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ABSTRACT  
We propose an easy-to-understand, visual performance model that 
offers insights to programmers and architects on improving 
parallel software and hardware for floating point computations. 

1. INTRODUCTION 
Conventional wisdom in computer architecture led to 
homogeneous designs. Nearly every desktop and server computer 
uses caches, pipelining, superscalar instruction issue, and out-of-
order execution. Although the instruction sets varied, the 
microprocessors were all from the same school of design. 

The switch to multicore means that microprocessors will become 
more diverse, since there is no conventional wisdom yet for them. 
For example, some offer many simple processors versus fewer 
complex processors, some depend on multithreading, and some 
even replace caches with explicitly addressed local stores.  
Manufacturers will likely offer multiple products with differing 
number of cores to cover multiple price-performance points, since 
the cores per chip will likely double every two years [4].  

While diversity may be understandable in this time of uncertainty, 
it exacerbates the already difficult job of programmers, compiler 
writers, and even architects. Hence, an easy-to-understand model 
that offers performance guidelines could be especially valuable.  

A model need not be perfect, just insightful. For example, the 3Cs 
model for caches is an analogy [19]. It is not a perfect model, 
since it ignores potentially important factors like block size, block 
allocation policy, and block replacement policy. Moreover, it has 
quirks. For example, a miss can be labeled capacity in one design 
and conflict in another cache of the same size. Yet, the 3Cs model 
has been popular for nearly 20 years because it offers insights into 
the behavior of programs, helping programmers, compiler writers, 
and architects improve their respective designs.  

This paper proposes such a model and demonstrates it on four 
diverse multicore computers using four key floating-point kernels. 

2. PERFORMANCE MODELS 
Stochastic analytical models [14][28] and statistical performance 
models [7][27] can predict program performance on 
multiprocessors accurately. However, they rarely provide insights 
into how to improve performance of programs, compilers, or 
computers [1] or they can be hard to use by non-experts [27]. 

An alternative, simpler approach is bound and bottleneck analysis. 
Instead of trying to predict performance, it provides [20]  

“valuable insight into the primary factors affecting the 
performance of computer systems. In particular, the critical 
influence of the system bottleneck is highlighted and quantified.”  

The best-known example is surely Amdahl’s Law [3], which 
states simply that the performance gain of a parallel computer is 

limited by the serial portion of a parallel program. It has been 
recently applied to heterogeneous multicore computers [4][18]. 

3. THE ROOFLINE MODEL 
We believe that for the recent past and foreseeable future, off-chip 
memory bandwidth will often be the constraining resource[23]. 
Hence, we want a model that relates processor performance to off-
chip memory traffic. 

Towards that goal, we use the term operational intensity to mean 
operations per byte of DRAM traffic. We define total bytes 
accessed as those that go to the main memory after they have been 
filtered by the cache hierarchy. That is, we measure traffic 
between the caches and memory rather than between the 
processor and the caches. Thus, operational intensity suggests the 
DRAM bandwidth needed by a kernel on a particular computer. 

We use operational intensity instead of the terms arithmetic 
intensity [16] or machine balance [8][11] for two reasons. First, 
arithmetic intensity and machine balance measure traffic between 
the processor and cache, whereas we want to measure traffic 
between the caches and DRAM. This subtle change allows us to 
include memory optimizations of a computer into our bound and 
bottleneck model. Second, we think the model will work with 
kernels where the operations are not arithmetic (see Section 7), so 
we needed a more general term than arithmetic. 

The proposed model ties together floating-point performance, 
operational intensity, and memory performance together in a two-
dimensional graph. Peak floating-point performance can be found 
using the hardware specifications or microbenchmarks. The 
working sets of the kernels we consider here do not fit fully in on-
chip caches, so peak memory performance is defined by the 
memory system behind the caches. Although you can find 
memory performance with the STREAM benchmark [22], for this 
work we wrote a series of progressively optimized 
microbenchmarks designed to determine sustainable DRAM 
bandwidth. They include all techniques to get the best memory 
performance, including prefetching and data alignment. (Section 
A.1 in the Appendix gives a more details of how to measure 
processor and memory performance and operational intensity.)1 

Figure 1a shows the model for a 2.2 GHz AMD Opteron X2 
model 2214 in a dual socket system. The graph is on a log-log 
scale. The Y-axis is attainable floating-point performance. The X-
axis is operational intensity, varying from 1/4 Flops/DRAM byte 
accessed to 16 Flops/DRAM byte accessed. The system being 
modeled has a peak double precision floating-point performance 
of 17.6 GFlops/sec and a peak memory bandwidth of 15 
GBytes/sec from our benchmark. This latter measure is the steady 
state bandwidth potential of the memory in a computer, not the 
pin bandwidth of the DRAM chips.  
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We can plot a horizontal line showing peak floating-point 
performance of the computer. Obviously, the actual floating-point 
performance of a floating-point kernel can be no higher than the 
horizontal line, since that is a hardware limit. 

How could we plot the peak memory performance? Since X-axis 
is GFlops per byte and the Y-axis is GFlops per second, bytes per 
second—which equals (GFlops/second)/(GFlops/byte)—is just a 
line at a 45-degree angle in this figure. Hence, we can plot a 
second line that gives the maximum floating-point performance 
that the memory system of that computer can support for a given 
operational intensity. This formula drives the two performance 
limits in the graph in Figure 1a: 

Attainable GFlops/sec = Min(Peak Floating Point Performance, 
Peak Memory Bandwidth x Operational Intensity) 

These two lines intersect at the point of peak computational 
performance and peak memory bandwidth. Note that these limits 
are created once per multicore computer, not once per kernel. 

For a given kernel, we can find a point on the X-axis based on its 
operational intensity. If we draw a (pink dashed) vertical line 
through that point, the performance of the kernel on that computer 
must lie somewhere along that line.  

The horizontal and diagonal lines give this bound model its name. 
The Roofline sets an upper bound on performance of a kernel 
depending on its operational intensity. If we think of operational 
intensity as a column that hits the roof, either it hits the flat part of 
the roof, which means performance is compute bound, or it hits 
the slanted part of the roof, which means performance is 
ultimately memory bound. In Figure 1a, a kernel with operational 
intensity 2 is compute bound and a kernel with operational 
intensity 1 is memory bound. Given a Roofline, you can use it 
repeatedly on different kernels, since the Roofline doesn’t vary. 

Note that the ridge point, where the diagonal and horizontal roofs 
meet, offers an insight into the overall performance of the 
computer. The x-coordinate of the ridge point is the minimum 
operational intensity required to achieve maximum performance. 
If the ridge point is far to the right, then only kernels with very 
high operational intensity can achieve the maximum performance 
of that computer. If it is far to the left, then almost any kernel can 
potentially hit the maximum performance. As we shall see 
(Section 6.3.5), the ridge point suggests the level of difficulty for 
programmers and compiler writers to achieve peak performance.  

To illustrate, let’s compare the Opteron X2 with two cores in 
Figure 1a to its successor, the Opteron X4 with four cores. To 
simplify board design, they share the same socket. Hence, they 
have the same DRAM channels and can thus have the same peak 
memory bandwidth, although the prefetching is better in the X4. 
In addition to doubling the number of cores, the X4 also has twice 
the peak floating-point performance per core: X4 cores can issue 
two floating-point SSE2 instructions per clock cycle while X2 
cores can issue two every other clock. As the clock rate is slightly 
faster—2.2 GHz for X2 versus 2.3 GHz for X4—the X4 has 
slightly more than four times the peak floating-point performance 
of the X2 with the same memory bandwidth.  

Figure 1b compares the Roofline models for both systems. As 
expected, the ridge point shifts right from 1.0 in the Opteron X2 to 
4.4 in the Opteron X4. Hence, to see a performance gain in the 
X4, kernels need an operational intensity higher than 1.  

 
Figure 1. Roofline Model for (a) AMD Opteron X2 on left  
and (b) Opteron X2 vs. Opteron X4 on right. 

4. ADDING CEILINGS TO THE MODEL 
The Roofline model gives an upper bound to performance. 
Suppose your program is performing far below its Roofline. What 
optimizations should you perform, and in what order? Another 
advantage of bound and bottleneck analysis is [20]  

“a number of alternatives can be treated together, with a single 
bounding analysis providing useful information about them all.”  

We leverage this insight to add multiple ceilings to the Roofline 
model to guide which optimizations to perform, which are similar 
to the guidelines that loop balance gives the compiler. We can 
think of each of these optimizations as a “performance ceiling” 
below the appropriate Roofline, meaning that you cannot break 
through a ceiling without performing the associated optimization. 

For example, to reduce computational bottlenecks on the Opteron 
X2, two optimizations can help almost any kernel:  

1. Improve instruction level parallelism (ILP) and apply SIMD. 
For superscalar architectures, the highest performance comes 
when fetching, executing, and committing the maximum 
number of instructions per clock cycle. The goal here is to 
improve the code from the compiler to increase ILP. The 
highest performance comes from completely covering the 
functional unit latency. One way is by unrolling loops. For 
the x86-based architectures, another way is using floating-
point SIMD instructions whenever possible, since an SIMD 
instruction operates on pairs of adjacent operands. 

2. Balance floating-point operation mix. The best performance 
requires that a significant fraction of the instruction mix be 
floating-point operations (see Section 7). Peak floating-point 
performance typically also requires an equal number of 
simultaneous floating-point additions and multiplications, 
since many computers have multiply-add instructions or 
because they have an equal number of adders and multipliers.  

 To reduce memory bottlenecks, three optimizations can help: 

3. Restructure loops for unit stride accesses. Optimizing for 
unit stride memory accesses engages hardware prefetching, 
which significantly increases memory bandwidth.  

4. Ensure memory affinity. Most microprocessors today include 
a memory controller on the same chip with the processors. If 
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the system has two multicore chips, then some addresses go 
to the DRAM local to one multicore chip and the rest must 
go over a chip interconnect to access the DRAM that is local 
to another chip. This latter case lowers performance. This 
optimization allocates data and the threads tasked to that data 
to the same memory-processor pair, so that the processors 
rarely have to access the memory attached to other chips. 

5. Use software prefetching. Usually the highest performance 
requires keeping many memory operations in flight, which is 
easier to do via prefetching rather than waiting until the data 
is actually requested by the program. On some computers, 
software prefetching delivers more bandwidth than hardware 
prefetching alone. 

Like the computational Roofline, the computational ceilings can 
come from an optimization manual [2], although it’s easy to 
imagine collecting the necessary parameters from simple 
microbenchmarks. The memory ceilings require running 
experiments on each computer to determine the gap between them 
(see Appendix A.1). The good news is that like the Roofline, the 
ceilings only need be measured once per multicore computer. 

Figure 2 adds ceilings to the Roofline model in Figure 1a: Figure 
2a shows the computational ceilings and Figure 2b the memory 
bandwidth ceilings. Although the higher ceilings are not labeled 
with lower optimizations, they are implied: to break through a 
ceiling, you need to have already broken through all the ones 
below. Figure 2a shows the computational “ceilings” of 8.8 
GFlops/sec if the floating-point operation mix is imbalanced and 

2.2 GFlops/sec if the optimizations to increase ILP or SIMD are 
also missing. Figure 2b shows the memory bandwidth ceilings of 
11 GBytes/sec without software prefetching, 4.8 GBytes/sec 
without memory affinity optimizations as well, and 2.7 
GBytes/sec with only unit stride optimizations. 

Figure 2c combines the other two figures into a single graph. The 
operational intensity of a kernel determines the optimization 
region, and thus which optimizations to try. The middle of Figure 
2c shows that the computational optimizations and the memory 
bandwidth optimizations overlap. The colors were picked to 
highlight that overlap. For example, Kernel 2 falls in the blue 
trapezoid on the right, which suggests working only on the 
computational optimizations. If a kernel fell in the yellow triangle 
on the lower left, the model would suggest trying just memory 
optimizations. Kernel 1 falls in the green (= yellow + blue) 
parallelogram in the middle, which suggests trying both types of 
optimizations. Note that the Kernel 1 vertical lines falls below the 
floating-point imbalance optimization, so optimization 2 may be 
skipped. 

The ceilings of the Roofline model suggest which optimizations to 
perform. The height of the gap between a ceiling and the next 
higher one is the potential reward for trying that optimization. 
Thus, Figure 2 suggests that optimization 1, which improves 
ILP/SIMD, has a large potential benefit for improving 
computation on that computer, and optimization 4, which 
improves memory affinity, has a large potential benefit for 
improving memory bandwidth on that computer.  

The order of the ceilings suggest the optimization order, so we 
rank the ceilings from bottom to top: those most likely to be 
realized by a compiler or with little effort by a programmer are at 
the bottom and those that are difficult to be implemented by a 
programmer or inherently lacking in a kernel are at the top. The 
one quirk is floating-point balance, since the actual mix is 
dependent on the kernel. For most kernels, achieving parity 
between multiplies and additions is very difficult, but for a few, 
parity is natural. One example is sparse matrix-vector 
multiplication. For that domain, we would place floating-point 
mix as the lowest ceiling, since it is inherent. Like the 3Cs model, 
as long as the Roofline model delivers on insights, it need not be 
perfect.  

 
Figure 2. Roofline Model with Ceilings for Opteron X2. 
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5. Tying the 3Cs to Operational Intensity 
Operational intensity tells us which ceilings to look at. Thus far, 
we have been assuming that the operational intensity is fixed, but 
that is not really the case. For example, there are kernels where 
the operational intensity increases with problem size, such as for 
Dense Matrix and FFT problems.  

Clearly, caches affect the number of accesses that go to memory, 
so optimizations that improve cache performance increase 
operational intensity. Hence, we can connect the 3Cs model to the 
Roofline model. Compulsory misses set the minimum memory 
traffic and hence the highest possible operational intensity. 
Memory traffic from conflict and capacity misses can 
considerably lower the operational intensity of a kernel, so we 
should try to eliminate such misses.  

For example, we can reduce traffic from conflict misses by 
padding arrays to change cache line addressing. A second 
example is that some computers have a no-allocate store 
instruction, so stores go directly to memory and do not affect the 
caches. This optimization prevents loading a cache block with 
data to be overwritten, thereby reducing memory traffic. It also 
prevents displacing useful items in the cache with data that will 
not be read thereby saving conflict misses.  

This shift right of operational intensity could put a kernel in a 
different optimization region. The advice is generally to improve 
operational intensity of the kernel before other optimizations. 

6. DEMONSTRATION OF THE MODEL 
To demonstrate the utility of the model, we develop Roofline 
models for 4 recent multicore computers and then optimize 4 
floating-point kernels. We then show that the ceilings and 
rooflines bound the achieved results for all computers and kernels. 

6.1 Four Diverse Multicore Computers 
Given the lack of conventional wisdom for multicore architecture, 
it’s not surprising that there are as many different designs as there 
are chips. Table 1 lists the key characteristics of the four multicore 
computers of this section, which are all dual-socket systems. 

The Intel Xeon uses relatively sophisticated processors, capable of 
executing two SIMD instructions per clock cycle that can each 
perform two double-precision floating-point operations. It is the 
only one of the four machines with a front side bus connecting to 
a common north bridge chip and memory controller. The other 
three have the memory controller on chip. 

The Opteron X4 also uses sophisticated cores with high peak 
floating–point performance, but it is the only computer of the four 
with on-chip L3 caches. These two sockets communicate over 
separate, dedicated Hypertransport links, which makes it possible 
to build a “glueless” multi-chip system. 

The Sun UltraSPARC T2+ uses relatively simple processors at a 
modest clock rate compared to the others, which allows it to have 
twice as many cores per chip. It is also highly multithreaded, with 
eight hardware-supported threads per core. It has the highest 
memory bandwidth of the four, for each chip has two dual-
channel memory controllers that can drive four sets of 
DDR2/FBDIMMs. 

The clock rate of IBM Cell QS20 is highest of the four multicores 
at 3.2 GHz. It is also most unusual. It is a heterogeneous design, 

with a relatively simple PowerPC core and with eight SPEs 
(Synergistic Processing Elements) that have their own unique 
SIMD-style instruction set. Each SPE also has its own local 
memory instead of a cache. An SPE must transfer data from main 
memory into the local memory to operate on it and then back to 
main memory when it is completed. It uses DMA, which has 
some similarity to software prefetching. The lack of caches means 
porting programs to Cell is more challenging. 

6.2 Four Diverse Floating-Point Kernels 
Rather than pick programs from some standard parallel 
benchmark suite such as Parsec [5] or Splash-2 [30], we were 
inspired by the work of Phil Colella [10]. This expert in scientific 
computing has identified seven numerical methods that he 
believes will be important for science and engineering for at least 
the next decade. Because he picked seven, they have become 
known as the Seven Dwarfs. The dwarfs are specified at a high 
level of abstraction to allow reasoning about their behavior across 
a broad range of implementations. The widely read “Berkeley 
View” report [4] found that if the data types were changed from 
floating point to integer, those same dwarfs could also be found in 
many other programs. Note that the claim is not that the dwarfs 
are easy to parallelize. The claim is that they will be important to 
computing in most current and future applications, so designers 
are advised to make sure they run well on systems that they 
create, whether or not their creations are parallel. 

One advantage of using these higher-level descriptions of 
programs is that we are not tied to code that may have been 
written originally to optimize an old computer to evaluate future 
systems. Another advantage of the restricted number is that we 
can create autotuners for each kernel that would search the space 
of alternatives to produce the best code for that multicore 
computer, including extensive cache optimizations [13]. 

With that background, Table 2 lists the four kernels from the 
dwarfs that we use to demonstrate the Roofline Model on the four 
multicore computers of Table 1. The auto-tuning for this section is 
from [12], [25] and [26]. 

For these kernels, there is sufficient parallelism to utilize all the 
cores and threads and to keep them load balanced. (Appendix A.2 
describes how to handle cases when load is not balanced.)  

Table 1. Characteristics of four recent multicores. 
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ISA x86/64 x86/64 SPARC Cell SPEs 
Total Threads 8 8 128 16 

Total Cores 8 8 16 16 
Total Sockets 2 2 2 2 

 GHz 2.33 2.30 1.17 3.20 
Peak GFlop/s 75 74 19 29 

Peak  
DRAM GB/s 

21.3r, 
10.6w  

2 x 10.6 2 x 21.3r, 
2 x 10.6w 

2 x 25.6 

Stream GB/s 5.9 16.6 26.0 47.0 
DRAM Type FBDIMM DDR2 FBDIMM XDR 
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Table 2. Characteristics of four FP Kernels. 

Name Oper. 
Inten. Description 

SpMV 
[26] 

0.17 to 
0.25 

Sparse Matrix-Vector multiply: y = A*x 
where A is a sparse matrix and x, y are 
dense vectors; multiplies and adds equal. 

LBMHD 
[25] 

0.70 to 
1.07 

Lattice-Boltzmann Magnetohydro- 
dynamics is a structured grid code with a 
series of time steps.  

Stencil 
[12] 

0.33 to 
0.50 

A multigrid kernel that updates 7 nearby 
points in a 3-D stencil for a 2563 problem 

 3-D 
FFT 

1.09 to 
1.64  

Three-Dimensional Fast Fourier 
Transform (2 sizes: 1283 and 5123). 

6.3 Roofline Models and Results 
Figure 3 shows the Roofline models for Xeon, X4, and Cell. The 
pink vertical dashed lines show the operational intensity and the 
red X marks performance achieved for that kernel. As mentioned 
above, adds and multiplies are naturally equal in SpMV, so 
balance is easy for this kernel but hard for the others. Hence, there 
are two graphs per computer in Figure 3: the left graphs have 
multiply-add balance as the top ceiling for LBMHD, Stencil, and 
3-D FFT, and those on the right have multiply-add as the bottom 
ceiling for SpMV. Since the T2+ does not have a fused multiply-
add instruction nor can it simultaneously issue multiplies and 
adds, Figure 4 shows a single roofline for the four kernels for T2+ 
without the multiply-add balance ceiling. 

The Intel Xeon has the highest peak double precision performance 
of the four multicores. However, the Roofline model in Figure 3a 
shows that this can be achieved only with operational intensities 
of at least 6.7; started alternatively, balance requires 55 floating-
point operations for every double precision operand (8 bytes) 
going to DRAM. This high ratio is due in part to the limitation of 
the front side bus, which also carries coherency traffic that can 
consume half the bus bandwidth. Intel includes a snoop filter to 
prevent unnecessary coherency traffic on the bus. If the working 
set is small enough for the hardware to filter, the snoop filter 
nearly doubles the delivered memory bandwidth. 

The Opteron X4 has a memory controller on chip, its own path to 
667 MHz DDR2 DRAM, and separate paths for coherency. Figure 
3 shows that the ridge point in the Roofline model is to the left of 
the Xeon, at an operational intensity of 4.4 Flops per byte. The 
Sun T2+ has the highest memory bandwidth so the ridge point is 
an exceptionally low operational intensity of just 0.33 Flops per 
byte. It keeps multiple memory transfers in flight by using many 
threads. The IBM Cell ridge point of operational intensity is 0.65.  

6.3.1 Sparse Matrix-Vector Multiplication 
The first example kernel of the sparse matrix computational dwarf 
is Sparse Matrix-Vector multiply (SpMV). The computation is y = 
A*x where A is a sparse matrix and x and y are dense vectors. 
SpMV is popular in scientific computing, economic modeling, 
and information retrieval. Alas, conventional implementations 
often run at less than 10% of peak floating-point performance in 
uniprocessors. One reason is the irregular accesses to memory, 
which you might expect from sparse matrices. The operational 
intensity varies from 0.17 before a register blocking optimization 
to 0.25 Flops per byte afterwards [29]. (See Appendix A.1.) 

Given that the operational intensity of SpMV was below the ridge 
point of all four multicores in Figure 3, most of the optimizations 
involved the memory system. Table 3 summarizes the 
optimizations used by SpMV and the rest of the kernels. Many are 
associated with the ceilings in Figure 3, and the height of the 
ceilings suggests the potential benefit of these optimizations. 

6.3.2 Lattice-Boltzmann Magnetohydrodynamics 
Like SpMV, LBMHD tends to get a small fraction of peak 
performance on uniprocessors because of the complexity of the 
data structures and the irregularity of memory access patterns. The 
Flops to byte ratio is 0.70 versus 0.25 or less in SpMV. By using 
the no-allocate store optimization, the LBMHD intensity rises to 
1.07. Both x86 multicores offer this cache optimization, and Cell 
does not have this problem since it uses DMA. Hence, T2+ is the 
only one with the lower intensity of 0.70. 

Figures 3 and 4 show that the operational intensity of LBMHD is 
high enough that both computational and memory bandwidth 
optimizations make sense on all multicores but the T2+, whose 
Roofline ridge point is below that of LBMHD. The T2+ reaches 
its performance ceiling using only the computational 
optimizations. 

6.3.3 Stencil 
In general, a stencil on a structure grid is defined as a function that 
updates a point based on the values of its neighbors. The stencil 
structure remains constant as it moves from one point in space to 
the next. For this work, we use the stencil derived from the 
explicit heat equation PDE on a uniform 2563 3-D grid [12]. The 
neighbors for this stencil are the nearest 6 points along each axis 
as well as the center point itself. This stencil will do 8 floating-
point operations for every 24 bytes of compulsory memory traffic 
on write-allocate architectures, yielding an operational intensity of 
0.33. 

6.3.4 3-D FFT 
This fast Fourier transform is the classic divide and conquer 
algorithm that recursively breaks down a discrete Fourier 
transform into many smaller ones. The FFT is ubiquitous in many 
domains, such as image processing and data compression. An 
efficient approach for 3-D FFT is to perform 1-D transforms along 
each dimension to maintain unit-stride accesses. We computed the 
1-D FFTs on Xeon, X4, and T2+ using an autotuned library 
(FFTW) [15]. For Cell, we implemented a radix-2 FFT.  
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Figure 3. Roofline Model for Intel Xeon, AMD Opteron X4, and IBM Cell (see Table 1). 
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Figure 4. Roofline Model for Sun UltraSPARC T2+. 

 

Table 3. Kernel Optimizations [12], [26] [25]. 
Memory Affinity. Reduce accesses to DRAM memory attached to 
the other socket. 
Long unit-stride accesses. Change loop structures to generate 
long unit-stride accesses to engage the prefetchers. Also reduces 
TLB misses.  
Software Prefetching. To get the most out of the memory 
systems, both software and hardware prefetching were used. 
Reduce conflict misses. Pad arrays to improve cache-hit rates. 
Unroll and Reorder Loops. To expose sufficient parallelism and 
improve cache utilization, unroll and reorder loops to group 
statements with similar addresses; improves code quality, 
reduces register pressure, and facilitates SIMD. 
“SIMD-ize” the code. The x86 compilers didn't generate good 
SSE code, so made a code generator to produce SSE intrinsics. 
Compress Data Structures (SpMV only). Since bandwidth limits 
performance, use smaller data structures: 16-bit vs. 32-bit index 
and smaller representations of non-zero subblocks [24]. 
 

FFT differs from the three kernels above in that its operational 
intensity is a function of problem size. For the 1283- and 5123-
point transforms we examine, the operational intensities are 1.09 
and 1.41, respectively. (Cell’s 1 GB main memory is too small to 
hold 5123 points, so we estimate this result.) On Xeon and X4, an 
entire 128x128 plane fits in cache, increasing temporal locality 
and improving the intensity to 1.64 for the 1283-point transform. 

6.3.5 Productivity vs. Performance 
In addition to performance, another important issue for the 
parallel computing revolution is productivity, or the programming 
difficulty of achieving good performance [4]. One question is 
whether a low ridge point gives insight into productivity. 

The Sun T2+, with the lowest ridge point, was easiest to program, 
due to its large memory bandwidth and its easy-to-understand 
cores. The advice for these kernels on T2+ is simply to try to get 
good performing code from the compiler and then use as many 

threads as possible. The downside was that the L2 cache was only 
16-way set associative, which can lead to conflict misses when 64 
threads access the cache, as it did for Stencil. 

In contrast, the computer with the highest ridge point had the 
lowest unoptimized performance. The Intel Xeon was difficult 
because it was hard to understand the memory behavior of the 
dual front side buses, hard to understand how hardware 
prefetching worked, and because of the difficulty of getting good 
SIMD code from the compiler. The C code for it and for the 
Opteron X4 are liberally sprinkled with intrinsic statements 
involving SIMD instructions to get good performance. With a 
ridge point close to the Xeon, the Opteron X4 was about as much 
effort, since the Opteron X4 benefited from the most types of 
optimizations. However, the memory behavior of the Opteron X4 
was easier to understand than that of the Xeon.  

The IBM Cell, with a ridge point almost as low as the Sun T2+, 
provided two types of challenges. First, it was awkward to 
compile for the SIMD instructions of Cell’s SPE, so at times we 
needed to help the compiler by inserting intrinsic statements with 
assembly language instructions into the C code. This comment 
reflects the immaturity of the IBM compiler as well as the 
difficulty of compiling for these SIMD instructions. Second, the 
memory system was more challenging. Since each SPE has local 
memory in a separate address space, we could not simply port the 
code and start running on the SPE. We needed to change the 
program to issue DMA commands to transfer data back and forth 
between local store and memory. The good news is that DMA 
played the role of software prefetch in caches. DMA for a local 
store is easier to program, to achieve good memory performance, 
and to overlap with computation than prefetching to caches. 

6.3.6 Summary of Roofline Model Demonstration 
To demonstrate the utility of the Roofline Model, Table 4 shows 
upper and lower ceilings and the GFlops/s and GByte/s per 
kernel-computer pair; recall that operational intensity is the ratio 
between the two rates. The ceilings listed are the ceilings that 
sandwich the actual performance. All 16 cases validate this bound 
and bottleneck model since the upper and lower ceilings of 
Roofline bound performance and the kernels were optimized as 
the lower ceilings suggest. The metric that limits performance is 
in bold: 15 of 16 ceilings are memory bound for Xeon and X4 
while it’s almost evenly split for T2+ and Cell. For FFT, 
interestingly, the surrounding ceilings are memory bound for 
Xeon and X4 but compute bound for T2+ and Cell.  

7. FALLACIES ABOUT ROOFLINE 
We have presented this material in several venues, so there are 
some common questions that arise that we answer here. 

Fallacy: The model does not take into account all features of 
modern processors, such as caches or prefetching. 

The definition of operational intensity in this paper does indeed 
factor in caches: memory accesses are measured between the 
caches and memory, not between the processor and caches. 
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Table 4. Achieved Performance and Nearest Roofline Ceilings, with Metric Limiting Performance in Bold (3-D FFT is 1283). 
  Upper Ceiling Achieved Performance Lower Ceiling 

  
Kernel 

Type Name Value Compute Memory O.I. Type Name Value 
SpMV Memory Stream BW 11.2 GByte/s  2.8 GFlop/s   11.1 GB/s  0.25 Memory Snoop filter 5.9 GByte/s 
LBMHD Memory Snoop filter 5.9 GByte/s  5.6 GFlop/s   5.3 GB/s  1.07 Memory (none) 0.0 GByte/s 
Stencil Memory Snoop filter 5.9 GByte/s  2.5 GFlop/s   5.1 GB/s  0.50 Memory (none) 0.0 GByte/s 

Intel 
Xeon 

3-D FFT Memory Snoop filter 5.9 GByte/s  9.7 GFlop/s   5.9 GB/s  1.64 Compute TLP only 6.2 GFlop/s 
SpMV Memory Stream BW 17.6 GByte/s  4.2 GFlop/s   16.8 GB/s  0.25 Memory Copy BW 13.9 GByte/s 
LBMHD Memory Copy BW 13.9 GByte/s  11.4 GFlop/s   10.7 GB/s  1.07 Memory No Affinity 7.0 GByte/s 
Stencil Memory Stream BW 17.6 GByte/s  8.0 GFlop/s   16.0 GB/s  0.50 Memory Copy BW 13.9 GByte/s 

AMD 
X4 

3-D FFT Memory Copy BW 13.9 GByte/s  14.0 GFlop/s   8.6 GB/s  1.64 Memory No Affinity 7.0 GByte/s 
SpMV Memory Stream BW 36.7 GByte/s  7.3 GFlop/s   29.1 GB/s  0.25 Memory No Affinity 19.8 GByte/s 
LBMHD Memory No Affinity 19.8 GByte/s  10.5 GFlop/s   15.0 GB/s  0.70 Compute 25% issued FP 9.3 GFlop/s 
Stencil Compute 25% issued FP 9.3 GFlop/s  6.8 GFlop/s   20.3 GB/s  0.33 Memory No Affinity 19.8 GByte/s 

Sun 
T2+ 

3-D FFT Compute Peak DP 19.8 GFlop/s 9.2 GFlop/s  10.0 GB/s  1.09 Compute 25% issued FP 9.3 GFlop/s 
SpMV Memory Stream BW 47.6 GByte/s  11.8 GFlop/s   47.1 GB/s  0.25 Memory FMA 7.3 GFlop/s 
LBMHD Memory No Affinity 23.8 GByte/s  16.7 GFlop/s   15.6 GB/s  1.07 Memory Without FMA 14.6 GFlop/s 
Stencil Compute Without FMA 14.6 GFlop/s  14.2 GFlop/s   30.2 GB/s  0.47 Memory No Affinity 23.8 GByte/s 

IBM 
Cell 

3-D FFT Compute Peak DP 29.3 GFlop/s 15.7 GFlop/s  14.4 GB/s  1.09 Compute SIMD 14.6 GFlop/s 
Section 2 shows that the memory bandwidth measures of the 
computer do include prefetching and any other optimization that 
can improve memory performance such as blocking. Similarly, 
some of the optimizations in Table 3 explicitly involve memory.  
Moreover, Section 5 demonstrates their effect on increasing 
operational intensity by reducing capacity and conflict misses. 

Fallacy: Doubling cache size will increase operational intensity. 

Autotuning three of the four kernels gets very close to the 
compulsory memory traffic; in fact, the resultant working set is 
sometimes only a small fraction of the cache. Increasing cache 
size helps only with capacity misses and possibly conflict misses, 
so a larger cache can have no effect on the operational intensity 
for those three kernels. For 1283 3-D FFT, however, a large cache 
can capture a whole plane of a 3-D cube, which improves 
operational intensity by reducing capacity and conflict misses. 

Fallacy: The model doesn’t account for the long memory latency. 

The ceilings for no software prefetching in Figures 3 and 4 are at 
lower memory bandwidth precisely because they cannot hide the 
long memory latency. 

Fallacy: The model ignores integer units in floating-point 
programs, which can limit performance. 

For the examples in this paper, the amount of integer code and the 
integer performance can affect performance. For example, the Sun 
UltraSPARC T2+ fetches two instructions per core per clock 
cycle, and it doesn’t have the SIMD instructions of the x86 that 
can operate on two double-precision floating-point operands at a 
time. Relative to others, T2+ executes more integer instructions 
and executes them at a lower rate, which hurts overall 
performance. 

Fallacy: The model has nothing to do with multicore. 

Little's Law [21][20][17] dictates that to really push the limits of 
the memory system, considerable concurrency is necessary. That 
concurrency is more easily satisfied in a multicore than in a 
uniprocessor. While the bandwidth orientation of the Roofline 
model certainly works for uniprocessors, it is even more helpful 
for multicores. 

Fallacy: You need to recalculate the model for every kernel. 

The Roofline need to be calculated for given performance metrics 
and computer just once, and then guide the design for any 
program for which that metric is the critical performance metric. 
The examples in this paper used floating-point operations and 
memory traffic. The ceilings are measured once, but they can be 
reordered depending whether the multiplies and adds are naturally 
balanced or not in the kernel (see Section 4). 

Note that the heights of the ceilings in this paper document the 
maximum potential gain of a code performing this optimization. 
An interesting future direction is to use performance counters to 
adjust the height of the ceilings and the order of the ceilings for a 
particular kernel to show the actual benefits of each optimization 
and the recommended order to try them (see Appendix A.3).  

Fallacy: The model is limited to easily optimized kernels that 
never hit in the cache. 

First, these kernels do hit in the cache. For example, the cache-hit 
rates of our three multicores with on-chip caches are at least 94% 
for stencil and 98% for FFT. Second, if the dwarfs were easy to 
optimize, that would bode well for the future of multicores. Our 
experience, however, is that it was not easy to create the fastest 
version of these numerical methods on the divergent multicore 
architectures presented here. Indeed, three of the results were 
considered significant enough to be accepted for publication at 
major conferences [12][25][26]. 

Fallacy: The model is limited to floating-point programs. 

Our focus in this paper has also been on floating-point programs, 
so the two axes of the model are floating-point operations per 
second and the floating-point operational intensity of accesses to 
main memory. However, we believe the Roofline model can work 
for other kernels where the performance was a function of 
different performance metrics.  

A concrete example is the transpose phase of 3-D FFT, which 
does no floating-point operations at all. Figure 5 shows a Roofline 
model for just this phase on Cell, with exchanges replacing Flops 
in the model. One exchange involves reading and writing 16 
bytes, so its operational intensity is 1/32. Despite the 
computational metric being memory exchanges, note that there is 
still a computational horizontal Roofline since local stores and 
caches could affect the number of exchanges that go to DRAM. 
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Figure 5. Roofline for transpose phase of 3-D FFT for the Cell 

Fallacy: The Roofline model must use DRAM bandwidth. 

If the working set fits in the L2 cache, the diagonal Roofline could 
be L2 cache bandwidth instead of DRAM bandwidth, and the 
operational intensity on the X-axis would be based on Flops per 
L2 cache byte accessed. The diagonal memory performance line 
would move up, and the ridge point would surely move to the left.  

For example, Jike Chong ported two financial PDE solvers to four 
other multicore computers: the Intel Penryn and Larrabee and 
NVIDIA G80 and GTX280.[9] He used the Roofline model to 
keep track the platforms' peak arithmetic throughput and L1, L2, 
and DRAM bandwidths. By analyzing an algorithm's working set 
and operational intensity, he was able to use the Roofline model to 
quickly estimate the needs for algorithmic improvements. 
Specifically, for the option-pricing problem with an implicit PDE 
solver, the working set is small enough to fit into L1 and the L1 
bandwidth is sufficient to support peak arithmetic throughput, so 
the Roofline model indicates that no optimization is necessary. 
For option pricing with an explicit PDE formulation, the working 
set is too large to fit into cache, and the Roofline model helps to 
indicate the extent to which cache blocking is necessary to extract 
peak arithmetic performance. 

8. CONCLUSIONS 
The sea change from sequential computing to parallel computing 
is increasing the diversity of computers that programmers must 
confront in making correct, efficient, scalable, and portable 
software [4]. This paper describes a simple and visual model to 
help see which systems would be a good match to important 
kernels, or conversely, to see how to change kernel code or 
hardware to run desired kernels well. For floating-point kernels 
that do not fit completely in caches, we showed how operational 
intensity—the number of floating point operations per byte 
transferred from DRAM—is an important parameter for both the 
kernels and the multicore computers.  

We applied the model to four kernels from the seven dwarfs 
[10][4] to four recent multicore designs: the AMD Opteron X4, 
Intel Xeon, IBM Cell, and Sun T2+. The ridge point—the 
minimum operational intensity to achieve maximum 

performance—proved to be a better predictor of performance than 
clock rate or peak performance. Cell offered the highest 
performance on these kernels, but T2+ was the easiest computer 
on which to achieve its highest performance. One reason is 
because ridge point of the Roofline model for T2+ was the lowest.  

Just the graphical Roofline offers insights into the difficulty of 
achieving the peak performance of a computer, as it makes 
obvious when a computer is imbalanced. The operational ridge 
points for the two x86 computers were 4.4 and 6.7—meaning 35 
to 55 Flops per 8-byte operand that accesses DRAM—yet the 
operational intensities for the 16 combinations of kernels and 
computers in Table 4 ranged from 0.25 to just 1.64, with a median 
of 0.60. Architects should keep the ridge point in mind if they 
want programs to reach peak performance on their new designs. 

We measured the roofline and ceilings using microbenchmarks, 
but we could have used performance counters (see Appendix A.1 
and A.3).  In fact, we believe there may be a synergistic 
relationship between performance counters and the Roofline 
model. The requirements for automatic creation of a Roofline 
model could guide the designer as to which metrics should be 
collected when faced with literally hundreds of candidates but a 
limited hardware budget. [6] 

We believe Roofline models can offer insights to other types of 
multicore systems such as vector processors and GPUs (Graphical 
Processing Units); other kernels such as sort and ray tracing; other 
computational metrics such as pair-wise sorts per second and 
frames per second; and other traffic metrics such as L3 cache 
bandwidth and I/O bandwidth. Alas, there are many more 
opportunities than we can pursue. Thus, we invite others to join us 
in the exploration of the effectiveness of Roofline models. 
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Appendix A 
To put the model into a global perspective, Figure A1 shows the 
general goals of program optimization: increasing computational 
performance, increasing memory performance, and increasing 
operational intensity.  When left of the ridge point, increasing 
operational intensity improves performance by increasing locality. 
 

A.1 Finding Operational Intensity, Rooflines, 
and Ceilings 
A DRAM bandwidth-oriented Roofline model is built using three 
sets of numbers collected either from microbenchmarks or derived 
from a given architecture’s software optimization manual 
[AMD08]. In general, performance is the minimum of: 

1. Op. Intensity * Bandwidth (with optimizations 1…i) 
2. In-core Flop/sec (with optimizations 1…j) 
3. In-core Flop/sec as a function of the floating-point 

fraction. 
Typically one of the last two dominates on a given architecture. 
As such, we draw only one Roofline per machine. These 
parameters provide kernel-independent bounds to performance.  
Thus, these parameters are collected independently only once per 
machine per metric.  This section details how these ceilings are 
either measured or calculated.     

A.1.1 Operational Intensity 
True operational intensity is both architecture- and kernel-
dependent and thus must be calculated for every kernel-
architecture combination. Perhaps the easiest way to calculate 
operational intensity is to use performance counters to measure 
the actual number of operations and to measure the actual amount 
of memory traffic when running the kernel. In practice, depending 
on the kernel, it may be easy to calculate both the number of 
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interesting operations and the minimum memory traffic by hand.  
Thus, one can bound the operational intensity. 

A.1.2 Main Memory Bandwidth 
The first set of ceilings is main memory bandwidth with 
increasing optimization. Although the STREAM benchmark 
claims to report this bandwidth, it does not. It actually measures 
performance in terms of iterations per second, and then attempts 
to convert this to bandwidth based on the compulsory memory 
traffic on a non-write allocate architecture. This subtle, yet critical 
difference implies it cannot account for either conflict misses or 
the traffic associated with a fill on a write miss.  

 To correctly measure streaming bandwidth, we wrote a series of 
highly tuned versions of the STREAM benchmark that perform 
both a dot product and a copy. We pad arrays to avoid both bank 
and cache conflicts. We exploit the cache bypass instructions or 
increase the conversion constant to account for the fill traffic. The 
most naïve implementation allocates all data on one processor (no 
memory affinity), but is appropriately unrolled and padded. We 
proceed by correctly exploiting memory affinity and collect a new 
bandwidth. We then add software prefetching with an auto-tuned 
prefetch distance to the loop and measure bandwidth. Finally, we 
attempt to reduce the data set size to improve the effectiveness of 
a snoop filter. This provides a fourth bandwidth.  We benchmark 
these individually, and define a new ceiling for each measured 
bandwidth.   

A.1.3 In-Core Parallelism 
 To estimate performance as a function of exploited in-core 
parallelism we rely on the appropriate software optimization 
manual [AMD08] for the architecture in question. In the long 
term, this is not a productive solution, as one would need to be 
very familiar with the breadth and evolution of all current and 
future architectures. However, for the purposes of this paper, no 
benchmark was necessary. 
Consider the following reduction: 

y = x[1] + x[2] + x[3] + … + x[N] 

We define thread-level-parallelism as the simplest parallelization 
optimization that could be applied.  As such, the lowest ceiling is 
defined as the thread-level-parallelism-only ceiling. Each thread 
receives N/NThreads elements.  We assume each thread executes 
a naïvely unrolled, yet dependent chain of scalar floating-point 
adds. Thus there is no instruction-, data-, or functional unit-level 
parallelism in the lowest ceiling. As such, the next add in the 
chain cannot be started until the previous has been completed.  As 
a result, the latency of the floating-point pipeline is exposed.  The 
resultant bound on throughput, irrespective of bandwidth, is 
calculated as: 

Cores × Frequency × max(1, ThreadsPerCore/Latency) 

Where ThreadsPerCore is the number of cores sharing a FPU 
within a core on a fine-grained multithreaded architecture.  With 
enough threads, the FPU can be full utilized with ‘Latency’ 
threads hiding the FPU latency. 

If the loop were further optimized by unrolling and maintaining 
several partial sums, then instruction-level parallelism is 
expressed.  Thus, the next ceiling assumes sufficient per thread 
instruction-level parallelism to hide the functional unit latency. 
SIMD may not be included. Thus, the FPU would be completely 
occupied with scalar adds. The resultant throughput is: 

Cores × Frequency  

Third, we add data-level parallelism (SIMD) to the mix. Thus 
every two scalar add instructions into the partial sums becomes 

 
Figure A1. General ways to improve performance in the 
Roofline model. 
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one SIMD add instruction in which two partial sums are stored in 
a SIMD register.  For arbitrary SIMD register width, the resultant 
ceiling that incorporates thread-, instruction, and data-level 
parallelism is calculated as: 

Cores × Frequency × SIMD width / SIMD throughput 

The throughput term must be included as some architectures 
support SIMD instructions, but execute only one element per 
cycle. Thus, for an older Santa Rosa Opteron processor executing 
double precision SIMD instructions, the width is 2 FLOPs and 
throughput is one instruction per two cycles.   
Notice, the code does not perform any floating-point multiplies.  
However, if it were changed to: 

y = y[1]*x[1] + y[2]*x[2] + y[3]*x[3] + … + y[N]*x[N] 

Then there would be essentially a balance between the number of 
multiplies and adds.  As such, we define peak in-core performance 
as the execution of unrolled and SIMDized fused multiply adds 
(FMAs); that is, the simultaneous execution of multiplies and 
adds. Architectures with a FMA or parallel add and multiply 
datapaths, the resultant bound on in-core performance is: 

2 × Cores × Freq. × SIMD width / SIMD throughput 

On Niagara2, where each core may issue only one scalar floating-
point instruction per cycle, this is calculated as: 

Cores × Frequency 

Note that some computers, such as the IBM P5, have multiple, 
identical floating point datapaths. ILP would be used to satisfy 
both superscalar and deeply pipelined functional units.  As such, 
they could get even more benefit from greater ILP than these 
equations show. 

A.1.4 Instruction Mix 
All processors have limited instruction issue bandwidth. Their 
floating-point issue bandwidth is less than or equal to this 
bandwidth. As the non-floating-point fraction of issued 
instructions increases, eventually floating-point issue bandwidth 
will be starved to serve non-floating-point instructions. We 
calculate an orthogonal set of ceilings based on the floating-point 
fraction of the instruction mix assuming full exploitation of in-
core parallelism. This approach is somewhat complicated as on 
Cell a double precision instruction stalls the issue unit for a 
further 6 cycles. We delineate the floating-point fraction in 
negative powers of 2. For a given architecture and kernel it is 
usually clear which in-core ceilings should be used.  Such ceilings 
account for the potentially limited integer performance of these 
machines.  
 

A.2 LOAD BALANCE AND ROOFLINE 
Load balance can loosely be categorized as either imbalance in the 
memory accesses or imbalance in the computation.  

A.2.1 Computation Imbalance 
Computational imbalance is easily visualized and understood. As 
imbalance increases, fewer and fewer threads must do all the 
work. In the limiting case, exempting poor barrier 
implementations, performance is sequential. Thus, we may define 
logP ceilings denoting powers-of-two load imbalance bounds on 
performance. Depending on whether load balancing is perceived 
as a more tractable problem than in-core optimization, it can be 

placed either directly below the roofline or below the TLP only 
ceiling. Figures A2 and A3 show the two approaches to a Roofline 
model for load balancing computation. 

 

Figure A2. Roofline for AMD Opteron X4 where first step is 
to load balance, then to optimize. 

 
Figure A3. Roofline for AMD Opteron X4 where first step is 
to optimize performance within a core, and then to load 
balance. 

A.2.2 Memory Imbalance 
Memory imbalance occurs when the main memory traffic 
generated by one core is dramatically different than another or 
when some of the memory controllers are much more heavily 
loaded than others. Previously, we explored the latter in the case 
of memory affinity. When all of the data is located with one 
socket of a shared memory multiprocessor, there is a clear 
imbalance in the load on the memory controllers—the controllers 
of the other sockets are unused. In the context of the Roofline 
model, a bandwidth ceiling denotes this diminished performance.  
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In the context of imbalance in the memory traffic generated per 
core, Little’s law is not being satisfied. The same concurrency is 
required based on the latency-bandwidth product. However, cores 
that do not generate any main memory traffic diminish the chip-
wide concurrency that can be exploited. When the exploited 
concurrency dips below the requisite concurrency to satisfy 
Little’s Law, sustained bandwidth decreases. For our SPMD 
codes, this imbalance never happened.  

However, in general one could visualize this as a series of 
progressively lower bandwidth ceilings labeled by the fraction of 
cores generating main memory traffic. These could either be 
placed below the roofline or below the lowest ceiling depending 
on which is perceived as easier to achieve: memory optimizations 
or load balance.  A benchmark is required to generate such a 
figure.  Figure A4 shows memory imbalance. 

 

Figure A4. Roofline for Sun UltraSPARC T2 where memory 
accesses are unbalanced. 

 
A.3 INTERACTION WITH 
PERFORMANCE COUNTERS 
The Roofline as drawn shows the benefit of full exploitation of 
each architectural paradigm. The good news is that this model 
gives insight to the architect, compiler writer, and programmer as 
to what are the strengths and weaknesses of a system.  
If one gets 100% of ILP, 100% if DLP, and 50% of multiply/add 
balance it is easy to estimate performance. However, in practice it 
might not be possible to fully exploit all but one feature. In reality, 
one might exploit 85% of ILP, 75% of SIMD, and have 65% 
balance between multiplies and adds.  

Hence, an interesting future direction is to supplement the 
“architecture-oriented” Roofline model presented above is to use 
performance counters to generate a “runtime-oriented” Roofline 
model. One could start from the base Roofline and use 
performance counters to generate ceilings that represent how 
much performance was lost due to not exploiting the various 
architectural features. For example, one could examine the 
performance counter that counts how many floating-point SIMD 
instructions were issued. Dividing this by the total number of 

issued floating-point instructions would define a true SIMD 
ceiling. To be clear, if no SIMD instructions were issued, then the 
ceiling would equal half the peak performance, but if all 
instructions issued were SIMD, then the ceiling would be the 
peak. It is critical that when calculating in-core ceilings, stalls 
from memory be ignored.  
Performance counters could also be used to estimate the true 
limitations to peak bandwidth. It is easy to calculate bandwidth by 
counting the total DRAM memory traffic across all memory 
controllers. By using performance counters to note imbalance 
among memory controllers, one could estimate the benefit of 
further memory affinity optimizations. Similarly, one could count 
the latency cycles when queues aren’t full to determine the actual 
potential of software prefetching.  

Finally, performance counters could be used to determine the true 
operational intensity.  Ideally, performance counters that could 
distinguish compulsory misses from capacity or conflict misses.  
As such one could decide if cache optimizations are likely to be 
beneficial.  Moreover, if one could distinguish capacity misses 
from conflict misses, one could decide whether cache blocking or 
array padding optimizations are likely to show benefits.   

Figure A5 shows the traditional architectural-oriented model of 
the Opteron X4, while Figure A6 shows the runtime-oriented 
Roofline model for the Opteron X4 for a hypothetical kernel. 

 
Figure A5. Traditional Architecture-Oriented Roofline Model 
for the Opteron X4, as presented earlier in the paper. 
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Figure A6. Runtime-Oriented Roofline Model of the Opteron 
X4, in contrast Architecture-Oriented Model in Figure A5. 
 

 


