
Minimizing Curvature Variation for Aesthetic Surface
Design

Pushkar Prakash Joshi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-129

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-129.html

October 7, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Minimizing Curvature Variation for Aesthetic Surface Design

by

Pushkar Prakash Joshi

B.S. (University of Southern California) 2002
M.S. (University of California, Berkeley) 2007

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Carlo Séquin, Chair
Professor Jonathan Shewchuk

Professor Sara McMains

Fall 2008

The dissertation of Pushkar Prakash Joshi is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

Minimizing Curvature Variation for Aesthetic Surface Design

Copyright c© 2008

by

Pushkar Prakash Joshi

Abstract

Minimizing Curvature Variation for Aesthetic Surface Design

by

Pushkar Prakash Joshi

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Carlo Séquin, Chair

We investigate the usability of functional surface optimization for the design of free-form

shapes. The optimal shape is subject to only a few constraints and is influenced largely by

the choice of the energy functional. Among the many possible functionals that could be

minimized, we focus on third-order functionals that measure curvature variation over the

surface.

We provide a simple explanation of the third-order surface behavior and decompose the

curvature-variation function into its Fourier components. We extract four geometrically

intuitive, parameterization-independent parameters that completely define the third order

shape at a surface point. We formulate third-order energy functionals as functions of these

third-order shape parameters.

By computing the energy minimizers for a number of canonical input shapes, we provide

a catalog of diverse functionals that span a reasonable domain of aesthetic styles. The

1

functionals can be linearly combined to obtain new functionals with intermediate aesthetic

styles. Our side-by-side tabular comparison of functionals helps to develop an intuition for

the preferred aesthetic styles of the functionals and to predict the aesthetic styles preferred

by a new combination of the functionals.

To compare the shapes preferred by the functionals, we built a robust surface optimiza-

tion system. We represent shapes using Catmull–Clark subdivision surfaces, with the control

mesh vertices acting as degrees of freedom for the optimization. The energy is minimized

by an off-the-shelf implementation of a quasi-Newton method. We discuss some future work

for further improving the optimization system and end with some conclusions on the use of

optimization for aesthetic design.

Professor Carlo Séquin
Dissertation Committee Chair

2

Contents

Contents i

Acknowledgements iv

1 Introduction 1

2 Related Work 5

2.1 Optimization for Shape Design . 5

2.2 Optimization for Surface Fairing . 7

3 Intuitive Exposition of Third-Order Surface Behavior 10

3.1 Introduction . 10

3.2 Previous Studies of Third-Order Surface Behavior 14

3.3 Third-Order Parameters for a Polynomial Height Field 15

3.4 Fourier Analysis of Quadratic Height Function 17

3.5 Fourier Analysis of Cubic Height Function 18

3.6 Computing Fourier Components for a General Surface Patch 20

3.7 Qualitative Description of the Fourier Components 24

3.7.1 Expressing Cross Derivatives Using Third-Order Shape Parameters . 25

3.7.2 Expressing Normal Curvature Derivatives in Arbitrary Directions Us-
ing Third-Order Shape Parameters 28

3.7.3 Application: Classification of Umbilics 29

3.8 Summary . 30

4 Functionals 32

4.1 Requirements of Surface Energy Functionals 32

i

4.2 How to Construct Functionals . 34

4.2.1 First-Order Functional . 34

4.2.2 Second-Order Functionals . 35

4.2.3 Third-Order Functionals . 39

4.3 Combining Energy Functionals . 45

4.4 Scale Invariance of Functionals . 46

5 Surface Representation 49

5.1 Catmull–Clark Subdivision Surfaces . 50

5.1.1 Removing C2 Discontinuity by Blending 51

5.1.2 Boundary Patches . 53

5.1.3 Maintaining Sharp Features in Input Surfaces 54

6 Optimization System 55

6.1 Energy Computation . 56

6.1.1 Pre-processing . 56

6.1.2 Computing Surface Energy and Gradient 58

6.2 Optimization . 59

6.2.1 Input . 60

6.2.2 Increasing Degrees of Freedom . 60

6.2.3 Optimization Algorithms . 61

7 Options for Fast Optimization 64

7.1 Discrete Geometry Operators for Energy Queries 64

7.2 Addressing Ill-Conditioned Functionals . 67

7.2.1 Sobolev Gradients . 69

8 Comparison of Functionals 71

8.1 Experiments on a Torus . 72

8.1.1 Calibrating Weights for Combined Functionals 74

8.2 Comparison of Third-Order Energies . 75

8.3 Comparison with MVS Energies . 77

8.4 Comparison with Second-Order Energy . 80

8.5 Example of Aesthetic Design: Vase . 83

8.6 Combining Second-Order and Third-Order Energies 85

ii

9 Summary, Conclusions, and Future Work 88

9.1 Summary . 88

9.2 Conclusions . 89

9.3 Future Work . 89

Bibliography 91

iii

Acknowledgements

I owe my advisor Carlo Séquin a big debt of gratitude for his never-ending guidance,

teaching, and enthusiasm through all five years of my research at Berkeley. I also thank

Jonathan Shewchuk and Sara McMains for their useful feedback on my thesis.

A special thanks goes out to Eitan Grinspun who invested so much of his time to teach

me everything I know about discrete operators and multiresolution preconditioners. Also,

Denis Zorin was very generous with helpful code and papers, for which I am grateful.

My favorite research experiences came while working in industry. I thank Tony DeRose

and Mark Meyer for giving me the priceless opportunity to work on an ongoing research

project at Pixar. I also thank Nathan Carr, Radomir Mech and the rest of the group at

Adobe for not only giving me the chance to contribute to a great research project, but also

for believing in me enough to induct me full-time into their group.

A big thank-you goes out to my family (Mom, Dad, Hari, Leslie) who gave their love

and support throughout my Ph.D. despite not understanding why I liked making blobby

shapes. Also, to my friends, both from ’SC and Berkeley: you all are awesome.

And of course, the thesis would not have been possible without the constant encour-

agement, love, technical guidance and great cooking from Hayley Iben. Thanks to you,

finally. . . the thesis is complete!

iv

v

Chapter 1

Introduction

Figure 1.1. We show the optimal shapes obtained by minimizing four different surface
functionals. For a detailed discussion of this example, see Section 8.5.

Aesthetically pleasing smooth surfaces are used to generate computer-aided sculpture,

to build conceptual models of consumer products, to design mechanical parts (e.g. ship

hulls, car hoods), and to fair rough, bumpy surfaces (like noisy point clouds obtained

from a range scan). In a typical shape design task, a designer starts with a surface that

approximates a desired shape, along with geometric constraints that must be satisfied by

the desired shape. By varying parameters that control the shape of the surface, the designer

constructs an aesthetically pleasing surface. In most design tasks of practical importance,

there are too many control vertices or shape parameters to modify by hand to achieve

a smooth desired shape. Instead, designers use numerical optimization to construct the

surface. A computer algorithm deforms the initial surface into an aesthetically pleasing,

1

smooth surface by adjusting the degrees of freedom such that they minimize a functional

(a geometric function that maps the surface to a scalar value). In most shape design tasks,

optimization is performed as the last step of the process. That is, the input surface is

already close in shape to the desired surface, so optimization is used merely to smooth out

any unwanted bumps while maintaining the overall shape.

In this thesis, we investigate a different application of surface optimization. We demon-

strate the use of surface optimization as a shape design tool. That is, we show how a

designer can use surface optimization early in the design phase to produce an aesthetically

pleasing shape that was not conceived manually.

The surface functional strongly influences the nature of the resulting optimal shapes.

Given an initial surface and constraints, optimizing different functionals will result in dif-

ferent optimal shapes. Therefore, it makes sense to provide a collection of functionals so

that the designer can select one functional to fit the design task. Selecting the proper func-

tional requires an intuitive understanding of the types of shape characteristics favored and

penalized by the different functionals. In this thesis, we develop an intuition for the optimal

shapes of functionals by comparing their respective minimizers for canonical input surfaces.

The functionals that we have developed measure purely geometric properties and will

ignore the influence of external forces and material properties. The functionals are also

independent of surface parameterization, scale, and rigid transformations. Our goal is to

find a set of functionals that, upon optimization, yield different yet aesthetically pleasing

shapes. In the past, researchers have relied mostly on functionals that measure first-order

or second-order differential properties (i.e. surface area or bending energy, respectively) to

2

produce aesthetically pleasing shapes. In this thesis, we consider third-order functionals

that include curvature derivatives.

We begin by providing a novel, intuitive exposition of third-order shape behavior —

we describe the behavior of the curvature derivative function at a surface point indepen-

dent of the point’s coordinate system. By minimizing energies that measure curvature

variation, we create aesthetically pleasing, high-quality shapes (see Figure 1.1 for an intro-

ductory example). We argue for the superiority of third-order functionals over second-order

functionals for aesthetic design. We also combine second-order and third-order energies to

obtain functionals with combined preferred shapes.

We formulate surface energy functionals by combining differential geometric terms up

to the given order. However, it is not necessary to study all the functionals that can be

formulated. Compared to the number of functionals that we can formulate, the number

of geometric parameters that fully describe the surface behavior up to a given order is

small. Therefore, we formulate fundamental functionals that measure surface beauty up to

a given order by combining the corresponding geometric parameters: principal normal cur-

vatures (second-order) and Fourier coefficients of the normal curvature derivative function

(third-order). We provide four functionals (one second-order functional and three third-

order functionals) whose optimal shapes span the range of shapes that can be produced by

minimizing second-order and third-order energies. All of our functionals yield aesthetically

pleasing but different optimal shapes. Given these basic functionals, a designer can com-

pose new functionals with different preferred shapes by weighted combinations of the basic

functionals.

Optimizing surface functionals over a complicated surface is not an easy task. While we

3

use and recommend off-the-shelf optimization code, it is crucial to select other components of

the optimization system so that we can obtain the minimizers at reasonable computational

cost. As a reference for future surface optimization system builders, we describe our entire

optimization system in detail.

4

Chapter 2

Related Work

We describe previous work in surface design that uses numerical optimization to produce

a smooth shape. We can classify the previous work into two categories: one that uses

surface optimization to produce a novel shape that was not conceived manually, and the

more common category of work that uses optimization to fair (de-noise or smooth out) a

given rough surface while maintaining its overall shape.

2.1 Optimization for Shape Design

As discussed in Chapter 1, novel aesthetically pleasing shapes can be produced by

the optimization of a surface functional. In computer-aided design literature, the most

commonly found functional is the second-order bending energy functional (described in

Section 4.2.2 in detail). For example, Hsu et al. [HKS92] studied and catalogued the second-

order bending energy minimizers for the unconstrained, closed input surfaces of genus zero

to five. The emphasis in their work was on the mathematical properties of the bending

energy minimizers and not on assessing the suitability of the bending energy functional

5

for aesthetic design. Around the same time, Rando and Roulier [RR91] demonstrated

the notion that different functionals yield different shapes. Their paper describes second-

order and third-order functionals for surface design using mean and Gaussian curvatures

and their derivatives. Rando and Roulier’s experiments functionals focused only on small

surface patches, not on complicated or high-genus surfaces. Therefore, it was difficult to

assess the suitability of their functionals for shape design. In this thesis, we use functionals

built from fundamental geometric principles and provide a description of their preferred

shapes.

Our work follows the work of Moreton [Mor93] who introduced the third-order “Mini-

mum Variation Surface” (MVS) functional. See the paper by Moreton and Séquin [MS92]

for a concise description of the MVS functional. MVS optimization minimizes the varia-

tion of principal curvatures along their corresponding principal directions. In a subsequent

Master’s thesis [Jos07], we enhanced the MVS functional by introducing the MVScross func-

tional and compared the preferred shapes of the bending energy, MVS energy and MVScross

energy. A more complete functional than MVS or MVScross was introduced by Mehlum and

Tarrou [MT98] that measures the average magnitude of the arc-length derivative of normal

curvature (see Section 4.2.3 for more details). There was little discussion of the nature of

the preferred shapes of the Mehlum–Tarrou functional in [MT98], but we provide one in this

thesis. Finally, Gravesen [GU01, Gra03] presented eighteen third-order surface invariants,

each of which can be used as a functional. The invariants are formulated as functions of

the coordinate-system dependent first-order parameters (coefficients of the first fundamen-

tal form), the second-order parameters (coefficients of the second fundamental form) and

third-order parameters (covariant derivatives of the second fundamental form). Similar to

Mehlum and Tarrou’s work [MT98], Gravesen did not compute the shapes preferred by

6

the invariants listed in [GU01, Gra03] — the papers were about the algebra of third-order

differential operators. We address the Gravesen functionals further in Section 4.2.3.

2.2 Optimization for Surface Fairing

The use of optimization for fairing a shape is more common and has a richer history

than the use of optimization for conceiving a shape. Kjellander [Kje83] was one of the first

researchers to describe a system for smoothing a B-spline patch network by minimizing an

approximation of the second-order bending energy. Bloor and Wilson [BW90] introduced

the concept of solving elliptic partial differential equations (PDEs) for surface fairing; for

example, solving the Euler–Lagrange equation of the bending energy functional can be

used to obtain a fair surface that satisfies the given boundary conditions. Kobbelt et

al. [KCVS98] extended Bloor and Wilson’s approach to use triangle meshes to solve PDEs.

Schneider and Kobbelt [SK01] extended the system from [KCVS98] to handle G1 boundary

constraints. Xu et al. [XPB06] showed how we can solve non-geometric problems (like

texture image sharpening) as PDEs of over the surface domain. In a follow-up paper,

Xu and Zhang [XZ07] solved sixth-order partial differential equations (the Euler–Lagrange

equation of a third-order functional measuring mean curvature variation). A common use of

surface fairing is for removing noise from a range scan data set. Towards that application,

Desbrun et al. [DMSB99] described a triangle mesh-based system that uses implicit time

integration for solving the elliptic PDE to yield a smooth mesh.

The work of Desbrun et al. [DMSB99] was one of several papers to use the currently

popular “discrete differential geometry” operators that provide simple expressions for local

geometric properties like normal curvature in terms of mesh vertices and edges. Unlike the

7

“vertex-based” discrete operator in Desbrun et al. [DMSB99], Bridson et al. [BMF03] and

Grinspun et al. [GHDS03] introduced an “edge-based” discrete operator for computing the

mean curvature across an edge of a triangle mesh. While discrete operators are not new

(energy queries in Brakke’s “Surface Evolver” [Bra92] used discrete operators) and number

of papers on discrete operators in the literature is vast, we point the reader to recent work

that describes operators that maintain topological invariants [BS05] and those that are more

robust to bad mesh quality [GGRZ06]. The papers listed in this section describe different

options for computing energy over a surface. However, none of the papers were intended to

design a novel surface — the main application was de-noising, and in some cases, simple

hole-filling.

In this thesis, we will not discuss in detail any methods that convert the non-linear

surface optimization problem into a linear one by building a quadratic approximation —

the central idea of the approach is to introduce interactivity in the surface modeling at the

cost of accuracy. The quadratic approximation depends on non-geometric information like

parameterization [CG91, WW92] or on a separately defined reference surface (Greiner’s

“data-dependent” approach [Gre94]). All these approximations may be suitable for surface

fairing, but not for the more difficult problem of shape design using optimization. When

we want to construct a novel shape from the energy optimization of an initial shape, we can

use only minimal information from the initial shape: topological type (genus), symmetry,

and constraints (if any). The optimal shape may be significantly different from the initial

shape, and the optimization must be performed with as much independence from the initial

shape as possible. Therefore, we cannot assume that the user-provided parameterization

remains constant (and thus cannot use quadratic approximations to the energy functionals,

as was done by Celniker and Gossard [CG91] and Welch and Witkin [WW92]) or that the

8

optimal shape’s relation to another fixed surface remains constant (and thus cannot use

Greiner’s [Gre94] data-dependent approach).

There is a vast amount of literature in the use of non-linear surface optimization for tasks

other than aesthetic design. Some important examples include the simulation of elasticity of

cell membranes [SBL91] and of the interface between two different liquids [CCF91]. Surface

optimization is also used for design tasks that consider external factors (like shape design

that considers air drag [EP97]). Since we focus on the use of optimization for aesthetic

design, we will not discuss the other applications in more detail.

9

Chapter 3

Intuitive Exposition of

Third-Order Surface Behavior

As mentioned in Chapter 1, our third-order functionals are formulated by combining

the parameters that describe third-order surface behavior. In this chapter, we provide an

explanation of third-order surface behavior and list the four parameters that completely

define third-order shape. Besides surface optimization, our third-order shape parameters

are useful for any application that requires a concise description of the third-order behavior

at a surface point.

3.1 Introduction

Surface analysis (also known as shape interrogation) is a useful tool for understanding

the geometric behavior of a surface near a given point. In the general case of a smooth

surface, one can analyze its geometry up to a given order by performing a Taylor expansion

of the surface. As an example, the zeroth-order surface analysis near a given point yields

the position of that point. The first-order analysis adds the tangent plane, the second-order

10

the curvature tensor, and the third-order a rank-3 tensor that describes the derivatives of

curvature. The higher the order of surface analysis, the more information about the shape

is extracted.

a b c d

Figure 3.1. Up to second order, we can intuitively classify a surface point as (a) flat, (b)
parabolic, (c) hyperbolic, and (d) elliptic.

Surface analysis using Taylor expansion produces shape information that is compactly

stored in tensors. To extract this information from the tensors, we must formulate an input

query in the tensor’s coordinate system. For instance, consider the second-order curvature

tensor. The curvature tensor is a rank-2 tensor, which means it takes two vectors as input

and produces the normal curvature in the direction specified by the vectors. To compute

the normal curvature in a given direction at a surface point, we first express the direction

as a vector in the point’s tangent plane, provide the same vector as both inputs to the

curvature tensor, and re-scale the result by the area metric (multiply by the inverse of the

first fundamental form). We perform a similarly complicated sequence of operations to

extract derivatives of surface curvature; we need to provide three directions to the rank-

3 tensor that encapsulates the curvature derivative information. Extracting precise shape

information at a surface point thus requires us to understand how to query the shape tensors

at that point.

However, most people, especially novices to linear algebra, are more apt to extract shape

information from simple geometric primitives. For instance, up to second order we can easily

classify a surface point as flat, elliptic, hyperbolic or parabolic (Figure 3.1), without having

11

Figure 3.2. The above figures show the parameters that fully describe the second-order
(left) and third-order (right) shape behavior. All vectors are in the tangent plane of the
point of analysis and are unit vectors.
Left: Second-order frame comprised of principal directions and their associated principal
curvatures. The angle φ indicates the rotation of the frame from the user provided x-axis
in the tangent plane. The entire second-order behavior is described by three numbers: κ1,
κ2 and φ.
Right: Third-order frame comprised of four directions: one indicating the peak of the first
Fourier component and the other three indicating equally spaced peaks of the third Fourier
component. Angle α indicates the rotation of the frame from the user provided x-axis,
and angle β indicates the rotation of the third Fourier component from the first Fourier
component. The entire third-order behavior is described by four numbers: F1, F3, α and β.
The cubic surface in pink (with the grid) is superimposed on the original quadratic surface
in blue (without the grid) to show the undulatory third-order behavior.

to query the curvature tensor. Instead, we can extract the principal curvatures κ1 and κ2

(maximum and minimum values of the normal curvatures at the surface point) from the

curvature tensor, and use just those two scalar values to intuitively classify the second-order

behavior of a surface point. When the product κ1κ2, also known as the Gaussian curvature,

is positive, negative, or zero, the surface is elliptic, hyperbolic, or parabolic, respectively.

In the special case where κ1 and κ2 are equal, the surface point is umbilic. Of course, when

both κ1 and κ2 are zero, the surface is flat. Euler’s theorem tells us that the principal

directions (e1 and e2) corresponding to the principal curvatures (κ1 and κ2 respectively)

are mutually orthogonal. In fact, we can completely describe the second-order shape of a

surface point by three intuitive parameters: the two principal curvatures, κ1 and κ2, and the

12

angle φ made by the e1 principal direction with an arbitrary direction in the tangent plane

(Fig. 3.2). At an umbilic point, all normal curvatures are equal, therefore, the principal

curvatures and principal directions are not defined. κ1, κ2, and φ represent exactly the

same information as that in the curvature tensor, but are more accessible to novices and to

visual and geometrical thinkers. We believe that this geometrical analysis results in a more

intuitive and widespread understanding of second-order shape behavior.

For many surface design tasks, geometric analysis only up to second order is not sufficient

because it ignores too much shape behavior. Therefore, we need to study and understand

higher-order shape behavior. As one step towards that goal, we focus on third-order analysis.

We have not been able to find an intuitive description for third-order surface behavior in

the differential geometry literature — all the third-order surface analysis we have seen so

far uses the algebra of rank-3 tensors. As a result, a thorough understanding of third-

order surface behavior is typically limited to those people who are comfortable with tensor

algebra.

Contribution in this chapter, we provide an intuitive, geometric description of third-

order surface behavior. Our description is similar in its intuitive nature to the readily

accessible second-order description using principal curvatures and directions. We extract

four shape parameters that completely describe the third-order shape behavior at a surface

point. Our shape parameters are independent of any coordinate system and are obtained

by decomposing the third-order shape function into its Fourier components.

13

3.2 Previous Studies of Third-Order Surface Behavior

While not as commonly studied as second-order surface behavior, third-order surface

behavior has been studied for selected applications. In computer graphics, the most

common application is to convey shape information via line drawings such as sugges-

tive contours [DFRS03] or other salient features such as perceptually-based curvature ex-

trema [WB01]. Rusinkiewicz [Rus04] describes how the construction of the rank-3 tensor

can be used to interrogate the derivatives of normal curvature in arbitrary directions. These

curvature derivatives provide shape information that is perceptually important to the visual

system. While the rank-3 tensor yields precise curvature derivative information, it is not

easy to understand.

As explained in Section 2.1, surface designers optimize third-order surface energies to

produce smooth surfaces used in computer-aided geometric design. Formulating such en-

ergies typically requires understanding some aspect of third-order surface behavior. For

instance, Mehlum and Tarrou [MT98] formulate an expression that provides the arc-length

derivative of the normal curvature in a given direction. They introduce four third-order

shape parameters, P , Q, S, T . These terms essentially encode the normal components of

parametric surface derivatives. While useful for computing the energy values, these param-

eters do not easily provide a qualitative description of the third-order shape at a given point

because they depend on the particular parameterization used at that point.

Umbilic points (surface points with equal principal curvatures) have received a lot of

third-order analysis. Understanding the behavior of a surface near umbilics is useful for

manufacturing thin shell parts [MWP96] and studying geometrical optics [BH77]. As a

result, numerous researchers have explored the exact geometric nature of umbilic points.

14

A common method of characterizing an umbilic point is Darboux’s classification according

to the pattern of lines of curvature near the point (star, monstar and lemon — see [BH77]

for a visual description and [Por01] for a detailed description). Maekawa et al. [MWP96]

analyze the local surface geometry near an umbilic point to compute curvature lines that

pass through that point. The initial setup for the surface analysis near the umbilic point

is similar to ours, but further analysis focuses on the umbilic classification and lacks the

intuitive, qualitative description we seek.

In a nutshell, previously, researchers have extensively studied specific aspects of third-

order surface behavior corresponding to particular applications, but an intuitive, purely

geometric description is missing. Informally speaking, the “algebra of third-order behavior”

has been studied sufficiently; the “geometry of third-order behavior” needs to be raised to

a corresponding level of understanding. We hope that the following exposition serves as a

significant step towards that goal.

3.3 Third-Order Parameters for a Polynomial Height Field

To introduce the intuition behind the necessary mathematical concepts, we will restrict

our attention to a smooth surface patch centered at a given point. Assume that the surface

near the point is fully described by a third-order height field above the tangent plane at

that point. The height field is a function of the two independent variables x and y such

that the x-y coordinate frame forms a parameterization of the surface near the point. The

15

height is defined by

z(x, y) = C0x
3 + C1y

3 + C2x
2y + C3xy

2 (3.1)

+ Q0x
2 +Q1y

2 +Q2xy

+ L0x+ L1y +K.

We assume that the directions corresponding to x and y are mutually orthogonal and that

the first-order (L0, L1) and constant parameters (K) are zero. This assumption is an over-

simplification and is not always valid for a surface patch. However, we found it easier to

first develop an intuition for the third-order parameters using this restricted analysis of the

patch. In Section 3.6 we describe how to extract the third-order shape parameters for a

general surface patch.

As a first step, we convert the cubic height function z(x, y) into polar coordinates

zp(r, θ), where r =
√
x2 + y2 and θ = tan−1(y/x). We then separate the height field

function (Equation 3.1) into two equations that describe only the second-order (quadratic)

and third-order (cubic) behavior:

zpq(r, θ) = r2[Q0 cos2 θ +Q1 sin2 θ +Q2 cos θ sin θ] (3.2)

zpc(r, θ) = r3[C0 cos3 θ + C1 sin3 θ + C2 cos2 θ sin θ + C3 cos θ sin2 θ]. (3.3)

Previous work follows a similar setup up to this step. At this point, people solve for

the extremal values of θ by solving the quadratic equation dzpq (r,θ)

dθ = 0 and cubic equation

dzpc (r,θ)
dθ = 0 (e.g. see [MT98, MWP96]). The roots of the quadratic equation yield the

principal curvature directions. The number of real roots of the cubic equation (1 or 3)

and their distribution with respect to each other is used to classify umbilic points or to

study maxima of curvature variation. We have obtained a more intuitive understanding

16

of the third-order behavior by decomposing the functions zpq and zpc into their Fourier

components.

3.4 Fourier Analysis of Quadratic Height Function

As an introductory exercise, we analyze the Fourier components of the quadratic height

function and show how the amplitudes and phase shifts of the Fourier components yield the

well-known second-order shape parameters. The Fourier components of the functions that

comprise zpq(r, θ) can easily be extracted:

cos2 θ = 0.5 + 0.5 cos 2θ, (3.4)

sin2 θ = 0.5− 0.5 cos 2θ, (3.5)

cos θ sin θ = 0.5 sin 2θ. (3.6)

Therefore, zpq can be expressed as a constant term plus a linear combination of the Fourier

components cos 2θ and sin 2θ, which can be further simplified as an equation using a single

phase-shifted cosine function. That is,

zpq(r, θ) = r2[F0 + F2 cos(2(θ + φ))], (3.7)

where F0 represents the mean value of zpq , and F2 represents the amplitude of the cosine

component that gets added to the mean. The cosine term is a symmetric function that

produces four equally spaced extremal values in the range [0, 2π). The maxima and minima

correspond to the well-known principal curvatures and the mutually orthogonal principal

directions. The angle φ is the phase shift that is measured with respect to an arbitrary, user-

provided direction (usually the x-axis or the u-direction). Therefore, the entire second-order

shape information can be compactly described in a parameterization-independent manner

17

by three terms (F0, F2 and φ). By computing κ1 = F0 + F2 and κ2 = F0 − F2 we get the

three familar terms: κ1, κ2, φ. At an umbilic point, the F2 component is zero.

3.5 Fourier Analysis of Cubic Height Function

Similar to the quadratic height function, we extract the Fourier components of the

functions that make up zpc(r, θ):

cos3 θ = 0.75 cos θ + 0.25 cos 3θ, (3.8)

sin3 θ = 0.75 sin θ − 0.25 sin 3θ, (3.9)

cos2 θ sin θ = 0.25 sin θ + 0.25 sin 3θ, (3.10)

cos θ sin2 θ = 0.25 cos θ − 0.25 cos 3θ. (3.11)

Figure 3.3. Third-order height function from Eqn. 3.3 (thick black) is a sum of two cubic
sinusoidal height functions: cos θ (solid red) and cos 3θ (dashed blue)

The cubic shape function zpc can then be expressed as a linear combination of two

Fourier components, cos θ and cos 3θ by the function

zpc(r, θ) = r3[F1 cos(θ + α) + F3 cos 3(θ + δ)], (3.12)

where F1 and F3 are the amplitudes of the Fourier components, and α and δ are the phase

shifts from the x-axis. Instead of the x-axis, we could pick an arbitrary, user-provided

18

a b c d

Figure 3.4. The third-order surface is a combination of two sinusoidal functions (cos θ and
cos 3θ) which are the Fourier components of the third-order shape function. We show (a)
the original cubic surface, (b) only the first Fourier component, (c) only the third Fourier
component, and (d) the original cubic surface sandwiched between constituent Fourier com-
ponents with twice their original amplitudes. Clearly, the cubic surface is the average of the
twice the Fourier components, and therefore is equal to the sum of the Fourier components.

Figure 3.5. The first and third Fourier components of the third-order shape function — all
third-order surface behavior can be expressed as properly scaled and rotated combinations
of these two shapes.

direction to measure the phase shifts. Fig. 3.3 illustrates this linear combination for a fixed

value of r. Fig. 3.4 illustrates the combination of these Fourier components to form the

cubic surface.

We can consider the two phase shifts α and δ independently of each other. However,

we find it more instructive to consider the direction corresponding to the (single) maximum

of F1 cos(θ + α) as a “third-order principal direction.” Then, the phase shift δ can be

expressed as α + β, where β is the phase shift with respect to the third order principal

direction. Therefore, we get our final equation for describing the cubic behavior of the

19

surface,

zpc(r, θ) = r3[F1 cos(θ + α) + F3 cos 3(θ + α+ β)]. (3.13)

We use the amplitudes and phase shifts of the Fourier components from Eqn. 3.13 as our

four parameterization-independent, geometrically intuitive shape parameters (illustrated in

Fig. 3.2). These parameters can be extracted from the original third-order parameters C0,

C1, C2, C3 (Eqn. 3.3) of the polynomial height field:

F1 =

√
(3C0 + C3)2 + (3C1 + C2)2

4
, (3.14)

F3 =

√
(C0 − C3)2 + (C2 − C1)2

4
, (3.15)

α = tan−1

(
3C1 + C2

3C0 + C3

)
, (3.16)

β =
1
3

tan−1

(
C2 − C1

C0 − C3

)
− α. (3.17)

Similarly, given our third-order parameters F1, F3, α and β, we can extract the

parameterization-dependent third-order parameters for the idealized surface patch:

C0 = F1 cosα+ F3 cosβ, (3.18)

C1 = F1 sinα− F3 sinβ, (3.19)

C2 = F1 sinα+ 3F3 sinβ, (3.20)

C3 = F1 cosα− 3F3 cosβ. (3.21)

3.6 Computing Fourier Components for a General Surface

Patch

In this section we describe how to compute the third-order shape parameters for a point

on a general surface patch. Unlike the approach taken in Section 3.3, we can no longer

20

ignore the effect of lower-order shape parameters (namely, first- and second-order parame-

ters) on the third-order shape parameters. Therefore, we cannot extract parameterization

independent shape parameters simply by analyzing a height function. Instead, we need to

perform a Fourier analysis of the function that denotes the arc-length derivative of normal

curvature. The Fourier coefficients can then be combined as above to yield the required

shape parameters.

Consider that we have a bi-variate tensor product surface patch (e.g. a bi-cubic B-spline

patch) parameterized by u, v. Given a point (u, v) in parameter space, let S(u, v) denote

the 3D position of the point, n denote the unit normal, and Su(u, v), Sv(u, v), Suu(u, v),

etc. denote the 3D parametric surface derivatives with respect to u and v. Our task is to

efficiently and exactly compute the F1, F3, α and β parameters for any point (u, v) on the

patch.

First, compute the parameterization-dependent third order shape parameters P , Q, S,

and T introduced by Mehlum and Tarrou [MT98]:

P = Suuu · n + 3Suu · nu, (3.22)

Q = Suuv · n + 2Suv · nu + Suu · nv, (3.23)

S = Suvv · n + 2Suv · nv + Svv · nu, (3.24)

T = Svvv · n + 3Svv · nv. (3.25)

Then, use the formula from [MT98] that expresses the arc-length derivative of normal

curvature as a function of the angle θ from any given reference direction

κ′n(θ) =
1
σ3

[PG3/2 sin3 θ + 3QGE1/2 sin2 θ cos(θ + ψ)

+ 3SEG1/2 sin θ cos2(θ + ψ) + TE3/2 cos3(θ + ψ)],

(3.26)

21

where θ is measured from the u direction, E, F andG are coefficients of the first fundamental

form (the metric tensor), and σ =
√
F 2 − EG is the area element at the point of analysis.

We maintain the label κ′n(θ) for the arc-length derivative of normal curvature κn(θ) as was

done by Mehlum and Tarrou [MT98]. ψ denotes the complement to the angle between the

u and v directions and is given by tan(ψ) = F/
√
EG. (For the polynomial height field of

Section 3.3, the coordinate axes were mutually orthogonal and therefore ψ was zero.)

Eqn. 3.26 can be written as an expression similar to Eqn. 3.3:

κ′n(θ) = A cos3(θ + ψ) +B sin3 θ + C sin θ cos2(θ + ψ) +D sin2 θ cos(θ + ψ) (3.27)

where the coefficients A, B, C, and D can easily be written as functions of P , Q, S, T , and

E, F , and G:

A =
TE3/2

σ3
, B =

PG3/2

σ3
, (3.28)

C =
3SEG1/2

σ3
, D =

3QGE1/2

σ3
. (3.29)

As described in Section 3.5, we can perform a Fourier analysis of the sinusoidal functions

in Eqn. 3.27:

cos3(θ + ψ) = 0.75 cosψ cos θ − 0.75 sinψ sin θ

+ 0.25 cos 3ψ cos 3θ − 0.25 sin 3ψ sin 3θ,

sin3 θ = 0.75 sin θ − 0.25 sin 3θ,

cos2(θ + ψ) sin θ = −0.25 sin 2ψ cos θ − 0.25(cos 2ψ − 2) sin θ

+ 0.25 sin 2ψ cos 3θ + 0.25 cos 2ψ sin 3θ,

cos(θ + ψ)sin2θ = 0.25 cosψ cos θ − 0.75 sinψ sin θ

− 0.25 cosψ cos 3θ + 0.25 sinψ sin 3θ.

22

By grouping coefficients, we express the arc-length derivative of normal curvature as a

sum of first-order and third-order sinusoidal functions

κ′n(θ) = F1cos cos θ + F1sin sin θ + F3cos cos 3θ + F3sin sin 3θ, (3.30)

where

F1cos = 0.25(3A cosψ − C sin 2ψ +D cosψ), (3.31)

F1sin = 0.25(−3A sinψ + 3B − C(cos 2ψ − 2)− 3D sinψ), (3.32)

F3cos = 0.25(A cos 3ψ + C sin 2ψ −D cosψ), (3.33)

F3sin = 0.25(−A sin 3ψ −B + C cos 2ψ +D sinψ). (3.34)

Finally, we can combine the sine and cosine functions to formulate the arc-length deriva-

tive of normal curvature as a sum of phase-shifted sinusoidal functions of the angle θ

κ′n(θ) = F1 cos(θ + α) + F3 cos(3(θ + α+ β)), (3.35)

where the parameterization independent third order shape parameters can be expressed in

closed-form as:

F1 =

√
F 2

1cos + F 2
1sin

4
, F3 =

√
F 2

3cos + F 2
3sin

4
, (3.36)

α = tan−1

(
−F1sin
F1cos

)
, β =

1
3

tan−1

(
−F3sin
F3cos

)
− α. (3.37)

To summarize, to compute the third-order shape parameters for any point u, v on a

general surface patch, we need to compute the parameterization dependent third-order (P ,

Q, S, T) and first-order (E, F , G) parameters. Algebraic manipulation of these parameters

yields the coefficients F1cos, F1sin, F3cos, and F3sin of the four sinusoidal components of

arc-length derivative of normal curvature. These four coefficients then readily yield the F1,

F3, α and β parameters.

23

3.7 Qualitative Description of the Fourier Components

The shapes of the first and third Fourier components are shown in Fig. 3.5. Both

functions are anti-symmetric with respect to π, which leads to their combination being

anti-symmetric as well, zpc(r, θ) = −zpc(r, π + θ)) — a fact pointed out by Berry and

Hannay [BH77] in their study of umbilics and Mehlum and Tarrou [MT98] in their study

of normal curvature variation.

In the range [0, 2π), the first Fourier component has one maximum and minimum. The

shape of this component is given by the height field z = x3 + xy2 and can be understood

as a lateral extrusion of the cubic curve z = x3 in the y direction, enhanced by a linear

component whose slope increases as the square of y (see Fig. 3.5). When F1 is zero, the first

Fourier component is flat and the angle α cannot be uniquely determined (in this case we

set α to zero in our implementation). We consider such a point a third-order equivalent of

the umbilic. Unlike the umbilic where the normal curvature is equal in all directions, at the

third order equivalent of the umbilic the normal curvature derivative does not necessarily

behave the same — it is influenced by the non-zero third Fourier component. In fact, as

shown by [MT98], the only situation when the normal curvature derivative is equal in all

directions is when it is zero, meaning the surface is flat in third order (i.e. both F1 and F3

are zero).

In the range [0, 2π), the third Fourier component has three equally spaced maxima and

minima. The shape of this component is similar to that of the height field z = x3 − 3xy2.

This is the well-known “monkey saddle” with three peaks and troughs, each π/3 radians

apart. The angle β denotes the rotation of the third Fourier component with respect to

the α direction given by the first Fourier component. As shown in Fig. 3.6, given a fixed α

24

a b c

d e f

Figure 3.6. Sequence of third-order shape edits: starting from a purely second order
surface patch where F1 and F3 are zero (a), we increase the amplitude F1 of the first Fourier
component (b), rotate it about the z-axis by increasing the value of α (c), and increase the
amplitude F3 of the third Fourier component (d). (e) shows the same shape as (d) but
with the third-order frame indicating the directions of α and β. Finally, we rotate only
the third Fourier component about the z-axis by increasing the value of β (f). The blue
surface (without the grid) is the best-fitting (and unchanged) quadratic surface at the point
of analysis.

and F1, we can vary β and F3 to change the undulatory behavior of the third order height

function. When F3 is zero, β cannot be uniquely determined. In this case, we set it to zero

in our implementation.

3.7.1 Expressing Cross Derivatives Using Third-Order Shape Parameters

Equation 3.35 gives an expression for the inline derivative of curvature (κ′n) — the

change of curvature is analyzed along the line for which normal curvature is measured.

Alternately, we can consider cross derivatives of curvature (κ×n), where the change of curva-

ture is analyzed in a direction perpendicular to the line along which the normal curvature is

measured. For example, in an earlier Master’s thesis [Jos07], we introduced the MVScross

25

functional that contains cross derivative terms in principal directions: dκ1/de2 and dκ2/de1.

Here we use our third-order parameters F1, F3, α, and β to obtain an expression for the

cross derivative of normal curvature.

Suppose we are given a surface point with normal curvature κn(θ) in a direction given

by angle θ in the tangent plane. The cross derivative κ×n (θ) is a directional derivative of

κn(θ) along the direction denoted by θ + π/2. We can show that the cross derivative is

given by the formula

κ×n (θ) =
F1

3
cos(θ + π/2 + α)− F3 cos 3(θ + π/2 + α+ β)

= −F1

3
sin(θ + α)− F3 sin 3(θ + α+ β) (3.38)

The above equation is similar to Equation 3.35 which expresses the normal curvature

derivative (κ′n) using the third-order shape parameters. There are three differences: (1) the

F1 component is reduced to a third of its original value, (2) the F3 component switches sign

and (3) the angles are shifted by π/2 radians.

The derivation for Equation 3.38 proceeds as follows: we can express the third-order

surface information near the point of analysis by the cubic height field function used in

Section 3.3

zpc(x, y) = C0x
3 + C1y

3 + C2x
2y + C3xy

2 (3.39)

We can use this description in a small neighborhood around a surface point where the

first fundamental form is the identity matrix and the second fundamental form is zero.

Suppose we are interested in the cross derivative κ×ny
= dκn(π/2)

dx = d
dx

d2zpc

dy2
= d3zpc

dy2dx

= 2C3. We will show how this cross derivative is closely related to the inline curvature

derivative κ′nx
= dκn(0)

dx = d3zpc

dx3 = 6C0.

26

Consider the situation when F1 is non-zero and F3 is zero. Without loss of generality,

we can define the x-y coordinate system around such a surface point such that C0 = C3 6= 0

and C1 = C2 = 0 (the x-axis is along the maximal direction of the F1 component). In

this case, d3zpc

dxdy2
= 1

3
d3zpc

dx3 , which implies that the value of the cross derivative of normal

curvature is equal to one third the value of the inline derivative of normal curvature, where

both curvature derivatives are in the same direction. For a general direction denoted by θ,

the cross derivative in the direction φ = θ + π/2 of the normal curvature κn(θ) is

dκn(θ)
deφ

=
1
3
dκn(φ)
deφ

=
1
3
F1 cos(φ+ α)

=
1
3
F1 cos(θ + π/2 + α)

= −1
3
F1 sin(φ+ α). (3.40)

Now consider the situation when F1 is zero and F3 is non-zero. Without loss of gen-

erality, we can define the x-y coordinate system around such a surface point such that

C0 = −3C3 6= 0 and C1 = C2 = 0 (the x-axis is along one of the maximal directions of

the F3 component). In this case, d3zpc

dxdy2
= −d3zpc

dx3 which implies that the value of the cross

derivative of normal curvature is equal to the negative value of the inline derivative of nor-

mal curvature, where both curvature derivatives are in the same direction. For a general

direction denoted by θ, the cross derivative in the direction φ = θ + π/2 of the normal

curvature κn(θ) is

dκn(θ)
deφ

= −dκn(φ)
deφ

= −F3 cos 3(φ+ α+ β)

= −F3 cos 3(θ + π/2 + α+ β)

= −F3 sin 3(θ + α+ β). (3.41)

27

Just like the inline curvature derivative function κ′n, we can express the cross curvature

derivative function κ×n as a sum of its first and third Fourier components. By combining

Equations 3.40 and 3.41, we get the expression for Equation 3.38.

3.7.2 Expressing Normal Curvature Derivatives in Arbitrary Directions

Using Third-Order Shape Parameters

The inline and cross derivatives are only two of the infinitely many directions in which

we can compute directional derivatives of normal curvature. Given a surface point and

a normal curvature κn(θ) measured along a direction given by θ, we should be able to

compute the directional derivative dκn(θ)/deψ for an arbitrary direction eψ. At any surface

point, up to third order, we can define a rank-3 tensor that takes 3 directions as input: two

(equal) directions to query the curvature tensor and specify the normal curvature and a third

direction to specify the direction of normal curvature derivative [Rus04, GU01]. We now

show that the normal curvature derivatives in all directions are simple linear combinations

of inline and cross curvature derivatives.

Recall the rule of directional derivatives. Suppose f is a scalar function over a domain

spanned by directions x̂ and ŷ. Let the direction m also be spanned by the x-y basis

(m = mxx̂ +myŷ). Then, the directional derivative ∂f
∂m = m · (∂f∂x x̂ + ∂f

∂y ŷ).

Let the direction of the inline derivative be along the x axis, and the direction corre-

sponding to the cross derivative be along the y axis. A vector along an arbitrary direction

given by angle ψ can be written as (cosψ)x̂ + (sinψ)ŷ. Therefore, using the above rule of

directional derivatives and given the inline and cross derivatives of normal curvature, κ′n(θ)

28

and κ×n (θ), we can express the directional derivative of κn(θ) along the direction of ψ as:

dκn(θ)
deψ

= ((cosψ)x̂ + (sinψ)ŷ) · (κn(θ)′x̂ + κn(θ)×ŷ)

= κ′n(θ) cosψ + κ×n (θ) sinψ (3.42)

where ψ is computed as the offset angle from the direction of θ.

3.7.3 Application: Classification of Umbilics

As one example, we show how to use our third-order shape parameters to character-

ize the surface behavior near umbilic points (points with equal principal curvatures). As

mentioned before, generic umbilic points on surfaces are classified according to the pattern

made by lines of curvature as they pass through the point. Since the surface behavior up

to second order is uniform in all directions, we need a third-order analysis to classify umbil-

ics. As presented by Berry and Hannay [BH77], based on the pattern of lines of principal

curvature near the point, there are three types of generic (stable) surface umbilics: lemon,

monstar and star (see Figure 3.7). The pattern of lines of principal curvature depends on

the number of real, distinct roots of the cubic equations zpc(r, θ) = 0 (zpc from Section 3.3)

and dzpc (r,θ)
dθ = 0. The roots can be obtained by computing the discriminants of the two

cubic equations (the third order-height function and dzpc (r,θ)
dθ = 0). Computing the roots

is useful if one needs to find the exact location of the lines of principal curvature, but the

discriminants and roots by themselves do not provide a quick geometric understanding of

how the surface behaves near the umbilic point. Instead, our third-order shape parameters

offer a more intuitive explanation of when and how different types of umbilics are formed.

When the first Fourier component dominates the overall third-order behavior, we get only

one maximum and minimum for zpc(r, θ). In that case, we have the lemon type of umbilic.

29

When the third Fourier component is strong enough that its derivatives (slope) exceed

those of the first component, we get three distinct maxima and minima (six real roots for

the equation dzpc (r,θ)
dθ = 0) and obtain the monstar umbilic. If the third Fourier component

dominates the third-order height function and creates six zero crossings (instead of two),

we get the star type of umbilic. Figure 3.7 compares the network of curvature lines to the

number of zeros and extrema of the third-order height function evaluated along a small

circle around the umbilic point.

lemon monstar star

Figure 3.7. Principal curvature lines near the three types of umbilic points with the graphs
of corresponding third-order height functions (thick black). The top row of figures is from
Berry and Hannay [BH77]. The number of extrema (two or six) and zero crossings (two or
six) of the height function together determine the type of the generic umbilic point. Notice
how the first Fourier component (solid red) dominates the overall third-order behavior for
the lemon umbilic, while the third Fourier component (dotted blue) creates local extrema
in the monstar umbilic and additional zero crossings of the height function in the star
umbilic.

3.8 Summary

We have presented an intuitive analysis of third-order surface behavior in terms of

Fourier components of the third-order height function. We hope our exposition will be

useful as a tool for studying and characterizing third order geometry. In the next chapter,

30

we will use our understanding of third-order surface behavior to define functionals built

from the fundamental building blocks F1 and F3.

31

Chapter 4

Functionals

Introduction

Our goal is to use numerical optimization to construct smooth surfaces suitable for

aesthetic shape design. We optimize the shape of an input surface so that it minimizes an

energy defined as a function over the surface. The energy is also called a “functional”. We

focus on functionals that, when minimized, lead to smooth, aesthetically pleasing shapes.

Informally speaking, the functional returns a numerical value of the beauty of the surface;

the lower the value, the more beautiful the surface. In this chapter we describe some of the

commonly used functionals and also introduce some new ones.

4.1 Requirements of Surface Energy Functionals

Before listing the formulae for the functionals, it is instructive to consider the require-

ments of all functionals useful for aesthetic design. While the exact formulation of the ideal

functional depends on the particular design task, we can postulate that for the types of

shapes we wish to design, all functionals should:

32

• be bounded from below: all energy functionals should have a finite lower bound so

that the optimization can converge in a finite number of steps,

• penalize sharp shape changes: unless specified otherwise, the optimization should re-

move sharp features like kinks and creases and not introduce new ones,

• penalize unnecessary surface bending: the optimization should remove any unneces-

sary wiggles, undulations or other smooth extraneous shape changes and not introduce

new ones,

• be local operators: the energy near a surface point should be efficiently computable

by considering only the local neighborhood of the point,

• be invariant to parameterization, rigid transformation and uniform scaling: different

designers using different surface parameterizations at different scales should obtain

the same optimized shape, and

• be numerically stable: the functional should be “smooth” (have continuous first and

second derivatives with respect to the degrees of freedom) so that we can use commonly

found optimization algorithms.

All the functionals selected for aesthetic design in this thesis satisfy the above require-

ments. While evaluating a functional for aesthetic design, we found that along with the

above requirements, we would like the ideal functional to:

• reward symmetry: the functional should reward symmetry by yielding lower energy

for more symmetric shapes, and

• be numerically well-conditioned: to compute the energy minimum more conveniently

and quickly.

33

4.2 How to Construct Functionals

We use Birkhoff’s principle [Bir33], which states that the mathematical measure of a

shape’s beauty is inversely proportional to its complexity. One can argue that the complex-

ity of a surface is inversely proportional to its smoothness. That is, a smooth surface is less

complicated, while a rough, bumpy surface is more complex. To make the least complex

shape, we consider energy functionals that reward smooth shapes and penalize unnecessary

variation in the normals or curvatures in the shape. The variation is computed by measur-

ing the arc-length derivatives of the position of a surface point. Each order of the derivative

corresponds to a particular class of functionals. In this thesis, we will consider functionals

up to order three. We compute the derivative terms at surface points and formulate the

functionals as area integrals over the entire surface (
∫
•dA) of the L2 norm of the deriva-

tive terms. Only a subset of all the functionals that can be formulated by combining the

derivative terms are useful from the perspective of aesthetic design. Therefore, we need to

study only a subset of all the functionals that we list in this chapter.

4.2.1 First-Order Functional

Up to first order, we can formulate the energy functional that measures surface area as

surface area =
∫
dA. (4.1)

This functional is used to solve the design task of constructing the simplest surface that

interpolates a closed, non-planar boundary curve (i.e. Plateau’s problem, see [Rad30]).

The optimal surface corresponding to the surface area functional is called a minimal surface.

Constructing a surface of least area is inspired by nature: soap films naturally form minimal

surfaces, and Plateau’s formulation of the problem was inspired by his study of soap films.

34

The surface area functional has some drawbacks when used for aesthetic design. First,

the functional is not scale invariant (uniformly doubling the scale will quadruple surface

area). Second, the functional cannot be applied to unconstrained surfaces since the opti-

mization will simply collapse the surface to a single point. Even in the case of surfaces with

constraints, any largely unconstrained regions may collapse to a single point or line.

Despite its drawbacks and due to its simplicity, the surface area functional has been

used for aesthetic design — the boundary and rough approximation of the desired surface

is given, and the final surface is computed by minimizing the surface area. There is a rich

history behind the use of this functional for constructing minimal surfaces; we will not

repeat that information in this thesis. For more information on minimal surfaces, refer to

Osserman’s book on the topic [Oss02].

4.2.2 Second-Order Functionals

Second-order functionals are functions of the normal curvature at a surface point. Recall

that the normal curvature κn is the arc-length derivative of the surface normal, where the

derivative is computed along a normal section curve. Depending on the direction in which

the arc-length is varied, we get a different value for the normal curvature. Euler’s Theorem

states that the normal curvature in a given direction at a surface point is a function of the

maximum (κ1) and minimum (κ2) normal curvatures at that point,

κn(θ) = κ1 cos2 θ + κ2 sin2 θ, (4.2)

where κ1 and κ2 are called the principal curvatures and θ is the angle between the given

direction and the principal direction corresponding to κ1. Using κ1 and κ2, we can define

35

two common curvature terms,

mean curvature (H) =
1
π

∫ π

0
κn(θ)dθ =

κ1 + κ2

2
, and (4.3)

Gaussian curvature (K) = κ1κ2. (4.4)

We are now ready to define some second-order functionals:

Mean Curvature Energy

The mean curvature energy integrated over the surface is

mean curvature energy =
∫

H dA. (4.5)

For aesthetic design, the mean curvature energy functional is similar to the surface area

functional, with the same benefits and drawbacks. The only difference between the surface

area and the mean curvature energy is in the type of constraints we can specify. While

minimizing surface area, we can specify only position (C0) constraints, but while minimiz-

ing mean curvature energy, we can specify both, position and tangent (C1) constraints.

With the absence of tangent constraints, the minimal surface obtained as a result of area

minimization will have zero mean curvature at all interior points. Therefore, without any

tangent constraints, the mean curvature energy functional and the surface area functional

have the same minimizers. This is not surprising as the gradient of the mean curvature

energy (the direction of maximal mean curvature change) is parallel to the gradient of sur-

face area. In terms of the nature of preferred shapes for aesthetic design, study of the

mean curvature energy adds no new information than that already included in the study of

surface area functional. Therefore, in this thesis, we will not discuss the use of the mean

curvature energy for aesthetic design.

36

Gaussian Curvature Energy

The Gaussian curvature energy integrated over the surface is

Gaussian curvature energy =
∫

KdA =
∫
κ1κ2dA. (4.6)

According to the Gauss–Bonnet theorem, this integral is a topological constant of the surface

and its value depends only on the topological type (i.e. genus) of the surface, not its shape.

Since we are not changing the surface topology during optimization, the genus of the input

surface remains constant, and therefore the Gaussian curvature energy remains constant.

Thus, we ignore this energy for aesthetic design.

Willmore Energy (Square of Mean Curvature)

We can compute the area integral of the square of mean curvature, also known as

Willmore energy [Wil71] as

Willmore energy =
∫

H2dA. (4.7)

An alternative formulation of the Willmore energy measures the deviation of a surface

point from an umbilic point (a point with equal normal curvature in all directions). That is,

we can measure the derivative of the normal curvature with respect to the direction given

by angle θ,

umbilic deviation energy =
∫ (

dκn(θ)
dθ

)2

dA,

=
∫

(κ1 − κ2)2 dA (by Eqn. 4.2) ,

= 4
∫ (

κ1 + κ2

2

)2

dA− 4
∫
κ1κ2dA,

= 4(Willmore energy)− 4 (Gaussian curv. energy) . (4.8)

37

Since the Gaussian curvature energy is a topological constant, we need to minimize only

the Willmore energy to minimize umbilic deviation.

The Willmore energy is well studied and can be used for aesthetic design. However, as

we show next, minimizing the Willmore energy is equivalent to minimizing a more complete

and common functional, the bending energy. Therefore, we consider the bending energy

instead of the Willmore energy for aesthetic design.

Bending Energy

Consider a functional that measures the average value of the square of the normal

curvature by integrating the square of normal curvature over all directions. That is, we

wish to find

total curvature energy =
∫

1
π

(∫ π

0
κn(θ)2dθ

)
dA,

=
3
8

∫
κ1

2 + κ2
2dA+

2
8

∫
κ1κ2dA see [MT98],

=
3
8

∫
κ1

2 + κ2
2dA+

2
8

(Gaussian curv. energy). (4.9)

As before, we can ignore the constant Gaussian curvature, giving

bending energy =
∫
κ1

2 + κ2
2dA. (4.10)

This energy is the most popular functional in surface optimization. Example applications

are constructing G1-continuous surfaces to fill holes, blends between two or more surfaces,

fairing a noisy surface obtained from range scans and simulating the interface between lipids

and microscopic cell membranes.

As mentioned earlier, minimizing the bending energy is equivalent to minimizing the

38

Willmore energy (
∫
H2dA).

Willmore energy =
∫
H2dA =

∫ (
κ1 + κ2

2

)2

dA,

=
1
4

∫ (
κ1

2 + κ2
2
)
dA+

1
2

∫
κ1κ2dA,

=
1
4

(bending energy) +
1
2

(Gaussian curv. energy). (4.11)

where, as before, we can ignore the Gaussian curvature energy and focus on minimizing

only the bending energy.

To summarize, while we can formulate a large number of second-order surface energies, we

need to consider only the bending energy (Equation 4.10) as a second-order functional for

purposes of aesthetic design.

4.2.3 Third-Order Functionals

Up to third order, we can formulate functionals as functions of the arc-length derivative

of normal curvature (i.e. κ′n). Unlike second-order expressions (involving κn), which could

be simplified using the Gauss–Bonnet theorem and Euler’s theorem, we no longer have any

convenient theorems to simplify expressions involving κ′n. Instead, we use the third-order

shape parameters F1, F3, α, and β (from Chapter 3) to simplify expressions for third-order

functionals.

Minimum Variation Surface (MVS and MVScross) Energies

The MVS energy was introduced by Moreton and Séquin [MS92] as an alternative to

bending energy. The MVS functional measures the derivative of the principal curvatures in

their principal directions. In this thesis, we consider the scale-invariant (“SI-”) version of

39

the MVS energy. That is,

SI-MVS energy =
∫ (

dκ1

de1

)2

+
(
dκ2

de2

)2

dA ·
∫
dA (4.12)

where the additional
∫
dA makes the MVS energy scale invariant [SCM95]. See Section 4.4

for more details on scale invariance.

The SI-MVS functional favors surfaces that have constant change of curvature along

principal curvature lines. These surfaces, called cyclides, have circles or straight lines as

lines of curvature (e.g. spheres, cylinders, cones, tori, Horn tori). The SI-MVS energy is

zero for all cylides: it treats all cyclides as equally beautiful and cannot distinguish between

them. To fix this drawback, we [Jos07] enhanced the SI-MVS functional by adding cross

derivative terms to get

SI-MVScross energy =
∫ (

dκ1

de1

)2

+
(
dκ2

de2

)2

+
(
dκ1

de2

)2

+
(
dκ2

de1

)2

dA ·
∫
dA. (4.13)

Unlike the SI-MVS functional, the SI-MVScross functional is zero for only two cyclides:

spheres and cylinders. The SI-MVScross functional distinguishes between different tori —

the infinitely thin torus has the least energy [JS07].

Drawbacks: Both the SI-MVS and the SI-MVScross functionals assign a special signifi-

cance to the principal curvatures and directions, measuring the curvature changes only in

principal directions. However, the principal directions (a second-order property) are not

relevant in third-order space. Choosing to measure curvature variation in only the principal

directions could ignore significant curvature variation in other directions. As pointed out

by Mehlum and Tarrou [MT98], the maximum value of curvature variation occurs in direc-

tions independent of the principal directions. Moreover, at umbilic points where the normal

curvature is equal in all directions, we cannot uniquely compute the principal curvature

40

directions and have to pick two arbitrary, mutually perpendicular directions as principal

directions. Therefore, we think a more complete and stable functional is one that considers

normal curvature variation in all directions, as proposed by Mehlum and Tarrou.

Mehlum and Tarrou’s Energy

Mehlum and Tarrou [MT98] argue that to measure the total curvature variation at a

surface point, we should compute the average magnitude of the arc-length derivative of

normal curvature across all directions.

Mehlum–Tarrou energy =
1
π

∫ (∫ π

0
κ′n(θ)2dθ

)
dA (4.14)

where κ′n(θ) is a directional derivative of κn(θ) in the direction denoted by angle θ in

the tangent plane. The Mehlum–Tarrou energy has a complicated closed-form expression

(Equation 34 in [MT98]), but can be simply expressed by using our third-order shape

parameters from Chapter 3. In particular, we show that the Mehlum–Tarrou energy is the

sum of squares of the amplitudes of the two Fourier components that define third-order

surface behavior.

Mehlum–Tarrou energy

=
1
π

∫ (∫ π

0
κ′n(θ)2dθ

)
dA,

=
1
π

∫ (∫ π

0
(F1 cos(θ + α) + F3 cos 3(θ + α+ β))2 dθ

)
dA,

=
1
2

∫
F 2

1 + F 2
3 dA. (4.15)

In the above derivation, we use the orthogonality of the cosine function:
∫ π

0 cos(θ +

γ) cos 3(θ + δ)dθ = 0 for any constants γ and δ. Thus, the Mehlum–Tarrou energy is

independent of the phase shift β of the third Fourier component.

41

In this thesis, we will study the scale-invariant version of the Mehlum–Tarrou functional

and refer to it as

SI-Mehlum–Tarrou energy =
1
2

∫
F 2

1 + F 2
3 dA

∫
dA. (4.16)

The SI-Mehlum–Tarrou energy can also be used to differentiate between different cy-

clides. Like the SI-MVScross energy, the SI-Mehlum–Tarrou energy is zero for two cyclides:

spheres and cylinders, and also designates the infinitely thin torus as the optimal genus-1

shape.

We can modify Equation 4.16 to obtain a weighted form of the SI-Mehlum–Tarrou

energy, where the weights are used to favor or ignore the first or third Fourier components

of the curvature derivative function,

weighted SI-Mehlum–Tarrou energy =
1
2

∫
w1F

2
1 + w3F

2
3 dA

∫
dA. (4.17)

Similarly, we can obtain an energy functional that measures the amplitude of only one

of the two components of the curvature derivative function:

SI-F 2
1 energy =

∫
F 2

1 dA

∫
dA, (4.18)

SI-F 2
3 energy =

∫
F 2

3 dA

∫
dA. (4.19)

Other Third-Order Energies

There are other third-order energies that we do not consider as candidate functionals for

shape design. We will list some of them here and explain why we chose not to investigate

them further.

42

Cross Curvature Energy: Similar to the Mehlum–Tarrou energy that measures the

average magnitude of inline derivative of normal curvature, we could formulate an energy

that measures the average magnitude of the cross derivative of normal curvature.

Cross curvature energy

=
1
π

∫ (∫ π

0
κ×n (θ)2dθ

)
dA

∫
dA,

=
1
π

∫ (∫ π

0

(
−F1

3
sin(θ + α)− F3 sin 3(θ + α+ β)

)2

dθ

)
dA

∫
dA,

=
1
2

∫
F 2

1

9
+ F 2

3 dA

∫
dA. (4.20)

We used Equation 3.38 to simplify the expression for κ×n (θ). The cross curvature energy

is equal to the weighted SI-Mehlum–Tarrou energy (Eqn 4.17) for a fixed choice of w1 and w3

and does not offer any new information not already provided by the weighted SI-Mehlum–

Tarrou energy. Therefore we do not consider the cross curvature energy as a functional for

aesthetic design.

Average Curvature Derivative Energy: We can go one step beyond the cross curva-

ture energy and define an energy that measures, in essence, the average value of all normal

curvature derivatives at a surface point. That is, we can measure the average value of

the average value of the square of the directional derivative of normal curvature over all

directions. That is,

43

average curvature derivative energy

=
∫ (∫ π

0

1
π

(∫ π

0

1
π

(
dκn(θ)
deψ

)2

dψ

)
dθ

)
dA

∫
dA,

=
∫ (∫ π

0

1
π

(∫ π

0

1
π

(
κn(θ)′ cosψ + κn(θ)× sinψ

)2
dψ

)
dθ

)
dA

∫
dA,

=
∫ (

1
π

∫ π

0
κ′n(θ)2 + κ×n (θ)2dθ

)
dA

∫
dA,

= SI-Mehlum–Tarrou energy + cross curv. energy. (4.21)

Again, since the cross curvature energy is equivalent to a weighted SI-Mehlum–Tarrou

energy, the average curvature derivative energy does not offer any new information. There-

fore, we will not consider the average curvature derivative energy as a functional for aesthetic

design.

Gravesen’s Energies: Gravesen [Gra03] describes 18 third-order invariants on the sur-

face, each of which can be used as a functional. These are variations of the Mehlum–Tarrou

energy, with different weights and multiplicities with which the first-order and second-order

terms are considered. Gravesen’s work also describes the algebra that can be used to define

other third-order energies like the variation of mean curvature or the variation of Gaussian

curvature. All the functionals presented by Gravesen [Gra03] can be expressed as a com-

bination of F1 and F3 terms. Therefore, we do not need to study Gravesen’s functionals

further in this thesis.

One way to classify third-order functionals is to consider the task of minimizing the

curvature variation of curves on the surface. Depending on the subset of the surface curves

that we choose to optimize, we can classify third-order surface functionals. In this thesis, we

have paid special attention to normal section curves. The MVS and MVScross functionals

measure curvature variation along of lines of curvature, while the Mehlum–Tarrou functional

44

measures curvature variation along all normal section curves. The functionals in [Gra03]

that contain information not already considered by the MVS, MVScross or Mehlum–Tarrou

functionals measure curvature variation over all surface curves (including those that are not

normal section curves) [GU01]. Since we care only about the shape of the surface and not

about its metric distortion, we do not try to optimize curvature variation over curves that are

not normal section surface curves. Therefore, we chose to ignore the functionals in [GU01]

and [Gra03].

To summarize, we need to study the SI-F 2
1 energy (Eqn. 4.18), SI-F 2

3 energy (Eqn. 4.19),

and their combination, the weighted SI-Mehlum–Tarrou energy (Eqn. 4.17) as third-order

functionals for shape design.

4.3 Combining Energy Functionals

In [Jos07], we show that a designer can combine second-order and third-order functionals

to produce new functionals. For instance, in [Jos07], we wanted to produce a functional that

designated a torus of radius ratio 0.5 as the most beautiful genus-1 surface. We formulated

the combined functional, 0.95 bending energy + 0.05SI-MVScross energy. Similarly, we can

combine the second-order bending energy with the third-order energies described in this

thesis to produce a combined functional with different preferred shapes. In Section 8.6 we

show some examples of combined energy functionals.

45

4.4 Scale Invariance of Functionals

A surface energy functional is scale invariant when the same shape at different scales

produces the same energy. Without scale invariance, the optimization system could keep

decreasing the surface energy by infinitely increasing (or decreasing) the size of the surface

without changing its shape. Therefore, scale invariance is a desirable property of a surface

functional.

The area integral of the sum of squares of the (second-order) principal curvatures is

scale invariant. The dimensions in terms of mass (M), length (L), and time (T) of the

κ2
1 + κ2

2 term are L−2, while the dimensions of the area element dA are L2. Their product,

(κ2
1 + κ2

2)dA (see Eqn. 4.10), is dimension-less, and therefore the bending energy is scale

invariant.

On the other hand, the third-order terms consisting of squares of F1 and F3 have

dimensions of L−4. Their product with the area element is not scale invariant, but has

dimensions of L−2. As a result, as shown by Seq́uin et al. [SCM95], any third-order energy

like
∫
F 2

1 +F 2
3 dA needs to be multiplied by an additional

∫
dA term to make it scale invariant

(as in Equation 4.18, 4.19, 4.17).

Ideally, we would be able to formulate third-order surface functionals without the extra∫
dA term. It is unclear how much influence the extra

∫
dA term has on the optimal shapes,

and whether the optimization tends to favor “skinny” shapes (with lower surface area) due

to the extra
∫
dA term. We can build such a functional by computing the square root of

the curvature derivative terms. For instance, we can construct a scale-invariant form of

the SI-Mehlum–Tarrou energy (Equation 4.16) by noting that the term
√
F 2

1 + F 2
3 dA is

46

dimension-less. √
F 2

1 + F 2
3 energy =

∫ √
F 2

1 + F 2
3 dA. (4.22)

However, this functional is not always smooth: at surface points where both F1 and

F3 are zero, the energy gradient is undefined. Most optimization routines, including the

one we used in Chapter 6, assume that the energy space is smooth and that the energy

gradient is defined at all surface configurations [BMMS05]. The behavior of the optimization

process when the surface reaches a configuration with an undefined gradient is difficult to

predict. Therefore, smooth functionals are usually necessary for numerical stability during

the optimization process.

Input SI-Mehlum–Tarrou
√
F 2

1 + F 2
3

(Equation 4.16) (Equation 4.22)

Figure 4.1. For the same input shape (left), we show the optimal shapes with respect to
the SI-Mehlum–Tarrou energy (middle) and the

√
F 2

1 + F 2
3 energy (right).

As a test, we optimized the
√
F 2

1 + F 2
3 energy (Equation 4.22) for a few canonical input

shapes. We ignored the surface points where both F1 and F3 were zero while computing

the energy gradient. This is equivalent to setting the energy gradient at those points

to zero. This strategy is not theoretically sound but seemed to have no adverse effects

on the optimization. Our optimization system (described in Chapter 6) remained stable

throughout the optimization process and we were able to obtain the optimal shapes without

the extra
∫
dA term. However, the optimal shapes with respect to the

√
F 2

1 + F 2
3 energy

(Eqn. 4.22) were very similar to the optimal shapes with respect to the SI-Mehlum–Tarrou

energy (Equation 4.16) with the additional
∫
dA term (see Figure 4.1 for one example).

47

This indicates that the additional
∫
dA did not strongly influence the optimization to favor

skinny shapes with smaller surface area. Therefore, in the rest of this thesis, we will consider

only the smooth versions of the third-order functionals (with the
∫
dA term).

48

Chapter 5

Surface Representation

For any surface optimization system, the choice of the surface representation is crucial.

The surface representation affects how easily a designer can specify the input shape and set

constraints. The surface representation is also an important factor in the computational

cost (memory and time) of optimization — a poorly chosen surface representation can make

even simple optimization tasks extremely slow and memory intensive. In this chapter, we

describe the method we use to represent surfaces in our optimization system and provide

an explanation of our choices.

Depending on the degree of control we want over the surface, we can choose different

methods of surface representation. For low-level, detailed control, we could use a densely

tessellated polygon mesh or a point cloud, where the mesh vertices or the points are the

shape control parameters. Unfortunately, meshes or point clouds need to be rather dense to

accurately represent smooth shapes. On the other hand, for high-level, global control, we

could use implicit surfaces or a Boolean combination of simple primitives (i.e. constructive

solid geometry), where complex shapes can be represented using only a handful of control

49

parameters. Unfortunately, in such a representation, specifying low-level control such as

position constraints can be difficult.

When choosing a shape representation for optimization-based shape design, we need

to pick a representation with low-level control as well as the ability to represent smooth

shapes using a relatively few control parameters. We found that a parametric surface rep-

resentation (i.e. spline patches) was convenient and efficient. We could follow the work of

Kjellander [Kje83] and represent surfaces using a C2 continuous, bi-cubic B-spline patch

network. However, to model a wide variety of shapes, we would need to handle the incon-

venient topological restrictions imposed by a B-spline patch network. On the other hand,

Catmull–Clark subdivision surfaces [CC78] offer the freedom to model shapes of arbitrary

topology while maintaining the benefits of a B-spline patch network. Therefore, we chose

to use Catmull–Clark subdivision surfaces in our optimization system.

5.1 Catmull–Clark Subdivision Surfaces

The control polyhedron (i.e. coarse mesh) of the subdivision surface is stored on disk

as a single, connected quadrilateral mesh. Each quadrilateral and its immediate neighbors

denote the control structure for one surface patch (Fig. 5.1). We compute the surface

patch corresponding to any quadrilateral that contains an extraordinary vertex (number of

neighbors, i.e. valence 6= 4) by using Stam’s method of exact evaluation of the Catmull–

Clark limit surface [Sta98]. This allows us to treat our extraordinary patch like any other

B-spline patch such that the surface position at any point within the patch can be computed

as a closed-form linear combination of the control points. Note that the Catmull–Clark

limit surface corresponding to a quadrilateral containing only regular vertices (valence =

50

4) is exactly the same as the bi-cubic B-spline patch corresponding to that quadrilateral.

Therefore, any regular patch is evaluated as a bi-cubic B-spline patch. The control vertices

of the subdivision limit surface (i.e. the mesh vertices) are provided to the optimization

system as degrees of freedom.

Figure 5.1. The input shape is read in as a quadrilateral mesh (left) which is used as a
control polyhedron for the surface (right). This surface is used for all energy computations
during surface optimization.

As mentioned before, the main advantages of Catmull–Clark subdivision surfaces are the

freedom to model shapes of arbitrary topology and the ability to represent smooth shapes

using relatively few control parameters. Another key advantage, which is particularly crucial

for surface optimization, is that routines that provide the energy and energy gradient values

for each patch are efficient, closed-form, and easy to code.

5.1.1 Removing C2 Discontinuity by Blending

Unfortunately, the C2 discontinuity near an extraordinary vertex of the Catmull–Clark

limit surface means we cannot reliably compute curvature derivatives near that vertex.

Therefore, we need to modify the the Catmull–Clark limit surface by smoothly blending

it with a C2-continuous surface. The resulting blended surface is smooth enough to yield

reliable curvature derivative values.

51

Figure 5.2. The graph shows the weight function from [YZ04, BK01] used to blend the flat
spot with the Catmull–Clark surface near the extraordinary vertex. The function starts
with a value of one at the extraordinary vertex and smoothly drops to zero halfway along
the edges adjacent to the vertex.

We use the simple solution of “ironing” out the C2 surface discontinuity, similar to the

flatness parameter proposed in Biermann et al. [BLZ00]. First, we compute the projection

of the subdivision limit surface near an extraordinary vertex on that vertex’s limit tangent

plane. The new surface is then defined as a smooth blend between the subdivision limit

surface and its projection on the limit tangent plane of the extraordinary vertex. To blend

the two surfaces, we use the infinitely smooth (C∞) blend function [YZ04, BK01]

blend(t) =
e

2e−1/(2t)

2t−1

e
2e−1/(2t)

2t−1 + e
2e−1/(1−2t)

−2t

. (5.1)

In u, v parameter space, the extraordinary vertex is assigned (u, v) values of (0,0). Since

the C2 discontinuity affects the Catmull-Clark limit surface to a radius of 0.5 in u, v

space [Lev06], the blend function approaches a limit of 1.0 (as t approaches zero) at the

extraordinary vertex, and a limit of zero (as t approaches 0.5) halfway towards the ring of

the neighboring vertices (see Figure 5.2). At a point with parameter values u, v, the blend

52

weight is

weight = blend(u) · blend(v) (5.2)

and the modified, C2-continuous surface at that same point is computed as

S(u, v) = (1-weight) · SCatmull-Clark(u, v) + (weight) · SFlat Spot(u, v). (5.3)

As a result of this modification, the surface is unchanged beyond the midpoint of the

edges adjacent to the extraordinary vertex. Near the extraordinary vertex, the surface is

a blend of the tangent plane projection and the Catmull–Clark subdivision limit surface.

Similar to the requirement for exact evaluation in Stam’s system [Sta98], we need to isolate

the extraordinary vertices so that each face is a quadrilateral with a maximum of one

extraordinary vertex.

The main advantage of the above surface representation is simplicity: the routines to

compute the subdivision limit surface, flat surface, and blending function are very easy to

code. Energy queries on these blended patches are as efficient as those on the regular B-

spline patches. Any undesirable, unattractive artifacts of the flat spot are reduced during

optimization. Subdividing the mesh reduces the influence of the flat spot even further.

However, a better starting surface (with the same efficiency) may be obtained by blending a

quadric surface near the extraordinary vertex with the subdivision limit surface, as proposed

by Levin [Lev06] and Zorin [Zor06].

5.1.2 Boundary Patches

Catmull–Clark subdivision surfaces can be modified so as to interpolate a given bound-

ary curve. Biermann et al. [BLZ00] describe a system where the subdivision limit surface

53

near an open boundary can be specified with position and normal constraints. Such a

system can be used to interpolate a given boundary curve during a design task.

In our current implementation, the patches corresponding to the quadrilaterals on the

boundary are ignored and do not contribute to the energy of the surface. For all our

examples with an open boundary, the vertices on the boundary and their two-ring neighbors

are held fixed as constraints. This amounts to constraining the position, tangents and

curvatures of the limit surface points on the boundary (i.e. specifying C2 constraints).

5.1.3 Maintaining Sharp Features in Input Surfaces

Sharp features were introduced in subdivision surfaces by Hoppe et al. [HDD+94].

DeRose et al. [DKT98] showed how to apply the same sharp features (creases, spikes, darts)

to Catmull–Clark subdivision surfaces. They also explained how to model semi-sharp fea-

tures such that the feature is not infinitely sharp but has a non-zero fillet. Biermann et

al. [BLZ00] further improved the method of specifying sharp features by improving the

surface behavior of sharp features near the boundary. Overall, the current technology of

Catmull–Clark subdivision surfaces has evolved to the point where it can be used for design

tasks that require the surface to interpolate any given sharp features such as creases or

spikes.

Since we focus on the design of smooth shapes, we assume that there are no sharp

features (like creases) that are intentionally placed by the user. Therefore, in our system,

the implementation of Catmull–Clark surfaces cannot handle sharp features.

54

Chapter 6

Optimization System

Introduction

In this chapter we will describe the numerical optimization system we used for mini-

mizing surface energy functionals. Our goal was to build a system that was convenient and

fast enough to compute the functional minimizers of some canonical input shapes so that

we could compare the shapes preferred by the functionals. As a result, robustness (to bad

mesh quality) and accuracy were more important than speed. For the construction of an

optimization system for interactive design, in Chapter 7 we discuss some options to speed

up the system.

The surface optimization system can be separated into two independent components:

methods for computing the surface energy and gradient (Section 6.1) and optimization

routines (Section 6.2) that modify the degrees of freedom to obtain the optimal shape.

55

6.1 Energy Computation

The optimization routines may require the energy and gradients several times during

energy minimization. For that reason, fast energy and gradient computations are essential.

We can speed up our energy computation by pre-computing most of the information needed

to obtain the energy or gradient at a surface point.

6.1.1 Pre-processing

As described in Chapter 5, we represent our shapes using Catmull–Clark subdivision

surfaces. The surface is stored on disk as a quadrilateral mesh and read into memory as

a half-edge [Wei85] data structure. Each quadrilateral in the mesh denotes a bi-cubic B-

spline patch parameterized by the standard u-v unit-square parameterization. We use a

fixed sampling scheme for all patches (see Section 6.1.2); that is, each patch is sampled

at the same (u, v) values. As a pre-process, immediately after the mesh is loaded into

memory, we compute the 16 control points and B-spline basis weights for the position

S(u, v) and 9 parameteric derivatives (Su(u, v), Sv(u, v), Suu(u, v), Svv(u, v), Suv(u, v),

Suuu(u, v), Suuv(u, v), Suvv(u, v), Svvv(u, v)) corresponding to each (u, v) sample point for

each quadrilateral patch. After doing so, to extract the position or parametric derivatives

at parameter values (u, v) for a given patch, we need to simply linearly combine positions

of the control polygon of the patch.

Memory Consumption of Pre-processing

For all our examples, the coarse control meshes for the input surfaces were designed

by hand instead of being produced by a surface scanner. Most of our coarse meshes start

56

with less than 500 vertices, and the largest meshes we can handle have about 10,000 ver-

tices. For optimizing a surface with a much larger control mesh, the Catmull-Clark surface

representation as described above may require a prohibitively large amount of memory.

To compute energy and energy gradients efficiently, each patch must store pointers to

all the control points along with the weights that are pre-computed from the B-spline basis

functions. For example, for all regular patches sampled with N × N quadrature points

(N = 8 in our case), we need to allocate memory for 16 integers as indices of the control

points and 9× 16×N ×N (=9216 in our case) double-precision floating point numbers as

B-spline weights used for computing the 9 parametric surface derivatives up to third order

(Suu, Suv, Suuu, etc.). Additionally, to compute the energy gradients efficiently, each patch

must also allocate memory for 9×16×3×3 = 1296 double-precision floating point numbers

to store the gradients with respect to the 16 control points of the 9 parametric surface

derivatives up to third order. Overall, each regular patch needs about 84KB of memory to

store its pre-processing data. The memory consumption of a patch with an extraordinary

vertex is even greater. In a nutshell, for fast energy and gradient queries, we need to store

a relatively large “stencil” of neighboring information for every parametric surface patch.

We cannot avoid the high memory consumption of a parametric surface patch represen-

tation if we need efficient energy and gradient queries. In our implementation, the memory

footprint of optimizing a mesh with 8,546 vertices is about 1GB, of which 720MB is due

to the pre-processing. The memory cost may become prohibitively large for dense meshes

(vertex count much larger than 10,000). If such a surface needs to be optimized, there are

two options: (1) use mesh simplification to decimate the input mesh down to a smaller size

or (2) replace the pre-computation with computing the neighborhood information and basis

weights for the patch on the fly every time the patch energy or gradient is required. This

57

second option will make the energy/gradient computation much slower, but the overall sys-

tem will still be faster for not needing to access virtual memory on disk. If the optimization

task demands that we perform the pre-computation even for a large mesh, we will need

to minimize the number of virtual memory accesses. We could do so by re-organizing the

patch data so that the data of adjacent patches is stored in nearby memory locations.

6.1.2 Computing Surface Energy and Gradient

Figure 6.1. A surface patch and its control polygon — instead of uniform sampling (left), we
use the Gauss-Legendre sampling (right) to compute surface energy and energy gradients.

The total surface energy is computed as an area integral of the energy of an infinitesimal

area element over the entire surface. For instance, if the energy of an infinitesimal area dA

is equal to E, the total surface energy for the surface domain Ω is computed as the integral∫
ΩEdA.

In practice, the above integral is too difficult to compute analytically; instead, we must

compute the integral numerically. That is, the integral is approximated as an area-weighted

linear combination of sample values. Numerical integration (i.e. “quadrature”) of the energy

of each patch is performed by sampling the patch at fixed (u, v) values for the energy E,

scaling the energy with the proper area weighting and adding it to the energy of the patch.

The total surface energy is the sum over the patches of each patch’s integral.

58

Compared to a uniform sampling scheme (placing samples at uniform intervals), we

experimentally found that the Gauss–Legendre scheme converged faster to a steady num-

ber as we increased the sampling density. Additionally, while the Gauss–Legendre scheme

places more samples near the boundary of the domain, it does not place any samples on the

exact boundary(Figure 6.1). This makes it a suitable scheme for sampling the surface near

an extraordinary vertex, as we need to avoid sampling the patch boundaries correspond-

ing to edges containing an extraordinary vertex [Sta98]. Therefore, the Gauss–Legendre

quadrature scheme is a good choice for sampling the surface patch domain.

To compute the total surface energy,

Energy =
#ofpatches∑

p=1

N∑
i=1

N∑
j=1

wi,jE(p, i, j) (6.1)

where N is the sampling resolution of the patch (in our implementation, N=8, i.e. 64

samples per patch). wi,j is the Legendre weight of the (i,j) sample, computed by solving

the orthogonal Legendre polynomials (see [PFTV92] for an implementation). E(p, i, j) is

the energy for the (i,j) sample in patch p. For example, if we want to compute the SI-F 2
1

energy of a patch p, E(p, i, j) = F 2
1
2 dA, where F1 is computed for the sample point (i,j).

Similarly, the surface energy gradient is computed by summing up the gradients computed

for every sample of every patch.

6.2 Optimization

The surface representation provides the shape parameters and the energy and energy

gradients as a function of the shape parameters. The optimization routines must modify

the parameters to minimize the energy and produce an aesthetically pleasing shape.

59

6.2.1 Input

The unconstrained vertices of the user-provided surface mesh constitute the degrees of

freedom for optimization. Let X be the vector of vertex coordinates, len(X) = 3×# of mesh

vertices (100 to 10000 in our case). Given position X with individual values Xi, we can pro-

vide routines that compute the energy E(X) and the gradient vector G(X) = ∂E(X)/∂Xi.

We set the gradient entries corresponding to constrained vertices to zero, which ensures

that the positions of the constrained vertices remain unchanged during optimization. The

vector X (the initial condition) and the routines for E(X) and G(X) are provided to the

optimization function as input.

The optimization routines may modify X frequently. To compute E(X) and G(X)

efficiently, we store X as a continuous one-dimensional array of floating point values in

memory rather than as individual floating point triplets within each mesh vertex. We

assign an index to the mesh vertices. Given the index and a pointer to X, the vertices can

access their current position.

6.2.2 Increasing Degrees of Freedom

Many of our canonical input shapes are unconstrained, high genus, complicated shapes.

We can obtain a considerable speedup during optimization if we use a multi-resolution

surface representation, where we start with a coarse control mesh, but during later stages

of the optimization, the same surface is represented using a finer control mesh. We use

the coarse meshes to bring about large-scale, gross shape changes. We then subdivide the

mesh using Catmull–Clark subdivision — the limit surface before and after the subdivision

remains the same everywhere except near the extraordinary vertices. Optimization using the

60

fine meshes allows the surface to more closely approach the ideal, final shape. For example,

suppose we are optimizing the bending energy of a coarsely-sampled ellipsoid so that it

should deform into a sphere. Catmull–Clark surfaces with a coarse control polyhedron

cannot approximate the sphere to sufficient accuracy, so the optimization will stop at a

rough approximation of the sphere. However, upon subdivision of the coarse control mesh,

the new, finer control mesh will have the necessary degrees of freedom to better approximate

a sphere, thereby assisting the optimization to find the true optimal surface.

In all our examples, the minimum energy for a surface with one level of subdivision was

very close to the minimum energy for the surface with two levels of subdivision. The differ-

ence in energy was less than 0.5% of the energy of the surface with one level of subdivision.

Beyond two levels of subdivision, there are usually too many degrees of freedom for the

optimization to find the minimum fast enough, and the reduction in the energy value will

probably be very small (less than 0.5% of the energy at the previous level of subdivision).

Therefore, we perform two levels of subdivision during optimization.

6.2.3 Optimization Algorithms

The optimization algorithm needs to modify the degrees of freedom to find the local

energy minimum, starting from the initial condition. Most gradient based non-linear opti-

mization algorithms try to build a quadratic model (usually a high-dimensional paraboloid)

of the energy space. The quadratic model is given by the energy Hessian at the current

configuration. The energy Hessian is the matrix of double derivatives of the energy with

respect to the degrees of freedom. That is, given the position vector X, the energy Hessian

= ∂2E(X)
∂Xi∂Xj

. The configuration (X) corresponding to the bottom of the paraboloid is a good

estimate of the energy minimum; the optimization routine will step towards that configu-

61

ration. After taking the step, the algorithm will compute the new Hessian and the process

will iterate until the energy value converges to a stable number.

Our non-linear optimization task has a relatively large number of degrees of freedom and

a small number of simple, fixed-position constraints. A good (usually default [BMMS05])

choice for such a task is a limited memory, quasi-Newton method for optimization. A quasi-

Newton method (also known as a “variable metric method” [BMMS05]) iteratively builds

an approximation of the energy Hessian when the exact Hessian is not available. In our

case, the exact Hessian is very complicated to compute and computationally expensive; not

requiring the exact Hessian is an important advantage. A limited-memory quasi-Newton

method builds the approximation by using only a fixed number of previous gradient values

(usually much smaller than the total degrees of freedom), thereby reducing the memory

cost of storing the information needed to approximate the Hessian.

Implementation Details: We employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

flavor of the limited-memory quasi-Newton method. We use the Toolkit for Advanced

Optimization (TAO) [BMMS05] that contains a reliable implementation of the BFGS algo-

rithm1.

Since we are minimizing non-linear, third-order functionals, the energy landscape can be

very complicated. Despite having to traverse such a difficult energy space, our optimization

system, while not fast enough to be interactive, is not unreasonably slow. Most of the

examples in this thesis were computed in less than 3 hours. Most of the discernible shape

changes (including the large, global shape changes) took place in the first few hundred
1Further information for TAO users: we first run the BFGS method using the default Moré–Thuente line

search routine. For complicated energy landscapes (especially for third-order functionals) this routine often
fails — in that case, we also run BFGS with the Armijo line search routine. We specify 10 as the number
of previous energy and gradient values (the “limited memory size”) used for approximating the Hessian.

62

iterations, which, depending on mesh size, took about 2 to 10 minutes. All the computation

was performed on a single-core Intel 2.8GHz. CPU with 2.5GB of RAM. In Chapter 7, we

will describe some ideas to speed up the optimizaton.

63

Chapter 7

Options for Fast Optimization

So far, we have described our robust benchmark system that is useful for studying the

nature of the shapes preferred by functionals. Speeding up the optimization is essential if

optimization is to be used as a tool for interactive design. In this chapter, we will describe

some options towards that goal, with our experiences when applicable.

7.1 Discrete Geometry Operators for Energy Queries

Computing the surface energy and gradient using numerical integration over parametric

spline patches can be slow. A faster option is directly approximating the relevant geometric

information (like mean curvature) at a control mesh vertex as the function of the vertex and

its neighbors. The recently popular [Gri06] discrete differential geometry operators provide

this option. We used these operators for second-order (bending energy) minimization — our

hope was that using the discrete operators would considerably speed up optimization. We

used the edge based operator from Grinspun et al. [GHDS03] that computes the bending

at a mesh edge (i.e. the mean curvature of that mesh edge) as a weighted function of the

64

dihedral angle made by the adjacent two faces at that edge. We adapted the triangle-based

discrete operator to handle quadrilaterals by computing the average bending across the

diagonals of the quadrilateral, in addition to computing the bending across the existing

mesh edges1. This amounts to creating a “virtual triangulation” of the quadrilateral mesh

and computing the bending energy using that triangulation.

Energy Method:
Discrete 79 4585

Parametric 79 84

Figure 7.1. Comparison of the calculated energy values for two different mesh structures
on the same torus

Unfortunately, discrete operator energy values of a coarse mesh with large dihedral

angles are not always reliable. For instance, Figure 7.1 shows the effect of mesh quality

on the energy returned by discrete operators for a coarse mesh. We uniformly sampled a

“Clifford” torus (the genus-1 bending energy minimizer, with a known bending energy of

25π ≈ 78.54 [HKS92]) and produced two different meshes by changing the connectivity of

the vertices. The energy returned by discrete operators matched the energy returned by

our method of parametric spline patches if the mesh had the straight-forward quadrilateral

connectivity. However, the energy returned by the discrete operators was significantly higher

if the mesh had rhombic connectivity with spiraling edge lines. Furthermore, in this case,

optimization using discrete energy deforms the mesh into an infinitely thin torus, which is

clearly different from the expected minimum, the Clifford torus. On the other hand, the
1thanks to Prof. Eitan Grinspun for this idea

65

optimization our method of using parametric patches yields a torus very close in shape and

energy to the Clifford torus.

Therefore, with a coarse mesh, the discrete operators show a large dependence on the

mesh quality. Two meshes with vertices in the same position (i.e. the same “shape”) but

different connectivity can produce significantly different energy values. The accuracy of the

energy approximation for the smooth surface improves with the fineness of the mesh and

also when the mesh edges coincide with the principal directions.

In our optimization system, using discrete energy operators produced the incorrect

optimal shapes for coarse meshes with badly aligned edges. Also, our input shapes may be

significantly different from the optimized shapes. Therefore, even if we started with a coarse

mesh of good quality, during the course of the optimization, the mesh could get deformed

such that it no longer had the proper connectivity to return reliable energy values to steer

the surface towards its optimal shape. Since the deformed mesh would produce incorrect

discrete energy values, the optimization would return an incorrect optimal shape.

Discrete operators can produce reliable energy values if the mesh is dense, such that

large dihedral angles are rare. However, using a dense mesh produces another problem:

ill-conditioning due to too many degrees of freedom. As described in the next section,

a dense, smooth mesh will move much more slowly towards the optimal shape than a

coarse mesh. While using a dense mesh improves the quality of the energy approximation,

the increased degrees of freedom cause the optimization to converge much slower to the

optimum. Therefore, using discrete operators with dense meshes produced results much

more slowly than using the spline patches with coarse (control) meshes.

We believe that using discrete operators to compute surface energy is assigning undue

66

importance to the mesh elements. Mesh elements like vertices, faces and edges are the wrong

modeling primitives for the kinds of surfaces we wish to produce. The optimal shapes with

respect to the functionals mentioned in this thesis can be described at a high level as a

blend of spheres, toroidal arms, and generalized cylinders. Therefore, we believe that a

promising area of future work (Section 9.3) is to use such higher-level modeling primitives

to represent surfaces with fewer but directly relevant shape parameters (such as the radius

of a sphere) and thereby speed up optimization without sacrificing accuracy. Perhaps we

could use implicit surfaces to model the primitives and their unions. The main challenge

will be to ensure that with these primitives, we can still efficiently model and interrogate

surfaces with arbitrarily detailed constraints (just like we can with spline patches).

7.2 Addressing Ill-Conditioned Functionals

All the functionals used in this thesis are ill-conditioned: a small change in the position

of the control vertices results in a relatively large change in the energy values. This property,

in the context of optimization or partial differential equations, may also be called “ill-posed.”

The third-order functionals are even more ill-conditioned than the second-order functionals.

As a result, a control vertex that is in a locally optimal (i.e. smooth) configuration will be

allowed only a small step towards the shape that is globally smoother. For example: upon

optimization of the SI-F 2
3 energy of an ellipsoid, we should obtain a sphere. However, if the

ellipsoid mesh is dense (large number of degrees of freedom), the deformation towards the

sphere will be much slower than if the ellipsoid mesh was coarse (fewer degrees of freedom).

In our application, once most of the vertices are in locally optimal configurations, the

67

optimization takes a long time to deform the global shape into an aesthetically pleasing

one.

Our current approach of tackling ill-conditioning is to use multi-resolution surfaces,

where the same surface is represented using different resolutions (mesh densities) of control

polyhedra. The gross shape of the optimal surface is obtained by manipulating the coarse

control polyhedron; after subdivision, the additional degrees of freedom can be used to

deform the shape even closer to the optimum. However, even with a multi-resolution surface

representation, we often encounter problems due to ill-conditioning. If we start with too

coarse a mesh, optimization will produce a poor approximation of the expected optimal

shape. After mesh refinement by subdivision, the new degrees of freedom will allow the

system to deform the surface towards a better approximation of the optimal shape. But the

additional degrees of freedom will significantly slow down the rate of energy minimization

and the progress towards the optimal shape by deforming the increased degrees of freedom

will be very slow.

After the first hundred or so iterations of the quasi-Newton solver (Section 6.2), the

optimization slows down considerably, allowing only small step sizes that produce small

energy reductions. One might argue that the convergence slows down because we are using

a quasi-Newton method with an approximate Hessian, and not Newton’s method with the

exact Hessian, and therefore we are seeing a slow, linear convergence rate as opposed to

the faster, quadratic convergence rate of Newton’s method. However, in any optimization

task, the quadratic rate of Newton’s method does not emerge until the energy value is very

close to the minimum. In our case, since the input shape is usually much different than the

optimal shape, even getting close to the optimum can be time-consuming. Therefore, using

a Newton method (rather than a quasi-Newton method) may not be worth the effort of

68

writing the complicated routines and additional computational cost to compute the exact

Hessian.

In addition to the multi-resolution surface representation, we need to use a gradient

conditioning technique specifically designed for ill-conditioned functionals. Renka [Ren04]

explains that in the case of the ill-conditioned functionals typically used for constructing

smooth curves and surfaces, the slow convergence might be due to the loss of smoothness

during the computation of the energy gradient. The energy functionals typically involve

squares of derivative terms up to some order that are integrated over the entire surface.

That is, the functionals are in a Sobolev space Hk,2, where k(=3 in our case) is the order

of differentiation. Hk,2 is a subset of the L2 space (space of square integrable functions).

If we use the standard Euclidean gradient to compute the descent direction, we compute

gradient norms (that determine a unit change in the functional value) using the Euclidean,

L2 norm. The L2 norm measures the change in functional value, but ignores information

about the change in the derivatives. As a result, the Euclidean gradient of energies in

Hk,2 at a control vertex can be very “rough” [Ren04] and is independent of the gradients

of the vertex neighbors. During optimization, the mesh vertices are moved simultaneously

towards the optimum, so the gradient at each vertex should also be computed while keeping

the neighboring gradients in consideration. This amounts to maintaining the smoothness of

an Hk,2 function for its gradient, which is accomplished by computing the energy gradient

using the higher order Sobolev norm.

7.2.1 Sobolev Gradients

For energies in Sobolev space Hk,2, Renka and Neuberger [RN95] describe the use of

the “Sobolev” gradient which is calculated by using the underlying, higher-order Sobolev

69

norm. Their experiments indicate that the number of iterations required to minimize an ill-

conditioned functional (such as our functionals) is reduced by up to two orders of magnitude

when using the Sobolev gradient as opposed to the usual, Euclidean gradient. While the

nature of the optimization problem was different (Renka and Neuberger computed minimal

surfaces and minimized curvature variation of curves), we believe that we can significantly

improve the time to optimize third-order surface functionals. Therefore, as future work, we

plan to use the Sobolev gradient in our system.

70

Chapter 8

Comparison of Functionals

In this chapter we compare the shapes preferred by the energy functionals from Chap-

ter 4 and discuss the suitability of the functionals for shape design. We compare the shapes

optimized by each of the functionals for the same input shape. Most of the examples are

unconstrained, which ensures that the shape of the final surface is influenced only by the

choice of the functional and not by any geometric constraints. We also provide some exam-

ples with boundary constraints. For any open surface boundary, we specify C2 constraints

by clamping (holding fixed) the control mesh vertices on the boundary and their two-ring

neighbors. This ensures that the position, tangents and curvatures at the boundary of a

patch are constrained.

The comparison of optimal shapes in a side-by-side tabular form also helps a designer to

develop an intuitive understanding of the different functionals. The designer can anticipate

the effect of optimization of a given energy functional by studying the kinds of optimal

shapes produced for some canonical input cases. This intuitive understanding is useful when

the designer optimizes a different input shape and needs to choose the proper functional or

combination of functionals.

71

As a first step, we optimized some well-known, simple, mathematical surfaces whose

shape can be defined with very few shape parameters. For genus 0, optimization of all the

functionals studied in this thesis yield a sphere of an arbitrary radius, as all the functionals

are scale invariant. We cannot draw any distinctions between the functionals from optimal

sphere configurations. For genus 1, we get different torus configurations from different

functionals. We find that studying the optimal torus configurations provides us with a

better understanding of the different functionals and their combinations.

8.1 Experiments on a Torus

A torus is a surface of revolution and has two degrees of freedom: the radius of the

circular cross-section and the radius of revolution of the cross-section. For the sake of

simplicity, we do not consider any tori where the radius of cross section may vary as it is

revolved, nor do we consider tori with self-intersections. Since all our functionals are scale

invariant, we can fix the radius of revolution to 1 and investigate which values of the radius

of the circular cross section (i.e. a “radius ratio” of the torus) produce energy minimizing

configurations. As expected [HKS92], the bending energy minimizer is the Clifford torus,

which has a radius ratio of 1/
√

2. As Moreton and Séquin [MS92] mention, all torus

configurations are cyclides; therefore the SI-MVS energy is zero for all torus configurations.

The SI-MVScross energy is minimized by an infinitely thin torus [Jos07]. This is because

the SI-MVScross energy is zero for all cylinders and the infinitely thin torus is the best

approximation of a cylinder that the optimization system can make while still maintaining

the topology of a torus. The same, infinitely thin torus is preferred by our third-order

energies: SI-F 2
1 energy, SI-F 2

3 energy, and their sum, the SI-Mehlum–Tarrou energy. For

72

a b

c d

Figure 8.1. (a) The Bending energy (BE) minimizer, i.e. the “Clifford” torus, (b) the
SI-MVScross and SI-Mehlum–Tarrou energy minimizer (an infinitely thin torus), (c) the
minimizer of the combined energy: BE + SI-Mehlum–Tarrou (torus radius ratio = 0.285),
and (d) the minimizer of the combined energy: 0.92 BE + 0.08 SI-Mehlum–Tarrou (torus
radius ratio = 0.5). (d) also shows the two radii, the radius of cross section (“r”) and the
radius of revolution (“R”) which give the torus radius ratio (=r/R).

73

any torus, the SI-F 2
1 energy is equal to the SI-F 2

3 energy, which means the weighted SI-

Mehlum–Tarrou energy with any combinations of weights w1 and w3 will also yield the

infinitely thin torus as the optimizer.

8.1.1 Calibrating Weights for Combined Functionals

We obtain different tori when we combine the second-order and third-order energy.

We can use the combinations that produce desirable torus configurations to design new

combined functionals that have desirable properties. For example, if we consider the bending

energy and SI-Mehlum–Tarrou energy with equal weight, we obtain a torus with a radius

ratio of 0.285. However, if we want a functional that yields the torus with a radius ratio of

0.5, we need to combine bending energy with a weight of 0.92 and the SI-Mehlum–Tarrou

energy with a weight of 0.08. We provide examples of energy minimization using these

combined functionals in Section 8.6.

74

8.2 Comparison of Third-Order Energies

Recall that the SI-F 2
1 energy (Eqn. 4.18) measures the amplitude of the first Fourier com-

ponent of the third-order curvature derivative function while the SI-F 2
3 energy (Eqn. 4.19)

measures the amplitude of the third Fourier component. Because SI-F 2
1 energy minimization

ignores the undulatory “monkey-saddle”-like surface behavior, the optimal shapes (second

column of Figure 8.2) show a relatively high amount of undulation. On the other hand,

because the SI-F 2
3 energy minimization will try to minimize the undulatory behavior, the

optimal shapes (third column of Figure 8.2) are relatively simple, with lesser shape variation.

The SI-Mehlum–Tarrou energy measures the average derivative of normal curvature in

all directions at all surface points. Observe that many of the corresponding optimal shapes

(fourth column of Figure 8.2) are very close to those of the SI-F 2
3 energy. In the case where a

designer uses a weighted SI-Mehlum–Tarrou functional (Equation 4.17), specifying a higher

weight for F3 than that for F1 will not yield shapes that are significantly different from those

found by SI-Mehlum–Tarrou or F3 optimization. However, if we specify a lower weight for

F3 than for F1, we obtain a functional that produces shapes (last column of Figure 8.2)

similar to those of SI-Mehlum–Tarrou, but with more undulation.

75

in
pu

t
F

2 1
F

2 3
F

2 1
+
F

2 3
F

2 1
+

1 3
F

2 3

F
ig

ur
e

8.
2.

C
om

pa
ri

so
n

of
th

e
sh

ap
es

pr
ef

er
re

d
by

SI
-F

2 1
en

er
gy

,
SI

-F
2 3

en
er

gy
,

an
d

th
ei

r
co

m
bi

na
ti

on
,

th
e

SI
-M

eh
lu

m
–T

ar
ro

u
en

er
gy

.
Sp

ec
ify

in
g

a
lo

w
er

w
ei

gh
t

fo
r
F

3
pr

od
uc

es
a

w
ei

gh
te

d
SI

-M
eh

lu
m

–T
ar

ro
u

fu
nc

ti
on

al
(f

ar
-r

ig
ht

)
w

it
h

sl
ig

ht
ly

di
ffe

re
nt

pr
ef

er
re

d
sh

ap
es

.

76

8.3 Comparison with MVS Energies

SI-Mehlum–Tarrou SI-MVScross

Figure 8.3. Comparison of the SI-Mehlum–Tarrou energy and SI-MVScross energy mini-
mizers. For simple shapes, the SI-MVScross minimizers have rounder envelopes than the
SI-Mehlum–Tarrou minimizers.

In Figure 8.4, we compare the minimizers of the SI-Mehlum–Tarrou functional with the

third-order MVS functionals (SI-MVScross [Jos07] and the original SI-MVS [MS92]). We

compared the SI-MVScross and SI-MVS functionals my earlier Master’s thesis [Jos07]. We

showed that the SI-MVScross functional is a more complete third-order functional than the

SI-MVS. Here, we use the SI-MVScross functional as the reference functional to compare

the SI-Mehlum–Tarrou functional with.

For simple shapes (see Figure 8.3), the SI-MVScross minimizers may have more circular

or toroidal envelopes than those of SI-Mehlum–Tarrou. However, for more complicated

77

shapes (in Figure 8.4), the minimizers of the SI-Mehlum–Tarrou energy are essentially

indistinguishable from those of the SI-MVScross energy.

Recall that the SI-MVS and SI-MVScross functionals measure normal curvature varia-

tion only along the principal directions. The principal directions are given by the second-

order behavior of the surface point and are independent of the third-order behavior. There-

fore, giving a special importance to the principal directions for a third-order functional

(as done by SI-MVS and SI-MVScross optimization) is appropriate only if the principal

directions are particularly significant for the design task. For a general task of minimiz-

ing curvature variation, we recommend the more complete, stable and easier to compute

SI-Mehlum–Tarrou functional.

Figure 8.4 also lists the SI-Mehlum–Tarrou and SI-MVScross energy values. We can

follow the analysis of energy values performed in our earlier Master’s thesis [Jos07] and

compute the SI-Mehlum–Tarrou energy per blended n-way junction of toroidal arms, where

n in Figure 8.4 varies from 3 to 4. Like the SI-MVScross energy, the SI-Mehlum–Tarrou

energy favors smaller n for the n-way junctions, and the energy increases very rapidly as n

increases. Thus, the SI-Mehlum–Tarrou functional favors a larger number of blended n-way

junctions with a low n rather than fewer n-way junctions with a high n. In a nutshell,

like the SI-MVScross functional, the SI-Mehlum–Tarrou energy returns a lower energy for

more symmetric shapes. The detailed analysis is similar to the analysis of the SI-MVScross

energy previously carried out in [Jos07] and is not repeated here.

78

Genus n SI-Mehlum–Tarrou SI-MVScross SI-MVS

2 3
1903 2408 343

3 3
3320 4020 975

3 4
4182 6965 840

3 4
4437 6416 1548

5 3
6862 9109 2217

Figure 8.4. Optimal shapes preferred by the SI-Mehlum–Tarrou energy (which measures
curvature variation along all directions) and the SI-MVScross and SI-MVS energies (which
measure curvature variation only along principal directions). Under each optimal shape, we
provide the energy value. Both the SI-Mehlum–Tarrou and SI-MVScross energies depend
on the valence n of the blended n-way junctions.

79

8.4 Comparison with Second-Order Energy

input SI-Mehlum–Tarrou bending energy

Figure 8.5. Minimizers of the third-order SI-Mehlum–Tarrou energy and the second-order
bending energy.

We compare the shapes preferred by the third-order SI-Mehlum–Tarrou energy with

those preferred by the second-order bending energy (Figure 8.5). The bending energy opti-

mization tries to make every surface point as umbilic as possible [JS07]. Thus, the optimal

shapes look “blobby.” We consider this a drawback of the bending energy, as the effort to

80

make all surface points umbilic can actually make the optimal shape more complex and

potentially undesirable. Figure 8.6 shows boundary constrained junctions of two and four

toroidal arms, respectively. The bending energy minimization does not penalize large cur-

vature variation but lowers the total curvature by inflating the shape so it has a larger

radius of curvature. Thus, the unconstrained, interior regions of the bending energy mini-

mizers bulge out and produce small areas of high curvature to connect smoothly with the

constrained surface patches on the boundary.

On the other hand, SI-Mehlum–Tarrou optimization minimizes the variation of curva-

ture by trying to maintain the same curvature along the whole shape. This decreases the

range of curvature values for points on the optimized surface. Therefore, optimization of

an input shape with a third-order functional usually results in simpler and more attractive

shapes.

SI-Mehlum–Tarrou bending energy

Figure 8.6. Optimization of the third-order SI-Mehlum–Tarrou energy produces simpler
shapes with more uniform curvature distribution than those produced by optimizing the
second-order bending energy.

81

Input SI-Mehlum–Tarrou Bending Energy

Figure 8.7. Optimal shapes with respect to the third-order SI-Mehlum–Tarrou energy and
the second-order bending energy for a complicated open surface with an orthogonal, circular
hole. The SI-Mehlum–Tarrou energy minimization produces a more complex shape that
bulges out near the boundary constraints.

However, depending on the input shape and boundary conditions, the second-order

bending energy can produce simpler shapes than the third-order SI-Mehlum–Tarrou func-

tional. For instance, in Figure 8.7, a surface with complicated boundary constraints is op-

timized. Optimization using the third-order SI-Mehlum–Tarrou functional, in an attempt

to satisfy the boundary constraints with a higher level of geometric smoothness (curva-

ture smoothness as opposed to only tangent smoothness), creates a complex optimal shape

that bulges out near the boundary constraints. On the other hand, optimization using the

second-order bending energy functional produces a simpler and therefore more desirable

optimal shape.

82

8.5 Example of Aesthetic Design: Vase

Here we describe how a designer can construct an aesthetically pleasing vase by op-

timizing the same input shape with respect to the four functionals we have discussed so

far: the second-order bending energy and the third-order SI-F 2
1 energy, SI-F 2

3 energy, and

SI-Mehlum–Tarrou energy.

Input (control mesh) Input (constraints)

F 2
1 F 2

3

F 2
1 + F 2

3 Bending Energy

Figure 8.8. Designing a vase. The first row shows the input shape overlaid with the control
mesh, and a sketch describing the nature of the boundary constraints and the approximate
desired shape. The second row shows the optimal shapes with respect to the SI-F 2

1 and SI-
F 2

3 energies. The third row shows the optimal shapes with respect to the SI-Mehlum–Tarrou
energy and the bending energy.

In the first example (Figure 8.8), we start with a cone-like surface open at the tip, with

83

vertical boundary conditions at the top and horizontal boundary conditions at the bottom.

The goal is to construct a bell-shaped vase that smoothly interpolates the constraints. In

the second example (Figure 8.9), we start with a cylindrical surface that connects to the

rim at the boundaries at angles of ±45 degrees. For both examples, we can clearly see

that by changing the functional, we obtain different shapes for the same input surface and

constraints. Given Figures 8.8 and 8.9, a designer can glean an intuitive understanding of

the functionals and can choose a functional to optimize when faced with a similar design

task.

The second-order bending energy favors the emergence of spherical umbilical shapes.

The unconstrained regions of the surface get deformed into spherical bulges that connect to

the upper boundary constraints with a small region of high curvature. From the differences

between the SI-F 2
1 and SI-F 2

3 optimal shapes (second row of Figure 8.8), it is apparent that

the SI-F 2
3 energy favors cylinders or toroidal regions more strongly than the SI-F 2

1 energy.

84

Input (control mesh) Bending Energy

F 2
1 F 2

3 F 2
1 + F 2

3

Figure 8.9. We specify a “lamp-shade”-like vase by setting 45-degree boundary constraints
at the top and bottom of an open cylinder. The unconstrained regions of the bending energy
optimal shape exhibits a dominant spherical bulge. SI-F 2

3 energy minimization yields the
closest approximation of a cylinder. The other optimizers (SI-F 2

1 energy and SI-Mehlum–
Tarrou energy) have shapes that are combinations of the bending energy and the SI-F 2

3

energy optimal shapes.

8.6 Combining Second-Order and Third-Order Energies

As we explain in Section 4.3, we can formulate a mixture of second-order and third-

order functionals by linearly combining the SI-F 2
1 , SI-F 2

3 , SI-Mehlum–Tarrou and bending

energies. As one example, we pick the combination whose optimal genus-1 surface is a torus

whose radii have a ratio of 0.5 (first row of Figure 8.10). The resulting optimal shapes have

are a combination of those preferred by the third-order functional and the second-order

functional. In particular, the optimal shapes in Figure 8.10 have thicker toroidal arms

85

0.85BE + 0.15F 2
1 0.85BE + 0.15F 2

3 0.92BE + 0.08(F 2
1 + F 2

3)

Figure 8.10. Combining second-order and third-order energies produces functionals with
intermediate preferred shapes. In this example, we assign a higher weight to the second-
order energy to construct a functional whose optimal genus-1 surface is the torus of radius
ratio 0.5.

than the SI-Mehlum–Tarrou minimizers from Figure 8.5 and but are less “blobby” than the

bending energy minimizers from Figure 8.5.

The combination of bending energy with either the SI-F 2
1 or SI-F 2

3 energy yields similar

looking optimal shapes in Figure 8.10. This might be because the undulatory behavior

that is a characteristic of SI-F 2
1 energy minimizers is penalized by the second-order bending

energy. Since the second-order energy is factored with a much higher weight than the third-

order energy, the major difference between the SI-F 2
1 and SI-F 2

3 minimizers is neutralized by

the bending energy, thereby yielding very similar looking minimizers for all the functionals

in Figure 8.10.

As another test, we performed the optimization using combined functionals that spec-

86

BE + F 2
1 BE + F 2

3 BE + F 2
1 + F 2

3

Figure 8.11. Combining second-order and third-order energies produces functionals with
intermediate preferred shapes. In this example, we assign a equal weights to the energies
to construct the combined functionals.

ify equal proportions of the second-order and third-order energies. The optimal shapes

(in Figure 8.11) show some of the undulation that is a characteristic of the SI-F 2
1 energy

optimization. With equal weights, we see a difference in the optimizers of the combined

functionals.

87

Chapter 9

Summary, Conclusions, and Future

Work

9.1 Summary

We have explained how optimization can be used to produce a diverse set of aesthetically

pleasing, smooth shapes. We showed how the local third-order surface behavior at a surface

point can be intuitively expressed as a function of four parameterization-independent, purely

geometric shape parameters. Our third-order functionals are formulated as functions of

these intuitive shape parameters. By comparing the optimal shapes for some canonical

input surfaces with respect to different functionals, we were able to compare the shapes

preferred by the various functionals. Based on the results so far, we can draw the following

conclusions.

88

9.2 Conclusions

1. We can use surface optimization as a shape design tool

With a better understanding of surface behavior, we can formulate a number of dif-

ferent functionals that produce a range of aesthetically pleasing optimal shapes in

reasonable computation time.

2. Third-order functionals have desirable properties for shape design

The higher-order smoothness addressed by third-order functionals usually yields sim-

pler shapes than those obtained by minimizing second-order functionals.

9.3 Future Work

As mentioned in Chapter 7, our optimization system is fast enough for study the shapes

preferred by functionals, but not fast enough for interactive shape design. With interactive

aesthetic design as our next goal, our future work will explore different methods to speed

up the optimization process.

As the next step, we plan to implement the Sobolev gradient method (Section 7.2.1)

developed by Renka and Neuberger [RN95]. For a curve optimization task, Renka and

Neuberger show how the Sobolev gradients allow the optimization routine to find a minimum

in drastically fewer iterations, albeit at an increased cost per iteration. For our surface

optimization task, we want to investigate whether the Sobolev gradients significantly reduce

the running time.

Another promising area of future work is to use high-level parameters to define the

input shape. As mentioned in Section 7.1, by representing the shape as a blend of simple

89

primitives such as spheres, cylinders, and toroidal arms, we can greatly reduce the number

of parameters that describe the surface. Consequently, the optimization routines will have

a much smaller number of parameters, reducing the time taken to find the minimum.

However, it is not yet fully clear whether any such high-level surface representation

will be able to represent the wide variety of shapes that need to be modeled with the

same efficiency as our current representation by subdivision surfaces. In particular, we seek

efficient methods to model sharp features and constraints. When, for instance, using implicit

surfaces, the state-of-the-art method for modeling is the work of Turk and O’Brien [TO02].

Turk and O’Brien describe a system that constructs a smooth implicit surface that smoothly

interpolates the given constraint points. An interesting challenge is to extend Turk and

O’Brien’s system so that it can efficiently handle sharp features and boundary constraints.

Once we can model a variety of shapes as a blend of implicit surfaces, the next challenge

is to exactly compute the energy of the surface. Chopp and Sethian [CS93] describe a

method for approximating the curvature of an implicit curve by using a finite difference

discretization of the volume enclosed by the bounding box of the implicit curve. A finite

difference discretization accurate enough for our purpose might be very fine, making the

method computationally expensive. A challenging problem is to efficiently compute the

exact energy of an implicit surface.

90

Bibliography

[BH77] M. Berry and J. Hannay. Umbilic points on Gaussian random surfaces. Journal

of Physics A: Mathematical and General, 10(11):1809–1821, 1977.

[Bir33] G. Birkhoff. Aesthetic Measure. Harvard University Press, 1933.

[BK01] O. Bruno and L. Kunyansky. A fast, high-order algorithm for the solution

of surface scattering problems: Basic implementation, tests, and applications.

Journal of Computational Physics, 169(1):80–110, 2001.

[BLZ00] H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision surfaces

with normal control. In SIGGRAPH 2000: Proceedings of the 27th annual

conference on computer graphics and interactive techniques, pages 113–120, New

York, NY, USA, 2000. ACM Press/Addison–Wesley Publishing Co.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with

folds and wrinkles. In SCA 2003: Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on computer animation, pages 28–36, Aire-

la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[BMMS05] S. Benson, L. McInnes, J. Moré, and J. Sarich. TAO user manual (revision

91

1.8). Technical Report ANL/MCS-TM-242, Mathematics and Computer Science

Division, Argonne National Laboratory, 2005. http://www.mcs.anl.gov/tao.

[Bra92] K. Brakke. The surface evolver. Experimental Mathematics, 1:141–165, 1992.

[BS05] A. Bobenko and P. Schröder. Discrete Willmore flow. In Eurographics sympo-

sium on geometry processing, pages 101–110, 2005.

[BW90] M. Bloor and M. Wilson. Using partial differential equations to generate free-

form surfaces. Computer-Aided Design, 22(4):202–212, 1990.

[CC78] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary

topological surfaces. Computer-Aided Design, 10(6):350–355, 1978.

[CCF91] M. Callahan, P. Concus, and R. Finn. Energy minimizing capillary surfaces for

exotic containers. In Computing optimal geometries, pages 13–15, 1991.

[CG91] G. Celniker and D. Gossard. Deformable curve and surface finite-elements for

free-form shape design. In SIGGRAPH ’91: Proceedings of the 18th annual

conference on computer graphics and interactive techniques, pages 257–266, New

York, NY, USA, 1991. ACM Press.

[CS93] D. Chopp and J. Sethian. Flow under curvature: Singularity formation, minimal

surfaces, and geodesics. Exp. Math., 2(4), 1993.

[DFRS03] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella. Suggestive con-

tours for conveying shape. ACM Transactions on Graphics, 22(3):848–855, 2003.

[DKT98] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character anima-

tion. In SIGGRAPH ’98: Proceedings of the 25th annual conference on computer

92

graphics and interactive techniques, pages 85–94, New York, NY, USA, 1998.

ACM.

[DMSB99] M. Desbrun, M. Meyer, P. Schröeder, and A. Barr. Implicit fairing of irregular

meshes using diffusion and curvature flow. In SIGGRAPH ’99: Proceedings

of the 26th annual conference on computer graphics and interactive techniques,

pages 317–324, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-

lishing Co.

[EP97] J. Elliott and J. Peraire. Practical 3D aerodynamic design and optimization

using unstructured meshes. AIAA J., 35(9):1479–1485, 1997.

[GGRZ06] E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. Computing discrete shape

operators on general meshes. Computer Graphics Forum, 25(3), 2006.

[GHDS03] E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. Discrete shells. In SCA

2003: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on

computer animation, pages 62–67, Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[Gra03] J. Gravesen. Third order invariants on surfaces. In Proceedings of computational

methods for algebraic spline surfaces (COMPASS), pages 193–211, 2003.

[Gre94] G. Greiner. Variational design and fairing of spline surfaces. Computer Graphics

Forum, 13:143–154, 1994.

[Gri06] E. Grinspun. Discrete differential geometry: an applied introduction. In ACM

SIGGRAPH 2006 Courses, (6), 2006.

93

[GU01] J. Gravesen and M. Ungstrup. Constructing invariant fairness measures for

surfaces. Advances in Computational Mathematics, 17(1):67–88, 2001.

[HDD+94] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,

J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction. In

SIGGRAPH ’94: Proceedings of the 21st annual conference on computer graph-

ics and interactive techniques, pages 295–302, New York, NY, USA, 1994. ACM.

[HKS92] L. Hsu, R. Kusner, and J. Sullivan. Minimizing the squared mean curvature

integral for surfaces in space forms. Experimental Mathematics, 1:191–207, 1992.

[Jos07] P. Joshi. Energy minimizers for curvature-based surface functionals. Master’s

thesis, EECS Department, University of California, Berkeley, May 2007.

[JS07] P. Joshi and C. Séquin. Energy minimizers for curvature-based surface func-

tionals. Computer-Aided Design and Applications, 4(5):607–617, 2007.

[KCVS98] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-

resolution modeling on arbitrary meshes. In SIGGRAPH ’98: Proceedings of the

25th annual conference on computer graphics and interactive techniques, pages

105–114, New York, NY, USA, 1998. ACM.

[Kje83] J. Kjellander. Smoothing of bicubic parametric surfaces. Computer-Aided De-

sign, 15, 1983.

[Lev06] Adi Levin. Modified subdivision surfaces with continuous curvature. In SIG-

GRAPH 2006: ACM SIGGRAPH 2006 Papers, pages 1035–1040, New York,

NY, USA, 2006. ACM.

94

[Mor93] H. Moreton. Minimum Curvature Variation Curves, Networks, and Surfaces

for Fair Free-Form Shape Design. PhD thesis, EECS Department, University

of California, Berkeley, March 1993.

[MS92] H. Moreton and C. Séquin. Functional optimization for fair surface design. In

SIGGRAPH, pages 167–176, 1992.

[MT98] E. Mehlum and C. Tarrou. Invariant smoothness measures for surfaces. Ad-

vances in Computational Mathematics, 8(1):49–63, 1998.

[MWP96] T. Maekawa, F. Wolter, and N. Patrikalakis. Umbilics and lines of curvature for

shape interrogation. Computer-Aided Geometric Design, 13(2):133–161, 1996.

[Oss02] R. Osserman. A Survey of Minimal Surfaces. Courier Dover Publications, 2002.

[PFTV92] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in

C. Cambridge University Press, 2nd Edition, 1992.

[Por01] I. Porteous. Geometric Differentiation. Cambridge University Press, 2nd Edi-

tion, 2001.

[Rad30] T. Rado. On Plateau’s problem. The Annals of Mathematics, Second Series,

31(3):457–469, July 1930.

[Ren04] R. Renka. Constructing fair curves and surfaces with a sobolev gradient method.

Computer-Aided Geometric Design, 21(2):137–149, 2004.

[RN95] R. Renka and J. Neuberger. Minimal surfaces and Sobolev gradients. SIAM J.

Sci. Comput., 16(6):1412–1427, 1995.

95

[RR91] T. Rando and J. Roulier. Designing faired parametric surfaces. Computer-Aided

Design, 23:492–497, 1991.

[Rus04] S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes.

In Symposium on 3D data processing, visualization, and transmission, 2004.

[SBL91] U. Seifert, K. Berndl, , and R. Lipowsky. Shape transformations of vesicles:

Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys.

Rev., A(44):1182–1202, 1991.

[SCM95] C. Séquin, P. Chang, and H. Moreton. Scale-invariant functionals for smooth

curves and surfaces. In Geometric Modelling, Dagstuhl, Germany, 1993, pages

303–321, London, UK, 1995. Springer-Verlag.

[SK01] R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes for free-form

surface design. Computer-Aided Geometric Design, 18(4):359–379, 2001.

[Sta98] J. Stam. Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary

parameter values. In SIGGRAPH ’98: Proceedings of the 25th annual conference

on computer graphics and interactive techniques, pages 395–404, New York, NY,

USA, 1998. ACM Press.

[TO02] G. Turk and J. O’Brien. Modelling with implicit surfaces that interpolate. ACM

Transactions on Graphics, 21(4):855–873, October 2002.

[WB01] K. Watanabe and A. Belyaev. Detection of salient curvature features on polyg-

onal surfaces. Computer Graphics Forum, 20(3), 2001.

[Wei85] K. Weiler. Edge-based data structures for solid modeling in curved-surface

environment. IEEE Computer Graphics and Applications, 5(1):21–40, 1985.

96

[Wil71] T. Willmore. Mean curvature of Riemannian immersions. J. London Math.

Society, 11:307–310, 1971.

[WW92] W. Welch and A. Witkin. Variational surface modeling. In SIGGRAPH ’92:

Proceedings of the 19th annual conference on computer graphics and interactive

techniques, pages 157–166, New York, NY, USA, 1992. ACM Press.

[XPB06] G. Xu, Q. Pan, and C. Bajaj. Discrete surface modelling using partial differential

equations. Computer-Aided Geometric Design, 23(2):125–145, 2006.

[XZ07] G. Xu and Q. Zhang. G2 surface modeling using minimal mean-curvature-

variation flow. Computer-Aided Design, 39(5):342–351, 2007.

[YZ04] L. Ying and D. Zorin. A simple manifold-based construction of surfaces of

arbitrary smoothness. In SIGGRAPH 2004: ACM SIGGRAPH 2004 Papers,

pages 271–275, New York, NY, USA, 2004. ACM Press.

[Zor06] Denis Zorin. Constructing curvature-continuous surfaces by blending. In SGP

2006: Proceedings of the fourth Eurographics symposium on geometry process-

ing, pages 31–40, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics

Association.

97

