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Abstract— Privacy Preserving Data Mining (PPDM) addresses
the problem of developing accurate models about aggregated data
without access to precise information in individual data record.
A widely studied perturbation-based PPDM approach introduces
random perturbation to individual values to preserve privacy
before data is published. Previous solutions of this approach are
limited in their tacit assumption of a single-level trust on data
miners.

In this work, we relax this assumption and expand the scope of
perturbation-based PPDM to Multi-Level Trust (MLT-PPDM). In
our setting, the more trusted a data miner is, the less perturbed
copy of the data it can access. Under this setting, a malicious data
miner may have the access to differently perturbed copies of the
same data through various means, and may combine these diverse
copies to jointly infer additional information about the original
data that the data owner does not intend to release. Preventing
such diversity attacks is the key challenge of providing MLT-
PPDM service. We address this challenge by properly correlating
perturbation across copies at different trust levels. We prove that
our solution is robust against diversity attacks with respect to
our privacy goal. That is, for data miners who have the access
to an arbitrary collection of the perturbed copies, our solution
prevent them from jointly reconstructing the original data more
accurately than the best effort using any individual copies in
the collection. Our solution allows a data owner to generate
perturbed copies of its data for arbitrary trust levels on-demand.
This feature offers data owners maximum flexibility.

I. INTRODUCTION

A widely employed and accepted Privacy Preserving Data
Mining (PPDM) approach, which based on data perturbation,
tacitly assumes a single-level of trust on data miners. This
approach introduces uncertainty about individual values before
data is published or released to third parties for data mining
purposes [1], [2], [3], [4], [5], [6], [7]. Under the single trust
level assumption, a data owner generates only one perturbed
copy of its data with fixed amount of uncertainty. This assump-
tion is limited in various applications where a data owner trusts
the data miners at different levels.

We present below a two trust level scenario as a motivating
example.
• The government or a business might do internal (most

trusted) data mining, but they may also want to release the
data to the public, and might perturb it more. The mining
department which receives the less perturbed internal
copy also has access to the more perturbed public copy.

It would be desirable that this department does not have
more power in reconstructing the original data by utilizing
both copies than when it has only the internal copy.

• Conversely, if the internal copy is leaked to the public,
then obviously the public has all the power of the mining
department. However, it would be desirable if the public
can not reconstruct the original data more accurately
when it uses both copies than when it uses only the leaked
internal copy.

This new dimension of Multi-Level Trust (MLT) poses new
challenges for perturbation based PPDM. In contrast to the
single-level trust scenario where only one perturbed copy is
released, now multiple differently perturbed copies of the same
data are available to data miners at different trusted levels. The
more trusted a data miner is, the less perturbed copy it can
access; it may also have the access to the perturbed copies
available at lower trust levels. Moreover, a data miner could
access multiple perturbed copies through various other means,
e.g., accidental leakage or colluding with others.

By utilizing diversity across differently perturbed copies,
the data miner may be able to produce a more accurate
reconstruction of the original data than what is allowed by
the data owner. We refer to this attack as diversity attack.
It includes the colluding attack scenario where adversaries
combine their copies to attack as a group; it also includes
the scenario where an adversary utilizes public information to
perform the attack on its own. Preventing diversity attacks is
the key challenge facing the MLT-PPDM problem.

In this paper, we address this challenge in enabling MLT-
PPDM services. In particular, we focus on the additive pertur-
bation approach where random noise is added to the original
data, and provide a systematic solution. Through a one-to-one
mapping, our solution allows a data owner to generate dis-
tinctly perturbed copies of its data according to different trust
levels. Defining trust levels and determining such mappings
are beyond the scope of this paper.

A. Contributions

We make the following contributions:
• We expand the scope of perturbation based PPDM to

multi-level trust, by relaxing the implicit assumption of a
single-level trust in exiting work. MLT-PPDM introduces
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another dimension of flexibility which allows data owners
to generate differently perturbed copies of its data for
different trust levels.

• We identify a key challenge in enabling MLT-PPDM
services. In MLT-PPDM, data miners may have the access
to multiple perturbed copies. By combining multiple
perturbed copies, data miners may be able to perform
diversity attacks to reconstruct the original data more
accurately than what is allowed by the data owner. De-
fending such attacks is challenging, which we highlight
through a case study in Section IV.

• We address this challenge by properly correlating pertur-
bation across copies at different trust levels. We prove that
our solution is robust against diversity attacks. We pro-
pose several algorithms for different targeting scenarios.
We demonstrate the effectiveness of our solution through
numerical evaluation.

• Our solution allows data owners to generate perturbed
copies of their data at arbitrary trust levels on-demand.
This property offers data owners maximum flexibility.

B. Related Work

Privacy Preserving Data Mining (PPDM) was first proposed
in [2] and [8] simultaneously. To address this problem, re-
searchers have since proposed various solutions that fall into
two broad categories based on the level of privacy protection
they provide. The first category of the Secure Multiparty
Computation (SMC) approach provides the strongest level of
privacy; it enables mutually distrustful entities to mine their
collective data without revealing anything except for what can
be inferred from an entity’s own input and the output of the
mining operation alone [8], [9]. In principle, any data mining
algorithm can be implemented by using generic algorithms
of SMC [10]. However, these algorithms are extraordinarily
expensive in practice, and impractical for real use. To avoid
the high computational cost, various solutions that are more
efficient than generic SMC algorithms have been proposed
for specific mining tasks. Solutions to build decision trees
over the horizontally partitioned data were proposed in [8] .
For vertically partitioned data, algorithms have been proposed
to address the association rule mining [9], k-means cluster-
ing [11], and frequent pattern mining problems [12]. The
work of [13] uses a secure coprocessor for privacy preserving
collaborative data mining and analysis.

The second category of the partial information hiding ap-
proach trades privacy with improved performance in the sense
that malicious data miners may infer certain properties of
the original data from the disguised data. Various solutions
in this category allow a data owner to transform its data in
different ways to hide the true values of the original data
while at the same time still permits useful mining operations
over the modified data. This approach can be further divided
into three categories: (a) k-anonymity [14], [15], [16], [17],
[18], [19], (b) retention replacement (which retains an element
with probability p or replaces it with an element selected
from a probability distribution function on the domain of
the elements) [20], [21], [22], and data perturbation (which

introduces uncertainty about individual values before data is
published) [1], [2], [3], [4], [23], [5], [6], [7].

The data perturbation approach includes two main classes
of methods: additive [1], [2], [4], [5], [7] and matrix mul-
tiplicative [3], [6] schemes. These methods apply mainly to
continuous data. In this paper, we focus solely on the additive
perturbation approach where noise is added to data values.

Another relevant line of research concerns the problem
of privately computing various set related operations. Two
party protocols for intersection, intersection size, equijoin,
and equijoin size were introduced in [24] for honest-but-
curious adversarial model. Some of the proposed protocols
leak information [25]. Similar protocols for set intersection
have been proposed in [26], [27]. Efficient two party protocols
for the private matching problem which are both secure in
the malicious and honest-but-curious models were introduced
in [28]. Efficient private and threshold set intersection proto-
cols were proposed in [29]. While most of these protocols
are equality based, algorithms in [25] compute arbitrary
join predicates leveraging the power of a secure coprocessor.
Tiny trusted devices were used for secure function evaluation
in [30].

C. Paper Layout

The rest of the paper is organized as follows. We go over
preliminaries in Section II. We formulate the problem, and
define our privacy goal in Section III. In Section IV, we
present a simple but important case study. It highlights the
key challenge in achieving our privacy goal, and presents the
intuition that leads to our solution. In Section V, we formally
present our solution, and prove that it achieves our privacy
goal. Algorithms that target at different scenarios are also
proposed, and their complexities are studied. We carry out
numerical evaluation in Section VI to verify our theoretical
analysis. Section VII concludes the paper.

II. PRELIMINARIES

A. Jointly Gaussian

Let G1 through GL be L Gaussian random variables. They
are said to be jointly Gaussian if and only if each of them is a
linear combination of multiple independent Gaussian random
variables. Equivalently, G1 through GL are jointly Gaussian if
and only if any linear combination of them is also a Gaussian
random variable.

A vector formed by jointly Gaussian random variables is
called a jointly Gaussian vector. For a jointly Gaussian vector
G = [G1, . . . , GL]T , its probability density function (PDF) is
as follows: for any real vector g,

fG(g) =
1√

(2π)L det(KG)
e−(g−µG)T K−1

G (g−µG)/2,

where µG and KG are the mean vector and covariance matrix
of G, respectively.

If multiple random variables are jointly Gaussian, then
conditional on some of them, the rest variables are still jointly
Gaussian. This is a key property of jointly Gaussian variables.
We utilize this property in Section V-C.
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Note that not all Gaussian random variables are jointly
Gaussian. For example, let G1 be a zero mean Gaussian
random variable with a positive variance, and define G2 as

G2 =
{

G1, if |G1| ≤ 1;
−G1, otherwise.

where |G1| is the absolute value of G1. It is straightforward
to verify that G2 is Gaussian, but G1 + G2 is not. Therefore,
G1 and G2 are not jointly Gaussian.

B. Additive Perturbation

Single-level trust PPDM via data perturbation has been
widely studied in literature. In this setting, a data owner im-
plicitly trusts all recipients of its data uniformly and distributes
a single perturbed copy of the data.

A widely used and accepted way to perturb a data is by
additive perturbation [1], [2], [4], [5], [7]. This approach adds
to the original data, X , some random noise, Z, to obtain the
perturbed copy, Y , as follows:

Y = X + Z. (1)

We assume that X , Y , and Z are all N -dimension vectors
where N is the number of attributes in X . Let xj , yj , and zj

be the jth entry of X , Y , and Z respectively.
The original data X follows a distribution with mean vector

µX and covariance matrix KX . The covariance KX is an N×
N positive semi-definite matrix given by

KX = E
[
(X − µX)(X − µX)T

]
, (2)

which is a diagonal matrix if the attributes in X are uncorre-
lated.

The noise Z is assumed to be independent of X and is a
jointly Gaussian vector with zero mean and covariance matrix
KZ chosen by the data owner. In short, we write it as Z ∼
N(0,KZ). The covariance matrix KZ is an N × N positive
semi-definite matrix given by

KZ = E
[
ZZT

]
. (3)

It is straightforward to verify the mean vector of Y is also
µX , and its covariance matrix, denoted by KY , is

KY = KX + KZ .

The perturbed copy Y is published or released to data
miners. Equation 1 models both the cases where a data miner
sees a perturbed copy of X , and where it knows the true values
of certain attributes. The latter scenario is considered in recent
work [7] where the authors show that sophisticated filtering
techniques utilizing the true value leaks can help recover X .

In general, given Y , a malicious data miner’s goal is to
reconstruct X by filtering out the added noise. The authors
of [4] point out that the attributes in X and the added noise
should have the same correlation, otherwise the noise can
be easily filtered out. This observation essentially requires to
choose KZ to be proportional to KX [4], i.e., KZ = σ2

ZKX

for some constant σ2
Z denoting the perturbation magnitude.

TABLE I
KEY NOTATIONS

Symbol Description
X original data
Yi perturbed copy of X of trust level i
Zi noise added to X to generate Yi

N number of attributes in X
M number of trust levels
Y a vector of all M perturbed copies
Z a vector of noisy Z1 to ZM

X̂(Y) LLSE estimate of X given Y
KX covariance matrix of X
KZ covariance matrix of Z

C. Linear Least Squares Error Estimation

Given a perturbed copy of the data, a malicious data miner
may attempt to reconstruct the original data as accurately as
possible. Among the family of linear reconstruction methods,
where estimates can only be linear functions of the perturbed
copy, Linear Least Squares Error (LLSE) estimation has the
minimum square errors between the estimated values and the
original values.

According to the classical orthogonal principle in proba-
bility theory, the LLSE estimate of X given Y , denoted by
X̂(Y ), is the projection of X onto the set of linear functions
of Y . The estimation error X − X̂(Y ) is orthogonal to the
observation Y , which means X − X̂(Y ) is zero-mean and is
uncorrelated to Y . Working out the math gives

X̂(Y ) = KXY K−1
Y (Y − µX) + µX , (4)

where KXY (KY resp.) is the covariance matrix of X and Y
(Y resp.). KXY is given by

KXY = E[(X − µX)(Y − E[Y ])T ]
= E[(X − µX)((X − µX) + (Z − 0))T ]
= KX + 0.

Note in the above derivation, we compute E[(X−µX)ZT ] =
E[(X − µX)]E[ZT ] = 0, since X and Z are independent.

The square estimation errors between the LLSE estimates
and the original values of the attributes in X are the diagonal
terms of the covariance matrix of X − X̂(Y ). An important
property of LLSE estimation is that it simultaneously mini-
mizes all these estimation errors.

III. PROBLEM FORMULATION

In this section, we present the problem settings, describe our
threat model, state our privacy goal, and identify the design
space. Table I lists the key notations used in the paper.

A. Problem Settings

In the MLT-PPDM problem we consider in this paper, a
data owner trusts data miners at different levels and generates
a series of perturbed copies of its data for different trust levels.
This is done by adding varying amount of noise to the data.

Under the multi-level trust setting, data miners at higher
trust levels can access less perturbed copies which data miners
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at lower trust levels can not access, and possibly vice versa.
In some scenarios, such as the motivating example we give at
the beginning of Section I, data miners at higher trust levels
may also have the access to the perturbed copies at more than
one trust levels. Data miners at different trust levels may also
collude to share the perturbed copies among them. As such, it
is common that data miners can have the access to more than
one perturbed copies.

Specifically, we assume that the data owner wants to release
M perturbed copies of its data X , which is an N × 1 vector
with mean µX and covariance KX as defined in Section II-B.
These M copies can be generated in various fashions. They
can be jointly generated all at once. Alternatively, they can be
generated at different times upon receiving new requests from
data miners, in an on-demand fashion. The latter case gives
data owners maximum flexibility.

Let Y = [Y T
1 , . . . , Y T

M ]T be the vector of all perturbed
copies Yi(1 ≤ i ≤ M) where T denotes transpose. Let
Z = [ZT

1 , . . . , ZT
M ]T be the vector of noise. Let H be an

(N ·M)×N matrix as follows:

H =




IN

...
IN


 ,

where IN represents an N ×N identity matrix.
We have the relationship between Y, X and Z as follows:

Y =




Y1

...
YM


 =




IN

...
IN


 X +




Z1

...
ZM


 = HX + Z, (5)

where Zi, 1 ≤ i ≤ M are independent of X . To be robust
against advanced filtering attacks, individual noise terms in
Zi added to different attributes in X should have same the
correlations as the attributes themselves, otherwise Zi can be
easily filtered out [4]. As such, we have

KZi = σ2
Zi

KX , and KYi = (1 + σ2
Zi

)KX ,

where σ2
Zi

is a constant of the perturbation magnitude. The
data owner chooses a value for σ2

Zi
according to the trust

level associated with the target perturbed copy Yi.

B. Threat Model

We assume malicious data miners who always attempt to
reconstruct a more accurate estimate of the original data given
perturbed copies. We hence use the terms data miners and
adversaries interchangeably throughout this paper. In MLT-
PPDM, adversaries may have the access to a subset of the
perturbed copies of the data. The adversaries’ goal is to
reconstruct the original data as accurately as possible based
on all available perturbed copies they have access to.

The reconstruction accuracy heavily depends on the adver-
saries’ knowledge. We make the same assumption as the one
in [4] that adversaries have the knowledge of the statistics
of the original data X and the noise Z, i.e., mean µX , and
covariance matrices KX and KZ.

In addition, we assume adversaries only perform linear es-
timation attacks, where estimates can only be linear functions

of the perturbed data Y . It is known that if X follows a
jointly Gaussian distribution, then LLSE estimation achieves
the minimum estimation error among both linear and nonlinear
estimation methods. For X with general distribution, LLSE
estimation has the minimum estimation error among all linear
estimation methods. Various recent work in perturbation based
PPDM, such as [4] and [5], makes this assumption of linear
estimation. See reference [7] for a comprehensive review.

Noticed KXY = KXHT and KY = HKXHT + KZ, the
LLSE estimate X̂(Y) of X given Y can be expressed as:

X̂(Y) = KXYK
−1
Y (Y− E[Y]) + µX

= KXHT
[
HKXHT + KZ

]−1
(Y−HµX)

+µX . (6)

In our setting, X̂(Y) is the most accurate estimate of
X that an adversary can possibly make. The corresponding
estimation errors of attributes in X are the diagonal terms of
the covariance matrix of X̂(Y) − X . Using Equation 6, we
can compute the covariance matrix as follows:

E

[(
X̂(Y)−X

)(
X̂(Y)−X

)T
]

= KX −KXHT K−1
Y HKX =

[
K−1

X + HT K−1
Z H

]−1
. (7)

For an adversary who observes only a single copy Yi (1 ≤ i ≤
M) and gets a LLSE estimate X̂(Yi), the covariance matrix
of X̂(Yi)−X has a simple form as follows:

E

[(
X̂(Yi)−X

)(
X̂(Yi)−X

)T
]

= KX −KXK−1
Yi

KX =
σ2

Zi

σ2
Zi

+ 1
KX . (8)

C. Definitions

1) Distortion: To facilitate future discussion on utility and
privacy, we define the concept of perturbation D between two
data as the average expected square difference between them.
For example, the distortion between the original data X and
the perturbed copy Y as define in Section II-B is given by:

D(X, Y ) =
1
N

N∑

j=1

E[(yj − xj)2].

It is easy to see that D(X, Y ) = D(Y,X).
Based on the above definition, we refer to a perturbed data

Y2 to be more perturbed than Y1 with respect to X if and only
if D(X,Y2) > D(X,Y1).

2) Privacy and Utility: Single-level Trust : With respect
to the original data X , the privacy of a perturbed copy Y
represents how well the true values of X is hidden in Y and
the utility of Y represents the amount of information about X
contained in Y .

A more perturbed copy of the data does not necessarily
have more privacy or less utility since the added noise may be
intelligently filtered out. Consequently, we define the privacy
of a perturbed copy by taking into account an adversary’s
power in reconstructing the original data. We define the
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privacy of Y with respect to X to be D(X, X̂(Y )), i.e. the
distortion between X and the LLSE estimate X̂(Y ). We refer
to a perturbed data Y2 to preserve more privacy than Y1 with
respect to X if and only if D(X, X̂(Y2)) > D(X, X̂(Y1)).

As the distortion between X̂(Y ) and X increases, Y ’s
usefulness decreases. A larger distortion hides the original
values better (and thus preserve more privacy), but it also
hides more information about the original data. Consequently,
we define the utility of Y with respect to X , to be the inverse
of the distortion between X and X̂(Y ), i.e. 1/D(X, X̂(Y )).
We refer to perturbed data Y2 to have less utility than Y1 with
respect to X if and only if D(X, X̂(Y2)) > D(X, X̂(Y1)).

3) Privacy and Utility: Multi-level Trust: We now define
privacy and utility for the multi-level trust case in the same
spirit of the single-level trust case.

For a vector Y = [Y T
1 , · · · , Y T

M ]T of M perturbed copies of
X , the privacy of Y represents how well the true values of X
is hidden in the multiple perturbed copies Y, and the utility of
Y represents the amount of information about X contained
in Y. The privacy of Y, with respect to X , is defined as
D(X, X̂(Y)), the distortion between X and its LLSE estimate
X̂(Y). The utility of Y with respect to X is defined as the
inverse of Y’s privacy with respect to X .

Based on the definitions of privacy and utility, we see that
one is uniquely determined by the other. As such, we use the
terms privacy and utility interchangeably in this paper.

D. Privacy Goal and Design Space

In MLT-PPDM setting, a data owner releases distinctly
perturbed copies of its data to multiple data miners. One key
goal of the data owner is to control the amount of information
about its data that adversaries may derive.

We assume that the data owner wants to distribute a total of
M different perturbed copies of its data, i.e., Yi(1 ≤ i ≤ M),
each for a trust level i. The assumption of M is for ease of
analysis. As it will become clear later that our solution of
the on-demand generation allows a data owner to generate as
many different copies as it wishes.

The data owner can easily control the amount of the
information about its data an attacker may infer from a single
perturbed copy. Utilizing Equation 8, we express the privacy
of Yi, i.e. D(X, X̂(Yi)), as follows:

D(X, X̂(Yi))

=
1
N

N∑

i=1

E
[
(x̂i(Yi)− xi)

2
]

=
1
N

Tr

(
E

[(
X̂(Yi)−X

)(
X̂(Yi)−X

)T
])

=
σ2

Zi

σ2
Zi

+ 1
1
N

Tr (KX) , (9)

where Tr(·) represents the trace of a matrix.
The data owner can easily control the privacy and utility

of individual copy Yi by setting σ2
Zi

according to trust level i
through a one-to-one mapping. Defining trust levels and such
mappings are beyond the scope of this paper.

However, such control alone is not sufficient in the face of
diversity attacks. Adversaries that can access copies at differ-
ent trust levels enjoy the diversity gain when they combine
multiple distinctly perturbed copies to estimate the original
data. We discuss one such case in Section IV-B.1.

Ideally, the amount of information about X that adversaries
can jointly infer from multiple perturbed copies should be no
more than that of the best effort using any individual copies.

Formally, we say the privacy goal is achieved with respect to
M perturbed copies Yi, 1 ≤ i ≤ M , if the following statement
holds. For an arbitrary subset YC of {Yi, 1 ≤ i ≤ M},

D(X, X̂(YC)) = min
ξ∈YC

D(X, X̂(ξ)). (10)

where YC is the set of perturbed copies an adversary uses to
reconstruct the original data.

Intuitively, achieving the privacy goal requires that given
the copy with the highest utility among any subset of these M
perturbed copies, the remaining copies in that subset contain
no extra information about X .

To achieve this goal, the available design space is noise Z.
We already determine that individual noise Zi, 1 ≤ i ≤ M
must follow N(0, σ2

Zi
KX). In the rest of the paper, we show

by properly correlating noise Zi, 1 ≤ i ≤ M , the desired
privacy goal can be achieved.

IV. CASE STUDY

In this section, we study a basic case corresponding to
the motivating example we described at the beginning of
Section I. In the case, a data miner has access to two differently
perturbed copies of the same data, each for a different trust
level. We present the challenges in achieving the privacy goal
in Equation 10 with two false starts. As we develop a solution
to this basic base, we show the key ideas in solving the more
general case of arbitrarily fine granularity of trust levels.

A. An Illustrative Case

For ease of illustration, we assume that data contain only
one attribute. We assume that the data owner has already
distributed a perturbed copy Y2 of the original data X where

Y2 = X + Z2.

The Gaussian noise Z2 ∼ N(0, σ2
2) is independent of X .

The data owner now wishes to produce another perturbed
copy Y1. It generates Gaussian noise Z1 ∼ N(0, σ2

1), and adds
it to X to obtain Y1 as

Y1 = X + Z1.

The new noise Z1 is also independent of X (but could be
designed to be correlated with Z2). We consider the case where
the data owner chooses σ2

2 > σ2
1 so that Y1 is less perturbed

than Y2.
The privacy goal in Equation 10 requires that

D(X, X̂(Y1, Y2)) = D(X, X̂(Y1)). (11)

To see this, note that min(X,D(X̂(Y1)),D(X, X̂(Y2))) can
be simplified to D(X, X̂(Y1)), i.e., the less perturbed copy
gives better estimate.
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B. Two False Starts

In this section, we illustrate the challenges in achieving the
privacy goal by two false starts.

1) Independent Noise: The first intuitive attempt is to
generate the two perturbed copies independently. The added
noise in the two perturbed copies is not only independent to
the original data, but also independent to each other.

In the case we consider, the above solution generates Z1

to be independent of X and Z2 respectively. Consequently,
adversaries have two perturbed copies as follows:

{
Y1 = X + Z1

Y2 = X + Z2

where X , Z1 and Z2 are mutually independent. The adver-
saries perform a joint LLSE estimation to obtain X̂(Y1, Y2).
Straightforward computation shows that

D(X, X̂(Y1, Y2)) =
σ2

X

1 + σ2
X/σ2

1 + σ2
X/σ2

2

.

This value is strictly smaller than the error of the estimate
based on either Y1 or Y2, which is for i = 1, 2,

D(X, X̂(Yi)) =
σ2

X

1 + σ2
X/σ2

i

.

Thus, Equation 11 is not satisfied and the desired privacy goal
not achieved.

Intuitively, this is because the two copies of the data
are generated independently, each containing some innovative
information of the original data that is absent from the
other. When estimation is performed jointly, the innovative
information from both copies can be utilized, resulting in a
smaller estimation error and thus a more accurate estimate.

2) Linearly Dependent Noise: In light of the incorrectness
of the first solution, one might consider a second approach
to generate new noise so that it is linearly dependent to the
existing one.

In the case we consider, the above approach may generate
Z1 = σ1

σ2
Z2. It is easy to verify that Z1 ∼ N(0, σ2

1). However,
Y1 = X + Z1 again fails to achieve the privacy goal.

To see this, notice that the adversaries who have the access
to both copies can reconstruct X perfectly as follows:

X =
σ2Y1 − σ1Y2

σ2 − σ1
=

σ2(X + Z1)− σ1(X + Z2)
σ2 − σ1

.

The estimation error is zero, and Equation 11 is not satisfied.

C. Proposed Solution

Intuitively, Equation 11 requires that given Y1, observing the
more perturbed Y2 does not improve the estimation accuracy.

One way to satisfy Equation 11 is to generate Z1 so that
Y1 = X + Z1 and Z2 − Z1 are independent. To see why, we
re-write Y2 as

Y2 = Y1 + (Z2 − Z1).

If Y1 and Z2 − Z1 are independent, then Y2 is nothing but a
perturbed observation of Y1. All information in Y2 useful for
estimating X is inherited from Y1. Consequently, given Y1,

Y2 provides no extra innovative information to improve the
estimation accuracy, and Equation 11 is satisfied.

Since X and Z1 (resp. Z2) are independent, Y1 and Z2 −
Z1 are independent if Z1 and Z2 − Z1 are independent. The
following theorem gives a sufficient and necessary condition
for Z1 and Z2 to satisfy that Z1 and Z2−Z1 are independent.

Theorem 1: Assume Z1 ∼ N(0, σ2
1), Z2 ∼ N(0, σ2

2), and
σ2

1 < σ2
2 . Z1 and Z2 − Z1 are independent if and only if Z1

and Z2 are jointly Gaussian and their covariance matrix is
[

σ2
1 σ2

1

σ2
1 σ2

2

]
. (12)

Proof: Refer to Appendix A.
The following theorem states that Z1 and Z2 − Z1 being

independent is a sufficient condition for Equation 11 to hold.
Theorem 2: Given that Z1 ∼ N(0, σ2

1) and Z2 ∼ N(0, σ2
2),

and σ2
1 < σ2

2 , if Z1 and Z2 − Z1 are independent, then
Equation 11 holds.

Proof: Refer to Appendix B.
This sufficient condition is key in achieving the privacy goal
in this simple case, as well as in the general cases, on which
we elaborate in Section V.

Following the above analysis, our solution to this simple
case is as follows:

• Given σ2
1 and σ2

2 , construct the covariance matrix of Z1

and Z2 as in Equation 12. Derive the joint distribution of
Z1 and Z2.

• Compute the conditional distribution of Z1 given Z2.
Generate Z1 according to this conditional distribution.

• Generate the desired Y1 = X + Z1.

In this way, Z1 and Z2−Z1 are guaranteed to be independent;
hence, Equation 11 is satisfied.

V. SOLUTION TO GENERAL CASES

We now show that solutions to the general cases of arbitrar-
ily fine trust levels follow naturally from that to the two trust
level case studied in Section IV.

A. Shaping the Noise

1) Independent Noise Revisited: In Section IV, we show
that adding independent noise to generate two differently
perturbed copies, although convenient, fails to achieve our
privacy gaol. The increase in the number of independently
generated copies aggravates the situation; the estimation error
actually goes to zero as this number increases indefinitely. In
turn, the attackers can perfectly reconstruct the original data.
We formalize this observation in the following theorem.

Theorem 3: Let Y = [Y T
1 , . . . , Y T

M ]T be a vector containing
M perturbed copies. Assume that Y is generated from the
original data X as follows:

Y = HX + Z,

where H = [IN , . . . , IN ]T , and Z = [ZT
1 , . . . , ZT

M ]T with
Zi ∼ N(0, σ2

Zi
KX) is the noise vector.
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If noises Zi, 1 ≤ i ≤ M are mutually independent, then the
square errors between the LLSE estimate X and X̂(Y) are the
diagonal terms of the following matrix

(
1 +

M∑

i=1

1
σ2

Zi

)−1

KX .

As M goes to infinity, the estimation errors go to zero
eventually, so does the distortion D(X, X̂(Y)).

Proof: Refer to Appendix C.
We conclude that noise Zi, 1 ≤ i ≤ M should not be

generated independently.
2) Properly Correlated Noise: We show by the case

study that the key to achieving the desired privacy goal
is to have noise Zi, 1 ≤ i ≤ M properly correlated. To
this end, we further develop the pattern found in the 2 × 2
noise covariance matrix in Equation 12 into a corner-wave
property for a multi-dimensional noise covariance matrix.
This property becomes the cornerstone of Theorem 4 which
is a generalization of Theorem 1 and 2.

Corner-wave Property Theorem 4 states that for M perturbed
copies, the privacy goal in Equation 10 is achieved if the noise
covariance matrix KZ has the corner-wave pattern as shown
in Equation 14. Specifically, we say that an M × M square
matrix has the corner-wave property if, for every i from 1 to
M , the following entries have the same value as the (i, i)th

entry:
• all entries to the right of the (i, i)th entry in row i,
• all entries below the (i, i)th entry in column i.

The distribution of the entries in such a matrix looks like
corner-waves originated from the lower right corner.

Theorem 4: Let Y = [Y T
1 , . . . , Y T

M ]T represent an arbitrary
number of perturbed copies. Assume that Y is generated from
the original data X as follows:

Y = HX + Z,

where H = [IN , . . . , IN ]T , and Z = [ZT
1 , . . . , ZT

M ]T with
Zi ∼ N(0, σ2

Zi
KX) is the noise vector. Without loss of

generality, we further assume

σ2
Zi

< σ2
Zi+1

, ∀i = 1, . . . , M − 1. (13)

Then the following equation holds1

D(X, X̂(Y)) = min
i=1,...,M

D(X, X̂(Yi)) =
σ2

Z1

σ2
Z1

+ 1
1
N

Tr(KX),

if Z is a jointly Gaussian vector and its covariance matrix KZ
is given by

KZ =




σ2
Z1

KX σ2
Z1

KX · · · σ2
Z1

KX

σ2
Z1

KX σ2
Z2

KX · · · σ2
Z2

KX

...
...

. . .
...

σ2
Z1

KX σ2
Z2

KX · · · σ2
ZM

KX


 . (14)

Proof: Refer to Appendix D.
Moreover, for any subset of these M perturbed copies, the

covariance matrix of the corresponding noise also has the

1In the equation, Tr(·) denotes the trace of a matrix.

corner-wave property, and thus the privacy goal is achieved.
We summarize this observation in Corollary1.

Corollary 1: If the privacy goal in Equation 10 is achieved
with respect to M perturbed data Y1, . . . , YM , then the goal
is also achieved with respect to any subset of {Y1, . . . , YM}.

Based on Theorem 4 and Corollary 1, one way to achieve
the privacy goal in Equation 10 is to ensure that noise Z is
a jointly Gaussian vector and follows N(0,KZ) where KZ
is given by Equation 14. We consider two scenarios when
generating noise Z and the corresponding perturbed copies Y.
We discuss these two scenarios in the following two sections.

B. Batch Generation

In the first scenario, the data owner determines the M trust
levels a priori, and generates M perturbed copies of the data
in one batch. In this case, all trust levels are predefined and
σ2

Z1
to σ2

ZM
are given when generating the noise. We refer to

this scenario as the batch generation.
We propose two batch algorithms. Algorithm 1 generates

noise Z1 to ZM in parallel while Algorithm 2 sequentially.
1) Algorithm 1: Parallel Generation: Without loss of gen-

erality, we assume σ2
Zi

< σ2
Zi+1

where 1 ≤ i ≤ M − 1.
Algorithm 1 generates the components of noise Z, Z1 to ZM ,
simultaneously based on the following probability distribution
function, for any real (N ·M)-dimension vector v,

fZ(v) =
1√

(2π)M det(KZ)
e−

1
2 vT K−1

Z v, (15)

where KZ is given by Equation 14.
Algorithm 1 then constructs Y as HX + Z and outputs it.

We refer to Algorithm 1 as parallel generation.

Algorithm 1 : Parallel Generation
1: // Input: X , KX , and σ2

Z1
to σ2

ZM

2: // Output: Y
3: Construct KZ with KX and σ2

Z1
to σ2

ZM
, according to

Equation 14
4: Generate Z with KZ, according to Equation 15
5: Generate Y = HX + Z
6: Output Y

Algorithm 1 has a large memory requirement when gen-
erating a significant number of perturbed versions. Notice
that it relies on generating an M × N Gaussian vector
which requires a memory of size O(M2 · N2) to store the
corresponding covariance matrix. The memory requirement
grows quadratically with M for a fixed N . Algorithm 1 serves
as a baseline algorithm for the next two algorithms.

2) Algorithm 2: Sequential Generation: The large memory
requirement of Algorithm 1 motivates us to seek for a memory
efficient solution. Instead of parallel generation, sequentially
generating noise Z1 to ZM , each of which a Gaussian vector
of N dimension, requires only a memory of size O(N2). The
validity of the alternative procedure is based on the insight in
the following theorem.
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Theorem 5: Consider Z = [ZT
1 , . . . , ZT

M ]T where Zi ∼
N(0,KZi

) with KZi
= σ2

Zi
KX . Without loss of generality,

further assume

σ2
Zi

< σ2
Zi+1

, ∀i = 1, . . . , M − 1. (16)

Then Z is a jointly Gaussian vector and KZ has the form in
Equation 14, if and only if Z1, and (Zi −Zi−1) are mutually
independent.

Proof: Refer to Appendix E.
Based on Theorem 5, Algorithm 2 sequentially generates

M independent noise Z1, and (Zi−Zi−1) for i from 2 to M .
Noise Zi is then simply (Zi − Zi−1) + Zi−1 for i from 2 to
M . Finally Algorithms 2 generates the perturbed copies Y1 to
YM by adding the corresponding noise. We refer to Algorithm
2 as sequential generation.

Algorithm 2 : Sequential Generation
1: // Input: X , KX , and σ2

Z1
to σ2

ZM

2: // Output: Y1 to YM

3: Construct Z1 ∼ N(0, σ2
Z1

KX)
4: Generate Y1 = X + Z1

5: Output Y1

6: for i from 2 to M do
7: Construct noise ξ ∼ N(0, (σ2

Zi
− σ2

Zi−1
)KX)

8: Generate Yi = Yi−1 + ξ
9: Output Yi

10: end for

We now explain intuitively why the mutual independence
requirement for Z1, and (Zi − Zi−1) for i from 2 to M is
sufficient to achieve our privacy goal in Equation 10.

We rewrite Yi as X +Z1 +
∑i

j=2(Zj−Zj−1). Since X , Z1

and Zj − Zj−1 for j = 2, . . . , M are mutually independent,
Yi, 2 ≤ i ≤ M are perturbed observations of Y1. Intuitively
all information in them that are useful for estimating X is
inherited from Y1. As such, given Y1, Yi, 2 ≤ i ≤ M provides
no extra innovative information to improve the estimation
accuracy. Similar analysis applies to any subset of Y1 to YM .
Hence, Equation 10 is satisfied. This intuition is similar to the
explanation for the case study in Section IV.

3) Disadvantages: The main disadvantage of the batch
generation approach is that it requires a data owner to foresee
all possible trust levels a priori.

This obligatory requirement is not flexible and sometimes
impossible to meet. One such scenario for the latter arises
in our case study. After the data owner already released a
perturbed copy Y2, a new request for a less distorted copy
Y1 arrives. The sequential generation algorithm cannot handle
such requests since the trust level of the new request is lower
than the existing one. In today’s ever changing world, it is
desirable to have technologies that adapt to the dynamics of
the society. In our problem setting, generating new perturbed
copies on-demand would be a desirable feature.

C. On Demand Generation

As opposed to the batch generation, new perturbed copies
are introduced on demand in this second scenario. Since the

requests may be arbitrary, the trust levels corresponding to
the new copies would be arbitrary as well. The new copies
can be either lower or higher than the existing trust levels.
We refer this scenario as on-demand generation. Achieving
the privacy goal in this scenario will give data owners the
maximum flexibility in providing MLT-PPDM services.

We assume L(L < M) existing copies of Y1 to YL. We also
assume that the data owner, upon requests, generates additional
M−L copies of YL+1 to YM . Thus there will be M copies in
total. Note in this subsection σ2

Z1
to σ2

ZM
can be in any order.

Finally, we define vectors Z′ and Z′′ as

Z′ =




Z1

...
ZL


 and Z′′ =




ZL+1

...
ZM


 .

According to Theorem 4, the data owner should generate
new noise Z′′ in such a way that the covariance matrix of
Z = [Z′TZ′′T ]T has corner-wave property, and they are jointly
Gaussian.

The desired covariance matrix KZ can be constructed ac-
cording to Equation 14 (after properly ordering Z1 to ZM

according to σ2
Z1

to σ2
ZM

).
It is known that for two Gaussian vectors Z′ and Z′′ to

be jointly Gaussian, it is sufficient and necessary for the
conditional distribution of Z′′ given that Z′ takes any value
v1 to be a Gaussian with mean

KZ′′Z′K
−1
Z′ v1 (17)

and covariance

KZ′′ −KZ′′Z′K
−1
Z′ KT

Z′′Z′ , (18)

where KZ′ is the covariance matrix of Z′, KZ′′Z′ is the desired
covariance matrix between Z′′ and Z′, and KZ′′ is the desired
covariance matrix of Z′′.

Note KZ′ is known to the data owner, and KZ′′Z′ and KZ′′
can be extracted from the desired covariance matrix KZ. We
turn the above analysis into Algorithm 3 as follows:

Algorithm 3 : On Demand Generation
1: // Input: X , KX , σ2

Z1
to σ2

ZM
, and values of Z′: v1

2: // Output: New copies Z′′
3: Construct KZ with KX and σ2

Z1
to σ2

ZM
, according to

Equation 14
4: Extract KZ′′Z′ and KZ′′ from KZ
5: Construct KZ′ with KX and σ2

Z1
to σ2

ZL
, according to

Equation 14
6: Generate Z′′ as a Gaussian with mean and variance in

Equation 17 and 18, respectively
7: for i from L + 1 to M do
8: Generate Yi = X + Zi

9: Output Yi

10: end for

Algorithm 3 requires O(M2 · N2) memory to store the
covariance matrix KZ. Table II compares the three proposed
algorithms.
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TABLE II
COMPARISON OF APPLICABILITIES AND REQUIRED MEMORY SIZE OF

THREE PROPOSED ALGORITHMS.

Batch On-demand Required
Generation Generation memory size

Algorithm 1 X O(M2N2)
Algorithm 2 X O(N2)
Algorithm 3 X X O(M2N2)

VI. EXPERIMENTS

A. Methodology and Settings

We design two experiments to explore answers to the
following questions numerically:

• How severe can LLSE-based diversity attacks be, given
perturbed copies at different trust levels are generated
independently?

• How effective is our proposed scheme against LLSE-
based diversity attacks?

• How does an adversary’s knowledge affect the power of
such attacks?

We use synthetic data for ease of carrying out the experi-
ments and evaluating their performance in a fully controlled
manner. Our approach generates a mean vector µX and a
covariance matrix KX , then the synthetic data X based on
µX and KX . We use a process similar to the one in [4] to
generate a covariance matrix.

To generate perturbed copies Yi at different trust levels i, we
generate Gaussian noise Zi according to N(0, σ2

Zi
KX), and

add them to X . The constant σ2
Zi

represents the perturbation
magnitude determined by the data owner according to the trust
level i. The noise for different trust levels are generated either
independently, or in a properly correlated manner following
our proposed solution in Section V.

Data miners can access one or more perturbed copies Yi,
either according to application scenario setting or by collusion
among themselves. Recall our assumption that data miners
perform joint LLSE estimation to reconstruct X . We study
two classes of data miners with different knowledge about the
original data and noise:

• the first class of adversaries have perfect knowledge, i.e.,
the exact values of µX , KX and σ2

Zi
for every trust level

i;
• the second class of adversaries have partial knowledge,

i.e., the exact values of σ2
Zi

for every trust level i but not
µX and KX .

To perform LLSE estimation, data miners with partial
knowledge estimate µX and KX using their perturbed copies.
For each Yi, its mean is simply µX , and its covariance matrix
is (1 + σ2

Zi
)KX . Knowing the exact values of σ2

Zi
, a data

miner can estimate µX and KX using the sample mean and
sample covariance matrix of Yi. Accuracy of such estimation
depends on the sample size; the larger the sample size, the
more accurate the estimation on µX and KX can be.

In our experiments, we use normalized estimation error as
the performance metric. For LLSE estimate of X based on Y,

i.e. X̂(Y), we define its normalized estimation error as

D(X, X̂(Y))
KX

.

It takes values between 0 and 1. The smaller it is, the more
accurate the LLSE estimation is. It generally decreases as more
perturbed copies are used in the LLSE estimation.

B. Experiment 1: Independent Noise

We assume data miners can access M perturbed copies
Yi, 1 ≤ i ≤ M . Each Yi is for a different trust level with
the corresponding σ2

Zi
, 1 ≤ i ≤ M randomly generated

in [0.25, 2]. This implies that the perturbation magnitude at
a trust level is at most twice of the data variance. This
setting represents the most severe attacking scenario where
data miners jointly estimate X using all available M perturbed
copies. We evaluate the corresponding normalized estimation
error for the two attacker classes with perfect and partial
knowledge.

We assume that data miners with partial knowledge estimate
µX and KX with different sample sizes. In particular, we
assume that they have 100N2, 200N2 and 300N2 samples,
where N2 is the number of entries in KX .

Figure 1 shows the normalized estimation errors as a
function of the number of perturbed copies. The results
of the experiments clearly show that the diversity gain in
joint estimation helps reduce the normalized estimation error
dramatically. When data miners have perfect knowledge, the
normalized estimation error decreases monotonically as M
increases. This trend indicates a perfect reconstruction of X
when M goes to infinity. It also confirms empirically our
statement of Theorem 3.
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Fig. 1. Average estimation error as a function of the number of independently
generated perturbed copies.

Contrarily, the curve flattens and even slightly increases as
M becomes large for the cases where the attackers with partial
knowledge. This is because the estimation error depends not
only on the number of perturbed copies, but also on the
precision of µX and KX .
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With a small M , the diversity gain in combining different
perturbed copies dominates, resulting in decreasing estimation
error. However, such gain diminishes after obtaining enough
copies. Meanwhile, the estimation based on inaccurately esti-
mated mX and KX is no longer optimal. Consequently, the
estimation accuracy no longer improves as M increases. Fig-
ure 1 also shows that adversaries having more samples perform
better in estimating µX and KX , resulting in improved overall
accuracy.
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Fig. 2. (a) Average estimation error as a function of the number of perturbed
copies generated using our proposed Algorithm 3. (b) Perturbation magnitude
σ2

Zi
as a function of perturbed copy number i.

C. Experiment 2: Privacy Goal Achieved

We generate M perturbed copies one by one upon requests,
using our proposed algorithm A3. Each request is at a different
trust level with corresponding σ2

Zi
randomly generated in

[0.25, 2]. Figure 2.(b) shows σ2
Zi

as a function of perturbed
copy number i. A new copy is generated using our proposed
Algorithm 3.

We again study the most severe attacking scenario where
data miners jointly estimate X using all available M perturbed
copies. Since the perturbed copies are released one by one,
the number of available perturbed copies also increases one
by one.

We first consider the case where data miners have perfect
knowledge. Comparing Figure 2.(a) and 2.(b), we find that
the estimation error drops only when a perturbed copy with
minimum perturbation magnitude so far becomes available.
Our observation implies that the joint estimation based on all
existing copies is only as good as the estimation based on the
copy with the minimum privacy, and there is no diversity gain
in performing the LLSE estimation jointly. Moreover, we have

verified that the estimation error matches our analytical result
in Theorem 4.

For the case where data miners have only partial knowledge,
we observe that the LLSE estimation error is strictly larger
than the case where data miners have perfect knowledge,
which is consistent with our observations in Experiment 1.

In summary, the privacy goal in Section III-D is achieved in
this most severe attacking scenario. We have also verified that
the goal is also achieved in other attacking scenario where
adversaries have the access to an arbitrary subset of the M
perturbed copies.

VII. DISCUSSION AND FUTURE WORK

In this work, we expand the scope of additive perturbation
based PPDM to multi-level trust (MLT), by relaxing an im-
plicit assumption of a single-level trust in exiting work. MLT-
PPDM allows data owners to generate differently perturbed
copies of its data for different trust levels.

The key challenge lies in preventing the data miners from
combining copies at different trust levels to jointly reconstruct
the original data more accurate than what is allowed by the
data owner.

We address this challenge by properly correlating noise
across copies at different trust levels. We prove that if we
design the noise covariance matrix to have corner-wave prop-
erty, then data miners will have no diversity gain in their
joint reconstruction of the original data. We verify our claim
and demonstrate the effectiveness of our solution through
numerical evaluation.

Last but not the least, our solution allows data owners to
generate perturbed copies of its data at arbitrary trust levels
on-demand. This property offers the data owner maximum
flexibility.

We believe that multi-level trust privacy preserving data
mining can find many applications. Our work takes the initial
step to enable MLT-PPDM services. Many interesting and
important directions are worth exploring. For example, it is not
clear how to expand the scope of other approaches in the area
of partial information hiding, such as random rotation based
data perturbation, k-anonymity , and retention replacement,
to multi-level trust. It is also of great interest to extend our
approach to handle evolving data streams.

Embraced with the assumption that adversaries carry out
only linear attacks, our work does not take into account
the adversaries that apply nonlinear techniques to derive the
original data. This is the limitation of our work, as well as
most existing work on perturbation based PPDM. Studying the
MLT-PPDM problem under a relaxed setting where adversaries
may also carry out nonlinear attacks is certainly an interesting
future direction.
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APPENDIX

A. Proof of Theorem 1

Proof: We first prove the if part of the theorem. From the
covariance matrix of Z1 and Z2, we know that E[Z1Z2] = σ2

1 .
Therefore,

E[Z1(Z2 − Z1)] = E[Z1Z2]− E[Z2
1 ] = σ2

1 − σ2
1 = 0, (19)

suggesting that Z1 and Z2 − Z1 are linearly independent.
Meanwhile, by definition of jointly Gaussian, Z2 − Z1 is

also a Gaussian random variable. For Gaussian variables Z1

and Z2 − Z1, linear independence implies independence.
We now prove the only if part of the theorem. We observe

that Z2 = Z1+(Z2−Z1) is sum of two independent Gaussian
random variables. Thus, Z2 and Z1 are jointly Gaussian by
definition, and we also have E[Z2Z1] = E[Z1Z2] = σ2

1 . It
follows that their covariance matrix is as follows:

[
σ2

1 σ2
1

σ2
1 σ2

2

]
.

B. Proof of Theorem 2

Proof: By Theorem 5, if Z1 and Z2 satisfy that Z1 and
Z2−Z1 are independent, then their covariance matrix, denoted
by KC , must be given by

KC =
[

σ2
1 σ2

1

σ2
1 σ2

2

]
.

Based on Y1, the LLSE estimation of X has an estimation
error of

σ2
X − σ4

X

σ2
X + σ2

1

=
σ2

X

1 + σ2
X/σ2

1

, (20)

which can be computed using Equation 8.
Similarly, based on both Y1 and Y2, the LLSE estimation

of X has an estimation error of
[

1
σ2

X

+
[

1 1
]
K−1

C

[
1
1

]]−1

.

After simplification, the above estimation error is exactly the
one shown in Equation 20. Thus, Equation 11 holds.
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C. Proof of Theorem 3

Proof: If Zi, 1 ≤ i ≤ M are independent to each other,
then KZ is given by

KZ =




σ2
Z1

KX 0 · · · 0
0 σ2

Z2
KX · · · 0

...
...

. . .
...

0 0 · · · σ2
ZM

KX


 .

By Equation 7, the estimation errors are the diagonal terms of
the following matrix

[
K−1

X + HT K−1
Z H

]−1
=

(
1 +

M∑

i=1

1
σ2

Zi

)−1

KX .

D. Proof of Theorem 4

Proof: By the definition of distortion and the result
shown in Equation 7, we have

D(X, X̂(Y)) =
1
N

Tr
([

K−1
X + HT K−1

Z H
]−1

)
,

and for i = 1, . . . ,M ,

D(X, X̂(Yi)) =
σ2

Zi

1 + σ2
Zi

1
N

Tr (KX) .

Two observations can be made for the above two equations.
First, we must have D(X, X̂(Yi)) < D(X, X̂(Yi+1)) due to
the assumption on σZi in Equation 16, and

min
i=1,...,M

D(X, X̂(Yi)) = D(X, X̂(Y1)) =
σ2

Z1

σ2
Z1

+ 1
Tr(KX)

N
.

Second, the proof is complete if we can show that

HT K−1
Z H = K−1

Z1
. (21)

This obviously holds for the case of M = 1.
Rewrite KZ as the following form

KZ =




KZ1 KZ1 · · · KZ1

KZ1

σ2
Z2

σ2
Z1

KZ1 · · · σ2
Z2

σ2
Z1

KZ1

...
...

. . .
...

KZ1

σ2
Z2

σ2
Z1

KZ1 · · · σ2
ZM

σ2
Z1

KZ1




.

We find its inverse following a standard process. We perform
row operation to the matrix [KZ | I] until it has the form
[I | A]. Then matrix A is K−1

Z . Note the structure of KZ
makes this process pretty straightforward and easy.

Following above process, we find the expression of K−1
Z

for the case of M ≥ 2 as follows:



c1σ2
Z2

σ2
Z1

K−1
Z1

−c1K
−1
Z1

0 · · · 0

−c1K
−1
Z1

(c1 + c2)K
−1
Z1

−c2K
−1
Z1

· · · 0

0 −c2K
−1
Z1

(c3 + c2)K
−1
Z1

· · · 0
...

...
...

. . .
...

0 0 0 · · · cM−1K
−1
Z1




,

where

ci =
1

σ2
Zi+1

/σ2
Z1
− σ2

Zi
/σ2

Z1

, 1 ≤ i ≤ M − 1.

It is straightforward to verify the product of KZ and the above
matrix is an identity matrix.

Noticing that K−1
Z only have non-zero entries in the main

diagonal and two adjacent diagonals, and that its column and
row sums are zero except the first row and column, we have

HT K−1
Z H =

[
K−1

Z1
0 · · · 0

]



IN

...
IN


 = K−1

Z1
,

and the proof is complete.

E. Proof of Theorem 5

Proof: We first prove the if part of the theorem. Since Z1

to ZM are jointly Gaussian variables, Z1, and (Zi−Zi−1) for
are also jointly Gaussian variables. This is because any linear
combination of them is simply another linear combination
of Z1 to ZM , and is thus a Gaussian. For jointly Gaussian
variables, they are mutually independent if their covariance
matrix is a diagonal matrix. This can be easily verified by
evaluating their joint distribution.

From the covariance matrix of Z, we know that for j > i,
E[ZiZ

T
j ] = KZi . For 2 ≤ i < j ≤ M , we have

E[(Zi − Zi−1)(Zj − Zj−1)T ]
= E[ZiZ

T
j ]− E[ZiZ

T
j−1]− E[Zi−1Z

T
j ] + E[Zi−1Z

T
j−1]

= KZi −KZi −KZi−1 + KZi−1 = 0.

We also have for 2 ≤ i ≤ M ,

E[Z1(Zi − Zi−1)T ] = E[Z1Z
T
i ]− E[Z1Zi−1]T

= KZ1 −KZ1 = 0.

As such, we must have the covariance matrix of Z1, and (Zi−
Zi−1) for to be diagonal, and they are mutually independent.

We now prove the only if part of the theorem. Since Z1,
and (Zi −Zi−1) for i from 2 to M are mutually independent
Gaussian variables, we must have Z1 to ZM to be jointly
Gaussian. This is because each of them is simply a linear
combination of independent Gaussian variables.

We also have for j > i,

E[ZiZ
T
j ] = E


Zi

(
Zi +

j∑

l=i+1

(Zl − Zl−1)

)T



= E[ZiZ
T
i ] +

j∑

l=i+1

E[Zi(Zl − Zl−1)T ]

= KZi .

It follows that KZ must have the form as in Equation 14.


