002.

[26] N. Halbwachs.Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1992.

[27] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing analysis for fixed-priority
scheduling of hard real-time systems.IEEE Transactions on Software Engineering,
20(1):13–28, 1994.

144

[28] B. Hardung, T. Koelzow, and A. Krueger. Reuse of software in distributed embedded
automotive systems. InEMSOFT, pages 203–210. ACM Press, 2004.

[29] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis - the symta/s approach.IEE Proceedings Computers and Digital
Techniques, 152(2):149–166, 2005.

[30] T. A. Henzinger, Christoph, M. Kirsch, M. A. Sanvido, and W. Pree. From control
models to real-time code using giotto. InEMSOFT. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2002.

[31] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language
for embedded programming.Proceedings of the IEEE, 91:84–99, 2003.

[32] T. A. Henzinger and C. M. Kirsch. The embedded machine: predictable, portable
real-time code.SIGPLAN Not., 37(5):315–326, 2002.

[33] T. A. Henzinger, C. M. Kirsch, R. Majumdar, and S. Matic. Time-safety checking for
embedded programs. InEMSOFT, pages 76–92, 2002.

[34] T. A. Henzinger, C. M. Kirsch, and S. Matic. Schedule-carrying code. InEMSOFT,
pages 241–256, 2003.

[35] T. A. Henzinger, C. M. Kirsch, and S. Matic. Composable code generation for dis-
tributed giotto. InLCTES, pages 21–30, 2005.

[36] T. A. Henzinger and S. Matic.Distributed Schedule-Carrying Code.Tech. Report
UCB//CSD-04-1360, University of California at Berkeley, EECS Department, 2004.

[37] T. A. Henzinger and S. Matic. An interface algebra for real-time components. In
IEEE Real Time Technology and Applications Symposium, pages 253–266, 2006.

[38] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-accurate real-time
software. InEUC, pages 449–458, 2006.

[39] M. Jersak, K. Richter, and R. Ernst. Performance analysis for complex embedded
applications.International Journal of Embedded Systems, 1(1-2):33–49, 2006.

[40] M. Jersak, K. Richter, R. Ernst, J.-C. Braam, Z.-Y. Jiang, and F. Wolf. Formal methods
for integration of automotive software. InDATE, pages 20045–20050, 2003.

[41] K. Karplus and A. Strong. Digital synthesis of plucked-string and drum timbres.
Computer Music Journal, 2(7):43–55, 1983.

[42] C. Kirsch, M. A. Sanvido, and T. A. Henzinger. A programmable microkernel for
real-time systems. InVEE, pages 35–45. ACM Press, 2005.

[43] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations.Kluwer Academic Publishers, 1997.

145

[44] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The time-triggered ethernet
(tte) design. InISORC, pages 22–33, 2005.

[45] H. Kopetz and G. Bauer. The time-triggered architecture.Proceedings of the IEEE,
91(1), 2003.

[46] H. Kopetz and N. Suri. Compositional design of rt systems: A conceptual basis for
specification of linking interfaces. InISORC, pages 51–60. IEEE Computer Society,
2003.

[47] S. Lankes, A. Jabs, and M. Reke. A time-triggered ethernet protocol for real-time
corba. InISORC, pages 215–222, 2002.

[48] E. A. Lee. Overview of the Ptolemy Project.Tech. Report UCB/ERL M01/11, Uni-
versity of California at Berkeley, EECS Department, 2001.

[49] E. A. Lee. Absolutely positively on time: What would it take?IEEE Computer,
38(7):85–87, 2005.

[50] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing.IEEE Transactions on Computing, 36:24–35,
1987.

[51] G. Lipari and E. Bini. Resource partitioning among real-time applications. InECRTS,
pages 151–158. IEEE Computer Society, 2003.

[52] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical framework
for component-based real-time systems. InCBSE, volume 3054 ofLecture Notes in
Computer Science, pages 209–216. Springer, 2004.

[53] S. Matic and T. A. Henzinger. Trading end-to-end latency for composability. InRTSS,
pages 99–110, 2005.

[54] S. Matic and T. A. Henzinger. An interface algebra for real-time graphs. InFMCO,
2007.

[55] Mentor-Graphics. Inhttp://www.mentor.com/products/fv/hwswcoverification
/seamless/index.cfm.

[56] A. K. Mok and A. X. Feng. Towards compositionality in real-time resource partition-
ing based on regularity bounds. InRTSS, pages 129–138. IEEE Computer Society,
2001.

[57] A. K. Mok and A. X. Feng. A model of hierarchical real-time virtual resources. In
RTSS, pages 26–35. IEEE Computer Society, 2002.

[58] A. K. Mok and A. X. Feng. Real-time virtual resource: A timely abstraction for
embedded systems. InEMSOFT, volume 2491 ofLecture Notes in Computer Science,
pages 182–196. Springer, 2002.

146

[59] A. K. Mok, A. X. Feng, and D. Chen. Resource partition for real-time systems. In
RTAS, pages 75–84. IEEE Computer Society, 2001.

[60] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systems. InCODES, pages 187–192, 2002.

[61] J. Regehr and J. A. Stankovic. Hls: A framework for composing soft real-time sched-
ulers. InRTSS, pages 3–14. IEEE Computer Society, 2001.

[62] K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc performance verifi-
cation. IEEE Computer, 36(4):60–67, 2003.

[63] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for scheduling
analysis in platform design. InDAC, pages 287–292, 2002.

[64] J. Rushby.Partitioning for Avionics Architectures: Requirements, Mechanisms, and
Assurance. NASA Report CR-1999-209347, NASA Langley Research Center, 1999.

[65] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis of hierar hical
fixed-priority scheduling. InECRTS, pages 173–181, 2002.

[66] Semiconductor-Industry-Association. The international technology roadmap for
semiconductors. Inhttp://www.itrs.net/Links/2001ITRS/ExecSum.pdf, 2001.

[67] S. Shigero, M. Takashi, and H. Kei. On the schedulability conditions on partial time
slots. InRTCSA, pages 166–173, 1999.

[68] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees.
In RTSS, pages 2–13. IEEE Computer Society, 2003.

[69] I. Shin and I. Lee. Compositional real-time scheduling framework. InRTSS, pages
57–67. IEEE Computer Society, 2004.

[70] The-Flexray-Consortium. Inhttp://www.flexray-group.com.

[71] The-MathWorks. Models with multiple sample rates. InReal-Time Workshop User
Guide, pages 1–34, 2005.

[72] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for composing real-
time systems. InEMSOFT, pages 34–43, 2006.

[73] L. Thiele and R. Wilhelm. Design for timing predictability.Real-Time Systems, 28(2-
3):157–177, 2004.

[74] Tri-Pacific-Software. Inhttp://www.tripac.com/html/prod-fact-rrm.html.

[75] E. Wandeler and L. Thiele. Real-time interfaces for interface-based design of real-
time systems with fixed priority scheduling. InEMSOFT, pages 80–89. ACM Press,
2005.

147

[76] E. Wandeler and L. Thiele. Interface-based design of real-time systems with hier-
archical scheduling. InIEEE Real Time Technology and Applications Symposium,
pages 243–252, 2006.

[77] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao. Real-time component-based sys-
tems. InRTAS, pages 428–437. IEEE Computer Society, 2005.

[78] T.-Y. Yen and W. Wolf. Performance estimation for real-time distributed embedded
systems.IEEE Trans. Parallel Distrib. Syst., 9(11):1125–1136, 1998.

[79] V. Yodaiken. Rtlinux manifesto. InLinux Expo, 1999.

[80] M. Zennaro and R. Sengupta. Distributing synchronous programs using bounded
queues. InEMSOFT, pages 325–334, 2005.

[81] Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-synchronized dis-
tributed real-time systems. InRTAS, pages 259–268, 2007.

[82] Y. Zhou and E. A. Lee. A causality interface for deadlock analysis in dataflow. In
EMSOFT, pages 44–52, 2006.

[83] D. Ziegenbein, M. Jersak, K. Richter, and R. Ernst. Breaking down complexity for
reliable system-level timing validation. InEDP, 2002.

[84] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, and R. Ernst. Interval-based analysis
of software processes. InLCTES/OM, pages 94–101, 2001.

148

