
Reducing Transient Disconnectivity using Anomaly-
Cognizant Forwarding

Andrey Ermolinskiy
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-120

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-120.html

September 18, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reducing Transient Disconnectivity using
Anomaly-Cognizant Forwarding

Andrey Ermolinskiy†, Scott Shenker†⋆

†University of California at Berkeley, Computer Science Division,
⋆International Computer Science Institute

Abstract
It is well known that BGP convergence can cause
widespread temporary losses of connectivity resulting
from inconsistent routing state. In this paper, we present
Anomaly-Cognizant Forwarding (ACF) - a novel tech-
nique for protecting end-to-end packet delivery during pe-
riods of convergence. Our preliminary evaluation demon-
strates that ACF succeeds in eliminating nearly all tran-
sient disconnection after a link failure without the use of
precomputed backup routes or altering the dynamics of
BGP.

1 Introduction
It is widely known that BGP, the core Internet interdo-
main routing protocol, is susceptible to temporary con-
nectivity failures during periods of convergence. A single
event, such as a link failure or a policy change, can trig-
ger a lengthy and complex sequence of route recomputa-
tions, during which neighboring ASes exchange updates
and converge on a new globally-consistent set of routes.
During this process, routers operate upon potentially in-
consistent local views, which can lead to the emergence of
temporary anomalies such asloopsandblackholes. Both
of these are considered undesirable, as they result in tem-
porary losses of connectivity to the set of destinations af-
fected by the event.

In order to prevent explosive growth of control traffic
during the convergence process, BGP routers are typically
configured to constrain the maximum rate of update prop-
agation via the MRAI timer and [1] recommends setting
its value to 30 seconds. Inevitably, limiting the rate of
update dissemination lengthens the period of exposure to
routing anomalies and several studies have reported pro-
longed and noticeable bursts of packet loss caused by
BGP convergence. It has been shown that a single route
change can produce up to 30% packet loss for two min-
utes or more [11]. Further, [18] reports loss bursts that
last up to 20 seconds after a single route failure and up to
8 seconds after a route recovery event.

Today’s Internet applications such as online games,
streaming video delivery, and VoIP demand continuous
end-to-end reachability and consistent performance. A re-

cent study [9] establishes correlation between BGP update
traffic and the quality of the end-user VoIP experience,
demonstrating that about 50% of bad-quality voice sam-
ples occur within 10 minutes of a BGP update.

This problem has received considerable research atten-
tion and previous approaches can be broadly categorized
into (a) those that attempt to expedite protocol conver-
gence [3, 13, 17] and (b) those that seek to protect end-
to-end packet delivery from the adverse effects of con-
vergence. It has been suggested that mechanisms in the
former category face an inherent limitation given the cur-
rent scale of the Internet on the one hand and stringent
demands of today’s applications on the other. A scalable
policy-based routing protocol that converges fast enough
for applications such as interactive voice delivery still re-
mains an elusive goal.

The second category of proposals includes mechanisms
such as R-BGP [10], which advocates the use of precom-
puted failover paths for ensuring connectivity during peri-
ods of convergence. This scheme offers provable guaran-
tees of reachability for single link failures, but these guar-
antees come at the cost of additional forwarding state and
protocol complexity associated with the maintenance of
backup routes and ensuring loop-free convergence. Fur-
ther, ensuring connectivity in the face of multiple concur-
rent routing events would require routers to compute and
maintain additional link-disjoint paths and the forward-
ing state requirements would present a serious scalability
challenge.

Most recently, Consensus Routing [8] proposes to ad-
dress transient disconnectivity by requiring BGP routers
to agree on a globally-consistent "stable" view of forward-
ing state. In this context, stability means that a source
domain can adopt a route to some destination in a given
epoch only if each of the intermediate routers on the
path adopts the respective route suffix in the same epoch,
which guarantees absence of loops. In each epoch, routers
participate in a distributed snapshot and consensus proto-
col in order to identify the set of "complete" BGP updates
that satisfy stability. In contrast to much of prior work
directed at reducing the duration of convergence, this
scheme intentionally delays the adoption of BGP updates,
so as to preserve the stability invariant. In the absence of

1

a stable forwarding path, consensus routing fails over to
a transient forwarding mode that implements a heuristic
such as detouring, backtracking, or backup paths.

In this paper, we presentAnomaly-Cognizant For-
warding (ACF) - a new and complementary approach to
improving Internet path availability and reducing tran-
sient disconnection. Rather than attempting to eliminate
anomalous behavior by enforcing global consistency or
shrinking the convergence time window, we accept incon-
sistent routing state as an unavoidable fact and instead
develop a mechanism fordetectingandrecoveringfrom
such inconsistencies on the data path. While much of
prior work has focused on extending BGP to improve its
consistency and convergence properties, in this paper we
consider a somewhat more disruptive approach that in-
volves adding several fields to the packet header and in-
specting them on the forwarding path. Our main hypothe-
sis is that a single nearly trivial extension to conventional
IP forwarding suffices to eliminate a dominant fraction of
convergence-related disconnectivity. Our approach does
not require routers to maintain multiple forwarding tables,
nor does it require extending BGP or altering its timing
dynamics.

2 Approach Overview
In broad terms, we view inconsistent BGP state and
routing anomalies as unavoidable facts and approach the
problem by extending the forwarding plane with a small
amount of functionality that enables us to detect and re-
cover from these anomalies. Toward this end, we aug-
ment the packet header with two additional pieces of state.
First, a packetp originating inASs and destined toASd

carries apath trace(denotedp.pathTrace) - a list of AS-
level hops encountered byp on its path towardASd. At
each hop, the border router inspects this field and appends
its own AS identifier. The content of this field enables
routers to detect and recover from occurrences of loops
via a process that we describe more fully below. Second,
each packet carries ablack list(denotedp.blackList) con-
taining an encoding of AS identifiers that are known to
have possesseddeficientrouting state forp’s destination
at some point after packet’s origination.

We say that a transit domainASt hasdeficientrouting
state for a destinationASd at a particular instant in time if
at that instant (a)ASt lacks a valid policy-compliant path
to ASd, or (b) the path adopted byASt for destinationASd

results in a routing loop that causes packets to return back
to ASt .

At a high level, ACF packet forwarding proceeds as fol-
lows: a router first inspectsp.pathTraceand checks it for
the presence of its local AS identifier, which would indi-
cate a loop. If no loop is detected, the packet is forwarded
as usual along the adopted route. Otherwise, the loop is
viewed as evidence of deficient state and the router acts

A

G

C D

EF

B

1. BA
2. CBA <==

1. BA
2. DBA <==

1. CBA <==
2. DBA

1. ECBA <==
2. GA

RIB for dest. A

Next hop for dest. A

Next hop for dest. F

Figure 1: A sample AS-level topology with a transient
forwarding loop.

upon it by moving every AS identifier belonging to the
loop (which it knows fromp.pathTrace) to p.blackList
and invoking the control plane, where the RIB is searched
for the presence of an alternate path that does not traverse
a blacklisted domain.

The second core component of our design is an alter-
nate mode of packet delivery, which we termrecovery
forwarding. This mode helps ensure connectivity in situa-
tions where a router is unable to forward a packet because
it does not possess a valid non-blacklisted path.

Forwarding in recovery mode is facilitated by a set of
recovery destinations. When a transit router chooses to
initiate recovery forwarding for a packetp, it adds the lo-
cal AS identifier top.blackList, copiesp’s destination ad-
dress to an alternate location in the header, and redirects
the packet to the address of some recovery destination,
chosen at random from a well-known static set of poten-
tial destinations. In our current design and simulations,
we assign the recovery destination role to a group of 10
well-connected Tier-1 ISPs1.

The basic intuition that motivates this scheme is that
the chosen recovery destinationASr (or some intermedi-
ate router along the path toASr) is likely to possess a valid
non-blacklisted route to the packet’s original destination.
As the packet travels towardASr in recovery mode, each
router on the path first attempts to forward it to the orig-
inal destinationASd. If a usable non-blacklisted path is
known, the router takes the packet off the recovery path
and resumes normal-mode forwarding. Otherwise, the
packet is sent to the next hop for destinationASr . If, af-
ter reaching the recovery destination, the packet cannot be
taken off the recovery path becauseASr does not possess a
usable route toASd, the packet is dropped. Alternatively,
in an effort to ensure eventual delivery,ASr can re-initiate
recovery forwarding via another destination. In the latter
scenario, the process repeats until (a) the packet is taken
off the recovery path by some destination that knows of a

1Internet service providers can offer recovery forwarding as a paid
service for customers that wish to safeguard themselves from BGP-
related connectivity failures.

2

working route toASd, (b) the packet is dropped because
no recovery destination has such a route, or (c) the packet
is dropped because its TTL expires.

We illustrate our scheme using the AS topology in Fig-
ure 1. Suppose that initially, domainsC andD both use
B as the next hop for destinationA. In this example, fail-
ure of the inter-AS link〈A−B〉 would causeB to send
a withdrawal notification to its neighbors. Upon receiv-
ing the withdrawal,C andD would immediately switch to
alternate paths〈D→ B→ A〉 and〈C→ B→ A〉, respec-
tively. With conventional BGP, domainC has no way of
determining that the newly-adopted path is invalid until it
receives a withdrawal fromD and, analogously,D consid-
ers〈C→ B→ A〉 to be a valid route and adoptsC as its
next hop, thus causing a transient loop to emerge.

Suppose that domainC wishes to send a packet to an
address in domainA and with ACF, packet forwarding
proceeds as follows: Initially,C adds its local AS iden-
tifier to p.pathTraceand forwards the packet to its next
hop - domainD. Upon receiving the packet,D appends
its identifier to p.pathTraceand sends the packet back
to C, which inspectsp.pathTraceand detects a loop. It
truncatesp.pathTraceand, for each non-local AS identi-
fier belonging to the loop (in this example onlyD), adds
a corresponding entry top.blackList. Next,C reattempts
to forward the packet, this time avoiding the blacklisted
forwarding table entry and discarding the corresponding
route. In the example shown,C has no alternative working
routes for destinationA, so it adds itself top.blackListand
invokes recovery forwarding, choosing domainF as the
recovery destination.C forwards the packet in recovery
mode toE (its next hop forF) and the packet arrives with
p.pathTrace= 〈C〉, p.blackList= 〈C,D〉. Upon receiv-
ing the packet,E first attempts to forwardp to its original
destination (A), but discovers that both its current next hop
(C) and the alternate path throughD are blacklisted in the
packet’s header and discards the respective routes. Lack-
ing other alternate paths,E adds itself top.blackListand
forwards the packet further along the recovery path to its
peerF. Analogously,F determines from the blacklist that
its next hopE does not posses a valid path and purges the
respective route from its RIB. However,F knows of an
alternate working route〈G→ A〉 and adopts it, causingp
and all subsequent packets destined toA to be forwarded
via G. Eventually, BGP path withdrawals will propagate
through the topology and reachF, causing it to expose
the route〈F→G→ A〉. During the transient period of in-
consistency, however, thepathTraceandblackList state
being propagated on the data path enables us to discover
a valid alternate route and preserve end-to-end packet de-
livery.

Before we proceed to a detailed description of the de-
sign, we make two high-level observations about our ap-
proach. First, since ACF utilizes two distinct modes of

forwarding (i.e.,normalandrecoverymodes), it can cause
some packets to traverse multiple distinct paths to the des-
tination during periods of convergence. For example,ASs

may initially attempt to send a packet toASd via a pathP1,
but one of the intermediate hops may decide to re-route it
via a recovery destination, which, in turn, can choose to
forward the packet viaP2 - an alternate path toASd that
is link-disjoint from P1. Unlike earlier work on failover
BGP paths [10], our mechanism does not require routers
to construct an explicit set of failover routes and to main-
tain multiple forwarding table entries. In ACF, the two
modes make use of the same forwarding table and we try
to discoveran alternate route dynamically by extending
the forwarding plane.

Second, we do not assume that the set of paths to re-
covery destinations is stable and that every AS possesses
a working loop-free route to some recovery destination
at all times. Indeed, certain failure scenarios (e.g, a core
link failure) can result in disruption of paths to multiple
endpoints, including those that serve as recovery desti-
nations, and clearly, our design must succeed in retain-
ing end-to-end connectivity in the face of such failures.
Thankfully, there is a simple and effective solution that
enables us to handle such cases - we protect recovery-path
forwarding against routing anomalies using precisely the
same mechanism that we use to safeguard packet delivery
on the normal forwarding path, i.e., using thepathTrace
andblackListfields in the packet header.

3 The Design of ACF
3.1 Packet header state
ACF adds the following fields to the packet header:

recoveryMode: A single-bit flag indicating the current
forwarding mode (normalor recovery).

f inalDestAddr: In recovery mode, this field carries the
packet’s actual destination address (i.e., its destina-
tion prior to redirection).

pathTrace: An ordered list of AS-level hops traversed by
the packet in the current forwarding mode.

blackList: A set of AS identifiers that are known to pos-
sess deficient routing state for the packet’s original
destination.

blackListRecov: A set of AS identifiers that are known to
possess deficient routing state for the packet’s desig-
nated recovery destination.

In our current design,pathTraceis represented as a lin-
ear list of 16-bit AS numbers. The length of this field is
either fixed or selected from a small set of predefined val-
ues. In Section 4, we expand upon this point and eval-
uate the corresponding space requirements in the packet

3

// Check for loops
if for some i: p.pathTrace[i] = localASNumthen

for j← i +1 to p.pathTrace.lengthdo
Add p.pathTrace[j] to p.blackList

p.pathTrace← Pre f ix(p.pathTrace, i)

// Validate the next hop
nextHop←GetNextHop(p.destAddr)
if nextHop∈ p.blackList then

FindAlternateRoute(p.destAddr, p.blackList)
nextHop←GetNextHop(p.destAddr)

if nextHop= NONE then
// Switch to recovery mode
Add localASNumto p.blackList
p.recoveryMode← TRUE
p.pathTrace← EMPTY
p. f inalDestAddr← p.destAddr
p.destAddr← SelectRecovDest(p.blackList)
nextHop←GetNextHop(p.destAddr)

AppendlocalASNumto p.pathTrace
ForwardPacket(p,nextHop)

Algorithm 1 : Pseudocode for normal-mode ACF.

header. On the other hand,blackListandblackListRecov
can be represented using a space-efficient Bloom filter en-
coding (note that AS identifiers are never removed from
blacklists).

3.2 Forwarding algorithm

When a packetp arrives at a router, itsrecoveryMode
flag is inspected to determine the appropriate forwarding
mode. We illustrate normal-mode ACF using high-level
pseudocode in Algorithm 1. First, the router checks the
pathTracefield for the presence of its local AS number.
If a loop is detected, all AS components of the loop are
added top.blackListand the path trace is truncated to ex-
clude the loop. Next, the forwarding table is consulted to
obtain the next hop forp’s destination and the content of
p.blackList is inspected. If the next-hop AS is present in
p.blackList, the current route is discarded and the control
plane (FindAlternateRoute) is invoked to find and install
an alternate non-blacklisted route.

In FindAlternateRoutethe standard BGP route selec-
tion process is invoked to identify a new preferred route
that will be used for forwardingp and all subsequent
packets destined to the same prefix and, crucially, all
blacklisted routes are excluded from consideration during
this process. We investigated and evaluated two alterna-
tive methods for deciding whether to exclude a particular
candidate routeR= 〈ASR

1 ,ASR
2 , ...ASR

k 〉 for a given packet
p:

1. Examine only the next hop and excludeR iff ASR
1 ∈

p.blackList.

2. Examine the entire AS-PATH attribute and exclude
R iff ∃i such thatASR

i ∈ p.blackList.

Consider a scenario, in whichASs knows of two distinct
routes toASd, namely〈AS1→ AS2→ ASd〉 and〈AS3→
AS2→ ASd〉. Initially, it tries to forward the packet via
AS1, but the packet returns with〈ASs,AS1,AS2,AS4〉 in its
pathTrace, causingASs to blacklistAS1, AS2, andAS4.
Using method (1),ASs would next attempt to forward via
AS3, but this would result in wasted effort ifAS3 does not
know of any alternate paths toASd that do not go through
AS2. Conversely, method (2) would requireASs to discard
its path throughAS3 and invoke recovery forwarding due
to absence of other alternatives. In this situation, skipping
AS3 can result in a lost opportunity to forward the packet
via an efficient alternate route ifAS3 does indeed possess
such a route.

We examined both alternatives and found that the sec-
ond method is substantially more effective in reducing
transient packet loss for the set of failure cases we sim-
ulated. It allows problematic paths to be detected and dis-
carded more quickly and reduces the number of hops it
takes for a packet to home in on a valid alternate route.
Note that as a further optimization, we could also evalu-
ate the criterion of method (2) on the data path (currently,
we check only the next hop), but this improvement would
come at the expense of additional processing overhead
and forwarding state, which our approach explicitly seeks
to avoid. Hence, our current design adopts a compromise
by validating only the next hop on the data plane and per-
forming full AS-PATH inspection only upon evidence of
anomalous behavior.

If FindAlternateRoutefails to identify and install an-
other working route, recovery forwarding is invoked.
The router adds its local AS number top.blackList,
clearsp.pathTraceandp.blackListRecov, chooses a non-
blacklisted recovery destination, and looks up the corre-
sponding next hop.

Forwarding in recovery mode proceeds analogously
and we omit the pseudocode due to space constraints.
In this mode, a router first looks up and validates the
next hop for p. f inalDestAddrand if a non-blacklisted
path is found, normal-mode forwarding is resumed
by clearing p.pathTrace, and setting p.destAddr←
p. f inalDestAddr. Otherwise the local AS number is in-
serted intop.blackList and recovery-mode forwarding is
continued. The router inspectsp.pathTraceand, if a loop
is detected, truncates it and augmentsp.blackListRecov.
If necessary,FindAlternateRouteis invoked to find an al-
ternate non-blacklisted path and if no such paths exist, the
router initiates recovery forwarding via another destina-
tion.

4 Preliminary Evaluation
The preliminary evaluation we present in this section fo-
cuses on addressing three key questions: (1) How effec-
tive is ACF at sustaining end-to-end connectivity during

4

convergence? (2) In the absence of precomputed backup
routes, how long does it take to recover a packet from an
anomalous path and identify an alternate working route?
(3) How significant is the packet header overhead incurred
by our scheme?

Methodology: To answer these questions, we imple-
mented an event-driven parallel simulator that enables us
to study the dynamics of BGP convergence in realistic
Internet-scale AS topologies and simulate packet forward-
ing at an arbitrary point in time during the convergence
process. Our initial experiments examine the effects of
inter-AS link failures on end-to-end reachability and focus
on failures of access links that connect to a multi-homed
edge domain. We use the CAIDA AS-level topology from
May 12, 2008 [2] annotated with inferred inter-AS re-
lationships. The topology contains 27969 distinct ASes
and 56841 inter-AS links. Following standard convention,
our simulator implements "valley-free" route propagation
policies [7] and customer routes are always preferred over
peer and provider routes.

The topology includes 12937 multihomed edge ASes
and a set of 29426 adjacent provider links. We conduct a
failure experiment for each provider link〈ASp−ASd〉 in
this set. We begin by simulating normal BGP convergence
that results in adoption of consistent policy-compliant
paths toward the destinationASd. Next, we fail its link
to ASp, simulate packet forwarding from each AS toASd

during the period of reconvergence, and identify the set
of ASes that experience temporary loss of connectivity
to ASd during this period. With traditional forwarding,
a source domain is considered disconnected if an interme-
diate router on its path toASd drops a packet because it
does not possess a route or if the packet’s TTL (initially
set to 32 hops) expires, indicating a forwarding loop. With
ACF, a domain is disconnected if its packet is dropped at
the recovery destination and upon TTL expiration.

Transient disconnection after link failures: As ex-
pected, we found that BGP with conventional forwarding
exhibits a substantial amount of transient disconnectivity.
51% of failures cause some of the ASes to experience con-
nectivity loss and 17% of failures cause at least half of all
ASes in the topology to lose connectivity. Figure 2 plots
the fraction of disconnected domains for the cumulative
fraction of failure cases and demonstrates the effective-
ness of ACF. In 84% of failure cases that produce some
disconnectivity with conventional forwarding, ACF fully
eliminates unwarranted packet loss and further, in 96% of
such cases no more than 1% of all ASes experience dis-
connection. The figure also illustrates that recovery for-
warding plays a pivotal role in protecting packet delivery
and ensuring connectivity in the face of anomalies. In a
small number of cases (0.2% of failure cases) our scheme
offers little or no measurable improvement, leaving over

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
A

S
es

Fraction of failure cases

ACF
ACF (no recovery forwarding)

Standard forwarding

Figure 2: Prevalence of transient disconnection after a sin-
gle provider link failure. The x-axis represents the frac-
tion of all failure cases that cause some disconnectivity
with traditional forwarding.

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
at

h
di

la
tio

n
(in

 A
S

 h
op

s)

Fraction of failure cases

ACF

Figure 3: Average path dilation with ACF.

90% of the topology disconnected and further inspection
revealed that in most of these cases, packets fail to dis-
cover a working route within 32 hops.

Path efficiency: By not maintaining a precomputed set
of efficient alternate routes and instead letting packets
discover them dynamically, our scheme can increase the
number of hops a packet traverses during periods of in-
stability. This overhead can be attributed to the fact that
packets can encounter loops and that finding a working
path can require detouring to a recovery destination. We
measured this overhead in the above experiment and Fig-
ure 3 plots the path dilation (averaged over all ASes) for
the cumulative fraction of failure cases. This quantity is
computed by subtracting the length of the final route (in
AS hops) adopted after reconvergence from the length of
the longest path a packet would have to traverse under
ACF before reaching its destination. In 65% of failures
that cause loss under traditional forwarding, ACF recov-
ers packets using no more than two extra AS hops and
only 9% of failures incur the cost of 7 hops or more.

Packet header overhead: Table 1 shows the maximum
number of entries in thepathTraceandblackListheader
fields for a representative sample of failure cases corre-
spoding to 0%, 0.09%, 0.9%, 9%, and 90% transient dis-

5

% disconnected 0% 0.09% 0.9% 9% 90%

pathTracelen. 11 16 16 20 13
blackList len. 4 11 9 11 16

Table 1: Maximum number ofpathTraceandblackList
entries in a representative sample of failures cases.

connection with ACF2. In the worst case,pathTracecon-
sumes 40 bytes assuming that each entry is a 16-bit AS
number. Up to 16 entries are added toblackList and
a Bloom filter representation with 1% lookup error rate
would require 10 bytes.

In summary, our initial evaluation suggest ACF to be
a promising approach that significantly reduces transient
packet loss and incurs reasonable bandwidth and latency
overheads. However, the results presented here are only a
first step toward understanding its full behavior in a com-
plex Internet-scale environment and future work will in-
clude evaluating ACF under a broader range of scenarios
that include failures of transit links, multiple concurrent
failures, link recovery, and BGP policy changes.

5 Discussion and Future Work
In this section, we briefly discuss several concerns per-
taining to ACF and outline directions for further study.

Feasibility of deployment: ACF introduces several
changes to the core mechanisms of IP forwarding and can
thus be seen as facing a substantial barrier to adoption.
More concretely, ACF requires adding several fields to the
packet header, as well as introducing additional logic on
the forwarding path. While clearly non-trivial, we believe
that packet format issues can be addressed via the use of
IP options and/or shim headers. Investigating these issues
in detail and proposing a viable path toward deployment
are two essential topics of future work.

Packet processing overhead: Our scheme adds com-
plexity and computational overhead to the forwarding
plane. We note thatFindAlternateRoute- the most signif-
icant source of overhead in ACF - is invoked only during
periods of instability and only for the purpose of replac-
ing a broken route whose continued usage would other-
wise result in packet loss. In the common case, the over-
head reduces to checkingblackListandpathTracefor the
presence of the local AS number - operations that incur
the cost of a single Bloom filter lookup and a linear scan,
respectively. Both operations admit efficient implementa-
tion in hardware and parallelization. Finally, if the cost
of a vector scan at each hop is deemed unacceptable, loop
detection and recovery can be deferred until TTL expira-
tion and handled at the control plane.

2recovBlackListis not shown because recovery destination paths re-
main stable in this experiment.

ACF and routing policies: Due to recovery forward-
ing, packets in ACF can be forwarded along a path which
violates ISP export policies when viewed from an end-to-
end perspective. At the same time, each individual for-
warding decision in ACF respects policies by considering
only the set of exported routes available in the RIB. In
particular, only policy-compliant paths are used in recov-
ery mode to guide a packet toward a recovery destination.
ACF envisions the emergence of a new inter-ISP relation-
ship landscape, where a group of highly-connected Tier-1
networks would provide the recovery destination service
to multihomed customers that wish to safeguard them-
selves from the adverse effects of routing convergence.
Viewed in this manner, our scheme can be said to provide
policy-compliant forwarding via an intermediate destina-
tion.

6 Related Work
The undesirable side-effects of BGP convergence have
been studied extensively through measurements and sim-
ulations [11, 12, 14, 16, 18]. Prior work on addressing
this problem includes a family of protocol extensions and
heuristics for accelerating BGP convergence and some
examples include ghost flushing [3], root cause notifica-
tions [15], consistency assertions [17], and limiting BGP
path exploration [5].

Another set of techniques, to which our scheme be-
longs, focuses on protecting end-to-end packet delivery
from the adverse effects of convergence and recent work
in this area includes Resilient BGP [10] and Consensus
Routing [8]. Analogously to both schemes, ACF imple-
ments two logically distinct modes of forwarding, which
are differentiated using an extra bit in the packet header.
R-BGP advocates the use of precomputed failover paths
and requires routers to maintain multiple forwarding table
entries for some destinations. To achieve loop-freeness,
R-BGP introduces an assumption regarding route selec-
tion preferences and augments BGP update messages
with root cause information. In contrast, our scheme
works with general preference policies and requires no
changes to the routing protocol, but does not offer prov-
able guarantees of reachability. Consensus Routing en-
sures loop-freedom by enforcing a globally-consistent
view of forwarding state, achieved by strategically de-
laying the adoption of BGP updates. Several transient
forwarding modes are used to ensure high availability
and our approach borrows the idea of detouring via a
highly-connected domain. Consensus Routing also modi-
fies the forwarding path and the per-hop packet encapsu-
lation used in the backtracking transient mode is concep-
tually analogous to ACF’spathTrace. Our main insight
is that carrying the list of prior hops on the data path also
provides the ability to detects loops and thus, global con-
sistency is extraneous if packets can be recovered from

6

loops and redirected via a reasonably efficient path. Con-
sensus Routing delays the adoption of new routes by up
to several minutes which, in certain scenarios, can have
an adverse effect on end-to-end reachability.

Failure-Carrying Packets [?] is a recent proposal for
link-state protocols that protects end-to-end delivery by
augmenting packets with information about link failures.
ACF adopts an analogous approach, but focuses on in-
terdomain policy routing. We compared ACF with the
strawman design for path-vector FCP presented in [?]
and found that FCP improves end-to-end path availabil-
ity for only a fraction of failure cases, demonstrating an
improvement comparable to ACF without recovery-mode
forwarding. Compared to FCP, our scheme does not re-
quire routers to precompute and cache a set of alternate
forwarding table entries and incurs a smaller per-packet
processing overhead (control-plane path reselection is in-
voked much less frequently). A detailed performance
comparison with FCP is a topic of future work.

7 Acknowledgments
We are grateful to Philip Brighten Godfrey for his insight-
ful comments on earlier versions of this paper and the
anonymous reviewers for their valuable and constructive
feedback.

References
[1] A border gateway protocol 4 (BGP-4).http://www.ietf.

org/rfc/rfc4271.txt.
[2] Caida inferred as relationships dataset.http://www.caida.

org/data/active/as-relationships/.
[3] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved bgp con-

vergence via ghost flushing. InINFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. IEEE, volume 2, pages 927–937 vol.2, 2003.

[4] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe. Design and implementation of a routing control
platform. InNSDI’05: Proceedings of the 2nd conference on Sym-
posium on Networked Systems Design & Implementation, pages
15–28, Berkeley, CA, USA, 2005. USENIX Association.

[5] J. Chandrashekar, Z. Duan, Z. L. Zhang, and J. Krasky. Limiting
path exploration in bgp. volume 4, pages 2337–2348 vol. 4, 2005.

[6] P. Francois and O. Bonaventure. Avoiding transient loops during
igp convergence in ip networks. In IEEE, editor,Proceedings of
IEEE INFOCOM 2005, March 2005.

[7] L. Gao and J. Rexford. Stable internet routing without global co-
ordination. IEEE/ACM Trans. Netw., 9(6):681–692, 2001.

[8] J. P. John, E. Katz-Bassett, A. Krishnamurthy, and T. Anderson.
Consensus routing: The internet as a distributed system. In5th
USENIX Symposium on Networked Systems Design & Implemen-
tation, April 2008.

[9] N. Kushman, S. Kandula, and D. Katabi. Can You Hear Me Now?!
It Must be BGP. InComputer Communication Review, March
2007.

[10] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-bgp: Stay-
ing connected in a connected world. In4th USENIX Symposium on
Networked Systems Design & Implementation, Cambridge, MA,
April 2007.

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayedinter-
net routing convergence. InSIGCOMM ’00: Proceedings of the

conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, pages 175–187, New York,
NY, USA, 2000. ACM.

[12] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental study of in-
ternet stability and backbone failures. InFTCS ’99: Proceedings
of the Twenty-Ninth Annual International Symposium on Fault-
Tolerant Computing, page 278, Washington, DC, USA, 1999.
IEEE Computer Society.

[13] J. Luo, J. Xie, R. Hao, and X. Li. An approach to accelerate
convergence for path vector protocol. InGlobal Telecommunica-
tions Conference, 2002. GLOBECOM ’02. IEEE, volume 3, pages
2390–2394 vol.3, 2002.

[14] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Routeflap
damping exacerbates internet routing convergence.SIGCOMM
Comput. Commun. Rev., 32(4):221–233, 2002.

[15] D. Pei, M. Azuma, D. Massey, and L. Zhang. Bgp-rcn: improving
bgp convergence through root cause notification.Comput. Netw.
ISDN Syst., 48(2):175–194, 205.

[16] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of bgp path
vector route looping behavior. InICDCS ’04: Proceedings of the
24th International Conference on Distributed Computing Systems
(ICDCS’04), pages 720–729, Washington, DC, USA, 2004. IEEE
Computer Society.

[17] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, S. Su, and
L. Zhang. Improving bgp convergence through consistency asser-
tions. INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings.
IEEE, 2:902–911 vol.2, 2002.

[18] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measure-
ment study on the impact of routing events on end-to-end internet
path performance. InSIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 375–386, New York,
NY, USA, 2006. ACM.

7

