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Abstract

Optimizing Mapping in System Level Design

by

Qi Zhu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

To cope with the increasing complexity of electronic systems and time-to-market

requirements, platform-based design (PBD) was proposed as a powerful design methodol-

ogy. The core concepts in PBD are (1) the separation of concerns between functionality and

architecture, which facilitates design reuse at all design levels, and (2) the successive refine-

ment of the design by mapping functionality onto architecture. Optimal mapping optimizes

a set of objective functions while satisfying constraints on the mapped design. Formalized

design methods gain traction in the designer community when they facilitate automating

the design process from specification to implementation, as witnessed by the RTL to layout

ASIC flow. While logic synthesis and layout synthesis, which can be seen as special cases of

optimized mapping, have been widely researched and many excellent algorithms have been

made available, the mapping problem at the system level is typically solved in an ad-hoc

and implicit manner based on designer experience.
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This dissertation proposes a formal mapping procedure that enables the develop-

ment of automatic tools. The mapping procedure is based on a two-stage process. First

a common semantics between function and architecture models is determined and an ap-

propriate set of primitives is selected to decide the abstraction level. Then mapping is

formulated and solved as an optimal covering problem where the function model is covered

by a minimum cost set of architecture components.

We demonstrate the use of the formal approach for the optimal mapping problems

in two widely different application domains which feature different models of computation

for representation as well as different implementation platforms. This process is general in

the sense that it can be applied at all levels of abstraction and for a variety of system level

design problems.

In our case studies, Metropolis – a design framework for platform-based design

– was used to validate our approach. And the insights gained from these case studies

motivated the development of Metro II, the next-generation of Metropolis.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair



i

To my family.



ii

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Platform-based Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Approach for Optimizing Mapping . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Metropolis Design Framework . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Other Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.3 Formalism of Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Mapping Procedure 28
2.1 Stage 1: Model Functionality and Architecture in Common Modeling Domain 28

2.1.1 Modeling Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Relations between Modeling Domains . . . . . . . . . . . . . . . . . 32
2.1.3 Common Modeling Domain Selection . . . . . . . . . . . . . . . . . . 35

2.2 Stage 2 : Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Stage 3 : Further Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.2 Buffer Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Case Studies 46
3.1 Real-time Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Stage 1 : Choosing Common Modeling Domain . . . . . . . . . . . . 49
3.1.2 Stage 2 : Solving Covering Problem . . . . . . . . . . . . . . . . . . 53
3.1.3 Stage 3 : Further Optimization . . . . . . . . . . . . . . . . . . . . . 70
3.1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



iii

3.2 Multimedia Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.1 Stage 1 : Choosing Common Modeling Domain . . . . . . . . . . . . 83
3.2.2 Stage 2 : Solving Covering Problem . . . . . . . . . . . . . . . . . . 90
3.2.3 Stage 3 : Further Optimization . . . . . . . . . . . . . . . . . . . . . 91
3.2.4 Alternative Covering Problem Formulations and Algorithms . . . . . 99

4 The Metro II Design Framework 101
4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Heterogeneous IP Import . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Behavior-Performance Separation . . . . . . . . . . . . . . . . . . . . 106
4.2.3 Mapping Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.3 Constraint Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.4 Annotators and Schedulers . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.5 Mappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.6 Adaptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Execution Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1 Three-Phase Execution . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.2 Semantics of Require/Provided Ports . . . . . . . . . . . . . . . . . . 116
4.4.3 Semantics of Mappers . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Metro II Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.1 H.264 Function Model . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.6.2 Room Temperature Control System . . . . . . . . . . . . . . . . . . 121

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Conclusions and Future Work 125
5.1 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography 129



iv

List of Figures

1.1 2007 ITRS Product Technology Trends: Product Function per Chip and
Industry Average “Moore’s Law” Trends . . . . . . . . . . . . . . . . . . . . 3

1.2 Exponentially Increasing Application Complexity . . . . . . . . . . . . . . . 4
1.3 Hardware and Software Design Gaps Versus Time . . . . . . . . . . . . . . 5
1.4 Increase of IC Design Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Meet-in-the-Middle Design Paradigm . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Mapping Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Synchronizing Events to Realize Mapping . . . . . . . . . . . . . . . . . . . 18
1.8 Infrastructure of Metropolis Framework . . . . . . . . . . . . . . . . . . . . 20

2.1 PN Semantics by Trace-based Agent Algebra . . . . . . . . . . . . . . . . . 30
2.2 Mapping Space in Common Modeling Domain . . . . . . . . . . . . . . . . . 36
2.3 Common Modeling Domain Selection . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Design Flow for Real-time Distributed Systems . . . . . . . . . . . . . . . . 48
3.2 Domain Relation Graph for Automotive Case Study . . . . . . . . . . . . . 50
3.3 Vehicle Stability Control Application . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Automotive Architecture Modeled in Metropolis . . . . . . . . . . . . . . 53
3.5 Sub-problems of Mapping in Real-time Distributed Systems . . . . . . . . . 55
3.6 Mapping of Tasks to ECUs and Signals to Messages . . . . . . . . . . . . . 57
3.7 End-to-End Latency Calculation . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Two Step Synthesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 Period Optimization Meets All Deadlines . . . . . . . . . . . . . . . . . . . 79
3.10 Iterative Reduction in Maximum Estimation Error . . . . . . . . . . . . . . 81
3.11 JPEG Encoder Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.12 Block Diagram of MXP5800 Platform . . . . . . . . . . . . . . . . . . . . . 85
3.13 Domain Relation Graph for Image Processing Case Study . . . . . . . . . . 88
3.14 JPEG Functionality at Different Abstraction Levels . . . . . . . . . . . . . 89
3.15 MXP5800 Modeling in Metropolis . . . . . . . . . . . . . . . . . . . . . . 91
3.16 Comparison of Mappings at Different CMDs . . . . . . . . . . . . . . . . . . 92
3.17 Artificial Deadlock Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.18 Transformation from Task Precedence Graph to Dependency Graph . . . . 98



v

4.1 Integrating Heterogeneous IP in Metropolis and Metro II . . . . . . . . 105
4.2 Atomic Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Three-Phase Execution in Metro II . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Process States in Metro II . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5 Metro II Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6 H.264 Function Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.7 Design Flow of the Room Temperature Control System . . . . . . . . . . . 122
4.8 Metro II Function Model and OpenModelica . . . . . . . . . . . . . . . . . 123



vi

List of Tables

3.1 Latency over Local Harmonic Path Fragments . . . . . . . . . . . . . . . . . 60



vii

Acknowledgments

I would first like to thank my advisor Prof. Alberto Sangiovanni-Vincentelli for

his guidance and support over the years. I am truly grateful for his help, not only on

my research, but also in my life. Alberto is always a great source of insights, new ideas

and motivations. Many of the original ideas in this dissertation came from the discussions

with him. His emphasis on formalizing approaches and on improving written and verbal

communication skills has greatly influenced my graduate study, and will continue to guide

me in my future research.

I would like to thank Prof. Jan Rabaey and Prof. Phil Kaminsky for reviewing

my dissertation. I also want to thank them and Prof. Robert Brayton for being on my

qualifying exam committee. Their acute comments from various angels helped shaping this

research. I want to thank Prof. Kurt Keutzer for reading my Masters report and providing

helpful feedback. He has given me a lot of help and advice. And his class on business of

software introduced me to entrepreneurship. During my study in Berkeley, I have taken

many excellent courses. I want to thank all the professors who taught me. I learned from

them not only the knowledge, but also the ways to think. In particular, I would like to

thank Prof. Andreas Kuehlmann for his logic synthesis class. I studied many fascinating

CAD algorithms in the class, and had a very interesting project to work on. The course

project was extended to a year-long collaboration, during which I learned a lot from Prof.

Kuehlmann and my project partner Nathan Kitchen, especially from their emphasis on

efficient implementation of ideas.

I had the chance to work with a number of wonderful researchers from industry and



viii

academia. They include: Felice Balarin, Luca Carloni, Marco Di Natale, Paolo Giusto, Shin-

jiro Kakita, Sri Kanajan, Luciano Lavagno, John Moondanos, Roberto Passerone, Claudio

Pinello, Guido Poncia, Eelco Scholte, Stavros Tripakis, and Yosinori Watanabe. I would

like to thank them for their help and mentorship. In particular, Marco Di Natale and

John Moondanos were heavily involved in the research presented in this dissertation. I

have learned a lot from them through the collaboration. Guido Poncia and Eelco Scholte

were my mentors during my internship in United Technologies Research Center. They and

other researchers there showed me the importance of linking research projects with business

opportunities. That internship was truly an amazing experience for me.

During my years in Berkeley, I was fortunate to interact with a group of talented,

creative colleagues and friends. They include, but not limited to: Alvise Bonivento, Bryan

Brady, Bryan Catanzaro, Donald Chai, Arindam Chakrabarti, Satrajit Chatterjee, Minghua

Chen, Rong Chen, Jike Chong, Massimiliano D’Angelo, Abhijit Davare, Douglas Densmore,

Yitao Duan, Thomas Feng, Carlo Fischione, Arkadeb Ghosal, Ling Huang, Yunjian Jiang,

Nathan Kitchen, Yanmei Li, Cong Liu, Kelvin Lwin, Mark McKelvin, Trevor Meyerowitz,

Fan Mo, Hiren Patel, Alessandro Pinto, Kaushik Ravindran, Alena Samalatsar, N.R. Satish,

Farhana Sheikh, Jimmy Su, Xuening Sun, Guoqiang Wang, Zile Wei, Wei Xu, Guang Yang,

Hao Zhang, Haibo Zeng, Wei Zheng, Feng Zhou, and Li Zhuang. A huge amount of thanks

goes to Abhijit Davare, who has been a great collaborator, friend and English teacher in the

past four years. We worked together on many of the projects included in this dissertation.

This work would not have been possible without him.

I would like to thank all the staff and administrators who have been supporting



ix

our study and research here. Special thanks to Ruth Gjerde in the EE Graduate Student

Office for her patient help on many things over the years.

Last but certainly not least, I would like to thank my parents and my wife. My

parents raised me up and gave me everything I needed. They always put me before them-

selves. Without them, I would not have accomplished my goals. My wife Yang is the most

amazing and lovely person I have ever met. She is my best friend, and my best supporter.

She is always supportive no matter what choices I make, many times at her own sacrifice.

Now she is pursuing her Ph.D. in the same field as me. I wish her the best and wish us the

best.

This work was supported in part by the Center for Hybrid and Embedded Soft-

ware Systems (CHESS) at UC Berkeley, which receives support from the National Science

Foundation (NSF award #CCR-0225610), the State of California Micro Program, and the

following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon, Mi-

crosoft, National Instruments, and Toyota. This work was also supported in part by the

MARCO-sponsored Gigascale Systems Research Center (GSRC) and a grant from the Con-

sumer Electronics Group of Intel Corporation.



1

Chapter 1

Introduction

The complexity of electronic systems has been increasing dramatically. Designers

are also faced with the need of delivering with tight constraints on time-to-market and

reliability. Traditional bottom-up and incremental methods are not adequate as complexity

causes side effects that are unpredictable and that delay the delivery and affect the quality

of the designs.

One may think that developing better point tools could solve the problem, but this

is not the case as again tools are hopeless when complexity is too high. New methodologies

are needed that can cope with complexity by abstraction. These methodologies are much

more important that tools albeit they require much research [2]. For one, it is rather

difficult to abstract the design for simplification while still maintaining necessary accuracy

of the representation, and abstracting existing designs and components is not enough. We

argue that a top-down part has to be added so that on one side, the global view of the

design is appropriately captured and on the other, the potential of pre-existing designs and
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components is leveraged. As a general design methodology, platform-based design provides

a formal framework to abstract and refine designs across various abstraction levels with

accurate and efficient design space exploration.

One core concept in platform-based design is to separate the specifications of

functionality and architecture initially, then refine the design by mapping functionality to

architecture. To obtain reliable and optimal mapping results, it is essential to automate the

mapping process. This dissertation proposes an approach for enabling automated mapping,

and introduces optimization algorithms we developed for designs in various domains.

In this section, we will give a brief overview of the trends that motivate high level

design methodologies, the platform-based design paradigm, and the approach we proposed

to optimize mapping. Then we will introduce some related work, summarize the contribu-

tions of this work and outline the structure of the dissertation.

1.1 Trends

The advance of semiconductor technology has been following “Moore’s Law” for

more than half a century. This trend is not expected to stop in next several years, and some

think it can last much longer [53]. Figure 1.1 shows that the product function per chip

(bits, transistors) increases following the trend of “Moore’s Law” [2]. Although this view

of following “Moore’s Law” faces many engineering challenges, and has been questioned by

many researchers, it is clear that the complexity of integrated circuits will keep increasing.

Furthermore, enabled by increasing transistor counts and driven by consumer de-

mand, the computational requirements for applications are also increasing rapidly. Figure
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Figure 1.1: 2007 ITRS Product Technology Trends: Product Function per Chip and Indus-
try Average “Moore’s Law” Trends

1.2 from [25] shows this trend in three classes of applications: video, cellular and wireless

LAN .

The trends above lead to very complex electronic systems that include hetero-

geneous hardware platforms and complex software applications. For instance, a modern

vehicle typically contains between a dozen and nearly 100 electronic control units (ECUs)

[23], and millions of lines of code. By 2010, the estimated number of lines of code could

reach the order of hundreds of millions [89]. In addition to complexity, there is increas-

ing demand on reliability and time-to-market. These factors make electronic design quite

challenging, and we have begun to see a gap between technology capabilities and design

productivity. As shown in Figure 1.3 from [2], the demand of software is currently doubling

every 10 months, and the technology capabilities is doubling every 36 months (following

Moore’s Law). On the other hand, the increase of hardware design productivity is well be-

low Moore’s Law, while hardware-dependent software productivity increase is even slower -
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Figure 1.2: Exponentially Increasing Application Complexity

only doubling every 5 years [2].

To bridge this gap, system-level design was proposed to carry out the designs at

an abstraction level that is higher than traditional register transfer level to reduce design

complexity. In [5], electronic system level (ESL) is defined as “the utilization of appropriate

abstractions in order to increase comprehension about a system, and to enhance the proba-

bility of a successful implementation of functionality in a cost-effective manner”. There are

many other definitions of ESL. Nevertheless, the key aspects of system-level design include:

• abstracting systems to reduce the complexity of specification, simulation, synthesis

and verification.

• providing a process to lower-level implementation.
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Figure 1.3: Hardware and Software Design Gaps Versus Time

• enabling design reuse at new levels.

In 2006, the revenue of ESL grew 50% [92] while the whole EDA industry grew

11% [46]. And ESL is projected to have a 47.4% five-year compound annual growth rate

(CAGR) [92]. It could become the long term driven force of EDA. However, there are

still many challenges for system-level design - some mentioned in [2] including the need of

effective high-level abstraction and specification, system level reuse methodology, accurate

system-level estimation and design space exploration, as well as integration of heterogeneous

technologies.

To solve these problems, we believe that a formal design methodology as platform-

based design is needed.
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1.2 Platform-based Design

As shown in Figure 1.4, the IC design cost has been increasing dramatically with

the advance of technologies [61]. Platform-based design was proposed to cope with the

increasing pressure on design and manufacturing cost [90], as well as time-to-market re-

quirement. It addresses the design challenges on abstraction and refinement, correct-by-

construction and reusability, not only at system level, but across all levels of design.

Figure 1.4: Increase of IC Design Cost

The core concept platform is a library of components that can be assembled to

construct a design at a specific level of abstraction. As stated in [54, 20], the basic tenets

of platform-based design are:

• The identification of design as a meet-in-the-middle process, where successive refine-

ment of specifications meet with abstractions of potential implementations.
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As shown in Figure 1.5, from top-down, a functional specification (application in-

stance) in the application space is mapped to a set of architecture components (plat-

form instance) in the architecture space, and constraints are propagated. From

bottom-up, the architecture components are abstracted by their functionality and

by a set of parameters that help guide the design space exploration.

• The identification of precisely defined platforms where the refinement and abstraction

processes take place.

Because of the complexity of modern electronic systems, multiple intermediate plat-

forms are usually needed during the design process. Two consecutive platforms form

a platform stack, in which the meet-in-the-middle mapping process is carried out.

Clearly, there is a trade-off between the size of the design space and the accuracy

of the modeling when we choose the platforms. Deciding the number, location, and

components of the intermediate platforms is the essence of platform-based design.

1.3 Approach for Optimizing Mapping

As stated in the last section, platform-based design promotes the methodology

of separation of concerns between functionality and architecture. The design process be-

gins with a description of the functionality (application instance) that the system should

implement, a set of constraints that must be satisfied, and a library of architecture com-

ponents (platform instance) that the designer can use to implement the functionality. The

functionality specifies what the system does by using a set of services. The architecture

platform captures the cost of the same set of services. Mapping binds the services used with
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Figure 1.5: Meet-in-the-Middle Design Paradigm

the services offered and selects the components to be used in the implementation and the

assignment of functionality to each component.

The mapping step is the core of platform-based design process, and greatly affect

the performance of the implemented system. However, it has been performed manually for

most test cases presented in literature. As the design methodology solidifies and design

environments such as Metropolis [7, 27] are built to support it, there is a clear need for

automatic optimized mapping processes to increase productivity and design quality. To

automate the mapping process, we need to formulate the optimization problem in rigorous

mathematical terms. In this dissertation, we deal with this issue, proposing a mathematical

formalism and a procedure for the PBD mapping process. Early stages of our work can be

found in [109, 110]. An overview is available in [111].

To explain the basic ideas of the process, we consider the classic logic synthesis flow

[18]. In this flow, the behavioral portion of the design is captured using Register Transfer
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Languages (RTLs) such as Verilog and VHDL. The architecture platform is represented by

a gate library which contains different types of logical gates, each with its cost related to

area, speed and power consumption. The mapping process selects a set of interconnected

gates from the gate library such that the functionality of the network is the same as the one

represented by the RTL. To optimize the gate selection process, the semantic domain of the

RTLs is first restricted to synchronous designs. Then, the RTL is translated into Boolean

expressions; the same semantic domain is chosen for the gates in the library. To ease the

gate selection process, both the Boolean equations and the gate library are transformed into

netlists consisting of a primitive logical gate, such as a NAND2. At this point, mapping,

known in logic synthesis as technology mapping, is then reduced to a minimum cost covering

problem. Since optimal covering is NP-hard, heuristic algorithms are used.

This mapping process is based on a common primitive - NAND2 gate - and math-

ematical rules for defining the behavior of a set of interconnected primitives - Boolean logic.

Boolean logic is appropriate for synthesizing combinational logic between registers in a syn-

chronous hardware design. Hence, the process involves three aspects: restriction of the

functional domain to synchronous circuits, choosing a common mathematical representa-

tion (Boolean expressions), and representing the functionality and architecture platform in

terms of primitives (NAND2).

We believe that these three aspects can be generalized and used to help solve any

mapping problem at system level. In the general system setting, however, each of these

three aspects is challenging. The models of computation used in electronic system design

are varied and certainly more complex than Boolean logic with synchronous timing. The
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selection of a common mathematical language for both the functionality and the architecture

platform depends on critical decisions involving expressiveness and ease of manipulation.

Finally, selecting the primitive elements to use involves a trade-off between granularity and

optimality: coarser granularity allows the use of exhaustive search techniques that may

guarantee optimality while finer granularity allows the possibility of exploring, albeit non-

optimally, a much larger search space. The formal mapping procedure proposed in this

dissertation is shown in Figure 1.6.

Choose
CMD

Covering

Function 
Model

Architecture
Model

Function 
Model in CMD

Architecture
Model in CMD

Further
Optimization

Stage 1

Stage 2

Stage 3

Choose
CMD

Covering

Function 
Model

Architecture
Model

Function 
Model in CMD

Architecture
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Figure 1.6: Mapping Procedure

Initially, we are given function and architecture models, which are constructed

from the functional specification and architecture platform. During Stage 1 of the proce-

dure, a common modeling domain (CMD) is chosen by the designers for representing the

functionality and architecture (platform). When choosing a proper CMD, both the seman-
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tics and abstraction level for mapping are decided by considering the trade-off between the

size of the mapping space vs. the complexity of finding a good point within this space.

In Stage 2, a CMD-specific covering problem is formulated and solved by automatic algo-

rithms. Stage 3 is added to capture all further optimization that may be needed to tune

the design. It includes design concerns that have not been modeled within the covering

problem formulation because they make the solution of the covering problem too complex.

1.4 Related Work

Our mapping procedure utilizes the Metropolis design framework for our case

studies in Section 3. Metropolis is based on the platform-based design paradigm, therefore

is a natural fit to explore and validate our approach. It is also the basis of the Metro II

design framework introduced in Section 4. In this section, we will describe the main aspects

of Metropolis, along with some other related design frameworks.

The formal definition of common modeling domain utilizes the concept of agent

algebra introduced in [76]. We will briefly introduce agent algebra in this section, with

another denotational framework for models of computations - tagged signal model [65].

1.4.1 Metropolis Design Framework

The Metropolis framework is based on the platform-based design paradigm. It

provides a design environment in which systems can be unambiguously represented through-

out the abstraction levels, the design problems can be mathematically formulated, and tools

can be incorporated to solve some of the problems automatically [70].
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The framework consists of a specification language - the Metamodel [98] language,

an infrastructure, a set of tools for various design activities, and design methodologies for

various application domains. In the following, we will cover the main aspects of Metropo-

lis.

1.4.1.1 Features of the Framework

Metropolis provide a general and unified environment for electronic system de-

sign. The framework supports various models of computation by using the Metamodel

language, facilitates design reuse by orthogonalizing design concerns, and enables formal

analysis through declarative specifications. Next, we will introduce more details of these

features.

Modeling of Models of Computation: In Metropolis framework, the Metamodel

specification language is used for both functional and architectural description, as well as

the mapping of functionality to architecture. It has a formally defined semantics that

is based on the notion of concurrent processes communicating through channels. It al-

lows both imperative and declarative specifications. Each statement in the language has

a formal representation in the form of action automata [98]. The process network based

semantics provides the capability to describe many common models of computation, such

as dataflow, finite state machine, discrete event, and continuous time. This makes it pos-

sible to model heterogeneous systems that contain multiple computational models, and it

also makes system modeling more flexible since designers are not restricted to one model of

computation.
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The four main types of objects in the Metamodel language are: processes, media,

quantity managers, and netlists.

Each process contains its own sequential thread and executes concurrently with all

other processes in the system. A process communicates with other objects through ports.

Each port is associated with an interface, which contains a set of methods that the process

can access through the port. Only ports with the same interface can be connected.

Media are passive objects that implement the port interfaces. Media are con-

nected to processes and other media by ports, whose interfaces are implemented in the

media. Media are used for inter-process communication, while the processes carry out the

computation. A process cannot connect to other processes directly. Instead, an intermediate

media must be used to manage the interaction between multiple processes. This separation

of computation and communication is important to design reuse.

The execution of a process is represented by a sequence of events, where events

are actions executed by processes. Quantity managers annotate events with quantities,

which represent the performance or cost of actions in the system, for instance, time, power,

etc. Values of quantities can be decided based on system specification, simulation or math-

ematical analysis. Quantities are similar to aspects in aspect-oriented programming [55]

languages. During runtime, events make request of quantities to quantity managers, which

collect all the requests and resolve them. An event can be processed if its quantity request is

granted, otherwise it will be blocked and wait for next resolution. Another role of quantity

manager is to schedule access to shared resources, since the requesting/granting access to

resources can be similarly modeled in quantity managers as quantity requesting/granting.
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Netlists are objects in which the other objects are instantiated and connected.

Netlists can contain other netlists. This allows hierarchical modeling of the system.

For more details about the Metamodel, please refer to [98, 10].

Orthogonalization of Concerns: Modern electronic system designs become more com-

plex and more heterogeneous, while the demand of time-to-market continues to increase.

Therefore effective design reuse become crucial. Effectively managing previously created IP

and integrating it into new designs is important, especially when the IP is heterogeneous

and developed by different design groups.

In the consumer electronics domain, the trend is toward increasingly customized

products which typically have small sales volumes. This fragmentation of the market implies

that the incremental cost of developing a new product must remain small. However, due

to the economics of fabrication, creating small batches of new hardware cannot be the

solution. Most of the product differentiation has to come from software or the configuration

of reconfigurable hardware [30].

These factors motivate the orthogonalization of concerns in design process, specif-

ically, there are following types of orthogonalizations.

• Functionality and Architecture orthogonalization: This is one of the key concepts

in platform-based design, and is also the starting point of our mapping procedure.

The functional portion of the design exercises services, which can be provided by

various architecture platforms with different costs. A particular mapping of a function

model with an architecture model corresponds to a system model. By allowing an

architecture model to be reconfigurable or instantiated in different ways, we can easily
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represent a family of parameterizable architecture models. Then the mapping will

choose an appropriate platform instance from the choices available to make the system.

On the other side, when a family of applications use the same architecture platform,

this orthogonalization makes it easier to represent different system models. Since

the only interaction between the function and architecture models takes place due

to the mapping of services together, once these are agreed upon, separate groups of

developers can code, debug, and maintain the function and architecture models.

• Computation and Communication orthogonalization: Computational activities are

usually highly design-specific while communication schemes are usually standardized.

With multiprocessor and distributed architectures becoming more common in the

embedded systems world, the impact of communication on overall system performance

is also quite large. As we stated before, in Metropolis, the computation part is

modeled in processors while the communication part is modeled by media.

• Behavior and Performance orthogonalization: Behavior reflects the services offered

by the component, while performance (or cost) represents the quality (or expense) of

providing these services. Performance can be defined in terms of time, power, chip

area, or any other quantity of interest. As we stated before, this orthogonalization

is achieved by using the concept of quantity manager. And the two-phase execution

semantics shown later also separates the annotation of performance from the sim-

ulation of model behaviors. This orthogonalization allows the framework to easily

represent the architecture components that provide the same services but with differ-

ent performances. It also support the usage of “virtual” components and facilitates
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back-annotation to accurately model cost-metrics. Virtual components are architec-

tural resources that do not reflect existing physical designs (hardware/software). A

designer can configure and utilize virtual components in a system, and dictate the

final parameters as constraints for implementation once he/she is assured that the

component can be successfully used. Even if an architecture component is available

and its behavior known, its performance can be obtained at various levels of accuracy.

A separation between behavior and cost allows this component to be used even if

accurate numbers are not available. For instance, a synchronous bus component can

be used without knowing the exact number of cycles taken for a transfer. An estimate

can be used and system evaluation can proceed. Once cycle-accurate numbers become

available, they can be substituted without requiring additional changes to the system.

Declarative Specification: The Metropolis framework supports both imperative code

and declarative statements in the specification. Processes, media and quantity managers are

described with imperative code, while some design constraints are specified declaratively.

This mixture of imperative and declarative specification gives the designer additional flexi-

bility. Allowing declarative specification is especially important in the initial phases of the

design process, when the designer may be more interested in specifying what properties the

components of the design need to have, rather than how those properties will be manifested

in an implementation.

Currently in the Metropolis framework, two kinds of formal constraint logics are

supported: Linear Temporal Logic (LTL) [93] and Logic of Constraints (LOC) [8]. Both

of these logics allow for statements to be made about event instances in the design. Event
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instances are generated whenever a thread of control in the design executes any action.

Event instances may be annotated with quantities, which may represent a diverse set of

indices, from access to a shared resource to energy or time. LTL is well studied in the

formal verification field. It is very expressive for specifying properties along a time line.

Therefore, it can be used to specify coordination among processes such as mutual exclusion

constraints and synchronization constraints. For instance, mapping between functionality

and architecture is implemented by enforcing LTL constraints on the event instances in

function and architecture models. We will explain this in detail in next section. LOC is

particularly suited for specification of performance constraints over system behaviors.

Both LTL and LOC constraints can be interpreted either as part of the specification

or as assertions. Assertions are checked by viewing simulation traces or by formal reasoning.

Similarly, constraints that are part of the specification can either be used to restrict the

simulation or provide input to synthesis tools [27].

1.4.1.2 Mapping with Synchronization Constraints

As we stated before, synchronization constraints are used to map the function

and architecture models by enforcing events of interest from each to occur simultaneously.

Along with simultaneity, we can also control the values of specific variables that are in the

scope of these events. This type of synchronization can be used to restrict the behavior of

architectural processes to follow that of the functional processes to which they are mapped.

An example of a function that would emit these synchronization constraints is

shown in Figure 1.7 [30]. In this example, the function takes as arguments the two processes

that are to be mapped together – a functional process and an architectural process. First,
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the beginning of the read operation is identified for both processes and recorded as the

events e1 and e2. The two events are synchronized together and two variables in the scope

of these events are constrained to be equal. In this example, the number of items read by

the functional process is constrained to be the same as the number of items read by the

architectural task. By changing the arguments to this function, various mappings can be

realized and evaluated relatively.

void mapPair(process f, process a) {

event e1 = beg(f, f.read);
event e2 = beg(a, a.read);
ltl synch(e1, e2: numItems@e1 == numItems@e2);

event e3 = end(f, f.read);
event e4 = end(a, a.read);
ltl synch(e3, e4);

... // similar code for write() and exec() services
}

Figure 1.7: Synchronizing Events to Realize Mapping

1.4.1.3 Two-Phase Execution Semantics

Metropolis uses a two-phase execution semantics. When designing with the

Metamodel, a system is captured by two netlists of objects: a scheduled netlist and a

scheduling netlist [27]. The scheduled netlist consits of a number of processes and media,

which form the basis of the system behavior. The scheduling netlist contains a set of

quantity managers, each of which can annotate performances or model scheduling policies.

The execution semantics of the entire system is simply the alternation between the scheduled
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netlist and the scheduling netlist. The interaction between the two netlists is carried out

by quantity annotation requests associated with events. For example, if two processes in

the scheduled netlists require access to a common resource, each of them will generate a

representative event, and send an (arbitration) quantity annotation request for that event

to an arbitrator (a particular quantity manager). This occurs in the scheduled netlist phase.

In the following scheduling netlist phase, those quantity annotation requests will be resolved

by the arbitrator quantity manager. When the execution is switched back to the scheduled

netlist, based on the quantity resolution results, the processes can either proceed to access

the common resource or wait until the resource becomes available [27].

1.4.1.4 Infrastructure

The infrastructure of the Metropolis framework is shown in Figure 1.8. Func-

tion specification, architecture specification and design constrains (including mapping cons-

traints) are all described by the Metamodel language and sent to a front-end compiler. The

Metamodel compiler parses the system model to abstract syntax trees (ASTs), which store

all the information of the system. Various back-end tools including simulation, synthesis,

and verification tools will access ASTs to perform their functionalities. The main simulation

tool we use in Metropolis is a SystemC simulator [104], which preserves the Metamodel

semantics while translating a Metamodel specification into the executable SystemC lan-

guage [47]. LTL and a set of built-in LOC constraints can be enforced during simulation

[103]. For synthesis there are a communication synthesis tool [80] , and a quasi-static sch-

eduling [24] tool that schedules a concurrent specification on computational resources with

limit concurrency support. There is also an interface to the xPilot [4] synthesis system that



20

works on a synthesizable subset of the Metamodel. For verification there are back-end tools

for checking LOC properties [22], for interfacing to the SPIN model checker [50] to verify

LTL constraints, and for refinement verification [36].

Figure 1.8: Infrastructure of Metropolis Framework

1.4.2 Other Frameworks

In this section, we will provide an overview of related design frameworks [30, 27].

The focus will be on the modeling methodology and automatic design space exploration

technique - which is the purpose of our mapping procedure.

The Compaan/Laura [95] approach uses MATLAB specifications to synthesize

Kahn Process Networks models, which are then implemented on a specific architecture

platform as hardware and software. The architecture platform consists of a general purpose
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processor along with an FPGA, which communicate via a set of memory banks. Software

runs on the general purpose processor, while the hardware is synthesized into VHDL blocks

which are realized in the FPGA. The partition between hardware and software occurs rela-

tively early in the design flow and is based on workload analysis. The types of optimizations

that are carried out automatically relate to loop analysis. The software implementation

makes use of the YAPI [58] library.

The Spade [68] and Sesame [39] approaches within the Artemis [79] project focus

on synthesizing specifications in hardware/software. These approaches are limited to the

process networks model of computation. The most relevant optimization approach from

their work utilizes an evolutionary algorithm to minimize a multi-objective non-convex

cost function. This cost function takes into account power and latency metrics from the

architecture model. The optimization problem is solved using a randomized approach based

on evolutionary algorithms.

CAKE [32] (Computer Architecture for a Killer Experience) is a project affili-

ated with Philips research that attempts to realize multimedia applications by using the

YAPI libraries. Their focus is mainly on homogeneous “tiled” multiprocessor architectures.

The automated design space exploration approach they describe is divided into two steps,

where the first step partitions the processes and the second step schedules them on a single

processor.

ForSyDe [85] focuses on formal design transformations that enable design refine-

ment. This allows the designer to start with an abstract definition of the design and proceed

toward implementation. At each step, two types of transformations can be performed. Se-
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mantic preservation does not change the behavior of the model, while design decisions are

unrestricted. The focus of ForSyDe is on the verification aspects of design, not on automa-

tion.

MESH [78] is a design framework that separates the design into three parts: the

software layer, the hardware resource layer and the scheduling layer between them. Each

layer provides a set of services - a virtual machine - to the next layer above. In some cases,

these three layers roughly correspond to the functional model, the architectural model, and

mapping within the platform-based design methodology. However, the general concepts

of functionality and architecture are not clearly separated in MESH. The focus of the

framework is on the simulation of heterogeneous multiprocessor models.

Mescal [72] is an environment for developing software for customized processors.

The main domain of concentration is network processors, which can be considered a spe-

cialized type of multimedia applications. Past work has been carried out on customizing

instruction sets of processors according to the application. Recently, the investigation of

FPGAs as an implementation fabric and automated allocation techniques have also been

explored.

The MILAN project [6] employs a model-based solution for hardware/software

co-design and co-simulation. The core design philosophy of the project is Model Integrated

Computing (MIC) [97]. A design is captured by various modeling paradigms, including ap-

plication model, resource model, constraint model, performance model and communication

model. The application model supports asynchronous and synchronous dataflow semantics.

The resource model provides modeling of DSPs, FPGAs, memories, interconnects, etc. The
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constraint model includes semantic constraints and design constraints. The performance

and communication models form the basis for performance estimation and simulator integra-

tion, respectively. Different simulators can be integrated once different simulation models

are interpreted into the common model supported in the framework. MILAN is built on top

of the Generic Modeling Environment (GME) [63], a framework creating domain-specific

modeling languages, and DESERT, a tool suite that is used for navigating and pruning large

design spaces in GME [64]. DESERT is domain independent, and uses symbolic methods

based on Ordered Binary Decision Diagrams (OBDDs) to encode and explore the design

space. The challenge of using OBDD based method is to avoid the representation explosion

for large applications, for which DESERT relies on an interactive user interface to prune

the design space.

Polis [9], a precursor to Metropolis, is a design environment which was one of

the first to allow for function-architecture separation. Designs in this framework are based

on the communicating finite-state machines (CFSM) model of computation. Architectural

components can only be chosen from a set of predefined components, limiting expressiveness.

SPIRIT [3] is an IP-integration consortium that aims to provide a common specifi-

cation mechanism for describing and handling IPs. It includes: an XML-based IP meta-data

schema that leverages industry standards (such as VSIA, XSLT, and XPath), configuration

and generation interfaces, and the IP-XACT methodology which uses the former two. This

is currently mainly at the RTL level, but an IP-XACT methodology with ESL extensions is

under development. The ESL requirements for the XML schema include module hierarchy

support, ad-hoc connection support, multiple views of different levels for one component



24

(e.g., TLM PV, TLM CA, etc.), supporting mixed IP modeling abstraction levels.

Ptolemy [1] is a meta-modeling framework which focuses on simulation and the

interaction between different models of computation. It uses tokens as the underlying com-

munication mechanism. Directors regulate how actors in the design fire and how tokens

are used to communicate between them. This mechanism allows different models of com-

putation to be constructed within Ptolemy. Hierarchical composition is used to handle

heterogeneity. Each level in a hierarchy has a director that organizes the firing of the actors

at that level. Ptolemy does not focus on function-architecture separation and mapping.

SystemC [47] is a open-source C++ library for modeling both hardware and soft-

ware at various levels of abstraction. For hardware design, it is based on the discrete event

model of computation. Because of this similarity, RTL designers can migrate to SystemC

with little difficulty. The main synchronization mechanisms are events and global timing.

For software design, C++ constructs can be used. SystemC separates communication from

computation by using port-interface calls. However, it lacks some other separations of

concerns in Metropolis, such as behavior-performance and function-architecture separa-

tion. SystemC is used as back-end simulator for both Metropolis and its next generation

Metro II.

There are also a number of industrial tools that are related to our ideas. Coflu-

ent Studio by CoFluent Design enables design space exploration at the transaction level

using a Y-chart modeling approach [56]. MLDesign Technologies offers MLDesigner which

provides support for discrete event, dynamic dataflow, and synchronous dataflow modeling

of functionality and architecture. Mirabilis Design provides the VisualSim product family



25

which also models continuous time and FSM based systems. Finally, Synopsys offers System

Studio which performs algorithm capture and performance evaluation in SystemC.

For more information about related frameworks and tools, please refer to [35, 30,

27].

1.4.3 Formalism of Semantics

As stated before, our mapping procedure is based on the concept of common

modeling domain, which is constructed on semantic domain and primitives. The formal

definition of semantic domain is based on agent algebra [76, 77]. Agent algebra is a formal

framework that can be used to represent and analyze various models of computations in a

unified way. An algebra is defined to consists of a set of agents that are elements of the

models, and the operations that are provided to manipulate the agents. Different models

of computation are constructed as distinct instances of the algebra [76]. The framework

uses a common algebraic structure to derive results that can be applied to all heterogeneous

models in the framework. Our work utilizes a particular kind of agent algebra - trace-based

agent algebra, whose agents are composed of sets of elementary elements that are called

traces. Traces often refer to the externally visible features of agents, such as their actions,

signals and state variables [76].

Another framework that supports modeling of multiple models of computation is

the tagged signal model (TSM) [65]. TSM is based on the concept of event. Each event is

a tag-value pair, where the tags can be used to model time, partial order, synchronization

points and other key properties in the semantics of a model of computation, and the values

are used to represent the states of the systems. A signal is defined as a set of events.
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Then a tuple of signals can be formed to represent a behavior of the system, where each

signal corresponds to a “port” in the system. Finally, a process is characterized by a set of

behaviors, i.e., a set of tuples of signals. The concept of process corresponds to an agent in

trace-based agent algebra. Compared with TSM, trace-based agent algebra is more general,

since the structure of a trace is not dictated, but only its properties relative to the operators

[76].

1.5 Contributions

The main contributions of this work include:

• a procedure for optimizing mapping between functionality and architecture in system-

level design. The concept of common modeling domain is proposed for formally de-

ciding the semantics and abstraction level of the mapped system.

• applying this procedure to real-time distributed systems and multimedia domain,

designing mapping algorithms for solving the covering problems.

• facilitating the design of Metro II, the next-generation framework of Metropolis

for platform-based design.

The outline of the rest of the dissertation is as follows. In Chapter 2, we introduce

the theoretical foundation of our mapping procedure. In Chapter 3, we explain how we apply

this approach to two highly different application domains - real-time distributed systems

and multimedia domain, including the choice of common modeling domains and the design

of algorithms for solving the covering problems. Chapter 4 describes the main aspects of
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Metro II. Some of the new features of Metro II were motivated by our case studies, and

designed to better support our mapping procedure. Finally, Chapter 5 offers consideration

on the properties of the approach such as generality, optimality and reusability, as well as

concluding remarks and future directions.
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Chapter 2

Mapping Procedure

The mapping procedure we proposed includes three stages: (1) modeling function-

ality and architecture in common modeling domain (CMD), (2) solving covering problem,

and (3) further optimization. The flow was shown in Figure 1.6. In this chapter, we will

explain these three stages in detail.

2.1 Stage 1: Model Functionality and Architecture in Com-

mon Modeling Domain

Automatic mapping between functionality and architecture is a ill-posed problem

unless both are described with the same semantics. The process of transforming the original

function and architecture models into a common modeling domain (CMD) is covered in the

first stage of the proposed mapping procedure.

In this section, modeling domains are constructed based on semantic domains

and primitives. Relationships between modeling domains are defined, and a corresponding
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modeling domain relation graph is constructed. Finally, we discuss how to select a CMD.

2.1.1 Modeling Domain

2.1.1.1 Semantic Domain

Definition 1. A semantic domain is a trace-based agent algebra [76].

A trace-based agent algebra Q consists of a domain Q.D of agents, a master

alphabet Q.A and three operators: renaming, projection, and parallel composition.

Q.α : Q.D → 2Q.A associates each agent s in Q.D with an alphabet over Q.A,

denoted as Q.α(s). An alphabet of an agent represents a set of signals, whose definition is

given in [65]. The master alphabet Q.A is the set of all signals in Q. It is the superset of

any alphabet Q.α(s).

Three operators are used for agent instantiation, scoping and composition re-

spectively. The renaming operator renames signals of an agent’s alphabet, denoted by

rename(r)(s), where r is a renaming function and s is the agent being renamed. The pro-

jection operator hides a set of signals and takes a set of signals that must be retained as a

parameter, denoted by proj(b)(s), where b is an alphabet containing the set of signals to be

retained. Finally, the parallel composition operator ‖ defines the composition of two agents

with concurrent execution. This operator is associative and commutative.

Traces are general mathematical objects that model the individual executions of

agents. Models of computation are represented by defining trace algebras, which consist

of the specific definition of traces and the operations on those traces including renaming

and projection [76]. Let T denote the set of all possible traces. Function Γ : 2Q.A → 2T
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associates every alphabet t with a set of traces, denoted as Γ(t). Each agent s is then

associated with a set of traces Γ(Q.α(s)).

A simple example in Figure 2.1 shows how process networks (PN) semantics

[52] is represented by a trace-based agent algebra. Agent s1 has alphabet {i1, o1} and

agent s2 has alphabet {i2, o2}. A renaming function r renames the original alphabets to

{i1, io12} and {io12, o2}, respectively. These can be viewed as instantiations of s1 and s2.

The parallel composition rename(r)(s1)‖rename(r)(s2) has alphabet {i1, io12, o2}. Then

proj({i1, o2})(rename(r)(s1)‖rename(r)(s2)) as the composed agent s3 retains the input

signal i1 and output signal o2. Traces are defined as finite or infinite sequences over a value

domain V , denoted by V∞. Then for instance, Γ(Q.α(s1)) ⊆ (i1 → V∞)× (o1 → V∞).

s1 s2
i1 o2io12o1 i2i1 o2i1 o2

s3

s1 s2
i1 o2io12o1 i2i1 o2i1 o2

s3

Figure 2.1: PN Semantics by Trace-based Agent Algebra

Trace-based agent algebra [76, 19], and the more general agent algebra [76] are

powerful techniques for describing various models of computations. While previous work

mainly used them for modeling and verification [77], our work focuses on mapping. Build-

ing on trace-based agent algebra (semantic domain), we develop other concepts in our

approach - primitives, modeling domain and common modeling domain - as introduced in
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the remainder of the section. By using these concepts, we can formally explore the seman-

tics and abstraction levels of both the function and architecture model, thereby facilitating

the mapping process.

New agents can be constructed by applying a finite number of operators in sequence

on existing agents. Given a semantic domain Q and a set of agents S ⊆ Q.D, the agent

closure CQ(S) contains all the agents that can be constructed from S by applying the

operators in Q. It is formally defined as follows.

• If agent s ∈ S, s ∈ CQ(S).

• If agent s ∈ CQ(S), rename(r)(s) ∈ CQ(S) where r is a renaming function.

• If agent s ∈ CQ(S), proj(b)(s) ∈ CQ(S) where b ⊆ Q.A.

• If agent s1 ∈ CQ(S) and s2 ∈ CQ(S), s1‖s2 ∈ CQ(S).

We use s = Ωs(S) to denote that agent s is constructed from a set of agents S by

applying a sequence of operators Ωs. Note that an agent can be instantiated multiple times

in constructing another agent. For instance, in the above example, we can instantiate s1

twice by renaming its original alphabet to two different alphabets, and then connect the

instantiated agents with parallel composition.

2.1.1.2 Primitives

Definition 2. P is a set of primitives in a semantic domain Q iff P ⊆ Q.D and no agent

in P can be constructed from other agents in P , i.e., ∀p ∈ P , there exists no P ′ ⊆ P\{p}

such that p ∈ CQ(P ′).
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For instance, if the agent s1 in Figure 2.1 is an incrementer which increases the

input value by 1 and s2 is a decrementer which decreases the input value by 1, then {s1, s2}

is a set of primitives in the PN semantic domain since neither can be constructed from the

other. However, {s1, s2, s3} is not a set of primitives since s3 can be constructed by s1 and

s2 as shown in Figure 2.1. The primitives are defined in this way so that the abstraction

level of the design can be formally explored.

2.1.1.3 Modeling Domain

Definition 3. A modeling domain M = CQ(P ) is the agent closure of a set of primitives

P in semantic domain Q.

Using the above example, if we choose {s1, s2} as a set of primitives P in the

PN semantic domain, then modeling domain M = CPN ({s1, s2}) contains all the agents

constructed from s1 and s2 by applying the operators in the PN semantic domain.

2.1.2 Relations between Modeling Domains

2.1.2.1 Behaviors

Traces model the executions of agents. In our discussion, we call them behaviors.

Each agent s ∈ Q.D has a set of behaviors B(s), which are the traces it contains, i.e.

B(s) = Γ(Q.α(s)). For two agents s1 and s2, B(s1) = B(s2) if the set of traces s1 contains

is the same as the set of traces s2 contains.

The three operators will preserve behavior equivalence:

• If B(s1) = B(s2), then B(rename(r)(s1)) = B(rename(r)(s2)).
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• If B(s1) = B(s2), then B(proj(b)(s1)) = B(proj(b)(s2)).

• If B(s1) = B(s2) and B(s′1) = B(s′2), then B(s1‖s′1) = B(s2‖s′2).

2.1.2.2 Ancestor-Child Relation

For an agent closure CQ(S), let Φ(CQ(S)) = {B(s)|s ∈ CQ(S)}, i.e., Φ(CQ(S))

represents the set of behaviors of agents in the agent closure.

For a modeling domain M = CQ(P ), Φ(M) = Φ(CQ(P )).

Definition 4. A modeling domain M1 = CQ1(P1) is an ancestor of a modeling domain

M2 = CQ2(P2) iff Φ(M2) ⊆ Φ(M1), denoted as M2 ≤ M1. M2 is a child of M1 iff M1 is

an ancestor of M2.

Ancestor domains are more general and expressive, but the modeling complexity

is higher. Child domains are less expressive but more specific, therefore the modeling

complexity can be reduced. For instance, dataflow (DF) is a special case of PN [65], therefore

CPN (P ) is an ancestor domain of CDF (P ′) assuming primitives in P and P ′ have the same

behaviors.

We propose the following condition for the ancestor-child relationships.

Theorem 1. A modeling domain M1 = CQ1(P1) is an ancestor of a modeling domain

M2 = CQ2(P2) iff ∀p ∈ P2,∃P ′1 ⊆ P1, s.t. B(p) ∈ Φ(CQ1(P ′1)).

Proof. First we prove the condition is sufficient. An agent s = Ω(P ′2) in agent closure

CQ2(P2) is constructed from a set of primitives P ′2 ⊆ P2 by applying a sequence of operators

Ω. If the condition is true, then for any primitive pi ∈ P ′2, we can find a corresponding agent

s′i ∈ CQ1(P1) that has the same behavior. Let S′ denote the set of these corresponding agents
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s′i. Let s′ = Ω(S′), i.e., applying the same sequence of operators on these corresponding

agents in CQ1(P1). Since the three operators will preserve the equivalence of behaviors, s′

will have the same behavior as s. This proves that for any agent s ∈ CQ2(P2), we can find

s′ ∈ CQ1(P1) such that B(s) = B(s′), thus M2 ≤M1.

Then we prove the condition is necessary. If M2 ≤M1, then for any p ∈ P2, there

exists s′ ∈ M1 such that B(p) = B(s′). Based on the definition of modeling domain, we

know that there exists P ′1 ⊆ P1 such that s′ ∈ CQ1(P ′1). This proves that ∀p ∈ P2,∃P ′1 ⊆

P1, s.t. B(p) ∈ Φ(CQ1(P ′1)).

This theorem provides a constructive way to find child domains that are amenable

for mapping. Also, it is easier to determine if two domains satisfy an ancestor-child re-

lationship by using this condition. For instance, in the example from Section 2.1.1.2,

M1 = CPN ({s1, s2}) is an ancestor of M2 = CPN ({s3}).

2.1.2.3 Modeling Domain Relation Graph

Definition 5. A modeling domain relation graph G = (V,E) consists of a set of nodes

V and a set of directed edges E. Node v ∈ V denotes a modeling domain Mv. Edge

e = (v1, v2) ∈ V denotes that modeling domain Mv1 is an ancestor of modeling domain

Mv2.

The modeling domain relation graph will facilitate the selection of CMDs as shown

in Section 2.1.3.
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2.1.3 Common Modeling Domain Selection

A model is an agent in a modeling domain in our context. The modeling domains

used for the initial function model f and the initial architecture model a are F and A

respectively, denoted as f ∈ F and a ∈ A. Generally F and A have different semantics,

therefore the mapping from f to a is usually manual and error-prone. To enable auto-

matic and correct-by-construction mapping, we introduce the concept of common modeling

domain. It is formally defined as follows.

Definition 6. A modeling domain M is a common modeling domain (CMD) between func-

tion model f and architecture model a iff there exists f ′ ∈ M and a′ ∈ M such that

B(f ′) ⊆ B(f) and B(a′) ⊆ B(a).

In Figure 2.2, the lighter shaded region O contains the common behaviors between

the original models f and a. A mapping result is correct if its behaviors are within O.

However we cannot explore this mapping space O effectively because f and a are modeled

in two different modeling domains. The darker region Λ contains the common behaviors

between the models in the CMD, i.e., f ′ and a′. The definition of CMD ensures that Λ ⊆ O,

therefore a mapping result is guaranteed to be correct if its behaviors are within Λ. And

since f ′ and a′ are modeled with the same semantics , we can explore Λ automatically as

described later in Section 2.2.

Generally, there exist multiple candidate CMDs. As a general rule, when we search

for a CMD on the modeling domain relation graph, we first try to find a common ancestor

domain D of F and A, as shown in Figure 2.3. It satisfies F ≤ D and A ≤ D. When we

transform the original function model f and architecture model a to the models in D, it is
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Function Model f in
Original Modeling Domain F

Architecture Model a in
Original Modeling Domain A

Function Model f’ in CMD Architecture Model a’ in CMD

O

Λ

Function Model f in
Original Modeling Domain F

Architecture Model a in
Original Modeling Domain A

Function Model f’ in CMD Architecture Model a’ in CMD

O

Λ

Figure 2.2: Mapping Space in Common Modeling Domain

guaranteed that we can find f ′ and a′ satisfying B(f ′) = B(f) and B(a′) = B(a). This is

because D is an ancestor domain of both F and A.

Models in D might be too complex for efficient design space exploration. In that

case, we can choose CMD C from child-domains of D, i.e., C ≤ D. Modeling in C has less

complexity. However, some behaviors of original models f and a might be lost since C is

not necessarily an ancestor of F or A. This means the mapping space we can explore might

be smaller than the original mapping space, as shown before in Figure 2.2. This trade-off

between the complexity and the size of the mapping space is a crucial factor in choosing a

CMD.

During CMD selection, two important design aspects, semantics and abstraction

level, are explored formally by choosing the semantic domain and primitives of the CMD.
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Figure 2.3: Common Modeling Domain Selection

Semantics The semantics of the mapped design is decided by choosing the semantic do-

main of the CMD. It should be powerful enough for describing the behaviors we are inter-

ested in for the functionality and architecture. Also, it should not be too general such that

we cannot exploit specific properties to facilitate mapping. For instance, general dataflow

semantics is Turing-complete. However, if static dataflow semantics [66] is powerful enough

to capture the behaviors we are interested in, we can choose it to utilize its properties, such

as static schedulability and static buffer sizing.

Choosing a common semantic domain is the first step to find a CMD. When we

choose a common ancestor domain D = CQD(PD), the semantic domain QD is first selected

to satisfy ∃PD ⊆ QD.D such that Φ(F ) ⊆ Φ(D) and Φ(A) ⊆ Φ(D). When a child domain

C ≤ D is chosen, a more specific semantic domain QC might be necessary to reduce the
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modeling complexity.

We will see how the semantics is chosen for an automotive domain case study in

Section 3.1.1.

Abstraction level After the semantics is decided, by choosing different primitives of the

CMD, we can explore different abstraction levels to find the right trade-off between the size

of mapping space and the complexity. This is carried out when we select a CMD C as child

domain of D. Theorem 1 provides a formal way to find and explore the candidate child

domains, which themselves might have ancestor-child relations.

Primitives in CMDs with ancestor-child relations can be formally transformed.

In up-transformation, for each primitive p in child CMD, we find a set of primitives P ′

in ancestor domain CMD and an operator sequence Ω such that B(p) = B(Ω(P ′)). Up-

transformation can be regarded as a process of decomposition by utilizing Theorem 1. In

down-transformation, the primitives in the ancestor CMD are composed to construct a

primitive in the child CMD.

We will examine how CMDs with different abstraction levels are explored for an

image processing case study in Section 3.2.1.

2.2 Stage 2 : Covering Problem

After both the functionality and architecture are modeled in the CMD, mapping

becomes a covering problem that consists of a set of constraints and a set of objective

functions. The design space can then be explored automatically by applying algorithms.
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2.2.1 General Formulation

The general formulation of the covering problem is defined as follows.

Decision constraints:

The primitives used to construct function model f are called function primitives,

and the primitives used to construct architecture model a are called architecture primitives.

Note that one primitive can be instantiated multiple times when a model is constructed. One

instantiation of a primitive is called a primitive instance. The function primitive instances

have to be covered by the architecture primitive instances.

Let F = (f1, f2, ..., fn) denote the set of function primitive instances, A = (a1, a2,

..., am) denote the set of architecture primitive instances, dij denote whether fi is mapped

to aj , then we have a set of decision constraints:

∑
j∈Si

dij = 1 ∀i, 1 ≤ i ≤ n

where Si denotes the set of candidate architecture primitive instances for a function primi-

tive instance fi.

The reason why we choose architectural primitive instances as the objects that

function primitive instances are mapped to, instead of choosing architecture components,

is as follows.

• The concept of component cannot support different levels of abstraction, because

it is restricted by the nature of the architecture platform. To describe mapping at

different levels of abstraction, we need to describe the same architecture component

with different architecture primitive instances. So semantically, architecture primitive

instances are the objects that correspond to the function primitive instances.
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• One architecture component may support multiple architecture primitive instances

that are mapping options for the same function primitive instance.

Quantity constraints:

There are also constraints from the architecture platform or design requirements,

such as power constraints, bandwidth constraints, etc. We introduce the concept of quan-

tities to express these kinds of constraints.

Quantity is a general concept which includes concrete quantities such as power,

area, bandwidth, memory, and abstract quantities such as computation and communication

capabilities. We use Qlijk to denote the l-th quantity associated with architecture primitive

instance ak, when a particular functional primitive instance fi is mapped to an architecture

primitive instance aj . Values of the quantities can be obtained from specification, simulation

or analysis, etc. For instance, in [112], we developed an analytical model for delay and energy

estimation of on-chip wires. Choosing which method depends on the characteristics of the

quantity, accuracy requirement as well as complexity.

A quantity constraint is defined on a set of related quantities. For the t-th con-

straint on the l-th quantity, we have

H l
t(dij , Q

l
ijk) ≤ QC lt

Here, QC lt is a constant bounding this set of quantities. The H function can have various

forms for different quantities. For example, for some quantities such as area, we can use

simple additive form:
∑
dij ∗Qijk ≤ QCt.

Objective functions:

We use the concept of costs to express the objective functions of the design. Costs
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are specific types of quantities. We list them separately to emphasize their role in the

objective functions. C lijk is used to denote the l-th cost associated with architecture primi-

tive instance ak, when functional primitive instance fi is mapped to architecture primitive

instance aj . A general form for the l-th cost is represented as

Gl(dij , C lijk)

We allow consideration of multiple metrics, i.e., multiple objective functions. For a specific

application, the objective function can have a simple additive form as min
∑
dij ∗ Cijk or

a form like min(max(dij ∗ Cijk)).

2.2.2 Algorithms

The complexity of the covering problem depends on the form of the quantity cons-

traints and objective functions. This covering problem may be solved with general-purpose

mathematical programming solvers such as linear programming (LP) solvers, geometric pro-

gramming (GP) solvers, nonlinear programming solvers, etc. Or we can use domain-specific

algorithms if either the problem cannot be accurately formulated as a mathematical pro-

gramming problem or the domain-specific algorithms are more effective. There are many

works in the literature that investigate mapping function blocks to architecture components

[91, 67, 40, 57, 15, 51]. They usually focuse on designing algorithms for particular types of

systems, with specific semantics.

We also designed a general branch-based algorithm in which the subroutines can

be customized for different problems. This algorithm does not restrict the semantics of the

systems, or the types of constraints. Techniques for different semantics can be plugged in
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as sub-algorithms. The pseudo code is shown in Algorithm 1 and 2.

Algorithm 1 Branch-based synthesis algorithm

1: Read parameters, constraints and objective functions

2: Set branching order of variables

3: Choose sub-algorithms based on semantics

4: current best solution = compute by heuristics

5: Branch at depth 0

The advantages of this framework are as follows:

• For various semantics, sub-algorithms such as compute by heuristics, estimate bound,

calculate cost can be implemented using different techniques.

• We separate allocation from other concerns, such as scheduling, power constraints,

and resource utilization. This is more flexible in the sense that specialized algorithms

can be applied to separated concerns.

• Existing heuristic algorithms can be easily utilized. A good starting point or bound

estimation can greatly reduce the design space to be explored. The entire algorithm

is guaranteed to be optimal if all sub-algorithms are accurate. If the complexity of

finding an overall optimal solution is too high, we may choose heuristic sub-algorithms.

• Each node on the branching tree represents a partial allocation assignment. Therefore,

if we want to do incremental design, or change part of the design, this framework is

also helpful.

In Chapter 3, we will explain how the covering problems are formulated and solved
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Algorithm 2 Branch at depth d

1: apply implication

2: conflict = check conflict constraints

3: if conflict then

4: return

5: if no variables to be branched or d ≥ max search depth then

6: res = calculate cost

7: if res is better than current best solution then

8: current best solution = res

9: lb = estimate bound

10: if lb is not better than current best solution then

11: return

12: else

13: while variable v at depth d is already assigned do

14: d = d+ 1

15: for all value a for variable v at depth d do

16: v = a

17: Branch at depth d+ 1
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in industrial case studies. For different systems, we used different algorithms, including

mathematical programming, heuristics, hybrid approach (combing mathematical program-

ming and heuristics), as well as the general branch-based approach.

2.3 Stage 3 : Further Optimization

After the covering problem is solved, there might still be some design concerns that

need to be addressed, for instance scheduling, buffer sizing, communication bandwidth, etc.

They are the unknown variables that did not appear in the covering problem formulation.

These variables can be put into the covering formulation, but sometimes they are separated

because of complexity considerations.

2.3.1 Scheduling

In the covering problem formulation, computation of quantity constraints and costs

are sometimes complicated, when considering different scheduling algorithms. Scheduling

algorithms include the scheduling between function primitive instances that are mapped on

the same architecture component, and the scheduling between function primitive instances

on different architecture components.

In some cases, scheduling may greatly affect the computation of quantities and

costs. Therefore, when solving the covering problem, we may need to consider the scheduling

for each possible legal mapping by adding variables to the formulation. This will certainly

make the problem more complicated, but it results in an integrated formulation, therefore

some techniques can be used to explore the relation between allocation and scheduling.
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2.3.2 Buffer Sizing

For systems with different underlying semantics, we need different techniques to

solve the buffer sizing problem. If the semantics of systems are Kahn Process Networks,

we cannot statically decide the upper-bound of buffer sizes. In this case, we need dynamic

algorithms to assign the buffer at runtime. If the semantics of systems are static dataflow

or other such statically schedulable ones, we can use techniques to decide the buffer size

statically. We will explain these buffer sizing algorithms more in our case studies in Section

3.2.3.
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Chapter 3

Case Studies

In this chapter, we use case studies from two application domains to show how our

approach can be used in practice and to demonstrate its generality and reusability. The

case studies on real-time distributed systems focus on choosing a common semantic domain.

The case studies in multimedia domain focus on exploring abstraction levels. Even if the

case studies come from different domains, they can be addressed formally and effectively

in the same mapping procedure. By formally exploring semantics and abstraction levels in

CMDs, covering problem can be formulated and solved automatically, thus improving the

performance significantly. We will show the algorithms we designed for solving the covering

problems, and for further optimization.

3.1 Real-time Distributed Systems

Control systems with tight (hard) real-time constraints are common in cars, air-

planes, industrial plants, buildings, etc. The complexity of modern control systems requires
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the use of distributed systems. These systems collect data from a set of distributed sen-

sors, perform computation on the data in a distributed fashion and based on the results of

the computation, send commands to a set of distributed actuators. In hard real-time sys-

tems, the tasks of the distributed control subsystem must satisfy tight end-to-end latency

constraints.

In practice, to design such systems, it is common to start with a functional (ap-

plication) specification of the set of features that the system is expected to provide, and an

architectural model that captures the topology of the distributed platform, including the

computational nodes, the communication buses between them and the management policies

that control the shared resources. Then the designers will deploy the functional tasks that

implement the features onto the distributed platform. This process can be formalized to

follow the platform-based design paradigm, where the function model is initially separated

from the architecture model, then being mapped together during mapping to obtain an

implementation. As shown in Figure 3.1, the function model that is constructed based

on the specification consists of a set of tasks communicated using explicit messages. The

designers also specify the end-to-end latency constraints on chains of tasks in the function

model. For example, in the application shown here, we have a fusion task, an object ID

task and a brake actuator. The execution of these three tasks need to occur with 150 ms.

The architecture model consists of a network of computational nodes connected together

with standardized buses. Then during mapping, the design space is explored based on the

objectives and constraints. The variables in the design space may include:

• allocation, which allocates tasks onto nodes and messages onto buses.
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• the priority assignment of tasks and messages, if the scheduling policy of the shared

resources is priority based.

• the activation model of tasks and messages, which can be either periodic driven or

data driven.

• periods of tasks and messages if they are periodic driven.

The objectives and constraints may include cost, extensibility/scalability, perfor-

mance, robustness of the system, etc. The performance can be measured by total end-to-end

latencies, or end-to-end latencies over some specified paths.

Figure 3.1: Design Flow for Real-time Distributed Systems

As we mentioned in Chapter 2, this mapping problem can be formulated as a

covering problem, if both function and architecture are described in a common modeling

domain. Next, we will show how our three-stage mapping procedure is applied to this
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problem.

3.1.1 Stage 1 : Choosing Common Modeling Domain

The choice of common semantics depends on the semantics of original function and

architecture models, which might vary in different systems, and in different design processes.

Here, we use the automotive active safety control systems as an example. This case study

was a collaboration with General Motors. As hard real-time systems, active safety control

systems are usually built around a standard bus interface and today routinely consist of

tens of computational nodes - known as electronic control units (ECUs) - that carry out

sensing, actuating, and computational operations. Since these systems control safety-critical

aspects of the vehicle such as braking and steering, correct-by-construction deployment of

the application is very important.

A challenge is reconciling the choices made due to functional verification with the

choices based on cost effectiveness. To facilitate functional verification, the functionality is

described by a SIMULINK model where all tasks proceed in lock-step and no messages are

lost or duplicated. However, to reduce cost, the architecture and associated middleware do

not satisfy these requirements, since the ECUs are themselves unsynchronized, thus message

loss and duplication are both possible. Because of this mismatch between the semantics

of function and architecture models, current design practice cannot guarantee correct-by-

construction deployment, and brute-force oversampling and extensive in-vehicle testing are

the only options available. We will show below that by finding a CMD, the mismatched

models can be bridged and automatic algorithms can be applied.

We place these mismatched models on the modeling domain relation graph as
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shown in Figure 3.2. The functional SIMULINK model is described by synchronous reactive

(SR) semantics [37, 48], while the architecture model can be described by the semantics

of loosely time-triggered architectures (LTTA) [13]. To bridge the gap between these two

models, we need to find a common semantics. Process networks (PN) is one option where

both models can be described without losing any behaviors. As shown in Figure 3.2, common

ancestor domain D has PN as the semantic domain. However, modeling functionality and

architecture in D is very complex because of the generality of PN semantics. Therefore, we

should find a child domain of D as the CMD. There are several choices here.

D = C PN (PD)

F = C SR (PF) A = C LTTA (PA)

C1 = 
C LTTA (P1=PF’ U PA)

C2 =
C SR (P2=PF U PA’)

Figure 3.2: Domain Relation Graph for Automotive Case Study

The first option is to choose the semantics of LTTA as the common semantics

in the CMD, shown as C1 in Figure 3.2. The architecture model a′ ∈ C1 is the same as

original architecture model a ∈ A. However the original function model f ∈ F described by
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SR semantics needs to be transformed. The function primitives PF should be wrapped to

support LTTA semantics, denoted as PF ′ . The primitives P1 in CMD C1 will be PF ′ ∪ PA.

This is the option that was explored in detail in [106]. Although this option allows correct

deployment, the function model transformation is usually difficult, and it will cause the

functional verification challenge to increase since we need to assure B(f ′) ⊆ B(f). For this

reason, we propose the second option - choosing SR as common semantics in the CMD,

shown as C2 in Figure 3.2.

The function model f ′ ∈ C2 is the same as f ∈ F . But the architecture model a

needs to be transformed since it originally provides asynchronous communication with data

loss and duplication. To support synchronous communication in SR semantics, we restrict

the behaviors of the architecture primitives PA by using the protocol introduced in [13].

This protocol provides a sufficient condition on process periods to avoid data loss, and uses

the Alternating Bit protocol to avoid data duplication. We also use a clock synchronization

strategy [45] to restrict the possible clock drift between local clocks of components. This

is necessary to ensure the correctness of the protocol. After these protocols are applied,

the architecture model can be described in CMD C2 as a′. Even though a′ has possibly

fewer behaviors, correct deployment can be assured when function model f ′ is mapped to

this architecture model a′. Compared to option 1, this method does not require changes

to function models, therefore significantly reducing the development cost, especially when

multiple applications are mapped onto the same architecture platform. We might lose some

performance by restricting the behaviors, but based on the results shown below, we still

obtain significant improvement over manual designs.
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To validate our choice of CMD for bridging the semantics gap, we modeled and

simulated an active safety control system in the Metropolis framework [7]. The function

model describes a vehicle stability control application, as shown in Figure 3.3. It is further

broken down to 14 concurrent tasks communicated through 48 messages in the Metropo-

lis model. The architecture on which we want to deploy the function has 6 distributed

ECUs communicating through a CAN bus. Figure 3.4 shows the architecture model in

Metropolis. Initially, we directly mapped the functionality to the architecture. The sim-

ulation showed that there were lots of message losses, because of the asynchronism of the

architecture. We then implemented all the protocols mentioned above to enable the sup-

port of synchronous functionality. The simulation results showed that by applying these

protocols, there was no message loss any more.

Supervisory 
Control 
Module

Hand 
Wheel 
Sensor

Inertial 
Sensor

Suspension

Steering 
Subsystem

Braking

Figure 3.3: Vehicle Stability Control Application
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Figure 3.4: Automotive Architecture Modeled in Metropolis

3.1.2 Stage 2 : Solving Covering Problem

After the SR semantics is chosen in CMD and protocols are applied to ensure the

design correctness, the mapping problem can be formulated as a covering problem.

The general formulation of the covering problem is introduced in Section 2.2. In

this case study, tasks and messages in the function model are regarded as the function prim-

itive instances. ECUs and buses on the architecture platform are the architecture primitive

instances. The allocation of the functional tasks on ECUs and messages on buses are rep-

resented by decision constraints. End-to-end latency requirement, utilization requirement,

message size restriction and other design constraints are represented by quantity constraints.

The objective functions include total end-to-end latencies over selected paths, extensibility
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of the system, or other design concerns.

This formulation can be applied to many real-time distributed systems. However,

a complete formulation with all design variables does not scale for real designs. Therefore,

we start with tackling several sub-problems, then consider integrating them. And we use

mathematical programming to solve these problems. Mathematical programming studies

the problems that minimize or maximize a real function of real or integer variables, subject

to constraints on the variables [94]. We chose mathematical programming since it provides

the extensibility to add additional constraints for system or domain specific situations.

There are many forms of mathematical programming. We mainly used mixed integer linear

programming (MILP) and geometric programming (GP), based on the characteristics of

our problems. In all problems, we base our optimization on worst-case analysis, since the

systems are safety critical.

In the first sub-problem, we explore the allocation of tasks, the packing of signals

to messages, as well as the priorities of tasks and messages for single-bus systems [108]. We

assume that all tasks and messages are periodically driven and the periods are given by

designers or heuristic algorithms. The objective function is total end-to-end latency over all

paths. We use a two-step mapping algorithm based on mixed integer linear programming

(MILP). In the second sub-problem, we explore the similar set of variables as the first

problem, however the objective function is system extensibility, and we also consider multi-

bus systems. We define a metric of extensibility and design a multi-step algorithm based on

MILP and heuristics for optimizing it. The third sub-problem is period optimization [29],

in which the periods of tasks and messages are assigned based on geometric programming
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(GP), assuming allocations and priorities are given. The objective function is total end-to-

end latency. Figure 3.5 shows a summary of these three sub-problems.

Figure 3.5: Sub-problems of Mapping in Real-time Distributed Systems

In the rest of this section, we will explain the first sub-problem - allocation and

priority assignment, which covers most part of the covering problem. For more details of this

work, please refer to [108]. In Section 3.1.3, we will introduce the third sub-problem - period

optimization, which can be regarded as further optimization in the mapping procedure. For

more details, please refer to [29].

3.1.2.1 System Models for Allocation and Priority Assignment

In this work, the electronic control units (ECUs) are assumed to run OSEK-

compliant operating systems which have preemptive priority-based run-time task sched-

uling. The buses use the standard controller area networks (CAN) bus arbitration model,

which features non-preemptive priority-based runtime message scheduling. We only con-

sider single-bus systems.
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As a typical model that is used for the implementation of distributed computa-

tions, periodic tasks and messages communicate according to a semantics in which the

communication channel holds the last value that is written into it and is implemented as

a shared variable protected against concurrent access. This model, called periodic activa-

tion model, has some advantages, including the separation of concerns when evaluating the

schedulability of the individual resources. It also allows for a very simple specification at the

interface of each subsystem or component, thereby simplifying the interaction with the sup-

pliers. The drawback is a non-deterministic time behavior and a possibly large worst-case

end-to-end delay in the computations.

The execution model is as follows. Input data (generated by a sensor, for instance)

are available at one of the system’s ECUs. A periodic activation event from a local clock

triggers an application task on this ECU. The task reads the input data signal, computes

intermediate results as output signals, and writes them to the output buffer from where they

can be read by another task or used for assembling the data content of a message. Messages

- also periodically activated - transfer the data from the output buffer on the current ECU

over the bus to an input buffer on another ECU. Eventually, task outputs are sent to a

system output (an actuator, for instance). The application typically imposes end-to-end

latency requirements between a subset of the source-sink task pairs in the system.

As shown in Figure 3.6, our system consists of an architecture model, in which m

heterogeneous ECUs E = {e1, e2, ..., em} are connected through a single CAN bus, and a

function model in which n tasks belonging to the set T = {τ1, τ2, ..., τn} perform the dis-

tributed computations required by the functions. Signals S = {si,j |τi, τj ∈ T} are exchanged
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among pairs of tasks. Each signal carries a variable amount of information (expressed as

number of bits). βsi,j is the length of the signal si,j . The signal exchanged between two

tasks τi and τj is also represented as a directed link τi → τj , so that the computation flow

may be expressed as a directed graph.
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Figure 3.6: Mapping of Tasks to ECUs and Signals to Messages

A path P (τi, τj) or P (i, j) is an ordered sequence P = [τi, . . . , τj ] of tasks that,

starting from from τi, reaches τj , going through n + 1 tasks such that each one of them

receives a signal from its predecessor and sends information to its successor.

A path represents one end-to-end execution of the system, from the production of

a signal corresponding to an external event, to the generation of the output. More than one

path can be originated by one initial task. The path deadline for Pi,j , denoted by di,j , is

the end-to-end constraint for the computation performed in the path. Similarly, the worst

case end-to-end latency for a computation spanning a path Pi,j is denoted as li,j .
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Tasks are executed on the ECUs and activated periodically. The placement of a

task is indicated as a relation Ai,c meaning that task τi is executed on ec. The period of τi

is indicated as Ti. At the end of their execution, tasks produce their output signal, which

inherits the period of the sender task. We allow the system ECUs to be of heterogeneous

nature, but we assume that the worst case computation time of each task τi on each ECU

ec is known or can be estimated at ci,c.

After the mapping of the tasks to the ECUs, the signals are mapped into messages

exchanged between ECU pairs. M = {mr
p,q|ep, eq ∈ E, r = 1...umaxp,q } is the message set. All

messages are periodic, with period Tmrp,q and are scheduled according to their priority prp,q

on the CAN bus (as defined by the standard) The mapping rules require that each signal

mapped to a message must have the same source and destination ECUs (its transmitter

and receiver tasks must be allocated on the source and destination ECU of the message)

and the same period of the message.

In CAN, the message size is limited to a maximum of 64 bits. Hence there is

the possibility that a signal larger than 64 bits is fragmented and transmitted in multiple

messages. In our approach, we don’t consider signal fragmentation, but we assume that the

length of each signal always allows it to be transmitted in a single message. The designer

may perform an a-priori fragmentation of larger signals to fit this model.

3.1.2.2 End-to-End Latency

In the periodic activation model, the worst case end-to-end latency is computed

for each path by adding the worst case response times rk and the periods Tk of all the
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objects ok (ok can be either a task or a message) in the path.

L(i,j) =
∑

k:ok∈P (i,j)

(Tk + rk)

In the worst case, as shown in Figure 3.7, an external event arrives immediately

after the completion of the first instance of task o1. The event data will be read by the task

on its next instance and the result will be produced after its worst case response time, that

is, T1 + r1 time units after the arrival of the external event. Since there is no coordination

between tasks on separate resources, the situation repeats in the worst case for each link

in the path. To get more precise results, the best case response time vi of any predecessor

object oi should be subtracted from the period Ti in the previous formula. However, in

most cases, including our case studies, vi � Ti and vi can be ignored.

Figure 3.7: End-to-End Latency Calculation

For multiple communicating tasks with harmonic periods on the same ECU, the

analysis can be less pessimistic if we assume that the designer can select the relative activa-

tion phase of all tasks. In case the sink task is activated with a relative phase with respect

to the source equal to its worst case response time, then the contribution of the pair to the
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end-to-end latency can possibly be reduced. Let o1 and o2 be two tasks on the same ECU

that appear (in that order) in a path with an end-to-end deadline. If T1 = kT2 is satisfied,

where k ∈ N+, then T2 is oversampled-harmonic with respect to T1. Similarly, if kT1 = T2,

where k ≥ 2, then T2 is undersampled-harmonic with respect to T1. Latency analysis for

these situations is developed in [73] and summarized in Table 1.

Condition Path Fragment Latency
Non-local or non-harmonic r1 + T1 + r2 + T2

Local oversampled-harmonic r1 + T1 + r2
Local undersampled-harmonic r1 + r2 + T2

Table 3.1: Latency over Local Harmonic Path Fragments

Computing end-to-end latencies requires the computation of task and message

response times. The analysis in this section summarizes work from [49, 31].

Task Response Times In a system with preemption and priority-based scheduling, the

worst case response time ri for a task τi depends on its computation time Ci, as well as on

the interference from higher priority tasks on the same node. Assuming ri ≤ Ti, ri can be

calculated using the following formula:

ri = Ci +
∑

j∈hp(i)

⌈
ri
Tj

⌉
Cj (3.1)

Where hp(i) refers to the set of higher priority tasks on the same node.

Message Response Times Worst case message response times are calculated similarly

to task response times. The main difference is that message transmissions on the CAN bus

are not preemptable. Therefore, a message mi may have to wait for a blocking time Bmax,
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which is the longest transmission time of any frame in the system. Likewise, the message

itself is not subject to preemption from higher priority messages during its own transmission

time Ci. The response time can therefore be calculated with the following relation:

ri = Ci +Bmax +
∑

j∈hp(i)

⌈
ri − Ci
Tj

⌉
Cj (3.2)

3.1.2.3 MILP Formulation

The objective of our design problem is to find the best possible

• allocation of tasks onto the ECUs

• packing of signals to messages

• assignment of priorities to tasks and messages

Given

• constraints on (some) end-to-end latencies

• constraints on the message size

with respect to the

• minimization of the total end-to-end latency of all paths

We formulate our problem as a mixed integer linear programming (MILP) formu-

lation that is amenable to automatic optimization. After [16], a MILP program in standard

form is:
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minimize cTx (3.3)

subject to Ax = b (3.4)

x ≥ 0 (3.5)

where x = (x1, ..., xn) is a vector of positive real or integer-valued decision variables. A is an

m× n full-rank constant matrix, with m < n, b and c are constant vectors with dimention

n*1. Constraints of the type Ax ≤ b can be handled by adding a suitable set of variables,

and then transforming such inequalities in the standard form. MILPs can be solved very

efficiently by a variety of solvers. In this work, we make use of the CPLEX solver.

The main difficulty of a MILP approach lies in the possible large number of vari-

ables and constraints and the resulting large solution time. The form of the constraints and

objective function must be chosen carefully such that the formulation captures the behavior

of the system, and yet remains amenable to efficient solving.

For complete MILP formulation of this problem, please refer to [108]. Here, we

will highlight several key aspects in the formulation.

Allocation Constraints We define variables to represent allocation as follows.

Ai,j =


1, if τi is mapped to ECU ej

0, otherwise
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ai,j =


1, if τi and τj are mapped to the same ECU

0, otherwise

Then each task can be mapped to at most one ECU (N constraints)

∑
j∈E

Ai,j = 1 (3.6)

Furthermore, there are dependencies among the Ai,j and the ai,j variables. If tasks τi and

τj are mapped to the same ECU ek, then (3.7) constrains the variable ai,j = 1. However, if

task τi and τj are mapped to different ECUs, then (3.8) will set aτi,τj = 0.

Ai,k +Aj,k − 1 ≤ ai,j (3.7)

2−Ai,p −Aj,q ≥ ai,j (3.8)

Signal to message mapping and their relationship to task allocation can be modeled

similarly [108].

End-to-End Latency Constrains First, we will show how task response time - a key

part while computing end-to-end latency - is formulated. For each pair of tasks (τi, τj), we

define

pi,j =


1, if task τi has higher priority than τj

0, otherwise

For the antisymmetric and transitive properties of the priority order relation, following

conditions need to be satisfied (we assume no two task have the same priority level.)

pi,j + pj,i = 1 (3.9)

pi,j + pj,k − 1 ≤ pi,k (3.10)



64

The formula that allows to compute the worst case response time of a task τi is

ri = Ci +
∑

j∈hp(i)

Ij,iCj

where hp(i) spans over the set of all the higher priority tasks that are allocated on the same

CPU as τi, and Ij,i is the number of interferences of τj on τi during its response time.

Ij,i =
⌈
ri
tj

⌉

To compute ri in our MILP framework, we start by adding the following variable

yi,j =


n ∈ N, number of possible interferences of τj on τi

0, otherwise

The definition of the possible number of interferences as function of the response times and

periods is captured by

0 ≤ yi,k − rτi/tτk ≤ 1 (3.11)

in addition, we define

xi,j =


n ∈ N, number of possible interferences of τj on τi if pj,i = 1

0, otherwise

xi,j can be defined in terms of yi,j and pi,j as follows, using the “big M” formulation (M is

a large constant) in use in linear programming to express conditional constraints.

yi,k −M × (1− pk,i) ≤ xi,k ≤ yi,k (3.12)

0 ≤ xi,k ≤Mpk,i (3.13)

Furthermore, to take into account the placement condition, we need to define also
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wi,k =



n ∈ N, number of possible interferences of τk on τi

if pk,i = 1 when they are on the same ECU (ai,k = 1)

0, otherwise

and

zi,j,k =



n ∈ N, number of possible interferences of τk on τi

if pk,i = 1 when they are on CPU ej

0, otherwise

Please note that wi,k 6= 0 is the only case in which τk can actually preempt (i.e. interfere

with) τi. An additional variable zi,j,k is used to put this information in the context of a

given CPU (ej) These variables can be computed from the previous ones as

xi,k −M × (1− ai,k) ≤ wi,k ≤ xi,k (3.14)

0 ≤ wi,k ≤Mai,k (3.15)

for wi,k, and

wi,k −M × (1−Ak,j) ≤ zi,j,k ≤ wi,k (3.16)

0 ≤ zi,j,k ≤MAk,j (3.17)

for zi,j,k.

Finally, the response time of task τi (an additional variable ri ∈ R+) can be computed as

ri =
∑
j

Ai,jci,j +
∑
k

∑
j

zi,j,kck,j . (3.18)
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The message response time can be modeled similarly as in [108]. After having the

formulation for task and message response times, we are now ready to compute the end to

end latency.

∑
τi∈Pl,m

(rr + Ti) +
∑

lj,k∈Link(Pl,m)

(rsj,k + Tsj,k) ≤ dl,m (3.19)

where τi is the generic task in the path Pl,m. Latencies on the paths should be no greater

than the deadline (3.19).

Objective Function Given that the performance of the functions is better with small

response time of the actuators, the objective function minimizes the sum of the latencies

over all paths

Min
∑
P

(
∑
τionP

rτi +
∑

lj,k∈Link(P )

rsτj ,τk ) (3.20)

3.1.2.4 Synthesis Steps

Section 3.1.2.3 describes an integrated formulation for task allocation, signal pack-

ing, as well as task and message priority optimization. This problem formulation provides

an optimal solution when solvable. However, the complexity is typically too high for the

sizes of industrial applications. Therefore, we propose, as an approximation, a two-step

synthesis method, as shown in Figure 3.8. The whole synthesis problem is divided into two

sub-problems. At each step, the sub-problem is formulated as an MILP based on the vari-

ables and constraints defined in Section 3.1.2.3, then solved by mathematical programming

tools.

In Step 1, we assume one message is reserved for each signal, and that the priorities

of one-signal messages are given by a preprocessing heuristic that assigns priorities to signals,
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Synthesize Task Allocation
and Task Priority

Synthesize Signal Packing
and Task, Message Priority

Parameters:
Task worst case execution time

Signal length, bus speed
Task and Signal periods

Constraints:
End-to-end latency on given paths

Objective:
Sum of latencies of given paths

Heuristics

signal  priority
Synthesize Task Allocation

and Task Priority

Synthesize Signal Packing
and Task, Message Priority

Parameters:
Task worst case execution time

Signal length, bus speed
Task and Signal periods

Constraints:
End-to-end latency on given paths

Objective:
Sum of latencies of given paths

Heuristics

signal  priority

Figure 3.8: Two Step Synthesis Approach

based on their period, and according to the Rate Monotonic policy. In the first sub-problem,

we synthesize the task allocation and task priority to optimize the sum of the latencies of

given paths, while also satisfying the deadline constraints on those paths.

In Step 2, we use the task allocation result from Step 1, and synthesize signal

packing, message priority and task priority. The objective is still to optimize the sum of

the latencies of given paths, while satisfying the deadline constraints on paths and the

constraints on message size.

3.1.2.5 Experimental Results

We demonstrated the applicability and the possible benefits of our approach with

a case study derived from the analysis of a bus subsystem of an experimental vehicle that
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incorporates advanced active safety functions.

The architecture platform consists of 9 ECUs connected with a single CAN-bus

at speed 500kb/s. The vehicle supports advanced distributed functions with end-to-end

computations collecting data from 360◦ sensors to the actuators, consisting of the throttle,

brake and steering subsystems and of advanced HMI(Human-Machine Interface) devices.

The analysis focuses on the subset of tasks and signals that are part of paths

with timing constraints. We assume the remaining tasks and signals are assigned lower

priorities and allocated to ECUs and messages based on other considerations (possibly load

balancing) in such a way that they do not interfere with the latencies of the critical paths.

For the purpose of our experiments, we assumed all ECUs to have the same com-

putation power (which is not actually true in reality).

The subsystem that is the subject of our study consists of a total of 41 tasks

executed on the ECU nodes, and 83 CAN signals exchanged among the tasks. Worst-case

execution time estimates have been obtained for all tasks, and the bit length of the signals

is between 1 (for binary information) and 64 (full CAN message).

End-to-end deadlines are placed over 10 pairs of source-sink tasks in the system.

This corresponds to 171 paths. The deadline is set at 300ms for 8 source-sink pairs and

100ms for the other two.

The experiments were run on a 1.4-GHz processor with 2GB RAM. We used

CPLEX 10.1 as the MILP solver.

For step 1, the total number of variables was 21249, 3430 of them binary variables.

The number of constraints (automatically generated by a purposely written C++ program
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based on the system configuration) was 801083. For step 2, the number of variables was

17797, 2582 of them binary variables. The number of constraints was 136221.

In Step 1, a feasible solution satisfying all path deadline constraints was found

in 8.9 seconds. The objective value - sum of the latencies of given paths - was 36486ms

for this feasible solution. Within 20000 seconds, the best solution found by the solver was

13060.3ms. Although the optimum had not been reached yet, the optimization was stopped

with the obtained solution within 0.07% of the optimum for the formulation of Step 1. The

largest latency among all the paths with deadline at 300ms was 135.82ms and the largest

latency for 100ms deadline paths was found at 63.19ms.

In Step 2, we set the solution of Step 1 as the initial point and further optimized

the objective function by packing the signals and synthesizing the priorities of tasks and

messages. Within 20000 seconds, a solution with 12899.9 total latency was found. This was

within 1.13% of the optimal for Step 2 formulation. The result improves the output of Step

1 by 1.22%. After this second step, the largest latency among all the paths with deadline

at 300ms was 133.398ms and the largest latency for 100ms deadline paths was found at

62.09ms.

The improvement is small because message transmission times and response times

are much smaller than task response times and both are small if compared with the task

and message periods that contribute to the end-to-end latency. The majority of the path

latencies were not significantly affected by the steps of signal packing and message priority

optimization.
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3.1.3 Stage 3 : Further Optimization

In the further optimization stage, we optimize the design concerns that were left

out in the covering problem because of complexity reason. For the real-time distributed

systems, task and message periods can be optimized in this stage, after allocation and

priority assignment were decided in previous stage. Next, we will explain some details of

this period optimization work [29].

3.1.3.1 System Model for Period Optimization

The system model for period optimization is similar to the one introduced in

allocation and priority assignment. Periodically driven tasks and messages are being exe-

cuted/transferred on ECUs/buses based on priority-based scheduling. The main difference

is that in period optimization, task and message periods are variables, while allocations

and priorities are assumed as given. Also, we deal with multi-bus systems in period op-

timization, rather than only single-bus systems in the allocation and priority assignment

project.

The systems we consider can be represented as a weighted directed graph (O,L)

and a set R. O is the set of vertices denoting the schedulable objects (tasks and messages),

L is the set of edges representing the flow of information (data dependencies), and R is a

set of shared resources supporting the execution of the tasks (ECUs) and the transmission

of messages (buses).

• O = {o1, . . . , on} is the set of schedulable objects implementing the computation and

communication functions of the system. An object oi represents either a task or a
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message and is characterized by two parameters: a maximum time requirement ci and

a resource Rj to which it is allocated (oi → Rj). All objects are scheduled according

to their priority and a total order exists between the priorities of all objects on each

resource. The object is periodically activated with a period ti. ri is the worst case

response time of oi, representing the largest time interval from the activation of the

object to its completion in case it is a task, or its arrival at the destination in case

it is a message. The response time of an object includes its own time requirement as

well as the time spent waiting to gain access to the resource.

• L = {l1, . . . , lm} is the set of links. A link li = (oh, ok) connects an object oh (the

source) to object ok (the sink). One object can be the source or sink of many links.

At the end of its execution or transmission, an object delivers results (task) or its data

content (message) on all outgoing links. For any link, the sink object is activated by a

periodic timer and, when it executes, reads the latest signal value that was transmitted

over the link.

• R = {R1, . . . , Rz} is the set of logical resources that can be used by the objects to

carry out their computations. Resources are either ECUs or buses and are scheduled

with a priority-based scheduler.

A path p is a finite sequence of objects (p ∈ O∗) that, starting from oi = src(p),

reaches oj = snk(p) with a link between every pair of adjacent objects. oi is the path’s

source and oj is the sink. Sources are activated by external events, while sinks activate

actuators. Multiple paths may exist between each source-sink pair. The worst case end-to-

end latency incurred when traversing a path p is denoted as `p. The path deadline for p,
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denoted by dp, is an application requirement that may be imposed on selected paths.

The computation of worst case end-to-end latency is the same as in Equation

3.1.2.2, shown below by using the notations in this project:

`p =
∑
k:ok∈p

tk + rk

The computations of task and message response times also follow the same formulas

as in allocation and priority assignment project, shown below by using the current notations.

ri = ci +
∑

j∈hp(i)

⌈
ri
tj

⌉
cj ∀oi ∈ T (3.21)

ri = ci + bi +
∑

j∈hp(i)

⌈
ri − ci
tj

⌉
cj ∀oi ∈M (3.22)

However, different from the case in allocation and priority assignment, the periods

on the denominator are variables now. Therefore, we cannot use MILP directly. Instead,

we use another type of mathematical programming - geometric programming.

3.1.3.2 Geometric Programming Formulation

Geometric programming (GP) is a special form of convex programming [17]. GPs

have polynomial time computational complexity and can be solved very efficiently by a

variety of off-the-shelf solvers. After [16], a GP in standard form is:
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minimize f0(x)

subject to fi(x) ≤ 1 i = 1, . . . ,m

gi(x) = 1 i = 1, . . . , p

where x = (x1, ..., xn) is a vector of positive real-valued decision variables. f is a

set of posynomial functions, while g is a set of monomial functions. A posynomial is the

sum of monomials, where a monomial function m has the following form:

m(x) = cxa1
1 x

a2
2 . . . xann c > 0, ai ∈ R

If x contains both integral and real-valued decision variables, the resulting problem

is a mixed-integer geometric program (MIGP). Unlike GPs, MIGPs are not convex and

cannot be efficiently solved.

In this work, we make use of the gpposy [59] solver to solve GPs. Solver interfacing

is handled by the Yalmip [62] framework, which can overlay a branch-and-bound approach

to solve MIGP problems as well.

The period optimization problem can be formulated as geometric programming,

shown below.
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min.
∑

oi∈O ri (3.23)

s.t.
`p
dp
≤ 1 ∀p ∈ P (3.24)

ci+
∑
j∈hp(i) zijcj
ri

≤ 1 ∀oi ∈ T (3.25)

ci+bi+
∑
j∈hp(i) zijcj
ri

≤ 1 ∀oi ∈M (3.26)

ri ≤ ti ∀oi ∈ O (3.27)

∑
i:oi→Rj

ci
ti×uj ≤ 1 ∀Rj ∈ R (3.28)

ni
ti
≤ 1 ti

xi
≤ 1 ∀oi ∈ O (3.29)

ri
tj×zij ≤ 1 ∀oi ∈ T (3.30)

ri
tj×zij+ci ≤ 1 ∀oi ∈M (3.31)

The problem is defined over the following sets: the objectsO, which are partitioned

into messages M and tasks T , the set of resources R, and the paths with end-to-end

constraints P. All objects oi ∈ O have associated computation time parameters ci, lower

bounds on periods ni, and upper bounds on periods xi. Additionally, messages oi ∈ M

have associated blocking times bi. Path deadlines dp are specified for all p ∈ P. uj are the

maximum permitted utilization values for all resources Rj ∈ R. The main decision variables

for all oi ∈ O are the periods ti while the response times ri and interferences zij ∈ Z+ are

used as helper variables.

The objective function can be selected according to the optimization goals. (3.23)

corresponds to the minimization of average response time over all objects in the system.

However, a different choice related to the extensibility of the solution can also be used. For
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instance, minimizing the maximum resource utilization.

Path latencies are met by (3.24). Response times are related to computation

times and periods by (3.25) and (3.26), following the relationships from (3.21) and (3.22)

respectively.

(3.27) ensures that there is no queuing of jobs, i.e. response times are lower

than object periods. Resource utilization is bounded by (3.28). Minimum and maximum

execution periods of tasks and messages may be specified separately – especially for feedback

control applications – with (3.29).

Finally, the number of interferences zij (from a higher priority object j to a lower

priority object i on the same resource) for tasks and messages are specified with (3.30) and

(3.31). Note that the integrality of the zij variables causes the problem to be an MIGP.

Since MIGP problems are very difficult to solve, we approximate the MIGP period

optimization problem with a GP formulation. In order to cast the problem into a GP form,

the interference variables zij are relaxed to real-valued variables and parameters 0 ≤ αij ≤ 1

are added to them. For clarity, let the approximated response time variables be si. (3.30)

and (3.31) from the MIGP become:

si
tj(zij+αij)

≤ 1 ∀oi ∈ T (3.32)

si
tj(zij+αij)+ci

≤ 1 ∀oi ∈M (3.33)

Thus, the GP approximation consists of the objective function (3.23) with si in

place of ri, constraints (3.24)-(3.29) (also with si in place of ri) and constraints (3.32) and

(3.33).
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If the values of all αij are 1, then the approximation is always conservative, i.e.

si ≥ ri. If some αij < 1, no such guarantees can be made. Clearly, the accuracy of the

approximation depends upon the α parameters that are used.

3.1.3.3 Iterative Algorithm

The α parameters in the GP formulation represent the degree of conservatism used

for the approximation of the response times. Setting all αij = 1 is a safe, but pessimistic

approximation that may produce an infeasible problem instance. In this section, an iter-

ative procedure is presented to find α parameters that preserve feasibility with reduced

conservatism.

Given some set of α parameters, if the GP is feasible, optimal ti values from the

GP solution can be obtained. We can obtain the ri values by substituting these ti values into

(3.21) and (3.22). For all oi ∈ O, let ei represent the relative error between the estimated

and actual response times, i.e. ei = si−ri
ri

. If all ei ≥ 0, then the optimal GP solution results

in a feasible solution to the exact problem, while if all ei = 0, then the GP solution is not

only feasible, but optimal. If some ei < 0, then the GP has underestimated some response

times and (3.24) or (3.27) in the exact problem may have been violated.

An iterative procedure can be used to assign the α parameters. A new GP problem

is solved during each iteration, and the ei values are used to recalculate the α parameters

for the subsequent iteration. The procedure is summarized in Algorithm 3.

The input parameter to the procedure is f , which represents the maximum permis-

sible estimation error. At initialization, all αij are conservatively assigned to 1. Inside the

loop, the GP problem is solved and the estimated response times and assigned periods are
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Algorithm 3 Iterative Period Assignment Procedure

1: Input Parameter = f // acceptable error bound

2: ∀oi ∈ O, αij = 1

3: while (true) do

4: (s, t) = GP(α) // solve the GP

5: if infeasible then

6: ∀oi ∈ O, αij = 1
2αij

7: else

8: vior = 0, viol = 0

9: for all oi ∈ O do

10: calculate ri

11: ei = si−ri

ri

12: if (ri > ti) then vior = vior + 1

13: αij = αi − ei

14: ensure 0 ≤ αij ≤ 1

15: ∀p ∈ P, if `p > dp then viol = viol + 1

16: if viol = 0 ∧ vior = 0 ∧ (∀oi ∈ O,max(|ei|) < f) then exit
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obtained. If the problem is infeasible, then all α values are scaled, and a new GP problem is

solved during the next iteration. If the GP problem in the current iteration is feasible, then

the exact response times are calculated with (3.21) and (3.22). The relative error ei and

possible violations to (3.27) can then be calculated. Next, αij values are adjusted based on

ei, and are saturated either at 0 or 1 if necessary. After all exact response times have been

calculated, violations to path constraints (3.24) can be checked. If none of the constraints

have been violated, and if the maximum absolute estimation error is lower than the limit

for all objects, the procedure terminates, otherwise the next iteration is executed with the

modified α values. An iteration limit may also be specified.

3.1.3.4 Experimental Results

We tested our period optimization approach on an automotive active safety sys-

tem, which is an extended version of the system we tested in the allocation and priority

assignment project. The architecture consists of 29 ECUs connected with 4 CAN buses,

with speeds ranging from 25kb/s to 500kb/s. A total of 92 tasks are executed on the ECU

nodes, and 196 messages are exchanged over the four buses. Worst case execution time es-

timates have been obtained for all tasks. Message length and bus speed is used to calculate

the maximum transmission time for all CAN messages. Each ECU is allocated from 1 to 22

tasks and each CAN bus is allocated from 14 to 105 messages. The system graph contains

a total of 604 links.

End-to-end deadlines are placed over paths between 12 pairs of source-sink tasks in

the system. Most of the paths follow a six-stage structure: sensor preprocessing & sensory

fusion, object detection, selection of target objects in the environment, core functions,
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vehicle longitudinal & lateral controls with actuator arbitration & planning, and, finally,

low-level loops of the actuators themselves. Most of the intermediate stages are shared

among the tasks. Therefore, the graph is quite densely connected and despite the small

number of source-sink pairs, there are 222 unique paths among them.

The deadline is set at 300 ms for 9 of these source-sink pairs, at 200 ms for two pairs,

and at 100 ms for one pair. For 9 pairs of local tasks over 2 ECUs, harmonicity constraints

with fixed integer constants are present. Some task and message rates are bounded explicitly,

due to controller requirements and maximum sampling rates from sensors. To provide for

future extensibility and a safety margin, maximum utilization parameters ui from (3.28)

are set at 70% for all ECUs and buses.
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Figure 3.9: Period Optimization Meets All Deadlines

The system configuration used is a snapshot from an early study of the possible

architecture configurations, in which the periods of task and messages had not been finalized.
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The preliminary manual estimates are based on designer intuition. These initial period

assignments, in the worst case, do not meet any of the deadlines as shown in Figure 3.9.

Starting with all the α parameters equal to 1, we perform a GP optimization. The

results of this optimization are also shown in Figure 3.9. All 222 paths between the 12

source-sink pairs meet their deadlines. The GP problem takes 24 seconds to solve on a 1.6

GHz Pentium M processor with 768 MB of RAM. The GP period assignments are quite

different from the manual ones; the average period increases by 90%.

To determine the effectiveness of the iterative procedure, we can track the reduc-

tion in max(|ei|), ∀oi ∈ O across several iterations. The results are shown in Figure 3.10.

15 iterations of Algorithm 3 are shown on the x-axis. The y-axis (with a logarithmic scale)

shows the maximum absolute estimation error for the response time estimate used within

the GP formulation. The average estimation error, not shown, drops from 6.98% to 0.009%

during these same 15 iterations. Overall, the maximum estimation error is reduced by a

factor of 102, while the average estimation error decreases by a factor of 780. The discrep-

ancy between the approximated (
∑

oi∈O si) and actual (
∑

oi∈O ri) objective values drops

from 27.1% during the first iteration to 0.0045% during the final iteration.

Since the runtime per iteration is independent of the α values, the total solver

time for 15 iterations is 6 minutes. Even though the α values are reduced below 1, (3.24)

and (3.27) from the exact problem are not violated during any of the 15 iterations.

Finally, we can relax the 9 harmonicity constraints from fixed integer constants to

integer variables. This changes the problem from a GP to a Mixed Integer GP. The bnb

solver within Yalmip applies a branch-and-bound procedure to find the solution, and the
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solution time increases to 227 seconds per iteration.

3.1.4 Related Work

In this section, we will give an overview of some related work on synthesizing

real-time distributed systems.

The synthesis of task parameters (activation rates and offsets) and (partly) of task

configuration itself in order to guarantee end-to-end deadlines in single processor applica-

tions is discussed in [44]. Later, the work has been tentatively extended to distributed

systems [87] where a set of design patterns are applied to meet the deadlines using offset-

based scheduling. In [84], the authors discuss the use of genetic algorithms for optimizing

priority and period assignments with respect to a number of constraints, including end-to-

end deadlines and jitter. In [14], the authors describe a procedure for period assignment on
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priority-scheduled single-processor systems. In [83] a design optimization heuristics-based

algorithm for mixed time-triggered and event-triggered systems is proposed. The algorithm,

however, assumes that nodes are synchronized and the bus transmission time is allocated

according to the Universal Communication Model.

In [71], a SAT-based approach for task and message placement was proposed.

Like our approach, the method provides optimal solutions to the placement and priority

assignment. However, it did not consider signal packing.

The problem of optimal packing of periodic signals into CAN frames when the

transmission of signals is subject to deadline constraints and the optimization metric is the

minimization of the bus utilization has been proven to be NP-hard in [88]. Commercial

(the middleware tool by Volcano [21]) and research solutions [86, 88] exist to this problem.

However, they are all based on the assumption that the designer already allocated the tasks

to the ECUs and partitioned the end-to-end deadlines into task and message deadlines.

Besides periodic activation model, there is also data driven activation model, where

task executions and message transmissions are triggered, respectively, by the arrival of the

input data and by the availability of the signal data. Compared with periodic model, the

data driven model provides much shorter end-to-end delays and time determinism in the

communication. However, it may result in time intervals with bursty activations of tasks and

messages, hence high instantaneous load on some resources and possibly very high latencies

for low priority end-to-end computations [107]. In this case, the problem of distributed

hard real-time analysis has been first addressed by the holistic model [99, 82] based on

the propagation of the release jitter along the computation path. In [107], a MILP based
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approach is used to synthesize the choices between periodic-driven model and data-driven

model to meet the latency and jitter requirements of the application.

3.2 Multimedia Domain

Compared with real-time distributed systems, the systems in multimedia domain

usually have less control logics, but process more data. Although these two application

domains have very different characteristics, our approach can be generally applied to both.

In this section, we will show how we apply our three-stage mapping procedure to system

design in multimedia domain.

3.2.1 Stage 1 : Choosing Common Modeling Domain

In multimedia domain, dataflow is a commonly used model of computation for

describing functionality while the architecture platform usually supports the semantics of

dataflow. Therefore, we focus more on choosing a proper abstraction level while determining

common modeling domain. The case study we choose is about the deployment of a JPEG

encoder onto the Intel MXP5800 Platform. Initial work can be found in [28].

3.2.1.1 JPEG Encoder

The JPEG encoder [100] application is chosen since it is a representative of many

multimedia applications. In particular, the DCT, quantization, and Huffman blocks in the

JPEG encoder algorithm are utilized in several video compression algorithms including the

H.264 standard [101]. The application compresses raw image data and emits a compressed

bitstream. A block diagram of it is shown in Figure 3.11.
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Figure 3.11: JPEG Encoder Block Diagram

The input for the application is a stream of raw RGB data. In color space conver-

sion, the raw data is first converted into YCbCr format, where each of the three components

is stored by a single unsigned byte. Next, each of the component values is level shifted such

that it can be stored as a signed byte. The values are then bundled into 8x8 blocks and

processed independently.

First, each 8x8 block passes through a forward integer DCT block. Then goes to

quantization block, where each component in each 8x8 block is divided by a user-supplied

coefficient from a quantization table. After the division has taken place, the next step is to

rearrange the component values within each 8x8 block from row-major into zig-zag order.

This ordering tends to group the higher frequency components together, preferably leading

to long sequences of zeros.

The last major block is the Huffman encoding. The first part of this step is

run-length compression which takes long strings of zeros and represents them in a concise

intermediate form. The second part is the actual Huffman table lookup, which translates the

intermediate form into compact bit sequences. Like the quantization tables, the Huffman
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tables are statically specified by the user.

The final JPEG image file consists of header data along with the compressed

bit stream. The header data includes the quantization and Huffman tables for both the

chrominance and luminance components.

3.2.1.2 MXP5800 Platform

The Intel MXP5800 architecture is a highly heterogeneous and parallel platform

as shown in Figure 3.12. It implements a data-driven, shared register architecture with a

16-bit data path and a core running frequency of 266 MHz. The MXP5800 provides a large

number of customized programmable processing elements along with specialized hardware

to accelerate frequently repeated image processing functions. Such platforms are becoming

more prevalent for multimedia applications [102].
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Figure 3.12: Block Diagram of MXP5800 Platform

The basic MXP5800 architecture consists of eight Image Signal Processors (ISP1
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to ISP8) connected with programmable Quad Ports (8 per ISP). Quad Ports are used for

data I/O and are essentially FIFOs of size 2 each. They provide blocking read and blocking

write semantics which ensures that all communication is data driven. In addition to Quad

Port connections, various ISPs are connected to other units such as DMA channels and

expansion ports.

Each ISP consists of five programmable Processing Elements (PEs), instruction

and data memory, 16 16-bit General Purpose Registers (GPRs) for passing data between

PEs and up to two hardware accelerators for key image processing functions. The Input

PE (IPE) which is used to read data from the Quad Ports, and the Output PE (OPE) for

writing data to a Quad Port. Of the remaining 3 PEs per ISP, one is for general purpose

use (GPE) and two PEs have Multiply/Accumulate (MACPE) capabilities in addition to

the general purpose functionality.

Each general purpose register in an ISP has a set of 8 data valid (DV) flags - one

per PE. If all the DV flags for a register are cleared, a PE may atomically write data to

the register and set the DV flags for all of the destination PEs. Each of the destination

PEs can clear its own flag when it reads the data. In this way, the global registers serve

as a single-place blocking-read, blocking-write FIFOs for multiple writers and readers. A

Memory Control Handler (MCH) provides the interface to the SRAM data memory block

and has support for a number of different read/write modes which support variable offsets

and stride lengths.

Each ISP is optimized for a particular task and the hardware accelerators in the

ISP reflect that optimization. ISP2, ISP5 and ISP6 each have variable-tap and single-tap
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triangular filters. ISP4 and ISP8 contain Huffman encode/decode engines that are useful for

many compression/decompression applications. ISP3 contains G4 encode/decode blocks.

ISP7 contains 8x8 DCT/iDCT hardware. Finally, ISP1 has an additional 16 KB of data

SRAM instead of a hardware accelerator.

3.2.1.3 Common Modeling Domain

First of all, we need to decide the common semantics in the CMD. As a data-driven

application, JPEG encoder can be naturally described by dataflow semantics. On the other

side, by setting DV flags, the GPRs serve as a single-place blocking-read, blocking-write

FIFOs for passing data between PEs. This implements a data-driven architecture that is

a natural fit for functionalities described by dataflow semantics. Therefore, it is relatively

easy to decide the common semantics between functionality and architecture in this example

- dataflow semantics.

After deciding the common semantics, the main problem is determining the ap-

propriate abstraction level (granularity) in the CMD. A coarse granularity may lead to

inefficient usage of the highly parallel architectural platform. On the other hand, exces-

sively fine granularity will lead to scheduling difficulties and increased model complexity.

With the concept of CMD, we can formally explore different abstraction levels of

the function model by choosing different function primitives. In this case study, we explored

four CMDs at the block level, coarse sub-block level, fine sub-block level and instruction

level. As shown on the modeling domain relation graph in Figure 3.13, they have ancestor-

child relationships.

The function models f ′ described in the block and sub-block level CMDs are shown
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Figure 3.13: Domain Relation Graph for Image Processing Case Study

in Figure 3.14. The instruction level description is omitted for simplicity. The primitives

are denoted by arrows and ovals, whereas the composition of primitives is governed by the

semantics. In the block-level and coarse sub-block level CMDs, the semantics are static

dataflow [66], a refinement of general dataflow semantics. In the fine sub-block level CMD,

the semantics is most similar to cyclo-static dataflow [75], but contains several extensions.

Cyclo-static dataflow allows fixed-pattern multiple-firing rules specified for one process. It

is a generalization of static dataflow which has fixed-pattern single-firing rules. And for

most analysis such as scheduling, buffer sizing, cyclo-static dataflow can be converted to

static dataflow. The main advantage of a cyclo-static dataflow model is reduced buffer size

requirements. The extensions on cyclo-static dataflow include: only one writer is permitted

per channel, but multiple reader processes are allowed; for all channels, each reader process

can read each data token exactly once; and we allow limited forms of data-dependent

communication.



89

DCT Quantization Huffman

1D-DCT
Trans-
pose

1D-DCT Trans-
pose

ZigZag Multi

RLE Lookup

Add4

Sub4

Mult1

Mult2

Add2

Sub2

CSC Shift

Block level CMD

Coarse sub-block 
level CMD

Fine sub-block 
level CMD

Figure 3.14: JPEG Functionality at Different Abstraction Levels

Different abstraction levels of the architecture can be explored by changing the

architecture primitives, such as PE vs. ISPs. For this particular case study, we find that

changing the abstraction level of the architecture will not result in better performance.

Therefore, we choose PEs, global registers and memories as architecture primitives in all

CMDs. The abstraction levels of mapped designs in this case study are dictated by the

functional abstraction levels.

As we can see from Figure 3.14, the function primitives in coarser CMDs are

composed from the function primitives in finer CMDs. Therefore, the finer CMDs are

indeed ancestor domains of the coarser CMDs, based on Theorem 1. Ancestor CMDs

provide larger mapping spaces than child CMDs since they provide finer grain mapping

choices. However, the complexity also increases.
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In experiments, we tried to find software implementations for the JPEG encoder

by utilizing the PEs. We explored the design space by attempting different mappings based

on the CMDs discussed above. At the block level CMD, there is no solution since no single

PE can support the DCT primitive which requires both data I/O and multiplication. At

the instruction level CMD, the formulated problem is too complex to be effectively solved.

This shows the importance of finding the right trade-off between mapping space size and

complexity by choosing CMDs at proper abstraction levels. In this case study, we finally

selected coarse and fine sub-block level CMDs.

3.2.2 Stage 2 : Solving Covering Problem

After the CMDs are chosen, the covering problems are formulated. Function blocks

and channels in Figure 3.14 are the function primitive instances fi. PEs, global registers,

memories are the architecture primitive instances ai. dij represents the allocation from

function blocks to PEs and function channels to global registers or memories. There are

also quantity constraints such as the maximum number of available registers. The objective

function is the throughput. We customized the general branch-based framework introduced

in Section 2.2 to solve the problem. For more details, please refer to [109].

Based on the results of the covering problem, we model the mapped systems in the

Metropolis framework. The architecture model is shown in Figure 3.15. The simulation

results are within 5% of the actual implementation for this case study [28].

Since the only difference between these mappings is the mapping of DCT, we

directly compared the number of cycles to perform DCT for a 8x8 sub-block. The results

are shown in Figure 3.16. F-automatic is the automatically mapped design at fine sub-
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Figure 3.15: MXP5800 Modeling in Metropolis

block level CMD. F-manual-1 and F-manual-2 are two manual mappings at fine sub-block

level CMD. C-automatic is the automatic mapping at coarse sub-block level CMD. We

can see that the automatic mapping at fine sub-block level is significantly better than the

one at coarse sub-block level, reducing the cycles by 44%. And the two manual mappings

are also better than the automatic mapping at coarse sub-block level. This again shows

that choosing a CMD at the proper abstraction level can greatly affect the performance of

mapping, sometimes even more than the automatic algorithm.

3.2.3 Stage 3 : Further Optimization

In the image processing case study, most design concerns are resolved by solving

the covering problem, except for the scheduling of the tasks on PEs. However in this
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case, the scheduling is straightforward after the allocation is decided. Therefore, further

optimization is not needed.

In other cases in multimedia domain, we might have space for further optimization

after solving the covering problem. One common design concern that can be explored at

this stage is the communication buffer sizes. As we mentioned in Section 2.3.2, using which

optimization technique is affected by the semantics of the systems. Next, we will show how

buffer sizing is carried out for multimedia systems with general Kahn Process Networks

semantics, and with statically schedulable semantics.

3.2.3.1 Buffer Sizing for Kahn Process Networks

In Kahn Process Networks (KPN) [52] model of computation, a network of concur-

rent processes communicate via point-to-point unbounded FIFO channels. Writes to these
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channels are non-blocking while read operations block until data becomes available. This

is suited for specifying data-driven applications, such as multimedia applications. However,

since this model of computation is Turing-complete, many key properties are undecidable,

including buffer sizing. It is a key challenge that realizing a theoretically infinite-sized

communication channel with a finite amount of architectural memory. Indeed, a KPN im-

plemented in this manner no longer satisfies the original definition of non-blocking writes,

since a lack of storage space in the communication channel may force further write actions

to be blocked. This additional constraint of blocking writes may possibly introduce dead-

lock into the execution of the system. This undesirable occurrence is referred to as artificial

deadlock.

The resolution of artificial deadlock requires dynamically supplying extra storage

to some communication channel which is involved in the deadlock. This is the basis of Parks’

algorithm [74]. However, choosing the channel and the amount of memory to allocate such

that the deadlock is resolved with a minimum of extra memory is undecidable in general.

A “bad” strategy will allocate memory to channels in such a way that the deadlock is not

truly resolved, just postponed. In this case, the system will eventually run out of memory

and the system will need to be reset.

So we proposed a systematical way to solve this problem. After the covering

problem is solved, we will first assign an initial size to each channel. Then a runtime

monitor will be used to dynamically increase channel size if necessary.

The initial sizing of a communication channel influences the degree of coupling

between the reader and writer processes and also affects the likelihood of deadlock. If the
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channel size is large, then it can effectively serve as a buffer between the reading and writing

actions of the associated processes. If it is small, then the frequent interleaving between the

read and write actions needs to occur, slowing the progress of both processes. We can make

use of the additional timing information which is provided as a result of the allocation.

Specifically, we can profile the production and consumption characteristics of the allocated

processes and apply techniques from queuing theory to estimate the impact of different

channel sizes on the amount of time which is spent waiting for each process. The aim is to

minimize the blocked time for each process while still meeting the channel size constraints.

In general, the problem of determining bounds on channel sizes for KPNs so as

to prevent artificial deadlock is undecidable. So we investigated runtime algorithms that

monitor the state of channels in the system, and respond to different types of deadlock

situations. From the literature, we know that only directed or undirected cycles in a KPN

can cause artificial deadlock to occur. If all of the processes in the system are blocked, and

at least one is blocked on a write operation due to insufficient space, then we know that

a global deadlock situation has occurred. On the other hand, if processes in a directed or

undirected cycle are blocked, and at least one of them is write-blocked, this is termed as

local deadlock. In either of these situations, the deadlock can be resolved by allocating

extra memory to a communication channel. However, which channel needs to be allocated

memory, and the amount of memory to allocate such that the deadlock is resolved with the

least amount of extra memory is undecidable in general. Again, we can tailor this decision

based on the structure and profiling of the system.

For more details about this problem, please refer to [30].
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3.2.3.2 Buffer Sizing for Task Precedence Graph

KPNs are not statically schedulable, which causes difficulty in static buffer sizing.

However, some MoCs refined from KPN could be statically scheduled, such as static dataflow

[66] and cyclo-static dataflow [75]. For models in those MoCs, task precedence graphs can

be constructed to represent the deployment of functional tasks on multiple processors, and

the scheduling of these tasks. Our buffer sizing approach utilizes the information in the

task precedence graph to statically determines the buffer sizes to avoid artificial deadlock.

System Model: An instance of our buffer sizing problem is characterized by a 5-tuple

〈V, P,M,E,W 〉. V = {v1, v2, . . . , vm} is the set of vertices in the task precedence graph,

which represent the tasks. P = {p1, p2, . . . , pl} is the set of processors. M : V → P denotes

the mapping from vertices to processors. E = {e1, e2, . . . , en} is the set of edges, which

represent data dependencies between tasks. We distinguish two disjoint subsets of edges.

S = {e|e ∈ E ∧ M(src(e)) = M(dst(e))} is the set of schedule edges, which determine

the execution sequence of tasks on the same processor. src(e) denotes the source vertex of

edge e while dst(e) denotes the destination vertex of edge e. D = {e|e ∈ E ∧ M(src(e)) 6=

M(dst(e))} is the set of data edges, which represent the data flow between tasks on different

processors. W : D → <+ is a weight function that indicates the amount of data to be

transferred over data edges. In our design flow, task allocation and scheduling are carried

out before buffer sizing. The results of allocation and scheduling are incorporated in the

graph through M and S.

The targeting architecture platform has finite-depth FIFO buffers between pro-

cessors. Limiting the sizes of buffers can reduce design cost. However, as we mentioned
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in Section 3.2.3.1, artificial deadlock can happen while there is not enough buffer space.

The goal of buffer sizing is to minimize the sizes of FIFO buffers without causing artificial

deadlock.

We use function F : P × P → <+ to denote the buffer sizes between processors.

F is called valid if there is no artificial deadlock. There are two minimization criteria we

considered:

• Min Max: with 〈V, P,M,E,W 〉 given, find a valid F such that max{F (pi, pj)|∀i, j} is

minimized.

• Min Total: with 〈V, P,M,E,W 〉 given, find a valid F such that
∑
{F (pi, pj)|∀i, j} is

minimized.

Min Max Problem: Since a valid buffer assignment should not produce artificial dead-

lock, we first study how artificial deadlock occurs. Generally, a deadlock occurs when there

is cyclic dependency among tasks. An artificial deadlock is a special type of deadlock where

the cyclic dependency exists because of buffer size limitation. For instance, as shown in

Figure 3.17, tasks a and b are mapped onto the same processor with a schedule edge from

a to b (denoted by dotted edge). Similarly, tasks c and d are on the same processor, and

there is a schedule edge from c to d. There are also data edges from a to d ,and from b to

c. A task t is called active if it is currently schedulable, i.e., all tasks with schedule edges

going to t have been executed. When two tasks are both active, they can communicate any

amount of data through one-place buffer. However, if the receiving task is not active, all

communication data need to be stored in the buffer after the sending task is executed. In
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this example, if d is not active, all the data from a to d need to be stored in the buffer

between them after a is executed. If there is enough buffer space between a and d, we can

have a valid execution sequence as a → b → c → d. If there is not enough buffer space

between them, a cannot be executed unless d is also active. However, d will not be active

until c is executed. And c needs the data from b, which will not be scheduled until a is

executed. This is a cyclic dependency among tasks because of the lack of buffer space,

which causes artificial deadlock.

Figure 3.17: Artificial Deadlock Example

We observed that a data edge implies bidirectional dependency when considering

artificial deadlock. In the example above, not only d depends on the data from a, but also

a depends on the activeness of d. Therefore, we transform a task precedence graph into a

dependency graph by making all the data edges bidirectional, as shown in Figure 3.18.

We then have the following theorem about artificial deadlock.

Theorem 2. Artificial deadlock exists if and only if there is a cycle in the dependency

graph. The cyclic cycle is called dependency cycle.

Furthermore, a dependency cycle must contain at least one data edge, because the
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Figure 3.18: Transformation from Task Precedence Graph to Dependency Graph

original task precedence graph is acyclic. Therefore, assigning enough spaces for data edges

in dependency cycles is sufficient for avoiding artificial deadlock.

Our algorithm for solving the Min Max problem is an iterative method. During

each iteration, certain edges are resolved and removed, then the graph is updated. First,

we define free vertices as the vertices that have no incoming edges, formally denoted as

V free = {v|v ∈ V ∧ ∃e ∈ E, s.t. dst(e) = v}. And we define free edges as the edges starting

from free vertices, denoted as Efree = {e|e ∈ E ∧ src(e) ∈ V free}. In iteration i, we consider

the free edges Efreei in updated graph Ei, and check which of them are in dependency cycles.

If there are free edges that are not in dependency cycles, they will be removed first and

the graph will be updated. When all free edges are in some dependency cycles, there must

exist data edges among these free edges. And the algorithm will choose the data edge

that requires minimum amount of buffer space increase to resolve the dependency cycles it

involved. The needed buffer space will be recorded and the corresponding data edge will be

removed from the graph.

This algorithm for Min Max program is denoted as Am, and we have proved

following theorem.



99

Theorem 3. Let F denoted the buffer sizes assigned by algorithm Am. Then F is a valid

buffer assignment, and max{F (pi, pj)|∀i, j} is minimized.

The number of edges to be considered in our algorithm is O(|E|). The time

complexity to detect whether an edge is in any dependency cycle is also O(|E|). Therefore,

the complexity of Am is O(|E|2).

Min Total Problem: The Min Total problem can be proved as NP-hard by reducing

from the Feedback Arc Set (FAS) problem [43]. The FAS problem is the following: Given a

directed graph G = (V,E), and a positive integer K, does there exist a subset B ⊆ E, such

that B contains at least one edge from every directed cycle in G? This problem is known

to be NP-complete [43]. And we have proved following theorem.

Theorem 4. Any instance of the FAS problem can be reduced to a Min Total problem in

polynomial time. Therefore, the Min Total problem is NP-hard.

We designed an algorithm At to solve the Min Total problem. At is similar to Am.

The only difference is that when there exist multiple free data edges that are in dependency

cycles, instead of choosing the one requiring minimum amount of buffer space increase to

resolve, At enumerates all possible choices among these edges. Obviously, the complexity

of At is exponential.

3.2.4 Alternative Covering Problem Formulations and Algorithms

For simplicity, we did not explicitly model scheduling in the image processing

case study. An alternative is to explicitly model the task (function block) allocation and
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scheduling together. A comprehensive overview of different deterministic and randomized

heuristics for solving task allocation and scheduling problems is provided in [60]. Another

option is to use mathematical programming techniques such as mixed-integer linear pro-

gramming (MILP). Based on an evaluation of several MILP formulations, we developed an

overlap-variable based MILP formulation for the allocation and static scheduling problem

in [26]. This technique was applied to a case study involving the Motion-JPEG encoder

application mapped onto the Xilinx Virtex II Pro FPGA platform. Compared with heuris-

tics, this approach provides optimal solutions, bounds on solution quality, and flexibility

to changes in the problem assumptions. However, the complexity of this MILP approach

prevents its usage on large systems.
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Chapter 4

The Metro II Design Framework

In our case studies, we used the Metropolis design framework as the modeling

and simulation tool. Metropolis provides an environment for validating our approaches,

and helping design space exploration. However, we observed some limitations of the frame-

work that impede its application to broader range of systems. These limitations motivate

the design of the next generation design framework - Metro II.

In this section, we will first explain the motivations of designing Metro II, then

introduce its main features, building blocks and execution semantics. We will also show

some case studies that are being carried out in Metro II. Initial work of Metro II can

be found in [27].

4.1 Motivations

We used Metropolis for modeling and simulation of systems in various domains.

The two case studies we introduced in this dissertation include an active safety system in
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automotive domain, and an image processing system in multimedia domain. Besides these

two, there are other case studies utilizing Metropolis [36, 33].

As a general design framework, Metropolis provides a powerful tool for mod-

eling heterogeneous systems, validating designs and facilitating design space exploration.

However, we also observed some limitations during the case studies [27].

First, the Metamodel language [98] is required for modeling the systems at all

levels. The learning curve of the Metamodel language makes it difficult for users to quickly

create or import their designs. Excessive time need to be spent in refining and imple-

menting classes and methods, dealing with memory allocations, data type conversions, etc.

Furthermore, a rich new language as Metamodel requires extensive infrastructure support.

It is quite time-consuming for framework developers to design compilers, simulators and

debuggers from scratch.

Secondly, in the two-phase execution semantics of Metropolis, there is no clear

distinguish between the annotation of physical quantities and the scheduling of resources.

Both of them are modeled by quantity managers and resolved in the scheduling phase. The

interaction between these two types of quantity managers makes it difficult for design reuse

and increases the design complexity. Also, interactions with quantities must be explicitly

represented in Metropolis, therefore simplifying assumptions made in domain-specific

languages cannot be made in Metamodel.

Finally, Metropolis supports event level mapping by synchronization constraints

and unrestricted access to the local variables in the scope of events during mapping. This

provides very powerful mapping capability in theory. However, from the case studies, we
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have observed that the lack of more structural mapping support prevents effective reuse or

debugging.

By focusing on the key features of Metropolis, but addressing its limitations,

we plan to make Metro II an IP-integration framework with enhanced support for PBD

activities - specifically, more clear separation of concerns and better support for mapping.

4.2 Features

Based on the experience gained from the development and usage of the Metropo-

lis framework, we have identified three main features to enhance in Metro II. The three

features are:

1. Heterogeneous IP Import. IP providers develop their models using domain specific

languages and tools. While using these heterogeneous IPs to construct a new system,

requiring a singular form of representation as in Metropolis will require significant

amount of effort in language translation and verification. To provide easier and more

reliable heterogeneous IPs import, Metro II will allow different components to have

different syntaxes and semantics within the same design.

2. Behavior-Performance Separation. In a design framework that supports multiple ab-

straction levels, different implementations of the same functionality will have the same

behavioral representation at higher levels of abstraction, with only difference on the

performances. For instance, different processors will be abstracted into the same

programmable component. What distinguishes them is the performance vs. cost

trade-off. To allow the design reuse and reduce the design complexity, Metro II
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provides a clear separation between the functional behavior and the performance that

is based on the architecture platform.

3. Structural Mapping Support. Mapping explores the design space while bridging the

function and architecture models that are initially separated. Metro II supports

a structural mapping that is based on the concept of service. This is compatible

with the mapping procedure we introduced in Section 2. Compared with event level

mapping in Metropolis, this service level mapping is easier to define and debug.

It also allows more effective design space exploration, with minimal changes to the

function and architecture models themselves.

The remainder of this section describes these three features in more detail.

4.2.1 Heterogeneous IP Import

Supporting heterogeneous IP import leads to many challenges in the design of the

framework. It shapes the nature of Metro II to be primarily an integration environment.

There are two main challenges that have to be addressed - wrapping IPs and interconnecting

IPs.

First, heterogeneous IPs can be described in different languages and can have dif-

ferent semantics. Instead of rewriting IPs with the Metamodel language as in Metropolis,

Metro II provides an infrastructure to wrap these IPs by interfaces without changing their

internal representations. This allows quicker import for most IPs and leverages existing com-

pilers, debuggers and simulators. Figure 4.1 shows the comparison of these two approaches.

While “gluing” these IPs together, it is important to have a clearly defined interface between
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each IP and the framework, to rigorously expose its behavior and hide IP-specific details.

Figure 4.1: Integrating Heterogeneous IP in Metropolis and Metro II

Secondly, even after IPs are wrapped and interfaces are exposed in a unified way,

interconnecting them is usually not a straightforward process. For instance, the type of

data produced by one IP might be incompatible with the type of data that the receiving

IP is expecting, therefore type conversion is needed for the interconnection. Besides the

incompatibility of data types, more challenging communication problems can arise. Con-

sider the case that an engine controller unit, represented by a finite state machine, interacts

with a continuous time model of a car engine. The composite system is known as a hybrid

system. One model (finite state machine) is untimed while the other model (continuous

time) requires a notion of time. This incompatibility of models of computation (MoCs)

requires a “converter of semantics”, or adaptor as being called in Metro II, to connect IPs

with different MoCs.
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4.2.2 Behavior-Performance Separation

Separation of concerns is one of the key ideas in platform-based design for re-

ducing design complexity and supporting design reuse. Besides the function-architecture

separation we introduced in the mapping procedure, behavior-performance separation is an-

other important concept in PBD. Specifically, the specification of what a component does

(behavior) should be independent of how long it takes or how much resource it consumes

(performance) to carry out a task.

In Metropolis, we introduced the concept of quantity and quantity manager to

annotate the performances of components. However, besides the performance annotation,

quantity managers can also be used to coordinate the execution of the events, which affects

the system behavior. To have a more clear separation of the design concerns, we make

a distinction in Metro II between the physical quantities that are decided by the archi-

tecture platform, and the logical quantities that affect the scheduling of the events. For

instance, time is a general concept and can have different meanings. “Physical time” is

a physical quantity that represents how long an operation takes, while “logical time” is a

logical relationship that represents the order of the events in the system. In Metro II,

physical quantity (or simply called quantity) will be annotated by annotators based on the

architecture, while the logical quantities that can affect the system behavior will be handled

by schedulers. These concepts will be explained more in Section 4.3.

The separation of schedulers from annotators provides a cleaner separation be-

tween behavior and performance, and allows easier and more reusable modeling of the

system. As a result, instead of two-phase execution as in Metropolis, the execution



107

semantics become three-phase. The execution semantics of Metro II will be shown in

Section 4.4.

4.2.3 Mapping Support

As a key step in platform-based design process, mapping explores the design space

when bridging the function and architecture. In order to explore several different implemen-

tations with minimal effort, the design framework needs to provide a fast and efficient way of

mapping without changing the function or the architecture models much. In Metropolis,

this is achieved by event level synchronization constraints. While providing a powerful way

to link the models, this approach breaks the encapsulation of the models by allowing cons-

traints between arbitrary pairs of events and allowing access to any local variables in the

scope of the events. Also, since there is no special declarative constructs for mapping, this

process of finding events and setting up constraints is not easy for designers to manipulate

and debug.

In Metro II, we restrict the mapping to be at service level, i.e., the only accessible

events for synchronization constraints are the begin/end events of interface methods in

function and architecture models. Also, the only accessible values are parameters and return

values of the interface methods. This coarser granularity and more restrictive mapping

approach maintains the IP encapsulation, and makes mapping easier and robust for the

designers.
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4.3 Building Blocks

In Metro II infrastructure, a set of building blocks (objects) is defined for de-

signers to integrate IPs and construct their models. Components are objects that wrap IPs

and interface with each other through ports and constraints. They are the primary objects

for imperative specifications in the model.

The connection and coordination of components are carried out through events.

Event is a key concept in Metro II. It is formally defined as a tuple < p, T, V >, where

p is a process that generates the event, T is a tag set, and V is a set of associated values.

Tags are used to describe the semantics of the system, and values are used to represent the

states of the system.

Then there are a set of specialized Metro II objects that work on events - an-

notators annotate events with quantities by writing the tags, schedulers handle resource

scheduling through enable or disable events, constraint solvers resolve the constraints be-

tween events, mappers synchronize function and architecture models through the begin and

end events of services (service level mapping), and finally, adaptors interconnect components

with different MoCs by “translating” the tags of the events.

Next, we will explain more details about these building blocks.

4.3.1 Components

Components are the “basic blocks” that are used to construct a system. There

are two types of components: atomic components and composite components. An atomic

component is a block specified in some language and is viewed by the framework as a black
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box with its information exposed through interfaces. Each atomic component can contain

zero or more processes. Processes propose events during runtime to communicate with the

framework. More details will be covered in Section 4.4. A composite component is a group

of one or more objects as well as any connections between them.

When an existing IP is being imported, it will be encapsulated by a wrapper, which

translates and exposes the appropriate events and interfaces from the IP, as shown in Figure

4.2. The wrapped IP becomes an atomic component in the framework.

Component

IP Wrapper

Figure 4.2: Atomic Component

4.3.2 Ports

Components can interface with each other via ports. Each port is characterized

by an interface that contains a set of methods. A method consists of a sequence of events,

with a unique begin/end event pair. Variables in the scope of the begin event are method

arguments. Variables in the scope of the end event are return values.

By setting constraints between events associated with the ports of different com-

ponents, the execution of these components can be coordinated. There are two types of

ports: required ports and provided ports. Required ports are used by components to re-
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quest methods that are implemented in other components. Provided ports are used by

components to provide methods to other components. Connections between components

are made only between a required port and a provided port with the same interface. The

execution semantics that coordinate a pair of required and provided ports will be introduced

in Section 4.4.

4.3.3 Constraint Solvers

Constraints are used to specify the design via declarative means, as opposed to

imperative specification which is contained in components. Constraints are described in

terms of events: their status (enabled or disabled), their tags and the values associated

with them. The events referenced by constraints must be exposed by ports.

Constraint solvers are objects that resolve these declaration constraints during

runtime. Depending on the status, tags and values of the events, constraint solvers decide

whether to enable or disable events, thereby coordinate the execution of the components.

Designers can derive various constraint solvers from the base class solver provided

by Metro II infrastructure. The main function to be implemented is the one to resolve

the constraints. In Metro II, a synchronization constraint solver is provided. Two events

that are specified in a synchronization constraint need to be enabled at the same “time” -

during simulation, they need to be enabled in the same iteration - more will be explained

in Section 4.4. Synchronization constraints are used for mapping between functionality and

architecture, as explained later in Section 4.3.5 about mappers.
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4.3.4 Annotators and Schedulers

In Metropolis, both the performance annotation and the scheduling of events

were carried out by a type of special component called quantity managers. As stated

before, to have a more clear separation of design concerns, these two aspects will be handled

separately by annotators and schedulers in Metro II.

Annotators annotate events with quantities by writing tags. Each tag that repre-

sents some quantity (such as power, physical time) is determined in terms of the parameters

supplied to the annotator, the status of the event, and the values of the event. Parameters

are given by the designers based on the characterization of the architecture platforms. Only

static parameters are permitted for annotators, which may not have their own state. For

various quantities or quantities in various systems, designs can derive their own annotators

from the annotator base class in Metro II. Currently, a physical time annotator is provided

in Metro II as library annotator.

Schedules coordinate the execution of the components by enabling/disabling the

events proposed by the processes of the components. Based on the local state of the sched-

uler, the status of the events, as well as their values and tags, scheduler determines the

scheduling of the events. A base class scheduler is provided in Metro II for designers to

derive various schedulers. A logic time scheduler that schedules the events based on the

physical time tags of them and a round-robin scheduler that schedules access to shared

resources are provided as library schedulers.
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4.3.5 Mappers

In platform-based design, functional blocks are mapped to the architectural ser-

vices that support their functionalities. In our mapping procedure introduced in Section

2, this is equivalent to map functional primitive instances to corresponding architectural

primitive instances. As a framework based on platform-based design, Metro II supports

mapping through mappers, which synchronize the begin and end events of the functional

methods and architectural methods. Designers are only allowed to specify mapping at this

service level, with access to the parameters and return values of the methods. When the

begin/end events in functional and architectural methods are synchronized, the parameters

and return values can be transfered between the two models. For instance, a functional

method might have one parameter that the corresponding architectural method is unaware

of. During mapping, the value of this parameter can be passed to the architectural method

for its usage.

Metro II provides an API to specify mappers at service level. The implementa-

tion of mappers is a synchronization constraint solver with value passing of parameters and

return values.

4.3.6 Adaptors

There are various ways of handling heterogeneous models of computation (MoCs)

in a design. One of the most common approaches is the hierarchical composition as in

Ptolemy II [69]. With hierarchical composition, each level of the hierarchy is homogeneous

- i.e., a single MoC exists at each level, while different interaction mechanism are allowed
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to be specified at different levels in the hierarchy [38]. To let models in two heterogeneous

MoCs to communicate, a third MoC may need to be found within which the two will be

embedded.

In our experience there is a strong need to interconnect heterogeneous models

directly at the same level. For instance, the user may want to connect the output of a base-

band processing component (described by dataflow model) to the input of an RF component

(described by continuous time model). This way of handling complexity does not require

changing the interface of a model in order to behave like another model. This is in line with

one of the our main concerns: being able to re-use IPs in different contexts.

The complexity of this approach is in designing the correct interconnections be-

tween different MoCs. To bridge the different semantics of heterogeneous components, we

use adaptors to modify events as they pass from one component to another. Denotationally,

an adaptor is a relation A ⊆ (V ×T )× (V ′×T ′) that maps events from one model to events

of another model.

Adaptors are connected with components through specialized adaptor channels.

In the platform-based design methodology, adaptors can be regarded as the bridge between

heterogeneous functional components or between heterogeneous architectural components.

Metro II infrastructure provides base classes of adaptor and adaptor channel.

4.4 Execution Semantics

The semantics of Metro II will be centered around the connection and coordi-

nation of components.
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4.4.1 Three-Phase Execution

As stated before, event is the foundation of our framework. Based on the treatment

of events, the design is partitioned into three phases of execution. In the first phase,

processes in the components propose events, the second phase annotates tags to the proposed

events, and the third phase allows a subset of the proposed events to be executed. Figure

4.3 summarizes these execution semantics.

1. Base
Model

2. Quantity
Annotation

3. 
Constraint 

Solving

Proposed 
Events

Proposed Events
with Annotations

Enabled
Events

Figure 4.3: Three-Phase Execution in Metro II

4.4.1.1 First phase: Base Model Execution

In base model execution, concurrent processes in components keep running until

they propose events or get blocked internally (e.g., waiting to acquire a mutex). A process

is a single thread of execution which can propose events, perform computation, and access

component interfaces. Figure 4.4 shows the two states that processes can have in Metro

II. Processes are at either running or suspended state. When the simulation of the system

starts, all processes are in running state. They can be suspended by proposing one or
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more events, or being blocked internally. Allowing one process to propose multiple events

provides a way to represent non-determinism in the system. Blocked processes are outside

of the control of the Metro II framework, but are visible to it. After all processes in the

system are switched to the suspended state, the execution shifts to the second phase.

start
Propose Event(s) or Block

Enable Event or Resume Process

SuspendedRunning

Figure 4.4: Process States in Metro II

4.4.1.2 Second phase: Quantity Annotation

In the quantity annotation phase, the proposed events are annotated with various

quantities of interest by annotators. For instance, a proposed event may be annotated with

power, latency or time tags. This is the phase that the characterization of the architecture

platform is reflected through quantity annotation. New events can not be proposed during

this phase of execution. After all events that require annotation are annotated, the execution

shifts to the third phase.

4.4.1.3 Third phase: Constraint Solving

In the constraint solving phase, schedulers and constraint solvers (including map-

ping constraints that are specified by mappers) resolve the constraints between events.

Schedulers are based on imperative code while constraint solvers resolve declaration cons-

traints. After the resolution, a subset of the proposed events are enabled and permitted
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to execute, while the remainder are disabled - they will be resolved with newly proposed

events in next iteration of the three phases. At most one event per process is permitted to

execute. If one of the events proposed by a process is enabled, the state of that process will

be switched from suspended to running, as shown in Figure 4.4. Once again, new events

may not be proposed during this stage.

After the constraint solving phase, the states of some processes are switched to

running while some others might still being suspended. The execution will then shift to the

first phase and start a new iteration. Those processes that are at running state will resume

their executions.

The iterations of these three phases will end when all processes finish their execu-

tions.

4.4.2 Semantics of Require/Provided Ports

The execution semantics of the require and provided ports is as follows.

For required ports, a component proposes a begin event and associates values with

the proposed event that represent the arguments of the method being requested. When the

proposed event is enabled and executed, control transfers to the component at the other

end of the connection, which owns the corresponding provided port. The component waits

for the end event to be executed and obtains the return values from the method.

For provided ports, no separate process exists in the component to carry out the

provided method. Instead, the component inherits the process from the caller component

and executes the events in the provided method using that process. After the method has

been executed, the component proposes the end event.
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4.4.3 Semantics of Mappers

Mappers synchronize functional and architectural methods through a mapping

constraint solver, which synchronizes the begin and end events of those methods. The

execution semantics is as follows.

For a pair of functional and architectural methods, they independently propose

their begin events. The events can be enabled only when both of them have been proposed.

After the begin events are proposed and enabled, the functional and architectural methods

will be executed. After the execution of the method (either functional or architectural)

is over, an end event will be proposed. Again, the end events can be enabled only when

both of them have been proposed. Parameters and return values can be passed between

functional method and architectural method, through the value field of the synchronized

begin and end events.

For more about the execution semantics of Metro II, please refer to [34].

4.5 Metro II Infrastructure

A preliminary implementation of Metro II framework has been carried out on

SystemC 2.2 [96]. The infrastructure is summarized in Figure 4.5.

Event and component derive from the sc event and sc module in SystemC, respec-

tively. Then method, interface and port are built on the concept of event. A method is

characterized by a pair of begin and end events. An interface contains one or more meth-

ods. Ports are associated with interfaces, and only ports with the same interface can be

connected. A component can have zero or more ports.
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Figure 4.5: Metro II Infrastructure

To handle different aspects of the events, special objects are defined, including

annotators, schedulers and constraint solvers. Annotators annotate quantities to events,

schedulers coordinate the execution sequence of events, and constraint solvers resolve the

declaration constraints on events.

Mappers and adaptors are defined to interconnect components. Mappers bridge

the function methods and architecture services. Adaptors interconnects components with

heterogeneous MoCs.

Finally, manager coordinates the execution of all the objects using three-phase

execution semantics.

4.6 Case Studies

Multiple case studies in various domains have been carried out in the Metro II

framework. In multimedia domain, a SystemC implementation of the H.264 decoder appli-

cation is converted to a Metro II model. This examples shows the framework’s support of
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IP import. In telecommunication domain, a Universal Mobile Telecommunication System

(UMTS) is modeled in Metro II, converted from its original SystemC and C implementa-

tions. Furthermore, a cycle-accurate model of the SPARC architecture and a profile model

of the ARM 7/9 architecture are constructed in Metro II. Then the design space is ex-

plored while the UMTS model is mapped onto these two architecture models. In building

automation domain, we model a room temperature control system. The control system

itself is modeled in Metro II, while the dynamics of the environment is simulated in an

external tool - OpenModelica [42]. The interaction between Metro II and OpenMod-

elica demonstrates the framework’s support of heterogeneity. In automotive domain, the

modeling of a cruise control system integrates Metro II with Simulink simulation.

These case studies have shown that Metro II can be used as a general framework

for designs in various domains. Next, we will explain more details of the H.264 example

and the room temperature control case study.

4.6.1 H.264 Function Model

H.264 is a standard for video compression, also known as MPEG-4 Part 10 [101].

It has been widely used in video applications, such as HDTV, Blu-ray Disc and IPTV

services. H.264 provides good video quality with substantially lower bit rates than previous

standards such as MPEG-2 or H.263. However, it also requires much more computational

efforts. Therefore, it is important to study the functionality of the standard for finding

optimal implementation.

The function model of the H.264 decoder in Metro II is converted from a concur-

rent SystemC implementation [105], which is based on an initial C implementation obtained
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from [41]. The block diagram for both the SystemC and Metro II models are shown in

Figure 4.6 [25]. The SystemC model consists of six modules, each with its own process.

The modules communicate with each other through rendezvous channels. The main mod-

ule reads the encoded data stream from input bits module, then utilizes other modules for

decoding.

Figure 4.6: H.264 Function Model

During the conversion to Metro II model, each SystemC module is converted to

a Metro II component. SystemC ports and interfaces are transformed to Metro II ports

and interfaces. The begin and end events of each rendezvous action are exposed to the

framework for phase changes in execution. The computation part of each SystemC module

remains intact. Out of 3,750 lines of code in the SystemC model, less than 40 lines need to

be modified for conversion to Metro II model.
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4.6.2 Room Temperature Control System

Future intelligent buildings will utilize sophisticated room temperature control

systems to save energy consumption. This type of systems collect real-time data on room

temperatures and pressures from sensors, use control algorithms to decide actions, then send

commands to actuators. The sensors and actuators are distributed over the rooms. The

control algorithm can be run on either distributed controllers or a central controller. One

major challenge in designing such systems is to find an optimal communication network,

including choosing the communication medium and deciding the network topology. The

goal of this case study is to model and simulate the room temperature control system at

high level, and utilize the simulation results for synthesizing the communication network.

Our design flow is shown in Figure 4.7. In Step 1, both the functionality of the

system and the architecture platform are modeled. The mapping between function and

architecture models is carried out, and the simulation results of the mapped system are

sent to an external synthesis tool - Communication Synthesis Infrastructure (COSI) [81]. In

Step 2, COSI synthesize the communication network of the system based on the simulation

results. Then in Step 3, the communication network is refine based on the synthesis results

from COSI.

Both the functionality and the architecture platform of the control system are

modeled in Metro II, while the environment dynamics is modeled in OpenModelica [42],

an external simulation tool. OpenModelica interacts with the function model of the system.

The Metro II function model of a two-room example and its interaction with OpenMod-

elica is shown in Figure 4.8. The environment dynamics is described in the Modelica
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Figure 4.7: Design Flow of the Room Temperature Control System

programming language. During simulation, the simulated room temperatures from Open-

Modelica are sent to Metro II via CORBA communication. Sensors read the temperatures

through an interface to OpenModelica. Controllers collect the data from sensors, apply the

control algorithm, and send commands to actuators. Then actuators modify the Modelica

model through the interface, based on the commands from controllers. This interaction

with OpenModelica shows the support from Metro II on integrating external tools.

The architecture model includes generic electronic control units (ECUs) commu-

nicating with sensoring and actuating units. During mapping, the controllers in function

model are allocated onto ECUs. If multiple controllers are mapped on one ECU, a Metro

II scheduler will be constructed to coordinate their executions. Various scheduling polices

can be applied by designing different types of schedulers, while keeping the controller tasks

intact. In our example, we use round-robin scheduling. Sensors and actuators in the func-

tion model are mapped to architectural sensoring and actuating units. The communications



123

Figure 4.8: Metro II Function Model and OpenModelica

between ECUs and sensoring/actuating units are modeled at an abstract level in Step 1 of

the design flow. The services of sensoring, computing control algorithms and actuating are

annotated with time by Metro II annotators. And the end-to-end delays from sensoring to

actuating are computed during simulation. The simulation results are sent to COSI, which

synthesizes the communication network in Step 2 of the design flow. Then the synthesis

results are utilized to refine the abstract communication network in Step 3 of the flow.

4.7 Summary

Metro II is a design framework based on the platform-based design paradigm.

It is the next generation of Metropolis framework. Metropolis was used in many

of our case studies, including several stated in Section 3. Some limitations we observed
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during those case studies motivated the development of Metro II. The aim is to develop a

framework that supports heterogeneous IP import, clear behavior-performance separation

and easy design space exploration through mapping. We have designed a “glue” language

based on events with three-phase execution semantics. We are currently carrying out several

case studies in various domains to exercise the capabilities of the framework.

The mapping procedure we proposed in this dissertation explores the design space

by optimizing the covering of function primitives by architecture primitives. This is natu-

rally supported by the service level mapping in Metro II. With heterogeneous modeling

and other supports for PBD, Metro II is an ideal environment for validating our automatic

mapping results. It can also help the design space exploration by simulation. Furthermore,

the algorithms we developed for the mapping procedure can be plugged into Metro II as

a back-end tool. The integration of our mapping procedure and Metro II is one of our

future directions.
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Chapter 5

Conclusions and Future Work

5.1 Closing Remarks

We presented a formal procedure for mapping between functionality and archi-

tecture in system level design. Our approach formally determines both the semantics and

the abstraction levels of the system to be designed by choosing a common modeling do-

main, thereby enabling the use of automatic mapping algorithms. The applicability of this

approach was illustrated with case studies from the real-time distributed systems and mul-

timedia domain. The results showed that this general procedure can be effectively applied

to widely different applications in different domains.

In closing, we wish to outline the following characteristics of our approach:

Generality As we saw in the case studies, our approach provides a formal way to carry

out automatic mapping for various application domains. The automotive domain example

uses synchronous reactive as the model of computation (MoC) for the function model, and
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uses a distributed asynchronous architecture. The image processing domain example uses

dataflow as the MoC for function model, and uses a data-driven architecture. Although

these two domains are quite different, they both can be formally solved by our approach.

This generality makes the mapping procedure widely applicable. When designers are con-

fronted with a new problem, this approach can significantly reduce development time.

Optimality During mapping, there is always a trade-off between the size of the design

space and the complexity of exploring the space. The goal in practice is to find a manageable

design space to explore without losing much optimality. The concept of CMD provides

a formal and effective way to find a proper design space (mapping space), by choosing

the semantics and the abstraction level of the CMD as shown in Section 2.1.3. More

general semantics and finer granularity provide larger mapping space with higher exploration

complexity, while more specific semantics and coarser granularity produce the opposite.

Once the CMD is decided, the mapping space can be explored by using automatic

algorithms. As discussed in Section 2.2, there is also the trade-off between optimality and

complexity when choosing algorithms. Although our mapping procedure is very general,

this step can utilize domain-specific algorithms to obtain more optimality. We might try

multiple CMDs and compare their mapping results, as shown in the image processing case

study in Section 3.2.2.

Also, the mapping results can be used to guide the selection of the CMD. For

instance, if the result is not good enough for the design requirements, we should try finer

granularity models or use more general semantics to explore larger mapping spaces. If the

problem cannot be solved in reasonable time, we should try models with coarser granularity
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or restrict the semantics.

Reusability Choosing a proper common semantics between functionality and architecture

mostly depends on designers’ expertise. The transformation of function and architecture

models also needs guidance from designers. As shown in the automotive case study in

Section 3.1.1, we need to design those protocols to wrap architecture primitives to ensure

design correctness. The verification of the transformed models versus original specification

is essential. These processes usually require effort. Fortunately, as we observed in practice,

in a certain application domain, various functionalities usually can be described by the

same or similar semantics, and the same is true for the architectures. For instance, in the

multimedia domain, the functionalities can often be described by dataflow semantics or its

refinement such as static dataflow or Boolean dataflow. The architectures are usually data-

driven as we saw in the case study. In control domains, such as automotive applications,

the functionalities are usually described with Simulink models which have synchronous

reactive semantics. The architectures usually consist of distributed asynchronous proces-

sors/controllers. Therefore, for designs within a certain application domain, the choice of

common semantics, the guideline for model transformations and the techniques for model

verification can usually be reused. This reusability significantly reduces the design effort.

For instance, a formal approach for deploying synchronous design on LTTA or GALS (glob-

ally asynchronous locally synchronous) architecture was proposed in [11, 12], which can be

widely used in the control domain.
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5.2 Future Work

There are several directions for future work.

• Integrate the mapping procedure into the Metro II design framework to increase the

appeal of a formal system level design approach by supporting correct-by-construction

design and reducing design time.

• For real-time distributed systems, integrate our approaches for several sub-problems

(allocation and priority synthesis, period optimization, extensibility optimization) to

provide a unified optimization framework.

• Currently, the synthesis for real-time distributed systems is based on worst-case anal-

ysis. For hard real-time systems, this is necessary to assure the safety of the systems.

However, for soft real-time systems where occasionally missing deadlines will not cause

system failure, we can utilize stochastic analysis to obtain better performances while

still keeping system reliable (deadlines will be met with a high percentage of chance).

• Study more case studies with various semantics, especially those cases in which we

should choose a common semantics that is different from the semantics of either the

original function model or the original architecture model.
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