
PERCU: A Holistic Method for Evaluating High
Performance Computing Systems

William TC Kramer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-143

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-143.html

November 5, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

See text of report

PERCU: A Holistic Method for Evaluating High Performance Computing
Systems

by

William T.C. Kramer

B.S. (Purdue University) 1975
M.S. (Purdue University) 1976

M.E. (University of Delaware) 1986

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James Demmel, Chair
Professor David Culler

Professor James Siegrist

Fall 2008

The dissertation of William T. C. Kramer is approved:

Chair ___ Date _____________

__ Date _____________

__ Date _____________

University of California, Berkeley

Fall 2008

PERCU: A Holistic Method for Evaluating High Performance Computing

Systems

© 2008

by

William T.C. Kramer

1

Abstract

PERCU: A Holistic Method for Evaluating High Performance Computing
Systems

by

William T.C. Kramer

Doctor of Philosophy in

Computer Sciences

University of California, Berkeley

Professor James Demmel, Chair

Professor David Culler

Professor James Siegrist

PERCU is a comprehensive evaluation methodology for large-scale

systems that expands Performance analysis to include Effective work

dispatching, Reliability, Consistency, and Usability. The PERCU approach

and its components can be used for initial system assessment as well as for

on-going quality assurance of High Performance Computing (HPC) and other

systems. PERCU leverages work that has to be done in traditional

benchmarking and acquisition approaches by compositing existing data to

gain additional insights.

A key contribution is the Sustained System Performance (SSP) concept

which uses time-to-solution for assessing the productive work potential of

2

systems for an arbitrary set of applications. The SSP provides a fair way to

compare systems deployed at different times and provides a method to

assess sustained price performance in a comprehensive manner. This work

also discusses the Effective System Performance (ESP) test, developed to

encourage and assess improved job launching and resource management –

both important aspects for a productive HPC system. Reliability is the third

characteristic of a productive system. This work explores the major causes of

failure for very large systems and suggests improved methods for a priori

assessment of the reliability of HPC systems. Consistent execution of

programs is a metric often overlooked in assessments, but is a key service

quality feature. This work shows how lack of consistency impacts quality of

service and defines approaches for assessing and improving consistency.

Usability is discussed for completeness and as future work.

PERCU can be used, in all or part, and with a limitless scale of detail and

effort. At its simplest, it is a framework for holistic evaluation. In its detail, it

introduces a set of methods for measurement of key parameters that impact

quality of service on HPC systems. The use and impact of each PERCU

element is documented for multiple systems, mostly using systems evaluated

at the National Energy Research Scientific Computing (NERSC) Facility.

Professor James Demmel, Chair

i

Dedication

This work is dedicated to the two ladies in my life that give me the

inspiration to and the joy of excellence. My daughter Victoria, who works

harder than anyone I have ever met, from her first days, has a love of

learning, a sense of humor and a style that inspire me. My wife Laura is my

complete partner and friend, for infinity. She inspires me with her continuous

evolution and re-invention of herself, her unselfishness and her intelligence

that are beyond anyone I have ever met.

To these two outstanding ladies, I dedicate this work and my life as a

small token of my thanks and love.

ii

Table Of Contents

CHAPTER 1: INTRODUCTION AND MOTIVATION .. 1

1.1 CHAPTER SUMMARY ... 1

1.2 STEPS TAKEN TO DEVELOP PERCU METHODOLOGY .. 3

1.3 PERCU‘S IMPORTANCE TO THE HPC COMMUNITY ... 4

1.4 ORGANIZATION ... 6

1.4.1 Introduction and Motivation .. 6

1.4.2 Comparing Evaluation Requirements .. 7

1.4.3 Sustained System Performance Method .. 9

1.4.4 Practical Use of SSP for HPC Systems ... 10

1.4.5 Effectiveness of Resource Use and Work Scheduling ... 11

1.4.6 Reliability .. 11

1.4.7 Consistency of Performance .. 12

1.4.8 Usability – Something for the Future .. 12

1.4.9 PERCU‟s Impacts, Conclusions and Observations.. 13

CHAPTER 2: COMPARING EVALUATION REQUIREMENTS ... 14

2.1 CHAPTER SUMMARY ... 14

2.2 ANALYSIS METHOD ... 16

2.3 SUMMARY OF EVALUATION FACTOR ANALYSIS ... 19

2.4 OVERALL CATEGORIES OF EVALUATION FACTORS .. 22

2.4.1 Minimum/Mandatory/Baseline Requirements .. 26

2.4.2 Desired/Performance/Non-Mandatory ... 27

2.5 CROSS CUT GROUPINGS .. 30

2.6 CHAPTER CONCLUSION .. 31

CHAPTER 3: SUSTAINED SYSTEM PERFORMANCE METHOD 32

3.1 CHAPTER SUMMARY ... 32

iii

3.2 THE BASIC SSP CONCEPT .. 32

3.3 BUYING TECHNOLOGY AT THE BEST MOMENT .. 36

3.4 GOOD BENCHMARK TESTS SHOULD SERVE FOUR PURPOSES .. 37

3.5 DEFINITIONS FOR SSP .. 40

3.6 CONSTANTS ... 41

3.7 VARIABLES ... 42

3.8 RUNNING EXAMPLE PART 1 – APPLICATIONS ... 47

3.9 ALIGNING THE TIMING OF THE PHASES ... 48

3.10 RUNNING EXAMPLE PART 2 – SYSTEMS ... 52

3.11 THE COMPOSITE PERFORMANCE FUNCTION (W, P) ... 54

3.12 SSP AND TIME-TO-SOLUTION ... 56

3.13 ATTRIBUTES OF GOOD METRICS ... 60

3.14 RUNNING EXAMPLE PART 3 – HOLISTIC ANALYSIS .. 66

3.15 CHAPTER CONCLUSION .. 67

CHAPTER 4: PRACTICAL USE OF SSP FOR HPC SYSTEMS ... 68

4.1 CHAPTER SUMMARY ... 68

4.2 A REAL WORLD PROBLEM, ONCE REMOVED .. 69

4.3 DIFFERENT COMPOSITE FUNCTIONS .. 73

4.4 IMPACT OF DIFFERENT MEANS .. 74

4.5 SYSTEM POTENCY .. 75

4.6 USING TIME-TO-SOLUTION IN SSP .. 77

4.7 THE EVOLUTION OF THE NERSC SSP - 1998-2006 .. 79

4.7.1 SSP-1 (1998) - The First SSP Suite ... 81

4.7.1.1 Description of SSP-1 .. 81

4.7.1.2 Assessment of SSP-1 ... 83

4.7.2 SSP-2 (2002) - The First Application Based SSP Suite ... 84

4.7.2.1 Description of SSP-2 .. 84

4.7.2.2 Assessment of SSP-2 ... 85

iv

4.7.3 SSP-3 (2003) – Balancing Complexity and Cost ... 86

4.7.3.1 Description of SSP-3 .. 87

4.7.3.2 Assessment of SSP-3 ... 87

4.7.4 SSP-4 (2006) - SSP at Larger Scale .. 88

4.7.4.1 Description of SSP-4 .. 88

4.7.4.2 Assessment of SSP-4 ... 88

4.7.4.3 SSP-4 Results .. 88

4.7.4.4 Comparing Dual and Quad Core Implementations ... 94

4.7.5 SSP-5 (2008) – A Sharable SSP Suite .. 94

4.7.5.1 Description of SSP-5 .. 95

4.7.5.2 The Base Case ... 96

4.7.5.3 The Fully Optimized Case .. 97

4.7.5.4 Assessment of SSP-5 ... 99

4.7.5.5 SSP-5 Results for NERSC-5 .. 100

4.8 EXPERIENCES AND IMPACT OF SSP ... 100

4.8.1 Revisiting the Real World, Once Removed Example ... 100

4.8.2 Risks of Using Peak Performance as a Selection Criteria 101

4.9 SSP AS AN ON-GOING MEASURE .. 104

4.10 VALIDATING SSP WITH USER REPORTED PERFORMANCE ... 108

4.11 OBSERVATIONS ON APPLICATION MODELING AND SSP... 112

4.12 CHAPTER CONCLUSION .. 119

CHAPTER 5: EFFECTIVENESS OF RESOURCE USE AND WORK SCHEDULING 120

5.1 CHAPTER SUMMARY ... 120

5.2 HOW ESP HELPED IMPROVE THE NERSC-5 CRAY XT-4 ... 121

5.3 ESP INTRODUCTION AND MOTIVATION ... 126

5.4 MIXED WORKLOAD SCHEDULING ... 128

5.4.1 The User‟s View of Fairness in Job Scheduling ... 129

5.4.2 Job Execution Priorities .. 131

5.5 ESP DESIGN GOALS .. 133

v

5.6 SCHEDULING LARGE JOBS .. 134

5.6.1 Throughput of Large-Scale Jobs .. 134

5.6.2 Considerations for Executing the ESP Jobs .. 135

5.6.3 Operational Transitions .. 137

5.7 ESP: A METHOD THAT CAN BE APPLIED TO DIFFERENT SYSTEMS AND WORKLOADS 138

5.8 ESP-1 – THE FIRST IMPLEMENTATION ... 139

5.9 ESP-2 – A FLEXIBLE TEST ... 140

5.9.1 ESP-2 Experiences .. 145

5.10 ADDITIONAL ESP-2 RESULTS FOR NERSC-5 .. 146

5.11 CHAPTER CONCLUSION .. 147

CHAPTER 6: RELIABILITY .. 149

6.1 CHAPTER SUMMARY ... 149

6.2 ANALYSIS OF THE NERSC RELIABILITY DATA .. 150

6.3 SOFTWARE AND HARDWARE ERRORS .. 151

6.3.1 Subcomponent Error Analysis .. 154

6.3.2 Seaborg Failure Analysis ... 160

6.3.3 Seaborg Node Disk Failures .. 161

6.4 JOB COMPLETION SUCCESS ON NERSC-5 .. 165

6.4.1 Manual Analysis of Job Failure Data .. 167

6.4.2 Observations About Job Completion Metrics ... 171

6.5 REACTIVE ASSESSMENT OF RELIABILITY .. 171

6.6 PROACTIVE ASSESSMENT OF RELIABILITY .. 172

6.6.1 Assessing A System Provider‟s Response To Errors .. 173

6.6.2 Size Of System Provider‟s Testing Environment ... 173

6.7 OBSERVATIONS ABOUT THE IMPORTANCE OF RELIABILITY DATA COLLECTION 174

6.8 RELATED WORK ... 174

6.9 CHAPTER CONCLUSION .. 177

vi

CHAPTER 7: CONSISTENCY OF PERFORMANCE ... 179

7.1 CHAPTER SUMMARY ... 179

7.1.1 Motivation For Consistency .. 180

7.1.2 Factors That Influence Consistency ... 181

7.2 THE IMPACT OF INCONSISTENT PERFORMANCE .. 181

7.2.1 Users Are Impacted By Inconsistency ... 182

7.2.2 Negative Impacts Of Inconsistency .. 182

7.3 COEFFICIENT OF VARIATION .. 183

7.4 CONSISTENCY OF TWO LIGHT WEIGHT OPERATING SYSTEMS ON THE CRAY XT-4 184

7.5 INCONSISTENCY EXISTS IN APPLICATION PERFORMANCE .. 186

7.6 HOW MUCH CONSISTENCY SHOULD BE EXPECTED? .. 191

7.6.1 System Architecture Influences Performance Consistency 191

7.6.2 Architectures Evaluated ... 192

7.6.3 Evaluation Results .. 193

7.6.4 System Configuration Issues.. 195

7.7 EFFECTS OF THE TIME OF DAY ... 198

7.8 EMBARRASSINGLY PARALLEL (EP) CONSISTENCY .. 199

7.9 CHANGING THE NUMBER OF ADAPTERS ... 200

7.10 LOW CONSISTENCY ON THE CRAY T3E .. 201

7.11 DETECTING AND REACTING TO INCONSISTENCY ... 206

7.11.1 What To Do When Inconsistency Is Detected .. 206

7.12 SYSTEM ACTIVITY ... 207

7.12.1 Improving Consistency ... 208

7.12.2 An Observation Related To Concurrency .. 209

7.12.3 Steps For Diagnosing The Problem ... 210

7.12.4 The Problem Was Found – The Control Work Station ... 212

7.12.5 An Observation About Performance Variability .. 215

7.13 CHAPTER CONCLUSION .. 216

vii

CHAPTER 8: USABILITY – SOMETHING FOR THE FUTURE ... 217

8.1 CHAPTER SUMMARY ... 217

8.2 APPROACHES TO ASSESS USABILITY ... 218

8.3 HIGH PRODUCTIVITY BASELINE STUDIES ... 221

8.4 COMPARATIVE USABILITY OF TWO LWOSS ... 222

8.4.1 Comparison of CVN and CLE .. 223

8.4.2 Evaluation Criteria .. 224

8.4.3 Observations .. 225

8.4.4 CLE and CVN Evaluation Feedback .. 226

8.5 USER SURVEYS .. 226

8.6 CHAPTER CONCLUSION .. 228

CHAPTER 9: PERCU’S IMPACTS, CONCLUSIONS AND OBSERVATIONS 230

9.1 CHAPTER SUMMARY ... 230

9.2 SUMMARY OF PERCU .. 230

9.3 THE SSP METHOD FOR ASSESSING PERFORMANCE .. 233

9.3.1 Summary .. 233

9.3.2 Impact ... 233

9.3.3 Further Work... 234

9.4 EFFECTIVENESS OF RESOURCE USE AND WORK SCHEDULING.. 234

9.4.1 Summary .. 234

9.4.2 Impact ... 235

9.4.3 Future Work .. 235

9.5 RELIABILITY .. 236

9.5.1 Summary .. 236

9.5.2 Impact ... 236

9.5.3 Future Work .. 237

9.6 CONSISTENCY OF PERFORMANCE ... 238

viii

9.6.1 Summary .. 238

9.6.2 Impact ... 238

9.6.3 Future Work .. 239

9.7 USABILITY – SOMETHING FOR THE FUTURE .. 240

9.7.1 Summary .. 240

9.7.2 Impact ... 240

9.7.3 Future Work .. 241

9.8 PERCU SUMMARY ... 241

9.9 CHAPTER CONCLUSION .. 242

APPENDIX A. ADDITIONAL DATA ... 243

APPENDIX B. CHARACTERISTICS OF THE SYSTEMS ... 244

APPENDIX C. APPLICATION CODES USED IN THE SSP METRICS 248

APPENDIX D. NAS PARALLEL BENCHMARKS USED FOR CONSISTENCY TESTING 251

APPENDIX E. SSP RELATED TO PRODUCTIVITY ... 253

APPENDIX F. ESP-1 – THE FIRST VERSION .. 258

APPENDIX G. ASSESSING BATCH SCHEDULERS WITH ESP-2 278

APPENDIX H. COMPARING LIGHT WEIGHT OPERATING SYSTEMS (LWOS) 298

BIBLIOGRAPHY .. 302

ix

List of Figures

Figure 3-1: The proposed deployment time and SSP of two systems. .. 51

Figure 3-2: SSP performance chart after periods are aligned. For clarity τ́2,k replaces τ2,k 52

Figure 4-1: System parameters for Phase 1. Note System 4 is a single phase and is shown in

the Phase 2 chart. ... 72

Figure 4-2: System parameters for Phase 2. ... 72

Figure 4-3: A graph of the example SSP value over time for the five systems. This is using

the geometric mean as the composite function. The duration of the evaluation period is

set by the evaluator. The starting date of the evaluation period can either be specified in

an RFP or can be determined based on the first available system. 76

Figure 4-4: The SSP-4 application runtimes for two Light Weight Operating Systems running

on the same XT-4 hardware. Note that most of the runtimes for CNL are lower than for

CVN. ... 91

Figure 4-5: The SSP-4 metric for the same XT-4 hardware running two different Light Weight

Operating Systems. It was a surprise that CLE outperformed CVN. 93

Figure 4-6: Peak vs. Measured SSP-1 performance ... 102

Figure 4-7: Runtimes of the SSP-2 component benchmarks over an extended time. 106

Figure 4-8: SSP validated performance on-going performance of the IBM Power 3 system

using SSP-2. The line slightly above 600 is the contract required metric. 107

Figure 4-9: Collected hardware performance data for science discipline areas and the CPU

Performance data measured using IPM for over 270 applications. 112

Figure 5-1: An ESP run on NERSC's Cray XT-4. .. 124

Figure 5-2: ESP run with priority placed on longer running and larger jobs. This test confirms

the system can be effectively scheduled and was significantly faster than the target time.. 125

Figure 6-1: Total number of unscheduled downtime for the major NERSC systems over a 1

year period. All systems other than Franklin are from 2006. Franklin is a partial year -

154 days spanning late 2007 and 2008 which is projected to a full year for comparison. ... 152

file:///C:\Users\kramer\Desktop\Modified%20Files\Dissertation\Kramer%20PERCU%20Dissertation-October-2008-Final2.1.docx%23_Toc213434236
file:///C:\Users\kramer\Desktop\Modified%20Files\Dissertation\Kramer%20PERCU%20Dissertation-October-2008-Final2.1.docx%23_Toc213434236
file:///C:\Users\kramer\Desktop\Modified%20Files\Dissertation\Kramer%20PERCU%20Dissertation-October-2008-Final2.1.docx%23_Toc213434236

x

Figure 6-2: Seaborg downtime by hardware and software subsystems. 156

Figure 6-3: Franklin downtime by hardware and software subsystems for a limited time. 157

Figure 6-4: Mean Time To Repair by Subsystem Category for both systems 158

Figure 6-5: Average downtime per day for major subsystem categories. 159

Figure 6-6: Classification of individual tickets for the NERSC Seaborg System 160

Figure 6-7: Total number of disks in Seaborg .. 163

Figure 6-8: Seaborg Disk Replacements by Disk Type ... 164

Figure 7-1: This chart shows inconsistency in performance for 6 full applications running on

the NERSC IBM SP Seaborg system. These codes were part of the SSP-2 suite used for

system acceptance with 256 way concurrencies. ... 186

Figure 7-2: this is the same data as in Figure 7-1, showing the difference in run time of

applications compared to the average run time of the applications, normalized by the

average run time. All applications show some inconsistency, and several show

significant inconsistency. .. 187

Figure 7-3: Shows the inconsistency in performance of the CG benchmark with 256-way

concurrency before and after adjustments were made to the

MP_RETRANSMIT_INTERVAL parameter. The interval controls how long an application

waits before retransmitting MPI messages. .. 188

Figure 7-4: Shows seven months of runtimes for six NPB codes on the same system, all run

in production, multi-user time. The graph indicates an improvement in the system

consistency that was the result of multiple improvements including bug fixes and

exploration of improved tuning parameters. One point of the chart is that a well

configured and managed system can be very consistent. ... 189

Figure 7-5: The computational load across the entire NERSC IBM SP Seaborg system,

including the time period covered in Figure 7-3. The system is heavily utilized by

compute-intensive applications, which received over 90% of the overall CPU cycles. 190

Figure 7-6: The Stream Memory rates for different nodes within a rack of the Bassi System.

The Y axis is the memory rate reported from the Memory stream micro benchmark and

xi

the X axis is the node number within the rack. There are multiple runs of the same test

used. ... 196

Figure 7-7: Picture of the IBM IH nodes – showing the location of the Federation interface

alternating from left and right sides of the node. This simplified cable management for

maintenance. .. 197

Figure-7-8: The same tests as were done in Figure 7-6 after the memory allocation routine

was changed to place the initial large pages for system software in the same location.

While there is still some natural variability in these different runs, it is much more

consistent. ... 198

Figure 7-9: This is a histogram of LU times from the Compaq SC system. It shows Gaussian

distribution with a long fat tail for runtimes. .. 202

Figure 7-10: This is the histogram of the LU times on the T3E system. It shows a bi-modal

distribution with a large range for the runtimes. .. 203

Figure 7-11: Comparison of measured and modeled slowdown between two sets of nodes in

a parallel computer. The Y axis gives the relative slowdown between the two sets. The

dark squares are measured performance data and the light line is a model describing the

scaling of the slowdown. ... 209

Figure 7-13: Runtimes of the NPB LU on original (―old‖) and additional (―new‖) nodes. Note

how the time on the old and the new nodes are essentially the same when the CWS was

off and then later when there was CWS testing to resolve the issues. 213

Figure 7-14: The above graph shows MPI barrier performance before (Oct 14, 2003) and

after (Nov 27, 2003) the problem was corrected. The graph is smoothed to make the

trend clearer. The lower barrier times after the problem resolution led directly to

improved performance for many applications. .. 215

Figure 9-1: Actual Utilization of the NERSC T3E over a 3 year period. The date with the blue

color is the 30 day moving average of the CPU used by user applications. The T3E

usage increased with the introduction and improvement of system software. 271

xii

Figure F-9-3: SP Workload – Cumulative CPU Time by Job Size on the SP for an 8 month

period. ... 274

Figure F-9-4: T3E Workload – Cumulative CPU Time by Job Size for an 8 month period. The

total number of computational CPUs is 696. .. 275

xiii

List of Tables

Table 2-1: Summary of Mandatory and Desired Evaluation Factors for 12 RFPs. 20

Table 2-2: Mandatory Major and Sub-Major Evaluation Factors ... 27

Table 2-3: Desired Major and Sub-Major Evaluation Factors .. 27

Table 2-4: Breakdown of Factors by Category .. 28

Table 2-5: This table shows consistency in factor categories independent of site or number of

factors. .. 29

Table 2-6: Percent of Evaluation Factors by category. Note the highest percentages are in

Performance and Usability. ... 30

Table 3-1: Sustained System Performance Definitions ... 41

Table 3-2: SSP Definitions for SSP Constants .. 42

Table 3-3: Variables and Formulas for determining the SSP. ... 46

Table 3-4: This table shows the basic performance characteristics for the three benchmarks

in our example .. 47

Table 3-5: Baseline performance of benchmarks on an existing system. 48

Table 3-6: Specifications of solutions being considered .. 53

Table 3-7: Benchmark Runtimes in Seconds for Three Systems .. 54

Table 3-8: Per processor performance of three benchmarks .. 54

Table 3-9: Per processor performance of three benchmarks .. 67

Table 4-1: Per processor performance, p, for each system, phase and benchmark for a

hypothetical system purchase. These responses are anonymized and adjusted from

actual vendor responses for major procurements. Systems 1, 2, 3, and 5 are proposed to

be delivered in two phases. System 4 is a single delivery. The per processor

performance of five application benchmarks is shown. The systems would be delivered

at different times. The table shows the delivery date relative to the earliest system. 71

Table 4-2: SSP Performance results using geometric and arithmetic means, and the impact

on SSP Potency and Value. ... 74

xiv

Table 4-3: Another example of using different means that do not change the ordering of

system performance ... 75

Table 4-4: Example calculation of a system's SSP value .. 78

Table 5-1: The ESP-2 Job Mix ... 142

Table 6-1: Job Failure Error Categories and Data from Sept 2007 to April 2008. 167

Table 6-2 Job Success and Failure indicators for a single day. (Data courtesy of Mr. Nicholas

Cardo, NERSC) .. 170

Table 7-1: Runtimes (in seconds) reported by the NAS Parallel Benchmarks using 256 way

concurrency for the last 50 days of the period covered by Figure 7-3. 190

Table 7-2: Shows the basic statistics for the test runs. Including some of the special test

cases discussed below, over 2,500 test runs were made. There was no correlation

between which nodes were used and the performance or consistency on the system. 194

Table 7-3: Compares T3E consistency using actual NPB Runtime reports and system

accounting data. The NPB runtime reports calculate the ―wall clock‖ time for the test –

and do not adjust for time lost due to migration or checkpoints. .. 205

Table 7-4: The difference frequency that different system reliability tasks run on the original

and additional nodes. .. 213

Table 8-1: Initial Usability Tests for CVN and CLE. ... 225

xv

List of Equations

Equation 3-1: Work per processor ... 44

Equation 3-2: Per processor performance ... 44

Equation 3-3: Sustained System Performance for system s during phase k 45

Equation 3-4: A system‘s potency is a reflection of its ability to do productive work. 46

Equation 3-5: Costs are used for setting value of a solution ... 46

Equation 3-6: Value of a solution is its potency relative to its cost .. 46

Equation 3-7: Weighted Arithmetic Mean .. 55

Equation 3-8: Weighted Harmonic Mean ... 55

Equation 3-9: Weighted Geometric Mean .. 55

Equation 3-10: The per processor performance for a test depends on the time to complete

that test ... 58

Equation 3-11: Per processor performance for a system depends on time-to-solution 59

Equation 3-12: Comparing SSP values is equivalent to comparing time-to-solution 59

Equation 5-1: The Effectiveness ratio is the time the test actually runs compared to the time

the best packing solution indicates. .. 136

Equation 5-2: The amount of work ESP-2 based on system scale, for a given system s and a

point in time k. ... 143

Equation 5-3: The Effectiveness ratio is the time the test actually runs compared to the time

the best packing solution indicates. .. 144

Equation 7-1: The Coefficient of Variation is the standard deviation divided by the mean of a

series of observations. .. 184

xvi

Acknowledgements

Many people who work very hard to assure HPC systems work well and

support the people who use HPC to design new things and craft new

understandings have inspired this work. I want to thank each and every

person for their contributions in this exciting world of helping HPC make

fantastic impacts on the lives of millions and billions of people. While I am not

able to name everyone in this section, I thank them all for their enthusiasm

and technical leadership. This work was supported by the Office of

Computational and Technology Research, Division of Mathematical,

Information and Computational Sciences of the U.S. Department of Energy,

under contract DE-AC03-76SF00098.

This work coincides with related efforts at NERSC (National Energy

Research Scientific Computing Facility) at Lawrence Berkeley National

Laboratory (LBNL) to improve the impact large system for scientific

computing. I thank all the people at NERSC who have been involved with

fielding and supporting the systems and applications. I also thank the

computational research community that is discussed in this document. I could

not have accomplished this work without the enthusiastic help and support of

the entire NERSC staff. They are my cheerleaders and my consultants. The

people at NERSC made PERCU real instead of an academic concept. It is a

complement to have people using the ideas held in this document to solve

real problems. The impact the NERSC staff has on science and progress is

xvii

beyond all reason. I am in awe of them and grateful for our time together. It

has been an honor and inspiration to work with them to make NERSC, as one

of our users wrote, ―absolutely the best Supercomputing Center in the known

universe‖. Unless otherwise noted, all the people noted below are associated

with NERSC or LBNL.

I would like to thank the people who have made the SSP concept

successful, including Ms. Katie Antypas, Dr. David Bailey, Dr. Jonathan

Carter, Dr. Helen He, Dr. Erich Strohmaier, Dr. David Skinner, Mr. John Shalf,

Dr. Harvey Wasserman, Dr. Richard Gerber, Dr. Lenoid Oliker, Dr. Adrian

Wong and Ms. Lynn Rippe. Several people participated in the efforts to

define, create, refine and use the Effective System Performance Test. The

concept of the need for a test to reflect a “Day in the life” of an HPC system

came during conversations with Dr. David Bailey and Mr. Michael Hennessey

of IBM. The author of this document defined and wrote the first ESP

methodology later that evening which lasted until just before the sun came up.

ESP-1 was co-created with Dr. Adrian Wang, Dr. Lenoid Oliker, Ms. Theresa

Kaltz and Dr. David Bailey and was used to assess NERSC-3. Dr. Adrian

Wang did the majority of the coding work for ESP-2. The use of ESP-2 to

evaluate job schedulers on the same platform was conceived by and led by

the author. Mr. Tom Davis and Mr. Jason Gabler did the ESP-2 configuration,

system administration and batch configuration definition for each test. Finally,

the ESP experiments for the NERSC-5 system were carried out by Dr. Joe

Glenski and his team at Cray.

xviii

Reliability work overlaps with work done for the Parallel Data Storage

Institute, a DOE SciDAC project, which partially funded the work to correlate

the NERSC system reliability data. As the NERSC Principle Investigator for

this work, I appreciate the efforts of my NERSC coworkers Mr. Akbar

Mokhtarani and Mr. Jason Hick as well as the on-going efforts of the NERSC

staff to properly track the system data.

Determining system consistency evolved to be an important aspect of

system evaluation and operation. The work was originally motivated to

provide a guideline for fielding the large IBM SP system called Seaborg. I

worked with Mr. Clint Smith, a fellow graduate student at UC Berkeley, on the

first LBNL technical report and first paper on consistency, both of which are

cited in the references for Chapter 7. This work evaluated the consistency of

multiple MPP systems. The second paper was coauthored with Dr. David

Skinner and looked at the facets that contributed to consistency or its inverse,

variation. Dr. Richard Gerber followed the system test methodology defined

here and determined and investigated the causes of inconsistency on the

Power-5 system, Bassi. It is also important to acknowledge excellent work by

the IBM and NERSC systems staff, including Mr. Nick Cardo, Ms. Tina Butler

and Mr. Scott Burrrow (IBM), who actually identified enough evidence for the

root causes to be determined to correct several issues within the IBM

systems. Without finding the root causes of inconsistency, it would never

have been possible to know that consistent HPC systems are in fact

achievable.

xix

I would also like to thank the organizations that submitted Acquisition and

Requirements documents for summarization in this effort, including the

National Center for Atmospheric Research, Lawrence Livermore National

Laboratory, the DOD HPC Modernization Office, the Canadian Meteorological

Center, the European Center for Medium Range Forecasting and others that

asked not be mentioned. Thank you as well to the Pittsburgh Supercomputer

Center and the National Energy Research Scientific Computing Center for

access to systems that were used to develop and test these concepts.

This work would not have been possible without the participation of many

vendors, who not only provided data from their systems, but also spent

significant staff resources correcting issues and improving systems to

respond to the observations of the PERCU evaluations. The list of vendors

includes International Business Machine Corporation, Cray Inc., Linux

Networx, Compaq Computer (now part of HP), Silicon Graphics Inc., Platform

Computing, Cluster Resources, Inc., and several others.

There are several people within the Office of Advanced Scientific

Computing and Research Office of the DOE Office of Science that have been

very supportive of this work, including Dr. Daniel Hitchcock, Dr. Walter

Polansky, Dr. Buff Miner, Dr. Thomas Kitchens, Dr. Fred Johnson, Dr.

Barbara Helland, Dr. Yukiko Sekine, Dr. Michael Strayer and Dr. Raymond

Orbach. Many of my colleagues encouraged me in my quest for a PhD, not

only helping me evolve my thinking but also keeping my spirits up. In

xx

particular, Dr. Frank William and Dr. Ron Bailey were true friends with their

encouragement and confidence. I would like to acknowledge the support Dr.

Horst Simon gave this work. I want to thank Mr. James Craw, my long time

colleague, whose group ran many of the systems in this analysis and often

carried out the improvements that were identified. Mr. Howard Walter and Ms.

Francesca Verdier responded to the information identified in this report and

helped support the effort to make the improvements in NERSC systems that

are documented. In particular, I owe a debt of gratitude to Dr. William

McCurdy and Dr. Charles Shank who whole-heartedly encouraged this

endeavor and have been role models.

The staff and faculty in the Computer Science Division at the University of

California at Berkeley have taught me computer science for the 21st century.

The entire department took a chance that a part-time graduate student would

be able to accomplish the program and add to the department. I have learned

in every class I took, but more importantly, I have learned how to approach

researching problems. In particular, I am deeply thankful for the on-going

support of Dr. James Demmel – who steered me the through the process and

was extremely patient with the distraction of my real job. Dr. David Culler not

only introduced me to an entirely new arena of large scale systems with self

configuring networks, but also helped simplify the analysis and writing of this

document. Dr. Katherine Yelick and Dr. Susan Graham were supportive

throughout my time at UCB. Not only was Dr. David Patterson willing to chair

xxi

my qualifying committee, but I also learned from him how to learn an entirely

new topic simply by asking very good questions and keeping an open mind.

The NERSC scientific user community is responsible for motivating this

work. The work they do benefits the entire country and it is a pleasure to

develop ways to make their life easier.

Most important and finally, I am infinitely grateful to my family. My wife,

Laura Kramer, did everything possible to provide the opportunity to pursue

making this dream. She took on many things that I could have been doing in

order to give me the time to do this work. She helped complete this work by

reading and correcting every word and most importantly using her wonderful

project management skills to assure this effort completed. Together, Laura

and I got our first Computer Science degrees at Purdue University. My

daughter Victoria is an inspiration with her love of learning and adventure, her

persistence and her wonderful hugs. I look forward to now spending a more

time with them.

1

Chapter 1: Introduction and Motivation

1.1 Chapter Summary

The Performance, Effectiveness, Reliability, Consistency and Usability

(PERCU) method is a holistic*, user based methodology for evaluating

computing systems, which, in this work, is applied to high performance

computing (HPC) systems. It enables organizations to use flexible metrics to

assess the performance of HPC systems and continually monitor them

against the requirements and expectations. PERCU expands Performance

analysis to include Effective work dispatching, Reliability, Consistency and

Usability. The PERCU approach and its component‘s framework can be used

for initial system assessment as well as on-going quality assurance of HPC

systems.

The key contribution of this work to performance evaluation is the

Sustained System Performance (SSP) concept which uses time-to-solution to

assess the productive work potential of systems for an arbitrary large set of

applications. The SSP provides a way to fairly compare systems which may

be introduced with different time frames and also provides an exact method to

assess sustained price performance.

* The Merriam-Webster on-line dictionary defines holistic to be ―elating to or concerned with

wholes or with complete systems rather than with the analysis of, treatment of, or dissection
into parts.‖ - http://www.merriam-webster.com/dictionary/holistic. This is an appropriate
description of PERCU looking at the complete system.

http://www.merriam-webster.com/dictionary/holistic

 2

This work also introduces the Effective System Performance (ESP) test

that is developed to encourage and assess improvements for job launch and

resource management features of systems – both important aspects for

productive computing systems. Reliability is the third characteristic of a

productive system. This work explores the major causes of failure for large

systems and suggests improved methods for a priori assessment of the

potential reliability of HPC systems. Consistent execution of programs is a

metric that is often overlooked in system assessments, but a key quality of

service that will be missed if it is not present. This work provides background

for why consistency can impact quality of service, what causes inconsistency,

and it defines approaches to assessing it. Usability for HPC systems, itself a

possible topic of an entire dissertation, is discussed for completeness and as

future work.

Another goal of PERCU is to utilize the efforts that are typically done for

system assessment, such as running benchmark tests, and not craft entirely

new methods, unless new methods are needed to fill in gaps in the holistic

evaluation approach (e.g. ESP is a new test). Hence, several of the PERCU

techniques leverage typical tests in order to either provide new insights or to

cover gaps. Other aspects of PERCU create entirely new approaches to

assessing systems. The result is the flexibility for organizations and

individuals to apply PERCU in a way that is compatible with their existing

practices, while at the same time, gaining improved insights and new

capabilities.

 3

PERCU is used, in all or part, and with a wide range detail and effort. At its

simplest, it provides a framework to consider holistic evaluation of large

systems. In its detail, it introduces a set of new measurement methods. The

use and impact of each component is documented for multiple systems, using

mostly systems that have been evaluated at the National Energy Research

Scientific Computing (NERSC) Facility. The impact of this work is evident in

the fact several organizations adopted the use of PERCU concepts in their

own operations.

1.2 Steps Taken To Develop PERCU Methodology

The approach taken to develop the PERCU methodology consisted of the

following steps.

1. Accumulating an inventory and assessing approaches to system

evaluation used by major HPC organizations, users, system

managers, researchers and evaluators. It involves review of the

evaluations for a number of systems. This identifies common

activities that many parties carry out, e. g. what is being done that

works and what are the problem or the gap areas.

2. The observations of the important system characteristics and

approaches to assess them have been validated with the

community at technical conferences and workshops.

 4

3. Likewise, the author had detailed discussion of proposed methods

with vendors, sites, and users to determine improvements and

effectiveness.

4. The end result, the PERCU method of holistic evaluation, defines

frameworks that are used at appropriate scale and complexity for

HPC system assessments.

5. For each area of PERCU, new assessment frameworks, such as

the SSP and ESP tests, are now implemented and one or more

examples of each framework‘s use completed and evaluated on

real systems in real environments as a proof of the PERCU

concepts.

6. The PERCU Method and associated frameworks were evaluated

and fine-tuned over time for multiple systems. The experiences

using PERCU are recorded with observations for improvement.

Where feasible, iterative changes to the methods improve the

frameworks.

7. Finally, the frameworks, and indeed the PERCU methodology, are

made available to other organizations and individuals for their

usage.

1.3 PERCU’s Importance to the HPC Community

Current methods of evaluating HPC systems are incomplete, disjoint, and

insufficient for future highly parallel systems. In June 2008, Dr. William Camp

of Intel (Camp 2008) presented estimates that between 2003 and 2012,

 5

$107+ billion dollars will be spent on HPC systems. During this time period,

the HPC market is growing at twice the rate of all other computing areas. 20 –

25% of Intel server CPU chips are being sold for what Intel defines as

HPC/High End technical markets. On the other hand, vendors such as Cray

and IBM estimate they spend 10‘s of millions of dollars responding to

purchase requests, all of which are unique and are based on the site‘s

interests. Making the evaluation of HPC systems more efficient and more

accurate will provide benefits purchasing organizations, vendors, and users

alike.

Numerous studies (Graham, Snir and Patterson 2004), (Holbrock and

Shaw 2005) indicate the role HPC systems play in science, safety, and

commercial competitiveness is significant and growing. The investments

organizations make in high performance computing is strategic and, in many

areas, critical to the organization‘s long term success. Hence the efficient

evaluation of technology allows the timely and cost effective selection of

systems which have the potential to enhance user productivity.

This work addresses the challenges of efficiently and thoroughly

evaluating large scale technology from a holistic, user point of view. It

furthermore introduces new methods that are important in order to assure

systems provide high quality of service.

 6

1.4 Organization

This document is organized into chapters each of which describes one

facet of the PERCU approach. The chapters provide background on the

issues in the area and propose new methods to add to the traditional

methods. In each area and in the appendices, there are discussions of how

the method is applied at the NERSC Facility and what beneficial outcomes

resulted. The NERSC status shows real world use of PERCU and the benefits

that contribute to user productivity. The rest of this section includes a brief

summary of each chapter.

1.4.1 Introduction and Motivation

Chapter 1 briefly discusses some of the motivation and the organization

for the document. The motivation is four fold.

 First, HPC systems play an increasingly strategic and irreplaceable

role in many endeavors – Government, Academic and Industrial –

and a method accurately assessing the best solutions for new

technology is important to all parties.

 Second, HPC systems are extremely complex and simplified, low

level; point tests do not capture the complex and subtle interactions

that greatly influence the ability of HPC systems to meet

expectations.

 7

 Third, the HPC area is growing at twice the rate of other IT sectors,

and providing good metrics and guidance to system creators will

improve the productivity and cost effectiveness of the systems.

 Finally, it is critical to use evaluation methods that take into account

all the system characteristics that HPC users need to be

successful.

1.4.2 Comparing Evaluation Requirements

The community that assesses large scale computational resources often

focuses solely on performance as the way to measure a computing system.

As seen with the PERCU methodology, there are other key factors in

evaluating systems. Chapter 2 develops a set of criteria sites and their user

communities want in HPC systems. The criteria are based on analysis of HPC

sites‘ acquisition documents and other factors. While the style and breakdown

of features vary, there was commonality in the categories of attributes

organizations request for their systems. The major categories are below.

 Performance, which is essentially how fast a system processes work if

everything is working extremely well.

 Effectiveness in scheduling and launching work, which addresses the

likelihood users can get the system to do their work when they need it.

 Reliability, which is the likelihood the system is available to do work

and operates correctly.

 8

 Consistency, which is how often the system will process the same or

similar work correctly and in approximately the same time duration.

 Usability, which is how easy is it for users to get the system to process

their work as fast as possible.

Usability and Performance are categories that had the most number of

requirements but combined represent only half the factors used for system

purchasing decisions. The performance factors represent 22% of the explicit

factors. Consistency was an area that is a relatively recent concern and not

as often addressed in older proposal requests. While the distribution of

factors is important to determine the areas that are needed to holistically

assess a system, the distribution does not imply the relative influence on the

ultimate evaluation or purchase decisions. Nonetheless, categorization of

system attributes addresses the entire system and can be viewed as a holistic

description of the system attributes needed to provide a productive, high

performance computing system.

When organizations write the Requests for Proposals (RFPs) for the

purchase of a new HPC system, the requirements can be classified in a

consistent manner into the five technical categories which form the PERCU

methodology: Performance, Effectiveness, Reliability, Consistency and

Usability. The analysis was done of a number of actual, real RFP‘s, and it was

found that 84% of the requirements, and almost all the technical factors, fit

into these categories. The remaining 16% were non-technical factors, such as

requirements for security clearances, management meetings, proposal

 9

guidance and other provisions that do not relate to the technical system being

evaluated.

1.4.3 Sustained System Performance Method

Chapter 3 discusses the performance aspects of PERCU by introducing

SSP, which is a framework that enables evaluation of a system‘s performance

using time-to-solution while at the same time accommodating any number of

application areas. It defines the equations for SSP and provides a theoretical

basis for the framework. It uses simple examples to provide the motivation for

use and implementation of SSP. This section describes how SSP enables

time-to-solution for different application domains to be compared across

systems to determine cost performance and value.

There are multiple goals for the design of the SSP method that were

achieved. The methodology should be flexible so it applies to different:

 System use cases;

 Workloads and usages;

 System scales (system size, cost, scale, etc.) and flexible degrees of

effort to do evaluations from ―quick and dirty‖ to highly formalized;

 Levels of Quality of Service (duty cycles, reliability, etc.) and

 User communities.

 10

Furthermore, the methodology should efficiently serve four purposes:

1. Differentiate (select) a system from among its competitors;

2. Validate the system works the way expected once a system is built

and/or is delivered;

3. Assures systems perform continues as expected throughout its

lifetime; and

4. Guide future system designs and implementation.

Another consideration in designing the SSP was to add as little additional

work to traditional system evaluation methods as possible. SSP uses the

benchmarking that most organizations already do and improves insight as a

composite measure. These goals do not just apply to SSP, but can be seen

in the other aspects that make up PERCU.

1.4.4 Practical Use of SSP for HPC Systems

Chapter 4 describes using SSP to assess performance of large systems. It

includes analysis of actual uses of SSP over a 10 year period to evaluate the

performance and price performance of five HPC systems at NERSC. The

latest version of the SSP suite is available at:

 http://www.nersc.gov/projects/procurements/NERSC6 and

 http://www.nersc.gov/projects/ssp.php.

http://www.nersc.gov/projects/procurements/NERSC6
http://www.nersc.gov/projects/ssp.php

 11

1.4.5 Effectiveness of Resource Use and Work Scheduling

Effectiveness is a component of the PERCU method that assesses the

ability of a system to efficiently provide users access to the performance and

capabilities in the system. To measure effectiveness, a system utilization

benchmark, the Effectiveness System Performance (ESP) test, is developed

as part of PERCU. Chapter 5 provides a brief description of how ESP evolved

along with the design goals for the test. Also discussed is the impact of using

ESP in different areas. The chapter summarizes (and Appendices E and F

provide much detail) using ESP to evaluate different job scheduling software

packages. ESP-2 is packaged in a freely available software archive, with

facilities for simple installation and execution. It is located at

http://www.nersc.gov/projects/esp.php.

1.4.6 Reliability

Reliability is the next aspect of system productivity. It is challenging, yet

critical to proactively assess reliability of a system before it is purchased.

Chapter 6 studies failure causes spanning six major HPC systems over five

years. It identifies the major reasons HPC systems fail. It shows that, at least

for the systems included in the study, system wide outages were more often

caused by software than hardware. The chapter discusses the reasons

individual jobs fail on one system and discusses improvements that resulted

from that analysis. The chapter suggests ways to improve the up-front

http://www.nersc.gov/projects/esp.php

 12

assessment for systems from the reliability point of view as well. Much of the

reliability data discussed is available at http://pdsi.nersc.gov.

1.4.7 Consistency of Performance

Systems can support 10-20% more work after consistency issues were

addressed, as shown in several NERSC systems. It is shown that very large

systems can be made consistent. The loss of cycles due to inconsistency is

avoidable for properly configured, designed and managed systems to the

degree that inconsistency can be less than a few percent.

Chapter 7 discusses the Coefficient of Variation (CoV) composite metric

that is used with a variety of benchmark testing to assess consistency. CoV

and other approaches provide measurements that led to resolving issues

causing inconsistency. The chapter includes the results of a study on real

production systems related to consistency and improvements to the systems

based on the metrics.

1.4.8 Usability – Something for the Future

Scientists want to know how much harder it is to use HPC systems than

their standard platforms and tools. They want to know how much more effort

is required to get a certain amount of work done on the HPC system rather

than their desktop systems. Chapter 8 surveys the overall area of usability

research and comments on what might be useful for HPC projects.

http://pdsi.nersc.gov/

 13

1.4.9 PERCU’s Impacts, Conclusions and Observations

The PERCU method has seen positive impacts for sites using it and its

associated components. In fact, the evolution of the method helped at least

one HPC site to be called the ―best run centralized computer center on the

planet‖ by one of its major users (NERSC User Survey 2003). Chapter 9

summarizes some of the impacts and ways PERCU has been employed to

assist in selection and monitoring HPC systems.

There is much more to be done in each of the areas of PERCU;

Performance, Effectiveness, Reliability, Consistency, and Usability. PERCU is

being used by NERSC. Other sites are using some of the frameworks and

components. The methodology will help organizations get better performance,

have more effective systems, give users a more reliable system, and be able

to measure consistency. The chapter also lists some ideas for further study.

The world of HPC is expanding daily. It is my sincere hope that the work

presented here contributes to the effort to get systems that can better solve

the world‘s complex problems.

 14

Chapter 2: Comparing Evaluation Requirements

2.1 Chapter Summary

The evaluation factors used by a wide spectrum of organizations to

assess computer systems can be classified into a small number of categories

in a consistent manner, regardless of the size and scope of the system being

evaluated. Technical classification into five categories of Performance,

Effectiveness, Reliability, Consistency and Usability (PERCU) account for

84% of the factors used and almost all the technical factors. The remaining

16% were either not technical factors, such as requirements for security

clearances, management meetings, etc.

Part of the motivation for developing the PERCU method was the

realization that the majority of the factors in purchasing decisions are not

related to performance. This raised the question of what other factors are

used and how can they be assessed. Further, the performance area had

potential for improvement as well, so there could be a more consistent

approach to understanding the potential for different systems to do different

amounts of work.

The factors used to evaluate systems range from the very specific to

extremely general provisions. Evaluating systems is done in many contexts,

from very focused evaluations for single low level features to broad

evaluations of entire systems. The types of factors used in the HPC

community for evaluation point to the issues and features of systems that are

 15

of the most concern. The question is whether different evaluators use similar

factors when assessing systems and, if so, can some of the categories be

made more consistent. There are many examples of performance being an

important factor in the academic literature, indeed there are entire

conferences devoted to performance evaluation. However, as the analysis

below shows, evaluation factors for performance features of a system

represent 22% of the factors used in purchasing decisions. While the

distribution of factors is important to determine the areas that are needed to

holistically assess a system, the distribution does not imply the relative

influence of factors on the ultimate evaluation decision. For example, it may

be that the performance factors play a relatively large role (have more weight)

in the final purchase decision.

But is evaluating performance sufficient to understand how well a

computing system will meet the needs of its client community? The simple

answer is performance alone is not sufficient – in fact there are five

categories of factors that are used to evaluate systems. One way to

investigate this question is to look at the evaluation factors used for system

purchases. In some ways, the factors used in purchases may be a better

indication of what attributes are most important because a) the originators of

the factors will pay real money for the systems they evaluate and b) the

clients of the systems will be more or less productive based on how well the

entire system performs for their purposes. This section looks at factors used

in the acquisition of HPC systems ranging from $3M to $200M and

 16

categorizes the requirements organizations are using to evaluate and buy

HPC systems.

Acquisition methods vary a great deal based on the size of the investment,

the purpose of the system, the mission of the organization and the state of

technology*. Acquisition requests are called different names, including

Request for Proposal (RFP), Request for Bid (RFB), Request for Quotation

(RFQ), Tenders (a common European term) and Solicitations, to name a few.

For the sake of simplicity, in this work, we use the common United States

term, Request for Proposal (RFP) to discuss any of the methods used to

assess and acquire systems since the methods differences are more based in

acquisition rules and legal regulations of the governing policy than they are a

differences for expressing to potential bidders what is required and what will

be evaluated.

While each RFP is unique, there are similarities across RFPs. For the

most part, organizations consider their RFPs sensitive and do not release

them, but we were able to collect RFPs from different organizations, both

within the United States and from Europe.

2.2 Analysis Method

Assessment of purchase decision evaluation factors, often called

requirements, in acquisition documents is a subjective process since there is

*
 Peter Ungaro, currently President of Cray, Inc. and formerly responsible for HPC sales at
IBM, estimated that Cray responded to approximately 100 HPC RFP‘s a year, split
approximately equally between government and industry. In this case, HPC systems are
defined as systems that cost over $1.5M.

 17

no formal language for specification. In this classification, the first step was to

group all the factors expressed in each RFP with other similar requirements in

other RFPs. For example, “1 GB of memory per compute processor” is a

factor that is essentially the same as “Two (2) Gigabytes of memory per

processor.” Both of these factors specify the amount of memory expected on

a per processor basis in absolute terms, even if they are requesting different

amounts of memory. However, not all comparisons are as clear cut. Take a

factor such as “Require minimum benchmark memory”. This is also a

requirement of the amount of memory that is required of the system, but it is

relative to the amount of memory necessary to execute the specific

benchmarks that were used with that procurement. The evaluators decided to

represent the amount of memory needed through its benchmarks, not as an

absolute amount. This could be because the organization did not want to

predefine the concurrency to solve the benchmark problem or the problem

memory size could be adjusted to processor configurations. Regardless, the

evaluation factors address how much memory the system has, and thus, are

related.

Another similar requirement example includes ―IEEE 754 32 bit floating-

point numbers”, ―IEEE 754 64 bit floating-point numbers”, ―IEEE Floating

Point” and ―IEEE 64 bit FP M29” or in another instance, “compilers and their

related development environment, profiling and debugging tools: C (ISO/IEC

9899:1999) compiler, Fortran 90 (ISO/IEC 1539-1:1997) compiler. C++

(ISO/IEC 14882:2003) compiler” and ―FORTRAN 90 and C compilers and

 18

libraries”. These factors clearly indicate the evaluator is expecting compliance

to defined standards. Factors that have less precise definition, but still with

the same intention can be seen in the example of statements from two RFPs -

“consistent performance (within 10%) of dedicated applications regardless of

which batch nodes is used. The Offeror should describe any attributes of the

proposed system which would result in non-compliance” and “All nodes

identical”. Both of these evaluation factors are expecting similar performance

across the system.

Most of the evaluation factors were standalone statements. However,

some factors had sub-factors to make up a full requirement. These are

classified as Major and Sub-major evaluation factors. The notation used when

summarizing Major and Sub-major factors is N.S. where N is the number of

major evaluation factors and S is the number of significant, but sub-major

level evaluation factors. For example, a major factor may be debugging

cluster-wide applications. The Sub-major factors for the major evaluation

factor could be for a visual representation of the debugging information, being

able to set conditional breakpoints or tools to assisting in memory leak

detection.

By grouping similar factors as described above, patterns emerge. For

example, most RFPs have evaluation factors that indicate the need for

FORTRAN, C and C++ compilers. Since these RFPs are for HPC

computational systems, other languages and compilers are less common.

 19

RFPs are more or less specific on the details of the expected compiler

functions and standards. Another grouping that emerges clearly is factors that

specify the required, and/or desired, processing rate for computations –

performance. Often this is expressed in some overall term as well as through

the use of benchmark tests. Evaluation factors are also common for

interconnect rates and input and output. There are common factors for

quantities of things. For example, the amount of memory is one area that is

often expressed as is the capacity of disk storage.

The entire set of factors and how they are categorized is posted at

http://www.nersc.gov/~kramer/UCB/Dissertation/Data along with other data

associated with this research.

2.3 Summary of Evaluation Factor Analysis

Evaluation factors in most acquisition documents are separated into two

major categories; mandatory and desired. Different acquisition methods used

different terms for each of these categories, such as minimum, mandatory,

and baseline for the former, and performance, non-mandatory, and desired

for the latter. There can be Major and Sub-major factors that are either

mandatory or desired in any RFP.

Mandatory factors are those that, for the most part, have to be met by the

proposed systems in order for it to be considered at all for purchase. The use

of mandatory and desired factors varies dramatically by different

organizations. One RFP had only one mandatory evaluation factor, which was

http://www.nersc.gov/~kramer/UCB/dissertation/data

 20

to meet a certain level of computational performance. On the other hand,

another RFP had only mandatory factors and no desired factors. The RFPs

that have more than one mandatory and more than one desired factor had an

average of 15 desired factors for every one mandatory factor. The complete

list of factors can be found at

http://www.nersc.gov/~kramer/UCB/Dissertation/Data.

 RFP

Type of
Factor

R
F

P
 1

R
F

P
 2

R
F

P
 3

R
F

P
 4

R
F

P
 5

R
F

P
-6

R
F

P
-7

R
F

P
-8

R
F

P
-9

R
F

P
-1

0

R
F

P
-1

1

R
F

P
-1

2

Mandatory Major 17 79 92 18 15 12 10 30 1 39 83 208
Mandatory Sub-Major 0 1 0 0 0 0 0 9 0 6 5 118
Desired Major 35 8 2 17 24 25 18 0 116 7 192 20
Desired Sub-Major 0 0 0 0 4 2 0 0 10 1 0 0
Total Major 52 88 94 35 39 37 28 30 116 46 275 228
Total Sub-Major 0 1 0 0 4 2 0 9 10 5 5 128
Ratio of Desired Major to
Mandatory Major

2.1 0.1 0.02 0.9 1.6 2.1 1.8 0.0 116.0 0.2 2.3 0.1

Ratio of Sub-Major to Major 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.11 0.02 0.51
Approximate
Cost

$
5
0
M

$
3
0
M

$
2
0
0

M

$
3
3
M

$
2
7
M

$
6
M

$
3
.4

M

$
1
.5

M

$
2
0
0
-2

5
0

M

$
4
0
-4

5
M

$
3
9
.4

$
3
7
.3

M

Table 2-1: Summary of Mandatory and Desired Evaluation Factors for 12 RFPs.

This ratio of desired to mandatory factors shown in Table 2-1 seems low

given the trend in US federal acquisition over that past 15 years to move from

proscribed specifics to more general provisions. On closer examination, Table

2-1: shows three RFPs that have ratios less than 0.1 - lower by an order of

magnitude than the others. Without these three RFPs, the ratio is 1.6.

http://www.nersc.gov/~kramer/UCB/Dissertation/Data

 21

It is interesting to note that the two RFPs with a low ratio represent

organizations that are heavily oriented to ―production‖ computing for weather

forecasting and engineering design. Because these ―mission oriented‖

systems have well defined and limited scope workloads, as well as strict

operational constraints, it may be the organizations doing the evaluation feel

more pressure to specify a solution with which they are familiar.

There are two major contradictions to this observation. First, the US

Advanced Strategic Computing Initiative (ASCI) is a very mission oriented

program – using simulations to safe-guard nuclear weapons stock pile. The

ratio for the RPF from one of the ASCI sites is well above the average, but the

acquisition was done for systems during the development part of the program

rather than the production part. On the other end of the spectrum, the two

RFPs that support the general science community at US universities – a very

broad workload – have a very low ratio of mandatory to desired factors.

There is a wide range of the number of total evaluation factors in these

RFP‘s, with the total number of evaluation factors ranging from 28 to 356. The

range for the major evaluation factors is almost as large, from 28 to 275.

There is little correlation between the expected cost of the system and the

number of total factors, with a correlation coefficient of 0.117. There is a

slightly higher, but still insignificant, correlation between the system cost and

the number of mandatory factors – with a correlation coefficient of 0.181.

 22

2.4 Overall Categories of Evaluation Factors

As indicated above, evaluation factors in one RFP could be compared to

similar factors in other RFPs. Using this comparative process, RFP factors

were grouped into categories, such as compilers, debuggers, interconnect,

memory, reliability, service, support and other characteristics. Factors also

dealt with:

 functionality (e.g. UNIX POSIX User Interfaces, parallel file

systems, job management systems, standards); and

 rates of performance (e.g. floating point performance, bandwidth

performance, latency performance); and

 capacity or amounts (e.g. amount of disk storage and number of

connections).

Some factors that were highly specialized to a given acquisition (e.g. the

need to have security clearances for staff supporting the system) or were

general to the acquisition (e.g. the system shall be in balance).

Careful examination of the 1,100 evaluation factors indicates is it possible

to assign a large number of the factors to five categories. The two categories

with the most factors are assigned the labels performance and usability

based on the purpose of the factors grouped together, with more than 20%

and 30%, respectively, of the factors associated with them. About 14% of all

the requirements are associated with aspects of reliability, availability and

 23

serviceability. 8% of the factors were associated with functions and tests that

assess the effectiveness of systems being able to provide resources to the

workload. Finally, the smallest grouping was consistency, the capability of

the system to produce consistent results. The working definitions of these five

categories for the remainder of this work are:

 Performance – factors that contribute to how fast or how much

work can be done on the system. The types of factors in this

category are performance rates and amounts and/or capacities of

equipment.

o Examples

 “final system must achieve, on average, one and one-

half (1½) TFlops/s of measured, sustained system

performance over the first three (3) year period”

 “peak performance of at least sixty teraFLOPs/s and a

peak plus sustained performance of at least eighty

teraFLOPs/s on the two SSP marquee benchmarks”

 Effectiveness – factors that relate to managing workflow on the

systems so the users of the system are able to get high

performance results.

o Examples

 “Demonstrate that XX batch jobs can be

simultaneously active on at 95% of the compute

 24

nodes”, where XX is a specific set of batch jobs for

that site.

 “Prioritized IO operations”

 “priority job scheduling”

 “ priority group scheduling”

 Reliability – factors that relate to functions, features or services

that make the systems reliable and serviceable are in this category.

o Examples

 “final system must achieve, on average, one and one-

half (1½) TFlops/s of measured, sustained system

performance over the first three (3) year period”

 “peak performance of at least sixty teraFLOPs/s and a

peak plus sustained performance of at least eighty

teraFLOPs/s on the two SSP marquee benchmarks”

 Consistency – factors that relate to providing consistent results,

both in terms of reproducibility of answers and time to do a given

amount of work.

o Examples

 “a 30 availability test to complete within a 90 day

window… controlled by purchaser”

 “Be able to prepare new releases for installation

without interrupting normal service”

 25

 Usability – this category is for features that make the system

usable to both the end customers (mostly scientists and engineers)

and system managers.

o Examples

 “Operating system based on UNIX

 “Applications Programming Interface (API) to the

hardware registers or counters which can be used to

measure performance attributes of applications”

 ―Provide a debugger [for] Serial, Parallel, Profiler [for

applications]”

These five categories represent more than 84% of all the evaluation

factors across all the RFPs, and an even larger percentage of the technical

factors. They also include virtually all the tests – either benchmarks or other

types of tests – which the RFPs specify.

Two other categories are used to capture the factors that are not specific

or not technical.

 General – factors that apply across categories

 Other – factors that are not in the other categories. These may

relate to facilities requirements, personnel issues and business

factors.

 26

Finally, there is one more category of evaluation factors – Cost – that all

the RFP‘s handle differently. Cost is a separate factor in itself – but is not

specified in most of the RFPs. Instead, proposers provide the costs of the

systems and associated services and cost is used in conjunction with the

other factors to evaluate the systems. Cost varies in importance in

evaluations – with one site reporting the cost as only 10% of the criteria they

used to decide on the system, and technical factors was 90% (Simard 2003).

In other cases, cost can be up to 50% of the determination.

For most factors, there is a strong linkage to a primary category but for

some factors, it is possible to group them into more than one category. Take,

for instance, several RFPs that had the phrase ―All processors shall be

identical” or similar wording. For this analysis, this factor was placed in the

consistency category, but it could also be placed in performance or usability,

since identical CPUs improve performance of most parallel codes and, at the

same time, make programming in parallel more straightforward. Having a

consistency category solves the problem of primacy for such factors.

2.4.1 Minimum/Mandatory/Baseline Requirements

In the tables below, the number of requirements for each category is

expressed as M.S where M is the number of major requirements. S is the

number of significant, but Sub-Major level requirements

 27

Area

R
F

P
-1

R
F

P
 2

R
F

P
 3

R
F

P
 4

R
F

P
 5

R
F

P
-6

R
F

P
-7

R
F

P
-8

R
F

P
-9

R
F

P
-1

0

R
F

P
-1

1

R
F

P
-1

2

Performance 4 25 21 5 4 8 5 10.3 1 8 27.5 27.24

Effectiveness 2 4.1 3 2 1 1 1 2 0 3 7 12.3

Reliability 2 6 8 2 2 0 0 5 0 10 13 26.3

Consistency 3 0 0 2 0 1 0 2 0 0 0 1

Usability 3 23 24 3 3 1 2 10.6 0 6.5 19 48.34

General 2 8 6 1 1 1 1 1 0 5 5 3

Other 1 13 30 3 4 0 1 0 0 7 12 2

Total 17 79.1 92 18 15 12 10 30.9 1 39.5 83.5 119.85

Award and delivery
date(s)

2
0

0
6

/2
0

0
7

2
0

0
6

 /
2

0
0
6

2
0

0
8

 /
T

B
D

2
0

0
6

 /
2

0
1
0

e
x
p

e
c
te

d

2
0

0
2

 /
2

0
0
2

1
9

9
9

 /
2

0
0
0

2
0

0
5

 /
2

0
0
5

2
0

0
4

 /
2

0
0
4

2
0

0
4

2
0

0
2

 /
2

0
0
5

2
0

0
4

2
0

0
2

 /
2

0
0
2

Table 2-2: Mandatory Major and Sub-Major Evaluation Factors

2.4.2 Desired/Performance/Non-Mandatory

 RFP

Area

R
F

P
-1

R
F

P
 2

R
F

P
 3

R
F

P
 4

R
F

P
 5

R
F

P
-6

R
F

P
-7

R
F

P
-8

R
F

P
-9

R
F

P
-1

0

R
F

P
-1

1

R
F

P
-1

2

Performance 8 3 0 1 3 4.2 3 0 28 2.1 36 0

Effectiveness 3 0 0 1 1 5 1 0 8.2 0 26 4.3

Reliability 7 0 0 2 5.4 4 4 0 15.7 1 29 2

Consistency 3 0 0 0 0 1 1 0 1 0 4 0

Usability 10 1 1 7 5 7 5 0 58.1 1 56 11.7

General 3 1 0 2 2 1 1 0 4 2 8 3

Other 1 3 1 4 8 3 3 0 1 1 33 0

Total 35 8 2 17 24.4 25.2 18 0 116 7.1 192 21.7
Table 2-3: Desired Major and Sub-Major Evaluation Factors

The categories that have the largest number of factors are Performance

and Usability, while Consistency has the smallest number of factors.

 28

Category Total Number of factors Percent of All Factors

Performance 268 21.8%

Effectiveness 123 10.0%

Reliability 184 14.9%

Consistency 19 1.5%

Usability 357 29.0%

General 61 5.0%

Other 131 10.6%

Table 2-4: Breakdown of Factors by Category

Several of the RFPs analyzed were from NERSC, so the question arises

as to whether NERSC RFPs unduly influence the categorization. Another

concern might be that three of the RFPs have more than 100 factors, with two

RFPs over 275 factors. Do these ―large‖ RFPs overly influence the

categorization?

Table 2-5: below shows that removing the NERSC RFPs produce very

similar groupings as including them, so while they are consistent within the

community, they are not unduly biasing the results. Likewise, looking at

grouping factors for the 8 RFPs with 100 or less factors again shows similar

results to the overall. In this case, the percent of factors associated with

consistency increase, which may be due to fact the three largest RFPs are

also some of the oldest, and the concern about consistency has only become

evident in the recent time frame as systems of substantial scale being more

susceptible to inconsistency the NERSC-4 RFP was the first RFP to have

explicit factors for consistency (other organizations have now followed).

Finally, reviewing of the three RFPs with more than 100 factors shows

general agreement with the categorization of the other RFP groupings.

 29

Category Number
of
Factors
of RFPs
that are
not
related
to
NERSC

Percent
of All
Factors
of
RFPs
that are
not
related
to
NERSC

Number
of
Factors
of RFPs
that
have
less
than
100
factors

Percent
of All
Factors
of
RFPs
that
have
less
than
100
factors

Number
of
Factors
of RFPs
that
have
more
than
100
factors

Percent
of All
Factors
of
RFPs
that
have
more
than
100
factors

Performance 221.00 23.4% 120.00 25.5% 148.00 22.0%

Effectiveness 105.00 11.1% 31.00 6.6% 92.00 13.7%

Reliability 151.00 16.1% 62.00 13.2% 122.00 18.1%

Consistency 8.00 0.8% 13.00 2.8% 6.00 0.9%

Usability 331.00 32.9% 123.00 26.2% 234.00 34.8%

General 46.00 4.9% 38.00 8.1% 23.00 3.4%

Other 103.00 10.9% 83.00 17.7% 48.00 7.1%
Table 2-5: This table shows consistency in factor categories independent of site or number of factors.

Another question in this regard is how consistent is the categorization of

factors across RFPs. Table 2-6: shows the percentage of evaluation factors

in each category relative to the total number of factors for that RFP. Again,

there is striking similarity between the categories, with almost all RFPs having

about twice the number of factors in the performance and usability areas as in

the other areas.

 30

 RFP

Area

R
F

P
 1

R
F

P
 2

R
F

P
 3

R
F

P
 4

R
F

P
 5

R
F

P
-6

R
F

P
-7

R
F

P
-8

R
F

P
-9

R
F

P
-1

0

R
F

P
-1

1

R
F

P
-1

2

Performance 23% 32% 22% 17% 16% 36% 29% 33% 23% 21% 24% 14%

Effectiveness 10% 6% 3% 9% 5% 15% 7% 5% 8% 6% 12% 14%

Reliability 17% 7% 9% 11% 26% 10% 14% 13% 17% 21% 15% 16%

Consistency 12% 0% 0% 6% 0% 5% 4% 5% 1% 0% 1% 0%

Usability 25% 27% 27% 29% 19% 21% 25% 41% 47% 23% 27% 28%

General 10% 10% 6% 9% 7% 5% 7% 3% 3% 13% 5% 2%

Other 4% 18% 33% 20% 28% 8% 14% 0% 1% 15% 16% 1%

2
0
0
6
/

2
0
0
7

2
0
0
6
 /

2
0
0
6

2
0
0
5
 /

2
0
0
8

2
0
0
6
 /

2
0
1
1

2
0
0
2
 /

2
0
0
2

1
9
9
9
 /

2
0
0
0

2
0
0
5
 /

2
0
0
5

2
0
0
4
 /

2
0
0
4

2
0
0
4

2
0
0
2
 /

2
0
0
5

2
0
0
4

2
0
0
2
 /

2
0
0
2

Table 2-6: Percent of Evaluation Factors by category. Note the highest percentages are in Performance
and Usability.

2.5 Cross Cut Groupings

While the major categories of factors are consistent across the analyzed

RFPs, it is possible to make other groupings. As an example, three other

categories that have increased in attention recently are; security, facilities and

accounting. Assessing RFPs by these categories shown in Table 2-7.

 RFP

Area

R
F

P
 1

R
F

P
 2

R
F

P
 3

R
F

P
 4

R
F

P
 5

R
F

P
-6

R
F

P
-7

R
F

P
-8

R
F

P
-9

R
F

P
-1

0

R
F

P
-1

1

R
F

P
-1

2

Security 1 1 1 1 2 11

Facilities 1 2 2 4 2 1 2 12

Accounting 1 2 3

Percent of Total

Security 0.0% 0.0% 0.1% 2.6% 0.0% 2.6% 0.0% 0.0% 1.5% 0.0% 3.9% 0.0%

Facilities 2.0% 2.4% 0.3% 10.5% 9% 0.0% 0.0% 0.0% 1.5% 0.0% 4.3% 0.0%

Accounting 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.8% 0.0% 0.7% 1.1%

Table 2-7: Cross Cut of other groupings of factors

 31

One thing to notice is there is less commonality in this grouping than in the

PERCU categories. Another aspect is little commonality exists across

systems of similar size, except for the smallest systems. Some of the sites

that do sensitive work have few security requirements – leading one to

presume they use other mechanisms for assure system integrity.

2.6 Chapter Conclusion

The evaluation factors used by different organizations to assess computer

systems can be classified in a consistent manner, regardless of the size and

scope of the system being evaluated. Technical classification into five

categories of Performance, Effectiveness, Reliability, Consistency and

Usability account for 84% of the evaluation factors used in the RFPs, and

almost all the technical factors. Many factors besides performance used for

purchasing decisions.

Hence, the PERCU classification is reasonable for evaluation factors sites

to use to evaluate HPC systems for acquisition. Since acquisitions must

evaluate the entire system rather than only sub-functions, PERCU is a useful

way to organization system evaluation methods. The remainder of the work

investigates effective ways to assess systems in each category.

 32

Chapter 3: Sustained System Performance
Method

3.1 Chapter Summary

The class of performance evaluation factors is clearly important as

indicated in the analysis described in Chapter 2. This chapter explains the

Sustained Systems Performance (SSP) method, which provides a process for

evaluating system performance across any time frame. SSP is a simple but

powerful method in the sense that it can be applied to any set of systems, any

workload and/or benchmark suite, and for any time period. SSP measures

time-to-solution across different application areas and it can be used to

evaluate absolute performance and performance relative to cost (in dollars,

energy or other value propositions).

While the formula development in this chapter is meant to be complete, it

should not be intimidating since the SSP method can be described in a

straightforward explanation in Section 3.2 below.

3.2 The Basic SSP Concept

―Work done per unit time‖ (Culler and Singh 1999)is a well accepted

method to compare computer system performance. SSP uses one or more

benchmarks to compare the performance of two or more systems using time-

to-solution and a well defined classification of ―work‖ as the primary

performance indicators. Each benchmark has one or more problem sets

which, together with the benchmark, determine a unique test. Each test has a

 33

total operational count (Floating Point Operations – Flops from a single

reference system - are used in this work, but other operations can be used if

appropriate) that can be determined with code profiling or static analysis. For

each test on each system, a per processor performance rate is determined by

measuring and/or projecting the time-to-completion of the test on the system.

Per processor rate of each test is determined by dividing the total operation

count by the runtime of the test and then again by dividing the number of

processors used in the test.

Once the effective per processor performance rate is determined for each

test, a single per processor performance rate can be calculated with a

composite function such as an arithmetic or geometric mean. To determine

the Sustained System Performance of a system, the composite per processor

rate is multiplied by the total number of computational processors in the entire

system.

Systems may change in time due to upgrades and/or additions.

Comparing two or more systems may also be complicated because

technology may be introduced at different times. If one needs to compare

systems that become available at different times, or will change over time, the

SSP for each system can be determined for each time period or phase. For

each phase of the system, the SSP multiplied by the length of the phase

gives an indication of the amount of work the system can perform a work

during that time period. This is called a system's potency or the system‘s

 34

potential to perform work. The potency for each phase of a system can be

added together, essentially integrating the capability of the system(s) to

perform work over a defined time period, giving the potential of the system to

handle the work (as represented by the tests) over its targeted time period.

Once the potency of the system is determined, it can be compared either in

absolute terms or relative to cost functions such as initial hardware costs,

total cost of ownership (TCO) or energy usage. Using the potency of a system

relative to its costs can determine the value of one system for comparison

with other systems.

The end result is a method that assesses any system over any time frame.

The workload representation can be arbitrarily complex or simple and span

any number of application domains. The systems can be compared for

performance and/or price performance using SSP.

Assessing performance of systems is a well studied field that stems from

the earliest days of computers. The use of benchmarks to represent the work

a system is expected to support is an accepted approach and the details of

the many variants of benchmarking will not be repeated here. Instead the

reader is pointed to many of the references listed.

One key feature, that is almost universally agreed upon is that the best

way to assess how appropriate a system is at solving a problem is how long

the system takes to solve a real problem. SSP is a meta-benchmark since it is

a unique method that provides a composite view of a system‘s capability to

 35

perform work. SSP is flexible because it can use any set of benchmarks or

tests, of any scale or number, to evaluate performance, taking into account

the fact systems and technology evolve over time. As shown in this chapter

and the next, SSP can be implemented to measure and compare time-to-

solution across different usage domains.

This chapter uses a running example to illustrate the definitions and

formulas discussed below. The data for the example is similar to actual data

provided in evaluating systems for purchase, but has been simplified. The

next chapter has a more complete, almost real world, example of using the

SSP method, with data refined from an actual procurement of systems, to

illustrate the method in full.

For this simplified example, consider an evaluation of systems 1, 2, and 3,

under consideration for purchase for a fixed amount of money. To understand

the performance of these systems, the targeted workload is represented by

three benchmarks; A, B, and C. The benchmarks may be industry standard,

simple kernels, pseudo applications or full applications; it does not matter for

the example. Each benchmark has a single problem data set associated with

it that runs at a fixed concurrency (e.g. number of tasks), but the

concurrencies do not have to be the same across applications. Assume this

example uses three problem sets, one for each benchmark.

 36

3.3 Buying Technology at the Best Moment

Whenever someone buys technology based electronic components, the

decision making process is influenced by Moore‘s Law (Moore 1965). This is

true whether the technology is consumer electronics, personal computers or a

supercomputer. The fundamental question for the purchaser is:

“If I wait a little bit longer, I can get a system with better performance
for the same cost. Should I wait, even if I am losing getting some

work done in the meantime?”

This question becomes critical when selecting HPC systems due to high

cost and long lead times of these very large systems. Determining the time to

purchase a single system from a single vendor may be a simpler question

because one only has to assess how long to wait and how much better the

later system would be. However, just going to the local computer store shows

the simple case never exists because different systems from different vendors

with different options are available at different times. How does someone

decide what to do?

The primary motivation of this chapter and the following one is to discuss

how the Sustained System Performance Test (NERSC SSP Project 2004)

addresses the ―when to buy‖ question as well as ―what to buy‖ question. SSP

does this by providing a quantitative assessment of measured performance

over time. If the test components are properly chosen, SSP provides a good

expectation of the on-going – or sustained – performance the system

produces. Furthermore, SSP can be used to represent a complex workload

 37

with a metric that is meaningful to the users of the technology. The metric can

be made arbitrarily complex or left simple, so it can represent a wide range of

usage and circumstances.

While the SSP concept can be applied to almost any technology, we will

focus here on how SSP can be used to evaluate HPC Systems. This chapter

discusses the SSP approach and the methods used to calculate SSP. The

next chapter will investigate the use of SSP in both theoretical analysis and in

real world purchases.

3.4 Good Benchmark Tests Should Serve Four
Purposes

Benchmark tests are approximations of the real work a computer system

can accomplish. In other words, benchmark tests estimate the potential of

computer systems to solve a set of problems.

Benchmark tests have four distinct purposes. Benchmark tests are made

up of computer programs and the input data sets that state a problem for the

program to solve. One set of computer code can exhibit different behavior

based on the problem being solved and the parameters involved. Each

purpose of the benchmark tests influences the selection and the

characteristics of the benchmarks as well. The four purposes of benchmarks

are:

1. Evaluation and/or selection of a system from among its competitors.

 38

2. Validating the selected system actually works the way it is expected to

operate once a system is built and/or arrives at a site. This purpose

may be more important than the first and is particularly key when

systems are specified and selected based on performance projections

rather than actual runs on the actual hardware.

3. Assuring the system performance stays as expected throughout the

systems lifetime (e.g. after upgrades, changes, and regular use.)

4. Helping guide future system designs.

The sophistication of the approximation represented by the benchmarks

depends on the fidelity needed to represent the true workload. Later in this

chapter, there is a more complete discussion of the relationship between

benchmark selection and their ability to represent a workload. Comparison

measures can range from assessing the peak capability of the hardware to

using many full application tests with a range of problem data sets. In

between full applications and simple peak rates are simple performance

probes (e.g., LINPACK (Dongarra 1985) and GUPS (Earl, Willard and

Goldfarb 2000)), micro kernels (ping-ping (MVAPICH Ping-Pong Benchmark

n.d.) , stream (Streams Benchmark n.d.) , Livermore FORTRAN Kernels

(McMahon 1986) , etc.) and limited and pseudo applications (e.g. NAS

Parallel Benchmarks (Bailey, Barszcz, et al. March 1994) - also known as the

NPBs, SPEC (SPEC Benchmarks 2000) , etc).

Most reports in the literature discuss only the first of these four purposes

benchmarks play in the life of a system. The majority of tests claim to do well

 39

on the first goal and possibly one other of the goals, but few are effective in

all. Take as an example the widely discussed LINPACK benchmark that is

used to determine in the HPC Top 500 List (Top 500 List 2008). LINPACK

(LINPACK Download 2008) is a single test that solves Ax=b with dense linear

equations using Gaussian elimination with partial pivoting. For matrix A, that

is size M x M, LINPACK requires 2/3 M2 + 2M2 operations. The latest

LINPACK benchmark implementation, High Performance LINPACK (HPL),

can run on any number of processors, but in order to provide enough work to

each processor, the size of the A matrix has to increase, not only taking more

memory, but increasing the wall clock time of the run more than linearly. This

is memory constrained scaling ―which is attractive to vendors because such

speed ups are high‖ (Culler and Singh 1999). In order to keep scaling high as

much work per processor as possible has to loaded into the system‘s

memory. The amount of memory used grows at O(N2); the run time to do the

work grows at O(N3). So for a system such as the NERSC Cray XT-4 with a

~39,000 cores and ~80 TB of aggregate memory, a single run of LINPACK

may take 17-20 hours on the entire system. Often multiple runs need to be

done to determine an accurate LINPACK value, but such a measure cannot

be done often.

LINPACK is used to evaluate computer systems, as demonstrated by the

Top 500 list, and is occasionally used as a specification, thereby serving the

first purpose of a benchmark. In a limited way, LINPACK is used to validate

whether a system meets expectations at the time of arrival. The limited use of

 40

LINPACK for this purpose is due to the fact that LINPACK correlates very well

with peak performance, but there are many applications whose performance

does not correlate with LINPACK. Further, running LINPACK at scale takes a

long time. LINPACK also has little to add to future architectural

improvements, except possibly as a regression test to insure architectures

continue to do well with dense, cache friendly computations. Since LINPACK

only partially addresses purpose 1 and 2, and does not address 3 or 4, it is a

less meaningful indicator of how well as system is able to process work.

3.5 Definitions for SSP

There are a few global definitions along with detailed examples of key

terms and equations. The reader may initially skip this section and refer to it

to understand equations later if they choose.

Definition Explanation

Flops/s This work follows the recommended notation found in The Science of
Computer Benchmarking (Hockney 1996) by Roger Hockney which
recommends the following conventions:

 Ops is the plural of operation and

 Ops/s as the rate of the number of operations performed per
second.

Because the examples and data of this work come from scientific
computation, floating point operations are the norm, so

 Flops indicates the amount of operations and

 Flops/s indicates the rate of operations.

Of course standard prefixes of M for Mega, G for Giga and T for Tera
are used as is appropriate.

The author acknowledges there are common uses of Ops as a rate
rather than an amount in the literature.

CPU = core =
processor

For the sake of simplicity, we will use the term processor or CPU as
our concurrent element for now, where processor is identical to a
single core for multi-core chips.

 41

Some processors are created with component ―sub processors‖. For
example, take the case of the Cray X1/X1e. Most people use it as
one high performance vector processor, called a Multi-streaming
Processor (MSP) (Cray X1E n.d.) (Boucher, et al. 2004) However, the
MSP is made up of four Single Stream Vector Processors, each
identical, that can be used in unison or independently. Hence, for this
system, a CPU can be defined as either a Multi-streaming Processor
or a Single Stream Vector Processor, as long as the analysis is
consistent.

Another architectural variation is a standard processor integrated with
accelerators. An example of this is the IBM/Sony/Toshiba ―Cell‖
processor introduced in 2005

(Gschwind, et al. 2005) (Hofstee 2005).

The cell processor consists of a Power PC integrated on chip with
eight Synergistic Processing Elements (SPEs). Each SPE can
execute an independent instruction stream. Further, a Cell processor
may be combined with a commodity processor such in the LANL
―Roadrunner‖ system (CNet 2006) which uses one AMD Opteron
processor in conjunction with a Cell processor. In this case, the
integration is not necessarily on-chip. Other systems proposed
integrating commodity processors with graphics processing units
and/or FPGAs.

In the cell case, there are several choices regarding the definition of
CPU. One is to define the CPU as the integrated unit Power PC and
the SPEs (the ―cell‖). This would be a homogenous unit. Alternatively,
one could define multiple CPU types – the PPC, the SPE, and the
non-embedded commodity process, providing a heterogeneous set of
CPUs.

The SSP methodology allows either definition as one CPU or as a
number of independent CPUs. If the latter, then the system will be
treated as a heterogeneous system. Being able to use the
appropriate definition for a processing element and to allow a system
to have different types of processing elements is important in making
the evaluation method apply to a large range of applications.

Heterogeneous
System

A computing system with more than one type of processor
architecture and/or processor speed combinations available for
computational work.

Homogeneous
System

A computing system with only one type of processor
architecture/speed available for computational work.
Table 3-1: Sustained System Performance Definitions

3.6 Constants

The tables below have all the indices for each constant or variable. For the

sake of simplicity, one or more indices may be omitted if it does not cause

confusion for that part of the analysis.

 42

Definition Explanation

I The number of different applications used in the evaluation.

Ji The number of data sets each application executes. The number of
problem data sets may be different for different applications. So Ji is the
number of data sets for application i for 1 ≤ i ≤ I. If all applications have the
same number of data sets, then just J is used.

S The number of systems in the evaluation.

Ks The number of evaluation periods/phases for system s, where 1 ≤ s ≤ S. K
may be different for different systems. ks is the k

th
 phase of system s. Ks is

the total number of phases for system s. 1 ≤ ks ≤ Ks

As,k The number of different processor types in system s during phase k. An
example of a system with different processors is the IBM/Sony/Toshiba
Cell processor which may be considered to have two processors types.
Another example could be a system with a mix of AMD and Intel

processors. Later it will be used to index processor types, so 1 ≤ ≤ As,k

Ls,k The number of cost components for system s during each phase k. Cost
components are used to develop a cost function that can later be used to
determine the value of a system. For example, a system may have costs
for hardware, software, maintenance, electrical power, etc. Not all costs
apply to every phase, since some phases may involve only software
improvements.

Table 3-2: SSP Definitions for SSP Constants

3.7 Variables

Definition Explanation Units
Generic

[Used in this
work]

fi,j The total reference operation count of application i
executing data set j. The reference operation count
is determined once for each application/data set
combination. It can be determined by static
analysis or by using hardware/software
performance counters on a reference system.
Examples of tests that have reference operation
counts pre-defined are the NAS Parallel
Benchmarks, LINPACK and the Livermore
FORTRAN Kernels.

Using a single reference count for all systems
tested results in an evaluation of time-to-solution
being compared.

It is recognized that executing application i with
data set j on a given system may actually generate
a higher or lower operation count on a given
system. It may be appropriate that a specific
application be used on one or more data sets in
order to fully evaluate a system.

The typical HPC measure is Floating Point
operations (Flops). Other metrics may be the
appropriate work output measure. (E.g. for climate

Operations
[Flops, MIPs,

Ops]

[Simulated
Years]

 43

it could be in simulated years).

The total amount of work operations may change
for different concurrencies and on different
systems. fi,j is the reference amount of work done
on a chosen reference system and thus remains
constant for the analysis for every i and j.

mα,i,j The concurrency of application i executing data set
j for processor type α. Often, the concurrency of an
application/data set is the same as that used to set
the reference operation count.

It is important to note the concurrency element is
not fundamental to the evaluation, but, being able
to consistently determine the total number of
concurrent elements for a test suite is important for
overall performance and value assessment.

For the most part, concurrency is the number of
CPUs an application i specified to use to solve a
given data set j. The concurrency can be allowed to
be different for a test if the processors are
dramatically different. For example, a Cray system
might have both scalar and vector processors with
a factor of four differences in performance. It may
be appropriate to adjust the concurrency due to the
large difference in performance for the same data
set.

If the same data set is used for different
concurrencies across all systems, it is treated as a
different data set (a new j, so to speak) so there is
a one-to-one mapping of operations count for
problem j and concurrency for data set j. Likewise,
if an application is used more than once with two
different concurrencies, it can be considered
another application.

For some analyses, it is possible to allow different
concurrencies on each system s for a given i,j. The
advantage is providing the opportunity to run an
application of optimal scalability. While the SSP
method works with this approach since per
processor performance can be calculated for each
system, it typically adds complexity to use the
same data to understand individual application
performance.

For systems where there is a choice of the defining
CPU in different manners, such as with vector
processors or cell processor technology,
concurrency is defined relative to the choice of the
different CPU components.

[Processors]

 44

a,i,j The work done in each concurrent unit for
application i for data set j on processor type α.

Equation 3-1: Work per processor

ji,,

ji,

ji,,
m

f
 a

Note that ai,j does not imply what a‟i,j would be if the
test were run with a different concurrency m‟i,j

Ops per
Concurrent
Schedulable

Unit
[Flops per
Processor]

t s,k,,i,j The time-to-completion for application i running
data set j on processor type α. There is timing and
hence performance for each phase k of each
system s for each processor type. Most references
recommend wall clock time as the best time with
good reasons, but others (user CPU time, overall
CPU time) are frequently seen.

Time [seconds]

p s,k,,i,j The per processor performance of application i
executing data set j on processor type α on system
s during phase k.

Equation 3-2: Per processor performance

 t ,i,js,k

,ji,,

ji,

ji,,k,s,

ji,,

ji,,k,s,

m

f

t

a
 p

Important Note
Since fα,i,j is a fixed value based on a reference
system, as long as the concurrency mα,i,j is held
constant for all systems, the performance per
processor for system s, running application i, with
test case j, relies solely on the time it takes to solve
the problem on system s. Hence, this is a
comparison of time-to-solution for the application.

Ops/(proc*sec)
[Flops per

second
per processor]

wi The weight assigned to application i. Weights may
be the proportion of time the application used in the
past or the amount of time or resources the
corresponding science area is authorized to use. wi
values do not change for a given evaluation. If wi is
the same for all i, then the analysis is unweighted.

Later in this work there is a significant discussion
on whether and when weights should be used. The
SSP methodology accommodates either weighted
or unweighted approaches.

W The one dimensional array of length I containing
the weights wi

Ps,k,α

P*s,k,α

An array of all ps,k,,i,j for a given phase k, processor
type α and system s

P*s,k,α is a sub-set of ps,k,,i,j where ps,k,,i,j are
selected by some criteria. For example, the criteria

 45

may use only the results from the largest data set
runs.

τ s,k The starting time of evaluation phase k for system s Days, months,
years, etc.
[months]

τ o The start of the evaluation period. This can either
be arbitrarily set or it can be set to the earliest
period for any of the systems being evaluated.

Days, months,
years

[months]

τ eval The length of the evaluation period. τ eval is set to be
the same for all systems in a given evaluation.

Days, months,
years

[months]

τ max The end time for the evaluation period. τ max = τ o + τ

eval
Days, months,

years
[months]

N s,k,α The number of computational processors of type
in system s during evaluation period k. N s,k,α≥ mα,i,j,
In other words, there have to be enough

processors of type in the system to run
application i executing data set j for processor type
α.

A system may consist of different types of

processors indicated by . Systems that run

parallel applications, frequently have = 1 at least
for the processors expected to do the

computational workload. In this case, the notation
may be omitted. Such a system is called

homogeneous. Alternatively, if > 1, the system is
called heterogeneous.

cs,k,l The cost of factor l for time phase k of system s,

where 1 ≤ l ≤ Ls,k.

A cost factor may be the cost of hardware, the cost
of software, the on-going costs of operating a
system, etc. It is possible to evaluate cost in great
detail and therefore have large numbers of cost
factors, such as the cost and number of each
memory DIMM and each CPU chips making Ls,k
very large. However, system costs are often
presented as aggregated prices for a system.
Indeed, most vendors make it difficult to know the
true cost factors of a system. Again, SSP can
accommodate any degree of detail.

Currency
[Dollars]

 (W, Ps,k,α) The composite per processor performance function
for the set of weights W, and the set of per
processor performance P for performance phase k
for processor type α on system s. This will be
discussed in detail later.

Ops/(proc*sec)
[Flops/s per
processor]

SSPs,k Sustained System Performance for system s for
phase k.

Equation 3-3: Sustained System Performance for system

Operations /time
[Flops/s]

 46

s during phase k

A

ksks

ks

NPWSSP ks

,

1
, ,,,,,

Potencys The potential of a system s to produce useful work
results over a period of time. Potency was chosen
for this term since it means ―capacity to be,
become, or develop (Dictionary.com n.d.);‖

Equation 3-4: A system‘s potency is a reflection of its

ability to do productive work.

s
Potency

k1

sK

 s,kSSP
s,k1

min(,
max)

s,k
min(,

max) ; s,k
max

There will be more discussion of systems with
phases in Chapter 4.

Operations
[Flops]

Note: it is

possible to
consider

Potency as a
rate [Flops/s]

multiplied by a
time period [day,

months, year,
etc.].

Hence, Potency

can also be
expressed more

as integrated
performance

over time.

[e.g. TFlops/s *
Years or

GFlops/s *
Months]

Costs The cost of system s. Cost is composed of different

components cs,k,l.

Equation 3-5: Costs are used for setting value of a
solution

sCost cs,k,l
l1

s,kL

k1

sK

Currency
[Dollars]

Values The ratio of potency to cost for system s Equation
3-6: Value of a solution is its potency relative to its
cost

Cost

Potency
Value

s

s

s

Potency and Cost are influenced by the number of

processors, Ns,k,, but the degree of influence
cannot be assumed to be equivalent for many
reasons including economies of scale and business
strategies.

Operations Cost
of Resources

[Flops/$]

Table 3-3: Variables and Formulas for determining the SSP.

 47

3.8 Running Example Part 1 – Applications

Our running example has 3 benchmarks; A, B, and C, each with one

problem set. Hence I = 3. Each benchmark uses only the Message Passing

Library (MPI) (MPI Forum 1993) calls so there is a mapping of one MPI task

to one CPU. Since each benchmark has only one data set, J = 1, it is omitted

for clarity. Three systems are evaluated, each with uniform processors, so S =

3. = 1 and is omitted for clarity.

Table 3-4 below summarizes the benchmarks‘ characteristics. The

operation counts can be determined in a variety of ways, but most systems

today have a utility to count the number of operations for a problem run.

Application Total
Operation
Count, f
GFlops

Concurrency,
m

Processors

Amount of work
done in each

task, a.
GFlops/processor

A 549,291 384 1430

B 310,842 256 1214

C 3,143,019 2,048 1535

Table 3-4: This table shows the basic performance characteristics for the three benchmarks in our
example

Before examining the proposals for the systems, it is possible to assume

these benchmarks were run on a baseline system, such as NERSC‘s Power 3

system Seaborg. Table 3-5 shows the per processor performance of these

runs.

 48

Application Wall Clock Runtime,
t

Seconds

Per Processor
Performance, p

GFlops/s/processor

A 42,167 0.034

B 9,572 0.127

C 12,697 0.121

Table 3-5: Baseline performance of benchmarks on an existing system.

3.9 Aligning the Timing of the Phases

Evaluations should have a consistent time period for all systems. Since

systems could likely arrive at different timings, aligning these periods is

necessary for a fair comparison.

Additionally, for each system, there can be more than one phase of

system evolution. A phase is characterized by the system having different

components and/or additional components that make the potency different

than the previous phase. The cost of each phase, as well as the potency

maybe different as well. For the evaluation there is a period set, τeval to limit

the length of the evaluation period. τeval is often related to how long the

technology is to be used. NERSC uses 36 months and DOD-HPC

Modernization program uses four years (High Performance Technology

Insertion 2006 (TI-06) 2005).

Systems are unlikely to be delivered at exactly the same time and it is not

equitable to use the individual system delivery times as the starting point

since the price/performance ratio of a system delivered later is almost

certainly less than one delivered earlier – all other things being equal.

 49

However, another consequence of later delivery is lost computing

opportunities. A simple thought experiment shows why this is important.

Suppose an organization has two choices: have a 100 teraflop/s system

deployed in January 1, 2007 or a 500 teraflop/s system deployed in January

2, 2012. Assume they have the same real cost and assume sustained

performance of the 2012 system is also five times that of the 2007 system. A

valid question could be along the lines of ―How long is it before the

organization has the same potency as it will in April 1, 2013?‖ The answer is it

takes 1.25 years of use of the 2012 system to provide the same potency as

the 2007 system. The result of an organization choosing to wait for the

system with the better price/performance ratio is no computing for 5 years at

all. It then takes 1.25 years to make up the lost computing power.

So, are the two systems equal in value to the organization? It depends on

the organizational goals and many factors such as whether the same number

of people can gain the same insight in 25% of the wall clock time and whether

there are opportunities lost by having no computing for 5 years. It is clear the

phase boundaries have to be adjusted for each system in the evaluation in

order to fairly represent the value of different solutions. The adjustments that

have to be made are straightforward. Algorithms for the adjustments are

shown in Table 3-3: Variables and Formulas for determining the SSP.

 First, the system with the earliest delivery date is identified, which sets the

starting point, τ o to be beginning of the evaluation period. It may be that the

 50

organization needs a system by a certain time, so the evaluation period has

to start no later than a given deadline. In this case, τ o can set to the earliest of

the arrival date of the first system or to a specific no-later-than deployment

time set by the evaluators – whichever is earliest.

Not only can different systems arrive for use at different times, it may be

that the best overall solution is to have systems evolve through time, based

on optimizing different price points. A way of describing the timing of each

phase a system goes through, which is τ s,k is needed. For each system s,

there will be one or more stages, indicated by k.

Because solutions cannot wait indefinitely for a system to provide

solutions, the evaluators set the ending time τ max to end the evaluation

period. τ max is specified as τ max = τ o + τ eval. Once τ o and τ max are determined,

all the systems solutions being evaluated need to be adjusted to that interval.

This is done by adjusting the starting period of all the systems to τ o, and

assigning the performance and cost for a system during this period to be 0.

Likewise, for the systems whose delivery would take them past τ max, no

performance or cost is counted for that system.

FiguresFigure 3-1andFigure 3-2 show the impact of these adjustments.

Figure 3-1 shows two systems being evaluated. System 1 arrives and is

deployable before System 2 and has a single phase. System 2 arrives and is

deployed after System 1 and has an improvement part way through the

evaluation process, triggering the second phase.

 51

τeval

Figure 3-1: The proposed deployment time and SSP of two systems.

Assuming System 1 is deployed before any time limitation such as τ NLT,

the deployment of System 1 defines τ o for both systems. Since System 2

arrives after τ o, the performance and cost for System 2 is set to 0 until it

arrives. The end of the evaluation period is also set based on System 1‘s

deployment time. After these adjustments are used the evaluation periods are

shown in Figure 3-2.

SSP

τ 0 =

τ1,1

Ti

m

e

τ

2

,

1

τ2,2 τma

x

max

 52

τeval

Figure 3-2: SSP performance chart after periods are aligned. For clarity τ2́,k replaces τ2,k

3.10 Running Example Part 2 – Systems

Our running example assumes three different systems are being

evaluated. System 1 has a high per processor performance, but each

processor is relatively expensive. Because it is under development, it can

only be delivered 9 months after System 2. System 2 is a system that is

currently available for immediate delivery and consists of processors that are

modest in performance, but are also relatively inexpensive. System 3 is a

system that has per processor performance that is close to System 2. While

part of the system can be delivered immediately, ¾ of the system is delayed

SSP

Ti

m

e

τ́
2,2 τ2́,3 τma

x

max

τ ́ 2,1 = τ 0 =

τ1,1

 53

by 4 months due to manufacturing backlog. Furthermore, the first ¼ of

System 3 will perform 20% slower until the rest of system is delivered.

System 3‘s per processor cost is lower than either System 1 or System 2.

For simplicity, assume other aspects of the systems are identical except

for the cost. Note the ―cost‖ can be any calculation – from only initial hardware

cost to complete total cost of ownership. The costs in the example

approximate 6 years TCO for this scale system.

Table 3-6 indicates the system parameters for the running example. The

time period of the evaluation is set at 36 months – a typical time period during

which large systems have the most impact.

System Delivery
Delay

(Months)

Number of
Compute

Processors

Cost
(Dollars)

System 1 9 9,000 $59,000,000

System 2 0 10,000 $68,000,000

System 3
 - Phase 1
 - Phase 2

0
6

3,500

14,000

$57,000,000

Table 3-6: Specifications of solutions being considered

From this information one cannot determine the solution that is the best

value. The benchmark runtimes for the three systems are shown in Table 3-7,

and the resulting per processor performance in Table 3-8.

 54

Runtimes in seconds of
Benchmarks on each System

A B C

System 1 3810 1795 2303

System 2 3598 2010 3170

System 3
 - Phase 1
 - Phase 2

4930
4103

2622
2185

2869
2391

Table 3-7: Benchmark Runtimes in Seconds for Three Systems

Per Processor Performance in
GFlops/s of Benchmarks on
each System

A B C

System 1 .375 .676 .666

System 2 .398 .604 .484

System 3
 - Phase 1
 - Phase 2

.290
.348

.463
.556

.535
.642

Table 3-8: Per processor performance of three benchmarks

3.11 The Composite Performance Function (W, P)

The composite performance function can be chosen in different ways.

There are many possible functions, depending on the data and goals. Several

may be appropriate for a given evaluation. Which functions are appropriate

for different performance measures is an on-going discussion and is covered

in (Bucher and Martin 1982), (Flemming and Wallace 1986), (Smith 1988),

(Lilja 2000), (Patterson and Hennessey 1996), (John and Kurian,

Performance Evaluation and Benchmarking 2006), (Helin and Kaski 1989),

and (Mashey 2004). The SSP method can use any appropriate composite.

Hence, this section does not try to do an exhaustive study of all possible

functions, but rather is a general discussion of several likely functions and

how to implement them.

 55

Recall wi and Ps,k, as defined above, and a composite function are used

to calculate an overall performance rate. Some typical composite functions

are Arithmetic Mean, Harmonic Mean and Geometric Mean – all of which can

use either weighted or unweighted data. More advanced statistical functions

could be used such as the t test or an Analysis of Variance (Ostle 1972).

Equation 3-7, Equation 3-8, and Equation 3-9 show the implementation of

the three more common means. If wi = 1 for all i, then the means are

unweighted.

Equation 3-7: Weighted Arithmetic Mean

Equation 3-8: Weighted Harmonic Mean

Equation 3-9: Weighted Geometric Mean

I

i

i

I

i j
ji

i

wAM

w

J
w

i

p

1

1 1
,

 I

i

J i

j

wi
ji

w

p

I

i

J i

j i

wGM

1 1
,

1 1

1

I

i j
ji

i

I

i

J

j

i

wHM J w

w

i

i

p1 1
,

1 1

 56

3.12 SSP and Time-to-Solution

The number of operations a computer uses to solve a given problem

varies dramatically based on the computer architecture, its implementation,

and the algorithm used to solve the problem. While this has been the case

from the dawn of computing, the problem of deciphering how much work is

done by different systems has gotten harder with time. Early performance

results on distributed memory computers were so notorious for providing

misleading information that it prompted Dr. David Bailey to publish his Twelve

Ways to Fool the Masses When Giving Performance Results on Parallel

Computers paper (D. Bailey 1991) in 1994. In this paper, 7 of the 12 ways

(ways 2, 3, 4, 6, 8, 9, and 10) relate to using measurements that are

misleading for comparisons that vary depending on the computer system

being used or doing a subset of the problem. New processors and increasing

scale compound this problem by causing more and more basic computer

operations to be done for a given amount of usable work. Different algorithms,

programming languages and compilers all influence performance in addition

to the computer architecture and implementation (Patterson and Hennessy

2007).

Many performance evaluators recognize that time-to-solution is the best –

maybe only – meaningful measure of the potential a computer provides to

address a problem. If the system is to be used for a single application,

assessing time-to-solution is relatively straight forward. One takes an

 57

application, tests the systems with one or more problem sets, and compares

the time it takes for the application to solve the problem. An example of this

approach is a metric commonly used by the climate modeling community

which is the number of simulated years per unit of wall clock time. Weather

forecasting has similar metrics – the wall clock time it takes to produce a

given forecast. Chemical and materials simulations could have a similar

measure – the time it takes to simulate a compound with a fixed number of

atoms, for example. In these cases, as long as the algorithm and problem

(the same resolution, the same precision of modeling physical processes,

etc.) remains unchanged, there is a fair comparison based on time-to-

solution.

A more challenging, but more commonly occurring situation is when

computer systems are evaluated for use with different applications and/or

domains because there is no common unit of work that can be used for

comparison. That is, it is not meaningful, for example, to compare the number

of years a climate simulation produces in a given wall clock time to the size of

a protein that is folded in a chemical application. Similarly, if the problems or

physics the algorithms represent change within an application area, the

comparison of the amount work done is not clear cut. Finally, if the

implementation of an application has to fundamentally change for a computer

architecture, the number of operations may dramatically different.

 58

It is common, therefore, for performance evaluators to use the number of

instructions executed per second (also known as operations per second) as

measured on each system, or other less meaningful measures methods (e.g.

peak performance, Top-500 lists, etc.), This approach leads to easily

misunderstanding comparative results.

SSP addresses the issue of in precise or multiple factor work measures

since the operation count used in the calculation of SSP is fixed once for the

benchmark test and is based on the problem solution executing on a

reference (presumably efficient) system, albeit a test case that is reasonable

for the system sizes under evaluation. If the problem concurrency is also

fixed, the only invariant is the time the test takes to run to solution on each

system.

To show SSP is a measure of time-to-solution if the operation count is

based on a reference count, consider the following. For each combination of

an application and problem set, i,j, the number of operations fi,j is fixed as is

the concurrency, mi,j.

jisji

ji

jisji

ji

jis
tm

f

tm

f
p

,,,

,

,,,

,

,,

1
*

*

Equation 3-10: The per processor performance for a test depends on the time to complete that test

For simplicity, but without loss of generality, assume an unweighted

composite function. Again for simplicity, use the standard mean and assume

 59

all the processors in a system are homogeneous and there is a single phase.

The per processor performance can be expressed as:

I

t

I

m

f

I

tm

f

P

I

i

J

j ji

I

i

J

j ji

ji
I

i

J

j jiji

ji

s

1 1 ,1 1 ,

,

1 1 ,,

,
)

1
(

*

)()
1

*(

Equation 3-11: Per processor performance for a system depends on time-to-solution

The equation of SSP performance between two systems, s and s‟ with the

same number of computer processors, N, can be expressed as follows:

jis

jis

jis

jis

ji

ji

ji

ji

jisji

ji

jisji

ji

s

s

t

t

JI
t

JI
t

JI
m

f

JI
m

f

JI
tm

f
N

JI
tm

f
N

SSP

SSP

,,

,,'

,,'

,,

,

,

,

,

,,',

,

,,,

,

')*()
1

(

)*()
1

(

*

)*(

)*(

)*(
1

**

)*(
1

**

Equation 3-12: Comparing SSP values is equivalent to comparing time-to-solution

Hence, SSP compares the sum of the time-to-solution for the tests. From

this, it is clear that if the number of processors is different for the two systems,

then the SSP is a function of the time-to-solution and the number of

processors. If the systems have multiple phases, the SSP comparison is

dependent on the time-to-solution for the tests, the number of processors for

each phase and the start time and duration for each phase. This can be

further extended for heterogeneous processors and/or for different composite

functions without perturbing the important underlying concept the SSP

compares time-to-solution across different systems.

 60

3.13 Attributes of Good Metrics

There are benefits of using different composite methods, based on the

data. The approach of using the harmonic mean was outlined in a 1982 Los

Alamos technical report (Bucher and Martin, 1982). It should be noted that at

the time, the workload under study was a classified workload with a limited

number of applications. In fact, the authors dealt with ―five large codes‖. The

paper outlines the following process.

1. Workload Characterization: Conduct a workload characterization study

using accounting records to understand the type and distribution of

jobs run on your systems.

2. Representative Subset: Select a subset of programs in the total

workload that represent classes of applications fairly and understand

their characteristics. This included the CPU time used, the amount of

vectorization, the rate of Floating Point Operation execution and I/O

requirements.

3. Weighing the influence of the Applications: Assign weights according

to usage of CPU time of those programs on the system.

4. Application Kernels: Designate portions (kernels) of the selected

programs to represent them. These kernels should represent key

critical areas of the applications that dominate the runtime of the

applications.

 61

5. Collect Timing: Time the kernels on the system under test using wall

clock time.

6. Compute a Metric: Compute the weighted harmonic mean of kernel

execution rates to normalize the theoretical performance of the system

to a performance that would likely be delivered in practice on the

computing center‘s mix of applications.

Bucher and Martin were focused on the evaluation of single processors –

which was the norm at the time. As stated, the implementation of this

methodology suffers from some pragmatic problems.

1. It is difficult to collect an accurate workload characterization given that

many tools for collecting such information can affect code performance

and even the names of the codes can provide little insight into their

function or construction (the most popular code, for instance, is ‗a.out‘).

2. Most HPC Centers support a broad spectrum of users and

applications. The resulting workload is too diverse to be represented

by a small subset of simplified kernels. For example, at NERSC, there

are on the order of 500 different applications used by the 300-350

projects every year.

3. The complexity of many supercomputing codes has increased

dramatically over the years. The result is that extracting a kernel is an

enormous software engineering effort and maybe enormously difficult.

Furthermore, most HPC codes are made up of combinations of

fundamental algorithms rather than a single algorithm.

 62

4. The weighted harmonic mean of execution presumes the applications

are either serial (as was the case when the report was first written) or

they are run in parallel at same level of concurrency. However,

applications are typically executed at different scales on the system

and the scale is primarily governed by the science requirements of the

code and the problem data set.

5. This metric does not take into account other issues that play an equally

important role in decisions such as the effectiveness of the system

resource management, consistency of service, or the reliability/fault-

tolerance of the system. The metric also is not accurate in judging

heterogeneous processing power within the same system – something

that may be very important in the future.

John and Eeckhout indicate the overall computational rate of a system can

be represented as the arithmetic mean of the computational rates of individual

benchmarks if the benchmarks do not have an equal number of operations.

Nevertheless, there are attributes of making a good choice of a composite

function. Combining the criteria from (Smith,1988) and (Lilja, 2000) provides

the following list of good attributes.

 Proportionality – a linear relationship between the metric used to

estimate performance and the actual performance. In other words, if

the metric increases by 20%, then the real performance of the system

should be expected to increase by a similar proportion.

 63

o A scalar performance measure for a set of benchmarks

expressed in units of time should be directly proportional to the

total time consumed by the benchmarks.

o A scalar performance measure for a set of benchmarks

expressed as a rate should be inversely proportional to the total

time consumed by the benchmarks.

 Reliability means if the metric shows System A is faster than System

B, it would be expected that System A outperforms System B in a real

workload represented by the metric.

 Consistency so that the definition of the metric is the same across all

systems and configurations.

 Independence so the metric is not influenced by outside factors such

as a vendor putting in special instructions that just impact the metric

and not the workload.

 Ease of use so the metric can be used by more people.

 Repeatability meaning that running the test for the metric multiple

times should produce close to the same result.

SSP reflects these attributes. There has been a series of papers debating

which mean is most appropriate for performance evaluations for at least 16

years. In fact there have been disagreements in the literature about the use of

the geometric mean as an appropriate measure. Note that the SSP method

allows any mean, or other composite function, to be used equally well in the

calculation and different means are appropriate for different studies. Hence,

 64

this section discusses the attributes of different means and the summary of

the papers, but does not draw a single recommendation. That depends on the

data and the goal of the study.

The arithmetic mean is best used when performance is expressed in units

of time such as seconds and is not recommended when performance is

expressed as performance ratios, speedups (Smith, 1988) or normalized

values (Flemming and Wallace, 1986). The arithmetic mean alone may be

inaccurate if the performance data has one or more values that are far from

the mean (outlier). In that case, the arithmetic mean together with the

standard deviation or a confidence interval is necessary to accurately

represent the best metric. (John 2004) concludes the weighted arithmetic

mean is appropriate for comparing execution time expressed as speedups for

individual benchmarks, with the weights being the execution times.

The harmonic mean is less susceptible to large outliers and is appropriate

when the performance data is represented as rates. The unweighted

harmonic mean for a system phase can be expressed as total operation count

for all benchmarks divided by the total time of all benchmarks as shown in

Equation 3-8.

Use of geometric means as a metric is not quite as settled. (Smith, 1988)

says it should never be used a metric, while (Flemming and Wallace, 1986)

indicates it is the appropriate mean for normalized numbers regardless of how

they were normalized. They also note it addresses the issue of data that has

 65

a small number of large outliers. This paper also points out the geometric

means can be used for numbers that are not normalized initially, but when the

resulting means are then normalized to draw further insight.

(Mashey, 2004) examines the dispute and identifies that there are reasons

to use all three means in different circumstances. Much of the previous work

assumed some type of random sampling from the workload in selecting the

benchmarks. This paper notes that geometric means have been used in

many common benchmark suites such as the Livermore FORTRAN Kernels

and the Digital Review CPU 2 (Digitial Review 1998) benchmarks. This paper

organizes benchmark studies into three categories, and each has its

appropriate methods and metrics. The first and most formal category is WCA

(Workload Characterization Analysis), which is a statistical study of all the

applications in a workload, including their frequency of invocation and their

performance. WCA is equivalent to the methodology outlined in Bucher and

Martin. This type of analysis provides a statistically valid random sampling of

the workload. Of course, WCA takes a lot of effort and is rarely done for

complex workloads. WCA also cannot be done with standard benchmark

suites such as NPB or SPEC. While such suites may be related to a particular

workload, by their definition, they cannot be random samples of a workload.

The Workload Analysis with Weights (WAW) is possible after extensive

WCA because it requires knowledge of the workload population. It can predict

workload behavior under varying circumstances.

 66

The other type of analysis in (Mashey, 2004) is the SERPOP (Sample

Estimation of Relative Performance of Programs) method. In this category, a

sample of a workload is selected to represent a workload. However, the

sample is not random and cannot be considered a statistical sample.

SERPOP methods occur frequently in performance analysis. Many common

benchmark suites including SPEC and NPB, as well as many acquisition test

suites, fit this classification. In SERPOP analysis, the workload should be

related to SERPOP tests, but SERPOP does not indicate all the frequency of

usage or other characteristics of the workload.

The impacts of the assumptions in early papers (fixed time periods,

random samples, etc.) that discuss the types of means are not valid for

SERPOP analysis. Because of this, the geometric mean has several

attributes that are appropriate for SERPOP analysis. In particular, (Mashey,

2004) concludes geometric means are appropriate to use for ratios since

taking ratios converts unknown runtime distributions to log-normal

distributions. Furthermore, geometric means are the appropriate mean for

SERPOP analysis without ratios when there are many reasons the

distribution of a workload population is better modeled by a log-normal

distribution.

3.14 Running Example Part 3 – Holistic Analysis

For our running example, the arithmetic mean will be used to calculate the

SSP and Solution Potential.

 67

System
Evaluation
using SSP

Average Per
Processor

Performance

GFlops/s

System SSP
using the

mean of the
three

benchmarks
GFlops/s *

Months

Solution
Potential

GFlops/s *
Months

Solution
Value

GFlops/s-
Months/
Million $

System 1 .573 5,155 139,180 2,359

System 2 .495 4,953 178,294 2,622

System 3
 - Phase 1
 - Phase 2

.429
.515

1,503
7,214

225,426
9,017

216,426

3,955

Table 3-9: Per processor performance of three benchmarks

While System 1 has the highest per processor performance, because it is

delivered quite a bit later than the other systems, it has the lowest potential

and value. System 2, even though it is delivered at full scale earliest, has the

middle value. System 3, with two phases clearly has the highest value for the

evaluation using these benchmarks.

3.15 Chapter Conclusion

The SSP method is flexible and comprehensive, yet is an easy concept to

understand. It uses the most meaningful measure for computer users to make

its comparisons – time-to-solution. The method works with any set of

performance tests and for both homogeneous and heterogeneous systems.

The benchmarks can have as many data sets as needed and be scaled to the

desired degree of precision and effort.

68

Chapter 4: Practical Use of SSP for HPC
Systems

This chapter examines the use of the SSP method to assess systems in

practice. It also examines the improvements made to SSP based on applying

it to evaluations.

4.1 Chapter Summary

This chapter provides a number of examples using the SSP method to

evaluate and assess large systems. It traces the evolution of the SSP method

over a 10 year effort as it became more sophisticated and effective. Large

HPC systems are complex and evaluated/purchased only once every three to

five years. Hence 10 years gave the opportunity to have and assess four

generations of SSP. As part of the observations of SSP, it can be seen that

the SSP method gives both the purchaser and the supplier of systems

protection. The supplier has freedom to adjust the schedule of deliverables

and the purchaser is protected by a guarantee of a fixed amount of

performance delivered in a certain time period. The degree of adjustments

can be constrained as well, so it is possible to arrange incentives for early

delivery or delivery of more effective systems.

Chapter 3 discusses the SSP method for overall performance assessment

that is one method to evaluate the Performance of a system. While SSP is not

the only measure used to assess a system‘s potential to solve a set of

problems, it is one of the few that, if properly constructed, can be used for all

69

four purposes of benchmarks. Section 3.8 discussed a simplified example of

a problem. This chapter takes the SSP approach from the previous chapter

and examines the use of SSP in different real world evaluations and selection

issues in a variety of circumstances.

4.2 A Real World Problem, Once Removed

It is not possible to disclose the details of actual procurement submissions

or evaluations since the information is provided by vendors to the requesting

organization for evaluation and selection and is considered proprietary.

However, it is possible to craft a summary that is based on real world

information from such a procurement that is sufficient to properly illustrate the

use of SSP.

Imagine an organization evaluating large scale systems for a science or

engineering workload. The organization determines functional and

performance requirements and creates a benchmark suite of applications and

other tests. It then solicits and receives information from potential vendors as

to how well their technology meets the requirements and performs according

to the benchmarks. In many cases the response is a combination of actual

measurements and projections. For simplicity, assume the only distinguishing

characteristics under evaluation are the specified benchmark performance on

a per processor basis shown in Table 4-1. They are the set of p,s,k,,i,j that was

defined in Table 3-2: SSP Definitions for SSP Constants

70

There are five proposed systems (S= 5). Five application benchmarks are

used to calculate the SSP, so I = 5. While the applications run at medium to

high concurrency, they operate at different concurrencies. Each application

has been profiled on a reference system so its operation count is known for

particular problem sets. In this case, each application has one problem, so Ji

= 1 for this discussion. Further, assume these systems are composed of

homogeneous processors so α= 1, so it, too, is set to 1.

As defined in Table 3-3, in order to calculate the per processor rate of the

applications, ps,k,1,i,1, the total operation count of the benchmark is divided by

the concurrency of the benchmark to give the average per processor

operation count and then divided again by the wall-clock runtime of the

benchmark. Four of the five systems proposed had phased technology

introduction, with each of these having Ks=2.

The cost data includes basic hardware and software system costs and the

operating and maintenance costs for three years from the delivery of the

earliest system. In order to protect the proprietary information provided by

vendors, the cost data is expressed relative to the lowest cost proposed.

Delivery times all are relative to the earliest system delivery and set to the

number of months after the system with the earliest delivery time.

71

 System
1

System
2

System
3

System
4

System
5

Phase 1

Application
Benchmark 1

GFlops/s per
Processor

0.31 0.20 0.74 N/A 0.22

Application
Benchmark 2

GFlops/s per
Processor

0.40 0.30 1.31 N/A 0.06

Application
Benchmark 3

GFlops/s per
Processor

1.35 0.17 0.64 N/A 1.19

Application
Benchmark 4

GFlops/s per
Processor

1.00 2.34 5.99 N/A 1.12

Application
Benchmark 5

GFlops/s per
Processor

0.49 0.51 1.02 N/A 0.45

Delivery Months after
earliest
delivery

3 0 6 N/A 0

Number of
Processors

 768 512 512 N/A 512

Phase 2

Application
Benchmark 1

GFlops/s per
Processor

0.31 0.19 0.74 0.10 0.22

Application
Benchmark 2

GFlops/s per
Processor

0.40 0.34 1.31 0.30 0.06

Application
Benchmark 3

GFlops/s per
Processor

1.35 0.16 0.64 0.39 1.19

Application
Benchmark 4

GFlops/s per
Processor

1.00 1.54 5.99 0.92 1.12

Application
Benchmark 5

GFlops/s per
Processor

0.49 0.26 1.02 0.14 0.45

Delivery Months after
earliest
delivery

12 22 18 3 6

Number of
Processors

 1536 1024 1408 5120 2048

Cost Factor Relative cost
among
proposals

1.65 1.27 1.27 1.16 1.00

Table 4-1: Per processor performance, p, for each system, phase and benchmark for a hypothetical
system purchase. These responses are anonymized and adjusted from actual vendor responses for

major procurements. Systems 1, 2, 3, and 5 are proposed to be delivered in two phases. System 4 is a
single delivery. The per processor performance of five application benchmarks is shown. The systems
would be delivered at different times. The table shows the delivery date relative to the earliest system.

72

Figure 4-1: System parameters for Phase 1. Note System 4 is a single phase and is shown in the Phase

2 chart.

Figure 4-2: System parameters for Phase 2.

Figure 4-1 and Figure 4-2 show the same data as in Table 4-1, but in

graphical form. The challenge of an organization is to use this data to decide

0

100

200

300

400

500

600

700

800

900

0.00

1.00

2.00

3.00

4.00

5.00

6.00

System 1 System 2 System 3 System 4 System 5

N
u

m
b

e
r

o
f

C
P

U
s

G
F

o
p

s
/s

e
c
 p

e
r

p
ro

c
e
s
s
o

r

Systems

Phase 1 Performance

ABM 1

ABM 2

ABM 3

ABM 4

ABM 5

Number of CPUs

0

1000

2000

3000

4000

5000

6000

0.00

1.00

2.00

3.00

4.00

5.00

6.00

System 1 System 2 System 3 System 4 System 5

N
u

m
b

e
r

o
f

C
P

U
s

G
F

lo
p

s
/s

e
c
 p

e
r

p
ro

c
e
s
s
o

r

Systems

Phase 2 Performance

ABM 1

ABM 2

ABM 3

ABM 4

ABM 5

Number of CPUs

73

which system is the best value for the organization‘s mission and workload.

As can be seen in Figure 4-1and Figure 4-2, the answer of which option

provides the system with the best value is not obvious from the benchmark

performance alone.

4.3 Different Composite Functions

As discussed in Chapter 3, different composite functions can be used for

SSP calculations – including all three means. The best composite function to

use depends on the data and the evaluation goals. Table 4-2 shows using

geometric and arithmetic means and the impact they have on SSP Potency

and value. Notice that the ordering of the system value is the same

regardless of whether the arithmetic or geometric mean is used. For the rest

of this example case, the unweighted geometric mean will be used for the

composite function since the applications were selected are a non-random

sample, so this is a SERPOP analysis as discussed in Section 3.13 above.

This is equivalent to adding the integrated the per processor performance

curves for each application times the number of processors for that phase,

and then dividing by the number of applications.

74

 System
1

System
2

System
3

System
4

System
5

Potencys -
Geometric
Mean

GFlops
GFlops/s*Months

26,486 9,474 41,074 45,959 24,587

Values -
Geometric
Mean

Normalized
(GFlops/s*Months)/$

564 271 1450 1201 781

Potencys -
Arithmetic
Mean

GFlops
GFlops/s*Months

31,037 15,081 61,077 62,570 39,236

Values -
Arithmetic
Mean

Normalized
(GFlops/s*Months)/$

661 403 2,156 1,635 1,246

Ratio of
Arithmetic vs.
Geometric

 1.17 1.49 1.49 1.36 1.60

Table 4-2: SSP Performance results using geometric and arithmetic means, and the impact on SSP
Potency and Value.

4.4 Impact of Different Means

The relationship of means is HM ≤ GM ≤ AM (Selby 1968). Comparing the

results of arithmetic mean and geometric mean show there are differences in

the expected performance of the system. The ratio of performance between

systems is not equal between means but in every case, the geometric mean

is lower than the arithmetic for the system listed in Table 4-2. Furthermore,

using the arithmetic mean, the order of best to worst price performance is

Systems 3, 4, 5, 1 and 2. Using the geometric mean, the order is 3, 4, 5, 1

and 2. So the ordering of the system is preserved regardless of the mean

used in this situation. In another example shown in Table 4-3, running the

SSP-4 test suite (discussed in detail later in this chapter) on different

technology systems at Lawrence Berkeley National Laboratory (LBNL)

(systems named Seaborg, Bassi and Jacquard) and Lawrence Livermore

National Laboratory (LLNL) (system name Thunder) using the arithmetic,

75

harmonic and geometric means changes the absolute value of the SSP, but

does not change the order of performance estimates.

 Seaborg
(LBNL)

Bassi
(LBNL)

Jacquard
(LBNL)

Thunder
Cluster
(LLNL)

Computational
Processors

6224 888 4096 640

Arithmetic SSP-4 1,445 1,374 689 2,270

Geometric SSP-4 902 835 471 1,637

Harmonic SSP-4 579 570 318 1,183
Table 4-3: Another example of using different means that do not change the ordering of system

performance

Since the ordering of the means is consistent, and the harmonic mean is

less appropriate as a composite function for benchmarks that change their

concurrency, the arithmetic or geometric means are used at NERSC and their

affects are discussed in Sections 3.11 and 4.3. For the examples in Section

3.2, the arithmetic mean is used.

4.5 System Potency

Delivery of each system, as in our example, would occur at different times.

Graphing the monthly values of the SSP for each system over time as shown

in Figure 4-3 differentiates some of the systems. For example, System 2,

despite having good per processor performance, had a low Potency since it

has relatively few CPUs. To be the best value it would have to be 5 or 6 times

less expensive than other alternatives. At the end of the evaluation period,

System 3 provided the best sustained performance, followed by system 4.

Yet, System 3 was upgraded after System 2 and 5, and System 4 had only a

76

single phase so it is not clear from this graph which system has the most

potency, let alone the best value.

Figure 4-3: A graph of the example SSP value over time for the five systems. This is using the
geometric mean as the composite function. The duration of the evaluation period is set by the evaluator.
The starting date of the evaluation period can either be specified in an RFP or can be determined based

on the first available system.

As a thought experiment, think about the situation where there are two

system, and System 1 is twice as fast as System 2. In other words, it has an

SSP1,k = 2 * SSP2,k. Assume further, System 1 is also twice as expensive

System 2. The first thing to recall is having twice the SSPs,k, does not mean

the system has twice the Potency. In order to have twice the Potency, the two

systems have to be available at the exact same time. This may be case with a

commodity such as at a local computer store but is highly unlikely for HPC

systems. Nonetheless, if the two systems arrived at identical times, and the

Potency of System 1 was twice that of System 2, and the cost of System 1

was twice that System 2, they would have the same value with regard to the

SSP. Further, in most major system evaluations, there are multiple cost

Anonymized SSP Evaluation

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Month from initial system

S
S

P
 G

F
lo

p
/s

System 1

System 2

System 3

System 4

System 5

77

functions evaluated – for example the Initial System Cost and the total cost of

ownership. Having all the cost functions identical is also unlikely.

But even if the Value of the two systems is exactly identical, that only

reflects the performance component based on the selected benchmark tests.

The overall value of the systems will almost certainly be different if the other

aspects of PERCU are added to the evaluation. Or evaluators may choose to

add second order benchmark tests, possibly to reflect use cases that are less

important but to increase the accuracy of the SSP for the real workload as the

―tie breaker‖.

4.6 Using Time-to-Solution in SSP

The way to calculate an SSP value using the SSP-5 tests is

straightforward and illustrated below.

78

Application
Tests

Each
application
code has a
data set the is
specified for the
concurrency)
Tests

(a)
Concurrency
(MPI Tasks)

(b)
Reference

GFlop Count

In this case, the
reference

system is the
NERSC dual

core Cray XT-4
system -
Franklin

(c)
Measured Wall
Clock Time-to-
solution (Sec)

for the
evaluated

system

(d)
Processing

rate per core
(GFlops/s)

CAM 240 57,669 408 0.589

GAMESS 1024 1,655,871 2811 0.575

GTC 2048 3,639,479 1492 1.190

IMPACT-T 1024 416,200 652 0.623

MAESTRO 2048 1,122,394 2570 0.213

MILC 8192 7,337,756 1269 0.706

Paratec 1024 1,206,376 540 2.182

Geometric
Mean
(GFlops/s)

 0.7

Number of
Compute Cores

 N

System SSP .7*N
Table 4-4: Example calculation of a system's SSP value

Table 4-4 shows results for the SSP-5 suite with a typical runtime for the

tests. As discussed above, the GFlop reference count (column b) is created

on a reference system and does not change. In this case the reference

system was the NERSC Cray XT-4 with dual core processors. For each test,

the rate per core (column d) is the GFlop count divided by the number of

tasks (column a) and divided by the time-to-solution (column c). Test rates

per core are then composited, in this example with the geometric mean,

determining the overall per core processing rate. The reason the per

processor rate has to be determined for each code is the targeted

concurrency for the reference problem is different for each test.

79

The per core processing rate is then multiplied by the number of compute

cores in the system. In this case, if the system were to have 100,000 cores,

the SSP value would be 70 TFlops/s. The SSP suites can have more or less

tests and can be scaled to any degree.

Each test can be run multiple times for provide increased accuracy and/or

to measure consistency of results, but that is an implementation decision left

to the reader and is discussed more fully in Chapter 7:.

4.7 The Evolution of the NERSC SSP - 1998-2006

The SSP concept evolved at NERSC through four generations of system

evaluations dating back to 1998. It serves as a composite performance

measurement of codes from scientific applications in the NERSC workload

including fusion energy, materials sciences, life sciences, fluid dynamics,

cosmology, climate modeling, and quantum chromodynamics. For NERSC,

the SSP method encompasses a range of algorithms and computational

techniques and manages to quantify system performance in a way that is

relevant to scientific computing problems using the systems that are selected.

The effectiveness of a metric for predicting delivered performance is

founded on its accurate mapping to the target workload. A static benchmark

suite will eventually fail to provide an accurate means for assessing systems.

Several examples, including LINPACK, show that over time, fixed

benchmarks become less of a discriminating factor in predicting application

workload performance. This is because once a simple benchmark gains

80

traction in the community, system designers customize their designs to do

well on that benchmark. The Livermore Loops, SPEC, LINPACK, NAS

Parallel Benchmarks (NPB), etc. all have this issue. It is clear LINPACK now

tracks peak performance in the large majority of cases. Simon and

Strohmaier (Simon and Strohmaier 1995) showed, through statistical

correlation analysis that within two Moore‘s Law generations of technology

and despite the expansion of problem sizes, only three of the eight NPBs

remained statistically significant distinguishers of system performance. This

was due to system designers making systems that responded more favorably

to the widely used benchmark tests with hardware and software

improvements.

Thus, long-lived benchmarks should not be a goal – except possibly as

regression tests to make sure improvements they generate stay in the design

scope. There must be a constant introduction/validation of the ―primary‖ tests

that will drive the features for the future, and a constant ―retirement‖ of the

benchmarks that are no longer strong discriminators. On the other hand,

there needs to be consistency of methodology and overlapping of benchmark

generations so there can be comparison across generations of systems.

Consequently, the SSP metric continues to evolve to stay current with current

workloads and future trends by changing both the application mix and the

problem sets. It is possible to compare the different measures as well so long

running trends can be tracked.

81

SSP is designed to evolve as both the systems and the application

workload does. Appendix C shows the codes that make up the SSP versions

over time. Appendix B shows the SSP version performance results on

NERSC production systems. Next is a description and evaluation of the four

generations of the SSP metric.

4.7.1 SSP-1 (1998) - The First SSP Suite

The first deployment of the SSP method, designated SSP-1, was used to

evaluate and determine the potency for the system called NERSC-3. This

system was evaluated and selected in a fully open competition. SSP-1 used

the unweighted arithmetic mean performance of the six floating point NAS

parallel benchmarks (Bailey and el.al. 1991), in particular, the NAS Version

2.3 Class C benchmarks running at 256 MPI tasks. Additionally, the NERSC-

3 acquisition used 7 full application benchmarks to evaluate systems but

these applications were not part of the SSP-1 calculation. The NPB

Benchmarks were used for the first SSP because they were well known to the

vendor community, so the addition of the SSP method was less threatening to

vendors, thereby encouraging participation. Further, analysis showed the

NPBs had a relationship to a range of the applications of the time period. The

applications benchmarks discussed in this section are shown in Appendix C.

4.7.1.1 Description of SSP-1

The NPBs were selected for SSP-1 for several reasons.

82

1. The procurement benchmark suite was developed using a 696 processor

Cray T3E-900. Some applications selected from the workload were too

large to get accurate reference instruction counts using the tools existing

at the time. So an accurate reference flop count could not be established

for several application/data set combinations that were used for the

application benchmarks. Thus fi,j could not be accurately established for

some values of i and j. On the other hand, the flop count for each NPB

was analytically defined and validated by running on single processor

systems for each problem size so fi,j was well known.

2. The NERSC-3 application benchmarks were a fixed problem size and

vendors were allowed to choose the best concurrency for problem scaling

in an attempt to determine the strong scaling characteristics of the

proposed systems. The added complexity of each system using different

concurrency was judged too risky for the first implementation of the SSP

method. The fixed concurrency of the NPB codes was easier to implement

for vendors for the new SSP method.

3. The NPB suite represented many fundamental algorithms used in the

NERSC workload. For example, the NPB CG (Conjugate Gradient) test

was similar to the 2D sparse matrix calculations in SuperLU (Li, Li and

Demmel 2003) library test code and Quantum ChromoDynamics (QCD)

application such as MILC (The MIMD Lattice Computation (MILC)

Collaboration n.d.). The Fourier Transform (FT) test related to Paratec

83

(Canning, et al. 2000)((PARAllel Total Energy Code n.d.), which uses a

global Fast Fourier Transform (FFT).

4. NERSC staff was familiar with the NPBs and could accurately interpret

their implications for NERSC applications. Likewise, the NPBs were well

understood by the vendor community and had proven easily portable to

the potential systems, making their use less effort for vendors.

4.7.1.2 Assessment of SSP-1

The use of the NPBs as the SSP-1 metric was successful in several ways.

1. Vendors provided benchmark data for almost all the configurations

proposed in part because the NPBs were well understood, easily

portable and tested. The benchmarks had been ported to almost all

the architectures and vendors were familiar with the implementation

of the codes.

2. Feedback from the vendor community indicated* preference towards

composite metrics such as SSP rather than a series of individual

tests each with a performance requirement. This is because vendors

were concerned about the number of individual benchmarks that

represented many individual metrics – each with a risk of failure.

Further, vendors indicated a willingness to agree to more aggressive

composite goals since they had less risk than agreeing to perform for

multiple discrete tests.

*
 Private communication from vendors during RFP debriefings.

84

3. As shown below, SSP-1 addressed a number of issues in making the

system fully productive throughout its life time.

4.7.2 SSP-2 (2002) - The First Application Based SSP Suite

For SSP-2, performance profiling tools had advanced sufficiently to obtain

accurate floating point and other operation counts of the application/problem

set combinations at the scale needed. The SSP-2 metric used internal timing

values of five application benchmarks: GTC (Lin, et al. 2002), MADCAP

(Borrill 1999), MILC, Paratec, and SEAM (Taylor, Loft and Tribbia 2000).

SSP-2 was based on a fixed reference operation count of all floating point

operations in 5 benchmarks. All systems had homogeneous processors, so α

= 1. In calculating SSP-2, one problem set was used for each application. All

applications used the same concurrency and had to be run on the different

systems at the specified concurrency.

4.7.2.1 Description of SSP-2

The composite function for SSP-2 was the unweighted harmonic mean,

expressed as the total operation count of all benchmark/problem set

combinations divided by the total time of all the application runs. All the

operation counts fi,j for each application were summed. The per processor

operation counts, a,i,j, of each application i summed to 1,014 GFlops per

processor.

85

4.7.2.2 Assessment of SSP-2

The use of application codes was successful and resulted in the user

community having more confidence that the SSP-2 metric represented the

true potential of the system to perform their applications. As indicated in

Section 4.6, the evaluation of the system for which SSP-1 was developed

also required a separate set of application test codes be run. SSP-2, because

it used full application tests, meant vendors did not have to run a set of

special codes for SSP-2 and a different set of codes for application testing.

The fixed concurrency of the five codes made the SSP calculation simpler,

but also led to some vendors failing to provide all the required data in their

proposal because of issues of getting large benchmarking resources.

The biggest issue identified in the second generation of SSP was using

the harmonic mean as the composite function. The harmonic mean resulted

in essentially a weighted average, with the weight being the relative

computational intensity of the applications. Computational intensity is the ratio

of memory operations to arithmetic operations, with higher numbers indicating

a code does more arithmetic operations per memory reference (Oliker, Bisaw,

et al. 2006). Paratec was the most computationally intensive code in the SSP-

2 test with a computational intensity almost three times that of the next code.

Using an unweighted harmonic mean meant Paratec had more influence in

the final SSP value than the other benchmarks, even though the materials

science area represented about 1/10th of the overall NERSC workload.

86

Fortunately, this imbalance did not have significant detrimental impact on user

satisfaction with the selected system since Paratec was both computationally

and communication intensive as it did significant communication with global

Message Passing Interface (MPI) library calls and a global FFT as well as

significant dense linear algebra. However, further analysis showed that if a

different application code had been chosen that was not both computational

and communication intensive, the potential existed to have a significant bias

in the SSP-2 metric that was not intended. Hence, the SSP-3 version moved

to the geometric mean to reduce this potential issue.

4.7.3 SSP-3 (2003) – Balancing Complexity and Cost

SSP-3 was intentionally scaled down* in order to select a modest size

system. Selecting a benchmark suite has to take into account both the size of

the target system and the expected amount of resources system vendors will

be willing to use to provide results. The evaluators must balance these issues

because the resources vendors invest to do benchmarking depends, in large

part, on the eventual purchase price of the system. Since the targets system

for the RFP was a system about 1/5th the dollar value of NERSC-3, the

benchmark suite had to be correspondingly simpler and smaller – both in the

number of codes and the concurrency of the codes.

*
 Because this and other systems were modest in science, NERSC refers to them as New
Computing System (NCS) and a letter to designate their sequencing. So this RFP is
referred to as NCSb.

87

4.7.3.1 Description of SSP-3

SSP-3 consisted of three applications and three NPB codes. The

applications were CAM3 (Collins, et al. 2006), GTC and Paratec with a

problem size that ran efficiently on 64 processors. SSP-3 had three NAS

Parallel benchmarks: FT, Multi-Grid (MG) and Block Tri-diagonal (BT) from

the NPB version 2.4 release using the Class D problem size running with a

concurrency of 64 tasks.

4.7.3.2 Assessment of SSP-3

The SSP-3 codes were used to validate the delivered system and to

assess sustained performance and consistency in performance. There was a

very good response to the RFP in the number of proposals submitted. Also,

all vendors provided all benchmark results. In some ways, the simplification in

concurrency made SSP-3 too easy and too low in terms of concurrency to

stress test the entire system when it was delivered. This meant other tests

had to be used to detect deficiencies, which actually did exist and were

rectified. Hence, simplifying the SSP codes to have vendors expend less up

front effort made diagnosis of the system problems less efficient causing

longer time between system delivery and full operation. This also added back

end risk to NERSC of having less confidence the problems were identified

before production. One example of these other tests that needed to be added

is discussed in detail in Chapter 7 on consistency.

88

4.7.4 SSP-4 (2006) - SSP at Larger Scale

4.7.4.1 Description of SSP-4

SSP-4 consisted of the geometric mean of seven full application

benchmarks: Madbench (Oliker, Borrill, et al. 2005), Paratec, CAM 3.0,

GAMESS (Schmidt, et al. 1993), SuperLU, PMEMD (Amber n.d.) each with

one large problem data set as the test problem. For SSP-4, the each

benchmark ran at differing concurrency, ranging from 240 tasks to 2,048

tasks. SSP-4 was used for the NERSC-5 procurement. The goal of the

average SSP performance for the first 36 months was 7.5 to 10 TFlops/s.

SSP-4 was the first SSP to allow heterogeneous processors within a system

to be considered.

4.7.4.2 Assessment of SSP-4

The SSP-4 used more application codes than any previous SSP, including

one with a concurrency of 2,048. This seemed to have struck a good balance

between the number and size of the benchmarks because all vendors

provided complete data for the SSP applications – while several did not

provide data for non-SSP applications.

4.7.4.3 SSP-4 Results

SSP-4 was used in the selection and acceptance testing of NERSC-5,

which turned out to be a Cray XT-4 system. The first observation is that all

bidders provided data for all SSP-4 applications, not just at the required

89

concurrency for the SSP-4 calculation, but at the other concurrencies as well.

This may indicate that the mix of codes and concurrencies were a reasonable

compromise between the needs of the facility and that of the vendors who

offered systems.

SSP-4 was also the first time a Department of Energy‘s Office of Science

site and the Department of Defense sponsored HPC Modernization Program

coordinated the use of the same application benchmark, GAMESS with same

problem sets. This cooperation was intended to reduce the effort for bidders

to provide data and to be responsive the High End Computing Revitalization

Task Force (HECRTF) Workshop report, which urged government agencies

to coordinate benchmark requirements.

SSP-4 not only evaluated the systems offered and was used to validate

the XT-4 during acceptance testing, but it also was used to evaluate two

different Light Weight Operating System (LWOS) implementations*, at scale,

*
 On the XT-4 hardware, Cray offered two Light Weight Operating Systems (LWOS) – the Catamount
Virtual Node (CVN) and the Cray Linux Environment (CLE) for the compute nodes. CVN is an
extension of the Catamount kernel developed at Sandia National Laboratory for the XT family,
originally created for the single core per node XT-3. It uses a master-slave implementation for the dual
core XT-4. CVN provides minimal functionality, being able to load an application into memory, start
execution, and manage communication over the Seastar Interconnect. Among many things, CVN
does not support demand paging or user memory sharing, but does use the memory protection
aspects of virtual memory for security and robustness, the latter to a limited extent. CVN does not
support multiple processes per core and only has one file system interface.

The CLE (also commonly known as the Compute Node Linux kernel, which was Cray‘s pre-
announcement designation) system, based on SUSE 9.2 during this comparison, separates, as much
as practicable, computation from service. The dominant components of CLE are the compute nodes
that run application processes. Service nodes provide all system services and are scaled to the level
required to support computational activities with I/O or other services. The High Speed Network (HSN)
provides communication for user processes and user related I/O and services.

Each CLE compute node is booted with a version of Linux and a small RAM root file system that
contains the minimum set of commands, libraries and utilities to support the compute node‘s operating
environment. A compute node‘s version of Linux has almost all of the services and demons found on
a standard server disabled or removed in order to reduce the interference with the application. The
actual demons running vary from system to system but include init, file system client(s), and/or

90

on the same hardware. This was the first such study at extreme scale of

19,320 cores.

Initially the NERSC XT-4 was delivered with the Cray Virtual Node (CVN)

(Cray, Inc. 2007) light weight operating system (also known as a microkernel)

operating system and SSP and other evaluation tests (ESP, full configuration

tests, micro kernels, consistency, etc.) were used to assess it. After several

months, the first release of the Cray Linux Environment (CLE) (Cray, Inc.

2007) light weight operation system emerged from the development process.

The NERSC XT-4 was the first platform to move fully to CLE and remains the

largest platform running CLE today.

The evaluation period for CVN and CLE each lasted six to eight weeks

between the late spring and early fall of 2007. During this time, the LWOSs

were progressively presented with more challenging tests and tasks, in all the

areas of PERCU. The evaluation period can be considered as evolving

through three phases that each has a different focus – albeit still approaching

the system holistically. The first was a test of all functionality. Did the systems

have all the features that were required and did they produce the expected

(correct) results? The second phase was performance assessment when the

application support servers. CLE had specific goals to control OS jitter while maintaining application
performance. CLE uses a user space implementation of the Sandia National Laboratory developed
Portals interconnect driver that is multithreaded and optimized for Linux memory management. CLE
also addressed I/O reliability and metadata performance.

91

systems were tested to determine how fast and how consistently they

processed work. The third phase was an availability and performance

assessment of the system‘s ability to run a progressively more complex

workload while at the same time determining the general ability to meet the

on-going system metrics. By the end of the third phase, a large part of the

entire NERSC workload ran on the system, although with some limitations

and a different distribution of jobs than is seen in production.

Figure 4-4: The SSP-4 application runtimes for two Light Weight Operating Systems running on the
same XT-4 hardware. Note that most of the runtimes for CNL are lower than for CVN.

Figure 4-4 shows the SSP-4 application runtimes for both CVN and CLE

running on the system hardware. The seven contributing applications to the

SSP-4 metric are five large applications (CAM, GAMESS, GTC, Paratec and

PMEMD) and two X-large applications (MadBench and MILC). The runtimes

SSP Application Timing Comparision

0

500

1000

1500

2000

2500

3000

3500

La
rg

e
Ap

pl
ic
at
io
ns

CA
M

G
AM

ES
S

G
TC

M
ad

Be
nc

h

Pa
ra

te
c

PM
EM

D
M
IL
C

X-
La

rg
e
Ap

pl
ic
at
io
ns

M
ad

Be
nc

h

M
IL
C

Application

T
im

e
 i

n
 S

e
c
o

n
d

s
 (

L
o

w
e
r
 i

s
 B

e
tt

e
r
)

Average CVN Times

Average CLE Times

92

for five of the seven SSP-4 applications are lower on CLE than on CVN.

GAMESS shows the most improvement, 22%, followed by Paratec at almost

14%. The GAMESS‘ CLE runtime resulted from combining MPI and shared

memory (SHMEM) communications in different sections of the code since

MPI-alone or SHMEM-alone implementations ran longer on CLE than on

CVN. Because GAMESS already supported MPI and SHMEM methods, it

was not tremendously hard, albeit somewhat tricky to combine the two. The

need to mix communication libraries resulted from different implementations

of the Portals low-level communication library on CLE and CVN that changed

the relative performance advantages between using the MPI and SHMEM

Application Programming Interfaces (APIs). The improved Paratec timing was

due in part to optimizing message aggregation in one part of the code.

PMEMD showed better runtime on CVN by 10%.

93

Figure 4-5: The SSP-4 metric for the same XT-4 hardware running two different Light Weight Operating
Systems. It was a surprise that CLE outperformed CVN.

Figure 4-5 shows the SSP composite performance for CLE is 5.5% better

than CVN, which was surprising. The design goal for CLE, and the

expectation was that it would 10% lower performance the CVN. CVN was in

operation on multiple systems for several years before the introduction of

CLE, and the expectation set by the Cray and others was using Linux as a

base for a LWOS would introduce performance degradation while providing

increased functionality and flexibility. The fact CLE out performs CVN, both on

the majority of the codes and in the composite SSP was a pleasant surprise

and helped convince NERSC and other sites to quickly adopt CLE.

0 5 10 15 20 25

Average CLE Performance

Average CNL Performance

SSP (TFlops/s)

SSP Metric for Cray XT-4 with Different
LWOS (Tflops/s)

94

4.7.4.4 Comparing Dual and Quad Core Implementations

SSP-4 was used to assess the change in system potency from using dual

core processors to using quad core processors instead, with most of the rest

of the system remaining intact. The dual core processors were AMD running

at 2.6 GHz, each with 2 operations per clock. The quad core implementation

used AMD running at 2.3 GHz and with 4 operations per clock. The other

change was to change the memory from 667 MHz DDR-2 memory (2 GB per

core) to 800 MHz DDR-2.

Comparing the SSP-4 results, the dual core ran at 0.99 MFlops/s per core

(NERSC-5-Dual Core, with 19,320 compute processors, which has a system

potency of 19.2 TFLops/s) and the quad core 0.98 MFlops/s per core

(NERSC-5 Quad Core, 38,640 compute processors, which has a system

potency of 37.98 TFLops/s). No special quad core optimizations were done

on the codes other than to exploit standard compiler switches. The fact the

performance was almost double, despite having a 10% lower clock, was the

result of faster memory and the compiler‘s ability to use the two extra

operations per clock.

4.7.5 SSP-5 (2008) – A Sharable SSP Suite

In 2008, the SSP-5 suite was released and became the first suite with

complete access to all the tests. Compared to SSP-4, the SSP-5 suite

changed two applications, updated versions of other applications, increased

95

problem sizes, and increased application scale. SSP-5 adds emphasis on

strong scaling applications because of the increase of multi-core CPUs.

4.7.5.1 Description of SSP-5

The other major change for SSP-5 is the concept of base and fully

optimized cases. Since the same applications and problem cases were used

in both, they reflected a general scientific workload.

 The base case can be considered as the way users will initially

migrate to a new system. The existing applications base case is

designed to represent a system‘s Potency with a modest effort of

porting. In most cases, such porting to move an application,

recompile with a reasonable selection of options, and to link in the

appropriate system-specific libraries takes a couple of days.

 The fully optimized case, using the same applications and problem

cases, was designed to reflect the sustained performance ―best

possible‖ case for the application. The fully optimized case can be

considered a user spending significant time to restructure

algorithms, redistribute the problems, and reprogram the

applications for special architectural features. It also allows for code

tuning and optimization.

These changes allow SSP-5 to determine how much added potency does

a system have, if one were to fully exploit all architectural features to the

96

maximum amount possible. Most users will take the easiest path – reflected

in the base case, but some may spend the effort to better optimize their

application. The base and fully optimized cases give the range of

expectations for systems.

4.7.5.2 The Base Case

The base case limits the scope of optimization and allowable concurrency

to prescribed values. It also limits the parallel programming model to MPI only

implementations of the tests. Modifications to the applications are permissible

only for limited purposes listed below:

 To enable porting and correct execution on the target platform but

changes related to optimization are not permissible.

 There are certain minimal exceptions to using the prescribed base

concurrency.

◄ Systems with hardware multithreading

◄ If there is insufficient memory per node to execute the

application. In this case, the applications must still solve the

same global problem, using the same input files as for the target

concurrency when the MPI concurrency is higher than the

original target and using the same input files as for the target

concurrency when the MPI concurrency is higher than the

original target.

97

 To use library routines as long as they currently exist in a supported

set of general or scientific libraries.

 Using source preprocessors, execution profile feedback optimizers,

etc. which are allowed as long as they are, or will be, available and

supported as part of the compilation system for the full-scale systems.

 Use of only publicly available and documented compiler switches shall

be used.

4.7.5.3 The Fully Optimized Case

In the fully optimized case, it is possible to optimize the source code for

data layout and alignment or to enable specific hardware or software features.

Some of the features the fully optimized case anticipated include:

 Using hybrid OpenMP (Dagum and Menon 1988) and MPI

programming for concurrency.

 Using vendor-specific hardware features to accelerate code.

 Running the benchmarks at a higher or lower concurrency than the

targets.

 Running at the same concurrency as the targets but in an

―unpacked‖ mode of not using every processor in a node.

◄ When running in an unpacked mode, the number of tasks

used in the SSP calculation for that application must be

98

calculated using the total number of processors blocked from

other use.

In the fully optimized case, changes to the parallel algorithms are also

permitted as long as the full capabilities of the code are maintained; the code

can still pass validation tests; and the underlying purpose of the benchmark is

not compromised. Any changes to the code may be made so long as the

following conditions are met:

 The simulation parameters such as grid size, number of particles,

etc., should not be changed.

 The optimized code execution still results in correct numerical

results.

 Any code optimizations must be available to the general user

community, either through a system library or a well-documented

explanation of code improvements.

 Any library routines used must currently exist in a supported set of

general or scientific libraries, or must be in such a set when the

system is delivered, and must not specialize or limit the applicability

of the benchmark code nor violate the measurement goals of the

particular benchmark code.

99

 Source preprocessors, execution profile feedback optimizers, etc.

are allowed as long as they are, available and supported as part of

the compilation system for the full-scale systems.

 Only publicly available and documented compiler switches shall be

used.

The same code optimizations must be made for all runs of a benchmark at

different scales. For example, one set of code optimizations may not be made

for the smaller concurrency while a different set of optimizations are made for

the larger concurrency. Any specific code changes and the runtime

configurations used must be clearly documented with a complete audit trail

and supporting documentation identified.

4.7.5.4 Assessment of SSP-5

SSP-5 was released in August 2008. As of this writing, it is too early

assess its effectiveness. It was created based on the experiences with SSP-4

and recognizing the increase in the potential for system to have accelerators,

multi-cores and special architectural features that will not be exploited without

code modification. Preliminary results include runs on several architectures

including the Cray XT-4, the IBM Power-5 and IBM Blue Gene and several

commodity clusters.

100

4.7.5.5 SSP-5 Results for NERSC-5

The first system to use the SSP-5 is NERSC‘s Cray XT-4. On that system,

the base case provided 13.5 TFlops/s on the dual core system, and 26

TFlops/s on the quad core system.

The code and benchmark rules can be downloaded from the current

NERSC-6 web site, http://www.nersc.gov/projects/procurements/NERSC6

and http://www.nersc.gov/projects/ssp.php.

4.8 Experiences and Impact of SSP

The impact of the SSP methodologies can be seen in a number of ways

as described in the following examples.

4.8.1 Revisiting the Real World, Once Removed Example

In the example from Section 3-2, determining the system with the best

value, from the individual data was not clear. Using Equation 3-5, a single

overall system wide potency measure was obtained for each system. The

potency measure was compared with price cost to yield an overall price

performance measure – as shown in Equation 3-6. The assessment period

was 36 months and (W, P) continued to use the arithmetic mean.

Table 4-4 shows the integrated system-wide potency for all the systems in

the example, and the relative price performance. Recall the price of each

system is proprietary as well as the specific details of the configuration.

Hence the cost data is relative to the lowest cost system. Assuming all other

http://www.nersc.gov/projects/procurements/NERSC6
http://www.nersc.gov/projects/ssp.php

101

factors (effectiveness, reliability, consistency, and utility) are equivalent,

System 3 has the best overall price performance, followed by System 4.

S
y
s
te

m
 1

S
y
s
te

m
 2

S
y
s
te

m
 3

S
y
s
te

m
 4

S
y
s
te

m
 5

Phase 1
System SSP -
Arithmetic
Mean

GFlops/s 544.5 360.5 993.1 311.4

Phase 2
System SSP -
Arithmetic
Mean

GFlops/s 1,089 511 2,731 1,896 1,246

Potency -
Arithmetic
Mean

GFlops/s*
Months*
PFlops†

31,037

80,448

15,081

39,090

61,077

158,312

62,570

162,648

39,236

101,699

Average
Potency-
Arithmetic
Mean

GFlops/s*
Months
PFlops

 862

2,235

419

1,085

1,697

4,398

1,738

4,518

1,090

2,825

Potency for
relative cost -
Arithmetic
Mean using
normalized
cost

GFlops/s*
Months per
cost unit

 661 403 2,156 1,635 1,246

Table 4-4: The Potency and average SSP over time, using the arithmetic mean as (W, P) and 36
months as the performance period.

4.8.2 Risks of Using Peak Performance as a Selection Criteria

There are many reasons why decisions should not be made based on

peak performance, or even benchmarks that closely correlate with peak

performance. SSP-1 was used to evaluate and manage the NERSC-3

*
 Assumes all months are 30 days

†
 Assumes a month has 2,592,000 seconds.

102

system. Watching the system evolve is an excellent example of SSP being

used not only to evaluate and select systems but also to assess on-going

performance, the third purpose of benchmarking.

Figure 4-6: Peak vs. Measured SSP-1 performance

The NERSC-3 system was delivered in two major phases – with the first

phase consisting of IBM Power 3 (―winterhawk") CPUs and a TBMX (Bender,

et al. 1997) interconnect originally planned from Oct 1999 to April 2001. The

second phase, planned to start in April 2001, was one of the first systems with

the Power 3+ (―nighthawk‖) CPUs (Amos, et al. n.d.) connected with the IBM

‖colony‖ High Performance Switch (Lascu, et al. 2003) (Govindaraju, et al.

2005). The schedule and performance levels were agreed upon so the

Peak vs SSP

0

100

200

300

400

Oct-99 Apr-00 Oct-00 Apr-01 Oct-01 Apr-02

Months since installation

N
P

B
 G

F
lo

p
/s

0

1

2

3

4

5

6

P
e

a
k

 T
F

lo
p

/s

Measured SSP Gflop/s Planned SSP System Gflop/s

Planned Peak System Tflop/s Actual Peak System Tflop/s

103

average SSP performance was 155 GFlops/s over the first 36 months of the

contract. In Figure 4-6, the expected SSP of the two phases is shown as the

dark line. The Phase 1 system was to start production service in Oct 1999

with an SSP of more than 40 GFlops/s, and it would be replaced with a Phase

2 system in April 2001 at 238 GFlops/s. Phase 2 actually had two sub

phases, a and b. The difference between the two sub phases was strictly

software improvements. All the phase 2 hardware was deployed at the

beginning of Phase 2a so the Phase 2a and 2b systems had the same peak

performance of 3.5 TFlops/s.

The full potency of performance could not be realized at initial Phase 2

delivery. The hardware configuration of Phase 2 was a number of 16 CPU

SMP nodes, each with two Colony interconnect adaptors. The Colony HPS

switch was the first IBM interconnect that allowed multiple adaptors in a node.

The software to use more than one adaptor was only planned to be available

eight months after the hardware delivery. The system performance of Phase

2a was limited by the interconnect bandwidth. NERSC-3 showed significantly

increased performance once the second adaptor was usable, eventually

reaching 365 GFlops/s as the overall SSP. Clearly, the peak performance

parameters of the system did not reflect the actually performance potency of

the system until the software allowed full use of the interconnect performance.

Figure 4-6 shows another valuable aspect of SSP. Contractually, the

Potency starts accumulating only after system acceptance, which occurred

104

later than expected for Phase 1 and Phase 2. This was due to various issues,

including delays in manufacturing, parts availability and software problems

that prevented reliable use of the system. The acceptance of the Phase 1

system occurred in April 2000 rather than October 1999 and the acceptance

of the Phase 2a system was July 2001 rather than April 2001. On the other

hand, the software to exploit the second adapter was delivered earlier than

the eight-month delay originally expected, arriving in October 2001. The early

delivery of the dual plane software provided a measured performance

improvement earlier than planned and partially offset the other delays. The

system configuration was adjusted after Phase 2b acceptance so the average

of the SSP did meet the required 36-month average.

The SSP method gives both the purchaser and the supplier protection.

The supplier has the freedom to adjust the schedule of deliverables and the

purchaser is protected by a guarantee of agreed-upon amount of

performance delivered in a certain time period. The degree of adjustments

can be constrained as well. For example, a purchaser probably does not want

all the performance delivered in the last month of the 3-year period, so there

may be limits on when the phases are delivered.

4.9 SSP as an On-Going Measure

As mentioned above, benchmarks can be on-going assessments of

systems to help assure systems continue to operate as expected. In order to

be effective as an on-going performance assessment, benchmarks must be

105

run often enough to provide enough samples for trend analysis in an on-going

assessment*. Running the benchmarks as a regression test after system

changes is one approach – but is limited in the number of observations that

can be obtained. This also means there is little context to judge significant

changes versus random errors. An improvement is running benchmarks

regularly – at least weekly to have an understanding that the system performs

properly. Further, the benchmarks should run alongside the regular workload

as a production job rather than in special circumstances such as on a

dedicated system. This allows a better assessment of what the user

community sees for performance, especially if the benchmark suite is drawn

from the application workload itself. In order to be effective in assessing on-

going performance, the benchmark suite should:

1. Be reflective of the workload itself

2. Be able to run within the normal scheduling parameters of the

system

3. Run while the normal workload is running

4. Balance running long enough to assess system performance but

short enough not to consume undue amounts of system resource

* In fact, they need to run often to provide enough samples for variation analysis as discussed

in Chapter 8.

106

Figure 4-7: Runtimes of the SSP-2 component benchmarks over an extended time.

Figure 4-7 shows the runtimes of the SSP-2 components over two years

on the NERSC-3/3E. The runs were done several times a week and ran as

standard production jobs. Several insights are notable. First, the runtimes are

consistent, with a few exceptions. Note the large spike in runtime. For the

most part, the runtimes are within the expected variation of non-dedicated

systems. At several points, several of the codes take longer to run, indicating

something on the system may be had a detrimental impact on performance,

particularly since they appear to be clustered in approximately the same time

period. The large spikes are an indicator possibly something is amiss. Once

the trend is noticed, further investigation is probably needed to determine

Performance of individual SSP Codes (MF)

0

500

1,000

1,500

2,000

2,500

3,000

10
/2

4/
20

03

2/
24

/2
00

4

6/
24

/2
00

4

10
/2

4/
20

04

2/
24

/2
00

5

6/
24

/2
00

5

10
/2

4/
20

05

Dates

R
u

n
 T

im
e
 i
n

 S
e
c
o

n
d

s
 (

s
m

a
ll
e
r

is
 b

e
tt

e
r)

gtc

madcap

milc

paratec

seam3d

107

whether there is a system problem. This data can also be used to judge the

consistency of the system that is discussed in detail in Chapter 7.

Figure 4-8 indicates the composite SSP-2 values over time. The flat line is

the required contractual performance negotiated. The graph shows that

several times the actual performance was less than expected. This indicated

system issues that were then corrected to return the system to its expected

performance levels.

Figure 4-8: SSP validated performance on-going performance of the IBM Power 3 system using SSP-2.

The line slightly above 600 is the contract required metric.

The NERSC-3, Phase 1 system had a persistent degradation of

performance, measured both by SSP-1 and user applications. The system

0

100

200

300

400

500

600

700

800

10
/2

4/
20

03

2/
24

/2
00

4

6/
24

/2
00

4

10
/2

4/
20

04

2/
24

/2
00

5

6/
24

/2
00

5

10
/2

4/
20

05

Date

S
y

s
te

m
 S

S
P

 (
G

fl
o

p
/s

)

108

slowed down by approximately 5% every month until it was fully rebooted, a

process that took close to 3 hours. A reboot would return the system to the

expected performance level. This improper behavior was only detected

because of proactively running the SSP-1 benchmarks. Since the system was

in place less than 18 months and it took time to detect the pattern of gradual

loss in performance, it was not possible to definitively determine the cause of

the slowdown before the system was replaced with the Phase 2 system.

However, recognizing the degradation meant a work around of rebooting the

system every month was worthwhile.

4.10 Validating SSP with User Reported Performance

One important question is, ―Does the SSP metric reflect the performance

of the actual workload that runs on a given system?‖ This is determined by

the careful selection of the component codes that make up the SPP. Once a

year, all the projects at NERSC submit a proposal for computer time

allocation. Since 2004, every project was required to provide performance

data on the application codes they use. The performance data from running

jobs is at scale. A NERSC staff member, Dr. David Skinner, implemented the

Integrated Performance Monitor (IPM) tool, to assist users profiling their

applications and collecting the required data. IPM (Oliker, Borrill, et al. 2005)

provides an integrated method to collect data from hardware performance

counters.

109

The 2006 proposal submissions for NERSC allocations were reviewed to

determine the characteristics of the workload, showing how well the

applications ran during 2004/2005. There were 813 separate performance

submissions from 316 different project submissions that had used NERSC

systems in the previous period. A performance submission is considered

unique if the combined project ID, code name, and concurrency are unique.

There were 279 unique submissions reported. NERSC supports a wide range

of science disciplines, and the code submissions reflect that as well. Table 4-

5 compares the amount of time used and the number of performance data

submissions of performance data for applications, both by science discipline.

The percentages are aligned, but not exactly because each science area has

different numbers of applications and projects. The main point of the

comparison is that the performance data covers roughly the same areas as

the usage profiles. Since the SSP approximates the actual application

performance, even with somewhat of an underestimation, it is reasonable to

assume the SSP reflects the workload.

110

Science Area Percent of
Computational Usage
in Allocation Year (AY)

2005

Percent of
Performance

Submissions based on
Data from AY 2005

Accelerator Physics 5% 7%

Applied Mathematics,
Mathematics and
Computer Science

4% 4%

Astrophysics 12 % 7%

Chemistry 13% 12%

Climate and
Environmental Science

8% 7%

Engineering 5% 1%

Fusion Energy 29% 20%

Geosciences 2 % 2%

Life Science 8% 4%

Materials Science 9% 30%

Quantum
ChromoDynamics (QCD)

8% 3%

Table 4-5: The table comparing the amount of time used by science discipline and the number of
performance data submissions of performance data for applications. The percentages are aligned but
not exactly because each science area has different numbers of applications and projects. The main

point of the comparison is that the performance date covers roughly the same areas as the usage
profiles.

The performance data submissions and the amount of time used by

science disciplines are consistent. The science areas with the larger usage

are also the science areas with more performance data. Therefore, it is

reasonable to use the performance submissions to make general

observations of the overall workload, as is done in Table 4-6.

111

Data Characteristic Amount

Number of Different Projects 316

Number of Different Submissions 813

Number of Different Submissions
based on Seaborg runs

720

Unique Codes 279

Minimum Concurrency 1

Maximum Concurrency 32,768

Seaborg average reported per
processor performance

191
MFlops/s

SSP-1 per CPU performance 115
MFlops/s

SSP-2 per CPU performance 214
MFlops/s

Table 4-6: Summary of performance data reported by science projects running at NERSC.

Table 4-6 compares the SSP and measured performance for the

applications on NERSC‘s most parallel system at the time, Seaborg, which is

a 6,756 processor SP-3+. The result of using SSP-1 is an average SSP value

of 115 MFlops/s per processor on Seaborg and the next generation, SSP-2 is

214 MFlops/s per processor. The average actual performance reported by the

user community for the yearly allocation submission process was 191

MFlops/s per processor approximately three years after the system was

initially deployed. The actual aggregate performance of the workload for real

production was bracketed by the two SSP values. The first value, actually

used to select the Seaborg system, was overly conservative and under-

estimated the true overall performance. This is to be expected since the

reporting of the workload was done well after the system was in service and

the user applications had been optimized for the system. Furthermore, the

system software, compliers and libraries had improved by that time as well.

The next generation, SSP-2, was selected to evaluate the next generation

system, was more aggressive in scaling and used codes that had good

112

performance characteristics. So it is natural to expect SSP-2 to slightly over

estimate the average workload (by about 12%).

Figure 4-9 shows the number of performance profile submission by discipline

area, along with average per processors performance that were reported.

Figure 4-9: Collected hardware performance data for science discipline areas and the CPU
Performance data measured using IPM for over 270 applications.

Comparing the profile data from the NERSC user community with the

SSP-1 and SSP-2 measures indicated the SSP method is a valid estimate of

a systems performance for at least the NERSC workload.

4.11 Observations on Application Modeling and SSP

There is a desire to simplify performance measurement to use simple, low

level, synthetic tests (simple metrics) because simple metrics are easily

Performance of a Diverse Science Workload on Seaborg

0

50

100

150

200

250

nu
cl
ea

r
p
hy

si
cs

ac
ce

le
ra
to
rs

ap
pl
ie
d
m
a
th

as
tr
op

hy
si
cs

ch
em

is
tr
y

cl
im

at
e

C
S

en
gi
ne

er
in
g

en
vi
ro
n
m
en

t

fu
si
o
n

ge
os

ci
en

ce
s

lif
e
 s
ci
en

ce

m
at
er
ia
ls

m
at
h

Q
C
D

Science Areas

N
u

m
b

e
r
 o

f
s
a
m

p
le

s

-

50

100

150

200

250

300

P
e
r
 C

P
U

 P
e
r
fo

r
m

a
n

c
e
 (

G
F

lo
p

/s
)

Number of Codes Reports

Per CPU Performance (Gflop/s)

113

ported and require less system and human resources to run. The more

aggressive desire is to only use a limited number of simple metrics to gather

system data. It is hoped that results from the simple metrics would then either

be used directly or combined with performance models of applications and/or

systems to predict full application performance on the system under

evaluation with enough accuracy that no full applications tests would be

needed.

There are two major thrusts in simple metric performance modeling,

analytical models of applications and application instrumentation combined

with system models. The former thrust is represented by the work at the

Performance and Architecture Laboratory (PAL) (PAL n.d.) at Los Alamos

National Laboratory led by Dr. Adolfy Hoisie and the latter thrust is

represented by the work of the Performance Modeling and Characterization

(PMaC) Group at UC San Diego led by Dr. Allan Snavely (PMaC n.d.). Both

thrusts have claimed success to a degree, so, in conjunction with the

NERSC-5 acquisition, the author approached both groups to try to use the

respective modeling techniques to predict performance of the SSP-4 suite on

systems under evaluation. The concept was to use either or both

performance prediction methods and compare the predicted performance with

the actual performance across a number of systems. It was also hoped that

once a system was selected, the modeling could assist in system

configuration trade-off decisions.

114

Due to the labor, other priorities and time required to perform the detailed

analysis necessary to create analytical models for all the full SSP-4

applications, the analytical model approach was not feasible in the time-frame

necessary, and was not pursued.

The PMaC approach, as it was implemented at the time, was pursued

through 2005 and 2006 in collaboration with Dr. Laura Carrington and Dr.

Allan Snavely at SDSC and Mr. John Shalf, Dr. Jonathan Carter and Mr. Noel

Keen at NERSC. The process and progress of the effort is reported in(Keen

2006). The steps to implement this version of the PMaC method are:

1. Collect application profile data for each application running at full

scale, using several different tools. This required multiple

executions of the applications and could only be done on a

Compaq ES-45 system with Compaq Alpha ev-68 processors.

2. Obtaining MPI call trace data all applications at each scale of

target.

3. Obtain cache, memory and other system characteristic data using

series of simple tests [CPUbench (Carrington, et al. 2005),

Membench (Membench n.d.), etc.] on representative system under

consideration

4. Measuring communication latency and bandwidth for target

systems.

115

5. Convolving the application and system information to make a

prediction of performance. The PMaC Convolver uses memory

traces and compute resource models estimate of how long that

application spent in the memory sub-system.

The results of the attempt to correlate SSP-4 results with PMaC

predictions required running multiple versions of 7 applications – each at 4

levels of concurrency. The wall clock time of the instrumented applications

ranged from 2 to 14 times the time to execute the application without the

instrumentation and the data produced was significant. One application,

GAMESS, could not be run because the profiling tools only work with MPI,

and, while GAMESS can run with MPI, it is very slow and not representative

of the performance it typically obtains using LAPI or SHMEM. Data on

hardware architecture parameters were obtained for 7 systems that

represented all the architectures of interest.

A number of challenges developed in the use of this approach that

extended the time and the effort beyond what was expected. These

challenges included:

1) Difficulty obtaining accurate cache system data for proposed

machines until there was actual production hardware. Data from

existing representatives of the architectures could not be

extrapolated with sufficient accuracy to the PMaC analysis.

116

2) The framework was not capable of predicting the performance of

systems that are larger than those used to collect the data. (e.g.

one cannot use data collected from a 128-way example run on a

smaller system to predict performance for much larger

concurrencies for the application.). Due to the extend run times of

instrumented applications and the fact the systems being evaluated

were substantially larger than the test platforms the tools ran on,

this was a limitation.

3) The framework does not account for differences in compiler

performance on different systems. For example, the code

generated by one compiler can be up to 30% faster than code

generated by the another compiler on a different system, even

when the slower system has faster CPUs. The framework only

does memory traces of the code as compiled on a single system,

without regard to the differences in pre-fetch strategies emitted by

different proposed compilers.

4) The method required running memory pattern and network data

gathering tools on all target systems, some of which did not

physically exist at the time of evaluation.

5) All applications had to be ported and run on an Alpha processor

machine – the only platform then compatible with the tool suite.

6) All applications had to run at full scale multiple times (at least twice

for memory tracing and once for communication tracing.)

117

7) The method required multiple steps. It was difficult to verify that

each step was completed properly on its own.

8) Some parameters to be used as input to the convolving steps that

were not easily determined.

9) Significant resources were required to collect and process tracing

data.

The results seen for NERSC-5 are aligned with the results seen using the

similar versions of the tools for the DOD Modernization Program TI-05

evaluation and acquisition (Carrington, et al. 2005), which report:

a) predicting performance based on simple tests are inadequate for

predicting or assessing application performance on systems, with

LINPACK being the poorest simple test studied;

b) combining simple tests with optimized weights also is inadequate for

meaningful application performance prediction;

c) convolving application traces with metrics derived from a specific set

of simple tests (the PMaC methodology) can predict performance of

applications to about 80% accuracy for the same system (no comment

is made for similar but not exactly the same systems); and

d) acquiring the application specific traces is ―painful‖. It is noted PMAC

has since abandoned this version of their framework and has moved

to a new framework for performance prediction (Tikir, et al. 2007)

118

which recently reported predictions with 90% accuracy on a limited set

of applications (Dongarra n.d.) for the same system as was

instrumented.

The SSP framework is compatible with using modeled performance

prediction instead of actual application runs. However, combining the

DODmod results with the NERSC experience indicates performance

prediction with simple tests is not sufficient to confidently compare large scale

systems for the foreseeable future. It is often the case the difference in cost

for systems under consideration is less than the 10%. The 10% accuracy

discussed above is based on predications that actually tested the systems

targeted. There is less understanding of accuracy for systems that are only

represented with previous versions of an architectural family, but only of the

application and prediction on the same hardware. The uncertainty increases,

and indeed it may not be possible, to predict performance of an application on

a new system based on traces and system characteristic information from an

earlier implementation of the architecture.

The effort involved with tracing applications is significant, and in the

NERSC experience, exceed that to just port and run the actual applications

on the overall systems. Furthermore, even if the modeling were highly

accurate, and the effort to gather all the data tractable, the approach does not

eliminate the need for full application benchmarks because the modeled

performance cannot serve the second and third purposes for tests and

119

benchmarks discussed in Section 3.4 above. Finally, the loss of information

captured by simple tests generates increased risk in the acquisition, and

integration steps as the system scale increase.

4.12 Chapter Conclusion

This chapter demonstrates different ways the SSP method can be used to

assess and evaluate systems. This method provides the ability to define

sustained performance estimates based on time-to-solution that are

correlated with the actual workload on the system, yet use many fewer

applications. The SSP method has been refined several times, and with each

refinement, the version of the SSP is explained and assessed. The SSP

method is shown to be usable to assure continued system performance.

The SSP method provides a good overall expectation of potency and

value for a system. It also is attractive to vendors who prefer composite tests

instead of discrete tests. SSP provides realistic assessments of the potency

and value of HPC systems.

120

Chapter 5: Effectiveness of Resource Use and
Work Scheduling

5.1 Chapter Summary

Performance is only one aspect of having a system that is productive for

its intended client community. The ability for the clients to effectively access

the performance when they need it is also necessary. This is the second

component of the PERCU methodology and includes a testing mechanism to

measure effectiveness.

This chapter deals with methods to assess how effective a system is in

providing access to the performance it is measured to have. Major systems

are seldom dedicated to single uses, and more often than not, they are used

in different modes at different times. The Effective System Performance

(ESP) Test is designed to mimic the types of activities and scheduling needs

that reflects changing priorities for scheduling and system usage.

This chapter introduces ESP, explains how it can be used and why it has

evolved and assesses ESP‘s uses and impacts. Appendix F provides similar

assessment of an earlier version of ESP and Appendix G discusses an

evaluation of multiple job scheduling packages using ESP. Specifically, the

ESP metric was designed as an incentive to introduce features that help

improve utilization of the Cray T3E by 25% and the later the IBM SP 3+ by

121

10+% at NERSC. ESP was further able to compare different job scheduling

software on the same hardware implementation, giving a quantitative

evaluation as well as useful feedback to the suppliers of the software

systems.

On the Cray XT-4, which was tested in the fall of 2007, ESP was used to

evaluate the job scheduling system for both the Cray Virtual Node (CVN) and

the Cray Linux Environments (CLE) system software – both running the

Torque job management system with the Moab scheduler. Multiple ESP tests

were performed in order to guide the adjustment of scheduling parameters.

The improvements in system effectiveness rating ranged up to more than

22% based on improvements suggested by ESP.

Before delving into the details of the goals, design, implementations and

evolution of the Effective System Performance, it is useful briefly explore the

impact the ESP test method can have. Without going into details of the ESP

construction, the next section explores the impact ESP-2 had on the Cray XT-

4 system that was installed in 2007 as NERSC-5.

5.2 How ESP Helped Improve the NERSC-5 Cray XT-4

A complete explanation of the design and use of ESP is discussed later in

Sections 5.8 and 5.9, and the distribution of the jobs run-times and

concurrencies are shown in Table 5-1, ranging from 3.25% to 50% of the

maximum number of computational elements in the system. Before examining

122

the goals and details ESP, it is useful context to see one use of ESP that led

to specific system improvements.

For the time bearing, the reader can be content to assume the job mix of

ESP completely subscribes the system with jobs that are use differing

concurrency, run for different amounts of time and require different scheduling

parameters. For all but two of the jobs, the scheduler knows only the job

concurrencies and the requested job run-time. Two jobs have specific

completion parameters the scheduler needs to accommodate. However, if the

reader prefers, come back to this example after reading the sections on the

ESP design and implementation.

Now, here is an example of using ESP to assess and improve a system‘s

resource management configuration. ESP was used to evaluate the XT-4‘s

capability under both CVN and CLE to effectively schedule work during

system evaluation in the fall of 2007. As discussed in detail below, ESP-2

runs a set of 230 jobs of different scale and duration, including two Z tests

that use the entire system. This discussion focuses on using ESP-2 to

improve scheduling under CLE. Once the job scheduler, launcher and

resource manager were functional, ESP-2 was used to tune and improve the

software components. Figure 5-1 shows a chart of one of the earlier ESP-2

runs, which took 14,882 seconds to complete. The target time was 13,671

seconds - reflecting about a 75% ESP rating. In these charts, created by Ms.

123

Sarah Anderson working with Dr. Joseph Glenski and his team* at Cray, Inc.

the shades are matched to the job sequence number in the ESP-2 test.

 The X axis is the number of CPUs used in the systems (19,320 compute

processors). The Y axis is time from the start of the test – with 0 at the top.

Hence a job with a concurrency of 1,024 tasks and 1,000 second long is

represented by a rectangle 1,024 points wide and 1,000 seconds long. The

tick marks on the Y axis are in intervals of 1,000 seconds. The target test time

of 13,671 seconds is indicated in the third dashed line. The first and second

dashed lines are Z test submission times and are explained below in detail.

The test run in Figure 5-1 shows a large amount of white area – indicating

long periods where many processors were idle, which of course, lowers

effectiveness. It can be observed that the system started many large scale

(many task) jobs early in the test, and deferred the longer running jobs.

*
 Frithjov Iversen, John Metzner, Sarah Anderson, Kevin Thomas, Woo-Sun Yang, Steve
Luzmoor – all of Cray, Inc. and Scott Jackson of Cluster Resources, Inc.

124

Figure 5-1: An ESP run on NERSC's Cray XT-4.

T
im

e (in
 secs) - E

ach
 T

ic m
ark

=
 1

,0
0
0
 seco

n
d
s

CPUs available; color means in use by a job

125

Figure 5-2: ESP run with priority placed on longer running and larger jobs. This test confirms the system
can be effectively scheduled and was significantly faster than the target time.

Compare Figure 5-1 with another test represented by Figure 5-2. In Figure

5.2, the test ran in 12,156 seconds – 22% faster, improving the ESP metric.

The difference was a better selection of the longer running jobs earlier. Figure

5-2 shows the results of the same test after changing two MOAB parameters.

RESWEIGHT was changed from 0 to 1 and WALLTIMEWEIGHT was set to

be 1. These changes allowed jobs to be launched in a more deterministic

order than the previous selections with the longest job first, if other job

characteristics were equal. The result was shortened duration of the drain

CPUs available; color means in use by a job T
im

e (in
 secs) - E

ach
 T

ic m
ark

=
 1

,0
0
0
 seco

n
d
s

126

periods needed to start the Z jobs. It is also possible to see that the jobs

requesting more CPUs were scheduled earlier than in the test in Figure 5-1

and that there were many fewer times with idle CPUs.

The scheduling priority used in Figure 5-2 was aligned with NERSC

operational scheduling, which favors the highest concurrency jobs above all

others. This policy reflects NERSC‘s role as a capability system resource and

was needed to overcome the tendency of most default scheduling to favor

smaller jobs because it was easier for a scheduler to accumulate resources

for smaller jobs.

5.3 ESP Introduction and Motivation

The overall value of a high performance computing system depends not

only on its raw computational speed but also on system management

effectiveness, including job scheduling efficiency, application launch times,

and the overhead levels of resource management. Common performance

metrics such as the SSP and NAS Parallel Benchmarks may be useful for

measuring computational performance for individual jobs, but give little or no

insight into system-level efficiency.

The Effective System Performance (ESP) test, first discussed in (Wong, et

al. 1999), measures system utilization and effectiveness. The primary

motivation for ESP is to aid the evaluation of high performance systems as to

their capability of serving a client community that spans different applications,

areas and usage modes. ESP can be used to monitor the impact of

127

configuration changes and software upgrades in existing systems. This test

evolved to be an incentive for the development of features to improve system-

level efficiency in large scale systems.

The concept of ESP developed as an attempt to describe what we

euphemistically called “a day in the life of a HPC system”. While not universal,

it is typical for large systems to have several operational modes that change

over a period of a day to a week. The ESP test extends the idea of a

throughput benchmark with additional features that mimic a day-to-day

supercomputer center operation. It yields an efficiency measurement based

on the ratio of the actual elapsed time the test takes relative to the minimum

time, assuming perfect efficiency. This ratio is independent of the

computational rate, benchmarks, and compiler optimizations. It is relatively

independent of the number of processors used, thus permitting comparisons

between platforms as well as changed parameters or software within a

system.

ESP is different than traditional ―throughput tests‖ in two significant ways:

not all work is submitted at once and the use of full configuration jobs with

different runtime expectations. For the former, the job mix is submitted in

three groups, separated in time. The number of groups and the time period

between them can be adjusted if needed. This means the scheduler has to

start jobs before knowing the complete workload parameters – exactly what

happens in real life. The use of three groups is a compromise between the

128

continuous job submission from real life and making the test tractable within a

time limit and also predictability. The order of jobs is random, determined by a

pseudo-random number generator. In reality, however, the seed for the

random number generator is often set to the same initial value for a particular

evaluation (say if the metric is included in a statement of work as a metric for

a contract). The concurrency and runtime of individual jobs is proportional to

the scale of the system as shown in Table 5-1: The ESP-2 Job Mix.

The ESP test was designed to provide a quantitative evaluation of parallel

systems in those areas not normally covered by traditional benchmarks but

which are, nonetheless, important to production usage. There are a myriad of

system features and parameters that are potentially important in this regard.

As an alternative to assessing and ranking each feature individually, the ESP

test is a composite measure that evaluates the system via a single figure of

merit, the smallest elapsed time for a representative workload to complete.

This metric translates into the amount of productive usage the system should

support over its lifespan.

5.4 Mixed Workload Scheduling

It may be useful to briefly describe the typical operation of a HPC system

that supports a varied, highly parallel workload, since it is markedly different

than the simpler workloads that run on processor farms of shared memory

processor and workloads that run on smaller clusters oriented to

129

development, transactions or interactive experimental data support. ESP is

designed to represent the more complex nature of the multi-function system.

The job mix in HPC facilities is dominated by medium to very large scale

parallel jobs that run for many hours to many days. These facilities support

hundreds to thousands of users for time periods ranging from months to

years. Each user or project is in different stages of development of codes,

pre-processing, long ―production‖ simulation and analysis runs, amounts of

data analysis, and post processing. Much of this is accomplished through

submitting resource scheduling systems jobs containing multiple job steps.

The scheduling software is expected to select the most effective combination

of jobs based on a set of facility determined policies. Most HPC centers use

different policies to select classes of jobs using such parameters as expected

runtime, numbers of processors needed, amount of memory needed, and

number of other jobs the user or project has running and pending.

5.4.1 The User’s View of Fairness in Job Scheduling

User satisfaction is determined by how well the system sets and meets the

turnaround of jobs and provides fair access to the computational and data

resources of the system. For this purpose, ―fair‖ is defined in several ways

such as:

 ―Having or exhibiting a disposition that is free of favoritism or bias;

 Just to all parties;

130

 Being in accordance with relative merit or significance;

 Consistent with rules, logic, or ethics;

 Moderately good;

 Acceptable or satisfactory‖ (American Heritage Dictionary – on-line

n.d.).

All variants are appropriate to a degree, but perhaps an understandable

description of ―fairness‖ as it applies to serving the user community is from Dr.

Rick Lavoie who says ―the definition of fairness has little to do with treating

people in an identical manner. The true definition of fairness is ‘Fairness

means that everyone gets what he or she needs.‘‖ (Lavoie 2005).

Dr. Lavoie‘s definition is appropriate since HPC users do not expect

immediate turn around for their long production runs. Indeed, depending on

the scale and requested time of the job request, along with the systems

scheduling priorities, jobs may not be expected to run until late at night or

even over weekends. HPC users expect to be able to make predictable

progress on their work – an implied if not explicit level of service agreement

based on the general dynamics of the behavior of the client populations.

A simple example of fairness that often is encountered in HPC facilities

follows. Some work jobs that have dependencies requiring submission of one

job being tied to the progress of another job. Climate applications are the

131

prototypical example of this because it is not possible to simulate the climate

of year N with having already having completed year N-1. Other clients have

work that is completely independent for each job and hence can submit

hundred and even thousands of jobs at one time. quantum chromodynamic

calculations fit this model.

Being fair to the first client means that once their first job completes, they

do not have to wait for tens to hundreds of jobs that were submitted earlier

from the second client to complete, before the first client‘s second job needs

to make progress. At the same time, the second client does not expect all

their jobs to complete before anything else is run, but does expect to see

some of their jobs making progress.

5.4.2 Job Execution Priorities

Most systems of this type also provide a form of priority so clients can

enhance the likelihood of a particular job starting execution. Sometimes this is

automatic, in the sense that some projects or classes of jobs* are determined

to be eligible for a ―boost‖ of priority. It is often the case the job parameter

policies change multiple times a day†. Other times, users may specify the

priority if they have a deadline or need a result‡.

*
 An example of this the NERSC policy announcement to its users on January 11, 2008 for the Franklin system that

said ―All jobs run in the regular submit class on Franklin that use 1,209 or more nodes will be discounted by 50%.‖
†
 For example, there may be much more resources devoted to debugging modest size runs during the work day and

then a shift to prefer longer running and/or larger jobs outside of normal work hours.
‡
 The description for the NERSC mechanism for this is found at

https://www.nersc.gov/nusers/accounts/charging/mpp-charging.php. It says:

―Three classes of batch scheduling are available:

132

Therefore, imagine adding a third client who has a job that takes the entire

resource for a period of time. The third client does not expect to block all

other work on the system during the daytime when others are doing

debugging, code development and analysis. The third client probably does

expect that a job that uses so much resource should run in the middle of the

night – or on a weekend – again looking for their work to make progress in

some predicable manner. Finally, all the clients are probably willing to expect,

at certain times, there is a fourth ―high‖ priority client who has work that has to

be done in by a certain deadline (e.g. a weather forecast), and whose work

may preempt other work on the system, as long as this does not happen very

often.

Of course, each of the clients attends to conferences and may even take a

vacation – all at different times – so they are not always submitting their jobs.

At any point, new jobs may be submitted that change the scheduling

decisions and the relative priority of jobs, so the scheduler does not have

complete information, only snapshots of information. Now, multiply this

 * Premium
 * Regular
 * Low
A premium job is scheduled for execution before an otherwise equivalent regular job. A low job has a lower priority
for scheduling. These priority classes affect how quickly a job is scheduled for execution in the "wait queues"; it does
not affect the UNIX priority at which the job executes.
Charging for Priority Batch Scheduling Classes - Priority scheduling classes have different charge rates. It is
intended that most users, over the year, will run most of their jobs in the regular class. Users should use the premium
class with care; no additional allocation is available to cover the extra charges associated with its use.
Rates:
 * Premium scheduling at an elevated charge rate (2.0)
 * Regular scheduling at the standard charge rate (1.0)
 * Low scheduling at a reduced charge rate (0.5)‖

133

example by 100 or 1,000 to imagine the complexity of scheduling an HPC

resource in a multi-user center.

Because of priority processing, (different scheduling policy based on job

parameters and deadlines) jobs are seldom scheduled on a strictly first come,

first served basis. Certain jobs are given priority over others, even if they have

not been waiting as long. ESP is designed to estimate a system‘s ability to

support such a complexity of work and expectations.

5.5 ESP Design Goals

The overall design goals for the Effective System Performance test are:

1. Independence from the effects of processor speed or compiler

improvements on the test codes so that system management

features remain the focus of the test.

2. Ability to assess the potential for a system to support different

operational scheduling modes.

3. Scalability and repeatability of the test so it can be used on systems

of different concurrency and scale, as well as to compare system

improvements over time.

4. Ability to reflect operational paradigm shifts.

5. Ability to reflect the performance of a scheduler as it operates with

incomplete information.

6. Ability to evaluate the efficiency of job scheduling and job launching

at scale.

134

7. Ability to encourage new features that improve a system‘s ability to

schedule work effectively.

5.6 Scheduling Large Jobs

5.6.1 Throughput of Large-Scale Jobs

The throughput of large-scale jobs is an on-going concern at large HPC

facilities, since without this focus, the rationale for acquiring and operating a

large tightly-coupled computer system does not exist. As mentioned above,

the ESP test has 230 jobs that range in scale from 3.25% to 50% of the

maximum number of computational elements in the system. This is the

workload that begins the test and represents a possible mix of jobs on parallel

systems.

The ESP test also includes two ―full configuration jobs‖ that use all the

computational resources of a system in one job with concurrencies equal to

the total number of available computational cores. These, for no specific

reason, are called Z-jobs in the test scripts. The run rules for the ESP test

specify that full configuration jobs cannot run at the beginning or end of the

test period. This is because in real life, systems have a continuous flow of

jobs and often there is not a start or stop period.

The first full configuration job is only to be submitted after 10% of the

estimated minimum test time has elapsed such that it is non-trivial to

schedule since a workload is already running. The first test has to run before

135

any other work is started. Similarly, the second full configuration job must

complete within 90% of the test and is not simply the last job to be launched.

The requirement to run these two full configuration jobs is a difficult test for a

scheduler, but it is nonetheless a common scenario in capability

environments.

5.6.2 Considerations for Executing the ESP Jobs

Large systems typically require system administration to maintain and

improve their operation. These activities require system outages, either

scheduled or unscheduled, and the time required for shutting down and

restarting the system. Each of these considerations can significantly impact

the overall system utilization. For these reasons, the ESP-1 test originally

included a shutdown-reboot cycle, which was required to start immediately

after the completion of the first full configuration job. However, this was later

removed in lieu of specific system management features and functional tests.

The utilization efficiency can be computed as follows.

Definition Explanation Units
Generic
[Used in this
paper]

Es
This is the effectiveness ratio of system s. Percent

[percent]

i The concurrency of test code i.

[Processors]

Ti The time for ESP test code i runs Time [seconds]

T-BESTs,k The optimal time of the ESP test code runs for
system s in phase k.

In the ESP-2 implementation, T-BEST is the
sum of work all the jobs do (concurrency * run-
time) divided by the system size.

Time [seconds]

136

Ns,k The number of computational processors for all

types of processors , in system s during
evaluation period k.

Time [seconds]

p s,k,,i,j The per processor performance of test code i
executing data set j on processor type α on
system s during phase k.

Ops/(proc*sec)
[Flops per
second per
processor]

Es,k
 i Ti

i1

I

Ns ,k TBESTs

Equation 5-1: The Effectiveness ratio is the time the test actually runs compared to the time the best
packing solution indicates.

The jobs in the ESP suite are grouped into blocks (denoted as B) and the

order of submission is determined from a reproducible pseudo-random

sequence so the job submission order is not fixed. While B can be any

number, the ESP has been used with B=1 and B=3. In the case of B=3, the

total number of CPUs requested in the first block is at least twice the available

processors and the number of CPUs in the second block is at least equal to

the available processors. The remaining jobs constitute the third block. The

first block is submitted at the start, with the second and third blocks submitted

10 and 20 minutes thereafter, respectively. This structure was designed to

forestall artificially configured queues specific to this test and, at the same

time, provide sufficient queued work to allow flexibility in scheduling. No

manual intervention is permitted once the test has been initiated.

137

5.6.3 Operational Transitions

One aspect of system operation that is not captured in a standard

throughput testing is the concept of operational transitions. In most cases, the

job mix of systems differs throughout the day.

Many systems support a more interactive or development job mix during

the day – running smaller, shorter jobs to support debugging and testing. At

other periods (e.g. after standard working hours), more long running jobs,

often with higher concurrency are run – the capability workload. In centers

with production requirements, deadline processing may occur where one or

more large production jobs have to be started by a particular time. The most

obvious example of this is weather centers that have to produce a forecast at

a particular point in time. At other times, other ―research‖ jobs taking most of

the resources and more parallelism may need to be run.

While not required by a specific time, the systems level of service

agreements mean that such jobs cannot wait indefinitely. ESP is designed to

represent a subset, indeed one of the hard ones, of the operational transitions

that are seen in operational centers.

5.7 ESP: A Method That Can Be Applied To Different
Systems and Workloads

The steps above are general and the applications used in the ESP can

come from any workload. The rest of the discussion of the first version of the

test, ESP-1, describes the actual implementation at NERSC, along with the

138

results of that implementation. Following that, there is a discussion of the

second version of ESP that is generalized, more portable and adaptable.

A facility that wants to use the ESP approach can design their own

implementation by following these steps.

1. Identify the applications that most reflect the workload being

represented. Once identified, select the concurrency and runtime of

the applications. Unlike most throughput tests, each application

should have input data for several concurrencies and runtimes. The

combination of applications and input needs to be sufficient to allow

the test to oversubscribe the number of CPUs in the system while

running long enough to provide a valid result. The length of the test

is also determined by the number, concurrency and runtime of the

jobs.

2. Identify the operational paradigms for the facility. Is the same

scheduling priority reflected all the time or does it change over

time? If the latter, then select one or more codes to use for the

different operational paradigms. It may be the site does not do full

configuration jobs, but rather provides a service where ½ the

system is dedicated to jobs or it may be a site that is required to

guarantee certain jobs run within a fixed time. The Z tests, then, are

crafted to reflect these operational shifts.

139

3. The site can decide how many submission blocks to use. If B=1

and no Z tests are run, ESP decomposes to a traditional throughput

test.

4. The scheduling parameters are selected. It is best to use those that

are expected for real use so the test reflects the true workload.

5. For a given system, T-BEST is determined by dividing the sum of

all the job (concurrency * run-time) by the system size. Note T-

BEST is simply a convenient definition of a lower- bound. It is not

possible to obtain the T_BEST in a system, but the closer to unity it

is the better the system is scheduling work.

The next section illustrates how these steps were implemented in an

actual test method at NERSC.

5.8 ESP-1 – The First Implementation

The initial implementation of the ESP test – called ESP-1 to distinguish it

from the current implementation, is discussed in detail in Appendix F. This

test used the application codes from SSP-2 to create a test based on the

goals discussed in Section 5.5. While successful, using applications with non-

adjustable problem sets proves limiting since it means that each time a

system with of a different scale was evaluated, all the problem sets needed to

be adjusted to provide an appropriate amount of work for the test. This also

meant that it was hard to compare ESP-1 test implementations across

140

different scale systems. This led to the creation of the ESP-2 test, which is

currently in use.

5.9 ESP-2 – A Flexible Test

The Effective System Performance (ESP) test was devised to provide a

metric for production-oriented parallel systems that is primarily focused on

operating system attributes and has been through two major implementations

in 1999 and 2002-2003. Such attributes include parallel launch time, job

scheduling and preemptive job launch. The ESP-2 test has been deliberately

constructed to be processor-speed independent with low contention for

shared resources (e.g. the file system). As such, it is different from a

throughput test that is influenced by processors speed and compiler

performance and assumes a single operational paradigm. The goals of the

ESP-2 are consistent with the ESP-1, but are more specific to measure the

scalability, stability and effectiveness of the system scheduling and resource

management software. Another goal was to make ESP-2 more portable and

easier to use. The ESP-2 approach is to run a fixed number of parallel jobs

through a batch scheduler in the minimum elapsed time. Individually, the jobs

are designed such that their elapsed runtimes can closely approximate a fixed

target runtime. The target run-times are provided to the scheduler as the

requested run-time for the job. Thus the elapsed time of the total test is

independent of the processor speed and is determined, to a large degree, by

the efficiency of the scheduler and the overhead of launching parallel jobs.

141

In ESP-2, a job is a simple, MPI based, kernel program that does simple

computation for the targeted amount of the time. Each job does very modest

MPI communication. The simple kernel is sufficient since the goal of ESP jobs

is to simply occupy the system resources. The test is not trying to assess the

performance of compilers or hardware, in fact just the opposite – it is

designed to be independent of these influences.

 In ESP-2, there are 230 jobs derived from a list of 14 job types, which can

be adjusted if a different proportional job mix is needed. The concurrency of

each job run scales with the entire system size in order to keep the test

constant relative to the number of cores or CPUs. Table 5-1 shows the job

types with their relative size compared to the entire system, instance count

and target runtime.

Job Type

n

Fraction of Job
Concurrency relative
to total system size

Count of the
number of Job

Instances

Target Runtime
(Seconds)

A 0.03125 75 267

B 0.06250 9 322

C 0.50000 3 534

D 0.25000 3 616

E 0.50000 3 315

F 0.06250 9 1846

G 0.12500 6 1334

H 0.15820 6 1067

I 0.03125 24 1432

J 0.06250 24 725

K 0.09570 15 487

L 0.12500 36 366

M 0.25000 15 187

Z 1.00000 2 ~100

Total 230
Table 5-1: The ESP-2 Job Mix

142

The fractional size is simply the concurrency of the job as a fraction of

total system size. For example, if the system under test has 1024 cores for

computation, then the concurrency of job-type B is 64 (= 0.06250 x 1024)

cores. Thus, the ESP-2 test can be applied to any system size and has been

verified on 64, 512, 2048, 6726 and 19,320 computational core systems.

For the purposes of this discussion, it is useful to define the ESP unit of

computational ―work‖ as the product of the runtime of a job and job

concurrency (number of cores). Following our example, job-type B is

designated 64 CPU x 322 seconds = 20,608 CPU seconds of work.

Therefore, for a 1,024 computational core system, the total amount of work,

s in the ESP-2 test is seen in Equation 5-2.

14

1 ,, ***
n nnnksks N

Equation 5-2: The amount of work ESP-2 based on system scale, for a given system s and a point in
time k.

For a system with 1,024 processors, and not counting the Z type jobs

since their time will slightly vary based on system size, the work is 11,031,792

CPU seconds. Given a total amount of work s, a hypothetical absolute

minimum time, (T-BEST), can be computed by dividing the work by the

system size. In this case, T-BEST = 10,773 seconds (~ 3 hours). Note that T-

BEST is independent of the total system size and the processing speed of the

system. The ESP efficiency ratio is defined as the T-BEST divided by the

143

observed elapsed time of the ESP-2 test. This is the key metric of the ESP

test. For increasingly efficient systems, the ratio approaches unity.

The T-BEST is simply a convenient definition of a lower bound. It is not

possible to obtain the T-BEST in a real test even in the optimal case.

Therefore, most attainable ESP-2 ratios fall in the range of 0.6 - 0.8 based on

the ESP test runs on NERSC systems. Furthermore, the T-BEST must be

computed for each system tested, as the runtimes for each job will only

approximate the target runtimes.

The ESP-2 test first requires executing the job mix described by the Table

5-1 excluding the job-type Z (228 jobs). This is designated the ―throughput‖

variant of ESP-2. The order of job submission is determined by a fixed

pseudo-random sequence, so scheduling software cannot be preset to

assume a job submission flow.

Equation 5-3: The Effectiveness ratio is the time the test actually runs compared to the time the best
packing solution indicates.

The second part of the test is identical to the ―throughput‖ variant except

that the two Z jobs are submitted at 2400 and 7200 seconds after the start of

the test and after all other jobs, A, ..., M have been submitted. This is

I

i

ii

ks

T

BESTT

1

, ks,

144

designated the ―Multimode‖ variant. The Z jobs must be launched as soon as

possible. That is, no other queued job is permitted to start while there is a Z

job in the queue. This may be accomplished by assigning the Z jobs high

priorities, but on most systems it is not sufficient. Further expediting the Z job

will depend on how the system handles running jobs; some options include

roll-out, checkpoint or suspension. As a last resort, the schedule can simply

drain the system of running jobs until the Z job fits. The ESP-2 test does not

mandate how this is achieved, simply that no other job is permitted to start

running in the interim between the submission of the Z job and its launch.

The ESP-2 test and detailed instructions for installation are located at

http://www.nersc.gov/projects/esp.php.

5.9.1 ESP-2 Experiences

The ESP-2 test runs in the range of 4-6 hours while processing 228 jobs

(not the Z jobs) on the IBM SP/3+. This is a contraction in the changing

scheduling parameters of an operational day that is the result of a

compromise between a throughput test of the scheduler, batch system,

resource manager and job launcher, and the practicalities of running the test.

The overhead associated with node reservation and parallel launch have a

large impact in this test.

The ESP test was designed to provide a quantitative evaluation of parallel

systems in those areas not normally covered by traditional benchmarks or

http://www.nersc.gov/projects/esp.php

145

throughput tests but, nonetheless, are important to production usage. There

are a myriad of system features and parameters that are potentially important

in this regard. As an alternative to assessing and ranking each feature

individually, the ESP test evaluates the system via a single figure of merit, the

smallest elapsed time of a representative workload. This metric translates into

the amount of productive usage of the system over its lifespan.

The ESP-2 test is not a scheduler benchmark per se. However, it is

obvious that the choice of scheduling strategy will have a significant effect. At

first glance, and borne out in real tests, a backfill scheduler with some form of

priority preemption is optimal. Although, the difference between backfill and,

say, a FIFO (First In First Out) strategy is not as large as one would initially

estimate. This is partially due to the composition of the workload.

Observations of day-to-day usage show that the union of backfilling a static

queue and priority preemption is one way of balancing the competing

requirements of high utilization and responsiveness.

5.10 Additional ESP-2 Results for NERSC-5

Section 5.2 shows results using ESP-2 to evaluate the Cray XT-4. In

addition to the discussion about setting scheduler parameters to meet the

expected time, it is noteworthy that ESP-2 made other contributions. ESP-2

ran on both CVN and CLE versions of the system software.

For the CVN runs, ESP-2 encountered a minor obstacle since it used

standard Linux/Unix system calls within for each task to get the time. Each

146

task then uses that time returned to calculate how long it should run since

jobs are self-terminating. CVN provided no mechanism for a task to get

system time or time of day, so a new routine was added to the ESP-2 jobs.

This was just a minor inconvenience. More importantly, ESP-2 failed on CVN

a number of times. These failures were due mostly to the large number of

nodes in use during the test. A variety of hardware and software problems

were detected using ESP-2 as a blunt diagnostic.

ESP-2 on CLE also brought to light a number of problems, particularly with

the early versions of Torque (a resource scheduling system by Cluster

Resources, Inc.), which had just been ported to the CLE environment. CLE

used an entirely new resource manager – the Application Level Placement

Scheduler, ALPS – which replaced the resource manager on the CVN

systems. The interaction between Torque and ALPS needed to be refined.

ESP-2 helped identify the length of time it took to start jobs, the load

balancing for the job scheduling nodes, and other issues. Furthermore, the

ESP-2 workload continued to uncover infant mortality problems with the

hardware components.

Thus, ESP-2 was an excellent stress test in its own right, in addition to

validating the job scheduling and launch software‘s effectiveness. Appendix G

discusses in detail another use of ESP – the evaluation of different resource

management systems on the same hardware base.

147

5.11 Chapter Conclusion

This chapter described a system utilization benchmark, ESP, which has

successfully run on multiple highly parallel supercomputers. This test provides

quantitative data on the utilization and scheduling effectiveness to which the

systems are capable. ESP also provides useful insights on how to better

manage such systems.

The most important conclusion is that certain system functionalities, such

as checkpoint/restart, swapping and migration, are critical for the highly

efficient operation of large systems. This chapter discusses the evolution of

the test – from its first concept of evaluating how well a system can support

different operational modes for scheduling – to providing a portable and

comparable metric.

ESP was improved and made portable by replacing the site-specific

application benchmarks that are not freely distributed with other tests that are

completely sharable. ESP-2 was simplified to use three or four test codes

rather than the original eight applications in ESP-1.

 Another effort is to be able to scale the test to more or less CPUs and still

have a comparable set of data. ESP-2 is packaged as freely available

software archive, with facilities for simple installation and execution. It is

located at http://www.nersc.gov/projects/esp.php. In this way ESP-2 can be

used by others and will help spur both industry and research to improve

system utilization on future systems.

http://www.nersc.gov/projects/esp.php

148

Chapter 6: Reliability

6.1 Chapter Summary

Reliability has been a reactive rather than a proactive consideration for

large scale system evaluation. It is reactive because it is assessed after the

system is installed and operating, and there is not a good way to assess

reliability claims proactively. Hardware components occasionally undergo

testing to determine mean time between failure (MTBF) and reliability.

Component MTBF is then used to predict equipment reliability. System

vendors tout reliability enhancing features they add to hardware such as

redundant components and dual paths. These can contribute to

improvements, but there is little objective understanding of the value of each

addition, including the cost effectiveness of any attribute.

This chapter shows that software reliability is often the ―Achilles heel‖ of

large systems. Data from NERSC, documented below, indicated that software

is the greatest cause of system wide failures, far greater than hardware on a

number of systems. Furthermore, vendors seem unaware of this trend since

most do not even track reliability in their software components.

System component count is growing despite the fact components are

increasing in transistor counts and function. The move to Open Source

increases the software reliability issues because there is less integration and

149

testing of consistent software stacks. Indeed, it can be said, with few

exceptions, that every cluster system is a unique collection of software

components. Further, there is no overall design process that might help

insure some degree of reliability for much of the software.

This chapter investigates failure data at NERSC and other locations. The

NERSC failure data spans five years for some systems and covers all

systems. The implication of failure trends is discussed and expectations

calibrated. Additionally, reliability and failure analysis being applied to HPC

systems is examined and some recent related work by others is assessed for

it potential use in HPC system evaluation.

Unfortunately, there is no silver bullet for a simple metric that can

proactively assess systems before being placed in operation although, as

discussed below, some promising trends can be observed. Traditional stress

testing and availability periods are ways most facilities identify issues, but

these are not sufficient for good evaluation.

6.2 Analysis of the NERSC Reliability Data

Failure data for all NERSC systems from 2001 to 2006 was assembled

from the NERSC operational trouble ticket system in which operations and

systems staff record all system outages and issues. In addition to the

operational logs, data was accumulated from paper records of repairs kept by

operations staff, vendor repair logs, and automatic operating system error

logs. The data was assembled for analysis in a mysql database. Each data

150

record was manually reviewed and correlated with other information so the

information in the database is as consistent as possible. Redundant and

overlapping records were combined. Further, each event was reviewed to

determine the most likely subsystem category that generated the error.

The NERSC failure data is available at a web site – http://pdsi.nersc.gov -

as part of the Petascale Data Storage Institute SciDAC research

collaboration. The web site allows interactive queries, charting and exporting

of the data. The NERSC systems covered during this time period were the

IBM SP 3+ Seaborg (2001), the IBM SP 5 Bassi (December 2005), the Linux

Networx AMD/IB cluster Jacquard (July 2005), the SGI Altix 3200 DaVinci

(September 2005), the High Performance Storage System HPSS (from 2003),

the NERSC Global Filesystem, NGF (October 2005) and the commodity

cluster system PDSF (2001). The dates show the beginning of the data

collection period in the data base, which corresponds to the date of

production or 2001 (the start the data collection).

The Franklin Cray XT-4 failure data, which begins in October 2007 is not

part of the database, but has been compiled separately and correlated with

the data in the data base. This enables comparison of the two largest NERSC

systems – Seaborg with 6,756 cores and Franklin with 19,576 cores.

6.3 Software and Hardware Errors

The analysis of the data shows that for five of the six systems, software is

the primary cause of down time of the entire system. In some cases, the

http://pdsi.nersc.gov/

151

amount of time a system is down due to software is more than five times that

of hardware generated outages. Figure 6-1 shows this data as the percent of

unscheduled downtime for six major NERSC systems. Franklin, Seaborg,

Bassi, Jacquard, DaVinci and PDSF are computational systems of various

architectures and HPSS is a large data archive.

The observation period is for a one year period. The collected data for all

systems other than Franklin is for 2006. Franklin had been in service for less

than half a year at the time of this analysis, 154 days to be exact, from

October 26, 2007 to March 28, 2008. For comparison purposes, the Franklin

times are projected to a full year by multiplying by 2.37.

There are several aspects to be considered in the comparison. First,

Franklin and Bassi were in their initial period of operation, while the other

Uncheduled System Outage for 1 Year (SW and HW)

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

Franklin
(Projected
based on
154 days)

Bassi DaVinci Jacquard Seaborg HPSS

M
in

u
te

s

Software Hardware

Figure 6-1: Total number of unscheduled downtime for the major NERSC systems over a 1
year period. All systems other than Franklin are from 2006. Franklin is a partial year - 154

days spanning late 2007 and 2008 which is projected to a full year for comparison.

152

systems were in operation for at least year before the data collection period.

Hence, it may be expected that the number of outages for Franklin and Bassi

will be reduced for later periods. While it is too early to tell about Franklin, this

is exactly what happened to Bassi. Comparing the downtime between 2006

and 2007 indicates the hardware downtime decreasing by more than a factor

of 2 and the software improving by more than 6 times. However, even with

those improvements, software still caused 2.4 times more downtime than

hardware.

 Only Jacquard shows more hardware downtime than software. This is in

part due to a continuing problem with memory components during 2006,

which produced very significant hardware downtime. If this set of outages is

ignored, Jacquard also shows more software outages than hardware.

The assignment of an outage to the hardware or software category and, in

the next section to the subsystems, is not foolproof. Root cause analysis was

not done for all failures but instead the most likely cause was assigned. For

example, it may be that some software outages had an underlying hardware

cause which contributed to the failure but was not reported. The assignment

of the failure category is guided by the type of corrective action taken by the

system managers and the vendor support personnel.

153

6.3.1 Subcomponent Error Analysis

Looking more closely at the two largest systems, Seaborg and Franklin, it

is useful to compare outage times by subsystem for outages that generated

system wide failures. A system wide failure is one where the entire system is

unable to meet its Level of Service Agreements. Individual failures occur that

may not degrade system performance sufficiently to cause a system wide

failure. NERSC uses the following definition for system wide failure.

An entire system is considered down if the system is unable to process

work at an agreed upon level. Many components in the system have

redundancy such as spare compute nodes and login nodes or alternative

routing in an interconnect and for I/O access. A system wide outage occurs if

any of the following requirements cannot be met from any part of the system:

 Able to complete a POSIX ‗stat‘ operation on every file within all file
systems and access all data blocks associated with these files.

 Able to complete a successful interactive login on at least 75% of the
login nodes in the system. (Note: failures in the local area network do not
constitute a system-wide failure.)

 Able to run the NERSC benchmark suite for that system, including the full
configuration test.

 Able to provide the agreed upon file system bandwidth and all files are
accessible.

 Able to make use of the full interconnect bandwidth available. For
systems that can route messages in multiple paths, some links or paths
may be out of service but only to a negotiated limit.

 All nodes being able to have access to external networks and bandwidth
is at least 75% of maximum network I/O node bandwidth.

 Able to support user applications submission, launching and/or
completing via the job scheduler.

 Avoiding other failures that reasonably disrupt work on a large portion of
the nodes.

154

 Able to exchange a working spare node when a compute node fails. The
number of spare nodes is negotiated based on the total number of
compute nodes.

The hardware failure category is separated in three major areas; a) node

and interconnect hardware, b) storage hardware and control hardware and c)

primary control workstation. Software failures are placed into six categories;

a) accounting, b) file system, c) interconnect, d) Internet Protocol (IP)

networking (external networks to the system), e) job scheduling, f) security

and g) various. The Various category covers license servers and mis-

configurations, among other things. These categories were those actually

used on one system or the other to catalogue trouble tickets. Figures 6-2 and

6-3 show the breakdown by total downtime for Seaborg and Franklin.

Seaborg was in service more than 10 times longer than Franklin, so while the

scales are the same, the totals cannot be compared.

Comparing the charts indicate the majority of hardware problems are node

and interconnect related and not shared storage. Seaborg has local disks,

Franklin does not, and local disk failures may sometimes have been recorded

as a node failure. Section 6.3.3 explores hardware node failures in more

detail. Both systems suffer the majority of their software outages, from either

interconnect software or file systems. A word of caution is that symptoms of

other subsystem failures, such as interconnects and nodes, can exhibit as file

system failures since the file system is spanning all components.

155

Figure 6-5 shows the two systems together in a normalized comparison of

downtime. For the comparison, the amount of downtime was divided by the

total time period of the data collection – giving the average minutes of

downtime per day. Seaborg has outages in more categories – which may be

due to the longer time it was in service. Seaborg also has less average

downtime than Franklin because the number of outages per unit time is less,

not because the length of each outage was less.

0 5,000 10,000 15,000

HW - Storage

HW - Control Work

Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes

Seaborg (1,825 days) Category Outages

Figure 6-2: Seaborg downtime by hardware and software subsystems.

156

0 500 1,000 1,500 2,000 2,500 3,000 3,500

HW - Storage

HW - Control Work Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes

Franklin (154 days) Category Outages

Figure 6-3: Franklin downtime by hardware and software subsystems for a limited time.

157

0 500 1000 1500

HW - Storage

HW - Control Work

Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes

Mean Time To Repair by Susbsytem Category

Seaborg Franklin

Figure 6-4: Mean Time To Repair by Subsystem Category for both systems

158

0.00 5.00 10.00 15.00 20.00 25.00
HW - Storage

HW - Control Work Station

HW- Node&Interconnect

SW - Accounting

SW - File System

SW - Interconnect

SW - IP Network

SW - Job Scheduler

SW - Security

Minutes/Day

Average Daily Downtime by Susbsytem Category

Seaborg Franklin

Figure 6-5: Average downtime per day for major subsystem categories.

Figure 6-4 shows the Mean Time To Repair (MTTR) by subsystem for

both systems. The data is independent of the data collection period. MTTR is

calculated as the total downtime divided by the number of incidents. Overall,

the outages on Franklin are significantly shorter because it is possible to bring

Franklin up in less than 25% of the time it takes to boot Seaborg. The large

MTTR for Seaborg Security is the result of two events, one of which required

a complete system build that took more than a week, in part due to the

complexity of Seaborg‘s rebuild process.

159

6.3.2 Seaborg Failure Analysis

A detailed analysis of the NERSC Seaborg system showed the causes of

relatively large outage times caused by software. Figure 6-6 shows outages

and highlights tickets with a large downtime for Seaborg. The security incident

in 2006 and the operating system upgrade in 2004, account for significant

portions of the annual outages for those years, one planned the other not.

Figure 6-6: Classification of individual tickets for the NERSC Seaborg System

As is indicated in Figure 6-6, there are a number of components that can

contribute to system downtime. Figure 6-3 shows the outages categorized by

components, software, and hardware. The file system makes a large

160

contribution to the system outages. There are a number of components

failures that manifest themselves as file system failure, including problems

with any of the Virtual Shared Disks (VSD) connected to 20 I/O nodes which

make the file system unavailable. The tracking tickets did not always reflect

the exact cause, but rather the mostly likely cause based on the judgment of

the system managers. The same ambiguity existed with ―switch‖ related

outages. Accounting, benchmarking, and dedicated tests also made the

system unavailable to users.

6.3.3 Seaborg Node Disk Failures

One result of analyzing component failure rates is to determine the

relationship between component reliability and system reliability. Assessment

of individual trouble tickets showed insufficient information to indicate the

action taken for the failed components in the NERSC failure data base. For

example, in some cases the information available did not specify whether the

vendor or system managers replaced the failed component or returned it to

service.

In practice, corrective action for a failed disk varies markedly between

vendors, and even system engineers within the same vendor. Thus, vendor

A‘s process may normally result in simply reseating or power-cycling the disk

to clear the fault and returning it to service, where a failed disk on vendor B‘s

system might normally result in a permanent replacement. Such processes

change over time. If experience shows a trend of correctable single bit errors

161

eventually results in a hard error, the repair procedure may evolve to

replacement upon single bit errors as a proactive measure. Given these

differences, this study only selected trouble tickets that indicated drive

replacement in order to compare similar failure statistics for tape and disk.

The annual replacement rate of disk drives for Seaborg shows a rate of

about 1.5% per year. This is lower than the observed values of 2-6% in other

studies of disk failures (Pinheir, Weber and Barroso 2007) (Schroeder and

Gibson 2007) albeit the population of disks is smaller than the other studies

and from a single vendor (recognizing the storage subcomponents may come

from different sources). It is also possible that not all disk replacement

instances have been captured in this analysis since hardware technicians

may have performed proactive replacement based on tracking drive

correctable errors prior to being reported or detected as a drive failure. This

type of maintenance is not accounted for in this study.

Figure 6-9 shows the total number and percentage of disk drives replaced

in Seaborg. The total number of disks in the system over time, shown in

Figure 6-7, was used to normalize the data. The majority of disks are Serial

Storage Architecture (SSA) disks and only 120 Fibre Channel disks were

added in mid 2004. Figure 6-8 shows the monthly disks replacement by disk

type. The large number of failures in 2003 can be explained as a combination

of drive age and ―infant mortality‖ of the major increase in new drives added in

2003. This also explains the low replacement rate in 2004. Observe the

162

steady rate increases as drives get ―older‖ leading to an increase in

replacement rate in 2006. This trend of device failure correlated with age is

also seen in the Schroeder-Gibson work noted Section 6.5, which concludes

that the common wisdom that infant mortality is high and then disks stabilizes

for a long period (the ―bathtub‖ profile) is a misconception.

Figure 6-7: Total number of disks in Seaborg

163

Figure 6-8: Seaborg Disk Replacements by Disk Type

Seaborg Disks Replaced

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2001 2002 2003 2004 2005 2006
Year

Percent

0

10

20

30

40

50

60

70

80

Number

Percentage Actual

Figure 6-9: Disk Replacement Trends for Seaborg shows the increase of disk failures due to age.

164

6.4 Job Completion Success on NERSC-5

So far, the failure discussions have focused on system wide outages and

replacement of failed components. Another important category of failure is

those that disrupt part of the workload but leave the overall system operating,

albeit in some degraded manner. Some failures are transparent to

applications, but many are not. In particular, parallel jobs are very susceptible

to single component failure unless the system masks it from the application.

For example, if there is a known rate of failure of individual CPUs, then a

parallel application running at twice the CPU concurrency has twice the

likelihood of failing due to a CPU fault. With applications using thousands of

CPUs – and looking at using millions, the fault rate of a single component

becomes very obvious*. Hence, job completion rates are part of on-going

metrics for NERSC-5.

As noted in Section 6.2 above, some system wide outages under CVN

became job failures under CLE. Job success rates for CLE were collected

and analyzed. The basic logistics of evaluating job completion was more

complicated than first envisioned. Initially, CLE provided inconsistent and

incomplete error messages due in part to faulty error message propagation

across layers of the software stack. Many inconsistencies were resolved

within the evaluation period so more accurate error messages were

*
 A recent example is a job at NERSC that used 9,000 nodes and was intended to run in 12
hours. A single ill behaving node, undetected at launch time, caused the job to hang and
not progress. This meant no work at all was done on the system for that time. The ill
behaving node had a hard failure several days later.

165

produced. The completion status of jobs is traced from logs and system

process logs. Table 6-1 below shows the job success rate between Sept 18,

2007 and April 11, 2008 – more than ½ a year from the early acceptance

testing of CLE through production usage. Unlike other job completion metrics

that assess how often the exact same application/problem set completes

successfully, this metric deals with real jobs representing 3,000 users doing

actual science and over 500 different application codes running on the

production system. During this time, 178,133 significant computational jobs

ran on the system.

166

Failure Error Category Number
of Jobs

Percent
of Jobs

SUCCESS - Job clearly succeeds. 117,884 66.2%

WALLTIME - Job ran to the wall clock time limit. A number of
users let the job run out of time intentionally. However, there
are cases where a node assigned to the job is in ill health but
has not yet been detected, causing the job to go very slowly
or hang with no progress.

12,614 7.1%

WIDTH - A mismatch between what the job requested and
what the aprun command uses -– normally a user error.

0 0.0%

NODEFAIL – A node assigned to the job failed or crashed –
possibly hardware.

192 0.1%

UNEX - This error indicates MPI buffers need to be
increased.

75 >0.05%

ENOENT – A requested executable file does not exist. 1,148 0.6%

LIBSMA - An error within the SHMEM communication library. 70 >0.05%

SIGTERM - Job received a Terminate Signal (Kill -9). This
could have been from the user or the system.

58 >0.05%

NOAPRUN - The batch job did not appear to execute an
aprun. This is usually due to a batch scripting error.

6,516 3.7%

NOTRACE – For some unidentified reason, process
accounting data could not be traced to identify the aprun
associated with this job. The job did execute an aprun but the
parent process id was 1 so it could not be properly matched.
The usual cause is that a job was killed and the last process
to exit was aprun so its ppid was 1.

11,389 6.4%

QUOTA - Job exceeded a File System quota. 2,865 1.6%

ATOMIC – The job failed due to a software problem when
using parts of the SHMEM library (the problem has since
been fixed).

4 >0.05%

UNKNOWN - The status of the job completion was non-
determinate. What is known is the aprun command had a
non-zero exit code. This may be due to a system problem but
more likely due to some user action that prevents recording
the exit status in system logs, e.g. an application trapping a
signal or redirecting I/O.

25,318 14.2%

Total 178,133
Table 6-1: Job Failure Error Categories and Data from Sept 2007 to April 2008.

6.4.1 Manual Analysis of Job Failure Data

A subset of the failing jobs – several hundred – was manually analyzed in

detail. Users who submitted the job were contacted to determine if the failure

was intentional, in the application, or system generated.

This investigation led to several conclusions:

167

 Root cause job failure analysis is very time consuming for support staff

and users, so it is not tractable to do a full analysis of every job failure.

Automation is required and with that there is some potential for mis-

categorization.

 NERSC has sophisticated users who can determine the cause of errors

in their runs and proactively report suspect job failures that are not due

to their error with reasonably high degrees of accuracy. Most batches of

system level errors correspond to increased user problem tickets.

 A significant number (~20-30%) of errors were due to user mistakes or

code problems. However, each error category had job failures due to

system issues. Categorizing a type of error due only to user errors or

only to system errors with complete accuracy is not possible for most

categories given the level of information being reported by the kernel

and related job management processes.

o For example, while many WALLTIME errors were under user

control; ―hung‖ nodes or other diagnosed system errors also

caused jobs to start, make no progress for their entire time slot,

and exit, giving the same error message. Hence, not all

WALLTIME exceeded messages were user problems.

o Another example of a category that is mostly user, but

sometimes system issues is over running file quota. This is

168

typically is considered a user error, but the system generated 49

such errors since January 2008 despite having the quota

function entirely turned off while awaiting bug fixes. These are a

system-generated error.

 WALLTIME, WIDTH, SIGTERM, NOAPRUN, are now considered likely

user generated unless there is a pattern detected when many jobs

generate the same error. QUOTA will be in the user category once it is

functional.

 NODEFAIL and ATOMIC is clearly system issues.

 NOTRACE is associated with jobs that terminate during a system

crash. The NOTRACE label is because the jobs cannot write out a

record.

 UNKNOWN represents a significant number of failures and is troubling

since it means exit status could not be automatically determined. It

should be possible for the system to reliably record all process exit

codes for post mortem analysis. It remains a goal to drastically reduce

the number of unknown conditions for job exits.

169

Single Day Job Success Data

From: 10/16/08 00:03:27 to:

10/16/08 23:57:30

Job Exit Status Job

Count

Percent

of Job

for Day

Estimated

Fault Cause

APINFO_SUCCESS 580 63.7 N/A

APINFO_TORQUEWALLTIME 79 8.7 User

APINFO_APRUNWIDTH 0 0.0 User

APINFO_NODEFAIL 1 0.1 System

APINFO_MPICHUNEXBUFFERSIZE 0 0.0 User

APINFO_ENOENT 6 0.7 User

APINFO_LIBSMA 0 0.0 User

APINFO_SIGTERM 0 0.0 User

APINFO_NOAPRUN 28 3.1 User

APINFO_UNKNOWN 69 7.6 Unknown

APINFO_NOTRACE 36 4.0 Unknown

APINFO_SHMEMATOMIC 0 0.0 System

APINFO_DISKQUOTA 0 0.0 System

APINFO_SIGSEGV 1 0.1 User

APINFO_CLAIM 7 0.8 User

APINFO_MPIABORT 40 4.4 User

APINFO_NIDTERM 65 7.1 System

APINFO_ROMIO 0 0.0 User

APINFO_MPIIO 0 0.0 User

APINFO_BOGUS 0 0.0 Unknown

Total 912

Table 6-2 Job Success and Failure indicators for a single day. (Data courtesy of Mr. Nicholas Cardo,
NERSC)

Table 6-2 shows a single day‘s job success and failure rate for October

16, 2008 on the NERSC Franklin system. While each day fluctuates, this day

is typical of others during this time period. The general trend is about 60-65%

of the job exit successfully with a code of 0. About 5-7% have suspected

system causes for termination and between 10-20% have causes that cannot

be determined automatically. User caused job termination is 10-20% of the

jobs.

170

6.4.2 Observations About Job Completion Metrics

Job completion metrics were unexpectedly difficult to accurately assess in

the automated manner that is necessary on large systems. Work continues to

more accurately report and diagnose errors. Despite the difficulties, tracking

job exit codes is valuable in diagnosing and correcting many system faults. At

the moment, looking for patterns such as large increases in the percent of a

particular category then merits manual investigation.

6.5 Reactive Assessment of Reliability

In many evaluations, reliability assessment is reactive in the sense

evaluators have a system that is placed in service and then they measure

such attributes as system availability, node availability, Mean Time To

Interrupt* (MTTI), and Mean Time To Restoration of Service (MTTR). Mean-

Time-Between-Failure and Mean-Time-Between-Interrupt are similar reliability

measures. Furthermore, such measures may not be from the end user point

of view, but rather from the system provider point of view.

After the system is in place, particularly in production use, it is common to

have regressive metrics (penalties) for the service providers if expected

reliability is not being met. Unfortunately, even the current estimates of

component reliability are inaccurate. (Schroeder and Gibson 2007)show

hardware disk vendors supplied estimates of disk failure rates differ as much

*
 Other sites use Mean-Time-To-Failure (MTTF). Because of the many redundancy features
in large systems, MTTF is appropriate to analyze component failures, but not system quality
of service since a system can often continue to operate with some level of failure.

171

as 15x from the reality seen in large scale facilities, with a difference of 5x

being common.

(Gonzalez, et al. 2007) categorizes failures into three areas – transient,

intermittent and permanent. Transient errors appear for a short time, and then

disappear. Intermittent errors appear and disappear. Permanent errors

persist. An issue is how much effort needs to be applied to each type of

failure. Current modern systems are tending to exhibit increasing numbers of

transient and/or intermittent errors. One supporting fact for this is (Schroeder

and Gibson, 2007) 43% of disk drives returned to manufacturers after a ―hard‖

failure in the field do not exhibit the failure when analyzed in the vendor‘s

facility. The transient and intermittent errors make traditional reliability

assessment methods (Nagaraja, et al. March 2003) less effective.

6.6 Proactive Assessment of Reliability

The HPC community struggles to find a proactive method of assessing

reliability. Most evaluations do not attempt proactive metrics. Methods such

as fault injection require understanding fault profiles as well as representative

systems available for running the test. But without clear data, such profiles

may be based on incorrect assumptions. Further, with the multi-million dollar

expense of HPC systems, it is seldom feasible to do fault injection studies for

full systems, so statistical and pattern recognition methods are more likely to

result in improvements.

172

6.6.1 Assessing A System Provider’s Response To Errors

One method to evaluate reliability may be not trying to assess all faults

and reliability directly, but rather to assess a system provider‘s ability to

understand and respond to hardware and software errors. This approach was

taken in the NERSC-5 procurement (NERSC-5 2004), which asked the

vendors to ―Provide information concerning the number of defects filed at each

severity level and average time to problem resolution for all major software and

hardware components.”

The responses to this question varied widely. Some system providers

demonstrated they had detailed data for problem analysis, including sub-

component classification of errors for both hardware and software. Other

respondents provided general system wide information. One vendor refused

to provide any data since they felt it could be used to ―misrepresent individual

products.‖ Nonetheless, proactive assessment of reliability will continue since

being able to understand the statistics of system failures is a prerequisite to

effectively addressing them.

6.6.2 Size Of System Provider’s Testing Environment

Another proactive measure being used on the NERSC-6 evaluation is the

size and completeness of the system provider's testing environment. This

includes the relative size of the test environment to the system being offered,

the robustness of the testing methods, etc.

173

6.7 Observations About The Importance Of Reliability
Data Collection

The collection and analysis of reliability data is becoming more difficult

due to the volumes of data and the complexities of large scale systems, while

at the same time, more valuable. It is even more critical because large

systems are composed of significant layered software, often open source

software, and there is much less integrated testing across identical hardware

and software configurations. Even when the data is supplied by individual

vendors, the software layers can vary considerably between systems. Hence,

without the ability to have a large number of identical system images, the

ability to mine data is important to improving system reliability.

6.8 Related Work

Work from Rutgers (Nagaraja, et al. March 2003) and others groups

discuss methods to assess ―Performability‖. Many of the papers concern

assessment and modeling availability of small scale systems. Performability

is defined as a system‘s performance multiplied by its availability, which

makes it similar to Potency. The Rutgers work assesses systems at a

relatively high level, with the assumption that many low level faults are

masked or handled by hardware and/or software before they impact

applications. So, they look at modes of failure at the node and commodity

network levels. They developed a model to determine average availability

and throughput of systems which assesses throughput for each type of

component failure. Different failure modes are modeled and tools are used to

174

induce the expected failures in a running test system which then is supposed

to show changes in performance.

The Rutgers method has potential application to assess the expected

reliability of large systems. While Rutgers assesses small web server

clusters, conceptually it can be carried to HPC systems. However, there are

limitations in the Rutgers work that require extensions and may even make it

intractable for application to current and future HPC systems. The first

limitation is the assumption that all faults are independent. In a farm of web

servers, this may be so, since one server going down is not likely to cause

another to crash. HPC systems have much tighter integration and there are

many ―system wide‖ failure examples from which one component generates a

cascade of problems in addition to single component failures. It is also

unfortunately relatively common to have the entire HPC system fail without a

cascade from a single component, another consideration that is not the main

thrust of the Rutgers work.

Another assumption the Rutgers group uses for simplification is that

MTTR is much smaller than MTTF. This simplifies their analysis and modeling

but it may not be the case in HPC systems, where a failure may take the

system out for hours, days or even longer*.

*
 Current large IBM systems take 2-4 hours to restart. A file system check of 20 TB file
systems may take upon to 12 hours or more. A modest size commodity cluster takes about
30 minutes to boot.

175

Other works in the literature involve ‗black box‖ testing and/or fault

injection into systems that is not tractable for testing methods in HPC since

many failure modes are seen only at scale. The HPC industry does not have

the resources to devote large systems to such systematic black box testing.

Indeed, many vendors now only have small systems in house for all their

testing needs.

One important related, but not direct, HPC effort, dealing with reliability is

the Recovery Oriented Computing (ROCs) (ROCS n.d.) and Reliable

Distributed System Laboratory (RADLab) (RAD Lab n.d.) efforts led by Dr.

David Patterson and Dr. Armando Fox. These projects focus on web service

farms (Fox, Kician and Patterson 2004) and other loosely distributed systems

but are related to HPC in the scale of components and complexity of

software. The methods being explored in these efforts are areas such as

managing and analysis of high volume log streams (Xu, et al. 2005). Another

promising area of research is using statistical learning theory to monitor

quality of service and provide early detection of potential failures (Xu, Bodik

and Patterson November 2004). The HPC community would be well served to

explore these efforts and others that are similar in nature.

Another related area is an increasing body of work coming for reliability,

serviceability, and performability studies in commercial web serving facilities

(Pinheiro, Weber and Barroso February 2007). This publication of disk failure

analysis in large web systems generated other articles on the impact of

176

storage. There is more in common between the HPC community and the web

services community that merits exploration.

Fortunately, there are some groups focused on HPC reliability issues

directly. The Petascale Data Storage Institute (PDSI 2007) expanded its

reliability studies to all aspects of HPC systems (Schroeder and Gibson 2007)

– not just storage. Papers and failure data from HPC systems is available for

the community in conjunction with the Computer Failure Data Repository

(CFDR) (CFDR 2006). At the CDFR project, seven failure data sets for HPC

systems and clusters are available as well as data from several web

providers. These data sets, several used in this work, became openly

available since 2006, and papers are starting to emerge based on the data.

Other HPC specific efforts that involve not only reliability, but other

aspects as well, are also active. Two of note, devoted to Petascale Systems,

are the 2007 Petascale System Integration Workshop (PSIW 2007)and

Report (Kramer, et al. 2007) and the 2008 Risk Management Techniques and

Practices Workshop (RTMAP 2008) that will have a report of forthcoming.

These will probably be followed with other related efforts.

6.9 Chapter Conclusion

Reliability is a key aspect of system productivity that is typically studied

independently. This chapter discusses the issues of reliability for HPC

systems with the major points being:

177

 Software failures are the dominant cause of system wide outages on

HPC systems.

 Traditional analysis of reliability is not providing sufficient insight into

the probability a large-scale system will be able to provide reliable

service.

 In a general production environment, application failure rates due to

system problems is difficult to accurately assess, but can be very

worthwhile, even if not precise.

 Having demonstratable processes to accumulate and assess failure

information is a potential proactive indicator of a system‘s probability of

providing reliable service. Few vendors have the demonstrated this

ability, particularly for software.

178

Chapter 7: Consistency of Performance

7.1 Chapter Summary

The design and evaluation of high performance computers concentrates

on increasing computational performance for applications. Performance is

often measured on an optimally configured, dedicated system to show the

best case in performance, often in the space of a few hours to a day or two. In

real environments, resources are seldom dedicated to a single task and

systems run multiple tasks that may influence each other.

Furthermore, many factors influence large scale systems that may

significantly impact achieving performance in a consistent manner, including

interconnects, topology, congestion aware messaging, assignment of memory

and software jitter. Hence runtimes vary, sometimes to an unreasonable large

extent.

But what level of consistency is reasonable to expect for HPC? In this

chapter, comparisons are made across several architectures, interconnects

and operating systems for large distributed memory systems in a systematic

manner. It then analyzes the causes for inconsistency and discusses what

can be done to decrease the variation without impacting performance. Finally

discussed are issues of on-going assessment of consistency through the

system‘s life cycle.

179

7.1.1 Motivation For Consistency

Inconsistency of parallel application performance has broad implications

for how much useful work can be produced by a particular HPC system.

Factors leading to changes in performance occur over multiple time scales

and originate both from within applications and from external sources. As a

result, variability in runtime performance is strongly tied to the hardware and

software architecture. This work examines performance consistency in

parallel applications on time scales of years to microseconds, with a focus on

understanding some of the causes of performance inconsistency in multi-user

production environments. Where possible, specific causes for the

inconsistency observed are identified.

Benchmarking and workload characterization may be taken either on

dedicated hardware or in the context of non-dedicated, day to day use. It is

the more complicated production context that is arguably more important in

setting user expectations about how long a scientific calculation will take to

complete rather than focusing on improving performance by a modest

percentage in dedicated testing. As things scale more, due to multi-core

technologies and increasingly parallel systems, the likelihood of inconsistency

increases unless proactive steps are taken.

180

7.1.2 Factors That Influence Consistency

One goal of the present chapter is to identify some of the factors which

influence the probability a system will be consistent. In order to do so, it is

important to be able to detect, measure, and address the causes of

performance variability. Keeping identification and quantification goals in

mind, this chapter first concentrates on how the shape of the distribution of

runtimes for a task or application is influenced by a variety of factors and

events occurring on the system.

Understanding the parallel scaling factors leading to performance

inconsistency is a chief concern of those who use and maintain large scale

parallel computers. Large scale HPC resources are built from thousands of

smaller systems. Since the majority of testing and performance analysis is

done on test systems much smaller than production machines, it is common

to encounter variability induced performance loss that goes unseen on

smaller systems. As seen in the following sections, the performance impact of

inconsistency can be quite large, becoming the dominant impediment to

parallel scaling in some cases.

7.2 The Impact of Inconsistent Performance

Application performance for computer systems, including studies of

parallel system hardware and architectures, is well studied. Every

architectural feature is assessed with application and specialized benchmarks

– be it on real or simulated systems – so the impact of the functions can be

181

evaluated for its performance impacts. To a much lesser degree, system

software is evaluated for performance of both the system software itself and

the applications that use it.

7.2.1 Users Are Impacted By Inconsistency

The variability of performance is as important as availability and mean

time between failures to users to be able to accomplish their goals. For

example, the user‘s productivity is impacted at least as much when

performance varies by a factor of two, as when a system‘s availability is only

½ of the expected time. In both cases, the amount of work done is only half of

what is expected of the system.

7.2.2 Negative Impacts Of Inconsistency

Multiple sources show inconsistency in runtimes leads to many negative

impacts [(Figueira and Berman 1966), (Worley and Levesque 2004), (Zhang,

et al. 2001)] all of which make a HPC system have less value. The first impact

is less overall work done by the system. Runtime inconsistency is inherently

bad for performance since variations in runtime proceed upward from some

best case runtime, i.e., variation is seldom toward better than optimal

performance. The longer a task takes, the more time it takes to get usable

results for analysis. Since some applications have a strict order of processing

steps (i.e. in climate studies, year 1 has to be simulated before year 2 can

182

start), they cannot directly overcome this slowdown via, say, increased

parallelism.

Inconsistency decreases the efficiency of HPC parallel computers since

cycles are lost to both job failure and complex job scheduling to mitigate the

lack of consistency [(Srinivasan, et al. 2002), (Lee, et al. 2004)]. Jobs fail

through incorrect estimation of the batch queue requirements. System

scheduling becomes less effective because users must be overly

conservative in requesting batch time. Most scheduling software relies on

user-provided run estimates, or times assigned by default values, to schedule

work effectively.

When a cautious user over estimates runtime, the job scheduler operates

on poor information and results in inefficient scheduling selections on

systems. On the other hand, if a job request does not adequately plan for

inconsistent runtimes, there can be a substantial probability the job overruns

the requested batch queue time and suffers a loss of productive time elapsed

since the last checkpoint. In the case of code which does not perform

application check pointing, the entire run may be lost*. These all contribute to

the loss of user productivity and decreased system impact.

7.3 Coefficient of Variation

A useful metric for understanding consistency is the Coefficient of

Variation (CoV), defined by the standard deviation of a sample divided by the

*
 Many third party software packages do not provide check pointing.

183

arithmetic mean. Specifically, for a given number, V, of application runtime

results, tv, on a given system, then the Coefficient of Variation is defined as:

V

v

t
vV

t
1

1

t

vV
CoV

V

v

tt
 1

21

Equation 7-1: The Coefficient of Variation is the standard deviation divided by the mean of a series of
observations.

The CoV has shown to be useful in a number of situations in diagnosing

consistency issues on real systems [(Kramer and Ryan 2003), (Skinner and

Kramer October 6-8, 2005), (Kramer and Ryan May 2003)].Other measures

may also be useful at times, such as the range of minimum/maximum values,

but CoV provides a measure that can be assessed over time and is

independent of things like improved application performance due a changed

complier.

7.4 Consistency of Two Light Weight Operating Systems
on the Cray XT-4

Before fully exploring consistency in a number of contexts, it is interesting

to look at consistency for the NERSC-5 system as it applies to two different

Lightweight Operating Systems – Cray Virtual Nodes (CVN) and Cray Linux

Environment (CLE).

184

The average CoV across the SSP-4 applications was 0.4% for CLE and

0.35% for CVN – remarkably close considering CLE was derived from a Linux

operating system. The CoV was calculated for each SSP-4 application by

doing a modest number (~20) multiple runs of the same application and

problem set, and then, these individual CoV‘s were averaged. The LWOS

CoV is significantly less than that found on other full OS configurations

discussed below. It is also much lower than the other light weight kernel

implementation discussed in Section 5.2, leading one to conclude that both

LWOS implementations were carefully designed to limit variation.

However, other tests show significant decreases in consistency with CLE,

particularly shorter running tests such as the NAS Parallel Benchmarks.

Stream, particularly the version of the streams test that use less than 50% of

available memory, showed increased variability as well as lower performance.

If the ratio of CLE CoV to CVN CoV for all tests – from single core to the full

configuration test - is averaged, CLE has a CoV six times that of CVN. This is

opposed to about a 14% increase for the larger scale SSP applications. It is

important to note the CLE CoV is still more than a factor of five lower than

that observed on other systems that run full blown Linux or Unix based

operating systems on different hardware.

Both CLE and CVN provide very consistent timing for applications. Under

CLE, the consistency actually seems to improve with scale. Both CVN and

185

CLE provide an improvement in consistency over systems that use full

operating systems on compute nodes.

7.5 Inconsistency Exists in Application Performance

Performance inconsistency is caused by many factors. On multi-user

systems with multiple jobs running within a shared memory processor,

frequent causes of inconsistency are memory contention, over scheduling the

system with work, and priority of other users.

Figure 7-1: This chart shows inconsistency in performance for 6 full applications running on the NERSC
IBM SP Seaborg system. These codes were part of the SSP-2 suite used for system acceptance with

256 way concurrencies.

However, on large-scale distributed memory systems, it is rare the

compute-intensive parallel applications share SMP nodes. Figure 7-1 shows

the run-time inconsistency present on the NERSC IBM SP ―Seaborg‖ system

0

500

1000

1500

2000

2500

3000

3500

4000

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

R
u

n
 T

im
e

 (
Se

co
n

d
s)

Time (Days from Start of Test)

SSP Application Run Time

Paratec

Camille

QCD

mdrun

tlbe

SuperLU

186

when it was first installed. The codes, run with a concurrency of 256-way,

were run multiple times over a four day observational period with essentially

nothing else on the system. The runtime inconsistency shows that large-scale

parallel systems exhibit significant inconsistency unless carefully designed

and configured. Previous experience had shown that a number of software

factors could cause inconsistency, including slightly different system software

installation on each of the nodes, system management event timing

(daemons running at particular times) and application performance tuning.

These issues were all mitigated on the system during installation and before

the testing period shown. However, configuration problems, bugs, and

architectural issues remained that make the system inconsistent.

Figure 7-2: this is the same data as in Figure 7-1, showing the difference in run time of applications
compared to the average run time of the applications, normalized by the average run time. All

applications show some inconsistency, and several show significant inconsistency.

187

Figure 7-3: Shows the inconsistency in performance of the CG benchmark with 256-way concurrency
before and after adjustments were made to the MP_RETRANSMIT_INTERVAL parameter. The interval

controls how long an application waits before retransmitting MPI messages.

Figure 7-3 is another example of varying runtimes for a single code before

and after tuning the High Performance Switch (HPS) switch configuration.

The MPI retransmit interval tells an application how long to wait before

retransmission of a message. The value was initially configured to

accommodate a switch topology called ―double-single.‖ In order to address

other performance and inconsistency issues shown in Figure 7-3, the switch

was adjusted in the upper levels so each upper level switch node had less

traffic per link. However, this adjustment resulted in having to recalibrate the

timing intervals in the switch to improve consistency.

MPI Retransmit
interval
changed

188

Despite the challenges, it is possible to make very large systems operate

in a consistent manner. Table 7-1 and Figure 7-3 and Figure 7-4 show the

results of running the NAS Parallel Benchmarks on the same system seven

months after the initial use period show in Figures 7-1 and 7-2. It shows that

on a heavily used (85-95% utilization) system, the benchmarks perform very

consistently over multiple runs.

Figure 7-4: Shows seven months of runtimes for six NPB codes on the same system, all run in
production, multi-user time. The graph indicates an improvement in the system consistency that was the
result of multiple improvements including bug fixes and exploration of improved tuning parameters. One

point of the chart is that a well configured and managed system can be very consistent.

Once inconsistency is identified, as shown in Figure 7-2, it is possible,

albeit not always easy, to restore consistency by making changes to

189

parameters, fixing bugs and adjusting configurations so the system is well-

configured and well managed.

Code Min Max Mean Std
Dev

Coefficient
of

Variation

BT 80.80 84.13 82.42 0.64 0.78%

FT 22.17 23.57 22.42 0.22 0.99%

CG 20.22 24.59 21.39 0.70 3.25%

EP 8.57 8.74 8.61 0.04 0.48%

LU 40.70 43.14 41.75 0.56 1.38%

SP 27.31 28.45 27.73 0.21 0.77%
Table 7-1: Runtimes (in seconds) reported by the NAS Parallel Benchmarks using 256 way concurrency

for the last 50 days of the period covered by Figure 7-3.

Figure 7-5: The computational load across the entire NERSC IBM SP Seaborg system, including the
time period covered in Figure 7-3. The system is heavily utilized by compute-intensive applications,

which received over 90% of the overall CPU cycles.

Seaborg MPP Usage and Charging FY 2002

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Oct-01 Nov-01 Dec-01 Jan-02 Feb-02 Mar-02 Apr-02

Date

M
P

P
 H

o
u

rs

MPP (Connect) Hours 30 day avg

Maximum

95% of Maximum

90% of Maximum

85% of Maximum

CPU Usage - 30 day avg

190

7.6 How Much Consistency Should Be Expected?

As noted above, it is possible to maximize performance consistency,

including well organized system administration and management nodes

dedicated to single application, eliminating bugs, adding more resources and

configuration tuning. Nonetheless, questions remain about how much

inconsistency is acceptable, how consistency can be achieved on specific

systems, and what most influences consistency.

7.6.1 System Architecture Influences Performance Consistency

 Of the benchmark suites available, an effective one for this purpose is the

NAS Parallel Benchmarks (NPBs), created at NASA Ames Research Center.

The NPB benchmarks have been heavily used on a wide range of

architectures. They are portable and are known to give comparable results

across systems. The NPBs evolved from Version 1 to Version 2 and have

been used for over 10 years, so they are well understood. Finally, the

benchmarks have been correlated to real scientific workloads at a number of

sites.

For the sake of simplicity, three NPB benchmarks, LU (Lower Upper), FT

(Fourier Transform) and EP (Embarrassingly Parallel) were chosen for use

from the 2.3 version of the NPB‘s.

191

7.6.2 Architectures Evaluated

Four systems with different architectural features were used in the

evaluation. The complete list of system features are listed in Appendix B but a

brief summary is provided here.

Cray T3E (Scott and Thorson 1996) - The oldest system in the study consists

of 696 CPUs, each capable of 900 MFlops/s of peak performance and had

256 MB of local memory. The CPUs (PEs) are connected by a network

arranged in a 3-dimensional Torus with low latency (4.3 microseconds)

and relatively high bandwidth (~300 MB/s bandwidth) per adaptor with

static routing. The system used a UNIX like operating system that has a

Chorus derived microkernel on the 644 compute nodes and UNICOS/mk

on the OS and command nodes.

IBM SP [(Amos, Deshpande, et al., RS/6000 SP 375 MHz Power3 SMP High

Node 2001), (Barrios, et al. December 1999)] - The largest system in the

study was the 6,756 processor IBM-RS/6000-SP with 184 compute nodes

containing 16 Power 3+ processors connected to each other with a high-

bandwidth, switching network known as the ―Colony‖ switch in an Omega

(fat tree) topology (Wu and Fend August 1980). Each node ran a full

instance of the Unix based AIX operating system runs on every node.

Each node has two switch adapters. Sixty-four nodes had 32 GBytes of

memory, four nodes had 64 GBytes of memory and the remaining 380

have 16 GB of memory.

192

Compaq SC (Hoise n.d.) - The Compaq SC system at the Pittsburgh

Supercomputer Center (PSC) was composed of 750 Compaq Alphaserver

ES45 nodes each containing four 1-GHz processors capable of two Flops

per cycle and runs the Tru64 Unix operating system. This system had the

highest memory bandwidth and the CPUs had the highest peak operations

rate. A Quadrics (Beecroft, et al. 2003) interconnection network connects

the nodes in a Fat Tree topology.

IBM Netfinity Commodity Cluster (IBM, Inc. June 2008). The smallest

system in the study was a commodity cluster of 85 two-way SMP Pentium

III nodes connected with Myrinet 2000, another fat tree. Each node runs

the Linux RedHat distribution and this system did not run at full utilization.

7.6.3 Evaluation Results

The systems analyzed were four types of architectures and two types of

network topologies; 3D torus and fat trees. On each system, multiple runs

were executed for each of the three NPB codes – LU, FT and EP. All codes

were run using the Class C problem sets with a concurrency of 128. In this

case, 128 way concurrency means using 128 MPI tasks. This was chosen

because it used at least 8 nodes on the system with the largest SMP nodes

and it ran long enough to minimize the effects of start-up events. Mixed mode

programming - combining MPI and OpenMP - was not evaluated. The jobs

were run in sets ranging from 10 to 30 runs of each code, so multiple versions

could run at the same time.

193

Each system allocated dedicated nodes to the tasks and had other work

running on different nodes. All runs used a one-to-one mapping of CPUs to

tasks, which meant that the nodes were fully packed and all CPUs were used.

Table 7-2 summarized the results for the primary test runs.

The main point of the table is that some systems have larger variability

than others. In the T3E‘s case the variability stems from migrating jobs due to

scheduling. On the other three systems consistency greater than 95% and in

some cases almost 99% for parallel jobs running in a full production mode is

achievable.

System EP LU FT

 Number of Runs 70 119 118

Cray T3E Mean Runtime (sec) 35.5 305.2 106.5

 Standard Dev (sec) 2.2 47.8 12.1

 Coefficient of Variance 6.11% 15.58% 11.33%

 Number of Runs 424 165 210

IBM Power 3+
SP (Seaborg)

Mean Runtime (sec) 17.4 74.6 41.5

 Standard Dev (sec) 0.09 3.4 2.4

 Coefficient of Variance 0.52% 4.58% 5.70%

 Number of Runs 336 359 371

Compaq SC Mean Runtime (sec) 5.03 42.8 30.6

 Standard Dev (sec) 0.35 1.9 1.0

 Coefficient of Variance 6.91% 4.53% 3.18%

 Number of Runs 112 71 119

Intel Cluster Mean Runtime (sec) 17.6 408.7 90.7

 Standard Dev (sec) 0.03 10.7 1.0

 Coefficient of Variance 0.17% 2.62% 1.07%
Table 7-2: Shows the basic statistics for the test runs. Including some of the special test cases

discussed below, over 2,500 test runs were made. There was no correlation between which nodes were
used and the performance or consistency on the system.

194

7.6.4 System Configuration Issues

Often consistency issues can be detected by comparing application

runtimes. It is also possible consistency issues are masked when they impact

a large portion of the resources on a system, so that all applications are in

turn impacted. In this case, micro benchmarks are needed to identify

inconsistency.

An example of this occurred on early Power 5 (Sinharoy, et al. Jul-Sep

2005) systems that were delivered in late 2005 and early 2006. Testing of the

NERSC Power 5 system, Bassi, showed that there was approximately 30%

difference in memory performance between even and odd numbered nodes.

Figure 7-6 shows the memory performance within all the nodes in a rack on

the Power 5 using the stream micro benchmark. The pattern of the odd nodes

being faster than the even nodes is obvious and occurred regardless of the

rack tested.

195

Figure 7-6: The Stream Memory rates for different nodes within a rack of the Bassi System. The Y axis
is the memory rate reported from the Memory stream micro benchmark and the X axis is the node

number within the rack. There are multiple runs of the same test used.

The problem was traced to a boot time memory allocation. Power 5

systems use the IBM‘s Federation High Performance Switch (HPS) and the

switch interfaces can plug into the right or left side of the 8 core node. At the

time, the system was using boot code that was written for the IBM Power 4

systems without modification. The boot code placed the initial memory page

assignments in different locations based on the switch adaptor locations. On

the Power 4, this had no impact on performance, but on the Power 5, it clearly

did.

196

Figure 7-7: Picture of the IBM IH nodes – showing the location of the Federation interface alternating
from left and right sides of the node. This simplified cable management for maintenance.

197

Figure-7-8: The same tests as were done in Figure 7-6 after the memory allocation routine was
changed to place the initial large pages for system software in the same location. While there is still

some natural variability in these different runs, it is much more consistent.

Figure-7-8 shows improved performance after the change and average

application performance also improved. This inconsistency did not exhibit

itself in parallel application performance since it was highly improbable that an

application would be assigned to all even or all odd nodes. Since applications

were always run on a mix of nodes, the slower memory performance on the

even nodes dominated and caused a general application slow down.

7.7 Effects Of The Time of Day

Consistent runtime may depend on when a job is run. Inconsistency could

be caused by system issues, such as the scheduling of large jobs, system

198

diagnostics, system management activities (e.g. collecting accounting

records, files system backups, etc.), or daemons, as well as by user activity,

which may peak at certain times. Analysis showed that for the runs on the

IBM SP and Pittsburgh Supercomputer Center‘s Compaq systems, time of

day had no significant impact on consistency. There were not enough runs on

the T3E or the Intel cluster to perform this analysis for those systems in a

rigorous manner, but no patterns were observed to contradict the results on

the SP and Compaq.

7.8 Embarrassingly Parallel (EP) Consistency

Two machines, the T3E and PSC Compaq, showed unexpected

inconsistency for EP runs. As its name suggests, EP does very little

communication. However, because it has a relatively short runtime, it is

possible individual cases of network congestion caused this inconsistency. If

a version of EP that does not use the network still shows significant

inconsistency, the individual node must be at fault. To test this theory, single

node versions of EP were run on the T3E with one core per node and on a

four-core per node Compaq. The coefficient of variation for the Compaq

dropped to less than 1.6%, indicating that something on the node was

causing some inconsistency. CoV dropped to 1.5% on the T3E.

The NPB codes report their own timing and performance rate. In order to

do that, they use a standard system call to get the relative time between the

start and the end of the program run. The T3E compute nodes run a very

199

limited microkernel that uses system call forwarding. While many system calls

are forwarded to service nodes, timing calls run on the local processor

element, which in this case would use the timer in the rank 0 MPI task. The

T3E‘s global clock was used to keep time and clock interrupts aligned

between the PE (Private Communication with Mr. Steve Luzmoor, Cray Inc.

2008).

When only CPU time was measured on the T3E and the Compaq, CoV

was less than 0.5%. From this, we can conclude that the network and, in the

case of the T3E, the NPB method of timing, were responsible for most of the

inconsistency. Only on the Compaq system do individual nodes contribute

somewhat to the inconsistency.

7.9 Changing the Number of Adapters

Two machines, the IBM SP and the Compaq system, have a variable

number of network ports (adapters) on each node. It is logical to expect that

using more adapters would decrease runtime and improve consistency for the

LU and FT benchmarks, but not for the EP benchmark with its trivial

communication requirements. A set of test runs was made of all three

benchmarks using both one and two adapters.

Changing from one to two adapters had a statistically significant effect on

mean runtime only for the EP and FT program runs on the IBM SP machine

(p < .01 in both cases). For statistical significance, p being lower than the

significance value, α, means there is only a 1- α probability the conclusion

200

significance is incorrect. Using an F-test (Selby 1968) to compare consistency

changes shows two adapters decrease consistency for the FT benchmark on

both systems (p < .05 in both cases). Consistency for the LU benchmark

increased with two adapters on both the Compaq (p < .01) and the IBM SP (p

< .01). As expected, changing the number of adapters used had no significant

effect on the EP benchmarks.

Increasing the number of adapters did not have much impact on mean

runtime, probably because the test programs did not send enough data to

benefit from an increase in bandwidth. Analysis of Variance (ANOVA)

indicates that changing adapters had the following effects on runtime:

a) no effect on PSC (p > .1)

b) no effect on SP for the LU code (p > .1)

c) an effect on the IBM SP both the EP and SP codes (p < .01)

7.10 Low Consistency on the Cray T3E

With the exception of the T3E, all of the machines studied had

distributions such as the one shown in Figure 7-5. In essence, the

distributions were normal bell curves with long right tails. Almost every code

experienced some normally distributed slow down, while a few suffered

significantly more. A typical distribution for the T3E is shown in Figure 7-6.

The majority of jobs experienced only a very small slowdown, while a

significant portion suffered a far larger slowdown (40% or more in some

201

cases). To understand this, the system logs for the runs were examined and

only the system time was measured. This caused the histograms to collapse

into ones similar to Figure 7-5, as seen in Figure 7-7.

This higher level of consistency corresponded to the users experience on

the T3E. The users, who paid close attention to their charged time for each of

their runs, felt the T3E was very consistent.

Figure 7-9: This is a histogram of LU times from the Compaq SC system. It shows Gaussian distribution
with a long fat tail for runtimes.

202

Figure 7-10: This is the histogram of the LU times on the T3E system. It shows a bi-modal distribution

with a large range for the runtimes.

Lack of consistency indicated for the Cray T3E was surprising and

investigated further. In order to make efficient use of the Torus network (Cray

Research, Inc. 1996), the T3E assigned logical node numbers to physical

PEs at boot time (Cray Research, Inc. May 1997). Physical node numbers are

based on how the node physically connects in the interconnect network.

Logical numbers are assigned deterministically to minimize routing at system

startup. The T3E interconnect does direction ordered routing and special

routing, but adaptive routing was never implemented, so the T3E only routed

the data through a predefined path using virtual channels.

203

Jobs are scheduled on logically contiguous nodes. This means that large

contiguous blocks of PEs (PE is the T3E terminology for which other systems

call a node. Each PE has one CPU core) gradually become fragmented,

making it increasingly difficult to run jobs requiring large numbers of CPUs.

The T3E addresses this limitation by periodically scanning all the PEs and

identifying ones that have no work assigned. In a manner similar to memory

shuffling, the system ―migrates‖ jobs amongst nodes to pack all the running

PEs together. This creates larger sets of logically contiguous PEs for new

jobs to start. Jobs are assigned to PEs using a number of parameters,

including an alignment measure that indicates how the starting point and/or

ending point of the application aligns to power of two logical PE node number

(Cray Research, Inc. 1996).

In order to efficiently schedule new jobs, the T3E system software, called

the Global Resource Manager (GRM), scans all the nodes to look for

opportunities to migrate. The frequency of scans is site selectable; on the T3E

under study, they occurred at five second intervals. Such frequency was set

to balance the ―competition‖ between the Global Resource Manager and the

load balancing routines.

When jobs are migrated, system accounting adjusts the charged time to

compensate for the time the job is moving and not processing because it is

not assigned to a node. This is fair to users but over represents the

consistency. However, the real time clock continues, which is what is used to

204

report the NPB runtimes. System accounting logs have been correlated with

the output of the NPB tests. Table 7-3 shows the difference between the real

time values and the system accounting time for the job.

Cray T3E EP CoV LU CoV FT CoV

NPB Reported Runtimes using wall clock 6.11% 15.58% 11.33%

System accounting reported runtimes
which did not count time spent during job
migration.

0.8% 0.6% 0.93%

Table 7-3: Compares T3E consistency using actual NPB Runtime reports and system accounting data.
The NPB runtime reports calculate the ―wall clock‖ time for the test – and do not adjust for time lost due

to migration or checkpoints.

Table 7-3 shows that, adjusted for time spent being migrated, the

consistency of the T3E improved considerably. The situation caused by the

T3E having to migrate to maintain a mapping of nodes to the location in the

switch fabric has interesting tradeoffs. Some of the impact of inconsistency

discussed earlier was mitigated with the adjustment in the accounted time,

since jobs did not abort due to exceeding the runtimes. Yet there were

consequences, such as, users waiting longer for results. Not migrating also

has consequences, since certain work will not progress through the system in

as timely a manner and system productivity will decrease. Infrequent

mitigations would likely lead to lower utilization, while too frequent migrations

decrease consistency. Hence the tradeoff of the frequency of job mitigations

to the consistency should be assessed for each workload to reach a balanced

solution.

205

7.11 Detecting and Reacting to Inconsistency

Off-line detection and reaction to inconsistency is possible. The first

sections of the chapter provide example methods system managers and

developers use to drive inconsistency down into single digit CoVs.

Unfortunately, sometimes this effort is large and requires a broad range of

expertise. The work discussed below for the IBM SP required a team of 12

experts working together for 6 months, having skills in such areas as switch

software and hardware, operating systems, MPI, compilers, mathematical

libraries, applications and system administration. The improvements also

required major modifications to the switch micro code, lowest level software

drivers and global file systems.

Detecting inconsistency in real time so an application can respond is

difficult to do. Dynamically detecting and responding in the proper manner is

even more difficult. Some codes, such as the Gordon Bell Prize winning

LSMS (Ujfalussy, et al. November, 1998), are internally instrumented to report

the performance of internal steps – such as reporting the overall performance

or length of time taken for a time step of simulation. From there, it is feasible

to consider monitoring the periods and identifying if the past period is within

an appropriate range, but this is not normal.

7.11.1 What To Do When Inconsistency Is Detected

Even when inconsistency is detectable, it is not clear what the proper

action to take would be without a better model of what is going on. For

206

example, it is unclear whether adding more CPUs to an application improves

consistency, because it changes network traffic patterns and forces the

application to scale more. Likewise, it may be that decreasing the number of

CPUs the application uses would improve the consistency and possibly

performance.

Several teams use large shared codes and they run special tests on target

systems to assess performance tradeoffs before setting the parameters for

their codes. Other codes use auto-tuning based on system features. In these

cases, it may be useful to add tests that focus on consistency as well as

performance. However, it is uncommon for people to also test for tradeoffs in

consistency. Another concern is the fact an application spending time

monitoring and deciding what to do, will have a longer runtime and possibly

create or even generate inconsistency in performance.

7.12 System Activity

In some cases, the root cause of a performance inconsistency can come

from outside of the node, switch, and application. Most large parallel

computers have a higher level control layer for system health, power, and

connectivity monitoring. Such layers are designed to be all but invisible to

applications, but unfortunately they can exert an influence on application

performance.

207

7.12.1 Improving Consistency

The IBM SP at NERSC was doubled in size in early 2003. Due to previous

experience with inconsistent performance, great care was taken to assure all

known causes of variability were eliminated. Some of these included:

 All new hardware was identical to the existing hardware.

 In order to assure the software configurations between the

additional and original nodes were identical; an exact image of all

existing software was made and copied onto the new nodes.

 All system administrative procedures were identical.

In order to enable testing, new nodes were separated into a queue used

for testing and an early user program. During this test period, benchmarking

with a variety of applications showed that the new nodes were performing

better - approximately 10% - than the original hardware. Figure 7-12 so an

example of the different using the NPB LU benchmark. Once the problem

was detected, the NPB tests were used as probes because they show the

difference and were simple and shorting running. All reports of inconsistency

involved parallel MPI codes. No serial performance differences were

detected. At other times, the additional and original sets of nodes showed

very similar parallel performance. After the new nodes were integrated with

the existing nodes, comparisons of parallel jobs between original and

additional nodes became difficult due to do IBM‘s LoadLeveler scheduling

208

implementation, but the difference in performance between new and old

nodes continued.

Figure 7-11: Comparison of measured and modeled slowdown between two sets of nodes in a parallel
computer. The Y axis gives the relative slowdown between the two sets. The dark squares are

measured performance data and the light line is a model describing the scaling of the slowdown.

The systems were audited extensively and no cause was determined until

the events described in Section 7.12.4 below. The auditing included review of

all hardware components for version levels, manufacturing, and other criteria.

All software was verified for versions and parameters on each node.

7.12.2 An Observation Related To Concurrency

Over time, a body of data and timings established that parallel jobs ran

slower, in proportion to their concurrency, on the original nodes. The degree

209

of the difference depended on the concurrency and the amount of

synchronization in the MPI calls used in the code. A test case employed in the

resolution of this issue was the NAS parallel benchmark LU because it was

turned out to be a fast, reliable probe that coincided with the performance

difference of full scale applications.

Since serial codes show no measurable difference, the parts of the

parallel codes that involved synchronization were implicated. Interruptions at

the OS level or at the switch adapter level can have a minimal impact on

serial processes, but compound when many concurrent processes are

interrupted. If a linear model of frequent short interruptions on each node is

extrapolated, the old nodes have half the performance of the new nodes (for

LU decomposition) at a concurrency of 1250 tasks! Obviously, this is a

significant impact on user productivity. Everything observed from the testing

showed that synchronization of parallel jobs was impacted by delays

proportional to concurrency. However, it was not known if these interruptions

were from hardware or software.

7.12.3 Steps For Diagnosing The Problem

Diagnosing this problem took a number of months, with the system mostly

in production mode most of the time. The steps that were followed were:

 Application testing: By profiling application runs on separate collections

of original and new nodes - including segmented switch sub trees – it

210

was determined which sections of the code account for the overall

timing differences. Knowing the time spent in each MPI routine showed

that the variation was related to a small number of MPI functions. For

the NPB LU code, nearly all of the asymmetry in wall clock time

occurred in the MPI routine MPI_Wait. Since the MPI software on all

nodes had been shown to be the same, the MPI_Wait differences were

the result of something outside of the scope of the application and/or

MPI libraries. This testing only indicated that MPI_Wait took longer to

synchronize codes on original nodes than it did on new nodes.

 Hardware testing: IBM pursued the issue from the point of view of

hardware differences. A plan was developed and carried out to swap

hardware components between old and new nodes in order to identify

hardware that might be responsible for the observed asymmetry. IBM

sent hardware engineers out to complete the hardware testing. After

the changes were made, the NPB LU benchmark was run. CPU‘s,

memory books, system planes, and switch adapters were all swapped

between the two sets of nodes without observing a change in the

timings, indicating the issue was not based on a hardware difference

between the old and new nodes.

 OS testing: NERSC staff double checked that the OS images used to

install the batch nodes were uniform. Using identical images for OS

install was part of the standard methods for system administration of

211

Seaborg. Checksums of system libraries were compared and no

asymmetries were found.

7.12.4 The Problem Was Found – The Control Work Station

After months trying to identify the causes of variability, the reason was

uncovered through a combination of luck and observation. During one of the

evaluation periods of running tests to study the different performance, the IBM

SP Control WorkStation (CWS) for the system failed. The IBM SP is designed

to continue operating without a CWS, and it fortunately did. Unexpectedly,

while the CWS was down, jobs ran very consistently regardless of whether

they used the original or the new nodes. When the CWS was restored to

service, inconsistency was observed again. Figure 7-9 shows NPB LU runs

that happened at the point of the CWS failure.

212

Figure 7-12: Runtimes of the NPB LU on original (―old‖) and additional (―new‖) nodes. Note how the time
on the old and the new nodes are essentially the same when the CWS was off and then later when

there was CWS testing to resolve the issues.

Process #calls #calls Asymmetry

Name original additional ratio

#spget_sy 191817 6864 27.945367
#fcistm 192121 7188 26.728019
#lssrc 194608 7780 25.013882

#basename 385701 15550 24.803923
#odmget 193918 8481 22.864992
#ksh 390625 20129 19.406081

#rm 197514 12449 15.865853

#sed 397999 29482 13.499729

 ksh 206206 23159 8.903925
Table 7-4: The difference frequency that different system reliability tasks run on the original and

additional nodes.

With this hint, UNIX process accounting logs showed the CWS was

running several processes and other system administrative commands up to

27 times more often on certain nodes than other nodes. Knowing the specific

processes and their frequencies provided a fingerprint of the subsystem

213

causing the interruptions. Finding command names occurring in the system

script /usr/lpp/csd/bin/ha.vsd which was invoked as part of the First Failure

Data Collection subsystem, led IBM to investigate the CWS problem

management subsystem, pman (IBM, Inc. n.d.). The analysis determined that

four definitions were deactivated in the system management GUI (Graphical

User Interface), but were still running. This was a bug in the pman subsystem

data base that was not observable to system managers through the GUI.

Instead, the definitions required explicit deletion from the System Data

Repository (SDR which is a data base of the system configuration) to remove

them, rather than deactivation as was documented. A problem report was

opened with IBM development (PMR #38446) that corrected the defect in the

problem management subsystem, while the workaround was to actually

delete the files.

Once the definitions were deactivated, applications ran with very low

variability regardless of how many new and old nodes it used. Resolving this

issue led to a measurable improvement for synchronizing MPI codes at high

concurrency. In normal operation, jobs use a combination of old and new

nodes. Thus, the end result was that all codes saw a benefit of faster and

more consistent runtimes, particularly those codes at higher concurrency. The

performance gains shown earlier in Figure 7-2 and Figure 7-3 are a result of

the changes described in this section and were realized due to consistency

testing.

214

Figure 7-13: The above graph shows MPI barrier performance before (Oct 14, 2003) and after (Nov 27,
2003) the problem was corrected. The graph is smoothed to make the trend clearer. The lower barrier

times after the problem resolution led directly to improved performance for many applications.

7.12.5 An Observation About Performance Variability

This case study also demonstrated that when the time scale of

performance variability becomes short enough, it manifests itself as a static

performance penalty for all applications. The resolution of this issue was the

equivalent to providing the users a ½ TFlops/s peak system* for no cost other

than diagnosis effort.

*
 PotencyIBM = Potency

‘
IBM + .1*Potency

‘
IBM/2 = 1.05 * Potency

‘
IBM

215

7.13 Chapter Conclusion

HPC systems increase complexity, both in their hardware and software

layers. As complexity increases, there is increased opportunity for system

attributes to contribute to inconsistency for the time it takes the system to

complete a given amount of work. Some inconsistency is to be expected as

different applications compete for shared resources. This inconsistency is

unavoidable, but can be minimized to a few percent CoV with good system

management and work scheduling.

There are systematic contributors to inconsistency that can be avoided.

The contributors can be from system administration, software and hardware.

The ―low hanging‖ fruit which can easily be rectified include having system

nodes with different software levels and allowing unnecessary system

processes to execute. Even after these causes are eliminated or mitigated,

many areas can contribute to inconsistency of a system.

The work in this chapter shows hardware, configuration management and

software each contribute to observable inconsistency. It shows well

configured, error free large systems are capable of consistently executing a

wide range of applications simultaneously.

216

Chapter 8: Usability – Something for the Future

8.1 Chapter Summary

Usability is the final piece of the PERCU methodology and has been a rich

research area in its own right for a long time. Assessing usability for HPC

systems will take multiple dissertations. Indeed, the Defense Advanced

Research Project Agency (DARPA) is funding significant ―productivity‖

research in HPC as part of the DARPA High Productivity Computing Systems

(HPCS n.d.) effort. Computer Human Interfaces are a complete discipline with

large organizations such as the Association of Computing Machines Special

Interest Group on Computer-Human Interface (ACM SIGCHI) involved with

improving productivity, but seldom is the work targeted to HPC systems.

Similarly, Software Engineering is a discipline that deals with usability by

addressing improved methods of code development and maintenance

(Boehm May 20-24, 2006) but is, in many ways, orthogonal to the

assessment of usability of HPC systems. More recently, the field of Usability

Engineering (ISO Usability n.d.) has emerged as well, as has the ANSI/ISO

Usability Model (ISO 1998) – a standard the deals with ―office work‖ and

visual displays.

Given the degrees of focus from others in this area, this dissertation does

not attempt to explore Usability in a HPC specific manner nor does it attempt

to expand the field of usability analysis. Rather this dissertation documents

existing ―best practice‖ approaches within the HPC community to assess

217

usability. It provides references to new and ongoing work with comments on

the likely impact for HPC system evaluation. It also presents two examples of

using some of the common usability assessment approaches for comparative

study of HPC systems.

8.2 Approaches to Assess Usability

What scientists really want to know of the usability of a system is ―How

much harder it is to use an HPC system rather than standard platform tools?”

and “Is it worth learning how to use a much more sophisticated and/or

efficient system than a system they already know how to use?”

Usability addresses these questions. (Nielson and Levy 1994) noted two

fundamental approaches to usability analysis, while admitting ―usability is a

general concept that cannot be measured, but is related to … parameters‖.

The two approaches are subjective user preference measures to assess how

much users of a system like something, and objective performance measures

that assess how ―capable‖ users are of exploiting a system well. One of the

conclusions they noted was a strong association with users‘ average

performance on tasks related to using systems and the user‘s subjective

satisfaction so ―there is a large chance of success if one chooses … based

solely on user opinion.‖

According to Pancake (Pancake June 1998), usability, at least for software

interfaces, should be assessed for:

218

 Ease of learning (e.g. intuitive conceptual frameworks and

consistency);

 Ease of use (minimal complexity);

 Usefulness (applying to new situations and avoiding errors); and

 Throughput (streamlining a sequence of operations, reducing

errors, being efficient).

There are a number of studies discussing the ISO/ANSI usability model

that defines effectiveness* (errors made), efficiency measures (time to

complete a task) and satisfaction (preference).

(Sauro and Kindlund April 2-7, 2005) developed a method to simplify the

ANSI/ISO usability metrics into a single metric that is based on the correlation

they found across the usability assessment of 1680 tasks. They proposed a

method, called Principle Components Analysis, to scalably provide a

summarization model of usability and a single metric that can be used in

regression analysis, hypothesis testing, and usability reporting. (Hornbaek

April 28-May 3, 2007) did a study of over 73 usability analyses and concluded

―correlations are generally low‖ between the usability measures used in the

studies. The paper specifically found much lower correlation than claimed in

*
 Note usability terminology uses a different definition of effectiveness than the term used
throughout this work to reflect the effectiveness of work and resource scheduling in
computer systems.

219

the (Sauro and Kindlund, 2005) study and therefore questioned the idea of a

single usability metric.

Much of the documented research on usability work fits into several

categories. One approach is fundamental usability analysis investigations that

focus on human interactive use of machines. Many HPC systems have

interactive access, but the majority of the resources are consumed by non-

interactive activities. Usability is an active area of investigation, but it may be

too early to apply it to the evaluation of HPC system in the context of

comparison.

(Dicks October 20-21, 2002) and (Rubin 1994) discussed four reasons

why even rigorous forms of testing may not assure usefulness because

testing is always in an artificial situation and does not prove a system works.

Furthermore, usability testing participants are not fully representative of the

target population of users and ―testing is not always the best technique to

use.‖ (Dicks, 2002) further points out ease of use and usefulness are often

used synonymously, but they are very different. Ease of use indicates how

quickly a user can use a system to complete a task and is related to

efficiency. Usefulness is the overall usefulness of the system – does it do

what it is supposed to do.

A more common approach, one used almost always in HPC, is

comparative studies between systems. These studies typically assess

systems in a manner that includes both qualitative and quantitative criteria.

220

Several examples exist of this approach and are discussed below. More

recent HPC efforts associated with usability deal with the broader area of

productivity. One currently underway is the effort to assess improved

productivity for the DARAP HPCS program and is discussed in Section 8.3

below. Another discussion about productivity across the entire system, based

on economic theory is included in Appendix E.

8.3 High Productivity Baseline Studies

(Gould and Lewis March 1985)recommended three principles of designing

systems: early focus on user and tasks, empirical measurement, and iterative

design. The DARPA HPCS study is assessing the relative productivity of

systems at two different points in time, mostly by addressing the first and

second principles. This study, underway at IBM and Cray Inc, assesses five

use cases: code development, code maintenance, production running,

system management. The code development category is further separated

into single user versus team developed codes to make five cases.

NERSC and the author of this dissertation are collaborating with IBM in

three areas of the study – individual and team code development, and system

management. The goal of this study is to document usability inhibitors for

systems in the 2002 time frame in order to design better systems that will be

available in the 2011 time frame. This information will then be used to guide

software and system improvements for the IBM PERCS system scheduled for

deployment in 2011 (Danis and Halverson February, 2006).

221

The current effort is to formalize study methods and gather data by

electronically instrumenting single user development tasks that ask subjects

to create parallel programs to solve a particular problem. The subjects are

selected for the range of parallel programming experience they have. Their

progress and approach are monitored. Interviews are done to assess the

problems and issues they felt were problematic. This effort is in the data

collection phase and reports are expected later. Most of the data collection is

being done on NERSC‘s Seaborg system and also on the NERSC Bassi

system, both parts of the IBM Power series of systems.

The other effort associated with this project is to assess system

management productivity. The approach was to interview professional HPC

system managers and to estimate the time spent in different tasks such as

system upgrade preparation and execution, problem diagnosis, job

scheduling monitoring and adjustments, and file system management. The

discrete tasks for these functions are being broken down and assessed. The

amount of work in each area is also being analyzed along with failure and

rework information. This information will be used to identify areas for

improvement in future systems and then eventually to measure the difference

between the systems of 2002 and 2011.

8.4 Comparative Usability of Two LWOSs

As discussed in Section 8.2 above, comparative study of systems for

usability assessment is appropriate. Section 8.3 above discusses long term

222

assessment of similar systems over a long term basis to identify and validate

design changes. System assessments that use PERCU are more often

carried out on roughly contemporaneous systems for the purpose of

comparing the relative potential and value of systems. Hence, a common

approach is to compare two or more systems across a set of functions and

activities. This section provides a specific discussion of carrying out just such

a comparison.

8.4.1 Comparison of CVN and CLE

Rather than to discuss a comparison in the abstract, it is instructive to

discuss the relative usability evaluation of the two Light Weight Operating

Systems – CVN and CLE. This is a limited analysis in the sense the criteria

discussed above recognized both systems had limitations that impacted

usability – at least at the time of evaluation. For example, neither system was

expected to support many of the programming models found in general

purpose systems.

Both CVN and CLE used in this study had full-featured programming

environments ((DeRose and Levesque May 7-10, 2007), including:

 PGI, Pathscale, and Gnu compilers for Fortran, C and C++ codes;

 Cray‘s Portals communication layer that supports MPI and SHMEM

parallel programming models;

223

 Cray LibSci and AMD Core Math libraries;

 Cray performance and profiling tools; modules environment for

managing system and custom built software;

 Torque/Moab for batch system managements; and

 Lustre parallel file system.

8.4.2 Evaluation Criteria

Usability was assessed for both ease of use by the computational

community and ease of management for system managers. 377 separate

criteria were examined for CLE and CVN. Expected features were tested for

functionality as well as performance. For CLE, of the 377 items, 254 were

testable for CLE for this analysis – with 35 applying only to future functions

and 88 being more descriptive and not testable. Similarly, of the 377 items,

248 were testable for CVN – with 94 being descriptive and/or not testable. For

CLE, more than half, 53%, of these criteria were related to Usability, with 39%

focused on Usability issues and 14% on System Manager Usability.

Table 8-1 shows the comparison of how many usability features were

operational between CVN and CLE. Less than 10% of the items under CLE

failed their tests. Almost all failures regard modest to slight discrepancies

with performance. As of January 2008, only one of the 134 Usability tests is

224

currently outstanding for CLE - proper functioning of disk quotas which is

currently a high priority problem report with IBM.

 CVN CLE

Number of features tested 248 254

Number of features properly working 232-90.5% 232 – 91.3%
Table 8-1: Initial Usability Tests for CVN and CLE.

8.4.3 Observations

Usability was truly evaluated by moving large scale applications to the

systems – which was qualitatively evaluated in conjunction with early users.

The usability advantages of CLE over CVN are a bigger set of standard

POSIX C library routines for compute node applications, so users have more

control for their applications, and less need to rewrite the source codes.

CLE‘s increased Operating System functionality simplified code porting from

other platforms than CVN. At least in some cases, compilations are quicker.

CLE provides other needed functions, such as OpenMP, pthreads, Lustre

failover, and the possibility of adding Checkpoint/Restart and other features.

CLE enabled more options for debugging tools, such as the Allinea DDT

(Distributed Debugging Tool) (Allinea n.d.), which is now the operational

debugger running on Franklin.

Some disadvantages of CLE over CVN are the increased memory

footprint for the operating system so that it leaves less usable memory space

for user applications. The difference is about 170 MB/node from our

measurements (about 4.25% of the available memory). MPI latency for the

225

farthest intra-node is higher under CLE (8.12 sec) than CVN (7.55 sec),

although this may improve for future CLE OS releases.

8.4.4 CLE and CVN Evaluation Feedback

NERSC launched an early user program on Franklin during the CVN and

CNL assessment period. We worked with experienced users on Franklin to

benefit all parties. Many early users were able to run high concurrency jobs to

tackle much larger problem sizes and model resolutions that were impossible

before. Users got a chance to get hands-on with a new architecture and a

relatively lightly loaded system, and user jobs were free of charge from their

allocations. Running the broader range of user applications helped find any

problems (and fixes) in the system. The overall user feedback for CLE was

very positive, even at its early exposure. Most applications were relatively

easy to port to Franklin, the user environment (via modules) was familiar, and

the batch system worked well.

8.5 User Surveys

Several studies noted in Section 8.2 above note user satisfaction is a

good indicator of usability. Unfortunately, it is not always possible to use

survey instruments to assess usability of HPC because there are limited

communities in common across different systems and access may be limited

for systems that are already deployed. More importantly, assessment of

systems not yet deployed is not possible with surveys of user satisfaction.

226

Nonetheless, user survey instruments play a key role in guiding near term

operations of HPC systems as well as longer term decisions based on the

indicators within the survey. One of the longest running survey series

available for HPC systems is at NERSC, which surveyed (NERSC User

Survey 2006) a population of 2,000 to 3,000 HPC users over a period of 10

years.

The survey allows comparison on a side-by-side basis of user satisfaction

for six different HPC systems. The parameters are not just usability, but

asked users to rate all systems and services across a set of parameters using

a scale from 1 to 7 (least to most satisfied). The survey asked users to rate

the importance of systems and services as well as their satisfaction. Users

were encouraged to provide free form comments, suggestions and

recommendations as well.

In 2006, users were asked to rate each system at NERSC in the following

categories:

 Hardware/System: Overall satisfaction, Uptime (Availability), Batch

wait time, Batch queue structure, Ability to run interactively, Disk

configuration and I/O performance

 Software: Software environment, Fortran compilers, C/C++

compilers, Applications software, Programming libraries,

Performance and debugging tools, General tools and utilities and

Visualization software

 An overall rating of the systems

227

Detailed analysis of the surveys can be seen at

http://www.nersc.gov/news/survey/. From studying the results several

conclusions are obvious.

 User satisfaction varies from year to year on the same systems.

 System load plays a major part in the impressions of the users.

 Satisfaction for systems generally improves over time, but there are

several cases of a mature system degrading as it remains popular

with users but not as well suited to the increased load.

 User support and help using the systems (e.g. advice, training,

documentation, etc.) are key components to satisfaction.

 Areas that are persistently a concern are the ability for systems to

schedule the user‘s work in some organized manner (batch wait

time) and more computing and storage resources. This observation

from the survey results and user input, directly led to the creation of

effectiveness category in PERCU and the ESP test.

8.6 Chapter Conclusion

The current HPC practice of system usability assessment is mostly

comparative analysis using checklists of features and services. There is little

formal study of HPC usability.

User surveys are good at assessing deployed systems for operational

improvement and for indicating important features that influence usability, but

are seldom used for usability assessment of future systems. Other forms of

http://www.nersc.gov/news/survey/

228

comparative analysis are underway to influence future system design – the

largest being the DARPA HPCS program, but are long, large efforts that may

not be applicable to system purchases or comparisons.

229

Chapter 9: PERCU’s Impacts, Conclusions and
Observations

9.1 Chapter Summary

This chapter discusses the impacts that PERCU and its components have

had in the world of HPC for over the last decade. Several organizations have

adopted parts of the PERCU method to supplement their methods. Several

DOD Modernization Program (Private communication with Mr. Cray Henry,

Director of the Department of Defense (DOD) High Performance Computing

Modernization Program (HPCMP) 2008) sites (Army Research Laboratory,

DoD‘s Engineering Research and Development Center (ERDC) are using the

SSP concept to assure their systems are operating at the performance levels

expected throughout their life. Lawrence Livermore National Laboratory

considered using the ESP test in their ASCI procurements (Private

communication with Mr. Brent Gorda, LLNL 2005). Consistency is a measure

found in recent National Science Foundation RFPs. This chapter looks at

each of the parts of the PERCU method, summarizes it, and comments on

their impacts and what might lie in the future for that area.

9.2 Summary of PERCU

PERCU is a holistic, user based methodology to evaluate computing

systems, which, in this work, is applied to high performance computing (HPC)

230

systems. It consisting of five components: Performance, Effectiveness,

Reliability, Consistency, and Usability.

The Sustained System Performance Method is introduced for an improved

way of evaluating systems for the potential to support a given workload. SSP

was defined and several examples of its use provided. It can evaluate

systems based on time-to-solution of a suite of tests and/or with price

performance. SSP can take into account systems that are available at

different times and also can be used throughout the life of a system to monitor

performance.

This work also introduces the Effective System Performance Test that was

developed to encourage and assess improvement for job launch and

resource management features of systems – both important aspects for

productive computing systems.

Reliability is the third characteristic of a productive system, and this work

explores the major causes of failure for large systems and suggests improved

methods for a priori assessment of the potential reliability of HPC systems.

Consistent execution of programs is a metric that is often overlooked in

system assessments, but if lacking, can negatively impact a system‘s quality

of service. This work provides background of why consistency can impact

quality of service, what causes inconsistency, and it defines approaches for

assessing it.

231

This work discusses usability, providing a discussion of common best

practices and their ability to help evaluate systems. It also is a potential area

of future work in how usability analysis can be better applied to HPC systems.

PERCU can be used, in all or part, and with a wide range detail and effort.

At its simplest, it provides a framework to consider holistic evaluation of large

systems. In its detail, it introduces a set of new measurement methods. The

use and impact of each component is documented for multiple systems,

mainly using systems that have been evaluated at the NERSC Facility.

PERCU has been used extensively by NERSC. Other sites are also using the

framework and the software components. The methodology will help many

organizations to get better performance, be more effective, give users a more

reliable system, be able to measure consistency, and be able to make the

systems have improved usability. There have already been many significant

impacts by sites that are using the methodology and its components. The

chapter also lists some ideas for further study.

The world of HPC is expanding daily. It is my sincere hope that the work

here will contribute to the effort to get systems that can better solve the

world‘s complex problems.

232

9.3 The SSP Method for Assessing Performance

9.3.1 Summary

The key contribution of this work for Performance evaluation is the

Sustained System Performance (SSP) concept which is a method that uses

time-to-solution to assess the productive work potential of systems for an

arbitrary large set of applications. The SSP provides a way to fairly compare

systems which may be introduced with different timeframes and also provides

an exact method to assess sustained price performance.

The dissertation defines the equations for SSP and provides a theoretical

basis for the framework, while it also uses a few simple examples to provide

the motivation for use of and implementation of SSP. SSP also enables time-

to-solution for different application domains to be compared across systems

to determine cost performance and value.

9.3.2 Impact

SSP has been successful in evaluating and monitoring the NERSC

systems. The method has been deployed by several other HPC sites (e.g.

Army Research Laboratory, DoD‘s Engineering Research and Development

Center (ERDC)). Others are considering using SSP in the future. Multiple

vendors express a preference for SSP as the evaluation factor. For example,

Dr. Margaret (Peg) Williams, Vice President for Development at Cray, Inc.

said (Williams 2007)

233

“The SSP metric is much more representative of actual system performance
than other widely used metrics, such as LINPACK or HPL. If more HPC sites
used this type of metric, they would procure well-balanced systems that
performed well over a range of applications and there would be fewer
surprises with the delivered systems”.

9.3.3 Further Work

It is important to keep any performance evaluation approach vital so the

rapid evolution of hardware and software does not make the test obsolete.

The NAS Parallel Benchmarks have had five or six versions over the past 15

years. Therefore, while the SSP method has long term viability, it will have

multiple versions that need to be created and tracked. The author believes,

now that the latest version of the SSP-5 suite is openly available to the

research community, it will become a meaningful replacement for simplistic or

obsolete measures. The SSP-5 suite is available for download at:

 http://www.nersc.gov/projects/procurements/NERSC6 and

 http://www.nersc.gov/projects/ssp.php.

9.4 Effectiveness of Resource Use and Work Scheduling

9.4.1 Summary

Effectiveness is a component of PERCU method that assesses the ability

for users of the system to efficiently access the performance they need in the

system. To measure effectiveness, a system utilization benchmark, the

Effectiveness System Performance (ESP) test, was developed as part of

PERCU. A brief description of how ESP evolved is provided along with the

http://www.nersc.gov/projects/procurements/NERSC6
http://www.nersc.gov/projects/ssp.php

234

design goals for the test. Chapter 5 and Appendix G summarize uses of ESP

to evaluate different job scheduling software packages.

9.4.2 Impact

ESP has been successful in multiple aspects. It evaluated batch systems on

the same hardware and produced insights into batch system features and

benefits. These insights led to significant improvements in several products

now serving the HPC and other communities. ESP helped motivate and

evaluate the design features of IBM‘s Loadleveler and the Cray‘s resource

manager, as well as helped tune Cluster Resources‘ Moab/Torque job

scheduler for the Cray XT-4 at NERSC.

9.4.3 Future Work

The ability to schedule work on Petaflop and Exaflop systems will need

new functionality to effective schedule and manage workflows for reasons of

scale and future application complexity. The design of improvements needs

metrics for guidance. ESP provides that and can evolve as the scale of

systems evolve. ESP would benefit from changes to allow better assessment

of scheduling for unique architecture features, topology aware scheduling and

for being able to extract diagnostic information from resource management

software.

235

ESP is packaged as a freely available software archive, with facilities for

simple installation and execution. It is located at

http://www.nersc.gov/projects/esp.php.

9.5 Reliability

9.5.1 Summary

Reliability is the next aspect of system productivity. It is challenging, yet

critical; to proactively assess the reliability of a system at the time of

procurement before the system is purchased. This work documents causes of

failure spanning six major HPC systems over five years. It identifies the major

reasons that systems fail and shows that, at least for the systems included in

the study, system wide outages were more often caused by software than

hardware.

Chapter 6 discusses the reasons individual jobs fail on one system, and

discusses improvements that resulted from analysis. The chapter suggests

ways to improve the up-front potential for a system to be reliable as well.

9.5.2 Impact

A system reliability data repository has been created and contains six

years of data on the NERSC systems. It is publically available as part of the

Petascale Data Storage Institute SciDAC research collaboration. The web site

allows interactive queries, charting and exporting of the data to CVS

formatted files and is located at http://pdsi.nersc.gov.

http://www.nersc.gov/projects/esp.php
http://pdsi.nersc.gov/

236

Several sites including CMU (Carnegie Mellon University) and Los Alamos

National Laboratory and others are using the system reliability data repository

which contains six years of data on NERSC systems. It is the counterpart of

the Computer Failure Data Repository, the first ―publicly‖ distributable HPC

failure repository.

9.5.3 Future Work

More can be done to fully understand the factors influencing reliability. The

ways to diagnosis and improve software error propagation in the layers of

HPC software is a key area of future work. Furthermore, the best, or even

feasible, methods of doing up front comparison of systems for their potential

reliability are very difficult. But as systems increase from 1,000s of processors

and millions of components to 1,000,000s of processors and close to billions

of discrete components, reliability, error analysis and error recovery will

become paramount to the impact these systems will have. Application of

methods like statistical learning theory and kernel machines have made some

noticeable impact in other areas such as web services, but are not deployed

in HPC in any wide degree.

Finally, single applications will have to continue to expand in scale as

systems do. The ability to detect, accurately assess, and correct, single

application failures will increase in importance. Once the reason for failure is

accurately detectable there is another body of work to determine how best to

237

help applications recover, given the state of an application involves many

software layers, not all of which are visible to the programmer.

Some of these factors have informed the requirements in the procurement

for NERCS-6 and the experience gathered may help define how to improve

proactive measures of reliability.

9.6 Consistency of Performance

9.6.1 Summary

It has also been shown that very large systems can be made consistent

and the loss of cycles is avoidable for properly configured, designed and

managed systems to the degree that consistency can be less than a few

percent. Nonetheless, inconsistent performance can erode a system potential

with constant vigilance. This work introduced the simple but effective

Coefficient of Variation (CoV) metric that is used with a variety of benchmark

testing to assess consistency. It helped to provide measurements that led to

diagnosing issues related to inconsistency as shown in the real world

examples related to consistency and how improvements to the system were

made based on the metrics.

9.6.2 Impact

Some early sharing of these results has provided increased awareness

about consistency. Several vendors have improved their software

architectures based on the work documented in this dissertation – in addition

238

to fixing the discrete bugs that were identified with the work. Examples

include improved job scheduling software with features such as checkpoint

restart (IBM and Cray) and job preemption (IBM, Cray and LSF), better MPI

launching methods (IBM), better consistency (IBM, Sun) and This resulted in

more productive systems for users not just at NERSC but on systems at

many different locations.

9.6.3 Future Work

It would be useful to add more systems to the study so there is more

overlap of architectural features. This will narrow down features that influence

performance consistency.

Studying consistency on more systems with the same architecture would

show the impact of local configuration and system management choices.

Another step is to evaluate consistency using different variants of the

same basic system architecture – for example, systems that have a different

number of processors per node or that have the same CPUs with a different

switch.

Another potential area to study is performance consistency differences

between shared memory systems and distributed memory system. One may

think consistency is lower in shared memory systems, but it is not clear that is

the case, particularly on systems with more than 128 CPUs, such as the SGI

Origin system (Laudon and Lenoski February 25-28, 1996).

239

Using specialized tests to perform finer grain studies about functions that

influence consistency is a worthwhile area. Since the work discussed here

began, several focused tools to study ―OS jitter‖ have become available, such

as PAL System Noise Activity Program (PSNAP) (PSNAP 2006). These tests

are artificial benchmarks that focus on the consistency of OS performance

within an SMP (node). It is not clear how OS jitter influences consistency of

parallel applications, nor how to combine tools that measure SMP features

with parallel applications.

9.7 Usability – Something for the Future

9.7.1 Summary

Scientists want to know how much harder it is to use HPC systems rather

than their standard platform and tools. They want to know how much more

effort is required to get a certain amount of work done on the HPC system

rather than their desktops systems.

9.7.2 Impact

The impact of the usability work discussed here includes HPC sites

adopting the NERSC User Survey methodology. It has also contributed to the

successful evaluation of the CLE system, thereby accelerating its deployment

world-wide.

240

9.7.3 Future Work

Usability is one of the most important aspects of system meeting their

potential because, after all, is it the usage of the supercomputing systems that

is really making a difference to the world. More work needs to done to provide

quantitative methods for effectively surveying the users of the systems.

Current research in usability is not well applied to HPC systems and provides

an area for future work.

9.8 PERCU Summary

PERCU is a methodology that is very useful for sites when they are

evaluating their high performance systems. There are several outcomes for

this work in developing the various components of the methodology.

 Sites can use the PERCU method to develop a better set of

measurable requirements for the purchase of their systems.

 Vendors can better respond to RFP‘s that were developed using the

PERCU methodology because as more sites use it, hopefully vendors

will adjust their processes and systems to be more efficient.

 As more sites use the software components of PERCU such as SSP,

ESP, etc., they will have more accurate measurements of how the

system is working and how effective it is for users. This will help the

site in terms of future funding and measuring user satisfaction. Also, as

more sites work with their vendors using the results of the benchmark

testing, the vendors will be able to make their software better and

241

better. This will help them to have more information and succeed in

being awarded more contracts for systems.

9.9 Chapter Conclusion

I want to thank everyone in the world of HPC; universities, scientists,

vendors, users, government agencies, law makers, etc. for all the work in

developing and using high performance computers. It is my sincere hope that

the methodology of PERCU and its components will indeed help sites running

large jobs to facilitate their users to solve some of the most complex and

critical problems of the world and help make it a better place for all.

242

Appendix A. Additional Data

Additional data and information that was used in this work can be found at

http://www.nersc.gov/~kramer/UCB/Dissertation/Data. There is also related

links at http://www.nersc.gov/~kramer/UCB/Dissertation.

http://www.nersc.gov/~kramer/UCB/Dissertation/Data

243

Appendix B. Characteristics Of The Systems

NERSC Systems Used in SSP Evaluations

System
Name

Date of
Acceptance

Used

Process
or Type

and
Speed

Interconnect Total
Number
of CPUs

Total
Number

of
Compute

CPUs

SSP per
CPU

(MFlops/
s)

System
Wide SSP
(GFlops/s)

NERSC 2 –
Phase 1 –
curie

September
1996

Cray
T3E-600
– Alpha
5.2 @
150 MHz

3D Torus 128 128 Using
SSP-1
39
MFlops/s

Using
SSP-1
3.9
GFlops/s

NERSC 2 –
Phase 2 -
mcurie

June 1997 Cray
T3E-900
– Alpha
5.2 @
225 MHz

3D Torus 512 512 Using
SSP-1
46
MFlops/s

29.4
GFlops/s
Using
SSP-1

9.9.1

NERSC-3 –
Phase 1 -
gseaborg

October 1998 IBM
Power 3
(Whiteha
wk II) –@
200 MHz
– 0.8
GFlops/s

IBM SP
Switch

736 512 Using
SSP-1
67
MFlops/s

Using
SSP-1
34.8
GFlops/s
required

Phase 2a -
Seaborg

July 1999 IBM
Power 3+
(Nightha
wk) @
375 Mhz
– 1.5
GFlops/s

IBM Single-
Single
Colony
Switch

3,328 3,136 Using
SSP-1
114
MFlops/s

Using
SSP-1
238.4
GFlops/s
measured

Phase 2b -
Seaborg

November
2000

IBM
Power 3+
(Nightha
wk) @
375 Mhz
– 1.5
GFlops/s

IBM Single-
Single
Colony
Switch

3,328 3,136 Using
SSP-1
116.6
MFlops/s

Using
SSP-1
365
GFlops/s

NERSC-3E
- Seaborg

December
2002

IBM
Power 3+
(Nightha
wk) @
375 Mhz
– 1.5
GFlops/s

IBM Double-
Single
Colony
Switch

6,656 6,080 Using
SSP-2
214.8
MFlops/s

Using
SSP-2
1,305
GFlops/s

9.9.2

Using
SSP-4
890
Glop/s

244

NCSa -
Jacquard

July 2005 AMD
Opteron
2.4 GHz
– 4.8
GFlops/s

Infiniband
12x
backbone
with IB 4x
connection
for each
node

708 640 Using
SSP-3
636.7
MFlops/s

Using
SSP-3
413.9
GFlops/s

NCSb –
Bassi

January 2006 IBM
Power 5
@ 1.9
GHz –
7.6
GFlops/s

IBM HPS
(Federation)
with two
planes per
node

967 888 Using
SSP-3
961
MFlops/s

Using
SSP-3
923.3
GFlops/s

9.9.3

NERSC-5-
DC

November
2007

AMD
Dual
Core @
2.6 GHz
– 5.2
GFlops/s

Cray Seastar
2.1 3-D
Torus

19,488 19,320 Using
SSP-4
994
MFlops/s
Using
SSP-5
699
MFlops/s

Using
SSP-4
19.2
TFlops/s
Using
SSP-5
13.5
TFlops/s

NERSC-5-
QC

September
2008

AMD
Dual
Core @
2.3 GHz
– 9.2
GFlops/s

Cray Seastar
2.1 3-D
Torus

38,736 38,640 Using
SSP-4
982
MFlops/s
Using
SSP-4
~673
MFlops/s

Using
SSP-4
37.98
TFlops/s
Using
SSP-5
~26
TFlops/s

Table B-1: NERSC systems during the time of the SSP

245

Systems Used in Consistency Investigations

Category Units Cray
T3ENERSC
“mcurie”

IBM SPNERSC
“Seaborg”

Compaq SC
PSC

“lemieux”

IBM
Netfinity

LBNL
“alvarez”

Year of Installation 1997 2000 1998 2001

CPUs Alpha EV57
based

Power 3+ Alpha EV 68 Intel
Pentium III

Clock MHz 450 375 1,000 866

Operations per Clock 2 4 2 1

MFlops/s per CPU MFlops/s 900 1,500 2,000 866

CPUs per node 1 16 4 2

Memory per CPU MB 256 1,000 to 4,000
most runs on

1,000

1,000 512

Caches L1 – 8 KB
L2 – 96 KB

L1 – Data 64
KB

L1 – Inst 32 KB
L2 – 8MB

L1 – Data 64
KB

L1 – Inst 64
KB

L1 – Data
16 KB

L2 – Inst 16
KB

L2 – 256
KB

Memory Bandwidth GB/s .96 GB/s per
CPU

1.6 GB/s per
CPU

Switched Base

8 GB/s per
node

8 GB/s per
node

(2 GB/s per
CPU)
Switch
based

.532 GB/s
per CPU

Shared Bus

Switch Technology Custom IBM ―Colony‖ Quadrics Myrinet
2000

Switch Topology 3D Torus –
Static Routing

Omega
Network

Fat Tree Fat Tree

Adapters per node 1 2 (2 is the
default)

2 (1 is
default)

1

Interconnect Bandwidth
per adapter

MB/s 300 1,000 280 240

Latency (MPI) sec 4.26 18.3 ~5 11.8

Ping-Pong Test - MPI to
MPI 1 task per node

MB/s 303 365 280 per rail 150

Number of CPUs 696 3,328
2944 compute

(184 nodes)

3,000 170

Number of CPUs per
node

 1 16 4 2

Compilers Cray IBM Compaq PGH

O/S Chorus
kernel on
compute
nodes

Unicos/mk on
OS and

Command
nodes

Full Unix based
AIX with SP

software on all
nodes

Tru 64 Unix Full Red
Hat Linux

Load Heavy - > Heavy - > 90% Heavy – 75- Very Light –

246

Category Units Cray
T3ENERSC
“mcurie”

IBM SPNERSC
“Seaborg”

Compaq SC
PSC

“lemieux”

IBM
Netfinity

LBNL
“alvarez”

90% 85% only user
most of the

time

Peak Aggregate
Performance

TFlops/s .63 5.0 6.0 .15

Latest LINPACK
performance results

TFlops/s .48 3.05 4.06 ..09

Memory Ratio B/Flop/s .28 .67
(1.3 if a 32 GB

node was used)

.5 .6

Communication Ratio
(based on default
number of adapters)

B/F .333 .083 .0425 .138

Aggregate Main Memory
Bandwidth for 128 CPUs

GB/s 122 205 256 68

Table B-2: Systems used for consistency investigation

247

Appendix C. Application Codes Used In the
SSP Metrics

Applicatio
n

Science
Area

Basic
Algorithm

Language Library
Use

SSP
Version

System Required
Concurrency

NPB – MG
Version 2.3
Class D

Various Multi-Grid Fortran None SSP-1 NERSC-3- 256

NPB – CG
Version 2.3
Class D

Various Conjugant
Gradient

 None SSP-1 NERSC-3- 256

NPB – FT
Version 2.3
Class D

Various Fourier
Transform

Fortran None SSP-1 NERSC-3- 256

NPB – LU
Version 2.3
Class D

Various LU
Decomposition

Fortran None 256 256

NPB – SP
Version 2.3
Class D

Various Pentadiagonal
solver

Fortran None SSP-1 NERSC-3- 256

NPB – BT
Version 2.3
Class D

Various Block Tri-
diagonal

Fortran None SSP-1 NERSC-3- 256

QCD Quantum
Chromo-
dynamics

Conjugate
gradient

Fortran 90 netCDF SSP-1 NERSC-3- Vendor
selected

concurrency

Camille Climate CFD, FFT Fortran 90 SSP-1 NERSC-3- Vendor
selected

concurrency

NWChem Chemistr
y

DFT Fortran 90 DDI, BLAS SSP-1

SSP-2

NERSC-3-

NERSC-
4/3E

Vendor
selected

concurrency

256

SuperLU General Sparse Matrix Fortran 77 SSP-1

NERSC-3

NCSa

Vendor
selected

concurrency

32

tble Materials Fortran SSP-1 NERSC-3 Vendor
selected

concurrency

CAM Climate
Navier
Stokes
CFD

CFD, FFT Fortran 90

SSP-3

NCSa

NCS-b

32

64

fvCAM Climate
Navier
Stokes
CFD –
Finite
Volume

CFD, FFT Fortran 90 netCDF SSP-4

SSP-5

NERSC-5

NERSC-6

56 and 240

56 and 240
with strong

scaling D Grid

(~.5°

resolution)

248

Applicatio
n

Science
Area

Basic
Algorithm

Language Library
Use

SSP
Version

System Required
Concurrency

240 time steps

GAMESS Chemistr
y

DFT Fortran 90 DDI, BLAS SSP-4

SSP-5

NERSC-5

NERSC-6

64 and 384

384 and 1024
DFT gradient,
MP2 gradient

GTC Fusion Particle-in-cell
and Finite
Difference

Fortran 90 FFT(opt) SSP-2

SSP-3

SSP-4

SSP-5

NERSC-
4/3E

NCSb

NERSC-5

NERSC-6

256

64

64 and 384

384 and 1024
DFT gradient,
MP2 gradient

MADcap Astrophy
sics

Out of core
Power
Spectrum
Estimation

C Scalapack
and large
scale I/O k

SSP-2 NERSC-
4/3E

484

SEAM Climate spatially-
decomposed
finite element

 SSP-2 NERSC-
4/3E

1,024

NAMD Chemistr
y

Molecular
dynamics

 SSP-2 NERSC-
4/3E

NCSa

1024

32

Chombo CFD
(Combust
ion,
Fusion,
Climate)

Adaptive Mesh
Refinement

C++ NCSa 32

MADbench
– a special
benchmark
version of
MADCAP

Astrophy
sics
(HEP &
NP)

Out of Core
Power
Spectrum
Estimation

C Scalapack
and large
scale I/O

SSP-4 NERSC-5 64, 256 and
1024

MILC QCD
(NP)

Conjugate
gradient sparse
matrix; FFT

C and
Assembler

none SSP-2

SSP-4

SSP-5

NERSC-
4/3E

NERSC-5

NERSC-6

512

64, 256 and
2,048

256, 1024 and
8192

Weak Scaling
8x8x8x9 Local
Grid - ~70,000

iterations

Paratec Materials
(BES)
Nanoscie
nce

3D FFT, DFT,
BLAS3

Fortran 90 Scalapack,
FFTW

SSP-1

SSP-2

SSP-3

SSP-4

SSP-5

NERSC-3

NERSC-
4/3E

NCSb

NERSC-5

NERSC-6

Vendor
Selected

concurrency

128

64

64 and 256

256 and 1024
Strong scaling

249

Applicatio
n

Science
Area

Basic
Algorithm

Language Library
Use

SSP
Version

System Required
Concurrency

686 Atoms,
1372 Bands,
20 iterations

PMEMD Life
Science
(BER)

Particle Mesh
Ewald

Fortran 90 none SSP-4 NERSC-5 64 and 256

IMPACT-T Accelerat
or
Physics

PIC, FFT
component

Fortran 90 SSP-5 NERSC-6 256 and 1024
strong scaling

50 particles

per cell

MAESTRO Astrophy
sics

Low Mach
Hydro; block
structured-grid
multi-physics

Fortran 90 Boxlib

SSP-5 NERSC-6 512 and 2048
weak scaling

16x 32

3
 boxes

per processor;
10 timesteps

Table C-1: A summary of all the application benchmarks used at NERSC at different points in time.

250

Appendix D. NAS Parallel Benchmarks Used
for Consistency Testing

LU – The LU (Lower Upper) benchmark solves a finite difference

discretization of the 3-D compressible Navier-Stokes equations

through a block lower-upper-triangular approximate factorization of the

original difference scheme. The LU factored form is solved by

symmetric successive over relaxation (SSOR) that solves a 5 by 5

blocked regular sparse matrix. The code requires a power-of-two

number of processors and is load-balanced. The Computation Intensity

is high and LU sends many small messages.

FT – A 3-D Fast Fourier Transform (FFT) Partial Differential

Equation with a 3-D array of data is distributed according to the z-

planes of the array. One or more planes are stored in each processor.

The forward 3-D FFT is performed as multiple 1-D FFTs in each

dimension, first in the x- and y- dimensions. This can be done entirely

within a single processor with no inter-processor communication. An

array transposition is performed, which requires an all-to-all message

exchange. Thus FT shows big, bursty communication patterns among

all nodes in between periods where all nodes are computing.

251

EP - (Embarrassingly Parallel). Each processor independently

generates pseudorandom numbers in batches and uses these to

compute and tally pairs of normally-distributed numbers. No

communication is needed until the very end, when the tallies of all

processors are combined. This test was included to give a baseline for

CPU performance.

252

Appendix E. SSP Related to Productivity

SSP is an extension of the productivity based method described in ―A

Framework for Measuring Supercomputer Productivity‖ (Snir and

Bader 2004). In particular, SSP relates to the (Snir and Bader 2004)

dual problem and addressing the issue of multiple problems in a

workload, by incorporating multiple applications and problem sets.

However, SSP is much closer to actual assessments methods used in

practice.

As a high level summary, (Snir and Bader 2004) defines

productivity, Ψ, for a system, S, based on a problem, P, that has a

time-to-solution of T. The Utility, U(P,T), of a system is based on the

time to solve the problem. There are several types of utility in the

paper, including deadline based, decreasing value and constant.

Deadline based assigns the full utility value a task to complete before a

deadline and zero value after the deadline. Constant utility means

there is no change in the utility value over time, so it does not matter

how long it takes to do a task. Decreasing utility assign some function

to utility that decreases at a prescribed rate (linear, exponential, etc.)

over time. Cost, C(P,S,T), depends on P, T and S. Productivity is Utility

divided by cost.

253

),,(

),(
,,,,

TSPC

TPU
TPUTSP

(Snir and Bader 2004) state the goal of a HPC system is to

―minimize the cost of solving P on system S in time T.‖ Below is a

discussion of the similarity, overlap and differences between the SSP

method and the concepts outlined by the paper.

The similarities between the (Snir and Bader 2004) and SSP

approaches are that both propose methods to assess how well

computer systems meet the needs of users to solve problems by

providing a single composite metric. Both deal with estimates of the

overall work a system is capable of and the cost of the system in

making value judgments as to which system would be best to deploy.

S&B‘s Utility is similar to SSP‘s Potency. In the case where SSP is

defined by a single problem and a single data set (where I=1 and J=1),

the two methods are the identical. Likewise, for a single problem and

data set, productivity is synonymous with SSP value.

Both methods include the ability to incorporate multiple cost

components, both one-time costs and on-going costs. The discussion

in (Snir and Bader 2004) concentrates on system costs and costs to

port/optimize code P to a machine S. The SSP method includes total

254

cost of ownership (HW, SW, maintenance, power, space, etc.). SSP

can also include porting costs, but so far it has not been used for that

purpose. Finally, (Snir and Bader 2004) discusses the concept of

productivity and application metrics as a means of expanding their

approach to include more than one application with one data set. This

is comparable to the entire PERCU Method (the overall method of

evaluating systems based on Performance, Effectiveness,

Consistency, Reliability and Usability).

There are differences between the two approaches as well.

Specifically, (Snir and Bader 2004) has the goal of minimizing the cost

for solving a problem. However, more often than not, there is a set cost

to spend on a system and multiple things for the system to do. To

address this aspect, (Snir and Bader 2004) B introduces the ―Dual‖

problem of trying to optimize the system to produce the best time-to-

solution it can for a fixed cost. This is similar to the goals of SSP, but

the full goal of a SSP evaluation is to get the best system to be used

on a range of problems. In SSP, while cost can be optimized, it is used

as the normalizing factor across alternative systems rather than the

objective function for minimization.

255

(Snir and Bader 2004) discusses optimizing the solution of one

program. SSP focuses on multiple applications and data combinations.

The (Snir and Bader 2004) approach to multiple applications uses the

modeling of the applications in a workload and using the models as

productivity metrics. This approach requires valid statistical sampling

methods of the target workload, essentially a Workload

Characterization Analysis (WCA). (Mashey, 2004) (see Section 3.11)

points out that being able to do an evaluation for a large workload that

is statistically ―pure‖ is very hard and takes a lot of effort, so most times

it is not done, only approximated. Using Mashey‘s descriptions, the

S&B method to evaluate multiple codes and data corresponds to a

WAC with a uniform workload while SSP is a SERPOP analysis

(discussed in Section 3.13 above).

(Snir and Bader 2004) does not address loss of opportunity as part

of utility. The question ―What if the next science or engineering

breakthrough waits for 20 years?‖ is an important aspect of investing in

the capability of computing facilities. One could theoretically adapt the

S&B constant utility function so it has a probability of increasing

significantly based on the probability function of having a breakthrough

result occur at some point in time. This is not done in (Snir and Bader

256

2004). SSP implicitly provides this value as part of the system‘s

potential.

(Snir and Bader 2004) was motivated by the DARPA High

Productivity Computing System (HPCS) Program (HPCS n.d.) which is

spending 7+ years to design a new, Petascale computing system

based in part on productivity goals. Conversely, SSP is motivated by

the need to evaluate the best system out of several which have been

proposed for a workload that includes a variety of uses. Similarly, (Snir

and Bader 2004) is designed to determine the cost to deploy a

computational system to solve a single problem in an expected time.

For the case of multiple problems running on the same system, (Snir

and Bader 2004) mentions the future potential to allocate the costs to

multiple problems.

In summary, SSP can be viewed as an extension of the ((Snir and

Bader 2004) dual problem and addressing the issue of multiple

problems in a workload, by incorporating multiple applications and

problem sets. SSP is much closer to how most actual assessments are

done. Indeed, SSP is used in practice to make evaluation and

selection determinations

257

Appendix F. ESP-1 – The First Version

ESP-1 was the first implementation of the ESP concept. It was

initial implementation developed specifically to reflect the NERSC

workload. Any other site can adopt the steps described here using their

own workload or they could use ESP-2, which is more portable and

may be adjusted for different workload distributions.

A goal of the ESP-1 test was to represent the user workload, so the

distribution of job sizes and runtimes in the ESP-1 suite were designed

to roughly match the distribution of jobs running on NERSC production

systems at the time. The types of applications were the same used for

the SSP test and the concurrency was similar to the size of jobs

running across the system. The one exception to matching the

workload is that ESP-1 runtimes were scaled back so that the test took

a practical elapsed time of approximately 2 to 4 hours.

ESP-1 used applications in the job mix that originated from user

codes that were used in production computing at NERSC. While each

facility will have its own workload distribution, the basic process

described here can be applied to any workload. Furthermore, the job

mix profile was designed to span the diverse scientific areas of

research. Attention was paid to diversify computational characteristics

258

such as the amount of disk I/O and memory usage. Applications and

problem sets were selected to satisfy the time and concurrency

constraints. The number of instances (Count) of each

application/problem was adjusted such that aggregate CPU-hours of

the test reflected the workload profile. Table F-1 shows the job mix for

the ESP-1 benchmark with the elapsed times for each job on the T3E

and SP/P3.

Application Discipline Size Count T3E SP

gfft Large-FFT 512 2 30.5 255.6

md Biology 8 4 1208.0 1144.9

md 24 3 602.7 583.3

nqclarge Chemistry 8 2 8788.0 5274.9

nqclarge 16 5 5879.6 2870.8

paratec Materials-
Science

256 1 746.9 1371.0

qcdsmall Nuclear-Physics 128 1 1155.0 503.3

qcdsmall 256 1 591.0 342.4

scf Chemistry 32 7 3461.1 1136.2

scf 64 10 1751.9 646.4

scfdirect Chemistry 64 7 5768.9 1811.7

scfdirect 81 2 4578.0 1589.1

superlu Linear-Algebra 8 15 288.3 361.2

tlbebig Fusion 16 2 2684.5 2058.8

tlbebig 32 6 1358.3 1027.0

tlbebig 49 5 912.9 729.4

tlbebig 64 8 685.8 568.7

tlbebig 128 1 35,0.0 350.7
Table F-1: ESP-1 Application job mix used at NERSC for the T3E and IBM SP/3 systems.

Before the ESP-1 test could run, each application was run on the

target system for each concurrency and data set. This was typically

done as part of other testing for performance. Once this was done, a

―best possible‖ time, T-BEST was calculated using a bin packing

259

algorithm that minimized the elapsed time to run all the jobs, given a

submission schedule for the jobs and the target system configuration.

The ―best possible‖ time is the equivalent of the theoretical minimum

time to run the ESP-1 workload and it can be compared to the actual

times.

The ESP-1 test ran roughly four hours on 512 CPUs of the NERSC

T3E (mcurie) and approximately 2 hours on the IBM SP – Power 3+

(seaborg) system. While not perfect, the length of time is a practical

compromise between a longer simulation that may more precisely

represent actual usage and a shorter time that is more suitable to

benchmarking that works on existing systems and does not adversely

perturb real operations. Further, long running tests are difficult for

vendors to perform since there is limited access to demonstration and

testing systems.

Based on the experiences of ESP-1, a goal was set for, ESP-2 to

be a proxy for the adverse impacted by the time and resources spent

in system administration tasks, which are tasks that impact day to day

usage. This secondary goal was dropped for the second generation of

the ESP.

260

Full Configuration Jobs

Two full configuration jobs, called Z tests, are used to address the

operational change paradigm. In this case, full configuration means a

job that uses all the CPUs on the system. The first Z test is submitted

after the job blocks previously discussed and mimics a ―run me now‖

requirement that may be representative of deadline processing

workload. It must be scheduled to run before any other work, but

currently running jobs may, but do not have to, complete.

There are numerous ways a system can deal with this requirement

based on the functionality of the system job schedule, including:

 Check pointing the running work, running the full

configuration job, and then restoring the running workload

 Using preemptive scheduling that suspend the running

workload and scheduled the Z test

 Not scheduling any more work and gradually idling the

system until enough resource is available for the Z test

 Idling the system, but scheduling the jobs as backfill that can

complete before the longest running job completes

261

 Killing some or all of the running jobs, running the Z test, and

then restarting the jobs that were killed

The second full configuration Z test represents a job that uses all

the system resources and needs to be completed within a reasonable

amount of time – but not immediately. This would be the type of job

that cannot be put off indefinitely but can wait for time period such as a

job whose submitter needs the output the following day.

An example is a system whose level of service objective is to run

very large jobs within a week or a several days. However, such jobs

cannot be put off forever since in real life, there is always more work

entering the system. Seldom are HPC systems underutilized so they

run out of work and go idle. Because the ESP test is finite, it would be

incorrect and trivial to let the second Z test wait until all other work

completes. Hence, the second Z test has to complete before 90% of

the rest of the workload has completed. That is, it cannot be the last

job running. The second Z test gives the scheduler more options to

use, but still requires an operational shift in order to complete

successfully within the limits of the test. Few schedulers, however,

have the ability to specify this ―complete before this time‖ provision or

262

lack features that allow for deadline processing. In such cases, the

second Z test is also specified as ―run now‖.

Data from the ESP-1 Test Runs

Two test runs were completed on the T3E* and one run on the IBM

SP. In both T3E cases, a separate queue was created for full

configuration jobs. The full configuration jobs could thus be launched

immediately on submission, independent of the queue of general jobs.

Process migration/compaction was also enabled for both runs. In the

first run, labeled Swap, the system was oversubscribed by a factor of

two and the jobs were gang-scheduled with a time slice of 20 minutes

using standard system software. A single NQS (Network Queuing

System) queue was used for the general job mix. In the second run,

labeled NoSwap, the system was not oversubscribed. Each job ran

uninterrupted until completion. Six queues for different maximum

partition sizes; 256, 128, 64, 32, 16, with decreasing priority were

used. For each run, the time on the X axis was normalized to the time

best case time.

*
 The runs were done the NERSC T3E-900 – named mcurie, with 696 900 Mhz Alpha
EV56 CPUs. Each CPU has 256 MB of memory and the system has a total of 2.5
Terabytes of local disk.

263

Figure F-1: T3E Job Chronology with the Swap run. The magenta marks show when particular
jobs begin execution. The line shows the instantaneous utilization of the system. The time
access is normalized to the best time. Note the two Z tests run at time 0.15 and 0.8. This
shows that the ESP-1 took about 20% longer to complete then the best bin packing would

predict.

Figures F-1, F-2, F-3 and F-4 show the details of the runs where

the instantaneous utilization (line) is plotted against time and the time

axis has been rescaled by the theoretical minimum time, T-BEST.

Additionally, the start time for each job is indicated by an impulse

marker (magenta) where the height equals the size, in processors, of

that job. It is possible to see the start times for the two full configuration

jobs since they are at the top of the chart.

0

2 0

4 0

6 0

8 0

1 0 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 1 .6 1 .8 2 2 .2

N o r m a l i z e d T im e

U
t

i
l
i
z

a
t

i
o

n

(

%
)

0

6 4

1 2 8

1 9 2

2 5 6

3 2 0

3 8 4

4 4 8

5 1 2

5 7 6

P
a

r
t
i
t

i
o

n

S

i
z

e

Full
Configuration Z
tests

264

Figure F-2: The T3E Job Chronology for the NoSwap run. The time for this run to complete
was about 1.4 times the bin packing prediction.

A different job scheduler, IBM‘s Loadleveler, with different

management features existed on the IBM SP*. To encourage the best

possible scheduling, two classes (queues) were created in

Loadleveller; a general class for all jobs and a special high priority

class for the full configuration jobs. At the time of the test, it was not

possible to selectively backfill with Loadleveller. Runs shown in Figure

F-3 indicate that backfill would defer launching of the full configuration

Z job until the end of the test. This clearly violated the intent of the test

to represent the real world since new jobs would always flow into the

*
 The SP system is 604 nodes of 2 CPU SMPs. The CPUs are ―Winterhawk 1‖ CPUs
– which is a Power3 PCPU running at 200 MHz. Each node has 1 GB of memory
and is connect with IBM‘s TBMX-3 switch.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Normalized Time

U
ti

li
z
a
ti

o
n

 (
%

)

0

64

128

192

256

320

384

448

512

576

P
a
rt

it
io

n
 S

iz
e

Full
Configuration Z
tests

265

systems, meaning the Z job would never run. To address the limitation

in Loadleveler, backfill was implicitly disabled by assigning large wall

clock times (several times greater than the elapsed time for the

complete test) to all jobs. Thus Loadleveller was reduced to a strictly

FCFS (First Come First Served) strategy. The resulting run is shown in

Figure X-Y. It is interesting to note that the T3E and the IBM SP Power

3 systems are approximately the same peak computational power.

Figure F-3: The IBM SP Job Chronology for the Swap run. Note the dramatic drop in utilization
as the system accumulates CPUs to run the full configuration Z jobs. The test ran more the

twice as long as the expected best time.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Normalized Time

U
t
i
l
i
z
a
t
i
o

n

(
%

)

0

64

128

192

256

320

384

448

512

576

P
a

r
t
it

io
n

 S
iz

e

Full
Configuration
Z tests

266

On submission of the full configuration jobs, a considerable amount

of time was spent waiting for running jobs to complete. This is evident

in Figure F-4, which shows two large regions where the instantaneous

utilization drops to a very low value. The time lag to run preferential

jobs is indicative of the difficulty in changing modes of operation on the

IBM SP for that version of the system. This is important for sites that

routinely change system characteristics, for example between

interactive and batch or between small and large partitions. The best

remedy would be to either checkpoint or dynamically swap out running

jobs.

As seen in Figure F-4, the Best Fit First (BFF) mechanism on the

T3E deferred larger scale jobs (128 or greater MPI tasks) until the end.

Consequently, at the end of the test there were large gaps that could

not be filled by small jobs. On the IBM SP, a First Come – First Served

(FCFS) strategy was indirectly enforced, which can be seen illustrated

in Figure F-1 where the distribution of job start times is unrelated to job

size. It is evident from Figures F-1 and F-2, that a significant loss of

efficiency on the T3E was incurred at the tail end of the test. In an

operational setting, however, there are usually more jobs to launch that

have entered the system. Hence, the value of having a quantitative test

267

out-weighs the fact it being finite does not completely represent real

operating conditions.

The distribution of start times is qualitatively similar between the

Swap and NoSwap runs on the T3E, although the queue was set up

differently. In the second test run, increasingly higher priorities were

deliberately assigned to larger partition queues in an attempt to

mitigate starvation. However, shortly after the start of the test, it was

unlikely that a large pool of idle processors would become coincidently

available. In this scenario, the pattern of job submission reverted back

to BFF and the queue set up had little impact. On the other hand, there

was considerable difference in efficiency between the two T3E runs.

This was attributed to the overhead of swapping, which was significant

when the oversubscribed processes could not simultaneously fit in

memory resulting in significant I/O to swap the processes between

memory and disk.

268

Figure F-4: SP Job Chronology with backfill decreases the runtime of the ESP-1 test, but the
fact the two full configuraiton jobs are pushed to the end of the test clearly violates the

conditions of the test.

ESP-1 Summary of Results

The results of the ESP-1 test for the T3E and the SP are summarized

in Table F-2.

269

 T3E
Swap

T3E
NoSwap

SP

Available processors 512 512 512

Job mix work (CPU-sec.) 7437860 7437860 3715861

Elapsed Time (sec.) 20736 17327 14999

Shutdown/reboot (sec.) 2100 2100 5400

E - Efficiency (w/o
reboot)

70% 84% 48%

Table F-2: ESP-1 Results on the T3E and the SP shows that scheduling systems at on the
T3E could accommodate operational paradigm shifts better than the IBM SP.

These results show that the T3E has significantly higher utilization

efficiency than the SP with the same operational paradigm and job mix.

This difference is mainly due to the lack of an effective mechanism to

change operational modes in a reasonably short time period, such as

is necessary to immediately launch full configuration jobs.

Validation of ESP-1

270

Figure 9-1: Actual Utilization of the NERSC T3E over a 3 year period. The date with the blue
color is the 30 day moving average of the CPU used by user applications. The T3E usage

increased with the introduction and improvement of system software.

It is important to validate the results of any benchmark test with real

data. It is now possible to do so by reviewing the utilization data on the

T3E and the SP for the actual workload the ESP test was first

designed to mimic. Figure F-5 shows the T3E utilization for a period of

3 years. Figure F-6 shows the SP utilization for 8 months that system

was in service before being upgraded.

MPP Charging and Us age

FY 1998-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
-
O

c
t-

9
7

2
9

-
O

c
t-

9
7

2
6

-
N

o
v

-
9

7

2
4

-
D

e
c
-
9

7

2
1

-
J
a
n

-
9

8

1
8

-
F

e
b

-
9

8

1
8

-
M

a
r
-
9

8

1
5

-
A

p
r
-
9

8

1
3

-
M

a
y

-
9

8

1
0

-
J
u

n
-
9

8

8
-
J
u

l-
9

8

5
-
A

u
g

-
9

8

2
-
S

e
p

-
9

8

3
0

-
S

e
p

-
9

8

2
8

-
O

c
t-

9
8

2
5

-
N

o
v

-
9

8

2
3

-
D

e
c
-
9

8

2
0

-
J
a
n

-
9

9

1
7

-
F

e
b

-
9

9

1
7

-
M

a
r
-
9

9

1
4

-
A

p
r
-
9

9

1
2

-
M

a
y

-
9

9

9
-
J
u

n
-
9

9

7
-
J
u

l-
9

9

4
-
A

u
g

-
9

9

1
-
S

e
p

-
9

9

2
9

-
S

e
p

-
9

9

2
7

-
O

c
t-

9
9

2
4

-
N

o
v

-
9

9

2
2

-
D

e
c
-
9

9

1
9

-
J
a
n

-
0

0

1
6

-
F

e
b

-
0

0

1
5

-
M

a
r
-
0

0

1
2

-
A

p
r
-
0

0

1
0

-
M

a
y

-
0

0

7
-
J
u

n
-
0

0

5
-
J
u

l-
0

0

2
-
A

u
g

-
0

0

3
0

-
A

u
g

-
0

0

2
7

-
S

e
p

-
0

0

Date

C
P

U
 H

o
u

r
s

30-Day Moving Ave . Los t Time

30-Day Moving Ave . Pie rre Free

30-Day Moving Ave . Pie rre

30-Day Moving Ave . GC0

30-Day Moving Ave . Mcurie

30-Day Moving Ave . Ove rhe ad

80%

85%

90%

Max CPU Hours

80%

85%

90%

Peak

Goal

Sys tems MergedAllocation

Starvation

Alloc ation

Starvation

Chec kpoint

Re s art - Start of

Capability Jobs

Full

Sc heduling

Functionality

4.4% improvement

pe r month

271

The utilization of the T3E in the first 30 days was 57%. Utilization

was limited by the fact the T3E needed to assign jobs CPUs in a

contiguous block based on logical node numbers which were assigned

to physical nodes at boot time. Contiguous logical nodes simplified the

internal interconnect routing. This may improve communications for

some applications, but it means there is the fragmentation of unused

processors that are left idle since there are no jobs of the size that can

run. Indeed, is it possible that seven long running small jobs (4

processors), poorly positioned, could prevent any jobs 64 or more

CPUs from starting, even though the system had 512 CPUs. It is

important to note that during this period, in order to develop and test of

the more advanced scheduler functions, (Blakeborough and Welcome

1999) the T3E was taken out of service and rebooted at least two

times a week – for 6 hours each time. The introduction of the job

migration facility, shown on the Figure F-5, followed by the deployment

of checkpoint restart, allowed increasingly effective system operation

while running full configuration jobs every night. This period, shown in

the red box on Figure F-5, has the same level of function used for the

ESP-1 test runs. It shows the actual utilization is roughly 70%

utilization, essentially the same as the ESP-1 test rating for the T3E

Swap case in Table D-5.

272

The utilization on the SP started out higher than on the T3E since

the backfill function was immediately available and jobs could be

assigned to any set of nodes to a job. With backfill on, the usage is

well over the expected utilization shown by the Efficiency Rating

indicated by the ESP without backfill. However, the system was not

able to respond well to full or close to full size jobs. Manual intervention

was required to start each large job. Since the T3E could run large jobs

well and both systems were in service and available to all users, very

little of the work was done by jobs with less than half the maximum

number of CPU‘s.

273

Figure F-9-2: SP Workload – Cumulative CPU Time by Job Size on the SP for an 8 month

period.

274

Figure F-9-3: T3E Workload – Cumulative CPU Time by Job Size for an 8 month period. The
total number of computational CPUs is 696.

Figures F-6 and F-7 show that the actual workloads on the NERSC

T3E and the SP during the same time. The workloads have several

common characteristics, which is not surprising, given they are similar

in size and capability, and support the same user community. The first

observation is that each system runs a number of jobs that are near full

Mcurie MP P T ime by Job S ize - 30 Day Moving Average

0

2000

4000

6000

8000

10000

12000

14000

16000
4

/2
9

/2
0

0
0

5
/6

/2
0

0
0

5
/1

3
/2

0
0

0

5
/2

0
/2

0
0

0

5
/2

7
/2

0
0

0

6
/3

/2
0

0
0

6
/1

0
/2

0
0

0

6
/1

7
/2

0
0

0

6
/2

4
/2

0
0

0

7
/1

/2
0

0
0

7
/8

/2
0

0
0

7
/1

5
/2

0
0

0

7
/2

2
/2

0
0

0

7
/2

9
/2

0
0

0

8
/5

/2
0

0
0

8
/1

2
/2

0
0

0

8
/1

9
/2

0
0

0

8
/2

6
/2

0
0

0

9
/2

/2
0

0
0

9
/9

/2
0

0
0

9
/1

6
/2

0
0

0

9
/2

3
/2

0
0

0

9
/3

0
/2

0
0

0

1
0

/7
/2

0
0

0

1
0

/1
4

/2
0

0
0

1
0

/2
1

/2
0

0
0

1
0

/2
8

/2
0

0
0

1
1

/4
/2

0
0

0

1
1

/1
1

/2
0

0
0

1
1

/1
8

/2
0

0
0

1
1

/2
5

/2
0

0
0

D ate

H
o

u
r
s

257-512

129-256

97-128

65-96

33-64

17-32

<16

275

configuration. In Figure F-6, for the last two months of the period, 10%

of the CPU time on the IBM SP was used by full configuration (512

CPU) jobs. A similar result is shown in Figure F-7 for the T3E. The

other observation is that the vast majority of the CPU time on both

systems goes to jobs of substantial size. In the T3E case, more than

50% of the computational time was used by jobs using 128 CPUs or

more – which is 1/4 of the system.

Even with backfill on in the production system, Figure F-6 shows

that eventually large jobs do run on the IBM SP and make up a

significant part of the SP workload. What is not shown in a graph is

that the length of time large jobs wait for service is much longer on the

SP, because the system has to age large jobs a very long time to get

processors assigned, or alternatively, manual intervention is used.

Table F-3 compares ESP-1 tests on the SP runs with and without

backfill. As stated above, backfill violates the test rules because the full

configuration jobs are not processed in a timely manner. Nonetheless,

as a validation data point, the ESP-1‘s effectiveness rating is an

indicator of the utilization a system is able to support, we look at what

the ratings would be with backfill, as seen in E = 84%. This is very

276

close to the observed utilization while running under the exact same

operational parameters on the IBM SP as shown in Figure F-6.

 SP without

backfill
SP with backfill
but violates test

parameters

Available processors 512 512

Job mix work (CPU-
sec.)

3715861 3715861

Elapsed Time (sec.) 14999 8633

E - Efficiency (w/o
reboot)

48% 84%

Table D-3: ESP-1 Results for two scheduling methods on the IBM SP/3

Limitations of ESP-1

The ESP-1 test, while effective at NERSC for the T3E and the IBM

SP, had several limitations that prevented it from becoming a more

general test. These limitations included the fact ESP-1 was based on a

snapshot in time of the NERSC applications and workload. ESP-1

proved labor intensive to scale to other system sizes. For example,

when NERSC upgraded the IBM SP* to an IBM SP/Power 3+, the

application sizes and number of codes had to be completely redone. In

order to address these limitations and to make ESP more acceptable

for others for use, the ESP-2 test was created.

*
 The upgrade replaced the gseaborg system with seaborg – a 3,328 process Power
3+ system with 16 processors per node, each running at 375 MHz. Each node had
a dual plane High Performance (Colony) Switch.

277

Appendix G. Assessing Batch Schedulers
with ESP-2

In this section, an example of how ESP-2 was used to assess a

variety of batch scheduling software utilities for cluster computer

systems is discussed. This study was initiated in 2004-2005 to

evaluate the features and performance characteristics of the then

currently available Linux based, open source and commercial

schedulers, in anticipation of additional commodity based clusters

becoming available.

The ESP-2 methodology was useful in evaluating software

releases. In addition to distinguishing characteristics of the different

schedulers, several of the evaluated job scheduling systems made

improvements to the features and performance of their systems in

order to improve test results, which for the most part, became

permanent product features in difference resource managers. In other

words, ESP-2 was able to contribute to the improvements in several

available resource managers, which in turn contributed to other

organizations using these packages.

Taking a larger perspective with ESP-2 on available scheduling

systems that could be integrated into environments such as NERSC

278

was possible because of the ESP-2 test. The assessment investigated

the systems features to schedule work for robustness, scalability,

performance, features, and effectiveness.

Layered Functions Of The System

Large Linux and Unix clusters offer a range of software for resource

management features at different layers of the system. Sometimes one

software package combines functions, but in general the layered

functions can be thought, from high level to low level, of as follows.

A job management – often call batch – system that provides users

and system managers the ability to submit work packages (jobs) to be

run by the system. Examples include NQS, PBS and Condor.

A job scheduler is used to select and prioritize which jobs should

run before others. While all batch systems have a built in scheduler,

many provide an external API (Application Program Interface) to allow

more sophisticated and/or site specific scheduling to be performed. An

example is the Maui scheduler.

A resource scheduler is a system function that applies to batch and

non-batch (interactive) activities which finds available resources and

279

accumulates sufficient resources, typically nodes, to start processes

and jobs.

A process scheduler, using fine grained kernel scheduling within a

single operating system image.

Table G-1 lists some of the features of the scheduling systems

tested with ESP-2. While ESP-2 was the major filter by which we

considered whether to continue with software from this list, it was not

efficient to set up and run ESP-2 with schedulers which obviously did

not meet the needs and feature requirements of NERSC.

A few particularly important features were chosen that were

considered necessary for a batch scheduler to be considered. These

features were: Linux support, low cost, open source, parallel job

support, prologue and epilogue capability, and the ability to use third-

party schedulers (particularly the Maui Scheduler). Each scheduling

package was installed and tested on the same hardware configuration.

The batch schedulers considered were identified through

communal knowledge of what was available (and desirable) when the

investigation began in mid 2004 and included The University of

Wisconsin‘s Condor (Condor n.d.), the LLNL Linux Project‘s SLURM

280

(Simple Linux Utility for Resource Management) (SLRUM n.d.), the

Maui High Performance Computing Center and University of New

Mexico‘s MauiME (Maui Molokini Edition) (Maui n.d.), Sun‘s SGE (Sun

Grid Engine) (SGE n.d.), Platform Computing‘s Load Sharing Facility

(LSF), Fermi National Accelerator Laboratory‘s FBSNG (Farms Batch

System Next Generation) (FBSNG n.d.), OpenPBS (PBS n.d.), and

PBSPro (Jones 2004). Systems that ran on proprietary hardware were

not considered.

Condor, at the time, lacked a number of the base features needed

and also support for parallel MPI jobs. Later, parallel support was

included in Condor, but only for MPI-based environments for which

opportunistic scheduling was used. SLURM, an alternative to PBS,

lacked support for Myrinet and Maui Scheduler. Support for Maui was

in development; however, the SLURM team had no plans for Myrinet

compatibility, since its creators (LLNL Linux Project) only used a

Quadrics interconnect. Since the test platform was Myrinet based, the

lack of support eliminated SLURM from further consideration. Similarly,

IBM‘s Loadleveler scheduler, discussed separately5.7 above, was not

evaluated because it was not available on the hardware used for the

evaluation.

281

FSBNG lacked prologue and epilogue support, immediately

disqualifying it, since such a capability was essential to setting up the

secure environment on Lawrence Berkeley National Laboratory‘s

(LBNL) Alvarez system in which multiple users run jobs. Since this

could not be accomplished at the user level, it had to be done by the

scheduler. PBS-Pro, was a commercial product, had basically the

same functionality as OpenPBS, so OpenPBS was evaluated during

this investigation.

Hence MauiME, Sun Grid Engine (SGE), LSF, and OpenPBS

(Table G-1) were included in the ESP-2 evaluation. While LSF did not

meet the low-cost criterion, it was included as a candidate because it,

along with OpenPBS, was already used within NERSC, and both could

serve as benchmarks for comparison.

282

Feature OpenPBS LSF MauiME SGE

1.1 Backfill X X X -

1.2 Backfill ―end time‖ designation X X - -

1.3 Preemption X X forthcoming -

1.4 Gang Scheduling - - - -

1.5 Sessions - - - -

1.6 Scheduler has ultimate control of
processes - X - ?

1.7 Migrate Jobs and Processes - X - X

1.8 Advanced Reservation X X X -

1.9 Resource Dedication X X X -

1.10 Queue complexes X X - X

1.11 Control queues on a per node basis - - - ?

1.12 Suspend and resume jobs X X - X

1.13 Configurable Resource Definitions X X X X

1.14 Parallel job support X X X X

1.15 Pluggable Scheduler X - X -

1.16 Linux and Sun support X X X X

1.17 Checkpoint/Restart
On SGI, Cray

only X X X

2.1 Ability to force a job to run outside of
prioritization X X X X

2.2 ―No-preemption‖ marking for jobs and
queues - - - -

2.3 Ability to define and enforce limits X X X X

2.4 Highly detailed logs - X X ?

2.5 Set queues to be empty at a certain
time - X/- X -

2.6 Extensive API - X X ?

2.7 Override system configuration with
node-specific configuration - X X X

2.8 Custom job prioritization X X X ?

2.9 Fair Share Scheduling X X - X

2.10 Open Source - - X X

2.11 Low cost X - X X

2.12 Robust and Fault Recoverable - X X ?

3.1 Ability to run MPI jobs from the
command line X X - ?

3.2 Useful, detailed debugging info when a
job fails - X X X

3.3 Prolog/Epilog system X X X X

3.4 Simple Scripting - - X X

3.5 Output immediate results to submission
directory - - X X

3.6 Pre-exec conditions X X X
With

scripting?

3.7 User Space Checkpoint/Restart - X - X

Table G-1: Evaluation Features of the Evaluated Scheduling Software Systems as of June
2004

283

Installation and Basic Operation

MauiME, which has since evolved into the Torque scheduling

system offered by Cluster Resources Inc., is a Java based complete

scheduler and resource management system that comes out of the

Maui Scheduler project. The developers have proven that it runs

successfully not only on Linux and FreeBSD (FBSD n.d.), but also on

64-bit versions of Linux.

Being Java based, MauiME requires a Java Virtual Machine (JVM)

to run. This is a benefit for heterogeneous environments, in terms of

client deployment. MauiME does not have a way to submit a job with a

given priority. A job must be submitted and then have its priority

altered. Submitting jobs was more tedious than with most other batch

schedulers tested. A job had to have a job description file as well as a

separate batch script. If a sizable number of jobs were concurrently

submitted (as ESP-2 does), the scheduler would only use a subset of

those jobs to determine how to schedule the whole lot. In addition,

there is no way to create node exclusivity—one processing element

(PE) per node—so that a node is always the smallest resource unit.

284

SGE from Sun Microsystems is also a complete scheduler and

resource manager. It is free and fully functional, with copious

documentation. An attribute of SGE is its versatile graphical user

interface (GUI), something all the other candidates lacked. With the

GUI you can see the status of hosts, queues, jobs, and processes

involved in the execution environment and do virtually all of the

administrative tasks that can be done with command line utilities.

A less attractive attribute of SGE, was that the scheduler applied

priorities in terms of job classes (resource needs) and not in terms of

an entire queue. So the main job container related to priority was not

the queue but the job class. This attribute prevented properly running

ESP-2, since all the jobs are the same class and priority for the Z test

jobs could not be set.

In running ESP-2 with LSF, several configuration changes had to

be made to properly complete the test. These changes affected the

order in which the scheduler selected jobs to be run. By default, LSF

runs in FIFO (First In First Out) order — first job in, first job out. The

configuration change indicates to LSF to schedule based on job size —

the larger the CPU count needed, the sooner the job needed to be run.

The other configuration change needed was the amount of time LSF

285

waited for enough resources to be collected before it gave up on trying

to schedule a job. We increased that value to be greater than the

runtime of the longest job.

During the course of the evaluation, Platform sent several different

schedulers to test. One was a plug-in scheduler for 5.0 version of the

software that ran jobs based on size. This was different from the

previous configuration, in that it overcame the resource wait limit.

Another version of the software, v5.1, was released that supported

third-party schedulers, including the Maui scheduler. LSF worked with

the third-party scheduler in testing, but several features of LSF were

lost when using it in this way.

OpenPBS was installed on Alvarez by the hardware vendor.

OpenPBS is a dynamically configured system set up with a program

called qmgr (queue manager). Any changes in the configuration

program take effect immediately. The scheduler used with OpenPBS in

this evaluation was the Maui Scheduler, as supplied by the system

vendor because it provided better support than the stock schedulers in

OpenPBS for the type of scheduling needed at NERSC. ESP-2

identified scalability issues because OpenPBS polls all nodes for state,

286

so a single crashed node could stop scheduling across the entire

system. This has since been rectified.

Using ESP-2 for Evaluation

Initial testing indicated none of the software systems passed.

Sometimes they failed because ESP-2 required various attributes that

the scheduling software did not have at the time. Other failed runs

were because the system simply could not withstand the load ESP-2

put upon them. Failures were generally due to the deficiencies pointed

out above, which kept ESP-2 from running as intended, or running at

all. MauiME, with its lack of submission priorities and lack of a method

to allow node exclusivity could not run ESP-2 at all. SGE always ran

the full configuration jobs (Z tests) last, regardless of its priority and

any amount of configuration.

OpenPBS had the advantage that it came pre-configured on

Alvarez and already used the Maui Scheduler. There was no tuning

involved (beyond what had been done when it was first installed), so

OpenPBS was used to set a baseline.

The default installation of LSF did not complete ESP-2. The full

configuration job (Z test), like SGE, would run it last regardless of its

287

priority. However, when informed of this, Platform Computing added a

scheduling module that allowed proper insertion of the Z job. This

enabled LSF to properly complete ESP-2. After further tuning, LSF was

able to obtain an efficiency rating comparable to OpenPBS with the

Maui Scheduler. During the course of the investigation, Platform

released a new version of LSF that supported the Maui Scheduler

which worked well with LSF. Together, LSF and Maui produced ESP-2

results almost identical to those made by LSF with a modified stock

scheduler. Table G-2 compares the ESP-2 results in terms of an

effectiveness rating as defined above.

 PBS LSF LSF
w/mod

LSF
w/Maui

SGE Maui
/ME

64
CPUs

Throughput 83.7 75.2 78.6 79.5 n/a n/a

 Z-Job 77.5 65.0 73.5 73.7 n/a n/a

128
CPUs

Throughput 83.5 74.8 n/a n/a n/a n/a

 Z-job 78.0 64.3 n/a n/a n/a n/a

Table G-2: ESP-2 Effectiveness Rating of different scheduling systems operating on the same
hardware configuration. Note that N/A indicates the test was not successfully completed.

 Several of the Z test ESP-2 runs in Table E-2 are depicted

graphically in Figures G-1 through G-4. All graphs have been

normalized to use the same time scale and to use the same colors and

legends when possible. The graphs show node/CPU usage, the

288

number of running jobs, and the number of queued jobs. The queued

jobs run out before the test ended; so no batch scheduler got 100%

efficiency in this test. A flat line develops along the top of the ―CPU in

Use‖ line; again, the total number of CPU‘s was limited to either 64 or

128 depending on the test. Z test shows up in the graphs as the deep

canyons in the CPU line, as the schedulers husband resources in

order to the start the full configuration jobs by letting the queue run dry.

LSF initially had the problem of wanting to schedule all the small

jobs first, so when the scheduler attempted run the Z test, it had to wait

for many small jobs to complete before continuing. Switching LSF to

large-job first scheduling resulted in an improvement in effectiveness,

but not quite equaling OpenPBS/Maui‘s effectiveness. Discussions

with Platform‘s engineers indicate this difference was the result of 2

possible variables – scheduler interval (how often the scheduler is ran)

and job interval (how often jobs are started up). There was not time to

explore the relationship of these variables while the hardware was

available.

Figure G-4 shows how scheduling changes effectiveness. The CPU

count data from 3 different ESP-2 runs is graphed. One run is LSF with

default scheduling run, another is LSF with the scheduler modification

289

discussed above, and the third is a LSF with Maui. LSF with Maui

achieved the highest efficiency; however, LSF with the scheduler

modification was not far behind it

290

Figure G-1: OpenPBS with Maui shows an ESP-2 rating of 77.5%.

291

Figure G-2: Basic LSF shows an ESP-2 rating of 65%

292

Figure G-3: LSF with the Maui Schedule has an effectiveness of 73.7%.

293

FigureG-4: LSF with improved scheduling functionality has an ESP-2 rating of 73.4%

294

Figure G-5: The count of the number of CPUs busy for ESP-2 runs with four different schedule
implementations. The implementation are a) basic LSF (red), b) LSF with modifications to

improve running large jobs (green), c) LSF with the Maui Scheduler (blue), and d) OpenPBS
with the Maui scheduler (purple)

295

Assessment Conclusions

The scheduler assessment using ESP-2 took longer than initially

planned because many of the systems lacked of robustness and

features for parallel- scheduling on Linux platforms. The effort involved

to tune the schedulers and explore combinations of features was

significant in order to successfully complete ESP-2. This involved

exploring documentation, code, and/or on-going communication with

vendors. Some software, such as MauiME, was still evolving software.

Others, such as FBSNG or SLURM, did not fulfill the needs specific

criteria for the test or the NERSC environment. Time was spent

working around these software attribute limitations. SGE and MauiME,

in particular, responded to the feedback by providing the feature.

Effort was spent comparing the various modes of LSF. LSF was

capable of duplicating OpenPBS with Maui‘s effectiveness score. Most

schedulers today are polling based, not interrupt based (i.e., they do

not wait for a message of job completion, but keep checking). The

interval for the poll impacts the effectiveness. The interval chosen also

determines how much CPU time is used – both on the scheduling

CPUs and the computational CPUs. The shorter the interval is better

296

for effectiveness, at the cost of higher CPU loads and potentially

decreased consistency.

Although the scheduler assessment project did not result in a clear

recommendation, it demonstrated that ESP-2 is a well-defined method

for evaluating such software.

297

Appendix H. Comparing Light Weight
Operating Systems (LWOS)

This section briefly discusses other interesting results from the

comparison of CLE and CVN on the XT-4 and other tests that are used

at NERSC for evaluating systems not directly related to the SSP

discussion in Chapter 4: above.

These observations are based on data collected in the summer and

fall of 2007, with the last data point being in mid October 2007. At the

time, Catamount (the single core reference) and CVN had been in

service for close to four years and had been through many cycles of

improvements and tuning. It had also run probably thousands of

applications at scale even though most were on single core nodes in

XT-3 systems. At the time of this study, CLE was not yet released for

general use, having exited development at the start of the study and

being barely four months in use on only NERSC-5 by the time the last

results in this study were observed. NERSC-5 was the first large scale

exposure of CLE, and there are many areas that are known to be able

to benefit from tuning and further improvement. The fact such robust

testing and quality of the results were feasible for a very early

operating system was encouraging. That being said, now here are

other observations about CLE and CVN.

298

The average runtimes of the seven medium size application

problems were slightly slower on CLE than on CVN, whereas several

of the large and extra-large applications were faster. This combined

with observations of early user science applications during the

evaluation period indicated codes may scale somewhat better on CLE.

This conjecture was previously discussed in the Wallace paper on the

design goals of CLE referenced above, but this was the first data

showing the conjecture may be true. Whether this is due to improved

message handling in the node rather than the master-slave CVN is not

clear. However, latency using the multi-pong test was not that much

different between the two kernels. Intra-node latency was about 30%

higher for CLE, but the maximum inter-node latency for the entire

system was essentially identical.

CLE had significantly lower streams of memory performance than

CVN due to the Linux memory manager. This was particularly true

when only 30% of the memory was occupied. However, the streams

memory rate had less impact on applications than might be expected

because of compiler cache handling. Initially, several NPBs were

impacted negatively on CLE, but could be tuned with straightforward

299

methods to match CVN performance. Full applications, needed little or

no tuning to address memory performance difference.

I/O performance differed between CLE and CVN for the IOR

benchmark and also for metadata. Lustre version 1.4.6 was used for

the file system software for both CLE and CVN. For IOR (IOR

Download n.d.), CVN did better for aggregate I/O in the initial

assessment, while CLE did much better for single stream performance.

The aggregate performance of CLE has since improved. Meta data

performance on CLE was somewhat better than CVN.

The average Coefficients of Variation (CoV) across the SSP-4

applications was .4% for CLE and .35% for CVN – remarkably close

considering CLE was derived from a full operating system. The CoV

was calculated for each SSP-4 application by doing multiple runs of the

same application and problem set, and then these individual CoV‘s

were averaged. The low variability of CLE was not predicted as there

was concern that increased OS jitter using Linux would decrease

consistency.

Finally, the ESP-2 test, described in Chapter 5, ran on CLE, but

never completely executed on CVN within the evaluation time period.

The traditional through-put test (submitting a set of applications to over

300

subscribe the batch job scheduler) on NERSC-5 showed less the 1%

difference between the two LWOSs.

301

Bibliography

Allinea. DDT. http://www.allinea.com/index.php?page=48.
Altair Grid Technologies, LLC. PBS Pro User Guide 5.4.

http://www.hipecc.wichita.edu/PBS/PBSProUG_5_4_0.pdf: Altair
Grid Technologies, LLC, 2004.

Amber. http://ambermd.org/ and
http://amber.scripps.edu/amber9.bench2.html.

American Heritage Dictionary – on-line .
http://education.yahoo.com/reference/dictionary/entry/fair.

Amos, Bob, Sanjay Deshpande, Mike Mayfield, and Frank O‘Connell.
RS/6000 SP 375 MHz Power3 SMP High Node. IBM White Paper,
IBM, 2001.

Amos, Bob, Sanjay Deshpande, Mike Mayfield, and Frank O‘Connell.
S/6000 SP 375 MHz Power3 SMP High Node. IBM White Paper,
IBM Corp.

Bailey, David H., and el.al. "The NAS Parallel Benchmarks." Intl.
Journal of Supercomputer Applications 5, no. 3 (Fall 1991): 66-73.

Bailey, David. "Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers." Supercomputing
Review, August 1991: 54-55.

Bailey, David, et al. The NAS Parallel Benchmarks. Technical Report,
NAS Research Branch, NAS (NASA Advanced Supercomputing
Division), Moffett Field, CA: NASA Ames, March 1994.

Barrios, Marcel, et al. "Scientific Applications in RS/6000 SP
Environments." IBM Redbook, December 1999.

Beecroft, Jon, David Addison, Fabrizio Petrini, and , Moray McLaren.
"QsNetII: An Interconnect for Supercomputing Applications and
Quadrics High Performance Interconnect." HotChips 2003. 2003.

Bender, Carl, et al. Hardware interface between a switch adapter and a
communications subsystem in a data processing system. Ed.
IBmMCorporation. Patent 6111894. August 26, 1997.

Blakeborough, Jay, and Mike Welcome. "T3E Scheduling Update."
41st Cray User Group Conference Proceedings. 1999.

Boehm, Barry. "A view of 20th and 21st Century Software
Engineering." ICES 2006. Shangai, China, May 20-24, 2006.

Borrill, Julian. "MADCAP: The Microwave Anisotropy Dataset
Computational Analysis Package." Proceedings of the 5th
European SGI/Cray MPP Workshop. Bologna, Italy, 1999.

302

Boucher, Kevin, Brian Femiano, Sara Prochnow, and Allen Peppler.
"The Cray X1 Supercomputer." March 2004.
http://209.85.173.104/search?q=cache:KS0GbZfN9IMJ:https://user
s.cs.jmu.edu/abzugcx/public/Student-Produced-Term-
Projects/Computer-Organization-2004-SPRING/Cray-X1-by-Sara-
Prochnow-Kevin-Boucher-Brian-Femiano-Allen-Peppler-2004-
Spring.doc+Cray+X1E+Data+She (accessed 2008).

Bucher, Ingrid, and Joanne Martin. Methodology for Characterizing a
Scientific Workload. Technical Report, Los Alamos, NM 87545: Los
Alamos National Laboratory, 1982.

Camp, William. "State of HPC." Portland, Oregon: Intel HPC Forum,
June 2008.

Canning, A., L. W. Wang, A. Williamson, and A. Zunger. "Parallel
empirical pseudo-potential electronic structure calculations for
million atom systems." J. Computational Physics, no. 160:29
(2000).

Carrington, Laura, M. Laurenzano, Allan Snavely, Roy Campbell, and
Larry Davis. "How Well Can Simple Metrics Represent the
Performance of HPC Applications?" SC 05 - The High Performance
Computing, Storage, Networking and Analysis Conference 2005.
Seattle, WA: Association of Computing Machinary (ACM), 2005.

CFDR. 2006. http://cfdr.usenix.org/.
CNet. "CNet." IBM Wins hybrid supercomputer deal. September 6,

2006.
http://news.com.com/IBM+wins+hybrid+supercomputer+deal/2100-
1006_3-6112975.html (accessed 2006).

Collins, W. D., et al. "The formulation and atmospheric simulation of
the Community Atmosphere Model: CAM3." Journal of Climate 19
(2006): 2144-2161.

Condor. http://www.cs.wisc.edu/condor/.
Cray Research, Inc. Cray Assembler for MPP Reference Manual. Cray

Cesearch, Inc., 1996.
—. Cray T3E System Support Skills. Mendota Heights, MN: Cray

Research, Inc., May 1997.
—. UNICOS/mk Resource Administration. 2.0.2. Mendota Heights,

MN: Cray Research, Inc., 1996.
"Cray X1E." Cray X1E Datasheet.

http://www.cray.com/downloads/X1E_datasheet.pdf (accessed
2007).

303

Cray, Inc. Cray XT(TM) Series Programming Environment User's
Guide. Section 4.2 CNL Programming Considerations, Cray, Inc.,
2007.

Cray, Inc. "Cray XTTM Series Programming Environment User's
Guide." Section 4.3 Catamount Programming Considerations, Cray,
Inc., 2007.

Culler, David E., and Jaswinder Pal Singh. Parallel Computer
Architecture: A Hardware/Software Approach. First. Edited by
Denise P.M. Penrose. San Francisco, CA: Morgan Kaufmann
Publishers, Inc., 1999.

Dagum, Leonardo, and Ramesh Menon. "OpenMP: An Industry-
Standard API for Shared-Memory Programming." IEEE
Computational Science & Engineering, (IEEE Computer Society
Press) 5, no. 1 (January 1988): 46-55.

Danis, C., and C. A. Halverson. "he value derived from the
Observational Component in an Integrated Methodology for the
study of HPC Programmer Productivity." Workshop on Productivity
and Performance in High-End Computing. 12th International
Symposium on High-Performance Computer Architecture. Austin,
TX, February, 2006.

DeRose, Luiz, and John Levesque. "Tools and Techniques for
Application Performance Tuning on the Cray XT4 System." Tutorial
at the 2007 Cray User Group Conference. Seattle, WA, May 7-10,
2007.

Dicks, Stanley. "Mis-Usability: On the Uses and Misuses of Usability
Testing." SIGDOC „ 02. Toronto, Ontario, Canada, October 20-21,
2002.

"Dictionary.com." http://dictionary.reference.com/search?q=potency
(accessed 2008).

Digitial Review. "At the speed of light through a PRISM." Digital
Review, December 1998: 39-42.

Dongarra, Jack. "Performance of Various Computers Using Standard
Linear Algebra Software in a Fortran Environment." HPCC.
http://www.netlib.org/benchmarks/performance.ps (accessed 2007).

Dongarra, Jack. Performance of Various Computers Using Standard
Linear Equations Software. Computer Science , University of
Tennessee, Knoxville TN, 37996: University of Tennessee, 1985.

Earl, Joseph, Christopher G. Willard, and Debra Goldfarb. "IDC
Workstations and High-Performance Systems Bulletin." HPC User
Forum: First Annual Meeting Notes. 2000.

FBSD. http://www.freebsd.org/doc/en/books/handbook/.

304

FBSNG. http://www-isd.fnal.gov/fbsng/.
Figueira, Silvia M., and Francine Berman. "Modeling the Effects of

Contention on the Performance of Heterogeneous Applications."
Proceedings of the High Performance Distributed Computing
(HPDC '96). 1966. 392.

Flemming, Philip J., and John J. Wallace. "How not to lie with statistics:
the correct way to summarize benchmark results." Communications
of the ACM (Association for Computing Machinary) 29, no. 3
(March 1986).

Fox, Armando, Emre Kician, and David Patterson. "Combining
Statistical Monitoring and Predictable Recovery for Self
Management." Workshop on Self-healing systems, Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems.
Newport Beach, CA, 2004. 49-53.

Gonzalez, Antonio, Scott Mahlke, Shubu Makherjee, Resit Sendag,
Derek Chiou, and Joshua Yi. "Reliability: Fallacy or Reality." IEEE
Micro, November-December 2007: 36-45.

Gould, John, and Clayton Lewis. "Designing for Usability: Key
Principles and What Designers Think." Communications of the
ACM (Association for Computing Machinery) 28, no. 3 (March
1985): 300-311.

Govindaraju, Rama, et al. "Architecture and Early Performance of the
New IBM HPS Fabric and Adapter." Proceedings of the Conference
on High Performance Computing (HiPC 2004). Heidelberg:
Springer Berlin, 2005.

Graham, Susan, Mark Snir, and Cynthia Patterson, . Getting Up to
Speed: The Future of Supercomputing, Report of the National
Research Council fo the National Academies of Science, ,
http://research.microsoft.com/Lampson/72-CSTB-. National
Reseach Council of the National Academies of Science, 2004.

Gschwind, M., P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazak. "A novel SIMD architecture for the Cell heterogeneous
chip-multiprocessor." Hot Chips 17. Palo Alto, CA, 2005.

Helin, J., and K. Kaski. "Performance Analysis of High-Speed
Computers." Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing. Reno, NV: Association for Computing Machinery,
1989. 797 – 808.

"High Performance Technology Insertion 2006 (TI-06) ." DOD
Modernization Program. 2005.
http://www.fbodaily.com/archive/2005/05-May/08-May-2005/FBO-
00802613.htm (accessed 2005).

305

Hockney, Roger W. "The Science of Computer Benchmarking." SIAM.
Society for Industrial and Applied Mathematics, 1996.

Hofstee, P. "Power Efficient Architecture and the Cell Processor." High
Performance Computing Architectures - 11. 2005.

Hoise. http://www.hoise.com/primeur/00/articles/monthly/UH-PR-01-
00-1.html.

Holbrock, Karen, and David E. Shaw, . Accelerating Innovation for
Competitive Advantage: The Need for Better HPC Application
Software Solutions. Council for Competitiveness, 2005.

Hornbaek, Kasper. "Meta-Analysis of Correlations Among Usability
Measures." CHI 2007. Portland, OR, April 28-May 3, 2007.

HPCS. http://www.highproductivity.org/.
HPCS. http://www.darpa.mil/ipto/programs/hpcs/index.htm.
IBM, Inc. "HATS and HAGS in RSCT: PSSP V3.5 for AIX Diagnosis

Guide." IBM Publication.
IBM, Inc. "IBM System Cluster 1350 Facts & Features Report." June

2008.
IOR Download.

https://computing.llnl.gov/?set=code&page=sio_downloads.
ISO. Ergonomic requirements for office work with visual display

terminals (VDTs) -- Part 11: Guidance on usability. International
Standards Organization, 1998.

ISO Usability.
http://www.humanfactors.com/downloads/usabilityISO.pdf.

John, Lizy Kurian. "More on finding a Single Number to Indicate
Overall Performance of a Benchmark Suite,." ACM SIGARCH
Computer Architecture News (Association for Computing
Machinery) 31, no. 1 (March 2004).

John, Lizy Kurian, and Lieven Kurian, . Performance Evaluation and
Benchmarking. 6000 Broken Sound Parkway, NW, Suite 300, Boca
Raton,, FL, 33487-2742: CRC Press Taylor and Francis Group,
2006.

Jones, James Patton, ed. Altair PBS Pro™ User Guide for UNIX, Linux
and Windows. Altair Grid Technologies, 2004.

Keen, Noel. "Assessment of Applying the PMac Prediction Framework
to NERSC-5 SSP Benchmarks." LBNL Technical Report, NERSC,
Lawrence Berekeley National Laboratory, Berkeley, CA, 2006.

Kramer, William, and Clint Ryan. Performance Variability of Highly
Parallel Architectures. LBNL Technical Report, Berkeley, CA:
Lawrence Berkeley National Laboratory, May 2003.

306

—. "Performance Variability on Highly Parallel Architectures."
International Conference on Computational Science 2003.
Melbourne Australia and St. Petersburg Russia, 2003.

Kramer, William, et al. "Report of the Workshop on Petascale Systems
Integration for Large Scale Facilities." LBNL Technical Report,
Lawrence Berkeley National Laboratory, 2007.

Lascu, Octavian, Zbigniew Borgosz, Josh-Daniel S. Davis, Pablo
Pereira, and Andrei Socoliuc. "An Introduction to the New IBM
Eserver pSeries High Performance Switch." IBM Redbook, 2003.

Laudon, James, and Daniel Lenoski. "System Overview of the SGI
Origin 200/2000 Product Line." IEEE Computer Society
International Conference: Technologies for the Information
Superhighway. Santa Clara, CA: IEEE-CS Press, February 25-28,
1996.

Lavoie, Richard. It‟s So Much Work to Be Your Friend. New York, NY,
Touchstone (Simon and Schuster), 2005.

Lee, C. B., Y. Schwartzman, J. Hardy, and A. Snavely. "Are user
runtime estimates inherently inaccurate?" 10th Workshop on Job
Scheduling Strategies for Parallel Processing. New York, NY, 2004.

Li, Xiaoye S. Li, and James W. Demmel. "SSuperlu–dist: A scalable
distributed-memory sparse direct solver for unsymmetric linear
systems." ACM Trans. Mathematical Software (Association for
Computing Machinery) 29, no. 2 (June 2003): 110-114.

Lilja, David. Measuring Computer Performance: A Practitioner‟s Guide.
Cambridge University Press, 2000.

Lin, Z., S. Ethier, T. S. Hahm, and W. M. Tang. "Size scaling of
turbulent transport in magnetically confined plasmas." Physical
Review Letters 88 (2002).

LINPACK Download. 2008. http://www.netlib.org/LINPACK (accessed
2008).

Mashey, John R. "War of the Benchmark Means: Time for a Truce."
ACM SIGARCH Computer Architecture News (Association for
Computing Machinery) 32, no. 4 (September 2004).

Maui. http://mauischeduler/sourceforge.net/.
McMahon, F. The Livermore Fortran Kernels: A computer test of

numerical performance range. Technical Report , Lawrence
Livermore National Laboratory, Livermore, CA: University of
California,, 1986.

Membench. http://www.sdsc.edu/pmac/projects/index.html.
Moore, Gordon E. "Cramming more components onto integrated

circuits." Electronics Magazine, 1965.

307

MPI Forum. "Document for a Standard Message-Passing Interface."
Technical Report, University of Tennessee, Knoxville, TN, 1993.

MVAPICH Ping-Pong Benchmark. https://mvapich.cse.ohio-
state.edu/svn/mpi-benchmarks/branches/OMB-3.1/osu_latency.c
(accessed 2008).

Nagaraja, Kiran, Xiaoyan Li, Ricardo Bianchini, Richard Martin, and
Thu D. Nguyen. "Using fault Injection and Modeling to Evaluate the
Performability of Cluster Based Services." Proceedings fo teh 4th
USENIX Symposium on Internet Technologies and Systems.
Seattle, WA, March 2003.

"NERSC SSP Project." NERSC Projects. 2004.
http://www.nersc.gov/projects/ssp.php (accessed 2004).

"NERSC User Survey." 2003.
http://www.nersc.gov/news/survey/2003/.

NERSC User Survey. 2006. http://www.nersc.gov/news/survey/.
"NERSC-5." NERSC. 2004.

http://www.nersc.gov/projects/procurements/NERSC5 (accessed
2005).

Nielson, Jakob, and Jonathan Levy. Communications of the ACM
(Association for Computing Machinery) 37, no. 4 (April 1994): 66-
75.

Oliker, Lenoid, Julian Borrill, Jonathan Carter, David Skinner, and
Rupak Biswas. "Integrated Performance Monitoring of a Cosmology
Application on Leading HEC Platforms." International Conference
on Parallel Processing: ICPP. 2005.

Oliker, Lenoid, Rupak Bisaw, Rob van der Wijngaart, and David Bailey.
"Performance Evaluation and Modeling of Ultra-Scale Systems."
Edited by Michael A. Heroux, Padma Raghaven and Horst D.
Simon. Parallel Processing for Scientific Computing (SIAM), 2006.

Ostle, Bernard. Statistics in Research. Ames, IA: The Iowa State
University Press, 1972.

PAL. http://www.c3.lanl.gov/pal/index.shtml (accessed 2007).
Pancake, Cheri. Improving the Quality of Numerical Software Through

User-Centered Design. Technical Report, Lawrence Livermore
National Laboratory, June 1998.

PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec.
Patterson, David A., and John L. Hennessy. Computer Organization

and Design – The Hardware/Software Interface. Third. Burlington,
MA: Morgan Kaufmann Publishers, 2007.

308

Patterson, David, and John Hennessey. Computer Architecture – A
Quantitative Approach. Second. Burlington, MA: Morgan Kaufmann
Publishers, 1996.

PBS. http://www.pbsgridworks.com and
http://www.pbsgridworks.com/DocumentationInfo.aspx.

PDSI. 2007. http://www.pdl.cmu.edu/PDSI/FailureData/index.html.
PDSI Failure Data. 2007.

http://www.pdl.cmu.edu/PDSI/FailureData/index.html (accessed
2008).

Pinheir, E., W. D. Weber, and L. A. Barroso. "Failure Trend in a Large
Disk Drive Population." Proceedings of the 5th USENIX Conference
on File and Storage Technologies (FAST '07). San Jose, CA, 2007.

Pinheiro, Eduardo, Wolf-Dietrich Weber, and Luiz Andre Barroso.
"failure Trends in a Large Disk Drive Population." Proceedings of
the 5th USENIX Conference on File and Storage Technologies
(FAST '07). San Jose, CA, February 2007.

PMaC. http://www.sdsc.edu/PMaC/.
"Private communication with Mr. Brent Gorda, LLNL." 2005.
"Private communication with Mr. Cray Henry, Director of the

Department of Defense (DOD) High Performance Computing
Modernization Program (HPCMP)." March 2008.

"Private Communication with Mr. Steve Luzmoor, Cray Inc." 2008.
PSIW. 2007. http://www.nersc.gov/projects/HPC-Integration/.
"PSNAP." 2006. http://www.c3.lanl.gov/pal/software/psnap/README.
RAD Lab. http://radlab.cs.berkeley.edu/wiki/RAD_Lab.
ROCS. http://roc.cs.berkeley.edu/.
RTMAP. 2008. https://rmtap.llnl.gov/abstract.php.
Rubin, H. Handbook of Usability Testing. New York, NY: Wiley, 1994.
Sauro, Jeff, and Erika Kindlund. "A Method to Standardize Usability

Metrics Into a Single Score." CHI 2005. San Jose, CA, April 2-7,
2005.

Schmidt, M. W., et al. "General Atomic and Molecular Electronic
Structure System." Journal of Computational Chemistry, no. 14
(1993): 1347-1363.

Schroeder, Bianca, and Garth A. Gibson. "Disk Failure in the Real
world: What does an MTTF of 1,000,000 hours mean to you?"
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST '07). San Jose, CA, 2007.

Schroeder, Bianca, and Garth A. Gibson. "Understanding Disk Failure
Rates: What does an MTTF of 1,000,000 hours mean to you?"
ACM Transactions on Storage (TOS) 3, no. 3 (October 2007).

309

—. "Understanding failures in Petascale Computers." Journal of
Physics Confernece Series. 2007.

Scott, Steven L., and Gregory M. Thorson. "The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus." HOT
Interconnects IV. Stanford University, CA, 1996.

Selby, Samuel M., ed. CRC Standard Mathematical Tables Sixteenth
Edition. 18901 Canwood Parkway, Cleveland, Ohio 44128: The
Chemical Rubber Co., 1968.

SGE. http://gridengine.sunsource.net/.
Simard, Angèle. "Canadian Meteorological Center Computing Update."

2003 Computational Atmospheric Sciences Workshop. 2003.
Simon, Horst, and Erich Strohmaier. Statistical Analysis of NAS

Parallel Benchmarks and LINPACK Results. Vol. 919, in Lecture
Notes In Computer Science, edited by Bob Hertzberger and
Guiseppe Serazzi, 626 - 633. London: Springer-Verlag, 1995.

Sinharoy, B., R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. "POWER5 system micro architecture." IBM Journal of
Research and Development (IBM, Inc.), Jul-Sep 2005.

Skinner, David, and William Kramer. "Understanding the Causes of
Performance Variability in HPC Workloads." 2005 IEEE
International Symposium on Workload Characterization (IISWC-
2005). Austin, TX, October 6-8, 2005.

SLRUM. https://computing.llnl.gov/linux/slurm/.
Smith, J. E. "Characterizing Computer Performance with a Single

Number." Communications of the ACM (Association of Computing
Machinary) 31, no. 10 (October 1988): 1202-1206.

Snir, Mark, and David Bader. "A Framework for Measuring
Supercomputer Productivity." International Journal of High
Performance Computing Applications (Sage Publications, Inc.) 18,
no. 4 (November 2004): 417.

SPEC Benchmarks. 2000. http://www.spec.org (accessed 2008).
Srinivasan, Srividya,, Rajkumar Kettimuthu, Vijay Subrarnani, and P.

Sadayappan. "Characterization of Backfilling Strategies for Parallel
Job Scheduling." nternational Conference on Parallel Processing
Workshops (ICPPW'02). 2002. 514.

"SSP Project Page." NERSC. 2008.
http://www.nersc.gov/projects/ssp.php (accessed 2008).

Streams Benchmark. http://www.cs.virginia.edu/stream/ (accessed
2008).

Taylor, Mark, Richard Loft, and Joseph Tribbia. "Performance Of A
Spectral Element Atmospheric Model (Seam) On The HP Exemplar

310

2000." Journal of Scientific Computing 15, no. 4 (December 2000):
499-18.

The MIMD Lattice Computation (MILC) Collaboration.
http://www.physics.indiana.edu/~sg/milc.html and
http://www.physics.utah.edu/~detar/milc/.

Tikir, M., L. Carrington, E. Strohmaier, and A. Snavely. "A Genetic
Algorithms Approach to Modeling the Performance of Memory-
bound Computations." Proceedings of SC07. Reno, NV:
Association of Computing Machinery (ACM), 2007.

Top 500 List. 2008. http://www.top500.org (accessed 2008).
Ujfalussy, B., et al. "High performance first principles method for

complex magnetic properties." Proceedings of the ACM/IEEE SC98
Conference. Orlando, FL: IEEE Computer Society, Los Alamitos,
CA 90720-1264, November, 1998.

Williams, Dr. Margret. Private Communication (email). 2007.
Wong, Adrian, Leonid Oliker, William Kramer, Teresa Kaltz, and David

Bailey. "Evaluating System Effectiveness in High Performance
Computing Systems." LBNL Technical Report, 1999.

Worley, Pat, and John Levesque. "The Performance Evolution of the
Parallel Ocean Program on the Cray X1." Proceedings of the 46th
Cray User Group Conference. 2004.

Wu, C., and T. Fend. "On a class of multistage interconnection
networks." IEEE Transactions on Computing 29, no. C (August
1980): 694-702.

Xu, Wei, Joseph L. Hellerstein, Bill Kramer, and David Patterson.
"Control Considerations for Scaling Event Processing." The 16th
IFIP/IEEE Distributed Systems: Operations and Management
(DSOM'05). Barcelona, Spain, 2005.

Xu, Wei, Peter Bodik, and David Patterson. "A Flexible Architecture for
Statistical Learning and Data Mining from System Log Streams."
Workshop on Temporal Data Mining: Algorithms, Theory and
Applications at The Fourth IEEE International Conference on Data
Mining (ICDM'04). Brighton, UK, November 2004.

Zhang, Y., A. Sivasubramaniam, J. Moreira, and H. Franke. "mpact of
Workload and System Parameters on Next Generation Cluster
Scheduling Mechanisms." IEEE Transactions on Parallel and
Distributed Systems 12, no. 9 (September 2001): 967-985.

