
Spectrum Agile Radios Project Report

Ji Woong Lee
Pedram Keshavarz
Miklos Christine
Sherman Ng
Sofie Pollin
Libin Jiang
Jean Walrand
Hidekazu Miyoshi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-142

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-142.html

October 31, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Spectrum Agile Radios Project Report

Jiwoong Lee, Pedram Keshavarz, Miklos Christine, Sherman Ng

Sofie Pollin, Libin Jiang, Jean Walrand, and †Hidekazu Miyoshi

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, California 94720

†Innovation Core SEI Inc. Santa Clara, California 94720

{porce,pedram,mchristine,sng629}@berkeley.edu,
{pollins,ljiang,wlr}@eecs.berkeley.edu, and †miyoshi-hidekazu@sei.co.jp

Abstract

Spectrum Agile Radios project studies dynamic channel selection problem upon random encountering of
uncontrolled interference in a general wireless network environment. This research targets problem formulation,
development of channel selection algorithm, selection of platform and prototyping the proof-of-concept in lab level.
Among several candidates, MadWiFi/Ath5K is selected for platform and is studied in-depth to learn its capabilities
and limitations. Realtime statistics collection with respect to wireless channel and device buffer is an ongoing
work. Algorithms will be designed on top of the statistics collected and economic behavior of users. Automatic
Rate Fallback issue of WiFi is discussed to improve the rate adaptation on top of best channel selection. Finally
an optimal AP selection algorithm is proposed for corporate type wireless networks.

I. PROJECT OVERVIEW

A. Motivation and Scope
The University of California at Berkeley (PI: Prof. Jean Walrand) and Innovation Core SEI have been working

on a joint research, entitled Spectrum Agile Radio since Oct 1, 2007. The project focused on understanding
the nature of wireless channel interference and congestion, to design an algorithm to optimally and dynamically
search and change the current channel based on realtime statistics of wireless medium activities and economic user
incentive, and prototyping a platform to show the proof-of-concept.

For the prototyping, it is important to first select the right platform in the first stage of the project since the
platform will essentially determine the practical limitations that limit the scope of possible algorithm assumptions,
the amount of resources required for prototyping efforts, and the range of experiment scenarios that can be
performed. We first surveyed capabilities and limitations of a set of potential platforms. As our choice of platform,
we selected the Linux based MadWiFi platform (and Ath5K as its friend). The platform selection issues are detailed
in section II.

This report summarizes the study and progress results obtained for the project over the course of one year.
We first focus on the results obtained so far for developing the prototyping framework. We briefly describe the
driver structure first and some crucial capabilities including channel selection and medium statistics collection.
Next we present a basic software structure for prototyping that will later embed the algorithms that we design. It is
followed by a discussion how to track of client/AP link layer queue size, which is additional information required
to optimally select jointly the channel and the AP. In section IV, we discuss an access point selection scheme for
the optimal operation of network. For a chosen AP and channel combination, we are then interested in how we
can further improve performance by considering link adaptation. Current issues in WiFi automatic rate fallback are
discussed.

The progress of this research has been made possible through commendable team efforts: Pedram Keshavarz,
Miklos Christine, and Sherman Ng as undergrad researcher as locomotives of the project, Jiwoong Lee and Michael
Krishnan as PhD student mentors, Sofie Pollin as post-doctoral researcher providing insightful discussion, Prof. Jean

cq2

Walrand as Principal Investigator. Libin Jiang contributed to algorithm design and Hidekazu Miyoshi contributed
to research motivation based on realistic market demand.

B. Platform selection
The development of a spectrum agile radio requires in a broad range of scenarios, we need a radio that can

operate in a large set of operation modes to mimic clients, access points, interferer and monitors. We also need
a highly configurable radio where the physical layer can be tuned, e.g., for the link adaptation, and the Medium
Access Control (MAC) layer allows for a fast and precise timing controllability of its functionality. To collect
statistics about the environment, we need open access to realtime medium statistics. Finally, these options should
be available at a reasonable development cost. We give an overview of various boards that are available and were
considered for our prototyping:
• DINI board series from the DINI group(http://www.dinigroup.com). The DINI series provide very powerful

platforms for multi-radio multichannel PHY architecture with full open access to the firmware level. Firmware
access enables accurate and precise timing control that a high speed spectrum agility algorithm requires. A
critical disadvantage of this board is it provides a primitive dummy MAC only which is far from IEEE 802.11
compatibility. Also it is priced around USD 20,000 for one board set.

• 3DSP (http://www.3dsp.com) provides a full software-based MAC that is compatible with IEEE 802.11. The
cost of this platform is very reasonable. But it has issues in precise timing control and accessibility to the
PHY layer, which is closed to developers.

• MadWiFi, which is an open driver for Atheros WiFi chipsets, provides a strong compatibility to IEEE 802.11
MAC and PHY. Its management plane is completely open but most of MAC and PHY code are implemented
on PCMCIA type firmware, that are not open source. Also, the management plane works in the Linux kernel
mode whose timing resolution is approximately 1msec, which is too large for spectrum agile operations.

• WARP platform, which is a product from Prof. Knightly’s group in Rice University. This is a XiLinx FPGA
based platform that enables open programming. At the time of survey, however, it supported ALOHA/CSMA
MAC far from the compatibility to WiFi. It is priced USD a few thousands per board.

• The GNU Radio is a free software toolkit for learning about, building, and deploying software-defined
radio systems. It is fully programmable, and gets more and more support in the research community. The
platform used is the Universal Software Radio Peripheral (USRP), that only allows up to 16MHz of bandwidth.
Moreover, because of software processing, the communication speed achieved is typically very low. As a result,
this platform is not yet sufficient to achieve 802.11 performance.

• Platforms based on 802.15.4 chipsets that can dynamically select up to 16 channels. We explored options that
come with a full MAC implementation but suffer from very limited accessibility to and programmability of
that MAC, such as the Chipcon CC2430 development kit or National Instrument’s Bumblebee boards. Next,
we tested UC Berkeley’s CALinx expansion board that is used in the CS150 class. It comes with a Chipcon
cc2420 chip and an FPGA. Although this platform is fully programmable, it comes with no protocol support
at all.
While it is true that none of above satisfies stated requirements, we valued most the maturity of Medium

Access Control layer, the broad WiFi compatibility and open architecture of management plane of MadWiFi.
It will be useful to describe some of capabilities and limitations of MadWiFi. MadWiFi has following interesting

capabilities that might be useful for future algorithm design: noise floor sensing, per-packet RSSI sensing, Tx
power control, rate control, power saving, modulation selection, CCA threshold control, beaconing, queueing,
frame control, channel switching, multichannel management, long distance timing control, extended range support,
antenna diversity and timer control. However, followings are known to be not possible: realtime CCA tracking,
pausing CSMA timers/counter and direct firmware controls.

The communication between MadWiFi driver and HAL is done by IRQ and DMA. IRQ is used for software
beacon alert, bumping TX trigger level, RX notice, TX notice and MIB handling. DMA is used by MadWiFi to
notify HAL to copy the outbound packet.

II. MADWIFI AND ATH5K STRUCTURE

MadWiFi driver was developed by a group of Atheros chipset employees. Atheros WiFi chipsets are known
to support a wide range of frequency and has deep controllability over the radios. MadWiFi runs on top of
HAL(Hardware Abstraction Layer) which is a wrapper around the hardware registers that has direct communication
to the firmware of chipsets. HAL was devised to compromise between the open source community and the regulatory
agencies.

cq3

MadWiFi itself is a huge package; its source consists of 205K lines plus binary modules(HAL). In the
biggest picture, MadWiFi consists of 4 modules - net80211, ath, ath_rate and various utilities. net80211
is responsible for 802.11 frame operation and all management operations including association, authentication
and roaming. ath has Atheros specific callbacks for net80211 and hardware access interface through HAL.
ath_rate provides automatic rate fallback.

A. MadWiFi Structure Overview
MadWiFi is essentially an open source WLAN driver for Linux. This section discusses the basics of transmission

and reception, by giving an overview of the structs used. The most common structs used are net_device,
ieee80211vap (allows a physical access point to behave like a multiple access point), ieee80211_node (keeps
node-specific information), and sk_buff (socket buffer). if_ath.c is responsible for starting transmission, by
invoking functions in the 80211net subdirectory (first function is ath_hardstart) ath_hardstart calls
ath_tx_start and ieee80211_encap (to encapsulate the packet). Reception is handled by ath_rx_tasklet
(in_ath.c), which calls other functions such as ieee80211_decap or ieee80211_input.

B. Ath5k Structure Overview
Ath5k is a Linux wireless driver that is based on the MadWiFi wireless driver and OpenHAL. The main

difference between MadWiFi and Ath5k is that Ath5k directly calls hardware functions and writes to the hardware
registers of the Atheros wireless card. Ath5k consists of 10 files: ath5k.h, base.c, base.h, debug.c,
debug.h, hw.c, hw.h, initvals.c, phy.c, and reg.h. ath5k.h defines the structure of the hardware
abstraction layer and contains the settings of the driver, like transmission rate, reception status, an driver mode.
The main files of the Ath5k driver are base.c, base.h, hw.c, hw.h, and phy.c. These files contain functions
that are responsible for the transmission of packets, reception of packets, driver initialization, and other hardware
functionalities. initvals.c fills in the registers in the wireless card with initial values. reg.h holds the values
for the hardware registers of Atheros 5212, 5211, and 5210 cards. reg.h is directly derived from the OpenHAL
reverse engineering efforts to produce an open source hardware abstraction layer and allow open source drivers
like Ath5k to directly access hardware registers of the wireless card using hardware functions.

C. Channel Selection
The channel switching delay in MadWiFi is roughly 30-50ms. Our initial goal was to reduce this delay

to 5-10ms by modifying the code. MadWiFi relies on iwconfig to change/set the channel. As a result, an
analysis of the iwconfig package was a necessary step in understanding how MadWiFi changes the frequency
of transmission. In this intermediate step, we looked into the wireless_tools.29 package, and realized that
the IO flag responsible for setting the frequency is SIOCSIWFREQ (which corresponds to 0xB04 in memory).
Searching the MadWiFi source code for this flag pointed us to the function ieee80211_ioctl_siwfreq, which
is located in ieee80211_wireless.c. This function takes a device name, a command tag, and a frequency as
it’s arguments, and sets the frequency of the device to the desired value.

D. Statistics Collection
Because the Ath5k driver has direct access to the hardware register values obtained from the OpenHAL, the

statistics were obtained by directly reading the register values using the function ath5k_hw_reg_read. Our
goal is to collect statistics on the fractions of time that the communication channel is busy and idle, and to do
that, we read and printed the values of the registers AR5K_PROFCNT_RXCLR and AR5K_PROFCNT_CYCLE. The
AR5K_PROFCNT_RXCLR register is supposed to contain the amount of time that the communication channel is
busy and the AR5K_PROFCNT_CYCLE register is supposed to contain the total time that elapsed. The biggest
problem with reading and analyzing these registers is that these registers reset after a certain period of time, which
makes the printing output of these registers seem inconsistent. One property that always holds is that the value in
the AR5K_PROFCNT_RXCLR register is always a fraction of the value in the AR5K_PROFCNT_CYCLE register,
which is reasonable since the busy channel time should be a fraction of the total time elapsed. From experiments,
the fraction of the value of the clear register divided by the cycle register is approximately .15 when the channel
is clear and between .4 and .8 when the wireless card is sending packets.

cq4

Fig. 1. Software Architecture

III. PROTOTYPING

A. Software Architecture
1) Statistic Counter Collector Structure:

cb_get_basic_info() // get basic configuration information
cb_get_stats() // get statistic information

struct cb_ifstats {
u_int32_t tx_packets;
u_int32_t tx_mgmt;
u_int32_t tx_xretries;
u_int32_t tx_shortretry;
u_int32_t tx_longretry;
u_int32_t tx_fifoerr;
u_int32_t rx_orn;
u_int32_t rx_crcerr;
u_int32_t rx_fifoerr;
u_int32_t rx_badcrypt;
u_int32_t rx_phyerr;
u_int32_t rx_tooshort;
u_int32_t rx_toobig;
u_int32_t rx_packets;
u_int32_t rx_mgt;
u_int32_t tx_rssi;
u_int32_t rx_rssi;
u_int8_t link_qual;
u_int8_t sig_level;
u_int8_t noise_level;

cq5

};

2) Parameter Configuration Interface:
cb_set_chan(channel) // set channel
cb_set_txpower(level) // set txpower
cb_set_fragoffset(length) // set max fragmentation
cb_set_rate (rate) // set PHY rate
cb_set_config() // set basic configuration

3) Wireless Extension: Wireless extension supports lots of useful interfaces to get statistics and basic
configuration of chips, and also to set configuration parameters. For instance the iwconfig command is defined
here. Wireless extension basically consists of two C source files, iwConfig.c and iwLib.c. iwLib.c interfaces
with Linux kernel and eventually calls ioctl().

4) Sample Code: This sample code changes channel to a new one at every 5 seconds (1 → 6 → 11 →
6 → 11 → · · ·).
int cb_chan_select()
{

static int cur_chan = 1;

if(cur_chan == 11) cur_chan = 1;
else cur_chan += 5;

return(cur_chan);
}

main(int argc, char *argv[])
{

int s;
int chan;

s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0) err(1, "socket");

loop:
cb_get_stats(s, IFNAME_WIFI, &ifstats); //IFNAME_WIFI: wifi0
chan = cb_chan_select(); // pick up a channel
cb_set_chan(s, IFNAME_ATH, chan); // IFNAME_ATH: ath0

sleep(5);
goto loop;
return 0;

}

B. Measuring Kernel Queue size
We aim to measure the kernel queue size, and print out its value through time. At first, we tried to look for

a sysctl variable that stores the queue length. To be certain, we printed all sysctl variables, and found no
one relating to queue length. We then looked at the kernel code to get more insight. When a packet is ready
for transmission, the function dev_queue_xmit is called. This function adds the packet to the device’s queue
(dev->qdisk->enqueue). The packet on top of the queue is then transmitted using qdisk_restart(dev).
After this, the queue is dequeued, to bring the next packet higher up in priority. The qdisk structure contains
a stats field. The stats field has a variable, qlen, which collects the value of the queue length. By monitoring
this value and printing it, we can determine the size of the network device queue at different times. This can be
achieved by putting printk statements in the code to get the values for queue length.

IV. ALGORITHM STUDY

A. AP Selection Algorithm
In [1], we proposed the following simple AP selection algorithm, coupled with proper packet scheduling

policies. (1) On the user (or “station”) side, each user selfishly selects an AP that can gives him the highest

cq6

throughput; (2) On the AP side, each AP implements a scheduling policy to allocates its bandwidth, such that the
total utility of its intra-cell users is maximized.

It was shown in [1] that the algorithm optimizes the performance of the whole system under some reasonable
assumptions. Also, since all decisions (AP selection by the users and intra-cell scheduling by the AP’s) are made
locally, the distributed algorithm is very easy to implement. Specifically, a possible implementation is as follows.
1) Before association, a user sends a REQUEST packet to all available AP’s that he can choose from. The REQUEST

packet also reports the user’s application type, such as “data”, “voice”, or “video”. Each application type is
mapped to a certain utility function.

2) According to the utility function, each AP that has received the REQUEST packet computes its optimal bandwidth
allocation assuming that the user would select the AP. (The allocation also depends on the current intra-cell
users and their utility functions.) Then, the AP sends a REPLY packet to the user, reporting the “proposed”
bandwidth to be allocated to the user.

3) After receiving the REPLY packets from all available APs, the user selects the AP with the highest proposed
bandwidth.

4) Finally, the selected AP allocates its bandwidth as computed in step 2. The bandwidth allocations of other AP’s
keep unchanged.

B. ARF Issue and Simulations
Basic ARF algorithms do not take into account different types of traffic loss. Modulating to a lower rate is

not always the solution to compensate for loss. In the case of loss due to collisions, reducing the data rate will
increase the packet length. This will increase the chances of collisions since the packet is longer and will be in
the channel for a longer period of time. Our approach is to gather statistics to calculate the probability that each
type of loss occurred.

The ARF algorithm is implemented within the MAC 802.11 code of NS-2. Each node has an instance of the
MAC 802.11 layer and within each instance, the ARF algorithm is running. The issue with modifying the data rate
is knowing whether or not changing the data rate changes any other parameter. There is little documentation on
the updates from different versions of NS-2, which makes it difficult to understand the flow of the simulator.

A monitoring tool is implemented to keep a count of successful and unsuccessful packets, as well as collisions
and error due to a poor channel. This is used to modify the simulation’s parameters to meet the specified conditions.
This tool helped to find the correct distances for the nodes in our simulation. It also helped to find the general
throughput of each link.

The simulator mostly uses thresholds to determine whether or not each frame is correctly received by the
receiver. This is another issue, since it uses a purely deterministic methodology when receiving packets, while
real world wireless networks cannot be simplified in that manner. The simulator has no error models that take into
account any fading or modulation errors. The simulator sets 2 main thresholds, the receiving and the carrier-sensing
thresholds. If a packet falls outside the CS threshold, it is not noticed by the node. If it is within the CS threshold,
but outside of the receiving threshold, it is counted as an error. Everything else within the receiving threshold
is counted as successful. To simulate a more realistic model, the addition of an error model has been added to
simulation. The error model takes into account the modulation bitrate that is used in the transmission and also
calculates the probability of error given each rate. This allows each packet within the receiving threshold to still
encounter an error. Taking into account these issues will produce a more realistic simulation to test our theory on
improving the wireless network.

The application is a discrete event simulator targeted at networking research. NS-2 is a C++ object oriented
simulator that incorporates an OTcl interpreter as an interface. The purpose of the simulation is to test the impact
of an auto-rate fallback algorithm (ARF) given statistical information. Assuming that the nodes know if a loss is
caused by a poor channel as opposed to a collision, we adapt certain parameters, such as the modulation rate, to
increase the performance of the network.

The simulation scenario is a small adhoc network with 4 nodes in a line. 2 nodes will be sending packets while
the other 2 will be receiving. The nodes are spaced appropriately such that the nodes are far enough to not have a
lossless channel. The first receiving node is also susceptible to collisions since the sending nodes are on opposing
sides of the receiver and cannot hear each other sending. The nodes are set with the appropriate routing tables,
carrier sense threshold, receiving threshold, and other parameters to mimic the IEEE802.11b specifications. The
auto-rate fallback algorithm states that after N successful packet transmissions increase the data rate if possible.
For every M unsuccessful transmissions, decrease to a lower data rate.

cq7

There are 2 algorithms and one control tested with each given configuration. The control test uses no ARF
algorithm and continues to send at a constant rate regardless of any losses. The second test uses the most common
ARF algorithm that modifies the rates treating all losses the same. The final test modifies the modulation rate only
if loss is caused by poor channel conditions, and does not acknowledge collisions as loss. Given that the types of
losses are known, test if the ARF algorithm increases the performance of the network.

Future tests will include modifications to the packet length, contention window, or sensing thresholds.

V. CONCLUSION AND FUTURE DIRECTION

Spectrum agility is expected to be one of the fundamental features of future wireless technologies. The right
understanding of wireless channel interference and congestion problems and the right resolution of them will be
driving force of future radio devices. For the proof-of-concept purpose, MadWiFi/Ath5K platform is selected and
studied in-depth. This platform will host various kinds of candidate algorithms per scenario. As an example, we
proposed an AP selection algorithm which optimizes the throughput performance of a network. Further exploitation
of medium statistics are under study. In the second stage of the research we expect a working prototype will play
a role of deeper research and initiative for future market driving.

REFERENCES

[1] L. Jiang; S. Parekh and J. Walrand, ”Base Station Association Game in Multi-Cell Wireless Networks,” IEEE Wireless
Communications and Networking Conference (WCNC) 2008, pp.1616-1621, March 31-April 3 2008

