
Matrix regularization techniques for online multitask
learning

Alekh Agarwal
Alexander Rakhlin
Peter Bartlett

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-138

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-138.html

October 23, 2008



Copyright  2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Matrix regularization techniques for online multitask learning

Alekh Agarwal∗

Computer Science Division
UC Berkeley

alekh@cs.berkeley.edu

Alexander Rakhlin
Computer Science Division

UC Berkeley
rakhlin@cs.berkeley.edu

Peter L. Bartlett
Computer Science Division
Department of Statistics

UC Berkeley
bartlett@cs.berkeley.edu

Abstract

In this paper we examine the problem of prediction with expert advice in a setup where the learner
is presented with a sequence of examples coming from different tasks. In order for the learner to be able
to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by
constraining the comparator to use a lesser number of best experts than the number of tasks. We show
how this corresponds naturally to learning under spectral or structural matrix constraints, and propose
regularization techniques to enforce the constraints. The regularization techniques proposed here are
interesting in their own right and multitask learning is just one application for the ideas. A theoretical
analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is
reported.

1 Introduction

The problem of multitask learning is a scenario where the learner receives examples drawn from more than
one task. As algorithms for single-task problems are readily available, the simplest approach is to solve each
of the tasks independently of the others. However, if tasks are related, ignoring the common structure means
throwing out useful information. From the algorithmic point of view, the hallmark of multitask learning is
developing ways of exploiting task relatedness. From the theoretical point of view, the goal is to quantify
the improvement, taking as a baseline performance when tasks are learned separately. In this paper, we
provide a new algorithm and quantify the gain of learning the tasks together. We note that the algorithm
we present is interesting in its own right and can be employed in settings beyond multitask learning.

The multitask learning problem has seen a lot of work in recent years (e.g. [4], [3], [2]). A common theme
of all these approaches is to model the notion of task relatedness via an assumption about the low rank of
the data matrix. However, these approaches often result in non-convex optimization problems, which cannot
be solved exactly in a computationally efficient manner. Also, no significant theoretical analysis has been
done in this setup.

In the online setup, this problem was looked at in [7], [1] and recently in [5]. In online multitask learning
problem with experts, the learner receives a task id and a vector of the losses of each expert at every time
step. The loss of the learner is the expected loss under his distribution over the experts for that task. The
notion of task relatedness is a little different in this setup, and will be described at length in the following
section.

∗Corresponding author.
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The authors in [1] present an experts algorithm similar to weighted majority for obtaining the optimal
regret bound in this problem. This optimal algorithm however, involves an NP-Hard computation, and is
approximated by an MCMC procedure. Cavallanti et al [5] used matrix regularization approaches that were
used in the batch setup to obtain efficient algorithms, but their regret bound scales much worse than the
optimal, in the worst case incurring a linear dependence on the number of tasks.

In this paper, we will look at some new matrix regularization ideas that are more suited to this learning
problem. In particular, we will describe spectral and structural matrix regularization approaches, and show
how the latter allows us to obtain efficient low regret algorithms.

Summary of results: In this paper we obtain a computationally efficient algorithm whose regret scales
no worse than O(

√
KmT log N) for learning K tasks with N experts for each, with parameter m quantifying

task similarty. We will show that in some interesting regimes of K, N values, this comes quite close to the
optimal regret. This is a significant improvement over the result of Cavallanti et al [5] whose algorithm yields
an upper bound on the regret scaling as O((K −m)

√
T log min{K, N}). The latter bound can be linear in

the number of tasks in the worst case, implying little gain over the baseline of learning tasks independently.

2 Setup

In this section, we introduce some notation to be used throughout the paper and provide a precise statement
of the problem.

We denote vectors by lower case letters such as u, w, x, l. Upper case letters typically denote matrices.
We will usually use U,W to refer to matrices used by the comparator and player respectively, and these
matrices will be non-negative with rows adding up to 1 unless otherwise specified. W i will be used to denote
the ith column of matrix W . The notations Sm and S≤m introduced below will be used interchangibly for
the comparator class specified in terms of experts or the comparator matrix U . Pairs p, q and r, s will be
used to refer to conjugate exponents, i.e. 1/p + 1/q = 1 and 1/r + 1/s = 1.

2.1 Problem Specification

Let us now formalize the game by describing the notions of tasks and relatedness. Since the only assumption
that relates the sequence in a classical online setup is the restriction of comparator to a single best expert, it
is natural to define a task as a set of examples that use the same best comparator. Of course, this assumption
is meaningless unless the learner knows which examples would be using the same comparator. Hence, we
assume that the learner, along with the predictions of the experts, is also told the identity of the task from
which these predictions were generated. In this article, we define a setup where there are N different experts
whose predictions we receive at each step, for one of K different tasks.

For the case of a single task, the minimax optimal regret bound is
√

T/2 ln N . Without any further
assumption on tasks, it is clear that K

√
T/2 ln N is the best regret that can be achieved. However, we hope

to do better when the tasks are related. One way to formalize this is by saying that the actual number of
different tasks is just m � K. This amounts to saying that the comparator is allowed to have just m instead
of K different predictors. However, the learner still gets a task identity between 1, . . . ,K. The aim of the
learner is to discover the task similarity so as to get a regret bound with some dependence on m. To get an
idea of the optimal dependence on m and other parameters, we need to consider the effective comparator
class of our problem.

2.2 Comparator class

In the expert setting, the regret is typically defined as:

T∑
t=1

L̂t −min
i

T∑
t=1

Lt
i (1)
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where L̂t is the loss of the learner at time t. In the multitask problem, we wish to generalize this to m
different comparators. Let [K] = {1, . . . ,K} and Sm := {S ⊂ [K] : |S| = m}. Then clearly, any comparator
from the class Sm uses only m different experts, and thus forms our comparator class. The regret of our
problem is defined as:

RT =
T∑

t=1

L̂t − min
S∈Sm

K∑
k=1

min
i∈S

∑
t∈Tk

Lt
i,k (2)

where Tk = {t : kt = k} and kt is the task id at time t. In the single task setting, the regret bound
contains the factor lnN , which is seen to be the log cardinality of the comparator class for that problem
(as the optimal comparator picks just one of the experts). Then it is natural to ask if we can compute the
cardinality of this comparator class. The hope would be to obtain regret bounds scaling with the log of its
size again.

It is not too hard to see that Sm ≤
(
N
m

)
mK . In fact, it is shown in [1] that this estimate is asymptotically

of the right order, and thus log |Sm| = Θ
(
m log N

m + K log m
)
. The authors further showed that the weighted

majority algorithm can be easily adapted to instead learn distributions over the elements of Sm to indeed
attain a regret based on this quantity. However, the algorithm needs to maintain distributions over an
exponentially large class of experts now, and it was shown that computing and updating these weights is
NP-Hard.

We can now setup the game of online multitask learning as in Figure 1

1: for t = 1 to T do
2: Aversary gives task id kt.
3: Player specifies its distribution over experts for the task p̂t.
4: Pleayer incurs the loss p̂t`t for the loss vector `t generated by the adversary.
5: end for

Figure 1: The online multitask learning game

A slight generalization to the above setup will be used in the later sections of this paper. Consider the
extended comparator class S≤m := {S ⊂ [K] : |S| ≤ m}. By a similar argument as above, the size of this
class bounded by NmmK . Thus log |S≤m| = Θ(m log N + K log m).

3 Matrix Regularization for multitask learning

The main idea behind applying matrix regularization techniques to the multitask learning problem starts
with first representing the comparators, predictors and examples as K×N matrices instead of vectors. As we
try to specify a distribution over experts for each task, all the entries of the matrix have to be non-negative,
and each row should add up to 1. The matrix for the comparator can be seen as a 0-1 matrix with only
one non-zero entry per row which identifies the optimal expert for each task. Clearly at most m columns
in this matrix can have non-zero entries by the assumptions of the previous section, if the comparator is in
the class S≤m. This is because every non-zero column of this matrix represents an expert used for at least
one task. So to make sure that the total number of experts used across all tasks is small, we have to keep
the number of non-zero columns small. The learner’s matrix represents the K vectors corresponding to its
predictive distributions over the experts for the various tasks. Finally, for homogeneity, we represent the
vector of losses at each time as the K ×N matrix Xt, where Xt has only one non-zero row corresponding to
the task from which the example is drawn.

Now consider the comparator matrix. This matrix has at most m non-zero columns. Assuming m < N, K,
the matrix, thus, has a rank of at most m. When competing against a comparator of low rank, it makes sense
for the learner also to restrict itself to only those sets of distributions over tasks which mostly give rise to low
rank matrices. This is intuitively reasonable, as this allows the learner to restrict itself to a smaller subclass
of matrices, and thus exploit the particular structure of the comparator. As the regret of online algorithms
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typically scales with the size of the class that they search over, there is hope that such an algorithm looking
over a small class will also achieve a lower regret guarantee.

In fact, if the learner maintains a prediction matrix W of rank m, then the matrix can be factorized as
W = AB where A is K ×m and B is m×N . The matrix A can be seen as specifying a mapping from tasks
to their true task ids (of which there are only m), while B gives a map from these to the best expert for
each true task. However, it is immediate that the low rank assumption allows more general structures. In
particular, a task could be a linear combination of two other tasks, and this would still keep the matrix low
rank. This generality is also quite intuitive from a point of view of a notion of task-relatedness.

Since, we are doing online updates, if we have an update such that once initialized with a rank m matrix,
it will always keep the matrix rank smaller than or equal to m, then we could exploit such an update in
this problem by initializing the learner at a rank m matrix. This idea has been exploited for learning low
rank kernel matrices in an online fashion in [8]. The key idea is to define suitable Bregman divergences over
the space of matrices. For two square symmetric positive semidefinite (psd) matrices X, Y define the von
Neumann and Burg divergences, respectively, as

DV N (X, Y ) = Tr(X log X −X log Y −X + Y ) (3)

DBurg(X, Y ) = Tr(XY −1)− logdet(XY −1)− n (4)

Note that the Burg divergence is a natural generalization of log-barrier to square symmetric matrices, whereas
the von Neumann divergence is the analogue of the entropy function.

The interesting fact is that if the matrix Y has a rank m, then any matrix X with a finite Burg divergence
(DBurg) from Y has a rank m as well. This is seen by writing the divergence as a function of eigenvalues. For
a finite von Neumann divergence (DV N ) X needs to have a rank ≤ m. This means that if the online updates
are done by minimizing the loss plus one of these divergences, then the rank constraints are automatically
enforced.

Unfortunately, these divergences are only defined for square symmetric matrices. An obvious way to
extend this to rectangular matrices is by applying these divergences to WW> or (WW>)1/2 which are both
square symmetric and psd. Unfortunately, this leads to an algorithm for which updates are hard to analyze.
In this article, we will not explore this thought further, although it is conceivable that this approach might
enjoy the a near optimal regret bound.

A remark about the structure of the comparator set is in order at this point. Note that the rank constraint
is a non-convex constraint; the rank of a sum of two matrices can be as large as the sum of their ranks.
In fact, it is not hard to construct full rank matrices using matrices from S≤m. So if we naively try to
maintain a low rank by restricting our online optimizations to this set, we could be in trouble. While the
divergences given above provide a way of optimization under rank constraints in the case of square matrices,
we cannot in general extend any algorithm to work within this subset by forcing it to optimize over just
S≤m. A natural strategy that is often used in such problems is to instead augment the objective function
with a regularizer which takes small values on the regions of choice– matrices in S≤m in this case. While
performing regularized optimization with such functions doesn’t guarantee that the player will stay in the
set, it forces a preference for staying in the set. Below we will see some matrix norms that try to fulfil this
intuition. While it is possible to get to arbitrary distributions over experts by performing optimization under
these regularizers, we will see that the preference they model to stay in the set is strong enough and suffices
to obtain non-trivial regret guarantees.

3.1 Structural and spectral matrix norms

In the previous section, while describing the constraints we want to impose on the learner and comparator,
we went back and forth between the idea that the matrix describing these distributions can be rank m or
can have at most m non-zero columns. While the former argument leads to the idea of regularizing the
eigenvalues so that a small number of them are non-zero, the latter encourages a more direct regularization
of the entries of the matrix in such a way that the number of non-zero columns in the matrix is small.
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We refer to norms (or general regularizing functions) acting on the eigenvalues as spectral norms, as they
only depend on the spectrum of the matrix. The norms (regularizers) that act directly on the entries of
the matrix to enforce a specific structure, such as a small number of non-zero columns, are referred to as
structural. While spectral norms are extensively studied in literature, our understanding of structural norms
is relatively nascent, and in the following section we will put forth one candidate proposal that suits this
problem.

Clearly in this setup, constraining the spectral norm to be small allows all the matrices that would be
allowed by the analogous structural constraint, and more. Thus it seems natural to hope that by moving to
the more direct structural regularization, we might be able to obtain better results. As we will see in the
following sections and the regret analysis, this intuition is true indeed.

3.2 Rank regularizing matrix norms

The constraint of low rank in the matrix domain is very similar to the notion of sparsity in the case of
vectors. For vectors, it is well-known that minimizing the `1 norm leads to sparse solutions. Furthermore, as
discussed in Chapter 11 of [6], regularization with an `p norm with p suitably close to 1 leads to the optimal
regret bound up to constant factors in the vectorial setup. It is natural, therefore, to ask if one can define
appropriate norms on matrices that regularize its rank to give low regret algorithms for online multitask
learning. We will discuss two such norms below and define an algorithm and prove a regret bound for the
latter.

The general scheme of online learning algorithms that we will be considering are algorithms of the form:

Wt+1 = argminW∈∆K×N
D(W,Wt) + ηTr(WT Xt) (5)

where D is the Bregman divergence induced by one of the norms to be described below. ∆K×N is the set
of all K ×N matrices which have all entries non-negative, and elements of each row add upto 1, i.e. form a
distribution. Observe again that the projections are onto the space of all distributions over experts and not
over a restricted subset due to the non-convexity of the rank constraint as explained above. Also note that
we are using a linear loss here, which does not reduce the generality as it is well understood that curved loss
functions only help the learner rather than the adversary in this setup.

3.3 Schatten Lp prenorms

Note that a rank m matrix has exactly m non-zero singular values in its singular value decomposition (SVD).
Hence, doing an `p regularization on the vector of singular values with p close to 1 can be hoped to enforce
only several non-zero singular values, leading to low rank matrices. Formally, define:

‖W‖2Sp
=

(
r∑

i=1

|σi|p
)2/p

= Tr((WW>)p/2)2/p (6)

where r = min{K, N} and σi are the singular values of W . The second equality follows from the well-known
fact that the eigenvalues of WW> are the squared singular values of W . This is the norm used by Argyriou
et al[4], however in the stochastic setup, and no theoretical analysis is provided.

Recently Cavallanti et al[5] carried out an analysis with these norms for a closely related multi-view
problem. It is conceivable that a similar analysis extends to the multitask problem too, but is not discussed
in their paper. It turns out however, that there is another norm much more conducive to analysis for this
problem, and suited better to our problem intuition as argued below, which will be the main object of study
in this paper.

3.4 Matrix (r, p) norms for structural regularization

For a K ×N matrix W , let W i and Wj refer to the ith column and jth row resp. of the matrix. The (r, p)
norm of a matrix is given as:
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‖W‖2r,p =

(
N∑

i=1

∥∥W i
∥∥p

r

)2/p

(7)

It is easy to show that the above definition is indeed a norm on the space of matrices.

Lemma 1. ‖ · ‖r,p is a norm on the space of matrices for r, p ≥ 1.

Proof. It is clear from the definition that ‖W‖r,p ≥ 0 and is 0 iff W ≡ 0. Thus we only need to verify the
triangle inequality.

Using the triangle inequality on the r norm,

‖W + U‖r,p =

 N∑
j=1

∥∥W j + U j
∥∥p

r

1/p

≤

 N∑
j=1

(∥∥W j
∥∥

r
+
∥∥U j

∥∥
r

)p1/p

.

This term can now be seen as the p norm of a sum of two vectors of length N each with the jth entry of one
vector being

∥∥W j
∥∥

r
and the second being

∥∥U j
∥∥

r
. Then by the triangle inequality of p norms on these two

vectors we get

‖W + U‖r,p ≤

 N∑
j=1

∥∥W j
∥∥p

r

1/p

+

 N∑
j=1

∥∥U j
∥∥p

r

1/p

= ‖W‖r,p + ‖U‖r,p

which gives us the triangle inequality, Thus ‖ · ‖r,p is indeed a norm on the space of matrices.

It should be noted that this norm generalizes the (2,1) norm of [3].
The first thing to note is that except for specific choices of r, p, this is not a spectral norm in general.

This norm directly acts on the entries of the matrix and can be different for two different matrices with the
same eigenvalues. However, it does enforce the right structural properties on the matrix as explained below.

The r, p norm is a natural generalization of the `p norms to matrices, where we use r norm on columns,
and then take a p norm of these values. To see why this is intuitive, consider the case of 0-1 matrices, with
r = ∞ and p = 1. Then the norm of a column is 1 if it has at least 1 non-zero entry, 0 otherwise. Taking an
`1 norm of these values corresponds to counting the number of experts that are being used. While competing
with comparator in S≤m, this is exactly the quantity we want to keep below m. Hence this norm does seem
to capture the right intuition in our problem. That this is not a spectral norm might make it look less
attractive on the first glance, but makes it much more amenable to analysis.

It might thus seem that using the aforementioned values of r and p would lead to the optimal regret
bound. However, both these values are not suitable for analysis. Indeed, the `1 norm is not strictly convex,
and, furthermore, our analysis requires r, p ≤ 2. Thus we leave the choice of these exponents open for now,
and hope to tune them to obtain the optimal bound once the analysis is complete.

An important property of r, p norms is also that for carefully tuned values of r, p they give a smaller norm
to the matrices in S≤m than the matrices outside. This is crucial to our algorithm. Note that in Equation 5,
we only project on the space of distribution matrices ∆K×N . This means our learner can in general be
outside S≤m, which essentially means that the problem structure is not being adequately exploited, and we
cannot hope for a significantly lower regret than solving the tasks indpendently in the worst case. However,
if matrices in the set S≤m have a small value of the norm, then it is easy to show that the projection has a
much greater chance of landing inside this set than outside. This property of the norms plays a crucial role
in ensuring a low regret of this learning procedure.
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4 Regret analysis

Let LT (U) for a matrix U denote
∑T

t=1 Tr(UT Xt), the cumulative loss using U for prediction. Also we use
LT =

∑T
t=1 Tr(WT

t Xt) to be the cumulative loss of our algorithm. For any matrix U , regret RT (U) with
respect to U is defined by LT − LT (U).

We will begin by stating the main result of this article, which will then be proved using a series of smaller
lemmas.

Theorem 1. Consider the learner using (5) with the D the Bregman divergence defined with respect to the
(r, p) norms. Let LT be its cumulative loss after T steps. Suppose that there are N experts and K tasks. Let
1 < p < r ≤ 2, and the loss of any expert at any time step be bounded by κ. Then for all U ∈ S≤m, all T
and all η > 0:

LT ≤ LT (U) +
1
2η

m2/p−2/rK2/r + κTη

(
r

r − 1
+

p

p− 1
− 2
)

N2(p−1)/p (8)

The first thing we need to obtain in order to use this norm in the algorithm of (5) is to derive the Bregman
divergence induced by this norm. It suffices to find the dual norm for this purpose. It turns out that the
dual of (r, p) norm is the (s, q) norm where s and q are the exponents dual to r and p respectively. We begin
by proving a Hölder’s inequality for this norm.

Lemma 2. Consider two matrices A and B, each of size K ×N . Then we have:

|Tr(A>B)| ≤ ‖A‖r,p‖B‖s,q (9)

where s and q are conjugate to r and p, respectively.

Proof. The result follows from a simple application of Hölder’s inequality for vectors.

|Tr(A>B)| =

∣∣∣∣∣∣
N∑

j=1

AjT
Bj

∣∣∣∣∣∣
≤

N∑
j=1

∣∣∣AjT
Bj
∣∣∣ ≤ N∑

j=1

∥∥Aj
∥∥

r

∥∥Bj
∥∥

s
(10)

(Using Hölder’s inequality for vectors on each element of the sum)

≤

 N∑
j=1

∥∥Aj
∥∥p

r

1/p N∑
j=1

∥∥Bj
∥∥q

s

1/q

(11)

(Hölder’s inequality on vector of norms)
= ‖A‖r,p‖B‖s,q

We can now simply derive the dual as indicated earlier.

Lemma 3. Let F (A) = 1/2‖A‖2r,p. Then its Legendre-Fenchel dual is given by F ∗(B) = 1/2‖B‖2s,q

Proof. The dual function is defined as:

F ∗(B) = sup
A

{
Tr(AT B)− 1

2
‖A‖2r,p

}
≤ sup

A

{
‖A‖r,p‖B‖s,q −

1
2
‖A‖2r,p

}
(12)

= sup
A

{
1
2
‖B‖2s,q −

1
2

(‖B‖s,q − ‖A‖r,p)
2

}
(13)
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where the inequality follows from Lemma 2. Consider a particular choice of A in (13):

Aij = B
(s−1)
ij

∥∥Bj
∥∥(q−s)

s
‖B‖(2−q)

s,q . (14)

We claim that this choice a) achieves the supremum in (13) and b) turns the inequality leading to (12) into
an equality. If both of these points are verified, the statement of this lemma would follow. Let us start by
showing a).

‖A‖r,p =

 N∑
j=1

∥∥Aj
∥∥p

r

1/p

=

 N∑
j=1

(
K∑

i=1

(
Bs−1

ij

∥∥Bj
∥∥(q−s)

s
‖B‖(2−q)

s,q

)r
)p/r

1/p

Using conjugacy of p, q and r, s, we see that p = q
q−1 and r = s

s−1 . Substituting this above, we obtain

‖A‖r,p =

 N∑
j=1

(
K∑

i=1

(
Bs−1

ij

∥∥Bj
∥∥(q−s)

s
‖B‖(2−q)

s,q

) s
s−1

)q(s−1)/s(q−1)
(q−1)/q

= ‖B‖2−q
s,q

 N∑
j=1

∥∥Bj
∥∥(q−s)q/(q−1)

s

(
K∑

i=1

Bs
ij

)q(s−1)/s(q−1)
(q−1)/q

= ‖B‖2−q
s,q

 N∑
j=1

∥∥Bj
∥∥(q−s)q/(q−1)

s

∥∥Bj
∥∥q(s−1)/(q−1)

s

(q−1)/q

= ‖B‖2−q
s,q

 N∑
j=1

∥∥Bj
∥∥q

s

(q−1)/q

= ‖B‖2−q
s,q ‖B‖q−1

s,q

= ‖B‖s,q.

Hence, if A is defined as in (14), the non-negative second term of (13) vanishes, yielding F ∗(B) ≤ 1
2‖B‖

2
s,q

and verifying a).
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Observe that b) amounts to showing tightness of two inequalities in Lemma 2. Consider the quantity∥∥Aj
∥∥p

r
=
∥∥∥Bj(s−1) ∥∥Bj

∥∥(q−s)

s
‖B‖(2−q)

s,q

∥∥∥p

r

= ‖B‖p(2−q)
s,q

∥∥Bj
∥∥p(q−s)

s

(
K∑

i=1

B
r(s−1)
ij

)p/r

= ‖B‖p(2−q)
s,q

∥∥Bj
∥∥p(q−s)

s

(
K∑

i=1

Bs
ij

)p(s−1)/s

= ‖B‖p(2−q)
s,q

∥∥Bj
∥∥p(q−s)

s

∥∥Bj
∥∥p(s−1)

s

= ‖B‖p(2−q)
s,q

∥∥Bj
∥∥p(q−1)

s
(∗)

= ‖B‖p(2−q)
s,q

∥∥Bj
∥∥q

s

=
∥∥Bj

∥∥q

s
‖B‖p

s,q‖B‖q(1−q)/(q−1)
s,q

=

∥∥Bj
∥∥q

s

‖B‖q
s,q
‖A‖p

r,p

This means that
‖Aj‖p

r

‖A‖p
r,p

=
‖Bj‖q

s

‖B‖q
s,q

which makes the application of Hölder’s inequality in (11) tight.
Furthermore, using an intermediate point (∗),

Ar
ij

‖Aj‖r
r

=

(
B

(s−1)
ij

∥∥Bj
∥∥(q−s)

s
‖B‖(2−q)

s,q

)r

‖Aj‖r
r

=
B

r(s−1)
ij

∥∥Bj
∥∥r(q−s)

s
‖B‖r(2−q)

s,q

‖Bj‖(q−1)r
s ‖B‖r(2−q)

s,q

=
Bs

ij

‖Bj‖s
s

which makes the inequality in (10) tight as well. Thus this choice of A yields the desired result, that is
F ∗(B) = 1

2‖B‖
2
s,q completing the proof.

The above proof gives us the value of the matrix A at which the maximum in the expression for the
dual is attained. It is worthwhile to spend a minute inspecting the mapping between primal and dual spaces
obtained above. It will be shown that the values of q, s that yield a good regret have q � s. For such values
of q, the mapping from dual space to primal space tries to concentrate most of the mass of a row in the
columns having largest entries in the dual matrix B. Thus in mapping back to the space of weight matrices,
our norm implicitly tries to minimize the number of non-zero columns which is also the number of experts
used. This further supports our intuition that this norm is well-suited for the problem.

Note that it is well known that if A attains the supremum in the definition of F ∗(B), then A and B form
a primal-dual pair, with A = ∇F ∗(B) and B = ∇F (A). So, in particular, we now have the derivative of our
norm, ∇A

1
2‖A‖

2
r,p = A

(r−1)
ij

∥∥Aj
∥∥(p−r)

r
‖A‖(2−p)

r,p . We can now define a Bregman divergence using this norm
as the Bregman function. We have

Dr,p(Wt−1,Wt) =
1
2
‖Wt−1‖2r,p −

1
2
‖Wt‖2r,p − Tr(Vt

T (Wt−1 −Wt)), (15)

where Vt is the dual image of Wt as defined above, and Dr,p is the Bregman divergence using ‖ · ‖2r,p as the
Bregman function.

As the last preliminary result, we deduce an upper bound on the (r, p)-norms that will be useful in the
later analysis.

9



Lemma 4. Let 1 < p < r ≤ 2. Then ∀U ∈ S≤m, ‖U‖r,p ≤ K1/rm1/p−1/r.

Proof. The fact that U ∈ S≤m implies that it has at most m non-zero columns. Also, we have to pick at
least one expert for each task.

First note that it suffices to look at just 0-1 comparator matrices, as the adversary will always pick the
set of m experts and task assignments to those experts that result in the smallest overall loss over the entire
sequence. With that in mind, we can set up the following optimization problem:

max
n1,...,nm≥0

(
n

p/r
1 + n

p/r
2 + . . . np/r

m

)1/p

s.t. n1 + . . . nm = K

It is easy to show using a quick second derivative computation that this objective is a concave function of
the ni’s. So, we can compute the Lagrange function, and set its derivative to zero, which gives us:

1
r
n

p/r−1
i

(∑
i

n
p/r
i

)(1−p)/p

= λ

where λ is the Lagrange multiplier, for all i = 1 . . .m. This means that all the ni’s are equal to K/m.
Evaluating the norm using a matrix U with m non-zero columns, each having K/m ones yields the desired
result.

We are now in a position to prove the theorem.

Proof of Theorem 1.
For predictors of the form (5), the regret can be bounded as:

RT (U) ≤ 1
η
Dr,p(U,W0) +

1
η

T∑
t=1

Dr,p(Wt−1,Wt) (16)

This form of regret bound is well-known, for example Lemma 10 in the unpublished lecture notes [9]
as well as [6] . Thus the key step of the theorem is to bound the two divergence terms Dr,p(U,W0) and
Dr,p(Wt−1,Wt).

Note that we can take W0 to be uniform (i.e. 1/N over experts for each task). Then the entries of V0

are uniform too, i.e., V0ij = W0
(r−1)
ij

∥∥∥W j
0

∥∥∥(p−r)

r
‖W0‖(2−p)

r,p = c for all i, j as the column norms W j
0 are same

for all columns for some constant c. So we have

Tr(V0
T (U −W0)) =

∑
i,j

V0ij(Uij −W0ij)

= c
∑
i,j

(
Uij −W0ij

)
= 0 (as each row of both U and W0 add up to 1)

So the linear term of the first Bregman divergence term in (16) is zero, and hence this divergence is large
when the comparator matrix U has a large (r, p) norm. Using Lemma 4 this happens precisely when the
matrix U has exactly m non-zero columns, each with K/m ones. Note that this follows from the assumption
that each row of the matrix U forms a distribution and hence sums to 1. In this case, the norm of U is
m1/p−1/rK1/r. Dropping the negative ‖W0‖r,p term, the first divergence term is upper bounded as

Dr,p(U,W0) ≤
1
2
‖U‖2r,p ≤

1
2
m2/p−2/rK2/r

for all U ∈ S≤m.
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We next turn to the divergences between iterates, Dr,p(Wt−1,Wt). For convenience, define W̃t+1 as
follows:

W̃t+1 = argminW Dr,p(W,Wt) + ηTr(WT Xt) (17)

i.e. the unconstrained minimizer of the optimization problem. Then it is easily shown that Wt+1 =
Πr,p(Wt;∆K×N ), where Πr,p(W ;S) is the Bregman projection of a matrix W onto the set S, using the
Bregman function 1

2‖ · ‖
2
r,p.

Also, using the Pythagorean inequality for Bregman divergences (see for example [6] Lemma 11.3), we
can write:

Dr,p(Wt−1, W̃t) ≥ Dr,p(Wt−1,Wt) + Dr,p(Wt, W̃t)
≥ Dr,p(Wt−1,Wt) (18)

This means that we can bound the regret further from (16) as:

RT (U) ≤ 1
η
Dr,p(U,W0) +

1
η

T∑
t=1

Dr,p(Wt−1, W̃t) (19)

Now, if Ṽt is the dual variable corresponding to W̃t, we can easily argue that Ṽt = Vt−1 + ηXt. This can
be seen by differentiating the objective in (17) and setting it to zero. It is a property of Bregman divergences
(Prop. 11.1 of [6]) that Df (Wt−1, W̃t) = Df∗(Ṽt, Vt−1) where f∗ is the convex conjugate of f and Vt is the
conjugate dual of Wt, specified by the gradient mapping Vt = ∇f(Wt). In the particular context of this
problem, this property is relevant as the update equations from (5) are very simple in the dual space. The
dual updates can be written as Ṽt = Vt−1 + ηXt−1 which is simply the gradient condition at optimality from
the fact that the derivative of Df (W,Wt) wrt W is simply ∇f(W )−∇f(Wt).

Using Lemma 5 that we will prove below, these divergences are bounded as:

Ds,q(Ṽt, Vt−1) ≤ η2(s + q − 2)‖Xt−1‖2s,q (20)

Assuming that the losses are componentwise bounded at each time, and noting that we have non-zero loss
for exactly one task, we can bound ‖Xt‖2s,q with κN2/q, where κ is a bound on each entry of Xt uniformly
across t = 1 . . . T . Summing terms over time, and using the fact that s = r

r−1 and q = p
p−1 completes the

proof.

Lemma 5. Let Wt, W̃t+1 be as in (17), with divergence induced by the (r, p) norm ,with 1 ≤ r, p ≤ 2. Let
Vt and Ṽt+1 be the corresponding dual images, and s, q be the dual exponents to r, p resp. Then we have:

Ds,q(Ṽt+1, Vt) ≤ η2(s + q − 2)‖Xt‖2s,q (21)

Proof. The key idea as in most proofs of this kind is to use the fact that Bregman divergence measures
the difference between a function and its first order Taylor approximation. We know that this difference is
equal to the second order Taylor term at some intermediate point by the mean value theorem. So if we can
uniformly bound the Hessian matrix of our regularizer, it suffices to demonstrate a bound on the divergences.
Let F (V ) = 1

2‖V ‖
2
s,q. The Hessian matrix for this function is given by H(ij,kl) = ∂F (V )

∂Vij∂Vkl
. We can think of

the Hessian as either a 4-dimensional matrix, or, as a 2-dimensional one. The latter is obtained by letting
the index ij stand for K · (i− 1)+ j. With this notation, the second order term in the Mean Value Theorem
is

1
2
(vec(Vt − Ṽt+1))>H(V̄ )(vec(Vt − Ṽt+1)). (22)

Here vec is an operator that stretches out its matrix arguments to a vector and V̄ = αVt + (1− α)Ṽt+1 for
some α ∈ [0, 1]. Written as a summation, this is simply

∑
i,j,k,l(Vt − Ṽt+1)ijH(V̄ )ij,kl(Vt − Ṽt+1)kl. We now

use the fact that Ṽt+1 = Vt + ηXt to write this as η2
∑

i,j,k,l(Xt)ijH(V̄ )ij,kl(Xt)kl.

11



We now drop the subscript t and the bar from V̄ to ease the notation a bit. Let us look at a particular
entry of the matrix H. By applying the chain rule,

Hij,kl =
∂F (V )

∂Vij∂Vkl

=
∂ (∇V F (V ))kl

∂Vij

=
∂‖V ‖(2−q)

s,q

∥∥V l
∥∥(q−s)

s
V

(s−1)
kl

∂Vij

=
∂‖V ‖(2−q)

s,q

∂Vij

∥∥V l
∥∥(q−s)

s
V

(s−1)
kl

+
∂
∥∥V l

∥∥(q−s)

s

∂Vij
‖V ‖(2−q)

s,q V
(s−1)
kl

+
∂V

(s−1)
kl

∂Vij
‖V ‖(2−q)

s,q

∥∥V l
∥∥(q−s)

s

Considering each of the three terms above, we get

Hij,kl =
(2− q)

q
‖V ‖(2−2q)

s,q

q

s

∥∥V j
∥∥(q−s)

s
sV

(s−1)
ij

∥∥V l
∥∥(q−s)

s
V

(s−1)
kl

+ I(j = l)‖V ‖(2−q)
s,q

(q − s)
s

∥∥V l
∥∥(q−2s)

s
sV

(s−1)
il V

(s−1)
kl

+ I(i = k, j = l)‖V ‖(2−q)
s,q

∥∥V l
∥∥(q−s)

s
(s− 1)V (s−2)

kl

= (2− q)‖V ‖(2−2q)
s,q

∥∥V j
∥∥(q−s)

s

∥∥V l
∥∥(q−s)

s
V

(s−1)
ij V

(s−1)
kl︸ ︷︷ ︸

A

+ I(j = l)(q − 1)‖V ‖(2−q)
s,q

∥∥V j
∥∥(q−2)

s

∥∥V j
∥∥2(1−s)

s
V

(s−1)
ij V

(s−1)
kj︸ ︷︷ ︸

B

+ I(j = l)(1− s)‖V ‖(2−q)
s,q

∥∥V j
∥∥(q−1)

s

∥∥V j
∥∥(1−2s)

s
V

(s−1)
ij V

(s−1)
kj︸ ︷︷ ︸

C

+ I(j = l, i = k)(s− 1)‖V ‖(2−q)
s,q

∥∥V j
∥∥(q−s)

s
V

(s−2)
ij︸ ︷︷ ︸

D

.

Now let us consider the summation
∑

i,j,k,l Hij,klXijXkl by looking at the contribution of each of the terms
A,B, C, D separately.

For the term A, we see that∑
ij,kl

XijXkl(2− q)‖V ‖(2−2q)
s,q

∥∥V j
∥∥(q−s)

s

∥∥V l
∥∥(q−s)

s
V

(s−1)
ij V

(s−1)
kl

= (2− q)‖V ‖(2−2q)
s,q

 N∑
j=1

∥∥V j
∥∥(q−s)

s

K∑
i=1

V
(s−1)
ij Xij

2

≤ 0,

as q ≥ 2 by the assumption that p ≤ 2.
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A similar argument shows that the contribution of term C is negative as well, and hence these two terms
can be ignored for purposes of getting upper bounds. So in order to show an upper bound, we just need to
account for the contributions of the terms B and D.

Consider the contribution of the term B. Excluding the leading η2, the sum over these terms can be
written as:

1

‖V ‖(q−2)
s,q

N∑
j=1

(q − 1)
∥∥V j

∥∥q−2

s

(
1

(
∑K

i=1 V s
ij)(s−1)/s

)2 K∑
i,k=1

XijXkjV
(r−1)
ij V

(r−1)
kj

=
1

‖V ‖(q−2)
s,q

N∑
j=1

(q − 1)
∥∥V j

∥∥q−2

s

( ∑K
i=1 XijV

(r−1)
ij

(
∑K

i=1 V s
ij)(s−1)/s

)2

≤ (q − 1)

�����‖V ‖(q−2)
s,q

�
�

�
�

�
�

�
�

�� n∑
j=1

∥∥V j
∥∥q

s

(q−2)/q N∑
j=1

( ∑K
i=1 XijV

(r−1)
ij

(
∑K

i=1 V s
ij)(s−1)/s

)2q/2
2/q

Using Hölder’s inequality with exponents q
q−2 and q

2

≤ (q − 1)

 N∑
j=1

(((((((((((∑K
i=1 V

(s−1)s/(s−1)
ij

)
((((((((
(
∑K

i=1 V s
ij)

(s−1)/s

(
K∑

i=1

Xs
ij

)1/s
q2/q

Using Hölder’s inequality with exponents s
s−1 and s

= (q − 1)‖X‖2s,q

Now we look at the second term. Using similar applications of Hölder’s inequality with slightly different
exponents, we can bound the terms where i = k, j = l by (s − 1)‖X‖2s,q. The other two cases have been
shown to be negative and are thus dropped from the upper bound. Adding all the terms gives us the desired
upper bound.

Note that when q > s, then the decomposition of the middle term into terms B and C in the above proof
is not needed, and we can get a slightly better regret bound that involves just (q− 1) in place of (s + q− 2).
However, this doesn’t cause any significant change in the bound unless s is very large, and hence we use the
slightly loose but more general form above for further discussion.

4.1 Optimal setting of parameters

As the reader would have observed, the applications of Hölder’s inequalities in the previous steps critically
relied on the fact that s ≥ 2, q ≥ 2. Thus we need to have 1 < r, p ≤ 2. From the bound of (8), it is clear
that the best setting of η is to balance the two terms. This allows us to rewrite the bound as:

RT (U) ≤ m1/p−1/rK1/rN (p−1)/p

√
κT

(
1

r − 1
+

1
p− 1

)
(23)

It is not obvious what the optimal setting for r, p is in general. However, we can investigate certain
regimes in which it is possible to set the values of r, p in a way that brings our regret bound very close to
the optimal regret of O

(√
T (K log m + m log N)

)
.

Consider setting K = Nα for some α > 0. Then the optimal regret bound is dominated by the term
O
(√

T log mNα/2
)
. If we plug this value of K in our regret bound, our regret scales as

O

(
m1/p−1/rNα/r+(p−1)/p

√
T

(
1

r − 1
+

1
p− 1

))
.
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Optimizing over the exponent of N results in the choice r = 2αp
α(p−1)+1 which is between 1 and 2 only when

α ≤ 1. However, multitask problems are interesting when the number of tasks is very large, potentially much
larger than the number of experts themselves, so that performing the tasks independently is really bad.

Consider the case α > 2. If we set r = 2 and 1
p−1 = log m, our regret scales as

O
(
m−1/2N(α/2+ 1

(1+log m) )
√

T (1 + log m)
)

which is very close to the optimal bound.

4.2 Comparison with existing results

The previous best results on this problem are in the paper of Cavallanti et al[5]. This paper describes a
multi-task p-norm perceptron algorithm, for which a mistake bound is shown. To compare our regret bound
with their mistake bound, we first need to measure the two algorithms under the same loss function. For
this, we first state an easy reduction to a hinge loss regret bound for any algorithm that gives bounded regret
in the experts setup.

Lemma 6. Consider any online algorithm that takes a sequence of losses xt on experts and outputs a
distribution over them with the cumulative regret bounded as R(T ). Then there is an algorithm that has its
regret under hinge loss bounded by R(T ) in any classification problem when compared to all possible weight
vectors in the probability simplex.

Proof. The proof is a simple reduction that uses the experts algorithm as a black box. Suppose at time t,
our algorithm has a distribution wt over the experts. We receive a query point xt+1 and make a prediction
sign(w>t xt+1). Then we receive yt+1. If our prediction is correct, then we pass a loss vector of all zeros to our
algorithm, otherwise we pass the query point −yt+1xt+1 to it. The regret bound of our algorithm implies
that

T∑
t=1

−yt+1w
>
t xt+1I(yt+1w

>
t xt+1 < 1) ≤

T∑
t=1

−yt+1u
>xtI(yt+1w

>
t xt+1 < 1) + R(T )

for any distribution u over the experts. Adding
∑T

t=1 I(yt+1w
>
t xt+1 < 1) to both sides gives

T∑
t=1

(1− yt+1w
>
t xt+1)I(yt+1w

>
t xt+1 < 1) ≤

T∑
t=1

(1− yt+1u
>xt)I(yt+1w

>
t xt+1 < 1) + R(T )

The left hand side is the hinge loss of our algorithm, while the right hand side is an upper bound on the
hinge loss of the comparator, which completes the proof.

The reason why this lemma is useful is that we can directly translate our regret bound to a regret bound
under hinge loss in a classification setup, thus allowing direct comparison to the results of [5]. The regret
bound in that paper scales as O((K−m)

√
T log max{K, N}). Putting K = Nα, we see that this regret scales

as O(Nα) which is much worse than a near optimal regret of roughly O(Nα/2) achieved by our algorithm.

5 Conclusion

In this paper we have examined a multitask online learning problem. The key challenge in this problem
is that the learner needs to infer task relatedness along the way. We cast this as a matrix regularization
problem, which leads to two possible approaches based on structural and spectral regularization. We work
with a structural matrix norm, that leads to computationally efficient low regret algorithms. The regret
bounds we obtained are not optimal, but, as we demonstrated, get quite close to the optimal regret for some
settings of problem parameters. The bounds seem to be the best known bounds for any deterministic and
computationally feasible algorithm for this problem.
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