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Evaluating Architectures for Application-Specific
Parallel Scientific Computing Systems

Mark Murphy, Kurt Keutzer, Leonid Oliker, Chris Rowen, John Shalf

Abstract—In this work, we examine the computational ef-
ficiency of scientific applications on three high-performance-
computing systems based on processors of varying degrees of
specialization: an x86 server processor, the AMD Opteron; a
more specialized System-on-Chip solution, the BlueGene/L and
BlueGene/P; and a configurable embedded core, the Tensilica
Xtensa. We use the atmospheric component of the global Com-
munity Atmospheric Model to motivate our study by defining
a problem that requires exascale-class computing performance
currently beyond the capabilities of existing systems. Significant
advances in power-efficiency are necessary to make such a system
practical to field.

Index Terms—Configurable architectures, Microprocessors,
Multiprocessing, HPC.

I. INTRODUCTION

The issue of effective system performance and power ef-
ficiency is becoming an urgent concern for all large-scale
computing facilities. We are entering an era where petaflop
High Performance Computing (HPC) systems are anticipated
to draw enormous amounts of electrical power. For example,
current leading HPC systems typically draw less than 2 MW
to deliver 100 TF peak performance; while its petaflop-scale
successors in 2010 are projected to draw as much as 15 MW if
fully configured. More alarmingly, the DOE E3 report projects
an exaflop HPC system requiring over 130 MW of power.
The cost of power will exceed the procurement costs of such
systems, and will thus ultimately limit the practicality of future
state-of-the-art HPC platforms. These trends will lead to a
crisis in HPC in the not-too-distant future, unless we work
aggressively to develop more power-efficient solutions.

Many of the most cost-effective supercomputing solutions
are based on high-performance commodity processors, such
as high-end Intel Pentium and Itanium, AMD Opteron, and
IBM Power processors. These processors were defined in an
era when Moore’s Law silicon scaling offered continuous
exponential improvements in transistor speed and performance
per unit area. Device dimensions and operating voltages de-
creased continuously producing the triple benefit of lower
cost, higher performance, and lower power. Energy efficiency
in digital circuits has improved dramatically, predictably, and
continuously over the past 25 years.

In the past several years, however, this trend has slowed.
While the scaling of device dimensions is continuing at almost
historical rates, operating voltage is not, so dynamic and
static power dissipation are no longer improving [7], [8]. In
fact, we appear to have reached practical limits in IC power
density, so that any further improvement in circuit density
must be balanced by reduction in circuit activity, especially by

reduction in clock frequency. As a result, the clock frequency
of high-end processors has been essentially flat at less than
4GHz for several years. Consequently, the number of cores
per chip is likely to double every 18 months henceforth.

One approach to mitigating the growing crisis of power
consumption in future generations of processing elements is
to leverage the enormous resources of embedded processor
technology. The embedded market relies on architectural cus-
tomization to meet the demanding cost and power efficiency
requirements of embedded applications such as MP3 players,
cell phones, and PDAs. Whereas one would expect a desktop
or server processor vendor to deliver a new CPU core design
every two years, a typical embedded vendor may generate
up to 200 unique chip designs every year. In order to keep
up with this demanding pace for semi-customized designs,
leading embedded design houses such as IBM Microelectron-
ics, Freescale, and Tensilica have evolved sophisticated tool
sets to accelerate the design process through semi-automated
synthesis of custom processor designs. It is of great interest to
find out how to leverage the tremendous resources of this tech-
nology sector to develop a power-efficient HPC system based
on application-driven, semi- custom embedded processors.

In the past, HPC systems based on semi-custom components
could not compete with the price/performance of systems
that primarily leveraged commodity-off-the-shelf components.
However, as the price of power and cooling for such systems
begins to exceed the capital procurement costs, customizations
that improve energy-efficiency are increasingly cost-effective.
Looking to the future, the world’s major manufacturer of
general-purpose microprocessors emphasizes the importance
of supporting special-purpose hardware [1]. At the same time
today’s system developers are moving away from application-
specific integrated circuit (ASIC) solutions, due to escalating
non-recurring engineering costs, and are instead moving to-
ward programmable solutions [2]. These two individual trends
alone are sufficient to motivate the investigation of application-
specific instruction processors (ASIP) as a building-block for
application-specific parallel systems. Furthermore, parallelism
appears to be our main hope for achieving high-performance
within acceptable power budgets, but this migration begs the
question: What is the basic building block of future parallel
manycore (100’s to 1000’s of processing elements) multi-
processor systems? The ”Berkeley View” [3] motivates this
problem of defining the basic building block, and constrains
the solution to be built around RISC cores of 5-9 stage
pipelines; however, it leaves open the question as to the
roles that fabrication-time processor configurability [4] may
play in the defining the building block of future manycore
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multiprocessors systems. This paper further investigates that
question.

The degree of micro-architectural customizability of fab-
time configurable processors is defined on a continuum, so
that development costs are traded against the computational
efficiency of the delivered system. In this work, we examine
the question of the benefits that can be derived from different
amounts of investment in customization by comparing systems
based on commodity x86 server building blocks such as the
AMD Opteron, a more customized SoC solution that uses
undifferentiated embedded cores such as the BlueGene/L and
/P systems, and a custom configurable core such as the
Tensilica XTensa. We use the atmospheric component of the
global-climate model (CAM) to motivate our study by defining
a problem that requires exascale-class computing performance
that is currently beyond the capabilities of existing systems
and may require significant advances in power-efficiency to
make such an HPC system practical to field. For prior work
in processor customization, see [13] and [14], for issues
regarding configurable System-on-Chip designs, see [24], and
for Network-on-Chip design for Multi-Processor-System-on-
Chip systems, see [15]. For a structured design flow for ASIPs,
see [2].

II. METHODOLOGY USED FOR THIS EVALUATION

In this section we briefly describe our basic approach to
evaluating the configurable processor as our building block.
This can be described according to the methodology described
in [2] which we briefly reiterate immediately below:

• Identify a high-impact application domain and common
application requirements.

• Inclusively identifying the design space. Evaluate the
likely architectural alternatives (AMD commodity, BG/P
SoC with undifferentiated embedded core, XTensa cus-
tomized core)

• Exploring the HPC design space.
• Successfully deploying the ASIP

This study extends the approach of [2] to more broadly
consider multiprocessing in general, and inter-processor com-
munication in particular.

III. IDENTIFYING A HIGH-IMPACT SCIENTIFIC
APPLICATION

Only a modest number of large HPC systems are built and
sold each year, so the economics of engineering the hardware
and software has become a central concern. Supercomputing
centers service extremely diverse workloads, but at the largest
scale, only a handful of problems are ready to scale up to fully
exploit the available computing capability. Perhaps it is more
cost-effective and efficient to focus our development resources
to create machines that target that handful of problems rather
than attempting to scale conventional architectures to such
unprecedented sizes. The most suitable applications appear
to be ones that permit decomposition into a large number of
parallel tasks without heavy global communication especially
where the computation scales significantly more rapidly than
global communication as the overall problem size increases.

Structured grid computation problems appear to fit this crite-
rion.

The application domain for our design study is atmospheric
general circulation modeling at kilometer-scale resolution. The
model used to drive our design exploration is an entire large
scale application: the finite volume version of the Community
Atmospheric Model (fvCAM). Developed at the National Cen-
ter for Atmospheric research, a great deal of effort has gone
into the CAM software system to ensure portability and ro-
bustness across a wide variety of high performance computing
platforms. The fvCAM uses a finite volume approximation to
the atmospheric equations of motion as developed by Lin and
Rood [10]. It is representative in both scientific sophistication
as well as computational cost to any of the leading atmospheric
general circulation models in current use. The public release
of version 3.1 was used without modification in this study.

Climate and weather modeling is a compelling scientific
problem. The accuracy of results from climate models have the
potential to influence policies with trillion-dollar ramifications.
The computational requirements of climate modeling are well
understood. A cloud-resolving model which can provide cli-
mate scientists meaningful data needs 1-kilometer resolution.
Two key applications present real-time constraints on the
completion time: simulations of anthropogenic climate change
and regional scale weather forecasting.

For climate change analyses, two types of simulations are
often employed. The longer of the two are control runs
that simulate statistically stationary climate over periods of
multiple millennia to adequately characterize internal climate
variability for climate change detection studies. A shorter
duration category involves transiently forced simulations of
the past or current centuries. Hence, a reasonable metric is
to require that the model simulate time 1000 times faster than
real time. Under this constraint, the control run integration can
be completed in one year and transient runs can be completed
several months later depending on how many realizations and
scenarios are required. We note that the runs made for the
Fourth Assessment Report of the Intergovernmental Panel on
Climate Change of the current NCAR Community Climate
System Model, CCSM3.0, ran about 1600 times faster than
real time on IBM Power4/p690 machines.

The major medium range weather prediction centers gen-
erally perform at least a one high resolution ten-day forecast
each day in addition to ensembles of forecasts at lower resolu-
tions. The associated throughput metric is significantly relaxed
in this application as the model must simulate time only 10
times faster than real time. Seasonal forecasting requires an
equivalent computational throughput as the integrations are
for a period of about ten times longer but the turnover rate is
not as constrained as for the daily forecast.

Atmospheric general circulation models (AGCM) consist of
two distinct parts solving different aspects of the problem.
Each has distinct scaling properties of the computational
costs. The first part, often referred to as dynamics, solves
the atmospheric equations of motion expressed by the Navier-
Stokes equations of fluid dynamics. There are many different
approaches to approximating a numerical solution to these
equations. In CAM, a finite volume method [10] is one of
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(a) (b) (c)
Fig. 1. Climate models at (a) 200 KM and (b) 10 KM, compared to (c) observed data. Notice the greatly improved fidelity of the Sierra-Nevada micro-climates
near the western coast.

three options. In all options for CAM, the atmosphere is
approximated to be in hydrostatic equilibrium. The highly
stratified nature of the atmosphere at large scales makes this
a very good approximation at the relatively coarse resolutions
of fvCAM in current use. It will break down at the resolutions
we will extrapolate to in the next section and is important to
consider in that discussion.

The second part of AGCMs, often referred to as physics,
approximate the unresolved or external processes relevant to
the state of the atmosphere. These processes are included in
the solution as source terms to the Navier-Stokes equations
but must be calculated externally to the dynamics portion of
the code. Relevant processes include but are not restricted to
radiative transport of energy, convective transport of moisture,
boundary layer effects, gravity wave drag, sub-grid scale
turbulence and surface conditions.

Models such as fvCAM based on a latitude-longitude
discretization of the globe require a third component, often
referred to as filters. The stability of explicit solutions to
the Navier-Stokes equations is governed by the Courant-
Friedrichs-Levy (CFL) condition, which limits the length of
the allowable time step. This limit is a function of the mini-
mum grid spacing. Since the latitude-longitude grid is much
finer near the poles, the CFL condition is overly restrictive
globally. To counter this, the dynamics time step may be
chosen by a mid-latitude stability criterion. fvCAM dampens
the the resulting instability at the poles by careful application
of latitudinally-depended Fourier filters.

We now proceed to summarize the computation require-
ments of fvCAM, to provide more detailed motivation for our
design space exploration. We focus on three different aspects
of the system design: in Section A we discuss the instruction-
level issues which affect the design of the building-block core,
in Section B we discuss the requirements of the memory
system, and in Section C the inter-processor communication
characteristics of climate modeling systems.

A. Operation Count: Implications for Core Design

In Table I, we show the minimum sustained computational
performance in Teraflops required to integrate fvCAM 1000
times faster than real time. The performance required for
medium range weather forecasting would be about 100 times
less. We note that the relative distribution of operations
changes dramatically with resolution. In the 2◦x2.5◦ B mesh
case, the dynamics and physics respectively consume 57% and

41% of the operations, or roughly equivalent amounts. In the
0.5◦x0.675◦ D mesh case, the percentages have shifted to 81%
and 14%, a dramatic change. In the kilometer scale I mesh,
the percentage of total operations required by the physics is
almost negligible at just over a half of a percent. Perhaps most
surprising is that the filters never dominate the calculation,
even though their computation scales as M ln(M)N2. This
suggests that the need for alternatives to the simple latitude-
longitude discretization of the sphere may not be as critical
at high resolution as one might suppose; at least from com-
putational considerations. We note however that some of the
alternative discretizations possess other appealing properties,
most notably a more uniform distribution of individual cell
volumes. These will ultimately prove to be far more favorable
strategies to the design of ultra-high resolution global atmo-
spheric models.

B. Memory Requirements

The total memory required in the model might be expected
to scale as the total number of computational mesh points,
M × N . In fact, the measured memory requirements are
somewhat below this as can be seen by comparing in Table II
the measured results (third column) with this upper bound
(fourth column). This is likely a consequence of temporary
memory requirements which do not cover the entire domain.
A linear fit to the measured memory (fifth column) predicts
somewhat lower extrapolated requirements. In this calculation,
the global arrays required by processor 0 for initialization have
been removed as a code scalable to ultra-high resolution must
have some sort of parallel I/O. In any event, at the 1.5km scale
I mesh, the total memory requirement should be of order 25
Terabytes or less.

This scaling behavior of the total memory requirements is
independent of processor configuration as it is determined only
by the size of the problem and not the geometry of the domain
decomposition. Note that this scaling behavior is the same as
for the processor count in a two dimension horizontal domain
decomposition scheme. Hence, the amount of memory on any
individual processor could be held constant with resolution
by increasing the number of processors at the same rate as
the number of grid cells. For the maximum processor case
of 9 mesh cells per subdomain, the required single processor
memory is just over 1 MB. In the 100 mesh cells per subdo-
main case considered above, this estimate increases to about
10MB. Substantial single processor memory requirements are
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Horizontal Performance % total % total % totalMesh
Resolution Resolution 1000x spdup time in time in time inName

Near Equator (Tflop/s) dynamics filters physics
B 2◦x2.5◦ 200km 0.002 57% 2% 41%
C 1◦x1.25◦ 100km 0.014 71% 3% 25%
D 0.5◦x0.625◦ 50km 0.098 81% 4% 14%
E 0.25◦x0.3125◦ 25km 0.727 87% 5% 8%
F 0.125◦x0.156◦ 12.5km 5.608 90% 6% 4%
G 0.068◦x0.078◦ 6.25km 44.15 92% 6% 2%
H 0.038◦x0.039◦ 3.13km 351.3 92% 7% 1%
I 0.016◦x0.020◦ 1.57km 2809.7 92% 7% 1%

TABLE I
MINIMUM SUSTAINED COMPUTATIONAL PERFORMANCE (IN TFLOP/S) REQUIRED TO INTEGRATE FVCAM 1000 TIMES FASTER THAN REAL TIME AND

THE RELATIVE PERCENTAGES OF THE TOTAL OPERATIONS IN THREE MAIN SEGMENTS OF THE CODE.

1D 3-rows 2D 3x3 2D 10x10
Horizontal Measured Max Memory Required Required Required RatioMesh
Resolution Total Mem Memory Least Sqrs Mem/Proc Mem/Proc Mem/Proc (Bytes/Name

Near Equator (GB) (GB)1 Fit (GB)2 (MB) (MB) (MB) /Flop)
B 200km 1.5 1.5 1.3 51 1.06 11.8 0.68
C 100km 4.9 6 5.3 102 1.06 11.8 0.44
D 50km 21.4 24 21.3 203 1.06 11.8 0.25
E 25km — 96 85.0 406 1.06 11.8 0.13
F 12.5km — 384 339.9 813 1.06 11.8 0.070
G 6.25km — 1536 1359.4 1625 1.06 11.8 0.035
H 3.13km — 6144 5436.7 3251 1.06 11.8 0.018
I 1.56km — 24576 21745.1 6502 1.06 11.8 0.0089

TABLE II
ESTIMATES OF MEMORY REQUIREMENTS FOR FVCAM AS A FUNCTION OF HORIZONTAL RESOLUTION AND DECOMPOSITION STRATEGIES. THE LAST

COLUMN SHOWS THE RATIO OF SINGLE PROCESSOR MINIMUM MEMORY CAPACITY TO MINIMUM SUSTAINED PERFORMANCE FOR ANY DOMAIN
DECOMPOSITION

necessary for the one dimensional decomposition case as the
number of processors can only be increased at the same rate
as the number of latitude lines. Table II (column six) shows
the individual processor minimum memory requirements for
the one dimension horizontal domain decomposition scheme
peaking at over 6GB per processor. The relationship is linear
with M , the number of longitude lines.

Interestingly, the relationship between single processor
performance and single processor memory consumption is
independent of domain decomposition strategy. In the last
column of Table II, we see that the ratio of single processor
memory footprint to sustained single processor throughput
(expressed in bytes per flop) decreases as horizontal resolution
increases. These values are the same for the ratio of overall
machine memory to sustained floating point operation rate.
This decrease is a consequence of the CFL stability criterion
which causes the operation count to scale at a rate greater than
the number of mesh cells.

If the simulation were expanded to use 100 vertical layers,
and employed a 10-way vertical domain decomposition for a
10x10x10 domain decomposition, the memory requirements
per subdomain are estimated to be 5MB.

C. Interprocessor Communication Requirements

Three factors cause the sustained machine performance
to be less than the advertised machine performance on any
platform. The first of these is an inability to realize peak

1Upper bound calculated as: Memoryn+1=4xMemoryn.
2Least squares linear fit (y = Ax) to the total measured memory.

performance on the calculation within a single processor. This
is generally a function of chip design as well as compiler
effectiveness. The second of these is the communication of
data between processors necessary to perform that calculation.
Interpretation of the sustained processor speeds discussed in
Section III-A relative to advertised peak computational rates
must take both factors into account. Interprocessor commu-
nication in these maximal subdomain configurations is not
negligible and may even dominate. A third factor, which we
will not discuss in detail here, is the load imbalance caused
by uneven distribution of the computational workload dictated
by model physics considerations.

fvCAM lends itself to two different styles of domain
decomposition. The first, least-parallel decomposition is a
one dimensional division where each subdomain contains all
longitude lines but only a subset of latitude lines. For low-
resolution simulations with only limited parallelism, the de-
creased communication overhead is advantageous. The second,
a two dimensional decomposition, divides subdomains by both
latitude and longitude lines. Nearest-neighbor communication
is doubled over the one dimensional case, but has much better
scaling properties. Current models utilize between 26 and
64 vertical atmospheric layers. In a full atmospheric model,
we consider that at least 100 vertical layers are required to
accommodate the cloud system resolving model as well as the
lower stratosphere and boundary layer. These layers could also
be subdivided to provide more parallelism, although vertically
contiguous domains require extremely tight communication
coupling and should reside on the same SMP socket.

Speculating about the scaling behavior of the communica-
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(a) (b) (c)
Fig. 2. Alternative domain decomposition topologies: (a) Latitude-Longitude, (b) Icosahedral, and (c) Cube-Sphere.

tions costs is made difficult by the lack of a purely horizontal
two-dimensional domain decomposition for fvCAM. However,
some information about nearest neighbor communication in
this case may be derived by measuring point-to-point commu-
nication statistics on the one dimensional decomposition with
the Integrated Performance Monitor (IPM) [12] tool. The tool
reveals that in the one dimensional decomposition the largest
messages contain the ghost cells values of three concatenated
3D variables sent once per dynamics time step to the north and
south neighboring domains. Approximately ten messages per
dynamics time step are sent containing a single 3D variable.
A number of considerably smaller messages containing 2D
variables are also sent. In the two dimensional domain de-
composition, the number of these messages must be doubled
to include the east and west neighbors but are reduced in size.
For a fixed number of cells per subdomain, message sizes are
independent of horizontal resolution but are dependent on the
number of domains. In the one dimensional decomposition,
the messages contain ghost cell values over the entire range
of longitudes. Hence, message sizes are independent of the
number of domains but dependent on horizontal resolution in
this case.

Table III shows an estimate of the messaging require-
ments for fvCAM as a function of horizontal resolution and
decomposition strategies. The second and third columns of
Table III show the one-dimensional decomposition measured
average message size and the largest measured message size
in the nearest neighbor communication. Measurements were
performed at the 50km D mesh and extrapolated to the
other resolutions. In the two dimensional decomposition, the
nearest neighbor message size is determined by the size and
logical shape of the domain. For a fixed number of cells per
subdomain, these messages are of a constant size. For the
maximum processor case of 9 mesh cells per subdomain, the
average nearest neighbor message size would be about 1.5KB
and the maximum would be about 5.6KB. In the 100 horizontal
cells per subdomain case considered above, the average would
be about 5.0KB and the maximum would be about 62.4KB.

The time required to send a message is the sum of the
fixed latency required to send a message between neighboring
processors and the time it takes to serialize the message. For
very small subdomains such as the 9-cell case, the messages
may end up so small that the latency term ends up dominating
the communication time, thereby wasting available commu-

nication bandwidth. Therefore, aggregating messages for the
boundary exchange may be beneficial by ensuring that the
interprocessor communication links remain saturated.

In the discussion above of the individual processor speed,
we performed our calculations without accounting for com-
munication costs, to obtain a lower bound on processor
performance requirements. Similarly, we estimate a lower
bound on the communication requirements separately from
the cost of calculation. Separate treatment of these costs
is a reasonable approach given the explicit message-passing
communication is bulk-synchronous, where communication
and computation occur in distinct phases. The total execution
time of the simulation would, of course, be a mixture of these
two components. Using the performance metric appropriate
to climate simulation (1000 times realtime), the total rate of
nearest neighbor messages per processor that must be sent and
received each second must exceed the values listed in column
4 of Table III (expressed in messages/second/subdomain) for
the one dimensional decomposition. As mentioned before,
in the two dimensional decomposition case the number of
messages per processor per dynamics time step is twice that
of the one dimensional decomposition thus doubling these
message rate requirements. These messages include the single
and triple 3D variables mentioned above as well as numerous
smaller messages. The average nearest neighbor send/receive
data volume rate per processor of these messages must exceed
the values in MB/s listed in fifth column of Table III for
the one dimensional decomposition. For the two dimensional
domain decomposition strategy the average rates are listed for
maximum processor case of 9 (3x3) and 100 (10x10) mesh
cells per subdomain, in columns 6 and 7 respectively. The
total amount of nearest neighbor data that must communicated
depends on the number of processors.

The latitude-longitude domain decomposition of fvCAM is
not the only potential candidate. At least two other discretiza-
tions of the globe exist, and are preferable to the fvCAM
model primarily for their lack of polar singularities. Without
the polar singularities, the CFL constraint is more uniform
across the globe and the operation count scales more gracefully
with increased resolution. Other code bases for climate model-
ing use different discretizations of the sphere, and differ from
fvCAM primarily in their requirements on message-passing
networks; the dynamics computations at each point in the
discrete grid are similar. Figure 2 illustrates two of the leading
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1D 3-rows 2D 3x3 2D 10x10
Avg Max Msgs/ Msg Vol/ Msg Vol/ Msg Vol/

Mesh Msg Msg Second/ Domain/ Domain/ Domain/
Name Size Size Domain Second Second Second

(KB) (KB) (MB/s) (MB/s) (MB/s)
B 72.6 270 23 1.6 0.07 0.21
C 145 540 43 6.3 0.13 0.43
D 290 1078 86 25 0.26 0.87
E 581 2157 172 100 0.52 1.74
F 1161 4313 344 400 1.04 3.47
G 2323 8627 689 1600 2.08 6.94
H 4645 17252 1378 6400 4.16 13.99
I 9290 34504 2756 25600 8.33 27.78

TABLE III
ESTIMATE OF MESSAGING REQUIREMENTS FOR FVCAM AS A FUNCTION OF HORIZONTAL RESOLUTION AND DECOMPOSITIONS.

potential client applications of a Climate-Modeling domain-
oriented HPC machine. An icosahedral decomposition, such
as that used in the BUGS climate model [20], constructs an
approximation to a sphere by iteratively subdividing the edges
of an icosahedron. This creates a geodesic grid; the grid points
require 6-nearest neighbor connectivity for the most heavily
used communication paths. Although it is more amenable to
massive parallelism due to its very uniform grid distribution,
its nearest-neighbor address calculations cause costly indirec-
tion in data accesses. A cube-sphere decomposition, such as
that used in the GFDL model, maps the spherical globe onto
the surface of a cube. This model is attractive because its
logically rectilinear structure avoids indirection and allows for
fast data access, although there are still some nonuniformities
at the points of the cube. Its primary drawback is surface area
distortion.

D. Design Requirements Summary

Based on the analyses above, we assume the following
configuration to estimate required machine characteristics for
ultra-high resolution climate simulation:

• 1.5km model (I mesh), 100 vertical levels..
• 1000 times faster than realtime simulation performance.
• I mesh (18432x11521x100 cells) discretized into 2 mil-

lion horizontal subdomains (10x10 cells) which may be
further subdivided in a hybrid vertical/horizontal manner.

In the previous section, we derived the fvCAM application
resource requirements by extrapolating from the measured
resource requirements of the climate code running at in-
creasingly higher resolutions. Given these extrapolations, we
present the minimum requirements for a system that would
meet the application requirements for a 1.5km climate model
simulation.

• Each horizontal subdomain must be computed at
5Gflop/s sustained in order to meet the 1000 times real-
time requirement. The horizontal domains can in turn be
decomposed across multiple processing elements within
the socket. (For instance, if 10 processing elements are
available within the socket, then each element need only
supply 500Mflop/s sustained in order to meet the 1000x
requirement.)

• 5GB/s local memory performance per domain in order
to remain compute-bound rather than limited by memory
bandwidth (1 byte per flop), to ensure sufficient memory
bandwidth. (The 1 byte per flop ratio is based on our
previous experience with fvCAM).
• The memory footprint of each subdomain is 5

Megabytes.
• The interprocessor communication requirements are

20MB/sec to each horizontal neighbor in the north,south,
east, and west dimensions (10MB/s bidirectional to each
neighbor).
• We assume the subdomains in the vertical dimension are

co-located on the same socket or SMP node in order to
reflect the extremely tight-coupling of computation and
communication in that dimension.
• For inter-socket communication, we consider only the

communication requirements between horizontal do-
mains.

IV. INCLUSIVELY IDENTIFYING THE DESIGN SPACE

In this section, we discuss design concerns for a climate
modeling domain-oriented machine, in order to understand
what a “golden-standard” building block would provide. While
the dimensions we list below are not orthogonal, in that
decisions made for one dimension affect the decisions for the
others, they serve to guide our discussion.

• Granularity of Parallelism: Balancing individual proces-
sor core complexity with the number of cores per chip.

• Memory System: Balancing the sizes on-chip memories
and the number and width of access ports with the number
of on-chip cores.

• Communication Network: Overall communication topol-
ogy, including the complexity and connectivity of both
the on-chip and inter-chip network.

A. Granularity of Parallelism: Potential Core Designs

Large scale computing is often not governed by uni-
processor characteristics, but rather by computing density: how
many useful aggregate GFlops can be packed into a given
power envelope, physical space, or operating budget. Table IV
shows double precision peak floating point performance, chip
power, and efficiency for a number of recent high-performance
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chips. The best examples reach only about 0.6 Gflops per watt
in current technology, with the exception of the embedded
XTensa processor from Tensilica extended with a SIMD
floating point unit.

For this study, we divide the design space into three different
design points. The AMD Opteron is used to represent a
mainstream commodity building block for high-end system
designs. The PowerPC 450 represents a semi-custom approach
employing a relatively undifferentiated embedded core pack-
aged in an SoC. The Tensilica XTensa is used to explore the
capabilities of a lean, customized power-efficient core.

1) Commodity Core, the AMD Opteron: The AMD Opteron
is a popular building block for HPC systems from the com-
modity clusters to the tightly-integrated XT3. This solution
represents the classic “commodity approach” that depends
upon a processor architecture that is targeted at a diverse set
of server applications that range from technical computing to
web-serving. The cost-efficiencies of leveraging high-volume
commodity technologies is offset by the potentially lower com-
putational efficiency of an architecture that is not as narrowly
specialized to scientific application requirements. There is
another benefit that should not be ignored in any design option:
cores such as the Opteron that implement general-purposem,
legacy-supportive ISA’s also have an enormous software in-
frastructure. When using an x86 core, much of the software
necessary to port a realistic, complex scientific model to the
machine already exists. This greatly reduces the imlementation
effort, and the existence of software infrastructure is a first-
class design concern.

2) Embedded Core, the PPC450: BlueGene/P (BG/P)
represents a more power-efficient alternative approach that
achieves its performance through higher concurrency than
mainstream cluster solutions. The core of the BG/P system
is a System-On-Chip (SoC) based on the low-power PowerPC
450 embedded core. The PowerPC 450 is a dual-issue in-order
CPU core present in many low-power embedded applications,
which is optimized for scientific applications by customizing
the SOC services that are built around it on the chip. Unlike
the AMD solution presented above, the BG/P SOC includes
all of the logic for the interconnection network. The BG/P
approach offers well-documented improvements to the power
efficiency for many scientific applications; albeit the breadth
of applications that are well suited for the architecture are
narrower than the typical commodity cluster implementations.

3) Semi-Custom Synthesized Core, the Tensilica XTensa:
Whereas the BG/P solution begins with a generic embedded
core and customizes the SOC logic that surrounds it to build
a power-efficient building block for a system, Tensilica takes
the embedded design philosophy one step further: customiz-
ing the design of the processor core so that it is custom-
tailored to the computational requirements of the application.
The Tensilica performance estimates are based on existing
process technology and current-generation Tensilica system
design tools. The customized design retains all of the pro-
grammability of a conventional processor, but can achieve
its highest efficiency when applied to the problem for which
it is designed. The motivation for using a simple, shallow-
pipeline, in-order, configurable core such as XTensa is that in

a massively parallel application, the granularity of parallelism
is fine enough that a simpler core will suffice. But how simple
should this core be? A complete exploration would explore
the space of tradeoffs involving pipeline depths, VLIW issue
widths, SIMD instruction widths, and sharing of functional
units between cores. Improvement of any of these dimensions
improves performance, but increases per-core area and power.
Furthermore, fvCAM and other climate modeling codes are
complex, and use different algorithms for modeling different
sub-problems; no one function occupies more than a few
percent of the running time. Therefore the problem of finding
an optimal processor core is more difficult, since potentially
many different memory-access, control, and compute patterns
need to be considered. Single-thread performance on this core
will surely pale in comparison to the more complex cores,
since cache misses, pipeline and data hazards cannot be hidden
as easily. SIMD instructions or multiple-issue pipelines may
ameliorate the situation, but per-core area is always traded
against total core count.

B. Memory System

As detailed in table II, kilometer-resolution climate mod-
eling requires tens of terabytes of memory. Thus the de-
sign of the memory system can dramatically affect system
performance. Table II indicates that byte-to-flop ratios are
approximately 0.5 at low resolutions. The apparently favorable
scaling of the byte-to-flop ratio, for example 0.0089 bytes of
memory traffic per floating-point operation for the I mesh, is
due to the overly restrictive CFL condition for the latitude-
longitude decomposition. As we discussed in section III-C,
the alternative decompositions are more uniform and are less
restricted by CFL. Therefore we can expect that byte-to-flop
ratios will be between 0.5 and 1.0.

In massively parallel decompositions for climate modeling,
the working set size per processor is potentially only a few
megabytes. Thus increasing the size of local memories could
have significant impact, as the percentage of total domain
that can be kept on-chip can be improved dramatically. For
example, The IBM BlueGene/L chip includes 4 Megabytes of
embedded DRAM [16] in a 130 nm process, the BlueGene/P
chip 8 Megabytes, and the VIRAM13 chip from Berkeley con-
tains 13 Megabytes of embedded DRAM, implemented in 180
nm process on a 325 mm2 chip. More recent IBM embedded
DRAM in 65 nm PD-SOI process [22] allows a 2Mb macro
to fit in 0.665 mm2 of die area and operate at 500MHz with
1.5 ns random access time. SRAM densities are substantially
less, but easier to incorporate into processor designs; the IBM
eDRAM density is approximately 3x IBM’s SRAM density.
This large quantity of on-chip memory could be used to
keep the entire subdomain on-chip for a given processor. The
area occupied by this DRAM would force other subdomains
onto other chips, however, and increase communication costs.
The very tight coupling required in the vertical dimension
places a lower-bound on the amount of parallelism that should
be packed onto a single chip; it is unlikely that the off-
chip communication cost incurred by vertical communication
between sockets is justifiable. According to our calculations
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STI Cell BlueGene/P
(PPC450
ASIC)

AMD Opteron
“Barcelona”

Intel Xeon
5100

Intel Itanium2 Tensilica
XTensa
with SIMD
Floating Point

DP Ops per Cycle per Processor 0.6 (each
SPE)

4 4 4 4 4

Cycles per Second (GHz) 3.2 0.85 2.5 3.0 1.4 0.65
Processors per IC 8 4 4 2 1 32

Aggregate DP GFlops per IC 1.5 13.6 38.6 24 5.6 83
Approx. IC Power (Watts) 30 15 92 80 130 12

IC GFLOPS/Watt 0.5 0.91 0.42 0.3 0.06 7

TABLE IV
FLOATING POINT PERFORMANCE PER WATT OF SEVERAL MICROPROCESSORS

in Section III-B, 10x10 columns at 100 vertical layers would
require approximately 50 MB of memory. In the 65 nm IBM
eDRAM, this occupies about 133 mm2 of die area. Due to cost,
this is larger than a die likely to be used in a climate modeling
machine. For reference, the BlueGene/L die is 11.1mm x
11.1mm, or 123.2 mm2. Therefore, we must go off-chip for
data access, and must size local memories to allow for data
re-use and latency hiding through prefetching.

The other extreme, having very little on-chip memory, but
packing the chip with as many small cores as possible, is an
unlikely solution, but illustrates a point. These small cores
cores would need to be designed specifically to tolerate huge
off-chip memory latencies. A highly multithreaded architec-
ture such as Niagara2 from Sun or a vector processor such as
s the Cray X1E would be well-suited to this task. However,
without local memories or caches, pin-bandwidth provides
an upper bound to the amount of computation that can be
performed per socket: the flop-to-byte ratio multiplied by the
bytes-per-second bandwidth at the pins. The extent to which
algorithmic data-reuse can exploit local memories and filter
off-chip accesses is also the extent to which some amount
of local memory can actually increase the number of cores
feasibly on one chip. Additionally, requiring that all memory
accesses go off-chip will consume more power, since driving
pins requires more energy than reading on-chip SRAMs.

C. Communication Network
The simplicity of the 1-dimensional domain decomposition

is attractive not only for the software development simplicity
of its implementation, but also because of the correspondingly
simple chip-interconnect. As explained in section III, however,
more sophisticated decompositions are necessary for scalabil-
ity. Since all practical decompositions of climate modeling
utilize less than three dimensions, a 3-D Torus, such as those
found on BlueGene or the Cray XT3 and XT4 systems is likely
a poor match for kilometer-scale climate modeling. Ideally, a
climate-modeling machine would have a network with a one-
to-one correspondence between communication channels in
the code and physical inter-processor communication chan-
nels.

For example, if the fvCAM model is used, the primary
message passing network would be a 2-dimensional mesh.

3We did not include VIRAM1 in table IV because VIRAM1 does not
support double-precision floating point. VIRAM1 achieves an efficiency of
1.4 GigaOps per Watt in 64b Fixed-point arithmetic.

Fig. 3. Communication topology of fvCAM

We expect to have at least one complete vertical column per
socket. Thus, there would be little congestion on the network
for the normal bulk-synchronous communication on each
timestep. However, the fvCAM model is not the only potential
client of a climate-modeling domain-oriented machine, and
communication patterns specific to the other potential domain
decompositions should be supported at high-performance as
well. This potential application diversity also makes it unclear
precisely what the “ideal” communication network would be.
Although the connectivity of the cube-sphere decomposition
is very similar to the fvCAM decomposition, it contains points
of irregularity. The implementation of the network would
need to ensure that those points are supported gracefully, and
do not become a bottleneck that cause global performance
degradation. The icosahedral decomposition requires 6-nearest
neighbor connectivity at most points, but also has irregular
points. If this topology were implemented directly, it would
support the other two degree-4 decompositions at the cost of
unused hardware. However, if the degree-6 connectivity were
folded on top of a degree-4 network, extra congestion and
routing hops would adversely impact latency and bandwidth.

Previous work exploring the communication requirements
of several applications [18], [19], including fvCAM, have
revealed that the communication requirements of HPC ap-
plications are diverse, but commonly of low degree: a given
processor communicates with a small number of the other pro-
cessors in the system. Figure 3 illustrates the message-passing
communication pattern of a 64×64 2-dimensional latitude-
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longitude domain decomposition for fvCAM, using a 4-way
SMP at each node. Notice the strong nearest-neighbor commu-
nication represented by the dark dual-diagonal bands, but also
the weaker distant-neighbor communication represented by
the lighter bands. No node communicates with more than 20
others, but this pattern is not isomorphic to any toroidal, mesh,
or hypercube topology available on systems from Cray or
IBM. Therefore the potential exists for a substantial decrease
in cost and complexity necessary to meet the latency and
bandwidth requirements of an application.

V. EXPLORING THE DESIGN SPACE

We have selected three candidate building blocks for our
Climate Simulator system. The AMD core represents the
commodity design point, the PowerPC 440 core represents
a building block for an embedded SoC solution where the
core is not customized, and the Tensilica XTensa represents a
customized core. For the former two cases, we are able to col-
lect benchmark data on existing systems. We can extrapolate
the benchmark results to the full system scale to infer system
component performance and use existing power consumption
and performance figures to project the requirements of the
full system. There are a very limited number of configurable
parameters for these processor implementations. In the case
of the Tensilica XTensa, we must evaluate the design space
using Tensilica’s emulation tools. Likewise, Tensilica’s syn-
thesis tools provide an accurate model of area and power
requirements for the synthesized core design.

Here we discuss our approach to mapping the Climate
problem onto the target system architectures. Next we discuss
the computational, memory, and communication resources
necessary for kilometer-scale climate modeling. Although in
the 2011-timeframe in which we would expect to implement
this machine, 45 nm technology would be available, in this
section we compare technologies at the 65 nm node. We claim
that the certainty gained in avoiding power and frequency ex-
trapolation is more valuable than the potentially more accurate
area estimate.

A. Mapping the Problem to Hardware

Exploitation of multi-core processors in an ultra-high reso-
lution atmospheric general circulation model will require not
only a two dimensional horizontal decomposition containing
millions of subdomains, but also additional levels of paral-
lelism. The tight coupling of multi-core processors to the
entire socket’s local memory permits a variety of options.
We envision a parallelization strategy where a two dimen-
sional horizontal decomposition is distributed among multi-
core sockets. Within the horizontal subdomain, additional
parallelization would be obtained by alternating between a
vertical decomposition and a horizontal decomposition that
might be implemented with message passing, at the loop level
or a mixture of both techniques.

For a minimally sized subdomain of 10x10x10 cells, the
effective compute rate that must be delivered for each sub-
domain is 0.5 Gigaflops in order to meet the simulation
performance requirements. For simplicity, we assume that for

any subdomain larger than these minimum dimensions, the
processor’s throughput per cell must exceed .5 Megaflops
per cell. Since the overall computation rate is fixed at 10
Petaflops sustained, we can compute a lower bound on the
number of processors necessary to implement our machine
simply by dividing by the peak floating-point throughput
of the processor by the throughput required per cell. This
estimate is highly optimistic, since in our prior experiences,
climate codes have run at approximately 5% peak throughput
on high-performance processors, and at less than 2% peak
on BlueGene/L. Once we have established the number of
cells to be computed by each processor, the memory capacity
and bandwidth requirements, inter-processor communication
requirements, and the minimum number of processors in the
system can also be computed.

B. Commodity Building Block: AMD Opteron

Here we discuss the characteristics of a peta-scale system
built from our selected commodity building-block, the AMD
Opteron. HPC systems built from commodity processors and
interconnect have very few, if any, configurable features.
Hence, here we summarize system features.

1) Core Design: The AMD Opteron is a 64-bit high-
frequency, deeply pipelined, out-of-order superscalar proces-
sor. Designed to maximize single-thread performance on a
wide range of applications, relatively little of the die area
is devoted to floating-point or inter-processor communication
hardware. The latest 65 nm revision of the Opteron core
contains 2-wide double precision SIMD units, capable of
executing two multiplications and two additions per cycle.
Operating at 2.5 GHz, each core in a quad-core socket is
capable of 9.6 GFlops/s, for a total per-socket peak floating
point throughput of 38.4 GFlops/s. At this rate, each socket
could potentially own 77 subdomains.

2) Memory System: Commodity memory systems for
Opteron-based systems consist of DDR, DDR2, and in the
future DDR3 in FBDIMM slots. Each slot can contain several
gigabytes of memory, and provide approximately 10 GB/s of
bandwidth per socket. The 65 nm quad-core Opteron chips
include 3 levels of on-chip SRAM cache. Each core has a
private 64K L1 and 512K L2 cache, and all four caches share
a 2MB L3 victim cache. Cache coherence is maintained in
hardware between the four cores, and between sockets in a
multi-socket system. Since each socket will have at most 77
5MB subdomains, the memory required per Opteron socket
386 MB. We expect a byte-to-flop ratio of approximately 0.6
for the Opterons, so the local per-socket memory bandwidth
needs to be at least 23 MB/s.

3) Interconnect: The 77 subdomains per socket decompo-
sition would require 1,544 MB/s bandwidth from the network,
which is readily achievable by commodity interconnect tech-
nologies.

C. Embedded Building Block: IBM PPC440

Although the BlueGene/P ASIC is not customizable per ap-
plication, it has been designed specifically for power-efficient
HPC computing. However, it attempts to be general-purpose
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within HPC. Again, here we cannot customize, and we just
list system features.

1) Core Design: Although IBM has not disclosed the full
details of the the PowerPC 450 cores in BG/P, it is expected to
be similar to the PowerPC 440 core in BlueGene/L. PPC440
is a dual-issue in-order core designed for low-frequency
operation. In BlueGene/P, cores operate at 850 MHz, and
will feature a 2-wide SIMD floating-point unit. Implementing
a fused multiply-add instruction, its peak double-precision
throughput is 3.4 GFlops/s per core, or 13.6 GFlops/s per chip.
This rate can support 27 subdomains per socket at peak.

2) Memory System: The PowerPC cores in the BlueGene
ASIC have independent 32-KB L1 data and instruction caches.
Each ASIC includes 8 MB of eDRAM. The 27 subdomains
per socket will require 136 MB. With a byte-to-flop ratio of
0.9, each socket needs 12.2 GB/s of memory bandwidth.

3) Interconnect: BlueGene/P’s primary message-passing
network is a 3-dimensional torus, with logic on the SoC
consuming slightly more area than one of the PowerPC cores.
It provides 350 MB/s of bandwidth between adjacent network
nodes, with a few hundred processor cycles of latency per
network hop.

D. Customized Building Block: Tensilica XTensa

In this section we describe a prototype design of this
processor that has been created using the Tensilica Instruction
Extension language and the Xtensa Processor Generator. The
processor generator translates a concise abstract description
of instruction set features, and selection of interfaces and
memories into a complete production-quality Verilog imple-
mentation and software development tool set. We postpone
discussion of the software infrastructure until Section VI.
For this application, the Tensilica tools were used to syn-
thesize a variant of the XTensa processor that is optimized
for the defined requirements of the climate problem without
attempting to exploit idiosyncratic computation characteristics
via application-specific instructions. A final processor con-
figuration would reflect significant application analysis and
embody optimization to omit less useful features and add
instructions and interfaces discovered as particularly useful to
overall throughput.

These processors assume implementation in commodity
standard cell circuits generated by standard logic synthesis
and cell placement and routing flows. They assume local
memory systems built from multiple banks of single-port on-
chip SRAM, combined with regional memory systems built
from multiple channels of commodity high-performance off-
chip DRAM, typically Rambus XDR.

We now walk through elements of the resulting synthesized
design, which is summarized in Table V.

1) Exploration of the Core Design: A lean processor with
general support of both integer and single-precision floating
point data types, and a pipelined static dual-issue implemen-
tation can be built in less than 100K gates of logic (about 0.3
mm2 of logic area in 65nm process technology) Even with
double-precision floating point and multiple operations per
cycle, the entire processor core consumes less than 1 mm2 of

logic. Specifically, the synthesized core contains two double-
precision floating point pipelines, 128b local memory system,
closely-couple block memory transfer engine and high-speed
nearest neighbor communications links implemented in 65nm
standard cell technology will dissipate less than 150mW at
650MHz, yielding roughly 15 GFLOPS (peak) per watt for
the processor subsystem and about 7 GFLOPS (peak) per watt
for the full chip. A cluster of 32 such subsystems could fit on
a 200 mm2 chip, implemented in commodity 65nm silicon
technology, providing a 12W chip capable of executing more
than 80 double-precision GLFOPS peak. 7 GFLOPS per watt
is more than a factor of ten better than traditional high-end
processors, but also a factor of 16 higher density over the
traditional approach due to the small silicon area of each core.
Each socket could support 172 subdomains.

2) Exporation of the Memory System: Our proposed 32-
processor chip supports 4 or 8 XDR DRAM Channels (from
Rambus) and Direct Buffered DRAM to meet the memory
bandwidth defined by the application requirements section
using modest board area, component count and power dissipa-
tion. XDR II, for example, now promises 6.4 Gbit per second
per pin, and even commodity XDR implementation offers 6.4-
9.6 Gbytes per second per 16-bit device. The on-chip interface
circuitry consumes modest area and power so multiple DRAM
channels per chip are quite feasible. Four to eight XDR
channels can supply 25-75 Gbytes per second of bandwidth
(sustained for optimal referenced patterns). This substantial
total off-chip memory bandwidth is one key contributor to
the high potential performance of each chip and the system
as a whole. The DRAMs, DRAM-processor transfers, and
memory controllers together are expected to consume well
above half the power in the system. With 8 channels, a
group of four processors share a local bus, which is then
connected to an 8x8 cross-bar to the eight DRAM channels.
Each processor has direct access to the 8 DRAMs and to the
local data RAM space of each of the other 31 processors. With
buffered writes, the transfer latency between processors is
often completely hidden, though these transfers still consume
shared bus bandwidth. 172 subdomains would require 864 MB,
and with a byte-to-flop ratio of 0.6, would require 51.2 GB/s
of bandwidth.

The processor includes a data cache but structured grid
problems may also take good advantage of block data move-
ment, especially for pre-fetching of data from off-chip DRAM
into local RAM and return of data blocks previously written
to local RAM. Recent studies by our group [25] shown
substantial performance efficiency benefits from application-
managed block data movement. Software controlled memories,
such as those used in Cell allow dramatic simplification of
the whole memory hierarchy, compared to multi-level cache
subsystems. This is a major contributor to the energy efficiency
of the chip. We propose a direct memory access (DMA) engine
directly controlled by the instruction set of the processor.
A single processor instruction can specify the source and
destination address, the size and direction of transfer, and the
number of the DMA channel to use. The state of each DMA
channels is directly available the control-flow instructions of
the processor for efficient block transfer completion handling.
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This lightweight DMA supports 8 or 16 DMA active transfers
per processor and can move data directly between the on-chip
bus and the local data memory for each processor. This simple
programming model and low overhead may make the necessity
of programmer-managed data movement tolerable.

3) Exploration of Interconnect: The ASIP would use ex-
isting design libraries to implement a high-speed regional
interconnect, on-chip and off-chip, to create a 2-D computing
mesh optimized to the communication topology requirements
of the climate model described in the previous section. This ap-
proach is particularly effective on problems where the pattern
of memory references is not heavily data-dependent and large
block data transfers between off-chip and the processors can
reduce memory reference latency. Our 2-D mesh is created via
four incoming and four outgoing data links for each processor
and is implemented in two variants.

In the first variant, the processor’s instruction set includes
PUSH operations to move a value directly from the integer
or floating point register directly to the interface queue, and
POP operation to move data from the interface queue to the
integer or floating point register. The processor stalls on PUSH
if the queue is full and stalls on POP if the queue is empty.
Data communication between two processors is therefore
automatically synchronized and highly efficient, requiring only
one instruction on both the sending and receiving processor
for each data word transferred. This mechanism could be
used to minimize the overhead of the single-variable messages
mentioned in Section III-C.

In the second variant, the same DMA engine used for
DRAM to local RAM transfers can also move data blocks
between the local RAMs of different processors. This can
include both movement through the cross-bar switch used to
give all processors access to all DRAM attached to that, and
movement of data across dedicated local links. Use of the
cross-bar switch consumes some of the bandwidth used for
DRAM transfers, but gives access to all the processors on the
chip.

The basic memory and message transfer structure of the
DMA-based variant is shown in Figure 4.

Inter-chip communications links follow the structure of on-
chip links as closely as possible. The links are implemented
using commodity PCI Express interfaces, routed both within
boards and between boards. Each chip implements 24 bidirec-
tional PCI channels. Figure 4 also shows one control processor
implemented on each chip. This processor collects statistics
and trace information on all of the memories, processors and
message paths for that chip. It manages the boot process for
the others, the disabling of processors with hardware faults,
and coordinates debug for tasks on all the processors.

One of the most notable characteristics of this processor
is low power dissipation. A single core, with its memories
is projected to dissipate about 150mW at 650MHz when
implemented in commodity 65nm technology. This permits
a 32-processor array chip with a total power dissipation of
about 12 watts, while executing about 80 GFLOPS of double-
precision code. The dense packing of low-power processors
and memories allows high computational density at the chip,
board and rack level. A 32 chip board delivers more than

Fig. 4. Structure of Memory Bus and On-Chip Com-
munications

2.5 Teraflop and 1-2 Terabytes per second of distributed main
memory bandwidth in less than 1000W. A commodity 25KW
rack will hold 24-32 such board for 60-80 Teraflops per rack
using existing 65nm silicon fabrication processes.

Although we do not fully exploit these capabilities in this
paper, the Tensilica environment also lends itself to rapid
exploration of alternative instruction sets, pipelines and inter-
faces. A variant can be specified, generated and simulated in
less than an hour, so a wide range of possible architectures can
be quantitatively compared early in the system specification
process. We believe this is a source of untapped power-
efficiency optimizations that can even further improve the
power-efficiency of this core design for this application.

Table V outlines the general characteristics of our prototype
processor core, and Table VI compares our three design points.
Figure 4 illustrates some of the larger system capabilities.
Given the current depth of our design space characterization,
and our understanding of the requirements of kilometer-scale
climate modeling, this core provides all the necessary compu-
tational power at an order of magnitude more power efficiency
than other options. As such, it is the best option of the potential
candidates.

VI. DEPLOYING THE ASIP

We have mentioned previously that pre-existing software
infrastructure needs to be a first-class design consideration in
any new HPC machine design. Regardless of the performance
potential of the machine, the software development effort
required to port realistic scientific applications to the new
environment can be an insurmountable barrier. The dynamics
code in fvCAM is 93,407 lines of Fortran 90 code. The
BUGS6 atmospheric model is 47,382 lines of fortran 90,
in addition to over 100,000 lines of code in utilities, ice,
ocean, and land models. Each model contains hundreds of
subroutines, dozens of modules, and relies upon external
libraries for communication, input/output, and other system
interaction. Although optimization and tuning for the new
machine may require re-writing many thousands of lines of
code, it is absolutely infeasible to re-write the entire system



IEEE TRANSACTIONS ON VLSI 12

Instruction Set

Data Types
8,16,32 bit integer
1 bit boolean conditions
64 bit IEEE Floating Point

Register Files
16 x 32 bit integers (in 32-entry windowed register file)
16 x 1 bit boolean
1 x 128 bit 2-way SIMD Floating Point

Fully-Pipelined
Execution Units

3-Way static superscalar instruction issue:
Integer load/store (slot 0)
FP 64/128b Load/Store (slot 0)
FP Convert (slot 0)
Integer/FP branch (slot0+slot1)
Integer op (both slot 0 and slot 1)
FP add/sub/mull/mul-add/mul-sub/reduction add (slot 2)
FP Compare (slot 2)
FP conditional move (slot 2)

Memory System
Instruction 32KB 2-way assiciative cache, with 64B line refilled over 128b bus, 64b fetch

Data 16KB 2-way associative cache with 64B line refilled over 128b bus, 128b fetch
64KB local data RAM, 128b fetch. Implemented as 4 banks, for dual-porting with DMA
local engine

Implementation
Estimate (65nm)

Area 1.0mm2 (0.8mm2 core + 0.2mm2 local DMA engine). Gate count: 225K

Typical Power
Core: 130 µW/MHz
Local Memory: 100 µW/MHz
Typical operating power: 150 mW @ 650 MHz

Operating Frequency 650 MHz worst-case temperature, voltage, and processing

Software

Sofware development
tools

C/C++ compiler automatically extended for full instruction set
Eclipse-based integrated development
Pipeline-accurate simulator
Multiple processor simulation builder

Runtime Software
Variety of real-time operating systems and Linux
Communications API for message passing, DMA, shared memory, and locking
Interactive MP debug and trace capture

TABLE V
EXAMPLE APPLICATION-SPECIFIC HPC PROCESSOR ARCHITECTURE AND IMPLEMENTATION SUMMARY

Clock Flops/ Peak Cores/ Power/ Sub- Mem/ Mem/ Peak Netwk Total Total Cost
Name CPU Speed Clock/ Core Scket Scket domains/ Scket BW1 Bytes/ BW2 Sockets Power

(Ghz) Core (GF/s) (W) Scket (MBs) (GB/s) Flop (MB/s) (103) (MW) (M$)
AMD Opteron 2.5 4 9.6 4 2306 77.2 386 23 0.6 1,544 260 57 5203

BG/P PPC450 0.85 4 2.8 4 15 27.2 56 5.5 0.9 544 740 20 7224

Tensilica Custom 0.65 4 2.7 32 22 172.8 864 51.2 0.6 3,450 120 2.5 755

TABLE VI
SUMMARY OF CANDIDATE SYSTEM REQUIREMENTS

from scratch. These programs have taken years to develop,
and have been proven correct and relatively bug-free to
the community through years of use. Not only would re-
implementing an entire climate modeling system for a machine
without operating system, compiler, and library infrastructure
take prohibitively long, but the resulting system would need
several years of probation before its results are considered
credible. Moreover, in the time such an effort would require,
it is likely that a system with shorter time-to-solution will have
already produced the necessary scientific results. For IBM
BlueGene based on PowerPC cores or Cray machines based
on AMD Opterons, all the necessary software infrastructure
exists. The commodity ISAs of these processors are capable
of running full-featured operating systems, have well-tested
suites of system software, and high-quality compilers for any
commonly used programming language. Besides the hardware
procurement cost benefit of commodity-based systems, this
software development advantage would be a strong argument

against a domain-oriented configurable machine.
Luckily, there is a solution in the case of the Tensilica

XTensa cores. The same tools that produce a customized RTL
description of the XTensa core also produces code necessary to
compile gcc, Open64 compilers, and a complete Linux operat-
ing system and software environment. We have compiled gcc
as an end-to-end Fortran90 to XTensa binary compiler, linking
with runtime libraries compiled by the Tensilica-provided C
compiler. The Open64 Fortran90 frontend can emit the same
Whirl2 intermediate language used by the Tensilica version of
the Open64 C and C++ compilers. Tensilica does not currently
ship an end-to-end Fortran compiler because the embedded
applications which typically utilize XTensa cores are written
in C or C++. The software effort required to integrate the

1Minimum required local memory bandwidth per socket.
2Minimum required nearest neighbor interconnect bandwidth per socket.
3Cost of node and memory only, does not include interconnect. Estimated

conservatively at $2,000 per node.
4Pricing for BlueGene/P estimated at $1M per rack.
5Cost of custom chips design and fabrication, memory, raw hardware for

the system, and interconnect.
6Power of 230W measured on a dual-socket AMD Opteron node.
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Open64 Fortran90 frontend will be minimal, however. Without
the need to develop the entire software system from scratch,
the task of porting a large software base to an XTensa-based
system becomes tractable.

The only necessary piece of system software which does
not yet exist and could not be compiled for a Tensilica-based
massively parallel machine is an MPI implementation, since
the interconnection network would be highly customized. In
this case, the message-passing infrastructure would need to
be developed. If the application required a complete MPI
system for operation, this would indeed be a daunting task.
Since fvCAM and other climate codes only use a small,
simple subset of the MPI standard, implementing the necessary
functions should be a very manageable task.

VII. CONCLUSION

We evaluated a number of processor alternatives for a
climate modeling system. In particular, we investigated the ad-
vantages of using a customized processing element, memory,
and interconnect to reduce system cost and power requirements
compared to mainstream designs.

The degree of parallelism is limited at the resolutions of
models currently in use. However, at horizontal resolutions of
one kilometer, sufficient parallelism exists to utilize millions of
processor cores. Recent technological trends indicate that the
rate of processor clock speed changes is slowing. Moore’s Law
regarding the density of transistors is expected to hold through
the next decade [7], [8] but due to power considerations chip
designers are opting to increase overall per-socket performance
by adding more processing cores rather than increasing clock
speed [9]. These architectural trends towards increased par-
allelism and multi-core chip designs are driven primarily by
power-efficiency considerations.

Our design study shows that further power-efficiency gains
can be realized through customized processor design in line
with the embedded-systems design philosophy. This portends
an alternative approach to high end computing system design
where efficiency can be gained through hardware designs that
are customized around the application rather than the other
way around. While the costs of custom hardware design may
not be cost-effective for the mid-range problems, the approach
may prove essential for the handful of applications that are
poised to take advantage of future ultrascale systems. Without
detailed attention to power efficiency concerns, the energy
costs for operating such systems is likely to create a hard
ceiling for practical ultra-scale computing in the future.

The combination of ultra-low power processing cores with
high bandwidth communications hardware and software en-
ables an order-of-magnitude improvement in the scale and
energy efficiency of high performance computing systems for
suitably structured problems. A complete hardware system can
be built with commercially available configurable processors,
commodity interface IP, foundry processor, board and rack
technology. The software development tools are automatically
generated together with the processor hardware itself, imple-
menting a high-performance general-purpose instruction set
architecture and code development system. A complete system

with sustained performance to meet the needs of the scientific
application can be delivered within a practical power and
space envelope, whereas the power and space required from
conventional approaches would be difficult to field well into
the future.

These domain-oriented supercomputers exploit the growing
energy-efficiency gap between embedded systems processors
and traditional high end processors. This category offers ten
times improvement in performance per watt, and per dollar
than systems based on conventional processors. This approach
runs contrary to the conventional wisdom of HPC, but reflects
a simple set of observations:

• The general HPC application workload is diverse, and
so appears to require either a diverse range of machine
architectures or a universal general-purpose architecture
to support their requirements.

• At the petaflops and exaflops scale, however, there are
few candidate problems. General-purpose machines ap-
pear both too expensive and too power-hungry to effi-
ciently support those few applications.

• For a given power or cost level, you can do a much better
job by customizing the design around the requirements
of the problem. This approach is not only feasible,
but creates a more efficient system that delivers higher
sustained performance.

Semi-custom machines built from configurable processors
offer an attractive alternative to mainstream designs. As these
processors lack the power-hungry complex out-of-order in-
struction fetch, schedule, and retire logic in high-performance
commodity processors, the potential efficiency of these ma-
chines, measured in GFlops per Watt, outstrips commodity
machines by more than an order of magnitude. Since the total
cost of ownership of a petascale includes not only the cost of
hardware, but also of supplying power, the NRE of a semi-
custom design is amortizable. For these reasons, configurable
processors present an attractive approach to solving petascale
problems
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