
Heuristics for Scalable Dynamic Test Generation

Jacob Burnim
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-123

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-123.html

September 19, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thanks to Caltech's UGCS, of the Student Computing Consortium, for
providing the computing resources used in this work. This work is
supported in part by the NSF Grant CNS-0720906 and a gift from Toyota.

Heuristics for Scalable Dynamic Test Generation

Jacob Burnim and Koushik Sen
EECS Department, UC Berkeley, USA

{jburnim,ksen}@cs.berkeley.edu

Abstract

Recently there has been great success in using symbolic
execution to automatically generate test inputs for small
software systems. A primary challenge in scaling such ap-
proaches to larger programs is the combinatorial explosion
of the path space. It is likely that sophisticated strategies
for searching this path space are needed to generate inputs
that effectively test large programs (by, e.g., achieving sig-
nificant branch coverage). We present several such heuris-
tic search strategies, including a novel strategy guided by
the control flow graph of the program under test. We have
implemented these strategies in CREST, our open source
concolic testing tool for C, and evaluated them on two
widely-used software tools, grep 2.2 (15K lines of code) and
Vim 5.7 (150K lines). On these benchmarks, the presented
heuristics achieve significantly greater branch coverage on
the same testing budget than concolic testing with a tradi-
tional depth-first search strategy.

1 Introduction

Testing with manually generated test inputs is the pre-
dominant technique in industry to ensure software quality
— in fact, such manual testing accounts for 50–80% of the
typical cost of software development. However, manual test
input generation is expensive, error-prone, and usually not
exhaustive.

A simple and effective technique for automated test gen-
eration is random testing [2, 22, 9, 4, 6, 23] (a.k.a fuzz test-
ing). In random testing, the program under test is simply
executed on randomly-generated inputs. A key advantage
of random testing is that it scales well in the sense that ran-
dom test input generation takes negligible time. However,
random testing is extremely unlikely to test all possible be-
haviors of a program For example, in the experiments re-
ported in this paper, several hours of random testing covers
only 10% of the branches in the Vim editor.

Several symbolic techniques for automated test genera-
tion [18, 5, 28, 27, 1, 29] have been proposed to address
the limitations of manual and random testing. Such tech-

niques provide better coverage of a program’s behavior be-
cause they try to generate a single test input for each feasible
execution path. In symbolic execution, a program is exe-
cuted on symbolic inputs: the execution of an assignment
statement updates the program state with symbolic expres-
sions and the execution of a conditional statement gener-
ates a symbolic constraint in terms of the symbolic inputs.
Symbolic techniques then generate concrete inputs that sat-
isfy the symbolic constraints generated along each execu-
tion path. Such an input forces the program to take that
execution path during normal testing.

Recently, concolic testing [12, 24] and a related tech-
nique [3] have been proposed as a variant of symbolic ex-
ecution where symbolic execution is performed simultane-
ously with concrete execution. Specifically, the program is
simultaneously executed on concrete and symbolic values,
and symbolic constraints generated along the path are sim-
plified using the corresponding concrete values. The sym-
bolic constraints are then used to incrementally generate
test inputs for better path coverage by conjoining symbolic
constraints for a prefix of the path with the negation of a
conditional taken by the execution. The primary advantage
of concolic execution over pure symbolic simulation is the
presence of concrete (data and address) values, which can
be used both to reason precisely about complex data struc-
tures as well as to simplify constraints when they go beyond
the capabilities of the underlying constraint solver.

In practice, symbolic techniques and concolic testing
have been shown to be very effective in unit testing — of-
ten yielding nearly 95-100% branch coverage on programs
having 100-2000 lines of code. However, both symbolic
and concolic testing fail to scale to large programs. This is
because the possible number of execution paths that must be
considered symbolically is so large that the methods end up
exploring only small part of the program path space. This is
unfortunate, as concolic techniques hold much promise for
larger and complicated pieces of code for which generating
test suites with good coverage is of great importance. A
natural question is how to devise search strategies that help
to achieve branch coverage quickly despite searching only
a small fraction of a program’s path space.

1

A key observation in devising such a search strategy
is that the number of execution paths required to get full
branch coverage is bounded by the total number of branches
in the program, which is both finite and significantly smaller
than the total number of feasible execution paths. There-
fore, to quickly get branch coverage, rather than attempting
to systematically generate test inputs for all feasible execu-
tion paths, we should try to explore only those paths that
would expose some uncovered branch. This motivates our
first proposed search strategy, which is guided by the static
structure of a program, namely the control-flow graph. In
this strategy, we choose branches to negate for the purpose
of test generation based on their distance in the control-
flow graph to currently uncovered branches. We experi-
mentally show that this greedy approach to maximizing the
branch coverage helps to improve such coverage faster, and
to achieve greater final coverage, than the default depth-first
search strategy of concolic testing.

We further propose two random search strategies. In tra-
ditional random testing, we get poor branch coverage be-
cause we sample the input space uniformly when generating
random inputs; many of these inputs lead the program along
the same path, whereas only certain rare inputs may lead the
program to a critical corner case. This motivates our second
search strategy, which attempts to sample uniformly from
the space of execution paths, rather than inputs. Our third
strategy is a variant of the second which we have found to
be more effective in practice.

We have implemented our search strategies for C pro-
grams in a prototype test generation tool, CREST. The
tool is extensible, open source, and publicly available. We
have experimentally evaluated these strategies on three C
benchmarks: (1) replace, a 600-line text-processing pro-
gram and the largest program in the Siemens Benchmark
Suite [17], (2) GNU grep 2.2 [14], a 15K-line open-source
regular expression matching tool, and (3) Vim 5.7 [26], a
150K-line open-source text editor.

Our experiments demonstrate that these search strategies
can more effectively search the path space of a test program
than either random testing or depth-first concolic search.
These strategies cover branches more rapidly, and obtain
greater overall coverage, than random testing or depth-first
search. On the largest benchmark, our control-flow directed
search and our second random search achieve more than
twice the coverage of the other methods.

This paper makes the following contributions:

1. We describe two random search strategies that sample
the path space of a program rather than the input space.
As a result, these strategies achieve superior coverage
in our experiments than pure random testing.

2. We present a novel search strategy that utilizes the
static structure of a program (i.e. the control-flow

graph) to drive dynamic test generation. This search
strategy, which greedily picks paths to improve branch
coverage, outperforms with respect to branch cover-
age both concolic testing with a traditional depth-first
search and the other search strategies.

3. We have implemented our search techniques in
CREST, an extensible, open-source, and publicly-
available test generation tool for C programs. We
successfully apply the tool to a 150K-line C applica-
tion, on which the control-flow directed search strategy
achieves greater coverage than any other strategy.

2 Background

We now give a brief recapitulation of concolic testing
preceded by a description of the programming model.

2.1 Programming Model

We describe our concolic search strategies on a sim-
ple imperative programming language. A program P in
this language consists of a set of functions {f0, . . . , fn−1},
each consisting of a sequence of statements fi =
si,0, . . . , si,mi−1, with labels li,0, . . . , li,mi−1. One of the
functions is distinguished as main, the function at which
the execution of the program begins.

Each function fi begins and ends with special statements
Entryfi

and Exitfi
. All other statements are one of: (1)

an input statement m := INPUT(), (2) a call Call(f) to
some function f , (3) an assignment m := e to memory lo-
cationm of the value of e, an expression free of side effects,
(4) a conditional if p then goto l, where l is the label of
another statement in the same function and p is a predicate
free of side effects, (5) an error statement ERROR.

For any conditional l : if p goto l′, we call the
statements with labels l+1 and l′ the true and false branches
of l, and call these labels branch labels. We require
branches and branch labels to be unique. That is, no state-
ment l : s can be the target of more than one conditional
goto, and a statement immediately following a conditional
cannot be the target of any conditional goto. This require-
ment simplifies our technical description by uniquely pair-
ing the two branches of a conditional statement. Thus, we
can call the two branches l + 1 : s and l′ : s′ of con-
ditional l : if p goto l′ paired branches, denoted by
l + 1 : s = l′ : s′ and l′ : s′ = l + 1 : s.

The execution of a program P on inputs I pro-
ceeds through a sequence of labeled program statements
p0, . . . , pk−1, with p0 = lmain,0 : Entrymain, the first
statement of the main function. We call this a concrete
path or execution, denoted ConcretePath(P, I).

2

2.2 Concolic Execution

Concolic testing performs symbolic execution of the pro-
gram together with its concrete execution. It maintains a
symbolic memory map S and a symbolic path constraint Φ
in addition to the concrete memory. These are updated dur-
ing the course of concolic execution. The symbolic mem-
ory map is a mapping from concrete memory addresses to
symbolic expressions, and the symbolic constraint is a list
of first order formula over symbolic input values. The de-
tails of the construction of the symbolic memory and con-
straints is standard [27, 12, 24]: at every statement l : m :=
INPUT(), the symbolic memory map S introduces a map-
pingm 7→ xm from the addressm to a fresh symbolic value
xm, and at every assignment l : m := e, the symbolic mem-
ory map updates the mapping of m to S(e), the symbolic
expression obtained by evaluating e in the current symbolic
memory. The concrete values of the variables (available
from the concrete memory map) are used to simplify S(e)
by substituting concrete values for symbolic ones whenever
the symbolic expressions go beyond the theory that can be
handled by the symbolic decision procedures.

The symbolic constraint Φ is initially an empty set. At
every conditional statement l : if p then goto l′, if
the execution takes the then branch, the symbolic constraint
(S(p) 6= 0) is appended to Φ and if the execution takes
the else branch, the symbolic constraint (S(p) = 0) is ap-
pended to Φ. Thus, a conjunction of the constraints in Φ
denotes a logical formula over the symbolic input values
that the concrete inputs are required to satisfy to execute
the path executed so far.

Given a concolic program execution along the path
p0, p1, . . . , pk−1, concolic testing generates a new test input
in the following way. It selects a conditional pj along the
path that was executed such that 0 ≤ j < k. (The selection
of j depends on the search strategy.) Let Φl be the symbolic
path constraint just before executing this instruction and φe
be the constraint generated by the execution of this instruc-
tion. Using a decision procedure, concolic testing finds a
satisfying assignment I for the constraint (

∧
φ∈Φl

φ)∧¬φe.
The property of a satisfying assignment is that if these in-
puts are provided at each input statement, then the new exe-
cution will follow the old execution up to the location l, but
then take the conditional branch opposite to the one taken
by the old execution, i.e., the new execution will be of the
form p0, . . . , pj , p

′
j+1, . . . , p

′
m. The satisfying assignment

I is used as the new input for the next run of the program.

2.3 A Generic Concolic Search Strategy

The previous section described how we can use concolic
execution of a program on a given input to generate a new
input that would force the program along a different execu-
tion path. If we repeatedly perform concolic execution on

the newly generated inputs, then we end up generating a set
of test inputs. However, in the description of concolic exe-
cution, we did not specify how we pick a particular branch
where we negate a constraint. An algorithm for selecting
a particular branch in each iteration gives a search strat-
egy for exploring the path space of the program under test.
We next describe a generic algorithm for exploring the path
space. The algorithm can be instantiated with a search strat-
egy and each such instantiation will explore the path space
in a different order. Our goal is to find a search strategy that
enables us to quickly achieve high branch coverage.

The generic algorithm is given in Algorithm 1. The
algorithm maintains a current execution path p, and is
parametrized by three components:

1. A criterion for when to terminate the search.

2. A selection process for picking which branch from the
current execution path p the search should force next.

3. A procedure for continuing the search given an execu-
tion obtained by forcing a branch selected in 2. (Typ-
ically this would either be to set the current execution
p to be the new concrete path, or to make some sort of
recursive call on the new path.)

Algorithm 1 GenericSearchStrategy(program P , path p)
while termination conditions are not met do

i← pick a branch from p
if ∃I that forces P through p0, . . . , pi−1, pi then

q ← ConcretePath(P, I)
process the new execution q

end if
end while

In practice, we typically run such a search strategy on an
initial execution of either random inputs or of all zeros. In
addition to whatever stopping criteria the strategy uses, the
search is terminated once a fixed budget of iterations (exe-
cutions of the program under test) is exhausted. Further, if
the search strategy finishes without using the entire iteration
budget, it may be restarted on new inputs.

2.4 Depth-First Search

Previous concolic testing approaches [12, 24] have used
depth-first search strategies to explore the path space of
the program under test. We describe here BoundedDFS,
a bounded-depth, depth-first search strategy which we use
as a point of comparison in our experimental evaluations.
Specifically, BoundedDFS(p, i, depth), explores all execu-
tions through the true and false branches of the first depth-
many branches at and below statement pi in p that can be
successfully flipped by concolic testing.

3

Strategy BoundedDFS(p, i, depth) is an instance of the
generic search strategy from the previous section. A count,
forced, is maintained of the number of branches forced
along the current execution p, and the search terminates
once forced = depth or when there are no further branches
along p to select. The branch selection process simply picks
the first branch pj with j ≥ i that has not yet been picked. If
this branch is successfully forced, yielding new execution q,
then BoundedDFS(q, j+ 1, depth−1) is called recursively
and forced is increased by one. The search then continues
on the initial path p.

Note that branches which cannot be forced above do not
count towards the depth, and thus, barring any paths with
fewer than d branches that can be forced, BoundedDFS will
successfully force exactly 2d − 1 branches.

3 Random Search Strategies

A widely used form of automated testing is random test-
ing. In random testing, the input space is sampled ran-
domly to generate random inputs. Although such testing
is sometimes quite effective in practice, it suffers from two
key problems. First, many sets of values may lead to the
same execution path and are thus redundant, and second,
the probability of selecting particular inputs that cause some
buggy behavior or explore a corner case branch may be as-
tronomically small [22].

We next describe two search strategies for concolic test-
ing that can randomly sample the path space of a program
rather than its input space. By doing so, we avoid the
problem of re-execution of redundant execution paths while
keeping the inputs random. Moreover, for branches that are
reachable by only a very small fraction of the inputs, ran-
dom execution paths can often cover such branches with
much higher probability than random inputs.

3.1 Uniform Random Search

A natural notion of random execution path through a pro-
gram P is an execution for which the true branch and false
branch of each symbolic conditional is taken with equal
probability. We describe a concolic search algorithm Uni-
formRandomSearch, an instance of the generic search strat-
egy in Section 2.3, which can generate such an execution.

UniformRandomSearch maintains a position i, initially
zero, in its current execution path p = p0, . . . , pn−1.
When selecting a branch, it randomly chooses between
terminating the search or picking one of the branches in
pi, pi+1, . . . , pn−1. Specifically, the jth branch is picked
with probability 2−j , leaving a probability of 2−m that the
search is terminated, where m is the number of branches.

If selected branch pj can be forced, yielding path q, then
the current execution p is replaced by q. In either case, the
position i is set to j + 1 and the search continued.

We show below that, assuming that our decision proce-
dure is complete for all symbolic branches in the program,
UniformRandomSearch generates a path q = q0, . . . , qm−1

with probability 2−k, where k is the number of symbolic
branches along q. Thus, UniformRandomSearch generates
paths uniformly at random.

Prop 1. Suppose while running UniformRandomSearch we
have a target execution, q = q0, . . . , qm−1, a current exe-
cution p = p0, . . . , pn−1, and a current position i such that
p0, . . . , pi−1 = q0, . . . , qi−1. We prove by induction on k,
the number of symbolic branches in qi, . . . , qm−1, that the
algorithm generates path q with probability 2−k. Note that
the desired result is the special case when i = 0.

Proof. • In the base case (k = 0), p and q agree on
all symbolic branches in q. The remaining execu-
tion passes only through conditionals with predicates
to which symbolic inputs do not flow. Thus, the ex-
ecution is completely determined by q0, . . . , qi−1, so
UniformRandomSearch will produce q with probabil-
ity 1 = 20 = 2−k.

• Suppose that the result holds for 0 to k − 1 sym-
bolic branches, and that qi, . . . , qm−1 has k symbolic
branches. Let j be the least j ≥ i such that pi 6= qj .
If no such j exists, then p = q and UniformRandom-
Search generates q iff it immediately terminates, which
occurs with probability 2−k. Otherwise, note that pj
and qj must be symbolic branches with pj = qj .

Then, the algorithm generates q iff it next picks branch
pj to force, and then the recursive call generates
qj+1, . . . , qm−1. If qj is the hth symbolic branch in
qi, . . . , qm−1, then by the induction hypothesis, the
probability that this occurs is 2−h · 2k−h = 2−k.

3.2 Random Branch Search

Algorithm UniformRandomSearch enables us to sample
uniformly from the path space of a program under test, but
it requires L/2 expected runs of the test program to gener-
ate a random execution of length L. Although UniformRan-
domSearch gives a nice theoretical guarantee of a uniformly
random search of the path space, we found, after trial-and-
error, a simpler random search strategy that is more effec-
tive in practice. In the simpler method we simply force a
random branch along the current path in each iteration.

This method, RandomBranchSearch, is again an instance
of our generic search strategy in Section 2.3. The branch se-
lection procedure simply picks a random branch along the
current execution p, and, if the branch can be forced, re-
places the current execution with the resulting one. Option-
ally, the search can restart on new inputs if it fails to uncover
any new branches after some number of iterations.

4

4 Control-Flow Directed Search

The goal of any search strategy in concolic testing is to
generate inputs that collectively cover as many branches as
possible in the program under test. In this section we de-
scribe a concolic search strategy, CfgDirectedSearch, which
uses the static structure of the test program to direct the
search along short paths to currently uncovered branches.
Our experiments demonstrate that this approach can im-
prove branch coverage faster than a traditional depth-first
search, which must systematically explore all paths.

At a high level, CfgDirectedSearch constructs a com-
bined control flow and static call graph for the program
under test. Given a current execution, the algorithm finds
short paths through this static graph from branches along
the execution to branches that have not yet been covered. It
then attempts to force the execution down these short paths.

In the next sections, we formally describe the control
flow and static call graph for a program. We then describe
a sub-strategy, SearchAlongPath, for forcing an execution
along a static path through this graph, and define our no-
tion of the length of such a path. Finally, we describe the
full CfgDirectedSearch algorithm, which is built from these
components.

4.1 Control Flow and Static Call Graph

We define the control flow and static call graph (CFCG)
for a program P . This graph captures the possible paths the
test program can take to reach any given branch. We use the
CFCG during concolic search to determine which branches
to force in order to draw closer to uncovered branches.

For a program P consisting of functions f1, . . . , fn, the
combined control flow and static call graph CFCGP is a
directed graph whose vertices are the statements (equiva-
lently, labels) of P , and with edges from each statement
li,j : si,j to its immediate successors:

none if si,j = Exitfi

l′ and li,j+1 if si,j = if p goto l′

Entryf and li,j+1 if si,j = Call(f)
li,j+1 otherwise

Note thatCFCGP is exactly the union of the traditional,
per-function control flow graphs for f0, . . . , fn−1, with an
added call edge from each call call site to the entry point of
the called function.

We will call a path in CFCGP a static path. Note
that because CFCGP contains no edges from functions
back to their call sites, a static path through some state-
ment l : Call(f) must either skip entirely over the body
of f or enter f and never leave. Thus, a static path captures
only a fragment of a possible execution of P . Specifically, a
static path from Entrymain to some statement s of P gives
a sequence of statements and function calls an execution

could take to reach s, but omits the concrete path through
any function call that does not enclose s.

We next describe a relation matches between dynamic
executions and static paths. We will use this relation to de-
scribe our CFG-directed search algorithm. Formally, we
say that a subsequence pi, . . . , pj of an execution p =
p0, . . . , pn−1 matches some static path S = s0, . . . , sm−1

iff pi = s0 and either:

• pi+1, . . . , pj matches s1, . . . , sm−1

• pi, . . . , pj = Call(f),Entryf , . . . ,Exitf , pi′ , . . . , pj
and pi′ , . . . , pj matches s1, . . . , sm−1

Further, we define an empty static path to be matched by
any subsequence of an execution.

4.2 Dynamic Search Along a Static Path

We describe a concolic search algorithm which, given
an execution of program P and a static path S, attempts to
force the execution of P to follow S. Our overall control-
flow-directed search strategy will consist essentially of se-
lecting short static paths to uncovered branches and then
using this procedure to solve for an execution that reaches
the uncovered branch.

Formally, SolveAlongPath(p, i, S) is a procedure which
takes as input an execution p = p0, . . . , pn−1 through
program P , a branch pi on p, and a static path S =
s0, . . . , sm−1 in CGCGP . If successful, it returns a path
q such that p0, . . . , pi−1 = q0, . . . , qi−1 and the remainder
qi, qi+1, . . . of q matches S.

Procedure SearchAlongPath is an instance of the generic
concolic search strategy given in Section 2.3. In a call
to SearchAlongPath(p, i, S), we find the longest matching
subsequences pi, . . . , pi+k−1 and s0, . . . , sj−1 of execu-
tion p and static path S, respectively. If S is completely
matched, the search terminates successfully. Otherwise, if
pi+k and sj are branches, and pi+k = sj , then we select
branch pi+k to be forced. If forcing is successful, return-
ing a new path p′, we set p ← p′ and allow the search to
continue. If either one of pi+k or sj is not a branch or the
forcing does not succeed, the search terminates in failure.

Each successful forcing above increases the number of
branches in S that are matched. Thus, SearchAlongPath
will terminate after having selected and forced a branch no
more times than the number of branches in S. The number
of branches along S is therefore a measure of the difficulty
of forcing a concrete execution to match S.

Motivated by the above observation, we define a dis-
tance metric on CFCGP to capture this difficulty of forc-
ing execution along the static graph. Each edge (s, t) is
given weight 1 iff t is a branch and weight 0 otherwise.
Then, the weight of static path pi−1, s0, . . . , sm−1 equals
the number of branches along S, and thus bounds the cost of

5

SearchAlongPath(p, i, S). The distance d(s, t) from state-
ment s to t is then the minimum weight over all paths from
s to t in CFCGP .

Note that procedure SearchAlongPath is not complete
because it does not explicitly search over all executions
through the functions that the static path skips over. A
search over all such executions, however, is not necessar-
ily even finite.

4.3 CFG-Directed Search Algorithm

Using the procedure SearchAlongPath from the previous
section, we describe a search algorithm CfgDirectedSearch
which attempts to systematically increase the branch cover-
age of a program under test by driving execution down short
static paths to currently uncovered branches.

Algorithm CfgDirectedSearch is an instance of the
generic search strategy given is section 2.3. As with the
other strategies described, the search terminates in failure
if it runs out of branches to select, it exhausts its budget of
test iterations, or if it uncovers no new branches after some
set number of iterations. We describe the branch selection
procedure and processing of new execution paths below.
Selection of Branches. The algorithm selects branches b to
force which have the shortest static paths from their paired
branches b to a currently uncovered branch. Specifically,
using the distance metric on CFCGP from the previous
section, we define:

UncoveredDistance(b) = min
b′uncovered

d(b, b′)

Further, for each branch b we track tries(b), the number of
times that we have previously flipped the execution from
b to b during the current search. When selecting a branch
from p = p0, . . . , pn−1, we randomly pick a pi with mini-
mal UncoveredDistance(pi) + tries(pi).

Note that we can compute UncoveredDistance(b) for
all branches b with a single run of Dijkstra’s Algo-
rithm on CFCGP with its edges reversed. We initialize
UncoveredDistance(b) = 0 for all uncovered branches b
and then Dijkstra’s Algorithm will find, for each branch b′,
the minimum distance in CFCGP from b′ to any uncov-
ered branch. (Recall that each edge (s, t) in CFCGP has
weight 1 iff t is a branch and weight zero otherwise.) We
recompute these quantities whenever a new branch is cov-
ered.

The addition of the tries(pi) term is a heuristic used to
address two problems encountered in practice. We justify
this branch selection heuristic below, after first describing
how the CfgDirectedSearch algorithm processes new paths
found when forcing its selected branches.
Processing of New Paths. If we are successful in forc-
ing some branch pi selected above, yielding an execu-
tion q, we then use SearchAlongPath(q, i + 1, S) to try

to drive the execution down all static paths S of weight
UncoveredDistance(pi) + tries(pi) or less from pi to cur-
rently uncovered branches. If any call to SearchAlongPath
succeeds, we find some execution path which hits a previ-
ously uncovered branch.

In this case, we update the current concrete path
to equal the new path, reset tries(b), and recompute
UncoveredDistance(b), before continuing CfgDirected-
Search. Thus, our control-flow directed search is a local
search, as it essentially restarts on every newly-discovered
branch and never explicitly revisits older paths.

If instead SearchAlongPath(q, i + 1, S) does
not succeed for any static path S of length up to
UncoveredDistance(pi) + tries(pi), then we increase
tries(pi) by one and return to branch selection.

Note that, for any fixed k, the number of weight-k static
paths (i.e. with k or fewer branches) in CFCGP from pi
is finite because every cycle in CFCGP has length at least
one. This is because every cycle must contain either a con-
ditional goto or a recursive call, and any non-degenerate
recursive call must be guarded by a conditional statement.

In practice, this search over all weight-k paths is efficient
both because the number of such paths tends to be small
for small k and because we can force along multiple static
paths simultaneously. For example, if we wish to attempt to
force the execution from some statement along static paths
S = s0, s1, s2, s3 and S′ = s0, s1, s2, s3, we need only
force once along the common prefix s0, s1, s2.

Branch Selection Heuristic. The simplest way to prior-
itize the branches b ∈ p above would be to simply pick
them in increasing order of UncoveredDistance(b). But
there are two practical problems with this approach. First,
the search can get stuck repeatedly forcing a small num-
ber of branch statements which appear along the current
execution many times and which have short but infeasible
paths to uncovered branches. Second, for many branches
pi along p, the shortest feasible path through CFCGP
from pi to an uncovered branch may be slightly longer than
UncoveredDistance(pi). With this simplest approach, static
paths longer than UncoveredDistance(pi) will never explic-
itly be explored.

The addition of the tries(b) term helps to address both
of these issues. Because we increase tries(b) each time we
force some pi = b but fail to find any uncovered branches,
we will not get stuck forcing all other occurrences pj = b
of the branch before trying other branches with similar
UncoveredDistance’s. Further, the next time some pj = b
is forced, longer static paths will be explored. Thus, we can
view the increase in tries(b) as revising upwards our esti-
mate of the least feasible distance from b to some uncovered
branch.

This heuristic could likely be improved by maintaining
more detailed, global information about when CfgDirect-

6

edSearch has failed to find uncovered branches below each
source branch, rather than tracking only simple counts and
discarding them whenever a new branch is found. Further,
although increasing tries(b) after forcing some pi = b leads
to the algorithm searching along longer static paths the next
time it forces some other branch pj = b, it never returns to
pi to explore longer paths. However, the current heuristic is
sufficient to achieve significant branch coverage in practice.

5 Evaluation

We have implemented our search strategies in CREST, a
prototype test generation tool for C programs. We exper-
imentally evaluate the effectiveness of these strategies on
replace, the largest program in the Siemens Benchmark
Suite, and on two popular open-source applications, grep
2.2 [14] and Vim 5.7 [26]. All experiments were run on
2GHz Core2 Duo servers with 2GB of RAM and running
Debian GNU/Linux.

With these experiments, we aim to validate the hy-
potheses that: (1) on a fixed testing budget, our random
and control-flow directed search strategies can yield higher
overall branch coverage than traditional random testing or
concolic testing with a depth-first search strategy, and (2)
that relative performance of these methods improves for
programs with larger path spaces.

For each benchmark, we compare the performance of the
different search strategies over a fixed number of iterations
– i.e. runs of the instrumented program. We believe this is
an appropriate measure for the testing budget, because, for
larger programs, we expect the cost of symbolic execution
to dominate processing done by the strategies themselves.
All unconstrained inputs were initially set to zero.

For both grep and Vim, the way we instrument and run
the tested programs restricts the set of possible program be-
haviors. Thus, in addition to reporting absolute branch cov-
erage, we report relative coverage – the fraction of reach-
able branches covered. We estimate the number of reach-
able branches by summing the branches from each function
that was reached by any test run.

5.1 Implementation

CREST, our open-source test-generation tool, consists of
three main pieces: an OCaml instrumentation tool, a C++
concolic execution library, and a C++ search strategy frame-
work.

CIL [21], an OCaml application for parsing, transform-
ing, and analyzing C code, is used to instrument the source
of the program under test for concolic testing and to extract
the control flow and static call graph. The library performs
concolic execution, as described in Section 2.1, simultane-
ously with the concrete execution of the program.

The search strategy framework provides primitives for
writing a concolic search strategy, such as methods for flip-
ping and solving path constraints using the Yices [7] SMT
solver. We implemented the search strategies described in
this paper in this framework in 1000 lines of C++ code.

Note that CREST does not currently perform any static
reasoning about calls through function pointers. Thus, we
may encounter execution paths that do not correspond to
any static paths in the control flow and static call graph,
potentially leading to dynamic distances between branches
that are smaller than the static distances in the CFCG.

5.2 Siemens Benchmark Suite

The Siemens Benchmark Suite [17] contains seven pro-
grams for benchmarking bug finding and program analy-
sis tools. replace, the largest of these benchmarks, is a
600-line text processing program, with 200 branches after
instrumentation.
replace reads a source and destination pattern and a

line of text, and replaces the source pattern with the destina-
tion pattern in the line. In our experiments, we restricted the
two patterns to 10 symbolic characters, and the line of text
to 20 symbolic characters for all strategies but the depth-
first search. To have a fair comparison, we used 5-character
patterns with the DFS strategy, so that with a depth of 14
the search could reach the pattern matching code. Further, a
minor optimization was needed for the CFG-directed search
on this benchmark to handle the small program size, the de-
tails of which are omitted for space reasons.

Figure 1 is a plot of the coverage achieved by the various
strategies over 3000 iterations, averaged over three trials. In
a single minute of testing, all of the concolic search strate-
gies were able to cover 80% of the branches in replace.
In fact, in an additional couple of minutes the best concolic
runs achieved 85% or even 90% branch coverage. This is
close to the best possible, as a brief inspection shows that
many of the remaining branches are clearly infeasible.

These experiments provide some evidence that our
search strategies can obtain branch coverage at a greater
rate than random testing or depth-first concolic search.
replace is small enough, however, that a depth-first
search is able to exhaustively explore a large portion of the
path space. We need to test on larger benchmarks to eval-
uate whether our search strategies can provide significant
branch coverage where an exhaustive, depth-first search
cannot.

5.3 GNU Grep

GNU grep is a widely-used open-source tool for text
search with regular expressions [14]. grep 2.2 contains
roughly 15K lines of C code and, after instrumentation,
2142 conditional statements with 4184 branches.

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 14)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

Figure 1. Branch coverage achieved by dif-
ferent search strategies on replace, aver-
aged over three runs. replace contains 200
branches, all of which are reachable.

In our experiments, we modified grep 2.2 to match a
length-m symbolic pattern against n symbolic characters.
We ran the instrumented grep with no arguments except
for a pattern string and a single file to search, and we thus
tested neither grep’s “fixed” or “extended” modes, nor
most of its processing of command-line arguments or mul-
tiple input files. This limits the achievable branch coverage,
so we report relative as well as absolute coverage.

For all search strategies but the depth-first search (DFS),
we used m = 20 and n = 40 for the symbolic input sizes.
These limits keep concolic execution of the instrumented
grep reasonably efficient – roughly 40 runs per second –
while providing sufficient freedom to exercise most possi-
ble program behaviors. In order to have a fair comparison
against the DFS strategy, we used m = 5 and n = 40 for
the depth-first search, so that a depth-12 search was able to
reach past the grep code for parsing and pre-processing
the pattern and into the matching code.

Figure 2 is a plot of the coverage achieved by the various
strategies over 4000 iterations, averaged over three trials.
In a couple of minutes, the most effective search strategies
were able to cover more than a third of the 4184 branches
— nearly 60% of the estimated 2854 reachable branches.

Notice that the control-flow directed search and both
random searches outperformed traditional random testing
and depth-first search. In particular, the CFG-directed and
random-branch strategies increased coverage very rapidly
in the first 200 to 300 iterations. In fact, even if we in-
creased the input size to n = 200 and m = 400, slowing
execution down to only 4 iterations per second, random test-
ing came close to, but still could not match, the performance
of the CFG-directed and random-branch searches with only

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 12)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

Figure 2. Branch coverage achieved by dif-
ferent search strategies on grep 2.2, aver-
aged over three runs. grep 2.2 contains 4184
branches, an estimated 2854 of which are
reachable given our instrumentation.

n = 20 and m = 40. Similarly, allowing the depth-first
search a depth of 14 and nearly 16K iterations closed only
half the gap to these two strategies.

Note also that the depth-12 DFS terminated in fewer than
212 iterations because some executions contained fewer
than 12 feasible symbolic branches.

5.4 The VIM Editor

Vim is a popular, open-source text editor [26]. Vim 5.7
contains roughly 150K lines of C code and, after instrumen-
tation, 39166 branches.

We replaced the safe vgetc (and vgetc) input func-
tions with ones returning symbolic inputs. These functions
provide the inputs to most, but not all, modes in Vim. We
were thus unable to test Ex mode and several other parts of
the editor, and therefore report relative in addition to abso-
lute branch coverage. In our experiments we restricted Vim
5.7 to receive 20 symbolic characters as input. Due to the
size of Vim and the cost of symbolic execution, we could
run only one test execution every 2-3 seconds.

Figure 3 is a plot of the coverage achieved by the var-
ious search strategies over 4000 iterations, averaged over
three trials. In 2-3 hours of testing, the most effective search
strategy covered 19% of the total branches, or nearly a third
of the estimated 23400 reachable branches. This perfor-
mance is close to that reported in [19] on Vim 5.7, but here
this coverage is achieved with inputs of only 20 characters
rather than inputs thousands or millions of characters long.

Note that, on this larger benchmark, the control-flow
directed and random-branch searches achieved more than

8

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 12)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

Figure 3. Branch coverage achieved by dif-
ferent search strategies on Vim 5.7, aver-
aged over three runs. Vim 5.7 contains 39166
branches, an estimated 23400 of which are
reachable given our instrumentation.

twice the coverage of random testing or concolic testing
with a depth-first search. Further, these two strategies ob-
tained coverage very rapidly, achieving at iterations 100 and
150, respectively, greater coverage than the other strategies
did in 4000 iterations.

Further, even allowing 200 characters of input, random
testing covered only roughly 4000 branches over 4000 iter-
ations, still far short of the performance of the control-flow
directed and random-branch searches.

6 Related Work

Groce and Visser [15] present several strategies for ex-
ploring the state space in the context of model checking
Java programs. Specifically, they propose best-first,A∗, and
beam search, combined with code coverage heuristics, and
compare these search strategies with traditional DFS and
BFS. Further, dynamic test generation tools EXE [3] and
SAGE [13] use similar strategies and code coverage heuris-
tics. One key difference between these approaches and our
CFG-directed strategy is that these heuristics use dynamic
properties (i.e. measured along the already-explored paths),
whereas our CFG-directed heuristic exploits the static struc-
ture of the program. Therefore, our search strategy bases its
decision on both explored and unexplored parts of the pro-
gram.

Another key difference is that the above approaches use
global searches, which maintain a pool of many possible
executions from which the search through the path space
can be continued. The search strategies in this work are
essentially local, considering only a single execution at a

time from which new executions are generated. We believe
such global search strategies could be gainfully combined
with our static control-flow based heuristic search.

Grammar-based techniques have recently been pro-
posed [20, 11] for generating complex inputs for software
systems. While very effective, these techniques require a
grammar to be given for the test program’s input, which
may not always be feasible.

Hybrid Concolic Testing (HCT) [19] interleaves random
testing with bounded, depth-first concolic search. The key
difference between HCT and our search strategies is that
HCT is only suitable for reactive systems that have infinite
behavior, whereas CREST is applicable to general programs.
Moreover, HCT typically produces extremely long test in-
puts, which can hinder debugging.

Several randomized algorithms for model checking have
also been proposed. For example Monte Carlo Model
Checking [16] uses random walks on the state space to
give probabilistic guarantees on the validity of properties
expressed in linear temporal logic. Statistical model check-
ing techniques [30, 25] verify probabilistic models against
probabilistic properties approximately within probabilistic
error bounds. Randomized depth-first search and its parallel
extension [8] have been developed to dramatically improve
the cost-effectiveness of state-space search techniques us-
ing parallelism. Evolutionary algorithms have been used in
the Verisoft model-checker [10] to find bugs quickly. How-
ever, most of these techniques are applicable to concurrent
programs that have data inputs from a small domain.

7 Conclusions

We believe that a combination of static and dynamic
analyses can help automated test generation to achieve sig-
nificant branch coverage on large software systems. We
have presented several strategies for dynamically searching
the path space of a test program to generate test inputs, in-
cluding one strategy that uses the static control flow graph
of a program to drive dynamic test generation. Our ex-
periments show that two of these approaches, one which
randomly searches the path space and one whose search is
guided by the static structure of the program under test, can
obtain greater coverage on real-world software systems than
either random testing or concolic testing with a depth-first
search which attempts to exhaustively search the path space.
In particular, these strategies achieve more than twice the
coverage on our largest benchmark.

8 Acknowledgments

Thanks to Caltech’s UGCS, of the Student Computing
Consortium, for providing the computing resources used in
this work. This work is supported in part by the NSF Grant
CNS-0720906 and a gift from Toyota.

9

References

[1] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating Test from Counterexamples. In
Proc. of the 26th ICSE, pages 326–335, 2004.

[2] D. Bird and C. Munoz. Automatic Generation of Random
Self-Checking Test Cases. IBM Systems Journal, 22(3):229–
245, 1983.

[3] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. En-
gler. EXE: Automatically generating inputs of death. In
ACM Conference on Computer and Communications Secu-
rity (CCS 2006), 2006.

[4] K. Claessen and J. Hughes. Quickcheck: A lightweight tool
for random testing of Haskell programs. In Proc. of 5th ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP), pages 268–279, 2000.

[5] L. Clarke. A system to generate test data and symbolically
execute programs. IEEE Trans. Software Eng., 2:215–222,
1976.

[6] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java. Software: Practice and Experience,
34:1025–1050, 2004.

[7] B. Dutertre and L. M. de Moura. A fast linear-arithmetic
solver for DPLL(T). In Computer Aided Verification, volume
4144 of LNCS, pages 81–94, 2006.

[8] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Paral-
lel randomized state-space search. In ICSE ’07: Proceedings
of the 29th International Conference on Software Engineer-
ing, pages 3–12. IEEE, 2007.

[9] J. E. Forrester and B. P. Miller. An Empirical Study of
the Robustness of Windows NT Applications Using Random
Testing. In Proceedings of the 4th USENIX Windows System
Symposium, 2000.

[10] P. Godefroid and S. Khurshid. Exploring very large state
spaces using genetic algorithms. In 8th International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 02), pages 266–280, 2002.

[11] P. Godefroid, A. Kiezun, and M. Levin. Grammar-based
Whitebox Fuzzing. PLDI, 2008. (to appear).

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed au-
tomated random testing. In Proc. of the ACM SIGPLAN 2005
Conference on Programming Language Design and Imple-
mentation (PLDI), 2005.

[13] P. Godefroid, M. Levin, and D. Molnar. Automated White-
box Fuzz Testing. Technical report, Technical Report MSR-
TR-2007-58, Microsoft, May 2007.

[14] GNU grep. http://www.gnu.org/software/
grep/grep.html.

[15] A. Groce and W. Visser. Heuristics for model checking java
programs. International Journal on Software Tools for Tech-
nology Transfer (STTT), 6(4):260–276, 2004.

[16] R. Grosu and S. A. Smolka. Monte carlo model checking. In
11th International Conference Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2005), vol-
ume 3440 of LNCS, pages 271–286, 2005.

[17] J. Harrold and G. Rothermel. Siemens programs, HR vari-
ants. http://www.cc.gatech.edu/aristotle/
Tools/subjects/.

[18] J. C. King. Symbolic Execution and Program Testing. Com-
munications of the ACM, 19(7):385–394, 1976.

[19] R. Majumdar and K. Sen. Hybrid concolic testing. In
29th International Conference on Software Engineering
(ICSE’07), pages 416–426. IEEE, 2007.

[20] R. Majumdar and R. Xu. Directed test generation using
symbolic grammars. Foundations of Software Engineering,
pages 553–556, 2007.

[21] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Inter-
mediate language and tools for analysis and transformation
of C programs. In Proceedings of Conference on Compiler
Construction, 2002.

[22] J. Offut and J. Hayes. A Semantic Model of Program Faults.
In Proc. of ISSTA’96, pages 195–200, 1996.

[23] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In 19th European Confer-
ence Object-Oriented Programming, 2005.

[24] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In 5th joint meeting of the Eu-
ropean Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE’05). ACM, 2005.

[25] K. Sen, M. Viswanathan, and G. Agha. Statistical model
checking of black-box probabilistic systems. In 16th Interna-
tional Conference on Computer Aided Verification (CAV’04),
volume 3114 of LNCS, pages 202–215. Springer, 2004.

[26] VIM. http://www.vim.org/.

[27] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input gen-
eration with Java PathFinder. In Proc. 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis,
pages 97–107, 2004.

[28] S. Visvanathan and N. Gupta. Generating test data for func-
tions with pointer inputs. In 17th IEEE International Con-
ference on Automated Software Engineering, 2002.

[29] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In Procs. of TACAS, 2005.

[30] H. L. S. Younes and R. G. Simmons. Probabilistic verifi-
cation of discrete event systems using acceptance sampling.
In 14th International Conference on Computer Aided Veri-
fication (CAV’02), volume 2404 of LNCS, pages 223–235.
Springer, 2002.

10

