
Probabilistic Timing Analysis of Distributed Real-time
Automotive Systems

Haibo Zeng

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-157

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-157.html

December 13, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Probabilistic Timing Analysis of Distributed Real-time Automotive Systems

by

Haibo Zeng

B.E. (Tsinghua University, Beijing, China) 1999
M.E. (Tsinghua University, Beijing, China) 2002
M.S. (University of California, Berkeley) 2008

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto L. Sangiovanni-Vincentelli, Chair

Professor Sanjit A. Seshia
Professor Philip M. Kaminsky

Fall 2008

The dissertation of Haibo Zeng is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

Probabilistic Timing Analysis of Distributed Real-time Automotive Systems

Copyright 2008

by

Haibo Zeng

1

Abstract

Probabilistic Timing Analysis of Distributed Real-time Automotive Systems

by

Haibo Zeng

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Distributed architectures supporting the execution of real-time applications are common in automo-

tive systems. Many applications, including most of those developed for active safety and chassis

systems, do not impose hard real-time deadlines. Nevertheless, they are sensitive to the latencies

of the end-to-end computations from sensors to actuators. We believe a characterization of the tim-

ing metrics that, not only provides the worst case bound, but assigns a probability to each possible

latency value, is very desirable to estimate the quality of an architecture configuration. In this dis-

sertation, we present stochastic analysis frameworks that calculate the probability distributions of

response times for software tasks and messages, and end-to-end latencies in a Controller Area Net-

work based system for the performance evaluation of automotive distributed architectures. Also, the

regression technique is used to quickly characterize the message response time probability distribu-

tion, which is suitable when only part of the message set is known as in the early design stage. The

applicability of the analysis frameworks is validated by either simulation, or trace data extracted

2

from experimental vehicles.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair

i

To my dear parents and wife

ii

Contents

List of Figures iv

List of Tables vi

1 Introduction 1

2 Stochastic Analysis of OSEK Software Task Response Times 13
2.1 System Model and Notation . 14

2.1.1 OSEK Compliant Software Task Systems 14
2.1.2 Model of OSEK Software Tasks . 15

2.2 Previous Work on Stochastic Analysis of Periodic Preemptable Tasks 17
2.2.1 Analysis Framework Overview . 17
2.2.2 Stationary Backlog at the Beginning of the Hyperperiod 19
2.2.3 Backlog Update . 21
2.2.4 Stationary Job Response Time Calculation 22

2.3 Stochastic Analysis of Periodic Mixed Preemptable Tasks 25
2.3.1 Backlog Update for the Start of a Lower Priority Non-preemptable Job . . 26
2.3.2 Stationary Response Time Calculation for Non-preemptable Jobs 33

2.4 Experimental Results . 36

3 Stochastic Analysis of Controller Area Network Message Response Times 40
3.1 System Model and Notation . 41

3.1.1 CAN Bus Arbitration and Message Format 41
3.1.2 Model of the CAN System . 43
3.1.3 A Modeling Abstraction for CAN Messages 44

3.2 Stochastic Analysis of the Approximate System 51
3.2.1 Stationary Backlog within the Hyperperiod 51
3.2.2 Initial Blocking Time . 59
3.2.3 Message Response Time Calculation . 60
3.2.4 Algorithm Complexity . 64

3.3 Experimental Results . 65

iii

4 Stochastic Analysis of End-to-end Latency of Periodic Tasks/Messages 72
4.1 Architecture of Distributed Automotive Systems 73

4.1.1 Application Tasks . 73
4.1.2 Middleware . 74
4.1.3 CAN Drivers and Peripherals . 76
4.1.4 CAN Bus . 77

4.2 System Model and Notation . 77
4.3 End-to-end Latency Analysis . 81

4.3.1 Delays of Local Communication . 82
4.3.2 Delays of Remote Communication . 84
4.3.3 End-to-end Latency . 87

4.4 Experimental Results . 88
4.4.1 Simulation Setup . 89
4.4.2 Validation of Stochastic Analysis . 90

5 Statistical Analysis of Controller Area Network Message Response Times 91
5.1 Fitting Exponential Distributions to Message Response Times 93

5.1.1 Common Characteristics of Message Response Time cdfs 94
5.1.2 Fitting the Message Response Times . 97

5.2 Estimate Parameters xoff and y . 104
5.3 Estimate Parameters yD and yΓ . 104

5.3.1 Dependency on Average Message Size 110
5.4 Estimate Parameters a and b of Gamma Distributions 110

5.4.1 µ and b v.s. Local Queueing Delay Q . 111
5.4.2 µ and b v.s. Remote Higher Priority Utilization Uhr 111
5.4.3 Parameterized Model with Q and Uhr . 114
5.4.4 Dependency on Average Message Size 116

5.5 Prediction of Message Response Times . 116
5.5.1 Prediction of Response Time cdfs for Messages on the Reference Bus . . . 117
5.5.2 Prediction of Response Time cdfs for Messages on Other Buses 122

5.6 Comparison of Stochastic and Statistical Analyses 126

6 Conclusions and Future Work 129

Bibliography 132

A Alphabetic Notations 140

iv

List of Figures

1.1 Characterization of timing metric cumulative probability distributions 6

2.1 Convolution . 21
2.2 Shrinking . 22
2.3 Splitting the response time pmf from step k − 1 for a preemptable job 24
2.4 Merging the head part and updated tail part to get the response time pmf of a pre-

emptable job at step k . 24
2.5 At time t, just before considering the start of the job with priority lower than P (the

execution time pmf and the probability of the job starting at t are shown in the box) 32
2.6 At time t+, just after considering the start of the job: spreading the execution time

pmf with probability P(Sk,l = t) . 32
2.7 Splitting the start time pmf from step k − 1 for a non-preemptable job 35
2.8 Merging the head part and updated tail part to get the start time pmf of a non-

preemptable job at step k . 36
2.9 The response time cdf of task τ1 in the test set . 38

3.1 The CAN data frame format . 42
3.2 An example of characterization message transmission time 46
3.3 Updating the backlog in the discrete-time model 52
3.4 Updating the backlog when message instances change 59
3.5 The response time cdfs of two high priority messages (m5 and m25) in the test set . 68
3.6 The response time cdfs of two low priority messages (m43 and m63) in the test set . 69
3.7 The response time cdf of a low priority message in a bus trace compared with anal-

ysis estimates . 71

4.1 Structure of distributed automotive systems . 74
4.2 Model of an example distributed automotive architecture and its end-to-end latency 79
4.3 Data Loss and Duplication During Communication 81
4.4 Latency of task to task communication: local interaction 82
4.5 Latency of message to task communication: remote interaction 85
4.6 A path of periodic tasks/messages in an example automotive architecture 88
4.7 The end-to-end latency cdf of the path in the example automotive architecture . . . 89

v

5.1 Response time cdf of an example message m25 with more than one higher priority
harmonic set . 95

5.2 Response time cdf of a high priority message m5 96
5.3 Response time cdf of a low priority message m69 96
5.4 Fitting mixture model distributions with and without Y offset to response time of

message m13 . 98
5.5 Quantile-quantile plot of samples from simulation and fitted distribution for mes-

sage m5 . 101
5.6 Quantile-quantile plot of samples from simulation and fitted distribution for mes-

sage m25 . 102
5.7 Quantile-quantile plot of samples from simulation and fitted distribution for mes-

sage m69 . 102
5.8 yD values of messages on the reference bus . 105
5.9 Probability of finding sufficient idle time for transmission of messages in the queue 106
5.10 Absolute errors in the estimation of the yD values for messages 109
5.11 The linear relation of µ and local queueing delay Q for messages on the reference bus112
5.12 The linear relation of b and local queueing delay Q for messages on the reference bus 112
5.13 The linear relation of µ and remote higher priority utilization Uhr for messages on

the reference bus . 113
5.14 The linear relation of b and remote higher priority utilization Uhr for messages on

the reference bus . 113
5.15 Absolute errors in the estimation of the µ values for messages on the reference bus 115
5.16 Absolute errors in the estimation of the b values for messages on the reference bus . 115
5.17 Prediction of response time cdfs for high priority messages m5 and m21 on the

reference bus . 118
5.18 Prediction of response time cdfs for low priority messages m48 and m68 on the

reference bus . 119
5.19 Prediction of response time cdfs for messages m39 and m67 with more than one

harmonic set . 120
5.20 Prediction of response time cdfs for messages on a different bus: low quality results 123
5.21 Prediction of response time cdfs for messages on a different bus: high quality results 124
5.22 K-S statistics of statistical analysis: reference bus and bus2 125
5.23 RMSE of statistical analysis: reference bus and bus2 125
5.24 Comparison of stochastic and statistical analyses: K-S statistics 127

vi

List of Tables

2.1 The list of tasks on an example automotive ECU 37
2.2 Deadline miss probability for each task in the test set 38

3.1 An example automotive CAN system with 6 ECUs and 69 messages 66

5.1 Statistics of fitted mixture model distributions for messages on the reference bus . . 103
5.2 Coefficients β1−β4 of the parameterized model of yD for messages on the reference

bus . 110
5.3 Coefficients β5 − β10 of the parameterized model of µ and b for messages on the

reference bus . 116
5.4 Error of the predicted distribution for messages on the reference bus 121
5.5 Comparison of stochastic and statistical analyses: analysis complexity 128

vii

Acknowledgments

This research was supported by the Marco/Gigascale Systems Research Center (GSRC), Center for

Hybrid and Embedded Software Systems (CHESS), and General Motors (GM). The inspiration of

this research comes mainly from the discussion with Marco Di Natale from Computer Science and

Computer Engineering Department at Scuola Superiore S. Anna, Pisa, and Paolo Giusto from GM

Advanced Technology Silicon Valley office in Palo Alto, California. Their tremendous guidance,

feedback, and support are critical for the long time collaboration, and are gratefully remembered by

the author. More specifically, the work on stochastic analysis framework as in Chapters 2, 3 and

4 are summarized in [52], and the statistical analysis framework as in Chapter 5 is summarized in

[51]. The author would like to thank many researchers and engineers from GM Warren technical

center, more specifically, Katrina Schultz and Bob Kirchoff, for providing the test case, as well as

a description of the system, the findings and the interactions with the node supplier; Ken Orlando

and Tom Forest, for the valuable discussions, suggestions and help to understand the system and

the tools; the management at GM, especially Thomas Fuhrman and Joe D’Ambrosio for supporting

this effort; Sri Kanajan and Arkadeb Ghosal, for helping engineer this research work. The author

would also like to appreciate Zile Wei, Wei Zheng and Qi Zhu from Department of Electrical En-

gineering and Computer Sciences at University of California, Berkeley respectively for their initial

coding of the simulator for software task and message systems, discussion and pioneer work that

help me understand the design of hard real-time automotive systems; Eelco Scholte from United

Technologies research center at East Hartford for his guidance and discussion on related projects.

Professor Edward Lee reviewed my master’s report on stochastic analysis of controller area net-

work message response times, which is part of this dissertation. Professors Robert Brayton, Philip

viii

Kaminsky, Sanjit Seshia and Alberto Sangiovanni-Vincentelli, my advisor, served on the qualifying

exam committee and provided invaluable feedback and guidance in the dissertation writing process.

Finally, I would like to thank my family and friends, especially my lovely wife, for their

contributions to make my life in graduate school interesting, and sometimes challenging. I will

always look back at it with sweet memories.

1

Chapter 1

Introduction

The complexity of automotive electronic systems is rapidly growing. A typical modern

vehicle contains between 20 and about 100 built-in electronic control units (ECUs, the term in

use for CPUs in the automotive industry), with several million lines of embedded software code

[11]. These nodes in vehicles are networked over standard automotive communication buses, for

example, up to 10 Controller Area Network (CAN) buses that represent the large majority of the

communication links, and two or three lower-speed Local Interconnect Network (LIN) buses used

for a relatively small number of local low speed data communications, and, optionally, some ded-

icated high-speed links such as Media Oriented System Transport (MOST) for information and

entertainment [32]. The FlexRay standard is recently emerging for high speed communication, e.g.,

X-by-wire applications that need predictability and fault tolerance [32].

Furthermore, as many of the automotive electronic systems involve real-time control of

mechanical parts, such as chassis control, powertrain, and active safety control, they are charac-

terized by non-functional requirements, including timing, safety, cost, together with reusability,

2

flexibility, scalability and extensibility of the architecture.

As automotive systems increase in complexity while their time to market decreases, de-

signers often face the challenge of analyzing requirements as early as possible in the design process

to reduce the risk of late and expensive design changes. In particular, car electronic architectures

need to be defined and selected years in advance, when the functions they will support are only

partly defined. This stage, architecture evaluation and selection, is of enormous importance for

its implications on cost, performance and extensibility. Typically models of the functions and of

the possible physical architecture need to be defined and matched to evaluate the quality and select

the best possible hardware platform with respect to cost, performance, and reliability. Currently,

the vital stage of architecture selection and evaluation is driven by a what-if iterative process [43].

First a set of metrics and constraints is defined by the developers; then a few initial candidate ar-

chitectures and their configurations are evaluated based on the results of quantitative analysis, and

a solution is selected as the best choice; or if none of the initial candidates are satisfying, a new set

of architectures is produced and the iterative process continues until a solution is finally obtained.

Automotive Architectures Priority-based scheduling is very popular in control applications due

to resource efficiency and ultimately price concerns. Many automotive systems are designed based

on run-time priority-based scheduling of tasks and messages. For example, the OSEK compliant

operating system [7] and the CAN bus protocol [2] are automotive standards supporting this model.

Priority-based scheduling fits well within the traditional design cycle, where worst case timing anal-

ysis is used to check correctness against hard real-time constraints. Moreover, timing predictability

and thus composability of components are hard to achieve, as for example small changes in the tim-

ing parameters may result in a significant degradation of the response times of tasks and messages

3

[43].

Time-triggered design methodologies, like the Time-Triggered Architecture (TTA) and

its network protocol TTP [22] have been proposed for distributed systems. OSEKTime, a time-

triggered operating system [3], along with the recent FlexRay standard [8] for high speed commu-

nication in cars, is based on these concepts. Time-triggered scheduling forces context switches on

the ECUs and the assignment of the communication bus at predefined points in time; thus provides

much better time determinism than priority based scheduling does [43].

In this work, we focus on the analysis of probabilistic timing performance of distributed

automotive architecture with priority based scheduling standards, i.e., OSEK and CAN. We define

stochastic and statistical analysis methods that provide a characterization of the average case timing

behavior of the application as shown in Figure 1.1.

The communication model considered in this research is the periodic activation model,

where all tasks are activated periodically, with a minimum inter-arrival time, and communicate by

means of asynchronous buffers preserving the latest value written on them. This model is supported

by AUTOSAR, the open and standardized automotive software architecture [1]. Communication

may happen at the interface between two abstraction layers (for example, the application software

task and the middleware), and also at the interface between any two resource domains, such as from

a task to a message. Similarly, message transmission is triggered periodically and each message

contains the latest values of the signals that are mapped into it. The periodic activation model suffers

from possible large latencies of end-to-end computations, as the consumer of the data may need to

wait up to an entire period (sampling delay) to get the latest data stored in the communication buffer.

4

Research Motivation Distributed functions include time-critical controls, but most often, also

functions that are characterized by requirements for average performance together with hard dead-

line constraints (as for most active-safety functions) and functions with soft real-time requirements

(controls for enhanced driver comfort).

The definition of a new architecture framework for one or more car product families is

an extremely important step: ECUs, networks and the topology of connections must be defined and

frozen years in advance of production. Later, during the architecture lifespan, functions are placed

on ECUs and communication scheduled on the bus.

The work presented in this dissertation is particularly motivated by the study of current

and future active safety functions. These functions, e.g., Adaptive Cruise Control, typically gather a

360◦ view of the environment via several radars and cameras, and require several processing stages

before the actuation signals are produced, including sensory fusion, object detection, controls and

arbitration layers. Typical car architectures supporting these functions are heterogeneous on the

processing side, yet mostly homogenous on the communication links as CAN protocols are mainly

used to control bus communications among processing units (especially control-related) [13]. End-

to-end computations that span over several ECUs and CAN buses are difficult to characterize by

verification experts or feature developers in terms of hard deadline requirements, although a pre-

dictable worst case latency, and the knowledge of latency distributions is a very valuable design

asset. The analysis of the end-to-end latencies of functions for a given architecture hypothesis is

a very valuable design method. These latencies in the transmission of information from sensors to

actuators are a function of task response times, sampling period delays, message response times,

and task/message activation relative phases.

5

In the early evaluation and selection of distributed embedded architectures for next-generation

automotive controls, the application performance depends on the end-to-end latencies of active-

safety functions. Automobile architecture must be evaluated and selected having in mind that they

will have a lifespan of 5 to 10 years and that during this lifespan the communication and compu-

tation load is partly unknown because new functions are still being decided on and have not been

designed as yet. Hence, when verifying that the architecture is sufficiently robust with respect to

constraints on latency and performance targets of present and future functionalities, loads can only

be roughly estimated by looking at past trends or by exploiting early indications of designers.

In practice, hard deadline requirements are often defined after the design stage, when a

correct implementation must be guaranteed by ensuring that no critical messages are lost or over-

written. For that purpose, worst case analysis on the shared resources of the system (CPUs, buses),

based on schedulability theory, is a popular analytical method for computing the contribution of

tasks and messages to the end-to-end latencies [13]. Worst-case latency analysis provides the ar-

chitecture designer with a set of values (one for each end-to-end path) on which he/she can base

his/her evaluation in a what-if analysis and synthesis flow. However, worst case evaluation may not

be sufficient and needs to be complemented by probabilistic analysis for two main reasons:

• Many applications are not time-critical, but are nevertheless sensitive to delays. For other

functions, satisfaction of the deadline constraints is required, but the performance and the

quality of the controls depends also on the average response time, which needs to be con-

trolled and minimized.

• In the periodic activation model, each time a message is transmitted or received, a task (mes-

sage) may need to wait up to an entire period of sampling delay to read (forward) the latest

6

data stored in the middleware buffers. Adding worst case delays at each step allows to obtain

the worst-case latency in end-to-end paths, but the probability of a worst-case event can be

very small. So small in fact (in the architectures we considered it can be easily lower than

10−12), to be smaller than the probability of failure of the HW components! In this case,

designing for worst-case guaranteed performance can be quite wasteful.

To better understand the motivation of our approach, let us consider an example in which

the worst case timing metrics of two different alternative implementations are equal. The top curve

in Figure 1.1 represents an implementation with a better average timing behavior than that of the

other curve. In fact, in the top curve, a given time value (r0 in the figure) is rarely exceeded (only in

10% of the cases), as opposed to the second implementation (the bottom curve), where it is always

exceeded.

resp. times

pr
ob

ab
ili

ty
(c

um
ul

at
iv

e)

P

1.0

0.9

worst caseP(R ≤ r0) = 0.9

P(R ≤ r0) = 0

r0 R

Figure 1.1: Characterization of timing metric cumulative probability distributions

The next question is then: how can such curves of probability functions for timing metrics

7

be derived? Several methods exist including trace analysis, statistical sampling and simulation.

These methods, in general, are applicable but with limited coverage as the population size is huge

for real applications. Thus more efficient methods are needed to derive probability distribution

curves.

State of the Art The problem of probabilistic analysis of priority-scheduled systems has been

addressed in the past. Gardner et al. [16] compute the probability of deadline misses for each job

released in the busy interval, and choose the maximum of these probabilities as an upper bound

on the probability of deadline misses for the corresponding task. Simulation-based analysis and

stochastic methods exist [14, 21] for computing the probability density functions (pdfs or probability

mass functions pmfs in the discrete case) of the response times of tasks scheduled on single or

multi-processor platforms. Also, results exist for messages scheduled on a CAN bus. For example,

in [31], Navet et al. introduce the concept of worst case deadline failure probability (WCDFP),

the probability that too many errors occur such that a message can not meet its deadline. In their

work, an error model including both error frequency and gravity is introduced - the occurrence of

errors is assumed to be a generalized Poisson process. This method computes the error threshold

under which the message deadlines are still met on a CAN network; however, probabilities WCDFP

are computed with respect to the critical instant, that is, the worst case response time scenario. In

[33] Nolte et al. extend the worst case response time analysis using random message transmission

times that take into account the probability distribution of a given number of stuff bits due to the

mechanism in CAN protocol that an additional trailing complementary bit is added whenever the

message frame contains a sequence of five consecutive identical bits, but the response time analysis

is still performed according to the worst case analysis ([46]).

8

Worst case analysis of task and message response times in priority-based scheduled sys-

tems has produced many results, including work on independent periodic tasks [25], and periodic

tasks with offsets and jitter [35], and OSEK compliant software task systems [26]. In [13] Davis et

al. discuss scheduling and response time analysis of CAN messages, where a flaw in the traditional

analysis documented in [46] is reported and a new solution is provided. In [47] Tindell extensively

discusses the limitations in the applicability of worst case analysis to real CAN systems.

Lehoczky defines a unique approach to the stochastic analysis of task response times,

Real-Time Queueing Theory [23]. In this work, the task set is modeled as a Markovian process.

Given a scheduling algorithm and the distribution of the deadlines, the distributions of the lead times

(time remaining until the deadline) of jobs are computed. The space of the lead times is analyzed

in heavy traffic conditions, when the behavior can be approximated by a diffusion process. This

approach assumes that arrival and execution times are modeled by Poisson distributions, and the

system has a very large set of tasks with very high utilization (U → 1). In an independent but related

work, Kim and Shin [20] model an application as a queuing network scheduled as first-in first-out

(FIFO), and use exponentially distributed task execution times. The underlying mathematical model

is a continuous-time Markov chain.

In the context of multi-processor systems, Manolache presents an analytical and exact

method for obtaining the expected deadline-miss ratio that can be efficiently applied to single pro-

cessor systems, and an approximate method that can be applied to multi-processor systems [27].

Gardner takes a different approach [15] where the results are based on statistical analysis.

The most relevant method to our approach was proposed by Dı́az et al. [14, 21], which

computes the pmfs of the response times of a set of independent periodic tasks dispatched on a single

9

processor by a preemptive priority-based scheduler. The activation times of all the task instances

are known and the task execution times are defined by known pmfs. In [14] Dı́az et al. introduce the

concept of P -level backlog at time t to represent the sum of the remaining requested CPU times of

all the task instances (jobs) of priority higher than or equal to P that have been released before t.

The P -level backlog at the beginning of each hyperperiod is a random variable, and the stochastic

process composed of the sequence of these backlogs is proven to be a Markov chain. When the

maximum utilization is less than 1, a stationary distribution (pmf) of the backlog possible values is

reached at the beginning of the second hyperperiod. Then, a stationary backlog at any time within

the hyperperiod can be calculated using two operations called convolution and shrinking. The P -

level backlog pmf right after the release of a job with priority higher than or equal to P is obtained

by performing a convolution, at the job release time, of the backlog pmf with the job execution time

pmf. Given the pmf of a backlog at time t, shrinking allows to compute the backlog at time t′ > t by

shifting the pmf to the left by t′− t units and by defining the probability of zero backlog be the sum

of the probabilities defined for non-positive values. The time t′ represents a time instant right before

the next release time of a task instance that contributes to the P -level backlog. Indeed, shrinking is

equivalent to simulating the progression of time. Finally, the stationary response time pmf of a job

can be computed with a sequence of splitting, convolution, and merging operations starting with the

backlog at the release time and the pmf of the job execution time itself, and considering the pmfs of

the execution times of higher priority jobs that are released before the job terminates, as the current

job can be preempted. This process continues until either the time instant corresponding to the job

deadline is reached, in which a deadline violation is found, or until the job completes its execution

before any other higher priority job is released. As there may be multiple jobs of the same task

10

released within the hyperperiod, the stationary task response time pmf is obtained by averaging the

response time pmfs of all the jobs within the hyperperiod. For more details, we refer the interested

readers to [14, 21] and Chapter 2.

Issues Related to Simulation-based Statistical Analysis Fitting is a common method for de-

riving known probability distribution functions from statistical data. The accuracy of the method

relies on a sufficiently large simulation coverage. In an automotive distributed system of realis-

tic size with unsynchronized ECUs, there are too many possible relative phases between tasks and

messages. Thus a simulation with statistically significant coverage is not feasible. For example,

assuming a system with periodic messages, with the hyperperiod H of the system defined as the

least common multiple of the periods of all messages, i.e., H = lcm(
⋃

i Ti), if the number of ECUs

(nodes) is n, and the time is discretized with granularity τ , then the total number of possible relative

phase combinations is (H/τ)n−1 (one ECU is assumed as a reference with phase equal to 0). As an

example, for a system with 10 ECUs and hyperperiod 100ms, if the granularity is 10µs, then there

are 1036 possible phase configurations to simulate.

Summary of the Dissertation Our objective is to provide the theory for probabilistic analysis

of the latency in the end-to-end propagation of information among periodically activated tasks and

messages. A communication mechanism based on the preservation of the latest written value and the

overwriting of old ones (shared variable buffer) is assumed. We target our analysis in the context of

current automotive domain standards. In particular, priority based scheduling as in OSEK standard

is assumed for the ECUs, all messages are exchanged on a CAN bus, where they are transmitted in

order of their IDs (priorities), and finally all the messages transmitted by the same ECU are assumed

11

to be enqueued by the same middleware-level task.

Our experimental results show that our technique provides a good approximation of the

latency distribution. We provide experimental results that simulate the system behaviors and from

trace data of the real vehicles, and we compare them with the results obtained by our stochastic and

statistical analysis techniques.

We assume the tasks are periodically activated with known phases on a single processor

system, and their execution times are stochastic and defined by a known probability mass func-

tion. Because OSEK operating system standard is mixed preemptive, the scheduling policy is non-

preemptive if the currently running job is non-preemptable. The concept of P -level backlog is first

extended to consider the possible blocking time when the current executing job has a priority lower

than P and is non-preemptable. Then the backlog update procedure considering the blocking time

from lower priority non-preemptable jobs at each time tick is given. This work is described in

Chapter 2.

In a distributed system with unsynchronized ECUs, the arrival and queuing times of mes-

sages are non-deterministic. From the standpoint of a given message on a given node, assumed as

the observer, messages are queued on other nodes with random phases. Hence, we provide a char-

acterization of the bus load at priority level P or higher, by introducing a single characterization

message of level P for each remote node, with random transmission time and random queuing jitter.

For each message in the system, we compute the probability distribution of its backlog using the

characterization messages, then we compute the pmf of its response time. Furthermore, as the CAN

protocol is non-preemptive, a message may be blocked by a lower priority message. Within our

framework, we model and estimate the probability of blocking in the context of non-deterministic

12

message queuing times. This work is presented in Chapter 3.

In Chapter 4, we first describe the architecture of the automotive distributed systems; then,

we define a formal model for it and we formalize the concept of end-to-end latency, describing the

components contributing to the delay. The stochastic analysis of the computation and communica-

tion stages that compose the end-to-end latency are addressed.

Also, in Chapter 5, we describe the main statistics that can be extracted from simulation

data for a given bus, where message response time distribution can be approximated with good

accuracy by a possible fit of exponential distributions shifted with fitting offsets. We validate our

hypothesis that the parameters of the distribution of a message response time can be computed from

generic system-level design information, such that the method can be used as a predictor of the

message response times for a given bus configuration.

Finally, we provide conclusions, and look forward to future work to perform statistical

analysis of software task response times and later end-to-end latencies, and to use average end-to-

end timing performance as the metric in the automatic mapping and configuration process, as in

Chapter 6.

13

Chapter 2

Stochastic Analysis of OSEK Software

Task Response Times

In this chapter, we present the work for stochastic analysis of software task response

times in OSEK compliant real-time systems. First, we introduce the task management concepts

in the automotive industry OSEK operating system standard, and the appropriate model for OSEK

compliant software task systems. Then previous work on stochastic analysis frameworks for pe-

riodic preemptable tasks is described in detail, and is extended to systems with mixed preemptive

scheduling policy. Finally, we provide some experimental results on a real automotive application.

14

2.1 System Model and Notation

2.1.1 OSEK Compliant Software Task Systems

OSEK/VDX, or simply OSEK (Offene Systeme und deren Schnittstellen für die Elek-

tronik in Kraftfahrzeugen; English: “Open Systems and their Interfaces for the Electronics in Motor

Vehicles”), is a standards body which sets up specifications for open-ended architecture in automo-

tive industry [4]. Many of the major companies in automotive industry participate in the consortium

which founded OSEK, and some parts of OSEK are standardized by ISO. The standard specifica-

tions include real-time operating systems [7], software interfaces and functions for communication

[5], network management [6], etc.

An OSEK compliant operating system is specified as a single processor operating system

meant for distributed embedded control units [7], which serves as a basis for real-time execution of

application software. The application software tasks are assumed to be independent from each other.

Two different types of tasks are provided by OSEK compliant operating systems: basic tasks and

extended tasks. A basic task can only finish or be preempted by a higher priority task or interrupt

service routine, while extended tasks can use events for synchronization.

There are four different OSEK compliant operating system features defined as four con-

formance classes: BCC1, BCC2, ECC1 and ECC2, which are determined by the following at-

tributes: multiple requesting of task activation, task types, and number of tasks per priority. In

conformance class BCC2, only basic tasks are supported, while there may be more than one task

per priority, and multiple requests of activation from the same task are allowed. We assume BCC2

is used since it can meet the requirements of most real-time control systems in vehicles.

To enhance efficiency, an OSEK compliant operating system only supports static priority

15

management. Accordingly the user cannot change the task priority at run time. For flexibility

and performance considerations, an OSEK compliant operating system regards preemptiveness as a

task attribute: preemptable and non-preemptable tasks can be mixed in the same system. Thus the

scheduling policy is mixed preemptive, which depends on the preemption property of the running

task. If the running task is preemptable, then a preemptive scheduling algorithm is performed;

otherwise, a non-preemptive scheduling algorithm is used such that task switching is performed

after the current task terminates. This is quite different from the assumption of many time analysis

methods, such as the stochastic analysis framework presented in [14, 21].

An OSEK compliant operating system also leaves the flexibility to combine aspects of

preemptive and non-preemptive scheduling by defining groups of tasks. For tasks which have the

same or lower priority as the highest priority within a group, the tasks within the group behave like

non-preemptable tasks. This allows for a possible further improvement of response times of some

tasks and stack space reuse [50]. To avoid the problems of priority inversion and deadlocks, an

OSEK compliant operating system standardizes an implementation of the immediate priority ceiling

protocol [44] for sharing resources with predictable worst case blocking time. These standards

allow prediction of the worst case timing behavior of computations and communications under the

assumptions that there is no fault and the worst case task execution times can be safely estimated

[17, 46].

2.1.2 Model of OSEK Software Tasks

In this work, we consider the periodic activation model, as it is currently deployed in

industry (such as General Motors E/E architectures) and supported by AUTOSAR (AUTomotive

Open System ARchitecture), the open and standardized automotive software architecture [1].

16

Now we consider the model for a OSEK compliant software system that contains a set

of independent periodic tasks. A task τi is modeled by (Ti, Oi, Ei, Pi, Ni), where Ti is its period,

Oi its initial phase, Ei its execution time, Pi its priority, and Ni its preemption property. The task

execution time Ei is a discrete random variable 1 with a known probability distribution fEi . The

hyperperiod H of the system is defined as the least common multiple (lcm) of task periods, i.e.,

H = lcm(
⋃

i Ti).

For each periodic activation, we consider a task instance, defined as a job of this task. We

denote the j-th job of task τi as Γi,j , its arrival time as Ai,j = Oi+(j−1)×Ti, which is the time Γi,j

is logically ready for execution. Because of the periodic activation, on its arrival, Γi,j is activated

or released immediately, thus its activation time (or release time, the time a job is dispatched and

actually ready for execution) is Qi,j = Ai,j . Also, the start time of Γi,j is denoted as Si,j , and its

finish time as Fi,j . For all the jobs of task τi, their execution times are independent and identically

distributed as fEi , and are independent from the execution times of other tasks.

Each task τi is associated with a priority Pi, and a preemption property Ni. We assume

that Pi < Pj implies task τi has a higher priority than τj . The preemption property Ni is either

preemptable, or non-preemptable. The scheduling policy is mixed preemptive scheduling, which

depends on the preemption property of the running task. If the running task is non-preemptable,

then non-preemptive scheduling is performed. If the running task is preemptable, then preemptive

scheduling is performed.

The response time Ri,j of a job Γi,j is defined as the time interval from its arrival to

its finish, i.e., Ri,j = Fi,j − Ai,j , which is also a discrete random variable. The pmf fRi of the

1In the dissertation we use calligraphic letters to denote random variables. All the notations are listed alphabetically
in Appendix A.

17

response time of task τi is obtained as the average of the response time pmfs of all the jobs Γi,j in

the hyperperiod provided that the distribution is stationary.

2.2 Previous Work on Stochastic Analysis of Periodic Preemptable

Tasks

In [14, 21] Dı́az et al. present a stochastic analysis framework for real-time systems. It can

compute the task response times for fixed priority systems where tasks are periodic and preemptable,

i.e., for each task τi, Ni = Preemptable, thus the scheduling policy is always preemptive. Please

note that the work in [14, 21] also addresses dynamic priority systems, but we will focus on systems

with fixed priority tasks as in OSEK compliant real-time systems.

2.2.1 Analysis Framework Overview

To calculate task response times, in [14] Dı́az et al. introduce the concept of P -level

backlog at time t (denoted as WP
t) as the sum of the remaining execution times of all the jobs

that have priorities higher than or equal to P and are not completed till time t. The task release

pattern in one hyperperiod is repeated for all the other hyperperiods, thus Dı́az et al. focus on the

P -level backlog observed at the beginning of each hyperperiod, denoted as GP
k = WP

((k−1)H)− .

Here t− denotes the time instant arbitrarily smaller than t, i.e., right before the release of a job at

time t. Dı́az et al. prove that the stochastic process defined as the sequence of random variables

{GP
1 ,GP

2 , ...,GP
k , ...} is a Markov chain. In addition, a stationary distribution GP of the P -level

backlog GP
k exists as long as the stability condition that the average system utilization is less than

one is met.

18

After the stationary distribution GP is calculated, the stationary backlog at any time within

the hyperperiod can be calculated by iteratively using two operations called convolution and shrink-

ing. The P -level backlog pmf right after the release of a job with priority higher than or equal to

P is obtained by performing a convolution, at the job release time, of the backlog pmf with the

job execution time pmf. Given the pmf of the backlog at time t, shrinking allows to compute the

backlog at time t′ > t by shifting the pmf to the left by t′− t units and by defining the probability of

zero backlog be the sum of the probabilities defined for non-positive values. Here time t′ represents

a time instant right before the next release time of a task instance that contributes to the P -level

backlog. Indeed, shrinking is equivalent to simulating the progression of time.

Finally, the stationary response time pmf of a job can be computed with a sequence of

splitting, convolution, and merging operations starting with the backlog at the release time and the

execution time pmf of the job itself, and considering the pmfs of the execution times of higher

priority jobs that are released before the job terminates, as the current job can be preempted. This

process continues until either the time instant corresponding to the job deadline is reached, in which

a deadline violation is found, or until the job completes its execution before any other higher priority

job is released. As there may be multiple jobs of the same task released within the hyperperiod, the

stationary task response time pmf is obtained by averaging the response time pmfs of all the jobs

within the hyperperiod, i.e.,

∀r ≥ 0, fRi(r) =
1
ni

ni∑

j=1

fRi,j (r) (2.1)

where ni = H/Ti.

The procedure Calc Stat Task Resp to calculate the stationary task response time Ri of

τi is summarized in Algorithm 1. First, in procedure Calc Stat Backlog the stationary distribution

19

Algorithm 1 Calc Stat Task Resp(τi)
1: GPi = Calc Stat Backlog(Pi)

2: for each job Γi,j in one hyperperiod H do

3: WPi
Qi,j

= Update Backlog(0−,GPi , Qi,j)

4: Ri,j = Calc Job Resp(Γi,j)

5: end for

6: fRi =
Ti

H

∑

j

fRi,j // Task response time is the average of job response times in one hyperperiod

of Pi-level backlog at the beginning of the hyperperiod GPi is calculated; this is further described in

Section 2.2.2 and Algorithm 2. Then for each job Γi,j in one hyperperiod, the backlog WPi
Qi,j

at its

job release time Qi,j is calculated assuming the backlog at the beginning of the hyperperiod (time

0) is GPi ; this is done by using the procedure Update Backlog as explained in Section 2.2.3 and

Algorithm 3. Finally the response time Ri,j of job Γi,j is calculated in procedure Calc Job Resp

(Section 2.2.4), and the task response time Ri is obtained by averaging the job response times in

one hyperperiod.

2.2.2 Stationary Backlog at the Beginning of the Hyperperiod

To calculate the stationary backlog GPi , i.e., the stationary Pi-level backlog observed at

the beginning of the hyperperiod, one way is to obtain the transition probability matrix P = (pm,n)

that gives the transition probability pm,n = P(GPi
k+1 = n|GPi

k = m) for any two possible backlog

values m and n, then compute the exact stationary GPi by solving the equation GPi = GPiP (re-

garding GPi as a row vector). This is difficult since the dimension of the transition matrix P can

be infinity if the maximum system utilization is larger than 1. To solve it, Dı́az et al. explore the

20

regular structure in matrix P, which allows us to provide a general method to obtain an analytical

expression for the stationary distribution. However, this method is hard to extend to other systems

where tasks may be non-preemptable, or periodic with jitter. For example, if some of the tasks are

non-preemptable, then the backlog GPi
k+1 not only depends on GPi

k and the higher priority jobs re-

leased in the k-th hyperperiod, but also on the lower priority non-preemptable jobs that are released

but not start execution, since these lower priority jobs may start execution at any time and block

jobs of τi and introduce additional delay to these jobs. This will be further explained in Section 2.3.

Algorithm 2 Calc Stat Backlog(τi)

1: Initialize GPi
1 as P(GPi

1 = 0) = 1

2: Initialize ε as desired analysis error

3: k = 1

4: repeat

5: GPi
k+1 = Update Backlog(((k − 1)H)−,GPi

k , (kH)−)

6: k = k + 1

7: until |GPi
k − GPi

k−1| < ε

8: Return GPi
k

One alternative of calculating GPi that does not require explicit derivation of the transition

probability matrix P is to iteratively calculate the backlog at the end of each hyperperiod until

backlogs at the end of two consecutive hyperperiods converge (within certain numerical error).

This iterative approximation is described in Algorithm 2, which takes zero as the initial backlog and

uses the procedure Update Backlog as in Algorithm 3 to update backlog based on the one at the

beginning of the previous hyperperiod. As pointed out in [14, 21], a stationary distribution of the

21

backlog exists as long as the stability condition that the average system utilization Ū is less than one

is met; also, it is said that the closer the average utilization Ū is to 1, the slower the convergence is,

but it is still unknown how many iterations are required in terms of Ū .

2.2.3 Backlog Update

In this section, we describe the procedure Update Backlog, which calculates backlog at

time t2 > t1 given the backlog WP
t1 at time t1. This is done by iteratively using two operations

convolution and shrinking. The P -level backlog pmf right after the release of a job with priority

higher than or equal to P is obtained by performing a convolution operation, at the job release

time, of the backlog pmf with the job execution time pmf. The convolution of two pmfs fV1 and

fV2 is denoted as fV1

⊗
fV2 . Figure 2.1 gives an example of convolution operation. Given the

pmf of a backlog at time t, shrinking computes the backlog at time t′− > t where t′− is the time

instant arbitrarily smaller than t′, i.e., right before the next release time of a job that contributes

to the P -level backlog. This is done by shifting the pmf to the left by t′ − t units and by defining

the probability of zero backlog to be the sum of the probabilities defined for non-positive values.

Please note that there is no job with priority≤ P released in the interval (t, t′). Indeed, shrinking is

equivalent to simulating the progression of time. An example of shrinking is given in Figure 2.2.

0 1 2 3

1/3
1/6

0 1 2 3 4

1/2 1/2

0 2 3 4 5

1/4
1/6

1/3

1/12
1/6

1/2

1

Figure 2.1: Convolution

22

0 1 2 3 4 5

1/12
1/6

3/4

0 1 2 3 4 5

1/4
1/6

1/3

1/12
1/6

shrinking

t’=t+3

Figure 2.2: Shrinking

The procedure in Algorithm 3 is slightly different from the above, which advances time by

only one time tick further. After adding (by convolution) the execution times of all the jobs released

at time t that contribute to the backlog, the shrinking operation is performed from t to (t + 1)−,

only one time tick ahead. The procedure will check the set of jobs to see whether there are higher

priority jobs released at this time. Please note that the algorithm is not necessarily the most efficient

in terms of implementation, but it is explained in this way for better understanding, especially when

we consider the extensions to systems with non-preemptable tasks, and tasks with random release

times.

Please note that all the tasks here are assumed to be preemptable, thus we only need to

consider the release of jobs with priority higher than or equal to P when we update the P -level

backlog, as in Algorithm 3. This is not enough in case some of the tasks are non-preemptable,

which may introduce additional blocking delays to the backlog.

2.2.4 Stationary Job Response Time Calculation

As in [14], for each job Γi,j in the hyperperiod, once the stationary backlog WPi
Qi,j

at

its release time Qi,j is calculated, its stationary response time can be computed by taking into

consideration possible future interferences. The set of jobs released after Qi,j that may preempt Γi,j

23

Algorithm 3 Update Backlog Preemptive(t1,WP
t1 , t2) // Given the backlogWP

t1 at time t1, calcu-

late backlog at time t2 > t1
1: for time instant t from t1 to t2 do

2: for each job Γi,j released at time t do

3: if Pi ≤ P then

4: fWP
t

= fWP
t

⊗
fEi

5: end if

6: end for

7: Shrink fWP
t

from t to (t + 1)−

8: end for

is denoted as hp(Pi)(Qi,j ,∞) = {Γm,n|Pm < Pi and Qm,n > Qi,j}; moreover, the jobs in the set

hp(Pi)(Qi,j ,∞) are ordered by their release times. Let Γk be the k-th job with relative release time

tk = Qk −Qi,j , and fR<k>
i,j

denote the response time pmf of job Γi,j after considering the possible

interferences from Γ1, Γ2, ...,Γk. Its response time Ri,j is initialized as the sum of the Pi-level

backlog right before its release time and its execution time, i.e., fR<0>
i,j

= fW
Q

Pi
i,j

⊗
fEi . Then for

each job Γk ∈ hp(Pi)(Qi,j ,∞), the response time pmf fR<k−1>
i,j

calculated at the previous step is split

into two parts, the head part f
[0,tk]

R<k−1>
i,j

and the tail part f
(tk,∞)

R<k−1>
i,j

. An example of splitting operation

is given in Figure 2.3. In the head part Γi,j finishes execution before the release of Γk, while in the

tail part Γk further interferes Γi,j thus Ek needs to be added (by convolving these two pmfs). Then

fR<k>
i,j

is constructed by merging the head part and the updated tail part, as shown in Figure 2.4.

This iterative process stops when there is no further interference, i.e., at some step n + 1

the tail part f
(tn+1,∞)

R<n>
i,j

after splitting is null, which implies that job Γi,j will have no chance to run

till to the release time tn+1 of job Γn+1, or at the time instant where the deadline is reached.

24

0 2 3 4 5

1/4
1/6

1/3

1/12
1/6

1

0 2 3 4 5

1/12

10 2 3 4 5

1/4
1/6

1/3

1

1/6

fR<k−1>
i,j

tk

f
[0,tk]

R<k−1>
i,j

f
(tk,∞)

R<k−1>
i,j

Figure 2.3: Splitting the response time pmf from step k − 1 for a preemptable job

0 2 3 4 51 6 7

1/24 1/24

0 2 3 4 51

0 2 3 4 51 6 7

1/24 1/24

1/4
1/6

1/3
1/6

1/4
1/6

1/3
1/6

f
[0,tk]

R<k−1>
i,j

f
(tk,∞)

R<k−1>
i,j

⊗
fEk

fR<k>
i,j

Figure 2.4: Merging the head part and updated tail part to get the response time pmf of a preemptable
job at step k

25

2.3 Stochastic Analysis of Periodic Mixed Preemptable Tasks

In this section, we extend the result of [14, 21] to OSEK compliant real-time software

systems. As in Section 2.1.1, the scheduling policy in OSEK compliant operating system standard

[7] is mixed preemptive. This is the same as in Section 2.2 except that the scheduling policy is

non-preemptive if the currently running job is non-preemptable, that is, once a non-preemptable

job occupies the shared resource, it will not free the shared resource until it finishes its execution;

during this time, all the other jobs will have to wait even if they may have higher priorities than the

currently running one.

We now redefine backlog to take into consideration the blocking delay due to the fact that

the currently running job has a lower priority and is non-preemptable. Formally, P -level backlog

WP
t observed at time t is defined as the sum of the remaining execution times of all the jobs that

have priorities higher than or equal to P and are not completed up to the time t (which includes

that the current running job has a priority ≤ P), and the possible blocking time when the current

executing job has a priority lower than P and is non-preemptable. Of course if all the tasks in the

system are preemptable, this definition is consistent with that of [14].

The overall procedure to calculate the stationary response time of task τi as Algorithm 1

is also applicable to systems with mixed preemptive scheduling. First, the stationary distribution of

Pi-level backlog at the beginning of the hyperperiod GPi is calculated. Then for each job Γi,j in one

hyperperiod, the backlogWPi
Qi,j

at its job release time Qi,j is calculated assuming the backlog at the

beginning of the hyperperiod (time 0) is GPi . Finally the response timeRi,j of job Γi,j is calculated,

and the task response time Ri is obtained by averaging the job response times in one hyperperiod.

Please note that in systems with mixed preemptive scheduling, given the P -level backlog

26

at t, it is much more difficult to calculate the P -level backlog at t′ > t because the non-preemptable

jobs released between t and t′ with lower priority than P may or may not block the job with priority

P . This problem is addressed in the next section.

2.3.1 Backlog Update for the Start of a Lower Priority Non-preemptable Job

To calculate the P -level backlog, let us start from the assumption that we can calculate

the pmf of the start time Sk,l for each job Γk,l that is non-preemptable and has a priority > P .

This is feasible since the calculation of Pk-level backlog can be calculated in advance based on

the release pattern of jobs with priority higher than or equal to Pk and the start time pmfs of the

jobs with priority lower than Pk, without any knowledge of the P -level backlog. In other words,

at each priority level starting from the lowest priority level to the highest one, we can calculate its

backlog and further the job start time at this priority level based on the release pattern of the jobs

with priority higher or equal and the start time distribution of lower priority non-preemptable jobs.

Let t+ be the time instant arbitrarily close and immediately after t, andWP
t+ be the backlog

after considering the blocking due to lower priority jobs starting execution at t. Please note that

WP
t denotes the backlog after considering the release of higher priority jobs at time t. Once the

start time pmf fSk,l
for each lower priority non-preemptable job Γk,l is known, the intuition is that

at each time instant t, we should update the P -level backlog WP
t by adding the blocking delay due

to these lower priority jobs. However, random variables WP
t and Sk,l are not independent. In the

following, Lemma 2.1 gives the relationship between two events (WP
t = 0) and (Sk,l = t); based

on that, Theorem 2.2 determines how to calculate WP
t+ based on the values of WP

t and Sk,l.

Lemma 2.1. ∀Pk > P , if job Γk,l with priority Pk starts execution at time t, i.e., event (Sk,l = t)

27

happens, then WP
t = 0; or equivalently (WP

t > 0) → (Sk,l 6= t).

In terms of probabilities of these random events, since event (Sk,l = t) implies (WP
t = 0),

P(Sk,l = t,WP
t = 0) = P(Sk,l = t) (2.2)

Also, because event (Sk,l = t) is mutually exclusive with (WP
t = w) for any w > 0,

∀w > 0,P(Sk,l = t,WP
t = w) = 0 (2.3)

Proof. Consider the priority level one higher than Pk, say P ′ = Pk − 1. If job Γk,l starts at time t,

then the following two conditions must be satisfied:

• there is no remaining execution time from jobs with priority equal to P ′ or higher

• there is no job currently running

The P ′-level backlog WP ′
t at time t, which is the sum of remaining execution times from jobs with

priority ≤ P ′ and the possible blocking time when the current executing job has a priority lower

than P ′ and is non-preemptable, must be equal to zero. Also, for priority level P ≤ P ′, since every

contribution to P -level backlog also contributes to P ′-level backlog, at any time t,WP
t is no greater

than WP ′
t . Thus we have WP

t ≤ WP ′
t = 0, and furthermore WP

t = 0.

Now given the set of lower priority non-preemptable jobs lp(P) = {Γk,l|Pk > P and Nk =

non− preemptable}, with their start time pmfs fSk,l
and the backlog WP

t , we calculate the proba-

bility ofWP
t+ based on different implications whenWP

t takes different values: WP
t = 0 orWP

t > 0,

as in Lemma 2.1. Theorem 2.2 formulates the backlog update procedure considering the blocking

time from lower priority non-preemptable jobs at each time tick.

Theorem 2.2. Consider the set of lower priority non-preemptable jobs lp(P), which may start

execution at time t. WP
t is the backlog at time t, andWP

t+ the backlog right after t, i.e., immediately

28

after the possible starts of these lower priority non-preemptable jobs. The probability P(WP
t+ = w)

is calculated with respect to two different cases of w:

P(WP
t+ = w) =

P(WP
t = 0)−

∑

Γk,l∈lp(P)

P(Sk,l = t) +
∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = 0))

if w = 0

P(WP
t = w) +

∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = w)) if w > 0

(2.4)

In terms of probability mass functions, the computation of the pmf of the backlog WP
t+

can be performed as follows (A× fV denotes the multiplication of the scalar A and the vector fV)

fWP
t+

(w) =

fWP
t

(0)−
∑

Γk,l∈lp(P)

fSk,l
(t) +

∑

Γk,l∈lp(P)

(fSk,l
(t)× fEk

(0)) if w = 0

fWP
t

(w) +
∑

Γk,l∈lp(P)

(fSk,l
(t)× fEk

(w)) if w > 0
(2.5)

Proof. ∀Γk1,l1 6= Γk2,l2 ∈ lp(P), we consider the following two events: (a)Γk1,l1 starts execution

at time t; (b)Γk2,l2 starts execution at t. Events (a) and (b) are mutually exclusive since at any time

there is at most one job running, thus

P(
⋃

Γk,l∈lp(P)

Sk,l = t) =
∑

Γk,l∈lp(P)

P(Sk,l = t) (2.6)

By Lemma 2.1, the start of any job Γk,l ∈ lp(P) at time t implies that WP
t equals zero,

thus

P(
⋃

Γk,l∈lp(P)

Sk,l = t,WP
t = 0)

= P(
⋃

Γk,l∈lp(P)

Sk,l = t)

=
∑

Γk,l∈lp(P)

P(Sk,l = t)(by Equation 2.6)

(2.7)

29

Furthermore, since the execution time Ek is independent from random variables WP
t and

Sk,l, we have

∀e,P(
⋃

Γk,l∈lp(P)

(WP
t = 0,Sk,l = t, Ek = e))

=
∑

Γk,l∈lp(P)

P(WP
t = 0,Sk,l = t, Ek = e)

=
∑

Γk,l∈lp(P)

(P(WP
t = 0,Sk,l = t)× P(Ek = e))

=
∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = e))(by Lemma 2.1)

(2.8)

By Bayes’ theorem [38],

P(WP
t = 0) = P(WP

t = 0,
⋃

Γk,l∈lp(P)

Sk,l = t) + P(WP
t = 0,

⋃

Γk,l∈lp(P)

Sk,l = t) (2.9)

thus the probability that the backlog WP
t is zero and there is no job from lp(P) starting execution

is

P(WP
t = 0,

⋃

Γk,l∈lp(P)

Sk,l = t)

= P(WP
t = 0)− P(WP

t = 0,
⋃

Γk,l∈lp(P)

Sk,l = t)

= P(WP
t = 0)−

∑

Γk,l∈lp(P)

P(Sk,l = t)(by Equation 2.7)

(2.10)

Now we consider the probability that WP
t+ , the backlog right after the possible starting

execution of lower priority non-preemptable jobs at time t, equals zero. It contains two mutually

exclusive possibilities:

• WP
t = 0 and there is no lower priority non-preemptable job starting execution at t;

• WP
t = 0 and a lower priority non-preemptable job Γk,l starts execution at t, with its execution

time Ek equal to zero.

30

Thus the probability of WP
t+ = 0 is

P(WP
t+ = 0)

= P(WP
t = 0,

⋃

Γk,l∈lp(P)

Sk,l = t) + P(
⋃

Γk,l∈lp(P)

(WP
t = 0,Sk,l = t, Ek = 0))

= P(WP
t = 0)−

∑

Γk,l∈lp(P)

P(Sk,l = t) + P(
⋃

Γk,l∈lp(P)

(WP
t = 0,Sk,l = t, Ek = 0))

(by Equation 2.10)

= P(WP
t = 0)−

∑

Γk,l∈lp(P)

P(Sk,l = t) +
∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = 0))(by Equation 2.8)

(2.11)

Consider the probability of WP
t+ = w, ∀w > 0. To have the contribution from WP

t and

the blocking of a lower priority non-preemptable job Γk,l adding up to w, there are three mutually

exclusive possibilities as follows:

• Scenario (1): WP
t = w > 0, and there is no lower priority non-preemptable job starting

execution at t;

• Scenario (2): a lower priority non-preemptable job starts execution at t, with execution time

equal to e < w, and WP
t = w − e > 0;

• Scenario (3): WP
t = 0, and a lower priority non-preemptable job starts execution at t, with

execution time equal to w.

By Lemma 2.1,WP
t = w > 0 implies that there is no lower priority non-preemptable job

starting execution at t. The probability of scenario (1) can be calculated as

31

∀w > 0, P(WP
t = w,

⋃

Γk,l∈lp(P)

Sk,l = t)

= P(WP
t = w)− P(WP

t = w,
⋃

Γk,l∈lp(P)

Sk,l = t)

= P(WP
t = w)−

∑

Γk,l∈lp(P)

P(WP
t = w,Sk,l = t)

= P(WP
t = w)

(2.12)

For scenario (2), by Lemma 2.1 again, WP
t = w − e > 0 implies that there is no lower

priority non-preemptable job starting execution at t,

∀w > e,P(
⋃

Γk,l∈lp(P)

(Sk,l = t, Ek = e,WP
t = w − e)) = 0 (2.13)

For scenario (3), its probability has been calculated as in Equation 2.8.

Combining all the above three cases, the probability of WP
t+ = w,∀w > 0 is

∀w > 0, P(WP
t+ = w)

= P(WP
t = w,

⋃

Γk,l∈lp(P)

Sk,l = t)

+
w−1∑

e=0

P(
⋃

Γk,l∈lp(P)

(Sk,l = t, Ek = e,WP
t = w − e))

+ P(
⋃

Γk,l∈lp(P)

(Sk,l = t, Ek = w,WP
t = 0))

= P(WP
t = w) + 0 +

∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = w))(by Equations 2.12, 2.13, 2.8)

= P(WP
t = w) +

∑

Γk,l∈lp(P)

(P(Sk,l = t)× P(Ek = w))

(2.14)

For each lower priority non-preemptable job Γk,l ∈ lp(P), the update of the backlogWP
t+

is performed by first subtracting the probability of Sk,l = t from fWP
t+

(0), then the pmf of the

32

execution time Ek is scaled by P(Sk,l = t) and added to the pmf of WP
t+ . This operation is called

spreading since the probability of Sk,l = t is taken away from fWP
t+

(0) and spread according to the

shape of fEk
. Figure 2.5 and 2.6 give an example of how the P -level backlog should be updated

from t to t+ considering the probability of a lower priority non-preemptable job Γk,l starting its

execution at time t.

0 1

4/9

2/9 2/9

1/9

3 42 5 6 7

0 1 2 3 4

1/2 1/2
fWP

t

fEk

P(Sk,l = t) = 1/3

Figure 2.5: At time t, just before considering the start of the job with priority lower than P (the
execution time pmf and the probability of the job starting at t are shown in the box)

0 1

2/9 2/9

1/9

3 42 0 1 2 3 4

1/3

0 1 3 42 5

1/6 1/6

0 1

2/9 2/9

3 42 5 6 7

5/18

1/9
1/6

4/9

fWP
t

– P(Sk,l = t)

P(Sk,l = t)× fEk

+

=

fWP
t+

Figure 2.6: At time t+, just after considering the start of the job: spreading the execution time pmf
with probability P(Sk,l = t)

33

The backlog update procedure in Algorithm 3 is modified considering the blocking of

lower priority non-preemptable tasks in the system. At each time tick, first the amount of inter-

ference is added by convolving the pmfs of the backlog and the execution times of the jobs with

priority higher than or equal to P ; then blocking from lower priority non-preemptable jobs is added

by the operation of spreading; the shrinking operation is performed from t to (t+1)−, the next time

tick. The operations of convolution, spreading and shrinking are iteratively applied. Note that the

backlog right before the time t is denoted as WP
t− , the backlog after considering the interferences

but without taking into account the blocking from lower-priority non-preemptable jobs is denoted

as WP
t , and the backlog right after t, i.e., the start of these jobs introducing blocking delay to the

backlog, is denoted as WP
t+ . This is to make clear that the backlog is updated at each time tick by

first considering the interferences, then the possible blocking delays.

2.3.2 Stationary Response Time Calculation for Non-preemptable Jobs

As in [14], the computation of the response time of a job Γi,j with priority Pi, requires,

as a first step, the calculation of the backlog WPi
Qi,j

at its release time Qi,j . Note that for a non-

preemptable job, once it starts running, it will finish its execution, thus the possible future inter-

ferences will happen before its start time. Similar to Section 2.2.4, the set of jobs released after

Qi,j that may preempt Γi,j is denoted as hp(Pi)(Qi,j ,∞) = {Γm,n|Pm < Pi and Qm,n > Qi,j}.

The jobs in the set hp(Pi)(Qi,j ,∞) are ordered by their release times. Let Γk be the k-th job with

relative release time tk = Qk − Qi,j , and fS<k>
i,j

denote the start time pmf of job Γi,j after consid-

ering the possible interferences from Γ1, Γ2, ...,Γk. Si,j is initialized as the Pi-level backlog right

before its release, i.e., fS<0>
i,j

= fW
Q

Pi
i,j

. Then for each job Γk ∈ hp(Pi)(Qi,j ,∞), the start time pmf

34

Algorithm 4 Update Backlog MixedPreemptive(t1,WP
t1 , t2) // Given the backlogWP

t1 at time t1,

calculate backlog at time t2 > t1
1: for time instant t from t1 to t2 do

2: for each job Γi,j released at time t do

3: if Pi ≤ P then

4: fWP
t

= fWP
t

⊗
fEi

5: end if

6: end for

7: for each job Γi,j starting execution at time t do

8: if Pi > P and Ni = non− preemptable then

9: Spread probability P(Si,j = t) by fEi to fWP
t

as Theorem 2.2 and the example in Figure

2.5 and 2.6

10: end if

11: end for

12: Shrink fWP
t

from t to (t + 1)−

13: end for

35

fS<k−1>
i,j

calculated at the previous step is split into two parts, the head part f
[0,tk)

S<k−1>
i,j

and the tail part

f
[tk,∞)

S<k−1>
i,j

. In the head part Γi,j starts execution before the release of Γk, while in the tail part Γk will

further interfere Γi,j thus Ek needs to be added (by convolving these two pmfs). After this, fS<k>
i,j

is

constructed by merging the head part and the updated tail part.

0 2 3 4 5

1/4
1/6

1/3

1/12
1/6

1

0 2 3 4 5

1/12

10 2 3 4 5

1/4
1/6

1/3

1

1/6

fS<k−1>
i,j

tk

f
[0,tk)

S<k−1>
i,j

f
[tk,∞)

S<k−1>
i,j

Figure 2.7: Splitting the start time pmf from step k − 1 for a non-preemptable job

An example of the splitting and merging operation on the start time pmf is illustrated in

Figure 2.7 and 2.8. Please note the differences of the calculation of future preemption between

preemptable (Figure 2.3 and 2.4) and non-preemptable jobs (Figure 2.7 and 2.7). First, for a pre-

emptable job, the calculation is using its response time, while for a non-preemptable job its start

time is used. Second, for a preemptable job, the head part contains the point tk, the relative release

time of a higher priority job Γk, while for a non-preemptable job, it does not contain tk since the

future interference needs to be added if Γk is released at the same time when job Γi,j with a lower

priority tries to start.

Once the pmf of the time Si,j at which Γi,j starts its execution is known, the pmf of its

36

0 2 3 4 51 6 70 2 3 4 51

0 2 3 4 51 6 7

1/4
1/6

1/3

1/4
1/6

1/3

1/12 1/24
1/8

1/12 1/24
1/8

f
[0,tk)

S<k−1>
i,j

f
[tk,∞)

S<k−1>
i,j

⊗
fEk

fS<k>
i,j

Figure 2.8: Merging the head part and updated tail part to get the start time pmf of a non-preemptable
job at step k

finish time is obtained by simply adding its execution time Ei, i.e., performing a convolution on the

pmfs of Si,j and Ei. The response time is finally computed by a further left shift of Qi,j time units.

fFi,j = fSi,j

⊗
fEi

∀t,P(Ri,j = t−Qi,j) = P(Fi,j = t)
(2.15)

2.4 Experimental Results

In this section, we present the experimental results on a set of application tasks from an

automotive ECU. The test set consists of 16 software tasks as shown in Table 2.1, where for each task

τi, parameters Ti, Oi, Pi and Ni
2 are the same as in Section 2.1.2. Emin

i and Emax
i are the minimum

and maximum execution times, and the execution time is assumed to be uniformly distributed within

[Emin
i , Emax

i]. The worst case system utilization is 145%, and the mean utilization of the system is

2The preemption property Ni is set to be non-preemptive for the first 8 highest priority tasks in the set.

37

72.8%.

τi Ti(×10µs) Oi Pi Ni Emin
i (×10µs) Emax

i (×10µs)
τ1 1000 0 1 Non-Preemptive 1 133
τ2 1000 0 2 Non-preemptive 1 371
τ3 2000 0 3 Non-preemptive 1 440
τ4 2000 0 4 Non-preemptive 1 345
τ5 4000 0 5 Non-Preemptive 1 255
τ6 4000 0 6 Non-Preemptive 1 309
τ7 4000 0 7 Non-preemptive 1 248
τ8 4000 0 8 Non-preemptive 1 248
τ9 5000 0 9 Preemptive 1 212
τ10 5000 0 10 Preemptive 1 212
τ11 5000 0 11 Preemptive 1 402
τ12 10000 0 12 Preemptive 1 283
τ13 10000 0 13 Preemptive 1 108
τ14 10000 0 14 Preemptive 1 260
τ15 10000 0 15 Preemptive 1 255
τ16 10000 0 16 Preemptive 1 343

Table 2.1: The list of tasks on an example automotive ECU

We check the quality of our stochastic analysis method by comparing its results with the

results of simulations. The granularity of our analysis and simulation is set to 10µs. The simulation

is performed by randomly choosing execution times, and repeated for 8 × 108 hyperperiods. The

stationary distribution of backlogs is obtained by iterative approximation, that is, by first applying

the algorithm that computes the backlogs, then stopping when the pmfs of backlogs are close enough

at the end of two consecutive hyperperiods, where the analysis error ε as in Alogrithm2 is assigned

to be 10−9. The stationary distribution of the task response time is calculated as the average of the

instances queued in the next hyperperiod once the stationary distribution of backlogs is achieved.

The deadline of each task is assumed to be half of its period. Table 2.2 shows the re-

sults of calculated deadline miss probability for each task in the test set. The one obtained by the

38

τi Deadline Simulation Analysis τi Deadline Simulation Analysis
τ1 500 0.000 0.000 τ9 2500 0.011 0.011
τ2 500 0.023 0.023 τ10 2500 0.026 0.026
τ3 1000 0.000 0.000 τ11 2500 0.083 0.083
τ4 1000 0.037 0.037 τ12 5000 0.001 0.001
τ5 2000 0.000 0.000 τ13 5000 0.002 0.002
τ6 2000 0.000 0.000 τ14 5000 0.005 0.005
τ7 2000 0.003 0.003 τ15 5000 0.013 0.013
τ8 2000 0.018 0.018 τ16 5000 0.039 0.038

Table 2.2: Deadline miss probability for each task in the test set

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100
133

 150 200 250 300 350 400 450 500

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

simulation results

analysis results

modeling of
analysis w/o

blocking time

Figure 2.9: The response time cdf of task τ1 in the test set

39

proposed analysis method is almost identical to the simulation result. Furthermore, we present the

cumulative distribution function of the response time for τ1, the highest priority task, as shown in

Figure 2.9. Theoretically, if we run the simulation long enough, the only source of error between

our analysis and simulation is limited computational precision. As expected, the results obtained

from the analysis and the simulation are almost the same, as demonstrated in both Table 2.2 and

Figure 2.9. In the figure, the analysis of the response time of τ1 has been tentatively performed

assuming that each task in the test set is preemptive, thus there is no blocking delay to τ1 due to

lower priority non-preemptable tasks. The result is quite optimistic with respect to the actual values

and shows the accuracy in the modeling of the additional contribution to the backlog caused by the

blocking factor.

40

Chapter 3

Stochastic Analysis of Controller Area

Network Message Response Times

In this chapter, we present the stochastic analysis framework that approximates the re-

sponse times for CAN messages. None of the stochastic methods proposed so far, including the one

in [14, 21], covers the analysis of CAN periodic messages transmitted by nodes without clock syn-

chronization and without preemption. The analysis provided in [14, 21], for example, assumes the

knowledge of the (relative) activation times between the tasks, but it does not cover blocking delays

due to CAN non-preemptive nature. Other stochastic approaches assume Poisson arrivals and/or

are not applicable to medium or light load conditions. Previous stochastic analysis of CAN-based

systems in [31] and [33] focus on critical instant conditions, without considering the probability of

occurrence of a critical instant. Besides, in these methods there is no analysis of different phase con-

figurations, which may result in different response time values from those computed in the critical

instant scenario. To the best of our knowledge, our method is the first attempt toward the evaluation

41

of the probability functions of message response times in the scenarios of non-deterministic message

phasing.

Next, we first define a model of the distributed CAN system, then we describe our char-

acterization message abstraction. Next, we provide the formula for computing the backlog, and the

pmfs of the message response times. Finally, we provide some experimental results on a subset of

messages from the real automotive application.

3.1 System Model and Notation

3.1.1 CAN Bus Arbitration and Message Format

The CAN arbitration protocol is both priority-based and non-preemptive, that is, the trans-

mission of a message can not be preempted by higher priority messages that are queued when the

message is being transmitted. The CAN [2] bus is essentially a wired AND channel connecting all

nodes. The media access protocol works by alternating contention and transmission phases. The

time axis is divided into slots that must be larger than or equal to the time it takes for the signal to

travel back and forth along the channel. The contention and transmission phases take place during

the digital transmission of the frame bits. The CAN protocol has the message format of Figure 3.1,

where the sizes of the fields are expressed in bits. Priorities are encoded in the message identi-

fier field (11 bits wide for the standard format, 29 for the extended format). The identifier is used

not only for bus arbitration, but also for describing the data content (identification of the message

stream). The CAN protocol requires that all contending messages have a unique identifier (unique

priority). The other fields are: the control field containing information on the type of message; the

data field containing the actual data to be transmitted, up to a maximum of 8 bytes; the checksum

42

used to check the correctness of the message bits; the acknowledge (ACK) used to acknowledge the

reception; the ending delimiter (ED) used to signal the end of the message and the idle space (IS)

or inter-frame bits (IF) used to separate one frame from the following one.

name
1 1 1 1 1 1 1 1 1

bit
length

0

start identifier control data checksum ED IS

1 11 6 0−64 16 2 7 3

ACK

field 1

Figure 3.1: The CAN data frame format

If a node wishing to transmit finds the shared medium in an idle state, it waits for the next

slot and starts an arbitration phase by issuing a start-of-frame bit. At this point, each node with a

message to be transmitted (e.g., the message may be placed in a peripheral register called TxObject)

can start racing to grant access of the shared medium, by serially transmitting the identifier (priority)

bits of the message in the arbitration slots, one bit for each slot starting from the most significant

one. Collisions among identifier bits are resolved by the logical AND semantics: if a node reads its

priority bits on the medium without any change, it realizes it is the winner of the contention and it

is granted access for transmitting the rest of the message, and the other nodes switch to a listening

mode. In fact, if one of the bits is changed when reading it back from the medium, this means

there is a higher priority (dominant bit) contending the medium and thus the message withdraws.

Finally, as an additional protocol feature, whenever the message frame contains a sequence of five

consecutive identical bits, an additional trailing complementary bit is added (bit stuffing). This is

necessary to keep the clocks of the receiving nodes synchronized with the bit stream (transmitted

with NRZ encoding). For more details on the protocol the interested reader can read the actual

specification of the CAN protocol in [2].

43

3.1.2 Model of the CAN System

We consider a CAN system where messages are queued periodically. At each node, the

bus adapter sends the queued messages in priority (ID) order. Its transmit registers (TxObjects) can

be overwritten if a higher priority message becomes available in the sorted queue.

A message mi is defined by (Ti,Oi, Ei, Pi), where Ti is its period, Oi its random initial

phase, Ei its transmission time, and Pi its priority. The message transmission time Ei is a random

variable due to the effect of bit-stuffing. The hyperperiod H of the system is defined as the least

common multiple of message periods, i.e., H = lcm(
⋃

i Ti).

For each periodic activation, we consider a message instance. On its arrival, a message

instance is queued by a periodic middleware task, executing with a period equal to the greatest

common divisor (gcd) of the message periods at the node. We denote the j-th instance of message

mi as Mi,j , its arrival time as Ai,j = Oi + (j − 1) × Ti
1, its queuing time as Qi,j = Ai,j , its

start time as Si,j , and its finish time as Fi,j . Note that the arrival times of the instances from the

same message are not independent, i.e., given a value to the phase Oi of the message, the arrival

times of all its message instances are determined as well. In other words, although the initial phase

is random, we assume it is constant in the hyperperiod.

Each message mi is associated with a unique ID Pi, which also represents its priority.

According to the CAN protocol, the lower the message ID, the higher its priority, Pi < Pj implies

that mi has a higher priority than mj .

We assume there is no synchronization mechanism for the local clocks of the nodes con-

nected to the CAN bus. From the standpoint of a message instance on node ECUk, the initial phase
1The pmf of the sum of a random variable V1 and a regular variable V2 is that ∀v1,P(V1 + V2 = v1 + V2) = P(V1 =

v1).

44

of a message mi from any other node ECUl(l 6= k) is Oi = Ψi + Ok,l, where Ψi is the local

phase of message mi, and Ok,l the relative phase between ECUk and ECUl. Obviously the phases

and thus the arrivals of different messages on the same node are not independent. Ok,l is a contin-

uous random variable, modeling the random message queuing times. We assume, without loss of

generality, that the pdf of the relative phase Ok,l is uniformly distributed within the interval (0,H).

The response time Ri,j of a message instance Mi,j is defined as the time interval from its

arrival to its finish, i.e., Ri,j = Fi,j −Ai,j , which is a random variable that depends on the phases

of the messages from other nodes, and the non-deterministic transmission times. The pmf fRi of the

response time of message mi is obtained as the average of the response time pmfs of all the message

instances Mi,j in the hyperperiod provided that the distribution is stationary.

3.1.3 A Modeling Abstraction for CAN Messages

3.1.3.1 The Characterization Message

Our abstraction is based on the observation that in most automotive systems message

queuing is performed by a single middleware-level task, executing with a period equal to the gcd of

the message periods at the node. Hence, every message on the same node has the initial phase and

period as the integer multiple of the gcd of the periods. From the standpoint of a generic message

mj , the queuing of message instances from any other node is separated by at least gcd(
⋃

i Ti). If

the worst case response time of mj is no greater than the greatest common divider of the message

periods, i.e.,

gcd(
⋃

i

Ti) ≥ max(Rj) (3.1)

45

then it will suffer interferences from at most one set of message instances from any other node. At

any time t, the backlog from message instances that are queued before or at t, can be assumed as

due to one such message instance set for each node.

In general, of course, this condition will be true only for a (high priority) subset of all

messages, but we claim that our method retains sufficient accuracy for the evaluation of message

response times even when this assumption is violated, as our experiments show. Besides, we can

provide an estimate of the error.

Within a hyperperiod, the queuing of instances from messages in the set hp(Pj) =

{mi|Pi < Pj} (with priority higher than Pj), only happens at integer multiples of the gcd(
⋃

i∈hp(Pj)
Ti).

Thus we can use one characterization message per node to model the interference due to such mes-

sages. The characterization message transmission time, from the standpoint of a lower priority

message on another node, is non-deterministic because of the random clock phases.

Figure 3.2 provides an example with three messages with periods and transmission times

equal to (60,2),(10,1),(20,1), respectively. During the hyperperiod [0,60), the message instances

are queued at the time instants k × 10, k = 0, 1, 2, 3, 4, 5. At time 0, all messages are queued and

the total transmission time is 4. Similarly, the transmission times that are requested at the other

time instants k × 10 are 1, 2, 1, 2, 1, respectively. From the standpoint of a message at another

node, the messages are queued at these time instants with equal probabilities. Three time instants

out of six contribute to a transmission time of 1 unit, two out of six to 2 units, and in one case

out of six, 4 units. Thus the pmf of the characterization message transmission time is defined as

P(1) = 1/2,P(2) = 1/3,P(3) = 0,P(4) = 1/6.

In CAN systems, message transmission times Ei are random because the number of stuff

46

100 20 30 40 50
0

1
2

3
4

3 messages on the same node, with phases=0 and (period, transmission time)=(60,2),(10,1),(20,1)

Characterization message with period=10
and random transmission times
with P(1)=1/2, P(2)=1/3 and P(4)=1/6

1 2 4

1/2

1/3

1/6

P
ro

ba
bi

lit
y

3

0

cumulative transmission time

Figure 3.2: An example of characterization message transmission time

bits are non-deterministic, and are characterized by pmfs that account for bit stuffing. A simple

model for bit stuffing can be obtained by assuming equal probability of having a zero or a one for

each bit. Models for computing the probability of a given number of stuff bits can be found in [34].

Algorithm 5 computes the transmission time pmf of the P -level characterization message.

First, the set of messages hp(P) with priority higher than P is identified, where the lcm of their

periods is the hyperperiod H , and the gcd of their periods is the time interval Tc that separates the

queuing of higher priority messages. Then, for each possible multiple of Tc within one hyperpe-

riod [0,H), i.e., t = kTc, k = 0, 1, ..., H/Tc − 1, the pmf of the total transmission time E [k] is

calculated by accumulating (by convolution) the pmfs of the transmission times of the message in-

stances queued at t. Finally, the transmission time pmf of the characterization message is obtained

by averaging the pmfs of E [k] at these time instants.

To model the effect of randomized phases for the sets of remote messages, we define

a random queuing jitter for the characterization message mc, with deterministic arrival time. Its

random queuing jitter is uniformly distributed within its period Tc. This second abstraction further

47

Algorithm 5 Calculate the transmission time pmf fEc of P -level characterization message mc

1: hp(P) = {mi|Pi < P}

2: H = lcm(
⋃

i∈hp(P)

Ti), Tc = gcd(
⋃

i∈hp(P)

Ti)

3: for k = 0, 1, ..., H/Tc − 1 do

4: P(E [k] = 0) = 1.0

5: t = k × Tc

6: for each i ∈ hp(P) do

7: if t mod Ti = 0 then

8: fE[k] = fE[k]

⊗
fEi

9: end if

10: end for

11: end for

12: for each e do

13: P(Ec = e) =
Tc

H

H/Tc−1∑

k=0

P(E [k] = e)

14: end for

48

introduces inaccuracy due to the non-periodic queuing patterns of the message instances.

We now provide the formal definition of the P -level characterization message mc for

{mi}, as follows:

• Period Tc = gcd(
⋃

i∈hp(P) Ti), hp(P) = {mi|Pi < P}

• Initial phase Oc = −Tc/2 2

• Queuing jitter Jc uniformly distributed in [0, Tc)

• Random transmission time Ec, as shown in the example in Figure 3.2 and Algorithm 5

• Priority Pc higher than P

3.1.3.2 Approximate System Model

To analyze the response time of a message mi, we model an approximate system con-

sisting of all the messages from the same node with priority higher than or equal to Pi, including

mi itself. These messages have no queuing jitter. In addition, we consider one characterization

message of level Pi for each of the other nodes, with random queuing jitter and transmission time.

In the approximate system, a message mi (including the characterization messages) is modeled by

(Ti, Oi,Ji, Ei, Pi). The attributes Ti, Oi and Pi have the same meaning as in Section 3.1.2, the

transmission time Ei is the random transmission time with a pmf computed as in Algorithm 5, and

Ji is the random queuing jitter. On its arrival, each message instance Mi,j is queued after some

time Ji, the queuing jitter. Ji is a discrete random variable with a known uniform pmf. For the j-th

instance Mi,j of mi, the deterministic arrival time is Ai,j = Oi + (j− 1)×Ti, and its queuing time
2We maximize the chance that at most only one characterization message instance will interfere with any real message

because its queuing jitter spans between [−Tc/2, +Tc/2) and its initial phase is the deterministic offset with respect to
any other real message in the system.

49

Qi,j = Ai,j + Ji is assumed to be independent from other instances of the same message, and of

any other message, because of the non-deterministic jitter contribution.

Another possible source of inaccuracy is that real messages have random phases, but

request transmission after exactly one period. This is not true for the characterization message with

a random release jitter, which does not ensure periodic requests transmission after the first arrival.

This limitation has no effect if the worst case response time of any message is shorter than half of

the greatest common divider of the periods of all messages. When this is not true, the analysis is

approximate and is affected by an increasing error.

3.1.3.3 Extended Definition of Backlog

We now introduce an extension of the backlog defined in [14]. The P -level backlog WP
t

at time t is the sum of the remaining transmission times of the queued message instances that have

priorities higher than or equal to P .

For characterization message instances with random queuing jitter, we define the event

that a message instance Mi,j is queued after t as V i,j
t , that is, V i,j

t = (Qi,j > t), and its complement

V
i,j
t = (Qi,j ≤ t). Let us suppose that at time t there are n message instances Mi1,j1 , Mi2,j2 , ..., Min,jn

in the queue, and have priorities higher than or equal to P (In CAN, no two messages can have the

same priority). The set of these n message instances is defined as the P -level message instance set

at time t, denoted as I(P, t).

For each such instance Mik,jk
∈ I(P, t) , the two mutually exclusive events V ik,jk

t and

V
ik,jk

t divide the event space into two subspaces. We define the P -level event space S(P, t) at time t

as S(P, t) = {(V i1,j1
t , V i2,j2

t , ..., V in,jn
t), (V i1,j1

t , V i2,j2
t , ..., V

in,jn

t),...,(V i1,j1
t , V

i2,j2
t , ..., V

in,jn

t)},

which contains 2n event vectors, representing different combinations of the random queuing times

50

of n message instances with priority P or higher with respect to time t. We define the queuing

pattern vector at time t for the possible queuing times of these message instances, denoted as Xt.

Therefore, Xt is a random variable defined over S(P, t), the P -level event space, with a known

probability mass function.

For a queuing pattern Xt, if the queuing event at t corresponding to the instance Mi,j is

V i,j
t , then Xt is called a positive queuing pattern of V i,j

t ; otherwise, if V
i,j
t applies, it is a negative

queuing pattern of V i,j
t . The complementary queuing pattern X t(i,j) with respect to Mi,j is a

queuing pattern defined by complementing the V i,j
t entry in Xt.

We define a compound probability mass function of two random variables, WP
t , de-

fined over the discretized R+, and Xt defined over the 2n dimension P -level event space, e.g.,

f(WP
t ,Xt)

(w, (V i1,j1
t , V i2,j2

t , ..., V in,jn
t)) = P(WP

t = w,Xt = (V i1,j1
t , V i2,j2

t , ..., V in,jn
t)). Please

note that the 2n queuing patterns Xt are mutually exclusive and represent an event space with total

probability 1 defined for each priority level P and at each time t. The total pmf can be reconstructed

from the compound pmfs:

fWP
t

(·) =
∑

Xt∈S(P,t)

f(WP
t ,Xt)

(· , ·) (3.2)

Finally, in case the response time of a message instance 3 is larger than its period, we

assume that message requests are processed in FIFO order. From a message instance standpoint,

we need to consider the backlog due to message instances of the same message type as the one we

are considering the backlog of. In fact, in case the response time is greater than the period, any

message instance will be potentially delayed by instances from the same message and still in the

queue. We are interested in computing the backlog WMi,j

t of an instance Mi,j of mi, where t is

any time instant after its queuing time (t ≥ Qi,j) and mi is one of the actual messages (not the
3This is a real message, not the characterization message.

51

characterization abstractions).

The interference set of Mi,j at time t, denoted as I(Mi,j , t), is defined as the set of mes-

sage instances that are queued at t and have priorities higher than Pi, which do not include the

instances of mi queued after Mi,j . We defineWMi,j

t as the sum of the remaining transmission times

of the queued message instances in its interference set. In case the response time is always lower

than the period, obviously WMi,j

t = WPi
t , meaning there is no interference from past instances of

the same message still in the queue.

3.2 Stochastic Analysis of the Approximate System

We approximate the continuous time model with a discrete time model with granularity

τ such that all response times and backlogs are expressed as pmfs of time values that are multi-

ples of the given tick unit τ . In order to compute the pmfs of the message response times in the

approximate system, we first compute the stationary distribution of the backlog at the beginning

of the hyperperiod; then, we compute the pmf of the backlog at the queuing time of each message

instance, and finally, the pmf of the response time of each message instance within the hyperperiod.

The message response time pmf is obtained by averaging the response time pmfs of all the instances

in the hyperperiod.

3.2.1 Stationary Backlog within the Hyperperiod

The example in Figure 3.3 illustrates the method used to update the backlog at priority

level P or higher for all instances of a generic message mk. The characterization message instances,

which represent the load from remote ECUs (such as Mi,j in the figure), are queued with random

52

t −
τt−

τt−

τ

b+c

t

a c t

t−

a

WP
t−τ →WP

t−

WP
t− →WP

t

Mi,j Ji
Mi,j+1

Qi,j = t P(Qi,j = t|Qi,j ≥ t) = 1
nt

Mk,l−1 Mk,l

Figure 3.3: Updating the backlog in the discrete-time model

jitter in [0, Tc) (in the figure Tc = Ti). Generally speaking, at any time t we compute the backlog

knowing its value at t− τ and going through an intermediate step, which is an instant t− arbitrarily

close to t. Starting from the backlog at time t − τ , we first update the backlog by shrinking (step

a in the figure) to time t−, right before the possible queuing time of message instance Mi,j ∈

I(P, t). By shrinking, we advance the time, accumulating in the origin (backlog equal to zero)

all the probabilities of non-positive backlogs. The probability that a message instance still to be

activated is queued at t, P(Qi,j = t|Qi,j ≥ t) can be easily computed (Figure 3.3) as 1/nt where

nt is the number of ticks from t to the latest possible queuing time qmax
i,j for Mi,j

4.

Finally, we provide the rules to compute the backlog from the time instant t− to t in two

possible scenarios, as a result of the possible (and non-deterministic) queuing of characterization

messages from remote nodes at t. One possible scenario (step c in Figure 3.3) is when the set

of message instances that can contribute to the backlog remains the same as that of the previous
4For all message instances Mi,j ∈ I(P, t) thus qmax

i,j ≥ t, nt > 0

53

tick. The other case is when there is at least one new instance Mi,j+1 that must be considered

in place of Mi,j . In this case, an additional step, labeled as b in Figure 3.3, must be performed

after the shrinking and before considering the backlog update as the result of new messages being

possibly queued. The following subsections describe the procedure for updating the backlog in the

two cases. Section 3.2.1.1 describes the procedure for updating the backlog as a consequence of a

possible queuing of a message instance, and Section 3.2.1.2 describes the update in case the set of

message instances changes.

3.2.1.1 Updating the Backlog for a Possible Queuing of a Message Instance

We consider the compound pmfs of the P -level backlog and the possible queuing patterns

V
i,j
t and V i,j

t , that is, f
(WP

t ,V
i,j
t)

and f
(WP

t ,V i,j
t)

.

First, we define WP
t = WP

t− + e = w where e is the possible contribution to the backlog

by a message instance Mi,j . Then, we consider two scenarios:

• Scenario (1): WP
t = w and V

i,j
t : (Qi,j ≤ t), that is, the backlog at time t due to messages

of priority higher or equal to P is w and the new message instance Mi,j has been queued at

time prior to or at t;

• Scenario (2): WP
t = w and V i,j

t : (Qi,j > t), that is, the backlog at time t due to messages

of priority higher or equal to P is w and the new message instance Mi,j has been queued at

any time greater than t, so Mi,j has not contributed to the backlog at time t.

If (1) is true, then either Mi,j contributed to the backlog at any time prior or equal to t−,

and in this case WP
t = WP

t− = w with e = 0, that is, Mi,j’s transmission time Ei = e has been

already included inWP
t− , or Mi,j is queued at t, and the sum of its transmission time Ei = e and the

54

backlog at t− must be equal to w. If (2) is true, then Mi,j is queued later than t, and Ei is not part of

the backlog at time t, therefore WP
t = WP

t− = w.

The following theorem reformulates the backlog update at each time tick (τ).

Theorem 3.1. Consider a characterization message instance Mi,j , possibly queued at time t, with

priority higher than P . WP
t− is the P -level backlog immediately before t, that is, before the possible

queuing of Mi,j at t. The probability that the backlog at time t equals a given value w can be

computed with respect to the two mutually exclusive events V
i,j
t and V i,j

t .

P(WP
t = w, V

i,j
t)

= P(WP
t− = w, V

i,j
t−) +

w∑

e=0

P(WP
t− = w − e, V i,j

t−)× P(Qi,j = t|Qi,j ≥ t)× P(Ei = e)

P(WP
t = w, V i,j

t)

= P(WP
t− = w, V i,j

t−)× P(Qi,j > t|Qi,j ≥ t)

= P(WP
t− = w, V i,j

t−)× (1− P(Qi,j = t|Qi,j ≥ t))
(3.3)

In terms of probability mass functions, the computation of the compound pmfs of the P -

level backlog with respect to the two events V
i,j
t and V i,j

t can be performed as follows (fV1

⊗
fV2

denotes the convolution of fV1 and fV2):

f
(WP

t ,V
i,j
t)

= f
(WP

t− ,V
i,j

t−)
+ P(Qi,j = t|Qi,j ≥ t)× (f

(WP
t− ,V i,j

t−)

⊗
fEi)

f
(WP

t ,V i,j
t)

= (1− P(Qi,j = t|Qi,j ≥ t))× f
(WP

t− ,V i,j

t−)

(3.4)

Proof. Consider two events (WP
t− = w) and (Qi,j = t′) for any t′ ≥ t, which are independent

from each other under the condition Qi,j > t−, because WP
t− is independent from the queuing of

any message instance after or at t.

55

Thus ∀t′ ≥ t, and ∀w ≥ 0

P(WP
t− = w,Qi,j = t′)

= P(WP
t− = w,Qi,j = t′,Qi,j ≥ t)

= P(WP
t− = w,Qi,j = t′|Qi,j ≥ t)× P(Qi,j ≥ t)

= P(WP
t− = w|Qi,j ≥ t)× P(Qi,j = t′|Qi,j ≥ t)× P(Qi,j ≥ t)

= P(WP
t− = w,Qi,j ≥ t)× P(Qi,j = t′|Qi,j ≥ t)

= P(WP
t− = w,Qi,j > t−)× P(Qi,j = t′|Qi,j ≥ t)

(3.5)

In particular, when t′ = t,

P(WP
t− = w,Qi,j = t)

= P(WP
t− = w,Qi,j > t−)× P(Qi,j = t|Qi,j ≥ t)

(3.6)

and

P(WP
t− = w,Qi,j > t)

= P(WP
t− = w,Qi,j ≥ t)− P(WP

t− = w,Qi,j = t)

= P(WP
t− = w,Qi,j ≥ t)× (1− P(Qi,j = t|Qi,j ≥ t))

= P(WP
t− = w,Qi,j > t−)× (1− P(Qi,j = t|Qi,j ≥ t))

(3.7)

Consider the probability of event (WP
t = w,Qi,j ≤ t), there are two possibilities that are

mutually exclusive:

• Mi,j is queued before t, and WP
t− = w;

• Mi,j is queued at t, and WP
t− and the transmission time from Mi,j Ei sum up to w.

Thus

56

P(WP
t = w,Qi,j ≤ t)

= P(WP
t− = w,Qi,j ≤ t−) +

w∑

e=0

P(WP
t− = w − e,Qi,j = t, Ei = e)

= P(WP
t− = w,Qi,j ≤ t−) +

w∑

e=0

P(WP
t− = w − e,Qi,j = t)× P(Ei = e)

= P(WP
t− = w,Qi,j ≤ t−)

+
w∑

e=0

P(WP
t− = w − e,Qi,j > t−)× P(Qi,j = t|Qi,j ≥ t)× P(Ei = e) (by Equation 3.6)

(3.8)

Consider the probability of event (WP
t = w,Qi,j > t), the only possibility is

• WP
t− = w and Mi,j is queued after t.

Thus

P(WP
t = w,Qi,j > t)

= P(WP
t− = w,Qi,j > t)

= P(WP
t− = w,Qi,j > t−)× (1− P(Qi,j = t|Qi,j ≥ t)) (by Equation 3.7)

(3.9)

In general, there may be more than one message instance queued at time t, therefore we

need to consider the compound pmfs of the backlog with all the possible queuing patterns Xt ⊂

S(P, t). Using Equation 3.3, we compute the compound probability of the P -level backlog at t

together with each pattern Xt, after the possible queuing of a message instance Mi,j with priority

higher than or equal to P at t.

In case Xt is a negative pattern of V i,j
t , the pmf f(WP

t ,Xt)
can be obtained by computing

the convolution of the compound pmf defined with respect to the complementary queuing pattern

57

X t−(i,j), f(WP
t− ,X t−(i,j))

, with the pmf of the transmission time of Mi,j , fEi , multiplied by P(Qi,j =

t|Qi,j ≥ t), and adding the result to the compound pmf f(WP
t− ,Xt−).

In case Xt is a positive pattern of V i,j
t , the pmf f(WP

t ,Xt)
is obtained by multiplying

f(WP
t− ,Xt−) with the scalar (1− P(Qi,j = t|Qi,j ≥ t)).

This operation is called cross-convolution since the update of the compound pmf f(WP
t ,Xt)

for some negative patternXt of V i,j
t is performed by adding a term resulting from the convolution of

the message transmission time pmf with the compound pmf of the backlog and the complementary

queuing pattern X t−(i,j) with respect to Mi,j . The procedure is formally described in Algorithm 6.

Algorithm 6 Cross-convolution: calculate P -level backlog after the possible queuing of Mi,j at

time t

1: for each negative queuing pattern X t ∈ S(P, t) of V i,j
t do

2: Xt(i,j) = complementary queuing pattern of X t with respect to Mi,j

3: f(WP
t ,X t)

= f(WP
t− ,X t−) + P(Qi,j = t|Qi,j ≥ t)× (f(WP

t− ,Xt−(i,j))

⊗
fEi)

4: end for

5: for each positive queuing pattern Xt ∈ S(P, t) of V i,j
t do

6: f(WP
t ,Xt)

= (1− P(Qi,j = t|Qi,j ≥ t))× f(WP
t− ,Xt−)

7: end for

3.2.1.2 Queuing Pattern Update

After considering the possible queuing of message instances with priority higher than or

equal to P , the P -level backlog pmf along with each queuing patternXt, i.e., f(WP
t ,Xt)

, is computed,

and the backlog at t′ = (t + τ)− < (t + τ) is updated by shrinking the pmf. We keep applying

shrinking and cross-convolution to update the backlog at each discrete instant (adding τ). This

58

iterative process is repeated at each time tick because of the non-deterministic random queuing of

the remote messages.

A special case occurs at those time instants when the sets of P -level message instances

change. When a characterization message instance Mi,j is replaced by Mi,j+1 (Figure 3.4), V i,j
t−

and V
i,j
t− , included in every queuing pattern Xt, must be replaced by two new queuing events V i,j+1

t−

and V
i,j+1
t− .

Suppose t is the time instant when Mi,j+1 replaces Mi,j . At t−, it is clear that P(V i,j
t−) = 1

and P(V i,j
t−) = 0. A new set of patterns Xt− must be defined at time t−, where V i,j

t− and V
i,j
t−

are replaced by V i,j+1
t− and V

i,j+1
t− . The compound pmfs f(WP

t− ,Xt−) for the new patterns can be

defined starting from the consideration that P(V i,j+1
t−) = P(V i,j

t−) = 0 and P(V i,j+1
t−) = P(V i,j

t−) =

1. Hence, the pmf f(WP
t− ,X ′

t−) for each queuing pattern X ′
t− that includes V

i,j+1
t− , that is, X ′

t− =

{. . . , V i,j+1
t− , . . .} can be defined as P(WP

t− = w,X ′
t−) = 0 for any value w ≥ 0. The values

of f(WP
t− ,X ′′

t−) for the other patterns that include V i,j+1
t− can be obtained by setting f(WP

t− ,X ′′
t−) =

f(WP
t− ,X ∗

t−) where all the elements of X ∗
t− match the corresponding elements of X ′′

t− , except that

V
i,j
t− is replaced in X ′′

t− by V i,j+1
t− .

Thus, given the stationary P -level backlog pmf at the beginning of the hyperperiod, the

stationary P -level backlog pmf at any time in the hyperperiod can be computed by iteratively using

the operations of shrinking, queuing pattern update (possibly) and cross-convolution. Formally,

there is no guarantee that there exists a stationary distribution for our approximate system with

characterization messages, but the existence of such a stationary solution for a particular system

configuration can be verified experimentally, by computing the conditional backlogs at each time

tick and stopping when identical values are found after an interval of exactly one hyperperiod.

59

t −τ t

P(Qi,j > t−) = 0 P(Qi,j+1 > t−) = 1

P(Qi,j ≤ t−) = 1 P(Qi,j+1 ≤ t−) = 0

Mi,j Ji
Mi,j+1

Mk,l−1 Mk,l

Figure 3.4: Updating the backlog when message instances change

For each of the CAN systems in our experiments, a stationary distribution is found after just one

hyperperiod.

3.2.2 Initial Blocking Time

Besides the delay from higher priority messages, a message in general is also subject to

blocking delay from lower priority messages due to the non-preemptive message transmission in

CAN protocol. The computation of the possible initial blocking time is performed by using a very

simple model. Given a message instance Mi,j , we consider the set of all the lower priority messages,

denoted as lp(Pi) = {mk|Pk > Pi}. Their message instances cause a blocking delay to Mi,j if

they are being transmitted at the time Mi,j is queued. If we assume that these instances are evenly

distributed in the hyperperiod, the probability that the message instance Mi,j waits for a time b > 0

(because of a lower priority message mk with transmission time Ek being transmitted on the bus at

60

least one time instant before the queuing time of Mi,j) is

P(Bi,j = b) =
∑

mk∈lp(Pi)

P(Ek > b)
Tk/τ

(3.10)

Given these probabilities, the pmf fBi,j of the blocking time Bi,j can be easily computed.

The initial blocking time must be added to the backlog at the time a message is queued by perform-

ing a convolution of the two pmfs.

3.2.3 Message Response Time Calculation

The computation of the response time of a message instance Mi,j with priority Pi, re-

quires, as a first step, the evaluation of its backlog at its queuing time.

When computing the response time of each instance Mi,j of mi, we assume it is queued

periodically with no jitter. The other local messages are queued periodically, and the remote mes-

sages are represented by their Pi-level characterization messages queued periodically with jitter.

Hence, the queuing time Qi,j of Mi,j is deterministically equal to the arrival time, say as qi,j . The

backlog can be computed by applying the methods for updating f
(WMi,j

t ,Xt)
defined in the previous

sections and then adding them (Equation 3.2).

In addition, the backlog at the queuing time of a message instance is updated in order to

account for a possible initial blocking delay, as described in Section 3.2.2.

The earliest possible start time for Mi,j is its queuing time, i.e., Si,j ≥ qi,j . Starting

from t = qi,j and, considering the following times tk = t + kτ (k ∈ N+), we further decompose

f
(WMi,j

tk
,Xtk

)
into the compound pmfs f

(WMi,j
tk

,Si,j<tk,Xtk
)

and f
(WMi,j

tk
,Si,j≥tk,Xtk

)
, and the latter in

f
(WMi,j

tk
,Si,j=tk,Xtk

)
and f

(WMi,j
tk

,Si,j>tk,Xtk
)
.

For k = 0, at time t0 = t = qi,j , and for each queuing pattern Xt ∈ S(Mi,j , t), clearly

61

f
(WMi,j

t ,Si,j≥t,Xt)
= f

(WMi,j
t ,Xt)

(the start time is no earlier than the queuing time).

The probability that Mi,j starts transmission immediately, that is, P(Si,j = qi,j = t)

equals the probability that the backlog of Mi,j at time t is zero, i.e., P(WMi,j

t = 0).

P(Si,j = t) = P(WMi,j

t = 0) =
∑

Xt

P(WMi,j

t = 0,Si,j ≥ t,Xt) (3.11)

Given that WMi,j

t = 0 implies Si,j = t, and WMi,j

t = w with w > 0 implies Si,j > t, we

have

P(WMi,j

t = 0,Si,j > t) = 0

P(WMi,j

t = w,Si,j > t) = P(WMi,j

t = w,Si,j ≥ t),∀w > 0
(3.12)

which means that f
(WMi,j

t ,Si,j>t,Xt)
(0) = 0, and, for all w > 0, it is f

(WMi,j
t ,Si,j>t,Xt)

(w) =

f
(WMi,j

t ,Si,j≥t,Xt)
(w) for each Xt ∈ S(Mi,j , t). As the probability that the backlog is equal to zero

when Si,j > t is zero, then

∑
w

P(WMi,j

t = w,Si,j > t) = 1− P(Si,j = t) (3.13)

The probability that Mi,j starts transmission at the next time instants tk = t + kτ can be

computed by iteratively applying the following steps, starting from t.

Starting from f
(WMi,j

t ,Si,j>t,Xt)
, the compound pmfs of the backlog can be updated to

the next time point t1 = t + τ by applying the methods defined in Section 3.2.1. The result is

the backlog at t1, f
(WMi,j

t1
,Si,j>t)

. In our discrete system, Si,j > t is the same as Si,j ≥ t1, hence,

f
(WMi,j

t1
,Si,j≥t1)

= f
(WMi,j

t1
,Si,j>t)

. Since the operations of cross-convolution, shrinking and queuing

pattern update do not change the total probability of the backlog, we have

62

∑
w

P(WMi,j

t1
= w,Si,j ≥ t1) = 1− P(Si,j = t) (3.14)

The probability that Mi,j starts transmission at time t1 equals the probability that its back-

log is zero at t1

P(Si,j = t1) = P(WMi,j

t1
= 0) =

∑

Xt1

P(WMi,j

t1
= 0,Si,j ≥ t1,Xt1) (3.15)

Similar to time instant t, we compute the compound pmf for the case Si,j > t1 as

f
(WMi,j

t1
,Si,j>t1,Xt1)

(0) = 0, and ∀w > 0, f
(WMi,j

t1
,Si,j>t1,Xt1)

(w) = f
(WMi,j

t1
,Si,j≥t1,Xt1)

(w). It-

erating Equation 3.13, the total probability of f
(WMi,j

t1
,Si,j>t1)

is

∑
w

P(WMi,j

t1
= w,Si,j > t1) = 1−

∑

tk≤t1

P(Si,j = tk) (3.16)

Thus we iteratively apply the above two steps for the time instants tk = t + kτ until we

get to an index n such that the compound backlog is identically null.

∀Xn ∈ S(Mi,j , tn),∀w > 0,P(WMi,j

tn = w,Si,j ≥ tn,Xn) = 0 (3.17)

This happens when, at time n, the total probability of the start time pmf accumulates to 1.

∑

k≤n

P(Si,j = tk) = 1 (3.18)

This procedure of calculating message start time pmf is formally described in Algorithm

7.

63

Algorithm 7 Calculate the start time pmf of Mi,j

1: t = qi,j

2: for each queuing pattern Xt ∈ S(Mi,j , t) do

3: f
(WMi,j

t ,Si,j≥t,Xt)
= f

(WPi
t− ,Xt)

4: end for

5: ∀k ≥ qi,j ,P(Si,j = k) = 0

6: while
t∑

k=qi,j

P(Si,j = k) < 1 do

7: for each queuing pattern Xt ∈ S(Mi,j , t) do

8: P(Si,j = t)+ = P(WMi,j

t = 0,Si,j ≥ t,Xt)

9: ∀w > 0,P(WMi,j

t = w,Si,j > t,Xt) = P(WMi,j

t = w,Si,j ≥ t,Xt)

10: end for

11: Update f
(WMi,j

t ,Si,j>t)
to get f

(WMi,j
t+τ ,Si,j>t)

, i.e., f
(WMi,j

t+τ ,Si,j≥t+τ)

12: t = t + τ

13: end while

64

Once the pmf of the time Si,j at which Mi,j starts its transmission is known, the pmf

of its finish time (the time at which its transmission terminates) is obtained by simply adding its

transmission time Ei, i.e., performing a convolution on the pmfs of Si,j and Ei. The response time is

finally computed by a further left shift of qi,j time units.

fFi,j = fSi,j

⊗
fEi

P(Ri,j = t− qi,j) = P(Fi,j = t), ∀t
(3.19)

Finally, the response time pmf fRi of message mi is obtained as the arithmetic average of

the pmfs fRi,j of its instances Mi,j inside the hyperperiod.

3.2.4 Algorithm Complexity

This section analyzes the worst case complexity of the algorithm to compute the backlog

of level i for message instance Mi,j on node ECUn. The algorithm refers to the computations in one

hyperperiod and requires at each step the evaluation of cross convolution and shrinking. Let n be

the number of nodes in the system. Within each hyperperiod, there are (n−1)H/τ +
∑

k∈hp(i,n)

H/Tk

possible queuing events of higher priority message instances (the number is O((n − 1)H/τ) since

Tk À τ). A backlog update requires updating 2n−1 compound backlogs, 2n−2 of which along with

positive queuing patterns. Each of these compound backlogs requires considering, at each step,

each possible queuing of a message instances by performing a cross-convolution. The complexity

of convolution depends on the algorithm used and on the worst case length of the distributions.

In our analysis, the maximum execution time of each characterization message and the compound

backlogs are less than Rmax
i . To perform a convolution on two vectors f and g, with size nf and ng

65

respectively, the number of operations required is O(nfng) 5. Thus the complexity of calculation

within one hyperperiod is O(2n−2 × (Rmax
i /τ)2 × (n − 1)H/τ) = O(n2n(Rmax

i)2H

τ3). This is a

worst case bound, the algorithm is typically much faster in the average case.

3.3 Experimental Results

In this section, we present some experimental results on a set of messages from experi-

mental vehicles. The test set consists of 6 ECUs and 69 messages as shown in Table 3.1. The bus

rate is 500kbps, and the message transmission times are computed according to the bit length of the

actual messages. Please note that, as opposed to the SAE and PSA benchmarks documented in [30]

and [46] consisting of 17 and 12 messages respectively, this set is a more real example of an actual

automotive message set. Furthermore, as opposed to the benchmarks in [30] and [46], a middleware

task running at the gcd of the message periods is used to queue messages. This implementation is

very real in actual automotive implementations. In Table 3.1, Ti is the period, Pi is the priority, and

Ei is the transmission time, where both Ti and Ei are in milliseconds. The maximum bus utilization

of the system is 60.25%. For simplicity, in the experiment we assume worst case bit stuffing thus

deterministic transmission times.

We check the quality of our stochastic analysis method by comparing its results with the

results of simulations when the size of the system still allows a good coverage for a simulation-

based approach. To have a good trade-off between the number of possible phase combinations and

the accuracy of the analysis and simulation, the granularity of our analysis, as defined by τ , is set to

0.01ms, that is, the gcd of the message maximum transmission times. It takes less than 2 hours to
5The operation of convolution can be performed faster using Fast Fourier Transform algorithm.

66

Msg ECU Ti Ei Pi Msg ECU Ti Ei Pi Msg ECU Ti Ei Pi

m1 E2 10 0.27 1 m24 E3 25 0.23 24 m47 E2 50 0.19 47
m2 E2 10 0.27 2 m25 E3 25 0.25 25 m48 E4 100 0.27 48
m3 E3 5 0.19 3 m26 E2 20 0.27 26 m49 E3 100 0.27 49
m4 E3 10 0.25 4 m27 E5 25 0.27 27 m50 E1 100 0.27 50
m5 E1 10 0.19 5 m28 E2 20 0.27 28 m51 E3 100 0.13 51
m6 E6 10 0.27 6 m29 E1 25 0.17 29 m52 E3 100 0.27 52
m7 E1 100 0.27 7 m30 E2 10 0.21 30 m53 E1 100 0.19 53
m8 E1 100 0.15 8 m31 E2 20 0.27 31 m54 E3 100 0.13 54
m9 E1 100 0.17 9 m32 E4 10 0.27 32 m55 E3 100 0.13 55
m10 E5 25 0.27 10 m33 E3 10 0.27 33 m56 E5 100 0.27 56
m11 E1 100 0.15 11 m34 E3 10 0.27 34 m57 E3 100 0.25 57
m12 E1 20 0.19 12 m35 E1 25 0.25 35 m58 E3 100 0.13 58
m13 E2 100 0.19 13 m36 E6 25 0.23 36 m59 E3 100 0.13 59
m14 E1 100 0.19 14 m37 E4 50 0.27 37 m60 E4 100 0.17 60
m15 E5 100 0.27 15 m38 E4 50 0.27 38 m61 E1 100 0.27 61
m16 E1 10 0.23 16 m39 E5 50 0.27 39 m62 E1 100 0.13 62
m17 E2 100 0.25 17 m40 E3 50 0.21 40 m63 E3 100 0.19 63
m18 E2 100 0.27 18 m41 E4 50 0.27 41 m64 E1 100 0.27 64
m19 E2 50 0.25 19 m42 E6 50 0.27 42 m65 E1 100 0.13 65
m20 E3 10 0.27 20 m43 E2 50 0.27 43 m66 E1 100 0.13 66
m21 E6 10 0.27 21 m44 E5 100 0.27 44 m67 E2 50 0.27 67
m22 E6 25 0.27 22 m45 E2 25 0.15 45 m68 E1 100 0.13 68
m23 E3 25 0.23 23 m46 E2 50 0.19 46 m69 E4 100 0.27 69

Table 3.1: An example automotive CAN system with 6 ECUs and 69 messages

67

analyze all the messages, with a maximum of 19 minutes for each. The simulation is performed with

a granularity of 0.05ms, leading to 20005 = 3.2 × 1018 possible combinations of relative phases

among nodes. This space cannot be explored exhaustively. Hence, the simulation is performed by

randomly choosing relative phases, and repeated 2× 1010 times, which takes about 100 hours.

The stationary distribution of backlogs is obtained by iterative approximation, that is, by

first applying the algorithm that computes the backlogs, then stopping when the pmfs of backlogs

are close enough at the end of two consecutive hyperperiods. The stationary distribution of the

message response time is calculated as the average of the instances queued in the next hyperperiod

once the stationary distribution of backlogs is achieved.

We show the results for four representative messages, one with relatively high priority, one

with medium priority, one with medium low priority, and the other with low priority, and compare

the results of the stochastic analysis, simulation, and the worst case analysis based upon [13].

For the first representative message, the worst case response time is shorter than half of

the gcd of the periods (2.5ms). Hence, the analysis is very accurate as the actual backlog does not

include any multiple message instances from any remote characterization message. As expected

(Figure 3.5), the cumulative distribution functions (cdfs) obtained from the analysis and the simula-

tion match very well.

In Figure 3.5, the analysis of the response time of the high priority message m5 has been

tentatively performed without the additional contribution to the backlog caused by the blocking

factor. The result is quite optimistic with respect to the actual values and shows the accuracy in the

modeling of this term.

For the second representative m25 where the worst case response time is slightly larger

68

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

analysis

simulation results

analysis results

worst case
response time

latency / response time (ms)

without modeling
of blocking time

p
ro

b
ab

ili
ty

 (
cd

f)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7
latency / response time (ms)

p
ro

b
ab

ili
ty

 (
cd

f)

simulation results

analysis results

worst case
response time

Figure 3.5: The response time cdfs of two high priority messages (m5 and m25) in the test set

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (ms)

analysis results

simulation results

worst case
response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (ms)

analysis results

simulation results

worst case
response time

Figure 3.6: The response time cdfs of two low priority messages (m43 and m63) in the test set

70

than the gcd of the periods (5ms), the analysis is still pretty accurate. But it starts to deviate from

the simulation when the worst case response time grows longer. Many messages, including m43

and m63 have worst case response times significantly larger than the gcd of the periods. Hence,

we expect a significantly reduced accuracy. However, the distribution obtained from the analysis

is still a good match to that of the simulation. For low priority messages, mainly delayed by in-

terferences, the probabilities computed by the stochastic analysis for long response times are larger

than those computed by the simulation as the random queuing times of the characterization mes-

sages are pessimistic when considering the interferences due to higher priority messages (multiple

instances of the same higher priority message contributing to the interference are possibly queued

in two consecutive instances of the characterization message in the approximate system).

Furthermore, as we can see in Figure 3.6 for each of the representative messages, the

cumulative probability approaches 100% probability at response time values significantly smaller

than the worst case value. Please note that in most cases, the messages of greater importance for

the response time analysis are the higher priority ones, for which the worst case response times are

smaller and the analysis is more accurate.

Finally, Figure 3.7 shows the results of the message response time analysis of a complex

message trace extracted from an automotive bus. The measured response time cdf of a low priority

message (CAN id > 0x500) is compared with the response time estimated by the stochastic analysis.

The analysis is accurate despite the large worst case response time of the message and the non-

idealities of the actual implementation (possible priority inversions at the network adapter and finite

copy times between the message queues and the TxObjects).

71

0
0

0.2

0.4

0.6

0.5

0.3

0.1

0.7

0.8

0.9

1.0

analysis
stochastic

trace data

1 2 3 4 5 6
latency / response time (ms)

p
ro

b
ab

ili
ty

 (
cd

f)

worst case
response time

Figure 3.7: The response time cdf of a low priority message in a bus trace compared with analysis
estimates

72

Chapter 4

Stochastic Analysis of End-to-end

Latency of Periodic Tasks/Messages

In this chapter we provide the theory for stochastic analysis of the latency in the end-to-

end propagation of information among periodically activated tasks and messages. A communication

mechanism based on the preservation of the latest written value and the overwriting of old ones

(shared variable buffer) is assumed. We target our analysis in the context of automotive domain

standards. In particular, priority based, mixed preemptive scheduling policy is assumed for the

ECUs, all messages are exchanged on a CAN bus, where they are transmitted in order of their

IDs, and all the messages transmitted by the same ECU are assumed to be enqueued by the same

middleware-level task.

We provide experimental results that simulate the system behavior, and then compare the

simulation results with the analytical results obtained with our technique. The experimental results

show that our technique provides a good approximation of the latency distribution.

73

In the rest of the chapter, we first describe the architecture of the typical automotive dis-

tributed system. Then we define a formal model for it and we formalize the concept of end-to-end

latency, describing each contributing part, and the stochastic analysis of the computation and com-

munication stages that compose the end-to-end computations are detailed in the following sections.

Finally, we provide the results on an experimental vehicle architecture.

4.1 Architecture of Distributed Automotive Systems

A typical automotive system consists of several ECUs communicating through CAN

buses. A software stack is implemented on each ECU to provide support for the computations

and communication, including the application tasks, the middleware, the drivers and the bus periph-

erals. Figure 4.1 shows the detailed structure with all the layers of the stack. The end-to-end latency

analysis must be performed considering the standards and conventions used at each of these levels.

4.1.1 Application Tasks

Application tasks are the implementation of a control or dataflow algorithm, developed

following a model-based design flow or by manual coding. They are activated periodically as sup-

ported by the AUTOSAR standard [1], and executed under the control of an OSEK compliant oper-

ating system [7]. As such, they have a static priority that does not change at run time. Depending on

their preemption properties, they can either be preempted by a higher priority task, or keep running

until termination. A more detailed description of the application task model is presented in Section

2.1.

For communication purpose, tasks read input signals at the beginning of their execution

74

ECU1

CAN Bus

Appl. SW

Task2

Appl. SW

Task1

Transmit

Object

Receive

Objects

start end

FSM

TxTask

CAN Driver

RxTask

ECU1

CAN Bus

Appl. SW

Task2

Appl. SW

Task1

Priority Sorted TX Queue

CAN Controller

Transmit

Object

Receive

Objects

start endstart end

FSM

TxTask

CAN Driver

RxTask

Middleware-driver level

Application

Signal vars

Msg descriptors

ECU2

Appl. SW

Task2

Appl. SW

Task1

Transmit

Object

Receive

Objects

start end

FSM

TxTask

CAN Driver

RxTask

Appl. SW

Task4

Appl. SW

Task3

Priority Sorted TX Queue

CAN Controller

Transmit

Object

Receive

Objects

start endstart end

FSM

TxTask

CAN Driver

RxTask

Middleware-driver level

Application

Signal vars

Msg descriptors

Figure 4.1: Structure of distributed automotive systems

and write their outputs in shared variables at the end. One special set of such shared variables is

at the boundary between the application and the middleware. These variables, called middleware

buffers, contain one signal each.

4.1.2 Middleware

The middleware acts as the first interface layer from the application to the CAN bus.

Middleware buffers are shared variables including as many places as the signals that are required

by application tasks. These buffers are shared using wait-free protocols, therefore reads and writes

will not block the application software tasks.

Transmission The transmit task (TxTask) is a special middleware-level task that is activated pe-

riodically and has the responsibility of assembling the message from the signal values and then

75

enqueuing it for transmission on the bus. Each message mi has an associated period Ti, expressed

as an integer multiple of the TxTask period TTx, i.e., Ti = ki × TTx for some integer ki. Inside the

middleware, a descriptor consisting of a binary moding variable, a transmission flag and a counter

are associated to each message. The moding variable indicates whether the message must be sent for

the currently active mode. When the TxTask is activated, it scans all the local message descriptors.

For each of them, if the moding variable is set, it decrements the counter and, if the counter is zero,

reads the values of all the signals that are mapped inside the message and assembles the message

data packet. Whenever a message is assembled, the TxTask also checks the CAN controller for one

empty transmit object. In case it is found, the message frame is immediately copied into the CAN

controller transmit object. In case all transmit objects are full, the message is copied into a priority

sorted TxQueue shared with the CAN driver, which is responsible to copy messages from TxQueue

to transmit object (see Section 4.1.3). After the message is copied into the transmit object, either by

the TxTask or by the CAN driver, its transmission flag is reset to zero.

The execution time of the TxTask, just like any other tasks, depends upon its implemen-

tation (e.g., from Vector CANtech, Inc. 1) and the speed of the host processor. The priority of this

task should be high to reduce release jitter. The TxTask can be possibly synchronized with the other

tasks running on the same ECU. In practice, we assume that its execution time and response time

are neglectable, thus the messages are queued periodically with no queuing jitter.

Reception On the reception side, a middleware level task called RxTask is periodically activated.

The RxTask checks all the receive objects for a new message. When a message is found, it is

disaggregated into signals that are copied into the middleware buffer. The RxTask period is typically
1see http://www.vector-cantech.com/

76

the same as that of the TxTask.

4.1.3 CAN Drivers and Peripherals

Transmission On the transmission side, the CAN driver is typically an interrupt service routine

running on the ECU. Messages are queued by the CAN driver, which is triggered by the interrupt

signal that informs the completion of the transmission of the message occupying one of the transmit

objects. The interrupt handler selects the message on top of the queue (the highest priority message)

as the one that has to be placed into the empty transmit object (TxObject). When executed, it copies

the messages (i.e., the highest priority ones) in the priority sorted TxQueue into the transmit objects.

The CAN controller typically hosts a number of hardware registers, called transmit ob-

jects, acting as buffers for messages to be transmitted over the network. These registers are shared

by all messages. We assume transmit objects to be preemptable, i.e., allowing aborting if the mes-

sage currently in the register has a priority lower than one of the enqueued messages. Transmission

priority is assigned to the transmit objects by the peripheral microcode according to the ID of the

message contained in the register.

Reception On the reception side, the middleware RxTask periodically checks the CAN controller

for new messages that have been received and are available in the receive objects. The RxTask

copies the message from the peripheral receive register to the corresponding middleware buffers,

which will be read by the application tasks.

77

4.1.4 CAN Bus

The CAN bus is a wired AND channel connecting all nodes. The scheduling policy in

CAN protocol is priority-based and non-preemptive, that is, a message instance transmission can

not be preempted by higher priority message instances queued during its transmission. Our analysis

also assumes that the peripheral always sends the ready messages in priority (ID) order and that the

transmit registers can be preempted (or the transmission aborted) if a new, higher priority message

becomes available at the node. A more detailed description of the CAN protocol and the model for

message management is presented in Section 3.1.

4.2 System Model and Notation

The model for the distributed real-time system considered in this chapter is the following:

a periodic activation signal from a clock triggers the computation, some application task reads the

input data from a sensor on some node, it computes intermediate results that are possibly sent over

the network to other tasks and, finally, another task, possibly executing on a remote node, generates

the outputs as the result of the computation.

A natural model for the description of these end-to-end computations is a dataflow of

tasks. We restrict the dataflow to be acyclic, thus the system is a Directed Acyclic Graph (DAG).

This graph has inputs from the environment, which can also provide the external events that trigger

execution. At the other end of the graph the outputs mark the end of the execution. In the middle

the collection of vertices represent the tasks and messages in the systems, and the edges represent

the data signals communicated among them. Formally, the system is a tuple (V,E, S), where V is

the set of vertices, E the set of edges, and S the set of shared resources.

78

V = {o1, . . . , on} is the set of objects implementing the computation and communication

functions of the system. When an object oi is a task we also use the notation τi. A task τi is

characterized by (Υi, Ti, Oi, Ei, Pi, Ni), where Υi is the CPU resource it needs to execute, and the

other characteristics have the same meaning as in Section 2.1. Note that the task execution time

Ei is a discrete random variables with a known probability mass function. A task may have one or

more input ports and one or more output ports, which are used to exchange signal data. Each task

will run an infinite sequence of jobs, each job Γi,j reads its input at its release time Qi,j and writes

its results at the finish time Fi,j of its execution. The response timeRi,j of job Γi,j is defined as the

time interval from its arrival time Ai,j to its finish time Fi,j , which is also a random variable. The

task response time Ri is defined as the average of the response times Ri,j of its jobs Γi,j .

A message object oi, also denoted as mi, is similarly defined by (Υi, Ti,Oi, Ei, Pi, Ni),

where Υi is the bus resource needed for its transmission, and the preemption property Ni is al-

ways non-preemptable according to the CAN protocol. For each periodic activation, we consider

a message instance. On its arrival, a message instance is queued by a periodic middleware task

with zero response time. We assume there is no synchronization among the local clocks of the

nodes connected to the CAN bus. Hence, even if the messages from the same node have the same

phase and zero queuing jitter, globally messages may be enqueued at random relative times with a

non-deterministic initial phase Oi.

The hyperperiod Hk of resource Υk is defined as the least common multiple of the periods

of all objects executing or transmitting on it, i.e., Hk = lcm(
⋃

i Ti) where Υi = Υk.

The edges E = {e1, e2..., em} represent the input/output connections between objects.

An edge ei = (oh, ok) connects the output port of object oh to the input port of object ok. ei will

79

carry a data signal with a given bit width produced by oh and immediately available at the input port

of ok.

o1

o2

o3 o4 o5

o6

o7 o8
o9

o4

o5

o6

o7

o8

o2

o3

o9

release

execution

finishing

Legend

o1

Υ1

Υ2

Υ3 Υ4

sampling
delay

o1 → o2

local
delay

o2 → o3

local
delay

o3 → o4

remote
delay

o4 → o5

local
delay

o5 → o6

local
delay

o6 → o7

local
delay

o7 → o8

remote
delay

o8 → o9

response
time

o9

end-to-end latency o1 → o9

Figure 4.2: Model of an example distributed automotive architecture and its end-to-end latency

A functional chain or path from oi to oj , denoted as Πi,j , is an ordered sequence (oi, . . . , oj)

of objects such that there is an edge between any two consecutive objects. Figure 4.2 gives an ex-

ample of a path between the objects o1 and o9, where the top diagram is the architecture of the

resources and objects. Normally the source object (o1) of the path whose activation represents the

triggering of the external events, and the sink object (o9) represents the actuation output. Resources

80

Υ1, Υ3 and Υ4 are CPUs, thus the objects on them are actually software tasks. Resource Υ2 is a

CAN bus, and the objects o4 and o8 are messages transmitting on it.

Each path consists of one or more interactions among local objects. In the path of the

figure, local interactions are between the software tasks o2 and o3, and in the chain o5 → o6 → o7.

Also, please note that each message is enqueued by a middleware task at the transmitting node. As

such, the interaction between the transmitting task and the message is still considered to be part of

the local chain. Thus the communication through the edges (o3, o4) and (o7, o8) is considered as

local interaction.

Other interactions are between a message and the receiving task, such as the edges (o4, o5)

and (o8, o9), where the input and output objects of the edge are activated according to two unsyn-

chronized clocks. These interactions are thus considered as remote.

For an edge (oh, ok) connects the output port of object oh to the input port of object ok,

the data sent by oh may be overwritten before they are read thus never get propagated to the end, and

they may be read by multiple instances of ok. Consider the communication chain o2 → o3 → o4

as in Figure 4.3. The data produced by the instance Γ2,i of o2 is never propagated because the next

instance Γ2,i+1 finishes execution and overwrite it before the instance Γ3,j of the receiving task is

activated. On the other hand, the data generated by Γ3,j can be read and propagated by two instances

M4,k and M4,k+1 of the following message o4.

For the path Πi,j = (oi, . . . , oj), we are interested in the time interval required for the

change of the input at the source task oi of the chain to be propagated to the last task oj at the

other end of the chain, whatever is the state of the tasks in the path. We consider the fact that some

intermediate results may be overwritten before they are read. Also, if some data is read multiple

81

o2

o3

o4

o2

o3

o4

Γ2,i Γ2,i+1

Γ3,j

M4,k M4,k+1

Figure 4.3: Data Loss and Duplication During Communication

times, we take into consideration all the different latency values associated to this data. The end-

to-end latency Li,j associated to the path Pi,j = (oi, . . . , oj) is defined as the time interval between

the activation of one instance of oi and the completion of the instance of oj that produces a result

dependent on the output of oi.

4.3 End-to-end Latency Analysis

Given a path in the distributed architecture, its end-to-end latency analysis is divided into

sections, according to different types of interaction between objects in the path. At this stage, we

assume that the response time of each object in the path is already known: the response times of

software tasks are analyzed as in Chapter 2, and messages in Chapter 3. With reference to the bottom

part of Figure 4.2, the latency consists of an initial sampling delay, from the time of the occurrence

of the external event (o1 in Figure 4.2) to the activation of the task (o2) that reads it. Following, there

are local interactions and remote interactions, with the corresponding latencies, always measured

between the activation times of the corresponding tasks and messages (for messages, the activation

time of the middleware task that is responsible for their enqueuing is considered). Finally, the

end-to-end latency is computed by the response time of the last task (o9) in the chain.

82

4.3.1 Delays of Local Communication

In the case of local communication from tasks to tasks, and tasks to messages, the latency

from the activation of the sender to the activation of the receiver that reads its output depends on

their relative phase and the response time of the sender. For each end-to-end path we need to identify

the local segment of the dataflow with each starting task. Each instance of the starting task defines

an instance of the local communication path.

Υ1

o2

o3

o2

o3

T2 Oi
2,3

Γ2,j−1 Γ2,j

R2,j−1 R2,j

Γ3,i−1 Γ3,i

Di
2,3

Figure 4.4: Latency of task to task communication: local interaction

Consider the scenario in Figure 4.4, which is part of the end-to-end latency diagram in

Figure 4.2. The local communication is between tasks o2 and o3, or equivalently, τ2 and τ3. Suppose

that there are n jobs of τ3 in the hyperperiod, Γ3,1, Γ3,2, ...,Γ3,n. Each time a job Γ3,i of τ3 is

activated and reads some data, we need to trace back and find out the job Γ2,j of τ2 which produces

this data and compute the latency between the activation events of Γ2,j and Γ3,i. We use the notation

Di
2,3 to denote the delay between the activation of Γ3,i, the i-th job of τ3 in the hyperperiod, and the

activation of the job of τ2 which produces the data consumed by Γ3,i. Also, we denote the average

delay associated to all the jobs of τ3 in one hyperperiod as D2,3. Note that the data produced by a

job of τ2 may be overwritten by the finish of a new instance of τ2 before they are consumed. In this

83

case, the value is not propagated and not considered in the distribution of the delay.

Since τ2 and τ3 are on the same node, the relative phase of each job Γ3,i with the previous

job Γ2,j of τ2 within the hyperperiod is known and denoted as Oi
2,3. In case the response time of

Γ2,j is less than or equal to Oi
2,3 (Figure 4.4), the output of Γ2,j is consumed by the following job

Γ3,i of τ3 and the latency of this communication stage is Oi
2,3. Thus the probability that the delay

Di
2,3 is equal to Oi

2,3 is

P(Di
2,3 = Oi

2,3) = P(R2,j ≤ Oi
2,3) (4.1)

If the finish time of Γ2,j is larger than the activation time of Γ3,i, the data consumed by

Γ3,i is produced by Γ2,j−1 provided that Γ2,j−1 finishes execution before the activation of Γ3,i.

P(Di
2,3 = Oi

2,3 + T2)

= P(R2,j > Oi
2,3,R2,j−1 ≤ Oi

2,3 + T2)
(4.2)

Also, we assume that the job response time is independent from other jobs of the same

task, and from jobs of other tasks, thus the probability that the delay Di
2,3 is equal to Oi

2,3 + T2 is

P(Di
2,3 = Oi

2,3 + T2)

= P(R2,j > Oi
2,3,R2,j−1 ≤ Oi

2,3 + T2)

= P(R2,j > Oi
2,3)× P(R2,j−1 ≤ Oi

2,3 + T2)

(4.3)

In general, the data read by Γ3,i can be produced by any of the previous k instances from

τ2, until the probability for one such instance of τ2 is zero. We need to try all the k = 0, 1, ..., ki,

where ki is the first integer that satisfies rmax
2,j−ki

≤ Oi
2,3 + ki × T2 and rmax

2,j−ki
is the worst case

response time of job Γ2,j−ki . In another word, Γ2,j−ki is the first job to guarantee finishing execution

before the activation of Γ3,i such that for any previous job Γ2,j−k where k > ki, its output data is

overwritten by Γ2,j−ki and can not be read by Γ3,i.

84

∀k = 0, 1, ..., ki where rmax
2,j−ki

≤ Oi
2,3 + ki × T2,

P(Di
2,3 = Oi

2,3 + kT2)

= P(R2,j−k ≤ Oi
2,3 + kT2,R2,j−k+1 > Oi

2,3 + (k − 1)T2, ...,R2,j > Oi
2,3)

= P(R2,j−k ≤ Oi
2,3 + kT2)× P(R2,j−k+1 > Oi

2,3 + (k − 1)T2)× ...× P(R2,j > Oi
2,3)

= P(R2,j−k ≤ Oi
2,3 + kT2)×

k∏

m=1

P(R2,j−k+m > Oi
2,3 + (k −m)T2)

(4.4)

The distribution of D2,3 is the average of the distributions of Di
2,3 for all the jobs Γ3,i of

τ3 within the hyperperiod, i.e.,

∀d,P(D2,3 = d) =
1
n

n∑

i=1

P(Di
2,3 = d) (4.5)

Similarly, the communication between a task and the middleware task that is responsible

for the formatting and the enqueuing of a message is also local, and the delay between them is

calculated in a similar equation as Equation 4.5.

4.3.2 Delays of Remote Communication

In the case of remote communication, i.e., from a message to its receiving task, the relative

phase of the next task on the path is independent from the message response time. Hence, we assume

that for each instance of the message, its response time distribution is the same as the message

response time.

As an example, we consider the scenario in Figure 4.5, which is part of the end-to-end

latency in Figure 4.2. Here the communication is between objects o4 and o5, i.e., a message m4

and a task τ5, which are activated from different ECUs. The relative phase O4,5 between τ5 and

85

the previously activated instance of m4 is assumed to be uniformly distributed within [0, T4) and is

independent from the response time of m4.

Υ2

Υ3

o4 o5

o4

o5

T4

M4,j−1 M4,j

R4,j−1 R4,j

Di
4,5

Γ5,iΓ5,i−1

Figure 4.5: Latency of message to task communication: remote interaction

Similar to the case in local communication, we denote Di
4,5 to be the delay between the

activation of a job Γ5,i of τ5 and the activation of the instance of m4 which produces the data

consumed by Γ5,i. If the relative phaseOi
4,5 a job Γ5,i of τ5 and the previous message instance M4,j

of m4 is known to be d, we can follow the same reasoning as in Section 4.3.1 and find an equation

to calculate the probability function of Di
4,5 which is similar to Equation 4.4

∀k = 0, 1, ..., ki where rmax
4,j−ki

≤ d + ki × T4,

P(Di
4,5 = d + kT4|Oi

4,5 = d)

= P(R4,j−k ≤ d + kT4,R4,j−k+1 > d + (k − 1)T4, ...,R4,j > d|Oi
4,5 = d)

= P(R4,j−k ≤ d + kT4|Oi
4,5 = d)× P(R4,j−k+1 > d + (k − 1)T4|Oi

4,5 = d)

×...× P(R4,j > d|Oi
4,5 = d)

= P(R4,j−k ≤ d + kT4|Oi
4,5 = d)×

k∏

m=1

P(R4,j−k+m > d + (k −m)T4|Oi
4,5 = d)

(4.6)

Provided that the relative phaseOi
4,5 is independent from the response time of any instance

86

of m4,

P(R4,j−k ≤ d + kT4|Oi
4,5 = d) = P(R4,j−k ≤ d + kT4)

P(R4,j−k+m > d + (k −m)T4|Oi
4,5 = d) = P(R4,j−k+m > d + (k −m)T4)

(4.7)

Equation 4.6 can be simplified as

∀k = 0, 1, ..., ki where rmax
4,j−ki

≤ d + ki × T4,

P(Di
4,5 = d + kT4|Oi

4,5 = d)

= P(R4,j−k ≤ d + kT4)×
k∏

m=1

P(R4,j−k+m > d + (k −m)T4)

(4.8)

We assume that for each instance M4,j of m4, the pmf of its response time R4,j is the

same as the task response time R4 of m4; the distribution of Oi
4,5 is uniformly distributed within

[0, T4), thus the probability of each time instant is τ/T4, assuming the granularity of the discretized

system is τ . We now calculate the probability function of Di
4,5 as in Equation 4.9

∀0 ≤ d < T4,∀k = 0, 1, ..., ki where rmax
4,j−ki

= rmax
4 ≤ d + ki × T4,

P(Di
4,5 = d + kT4)

= P(Di
4,5 = d + kT4|Oi

4,5 = d)× P(Oi
4,5 = d)

= P(R4,j−k ≤ d + kT4)×
k∏

m=1

P(R4,j−k+m > d + (k −m)T4)× τ

T4

=
τ

T4
× P(R4 ≤ d + kT4)×

k∏

m=1

P(R4 > d + (k −m)T4)

(4.9)

As in Equation 4.9 the calculation of the Di
4,5 is independent from the instance index i,

thus the right hand side of it remains the same for all the other instance of τ5. The distribution of

D4,5, which is the average of Di
4,5 for all the instances Γ5,i of τ5 in the hyperperiod, is

∀0 ≤ d < T4, ∀k = 0, 1, ..., kmax where rmax
4 ≤ d + kmax × T4,

P(D4,5 = d + kT4)

=
τ

T4
× P(R4 ≤ d + kT4)×

k∏

m=1

P(R4 > d + (k −m)T4)

(4.10)

87

4.3.3 End-to-end Latency

We now define the method for computing the latency in a path Π1,n containing a sequence

of n objects oi with an edge between (oi−1, oi) for each i = 2, ..., n. The end-to-end latency L1,n

associated to the path Π1,n is the time interval between the change of the input data of o1 and the

completion of task on where the data change is reflected to the output of on. Within the path from o1

to on, the first piece of latency comes from the sampling delayZ1,2 between o1 and o2, i.e., from the

activation of the source object o1 of the path, which represents the triggering of the external events,

to the activation of the following object o2. Z1,2 can be assumed as a uniform random variable

defined on [0, T2). Following that, Di−1,i,∀i = 2, ..., n is the delay from the activation of oi−1 thus

the time oi−1 consumes the data from its predecessor, to the following activation time oi after the

finish of oi−1 thus the consumption of the data from oi−1. Thus the delay of data change at the time

o1 is activated to the time the related data are consumed by on at its activation time is the sum of

Z1,2 andDi−1,i. The end-to-end latency is added by another additional delay from the consumption

of the data by on at its activation time, to its finish time when the data change to the output are

reflected, which is the task response time of on. Thus,

L1,n = Z1,2 +
n∑

i=2

Di−1,i +Rn (4.11)

We assume that Di−1,i, Z1,2 and Rn are independent from each other, so the end-to-end

latency pmf is the convolution of the pmfs of all these contributions.

fL1,n = fZ1,2

n⊗

i=2

fDi−1,i

⊗
fRn (4.12)

88

4.4 Experimental Results

We demonstrated the applicability and the possible benefits of our approach with a case

study derived from the analysis of a bus subsystem of an experimental vehicle that incorporates

advanced active safety functions. The vehicle supports advanced distributed functions with end-to-

end computations collecting data from 360◦ sensors to the actuators, consisting of the throttle, brake

and steering subsystems and of advanced Human-Machine Interface (HMI) devices. The analysis

focuses on the subset of tasks and signals that are part of paths with timing constraints.

100

50
50

100 40

10
50

50

ECU1

ECU2 ECU3

ECU5 ∼
ECU11

ECU4 ECU12 ∼
ECU18

Bus1 Bus2

τ59

M1
τ63

τ91 τ31

τ9
M2

τ53

Figure 4.6: A path of periodic tasks/messages in an example automotive architecture

The subsystem of the architecture platform involved with the selected end-to-end path

consists of 18 ECUs connected with two CAN buses at speed 500kb/s. A total of 71 tasks is

executed on the ECU nodes, and 136 CAN messages exchanged among the tasks by the CAN

buses. Worst-case execution time estimates have been obtained for all tasks, and the bit length of

the signals is between 1 (for binary information) and 64 (full CAN message). The task execution

time is assumed to be uniformly distributed within its minimum value (as 1 unit) and the profiled

worst case value. The selected path is composed of 6 software tasks sitting on 3 different ECUs, and

89

2 CAN messages. Figure 4.6 gives the path in the example architecture platform, where the periods

of tasks and messages are shown at the dashed arrows.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 100 200 300 400 500

Simulation data
Stochastic analysis

P
ro

b
ab

ili
ty

Latency (ms)

Figure 4.7: The end-to-end latency pmf of the path in the example automotive architecture

The experiments have been performed by comparing the results obtained with the stochas-

tic analysis presented in this dissertation and simulation results.

4.4.1 Simulation Setup

The simulation data have been obtained using a system level simulator purposely devel-

oped in the context of this research. The simulator consists of a number of modules in C++ that

receive as input a set of files with the description of the functional architecture of tasks exchanging

signal information. Additional files provide a description of the physical computation architectures

consisting of the ECUs, the CAN buses, the bus topology and the CAN adapter configuration. Fi-

90

nally another set of files defines the mapping of the tasks into the ECUs, with the priority assigned

to them and the mapping of signals into CAN messages, with the CAN identifier associated with

each message. The simulator supports the CAN bus arbitration policy and fixed priority scheduling

policies with preemption on the CPUs. It also simulates the flow of information associated with

the signals and tags each signal with the time it is produced, read, written, sent inside a message or

received. The middleware and driver model used by the simulator follows the description presented

in the earlier sections of this paper. The simulation study has been performed on the automotive

case study simulating 4.5 seconds of steady state system execution (3 hyperperiods) for each phase

configuration. Approximately 50 millions phase configurations have been tried (50 million runs of

the program). The total running time of the simulations has been of approximately 20 hours.

4.4.2 Validation of Stochastic Analysis

For the case study, it takes 7.8 seconds to perform the stochastic analysis implemented in

Java on a laptop with 1.6GHz Cpu and 1.5G RAM. Figure 4.7 shows the results of the end-to-end

latency pmf of the example path in the architecture. The simulated latency pmf is compared with the

response time estimated by the stochastic analysis. As in the figure, these two curves are very close

to each other. The result demonstrates the accuracy on analysis of task/message response times, and

the models on the communication semantics and sampling delays (2 remote communication links

and 5 local links) in our analysis framework.

91

Chapter 5

Statistical Analysis of Controller Area

Network Message Response Times

As in the early stage of the automotive design, since designers only have knowledge about

possible average traffic load a node generates on the bus, we plan to extend our analysis to a method

equivalent to the so called rest-bus simulation, where only one node is refined to the message level

interface (including rates) and the rest of the network is modeled by a set of nodes providing an

average (or statistical) load. Our results also show that it is possible to support designers in the early

phases of the development process when tactical decisions, such as message priority assignment,

which have a big impact on the following phases, are to be made in the presence of incomplete and

estimated information.

In this chapter, we explore the possibility to support designers in the early phases of the

development process when tactical decisions, such as message priority assignment, which have a

big impact on the following phases, are to be made in the presence of incomplete and estimated

92

information. Our objective now is to analyze the main statistics of the message response time dis-

tribution on a CAN bus, trying to extract significant trends and verifying if the use of regression

techniques allows us to predict the response times of messages on a given bus when only incom-

plete information (such as the higher priority and lower priority bus utilization for each message)

is available. Our approach is as follows. Based on simulation data on a reference system config-

uration, we test the conjecture that the probability distributions of the message response times can

be approximated by a mix of distribution models with degenerate and gamma distributions. Then,

we find, for each message, the correlation between the parameters of the fitted model and a set of

parameters that include its attributes (size, priority) and system-level attributes (bus utilization and

the fraction of utilization at higher priority). We show that this correlation exists and can be used not

only to approximate the probability distribution of the response times for messages belonging to the

bus on which the study is performed, but also for other buses. The main contribution of this work is

the set of formulas that are found by regression analysis and can be used to approximate, with good

accuracy, the probability distribution of the response times of messages on buses for which partial

and incomplete information is available, thereby acting as a predictor. We are also able to discuss

the existing trade-offs between statistical and stochastic methods, in terms of speed of the analyses

vs. availability of data and accuracy of results. Specifically, statistical analysis proves to be very fast

and mostly suitable when the complete set of messages is unknown. On the other hand, stochastic

analysis is more accurate when the complete message set is available. However, it might be signifi-

cantly slower as the probability distribution of the message response time must be computed at each

discretized time instant. Based upon our preliminary experiments we have noticed that statistical

analysis is roughly 7 orders of magnitude faster than stochastic analysis.

93

5.1 Fitting Exponential Distributions to Message Response Times

In this work, we assume the same model for messages as in the stochastic analysis frame-

work (Section 3.1.2), in which a message mi is periodically activated and is characterized by

(Ti,Oi, Ei, Pi), where Ti is its period, Oi its initial phase, Ei its transmission time, and Pi its pri-

ority. We start from a reference system configuration consisting of a CAN bus with messages as in

Table 3.1. Messages with their periods and transmission times, originating from 6 nodes, are identi-

fied by their priorities, which are also their indices in the table. The CAN bus rate is 500kb/s and its

utilization is 60.25%. A simulator is used to extract the distribution of the response time values for

each message. The granularity of our simulation is set to 0.05ms. For simplicity, in this experiment

we assume worst case bit stuffing thus deterministic transmission times. In our system, as in most

real systems, messages are not enqueued without synchronization. There is a single middleware

task at each node, running at the greatest common divider of the messages’ periods that is respon-

sible for message enqueuing. This means that a low priority message is typically always enqueued

together with higher priority messages having a period that is an exact divider of its period.

Note that our experiment has been focused on the current model and simulation data. Of

course it is possible to extend our statistical methods when some of the assumptions are relaxed,

but the model will have a big impact on the statistics of message response times. For example, if

messages are event-driven thus are queued periodically with jitter, their response time distributions

may be different from the periodically activated messages. Our hope is that the main statistics

extracted from the example message set are also applicable to other messages with the same model,

which is validated by the results of messages on other buses.

94

5.1.1 Common Characteristics of Message Response Time cdfs

After performing the simulation, we found that the distributions of message response

times are of different types, but with some common characteristics. The type of distribution depends

on the message priority, on the local load, on the number of higher priority messages on the local

node, and possibly on other factors. For example, the cumulative distribution function (cdf) of

message m25 (priority 25 out of 69) is shown in Figure 5.1. m25 is a medium priority message on

its node E3, which has five higher priority messages than m25. It is always enqueued together with

three higher priority messages, {m3,m23,m24}, while other higher priority messages {m4, m20},

with period 10ms, are only enqueued every two instances of m25. We label the set of messages

that are always enqueued together with a generic message mi on node Nj as its first local harmonic

higher priority set or the first harmonic set of level Pi for node j. Similarly, the set of messages that

are enqueued together with every two instances of mi is labeled as its second local harmonic higher

priority set. In the example of m25, its first local harmonic higher priority set is {m3,m23, m24},

and the messages in the first harmonic set plus {m4,m20} is its second set.

For message mi, the smallest possible response time value is the time that it takes to trans-

mit all the messages in its first local harmonic higher priority set plus itself, without any interference

or blocking from remote load. This minimum response time value is labeled as the first X offset in

Figure 5.1 and has a finite probability, resulting in a step of the cdf (the first Y offset in the figure).

Furthermore, the message cdf may have other discontinuities for other higher priority harmonic sets.

These discontinuities are characterized by other pairs of X and Y offsets. For example, message

m25 has 3 messages in its first harmonic higher priority set. The probability that these three mes-

sages and m25 are transmitted without interference is approximately 0.2. m25 has 2 other messages

95

in the second harmonic higher priority set, resulting in a second pair of X and Y offsets.

 0

 0.2

1st X offset

minimum latency

2nd X offset − additional latency because of second harmonic set

2nd Y offset − probability of 2nd Y offset

1st Y offset − probability of minumum latency

 0.4

 0.6

 0.8 simulation results

1.0

 1.2

 0 100 200 300 400 500 600 700

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.1: Response time cdf of an example message m25 with more than one higher priority
harmonic set

Other messages with different priority may exhibit different characteristics of the cdf.

Figures 5.2 shows the cdf for a high priority messages m5. m5 is the highest priority message on its

node. Its X offset is very small (equal to its transmission time) and has a high probability (almost

0.5). Furthermore, the cdf curve is rapidly increasing. However, for relatively low priority message,

e.g., m69 in Figure 5.3, the X offset is quite large with a very small probability, and the cdf is slowly

increasing as shown in the figure. The slopes of these two curves can be compared considering that

response times are expressed in Figure 5.3 with a scale ten times larger than the one of Figure 5.2.

Our conjecture is that the message response time cdf, normalized by shifting left and down

along the axes until the X and Y offsets are zero, can be approximated by a gamma distribution

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.2: Response time cdf of a high priority message m5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.3: Response time cdf of a low priority message m69

97

whose shape parameter a and scale parameter b can be expressed as functions of simple parame-

ters of the message set in the system. In another word, we use the probability mixture model of

degenerate distribution and gamma distribution to fit the message response times.

5.1.2 Fitting the Message Response Times

The pmf of a degenerate distribution, which is the probability distribution of a discrete

random variable whose support consists of only one value xoff, is given by:

fD(x, xoff) =

0 if x 6= xoff

1 if x = xoff

(5.1)

its cdf is

FD(x, xoff) =

0 if x < xoff

1 if x ≥ xoff

(5.2)

The pdf of a gamma distribution has the form

fΓ(x, a, b) =

0 if x ≤ 0

xa−1 e−x/b

baΓ(a)
if x > 0

(5.3)

where b is the scale parameter, a is the shape parameter, and Γ(·) is the gamma function Γ(a) =
∫ ∞

0
ta−1e−tdt.

Its cdf is expressed in terms of the incomplete gamma function γ(a, x) =
∫ x

0
ta−1e−tdt,

FΓ(x, a, b) =

0 if x < 0

γ(a, x/b)
Γ(a)

if x ≥ 0
(5.4)

98

If we shift the gamma distribution to the right by xoff, the pdf of the offsetted gamma

distribution becomes

fΓ(x, xoff, a, b) =

0 if x ≤ xoff

(x− xoff)a−1 e−(x−xoff)/b

baΓ(a)
if x > xoff

(5.5)

and cdf

FΓ(x, xoff, a, b) =

0 if x < xoff

γ(a, (x− xoff)/b)
Γ(a)

if x ≥ xoff
(5.6)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100

simulation

fit

 150 200 250 300 350

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0

 0.2

 0.4

simulation

fit

 0.6

 0.8

 1

 50 100 150 200 250 300 350

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.4: Fitting mixture model distributions with and without Y offset to response time of mes-
sage m13

The response time of message mi is assumed to be a random variable whose probability

distribution is a probability mixture model of degenerate and offsetted gamma distributions, which

is the mixture of a discrete and a continuous distributions, thus we use cdf to present it, as below

99

Fi(x, xoff
i , ai, bi, y

D
i , yΓ

i) = yD
i FD(x, xoff

i) + yΓ
i FΓ(x, xoff

i , ai, bi)

=

0 if x < xoff
i

yD
i + yΓ

i

γ(ai, (x− xoff
i)/bi)

Γ(ai)
if x ≥ xoff

i

w.r.t. yD
i + yΓ

i = 1

(5.7)

where xoff
i , the minimum message response time, is calculated as the sum of the message transmis-

sion time and the queuing delay from local higher priority messages, and the parameters (ai, bi, y
D
i , yΓ

i)

are estimated using expectation-maximization (EM) algorithm. The result of the fit to response time

of message m13 in the set is shown in Figure 5.4, which has only one local higher priority harmonic

set. The left hand side of the figure shows the best fit to the response time cdf of m13 without com-

pensating the initial Y offset, i.e., using only the offsetted gamma distribution. The right hand side

of the figure shows the fit when we consider the mixture model of degenerate and offsetted gamma

distributions. As in Figure 5.4, the error of the fitted distribution of mixture model is much lower

and the approximation is sufficiently accurate for the purpose of an early estimation.

For messages with more than one local higher priority harmonic set, the response time

cdf is approximated using multiple pairs of degenerate and offsetted gamma distributions, each of

which with its own X offset. Consider a message mi on node Nj with multiple local higher priority

harmonic sets, mi suffers different amount of local queuing delays from different higher priority

harmonic sets. When we only consider the local messages on Nj , the possible response times and

their corresponding probability can be calculated as xoff
i,k and yi,k, where

∑

k

yi,k = 1. After taking

into consideration the interference and blocking from remote nodes, the probability that its response

time is equal to xoff
i,k is dropped from yi,k to yD

i,k. Furthermore, as in the case where messages have

only one higher priority harmonic set, we assume that the shape of the probability distribution due

100

to further delays from remote nodes can be approximated by an offsetted gamma distribution with

its shape parameter ak and scale parameter bi,k. In summary, the response time cdf of mi can be

reconstructed as the sum of multiple pairs of degenerate and offsetted gamma distributions, each

with five characteristic parameters (xoff
i,k, ai,k, bi,k, y

D
i,k, y

Γ
i,k), as below

Fi(x,
⋃

k(x
off
i,k, ai,k, bi,k, y

D
i,k, y

Γ
i,k)) =

∑
k Fi,k(x, xoff

i,k, ai,k, bi,k, y
D
i,k, y

Γ
i,k)

where Fi,k(x, xoff
i,k, ai,k, bi,k, y

D
i,k, y

Γ
i,k) = yD

i,kF
D(x, xoff

i,k) + yΓ
i,kF

Γ(x, xoff
i,k, ai,k, bi,k)

=

0 if x < xoff
i,k

yD
i,k + yΓ

i,k

γ(ai,k, (x− xoff
i,k)/bi,k)

Γ(ai,k)
if x ≥ xoff

i,k

w.r.t. yD
i,k + yΓ

i,k = yi,k, ∀k
(5.8)

Note that the X coordinate of the offset xoff
i,k is the total transmission time of the local

higher priority harmonic set plus itself, and yi,k is its probability considering only the local message

set. These two parameters can be estimated by analyzing the local message set only. Of course, if

the exact local set is not known because of incomplete information, we can approximate it with the

expected number of messages in the harmonic set, assuming that every message has maximum size,

or considering an average message size.

We use the Quantile-quantile plot (Q-Q plot) to graphically compare the probability dis-

tributions from simulation and the fitted mixture model. 1000 random samples from each are taken,

and as some examples, the results for message m5, m25 and m69 are shown in Figure 5.5, 5.6 and

5.7 respectively.

The Q-Q plots for these messages have obvious deviation from linearity, but are approx-

imately close to be linear, especially for m69. Remember that we are using mixture model of

101

degenerate distribution and offsetted gamma distribution to approximate message response time,

not claiming the mixture model is the actual distribution.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Q
ua

nt
ile

s
−

F
itt

ed
 D

is
tr

ib
ut

io
n

Quantiles − Simulation

Figure 5.5: Quantile-quantile plot of samples from simulation and fitted distribution for message
m5

Also, to quantitatively evaluate our hypothesis that the message response time cdf can be

approximated by one or multiple pairs of degenerate and offsetted gamma distributions, we present

several metrics to assess the accuracy of the fitted distribution using the EM algorithm compared to

the simulation data: the root mean squared error (RMSE), the coefficient of determination R2, and

the Kolmogorov-Smirnov statistic (K-S statistic, column “K-S”, the maximum vertical deviation

between the two cdf curves). The results for the messages of the reference bus are shown in Table

5.1. The maximum RMSE is 0.034, the minimum coefficient of determination is 0.980, and the

maximum K-S statistic is 0.11, all indicating that our hypothesis is accurate for the purpose of an

early estimation.

102

50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

Quantiles − Simulation

Q
ua

nt
ile

s
−

F
itt

ed
 D

is
tr

ib
ut

io
n

Figure 5.6: Quantile-quantile plot of samples from simulation and fitted distribution for message
m25

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Quantiles − Simulation

Q
ua

nt
ile

s
−

F
itt

ed
 D

is
tr

ib
ut

io
n

Figure 5.7: Quantile-quantile plot of samples from simulation and fitted distribution for message
m69

103

ID RMSE R2 K-S ID RMSE R2 K-S ID RMSE R2 K-S
1 0.017 0.985 0.03 24 0.015 0.994 0.07 47 0.031 0.988 0.07
2 0.017 0.985 0.03 25 0.016 0.994 0.08 48 0.008 0.998 0.02
3 0.009 0.994 0.03 26 0.012 0.994 0.04 49 0.007 0.999 0.03
4 0.012 0.989 0.03 27 0.003 1.000 0.02 50 0.014 0.997 0.04
5 0.009 0.995 0.04 28 0.013 0.995 0.04 51 0.008 0.999 0.03
6 0.008 0.995 0.03 29 0.020 0.989 0.06 52 0.010 0.998 0.03
7 0.009 0.995 0.04 30 0.011 0.998 0.04 53 0.015 0.997 0.04
8 0.010 0.996 0.04 31 0.014 0.996 0.04 54 0.011 0.998 0.04
9 0.010 0.996 0.04 32 0.008 0.993 0.04 55 0.013 0.997 0.04
10 0.009 0.994 0.04 33 0.006 0.999 0.03 56 0.008 0.998 0.02
11 0.010 0.997 0.04 34 0.007 0.999 0.03 57 0.014 0.997 0.05
12 0.021 0.983 0.06 35 0.018 0.993 0.05 58 0.016 0.997 0.05
13 0.008 0.996 0.04 36 0.008 0.998 0.04 59 0.017 0.996 0.05
14 0.011 0.997 0.05 37 0.005 0.999 0.02 60 0.006 0.999 0.02
15 0.010 0.994 0.05 38 0.007 0.998 0.02 61 0.012 0.998 0.03
16 0.015 0.993 0.05 39 0.006 0.999 0.01 62 0.013 0.998 0.03
17 0.008 0.997 0.05 40 0.006 0.999 0.02 63 0.015 0.997 0.05
18 0.009 0.997 0.04 41 0.009 0.998 0.02 64 0.012 0.998 0.03
19 0.034 0.981 0.11 42 0.009 0.998 0.03 65 0.013 0.998 0.03
20 0.007 0.994 0.05 43 0.030 0.986 0.09 66 0.012 0.998 0.03
21 0.010 0.991 0.06 44 0.010 0.998 0.03 67 0.018 0.995 0.05
22 0.017 0.992 0.08 45 0.029 0.980 0.07 68 0.012 0.999 0.03
23 0.014 0.994 0.07 46 0.030 0.988 0.08 69 0.003 1.000 0.02

Table 5.1: Statistics of fitted mixture model distributions for messages on the reference bus

104

5.2 Estimate Parameters xoff and y

In order to reconstruct the response time probability distribution of a message mi for the

mixture model in Equation 5.8 , we need to estimate the parameters (xoff
i,k, yi,k, ai,k, bi,k, y

D
i,k, y

Γ
i,k).

Parameters xoff
i,k and yi,k can be calculated by considering the interference from the local higher

priority message set. Consider, for example, message m39 with period 5000 and transmission time

27 on node E5. There are three higher priority messages on the same node, m10, m15, and m27,

with period and transmission time as (27, 2500), (27, 10000), and (27, 2500), respectively. During

the hyperperiod [0,10000), message m39 is queued at time 0 and 5000. At time 0, all three higher

priority messages m10, m15, and m27 are queued, thus the minimum response time of the message

instance from m39 is 81. At time 5000, m10 and m27 are queued together with m39, the minimum

response time of the message instance from m39 is 54. Due to the different minimum response

times of these two instances from m39, there are two pairs of xoff
i,k and yi,k parameters: (xoff

39,1 = 54,

y39,1 = 0.5) and (xoff
39,2 = 81, y39,2 = 0.5).

5.3 Estimate Parameters yD and yΓ

Since in our mixture model as in Equation 5.8, the constraint yD
i,k + yΓ

i,k = yi,k needs to

be satisfied, we can get yΓ
i,k = yi,k − yD

i,k after estimating yi,k and yD
i,k. In the following, we will

focus on the estimate of parameter yD.

Estimating the yD values, however, is challenging. Figure 5.8 plots the yD values for

each of the messages. The yD values clearly depend on the message priorities, but in a non-linear

way, at least if good accuracy is required. Remember that the yD
i,k of message mi is the probability

that all the messages in the corresponding higher priority harmonic set and mi itself are transmitted

105

70603010 400 msg Id
0

0.2

0.1

0.3

0.4

0.5

0.6

50

Y
 o

ff
se

t

20

Figure 5.8: yD values of messages on the reference bus

immediately upon enqueuing, considering the possible interference and blocking from remote load.

This means that the first message in the queue finds the network idle at queuing time (no blocking

nor interference), and all the others do not have to wait because of a higher priority message, as

described in Figure 5.9. Finding the probability of such an event is very difficult. However, we can

try to build up a parameterized model based on the underlying meaning of yD, then use regression

technique to estimate the model parameters.

The first step is to approximate the stochastic process with a binomial (Bernoulli) process

with replacement. For each of the j-th local higher priority harmonic set of message mi, we define

ni,j as the length (number of messages) of the message queue, including the messages in its j-th

higher priority harmonic set and mi itself. Each message transmission consists of a Bernoulli trial.

We assume that all transmissions take the same time e, while qi,j is the time instant at which mi

is queued (together with all the other messages in its j-th harmonic set). Also, we define P(idle)t

106

no interference
no blocking and

no interference

queuing time

Figure 5.9: Probability of finding sufficient idle time for transmission of messages in the queue

as the probability of the bus being idle at time t, and P(idle)[t1,t2] as the probability that the bus

is idle in the interval [t1, t2]. Bus idle of priority level Pi at time t, denoted as P(idle, Pi)t, is the

probability that no message with priority higher than or equal to Pi is transmitted on the bus or

ready for transmission at time t. The probability that the highest local priority message in the j-th

harmonic set is sent at time qi,j is equal to the probability that it finds the network idle which can

be approximated with

P(idle)qi,j = 1− U r
i (5.9)

where U r
i is the network utilization from remote nodes for mi. The intuition is that U r

i is the fraction

of time in which the network is utilized and busy.

After the transmission of the message on top of the queue, which has transmission time

equal to e, qi,j + e is the time at which the second message in the queue attempts transmission.

In order to compute the probability that the following messages in the queue are transmitted im-

mediately, the utilization due to higher priority messages transmitted by other nodes, Uhr
i , must be

107

used in place of U r
i . This is because the following messages cannot experience blocking due to

low priority messages if the first message is transmitted immediately. Hence, the second message is

transmitted with probability

P(idle, Pi)qi,j+e = 1− Uhr
i (5.10)

The same is true for all the other messages in the queue, assuming that the probability of

finding the network idle at the following time instants is independent. The probability of finding an

idle time for the first k messages in the queue is therefore equal to the probability that the bus is idle

from qi,j to qi,j + (k − 1)e and then becomes busy at the time the k + 1 transmission is attempted,

i.e.,

P(idle)[qi,j ,qi,j+(k−1)e] = (1− U r
i)(1− Uhr

i)k−1Uhr
i (5.11)

The probability of the message mi being transmitted with response time xoff
i,j , where xoff

i,j

is the minimum response time when mi is queued with the j-th harmonic higher priority set, is

the probability that there is an idle time of length sufficient for the transmission of the minimum

queue or larger, i.e., the first k ≥ ni,j trials of the Bernoulli process result in a condition of bus

idle. The queue length ni,j is given by the number of queued higher priority local messages that are

transmitted before mi plus one (for mi itself), i.e.,

yD
i,j = P(Ri = xoff

i,j) =
∞∑

k=ni,j

(1− U r
i)(1− Uhr

i)k−1Uhr
i

= (1− U r
i)Uhr

i

∞∑

k=ni,j

(1− Uhr
i)k−1

(5.12)

The sum of this geometric series converges and can be computed as

108

yD
i,j = P(Ri = xoff

i,j) = (1− U r
i)(1− Uhr

i)ni,j−1 (5.13)

However, this estimate needs to be corrected in many ways. The first consideration is that

queuing events that result in the queuing length as ni,j only occur as a fraction of all the queuing

events for a given message mi. The probability of a queuing event with the j-th harmonic set is yj

which can be evaluated by simply considering all the queuing events in the hyperperiod. Therefore,

the probability that a message instance is transmitted with response time xoff
i,j can be adjusted as

yD
i,j = P(Ri = xoff

i,j) = yi,j(1− U r
i)(1− Uhr

i)ni,j−1 (5.14)

The second consideration is that Equation 5.14 is based on a number of simplified as-

sumptions. The first is the assignment of idle/busy status to the slots for the set of remote messages

or the higher priority subset is defined with replacement, while the number of idle slots in the hy-

perperiod is fixed. More importantly, the assumption that the status of the bus for a transmission

attempt is independent from the status at previous attempts leads to an underestimate of the actual

probability of long idle times. This is because the local synchronization of the transmission time

operated by the TxTask results in bursts of transmissions followed by idle intervals. Therefore, if

at some point the bus is busy due to higher priority load, there is a higher priority that it will be

busy also at the next bus contention attempt. Similarly, no higher priority transmission at some

time means higher probability that there will be no higher priority message ready also at the next

transmission of a local message. Hence, the above method provides a good estimate for short queue

lengths and an underestimation of the actual probability for longer queues. In order to compensate

for this correlation, we use the following heuristics: (1) use local queuing delay Qi,j = xoff
j −Ei in

109

place of ni,j in equation 5.14, since it is a more accurate estimate of the local transmission attempt.

(2) when Qi,j = 0, the yD
i,j value is estimated by yi,j(1− U r

i); (3) when Qi,j > 0, we use a param-

eterized model of Uhr
i and Qi,j to estimate yD

i,j . The best model in terms of accuracy we can find is

as follows:

yD
i,j = P(Ri = xoff

i,j) =

yi,j(1− U r
i) if Qi,j = 0

yi,j(1− U r
i)e−β1(Uhr

i +β2)(Qi,j+β3)+β4 if Qi,j > 0
(5.15)

Figure 5.10 shows the absolute errors in the evaluation of the probability yD of the X

offset for all the messages in the set. The regression function as in Equation 5.15 results in a

sufficiently accurate estimate, always within ±0.03 of the actual probability value, and the RMSE

of the estimate is less than 0.01.

−0.025

−0.02

−0.015

−0.01

−0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70

ab
s.

 e
rr

o
r

msg Id

Figure 5.10: Absolute errors in the estimation of the yD values for messages

110

5.3.1 Dependency on Average Message Size

Unfortunately, if the system configuration or the message set changes, the yD values

differ for the same values of the predictor parameters in Equation 5.15, meaning that these predictor

parameters are not the only ones that control the yD values. We started evaluating other parameters

than can influence the yD values, such as number of nodes in the system, number of messages for

each node, average number of harmonic sets for each node, and finally, average size of messages.

Of all these, the last one is the most promising.

As in CAN protocol, each standard message must be between 0 and 8 bytes. Table 5.2

shows the variation of coefficients β1 − β4 in Equation 5.15 for different average message sizes,

where Qi,j is expressed in unit of 10µs.

Avg msg size 6.971 6.478 5.797 5.101 4.377 3.623 3.000 2.406
β1 1.031 1.022 1.026 1.022 1.019 1.027 1.027 1.029
β2 9.22E-3 9.50E-3 9.69E-3 1.01E-2 1.09E-2 1.15E-2 1.21E-2 1.16E-2
β3 0.4526 0.4255 0.4056 0.3876 0.3424 0.3073 0.3034 0.3194
β4 -1.102 -2.508 -1.870 -2.409 -2.881 -1.235 -1.388 -0.359

Table 5.2: Coefficients β1−β4 of the parameterized model of yD for messages on the reference bus

5.4 Estimate Parameters a and b of Gamma Distributions

The parameters a and b of the gamma distribution in the fitted mixture model is computed

for all the messages on the reference bus listed in Table 3.1. To find a parameterized model for a

and b is very difficult, since there is no clear physical meaning for them. Instead, µi,k = ai,k × bi,k,

the mean of a gamma distribution with parameters ai,k and bi,k, is the average additional interfer-

ence delay from remote nodes of message mi given that its local queueing delay is Qi,k, the one

111

corresponds to the k-th X offset xoff
i,k. Intuitively, among the available system design variables, µi,k

must depend on the local queueing delay Qi,k, since the longer Qi,k is, the larger the chance that

mi will be interfered; it also should be dependent on the higher priority utilization Uhr
i from remote

notes, which gives the rough information of the percentage of the bus being busy because of remote

higher priority messages. Note that Qi,k and Uhr
i are two independent design parameters, one from

local, the other about remote.

In the following, we try to find the factors that affect the values of µi,k, then build up the

parameterized model and estimate the fitting coefficients. It turns out the same model can be used

for bi,k.

5.4.1 µ and b v.s. Local Queueing Delay Q

To identify the relation between µ and Q, we group messages that approximately have

the same Uhr, but different Q values, in the hope of finding a statistical model of µ and Q. Figure

5.11 plots three groups of data with Uhr value of approximately 0.15, 0.38, and 0.5 respectively. It

is clear from the graph that µ is linearly dependent on Q, as all the points are closely distributed

along the respective linear regression lines. Similarly Figure 5.11 confirms the existence of a linear

relation between b and Q.

5.4.2 µ and b v.s. Remote Higher Priority Utilization Uhr

Similarly, to find the relation between µ, b and the remote higher priority utilization Uhr,

we plot three groups of data with Q values around 24, 49, 143, respectively, as in Figure 5.13 and

5.14. From the figures, the logarithm of µ and b are both approximately linearly dependent on Uhr.

112

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

local queueing delay Q (X 10us)

µ

Uhr ≈ 0.500

Uhr ≈ 0.385

Uhr ≈ 0.140

Figure 5.11: The linear relation of µ and local queueing delay Q for messages on the reference bus

0 50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

local queueing delay Q (X 10us)

b
Uhr ≈ 0.500

Uhr ≈ 0.385

Uhr ≈ 0.140

Figure 5.12: The linear relation of b and local queueing delay Q for messages on the reference bus

113

0 0.1 0.2 0.3 0.4 0.5

2.5

3

3.5

4

4.5

5

5.5

remote higher priority util Uhr

ln(µ)

Q ≈ 49

Q ≈ 143

Q ≈ 24

Figure 5.13: The linear relation of µ and remote higher priority utilization Uhr for messages on the
reference bus

0 0.1 0.2 0.3 0.4 0.5

2

2.5

3

3.5

4

4.5

5

5.5

remote higher priority util Uhr

ln(b)

Q ≈ 143

Q ≈ 24

Q ≈ 49

Figure 5.14: The linear relation of b and remote higher priority utilization Uhr for messages on the
reference bus

114

5.4.3 Parameterized Model with Q and Uhr

Now we have the relation between µ and the predictor parameters Q and Uhr, as µ is

linear to Q when Uhr is constant, then the following equation should be satisfied:

µi,k = f1(Uhr
i)×Qi,k + f2(Uhr

i) (5.16)

If the logarithm of µ is linear to Uhr when Q is constant, then

µi,k = f3(Qi,k)× ef4(Qi,k)Uhr
i (5.17)

Compare Equations 5.16 and 5.17, it is clear that f4(Qi,k) must equals a constant coeffi-

cient, and f3(Qi,k) is a linear function of Qi,k. Thus, the parameterized model for µ should be the

following:

µi,k = (Qi,k + β5)eβ6+β7Uhr
i (5.18)

where Qi,k and Uhr
i are the predictor parameters, and β5 − β7 are the constant coefficients to be

determined.

Following the same reasoning, the parameterized model for b is

bi,k = (Qi,k + β8)eβ9+β10Uhr
i (5.19)

where β8 − β10 are some constant coefficients.

Figure 5.15 and 5.16 show the absolute errors in the evaluation of the µ and b values for

all the messages in the set. The regression functions result in a sufficiently accurate estimate, always

115

−10

−5

 0

 5

 10

 15

 0 10 20 30 40 50 60 70

ab
s.

 e
rr

o
r

msg Id

Figure 5.15: Absolute errors in the estimation of the µ values for messages on the reference bus

−20

−15

−10

−5

 0

 5

 10

 15

 0 10 20 30 40 50 60 70

ab
s.

 e
rr

o
r

msg Id

Figure 5.16: Absolute errors in the estimation of the b values for messages on the reference bus

116

within ±20 (±0.2ms) of the actual values, and the RMSE of the estimate of µ and b are 3.69 and

5.67 respectively.

5.4.4 Dependency on Average Message Size

Similar to the case of yD, unfortunately coefficients β5 − β10 are different for different

system configurations. Table 5.3 shows the variation of coefficients β5 − β10 in Equation 5.18 and

5.19 for different message sizes, where µi,k, bi,k and Qi,k are expressed in unit of 10µs.

Avg msg size 6.971 6.478 5.797 5.101 4.377 3.623 3.000 2.406
β5 105.2 113.1 123.7 132.4 143.6 146.1 158.2 160.7
β6 -2.248 -2.273 -2.319 -2.353 -2.467 -2.497 -2.6489 -2.730
β7 4.165 4.153 4.156 4.184 4.430 4.514 4.950 5.251
β8 506.2 498.3 462.8 473.5 452.1 411.0 428.4 389.7
β9 -3.506 -3.506 -3.440 -3.547 -3.609 -3.619 -3.728 -3.774
β10 4.244 4.272 4.220 4.440 4.784 5.027 5.424 5.913

Table 5.3: Coefficients β5−β10 of the parameterized model of µ and b for messages on the reference
bus

5.5 Prediction of Message Response Times

The goal of our analysis is to verify if the methods for estimating the X offsets, the yD

and y values, and the a and b parameters of the gamma distributions assumed as an approximation of

the actual cdf of the message response time can be used to predict the response time distribution of a

given message, either on the reference bus, or on other buses. The results are shown in the following

figures, where the curve “simulation” is the message response time cdf from simulation data, “fit”

is the curve using the X offsets and y values calculated from Section 5.2 combined with the yD, a

and b parameter from fitting the mixture model distribution to simulation data, “prediction” is the

117

one using the X offsets and y values from Section 5.2 combined with the yD parameter from the

regression function in Section 5.3 and µ, a, b parameters from the regression functions as in Section

5.4.

5.5.1 Prediction of Response Time cdfs for Messages on the Reference Bus

In the first experiment, we verify the capability of predicting the response time of a mes-

sage on the reference bus.

The first pair, in Figure 5.17, shows the results for high priority messages. The predicted

µ is close to the µ of the fitted exponential distribution, which in turn results in a quite accurate

approximation of the actual cdf. The second pair, in Figure 5.18, is a representative of low priority

messages. In these cases, the prediction is very close to the simulated data. In both cases, the error

is acceptable for an early design estimation. From these figures, the quality of the approximation

does not necessarily depend on the priority of the message but rather on the shape of the cdf. Finally,

the method also allows to approximate messages with more than one higher priority harmonic set.

In this case (Figure 5.19), the approximation is much better if multiple exponential distribution

functions are used (one for each higher priority harmonic set) instead of only one.

The root mean squared errors, the coefficients of determination R2, and the K-S statistics

for messages on the reference bus are shown in Table 5.4. Other statistics are also accurate enough

for an early stage estimation. For example, the relative error in the evaluation of the average response

time for all the messages is always below 10%.

118

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20

simulation

prediction

fit

 40 60 80 100 120 140 160

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100

simulation

prediction

fit

 150 200 250 300 350 400 450 500 550

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.17: Prediction of response time cdfs for high priority messages m5 and m21 on the refer-
ence bus

119

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200

simulation

fit
prediction

 400 600 800 1000 1200 1400 1600

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400

prediction

simulation

fit

 600 800 1000 1200 1400 1600 1800 2000

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.18: Prediction of response time cdfs for low priority messages m48 and m68 on the refer-
ence bus

120

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100

simulation

fit

prediction

 200 300 400 500 600 700 800 900 1000

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 400 600

simulation

prediction

fit

 800 1000 1200 1400 1600 1800 2000

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.19: Prediction of response time cdfs for messages m39 and m67 with more than one har-
monic set

121

ID RMSE R2 K-S ID RMSE R2 K-S ID RMSE R2 K-S
1 0.024 0.968 0.05 24 0.007 0.999 0.04 47 0.038 0.982 0.10
2 0.028 0.959 0.06 25 0.009 0.998 0.05 48 0.008 0.999 0.02
3 0.025 0.955 0.06 26 0.015 0.991 0.05 49 0.009 0.998 0.03
4 0.021 0.965 0.06 27 0.014 0.991 0.06 50 0.019 0.994 0.05
5 0.016 0.983 0.05 28 0.019 0.989 0.05 51 0.010 0.998 0.04
6 0.009 0.994 0.03 29 0.015 0.994 0.03 52 0.010 0.998 0.04
7 0.012 0.992 0.04 30 0.016 0.994 0.04 53 0.018 0.995 0.05
8 0.009 0.997 0.03 31 0.029 0.982 0.07 54 0.012 0.998 0.03
9 0.010 0.996 0.04 32 0.012 0.985 0.06 55 0.012 0.998 0.04
10 0.020 0.966 0.08 33 0.012 0.995 0.03 56 0.010 0.998 0.02
11 0.013 0.995 0.05 34 0.012 0.996 0.03 57 0.014 0.997 0.04
12 0.008 0.997 0.03 35 0.030 0.978 0.06 58 0.016 0.997 0.05
13 0.013 0.991 0.05 36 0.013 0.996 0.05 59 0.017 0.996 0.06
14 0.016 0.994 0.06 37 0.005 0.999 0.02 60 0.006 0.999 0.02
15 0.008 0.995 0.03 38 0.008 0.998 0.03 61 0.013 0.998 0.04
16 0.004 0.999 0.02 39 0.022 0.989 0.05 62 0.014 0.998 0.04
17 0.007 0.997 0.04 40 0.010 0.998 0.03 63 0.015 0.997 0.05
18 0.013 0.994 0.06 41 0.010 0.997 0.03 64 0.013 0.998 0.04
19 0.012 0.998 0.05 42 0.009 0.998 0.04 65 0.015 0.997 0.04
20 0.006 0.996 0.04 43 0.029 0.987 0.08 66 0.016 0.997 0.04
21 0.011 0.988 0.06 44 0.010 0.997 0.03 67 0.036 0.982 0.09
22 0.011 0.997 0.05 45 0.019 0.991 0.05 68 0.016 0.997 0.04
23 0.005 0.999 0.03 46 0.035 0.984 0.09 69 0.005 0.999 0.02

Table 5.4: Error of the predicted distribution for messages on the reference bus

122

5.5.2 Prediction of Response Time cdfs for Messages on Other Buses

The β1 − β10 regression coefficients are estimated on the reference bus and then used to

predict the response time cdf of messages on other buses. We used the messages on bus2, normalized

for a bus speed of 500 kbps to verify the quality of this assertion. Figures 5.20 and 5.21 shows some

sample results for four messages with different priorities and different quality of the prediction.

Figure 5.20 shows two messages (priority rank 9 and 73 out of 131) with low quality results. The

curve representing the cdf prediction in this case is clearly separated from the simulation results

and the best fitted exponential distribution. However, even in these low quality cases, the prediction

retains sufficient accuracy for an early assessment. Please note that in the case of high priority

messages, although the relative error is higher, the absolute error is quite low, being a message with

very short worst case response time. Figure 5.21 shows two sample messages (priority rank 40 and

112 out of 131) with good quality results. The method can be quite accurate not only for messages

with one higher priority harmonic set (message priority 112), but also for messages with more than

one higher priority harmonic set (message priority 40). Although the accuracy typically decreases

with lower priority messages, our experiments show that very good quality results can be retained

for most messages in the set.

In general, the errors of the prediction from statistical analysis for the reference bus and

other buses are in the same magnitude. In Figure 5.22 and 5.23, the comparison of K-S statistics

and root mean squared error for each message on the reference bus and bus2 is given, where the X

axis is the total utilization of higher priority messages. Also, the curves of 9-central moving average

[38] of the errors are plotted. The average (0.0145) and maximum (0.0381) RMSE for messages

on bus2 are roughly half of the ones on the reference bus (0.0271 and 0.0827, respectively), which

123

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120 140

prediction

fit

simulation

 160 180 200 220 240 260 280 300

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200

simulation

fit

prediction

 400 600 800 1000 1200 1400

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.20: Prediction of response time cdfs for messages on a different bus: low quality results

124

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100

prediction

fit

 200

simulation

 300 400 500 600 700 800 900

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 600

simulation

fit

prediction

 800 1000 1200 1400 1600 1800 2000 2200 2400

p
ro

b
ab

ili
ty

 (
cd

f)

latency / response time (X10us)

Figure 5.21: Prediction of response time cdfs for messages on a different bus: high quality results

125

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K
−S

 S
ta

tis
tic

Utilization

refbus
bus2

9 central moving ave − refbus
9 central moving ave − bus2

Figure 5.22: K-S statistics of statistical analysis: reference bus and bus2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M

S
E

Utilization

refbus
bus2

9 central moving ave − refbus
9 central moving ave − bus2

Figure 5.23: RMSE of statistical analysis: reference bus and bus2

126

makes it promising to use the β1 − β10 regression coefficients estimated from the reference bus to

predict the response time cdf of messages on other buses.

5.6 Comparison of Stochastic and Statistical Analyses

In this section, we provide the trade-offs between using statistical and stochastic methods,

in terms of analysis speed vs. availability of data and accuracy of results.

Input information Stochastic analysis, requires all the message characteristics in the system, in-

cluding message ID (priority), its source node, period, phase, and data length. Statistical analysis,

on the other hand, is suitable when only part of the message set is known as in the case of early

design stage, e.g., new car architecture design when many features of the vehicle are to be added

later in the design process. The required information for statistical analysis includes the local mes-

sage set, the estimation of system utilization and the utilizatin from higher priority messages, and

the number of nodes in the system. Of course if the exact local message set is unknown because

of incomplete information, we can approximate it with the expected number of messages in the

harmonic set, assuming that every message has maximum size, or considering an average message

size.

Analysis error Stochastic analysis is more accurate when the complete message set is available.

Figure 5.24 gives the comparison of the root mean squared error and its 9-central moving average

for messages in the reference bus. As in the figure, the error of stochastic analysis is almost always

half of the one of statistical analysis, no matter what the message priority is. It is clear that for high

and medium priority messages with higher priority utilization less than 50%, the error is quite small

127

(average K-S statistic 0.0357 for stochastic analysis, 0.0452 for statistical analysis), while the error

increases significantly for low priority messages from stochastic analysis. This is because for a low

priority message its worst case response times is much larger than the gcd of message periods, i.e.,

the period of the TxTask, thus it has a very large possibility to suffer multiple bursts of messages

queued by different activations of the TxTask. The correlation between these message queueings

is not captured by stochastic analysis, which is the reason why the approximate system is different

from the original model, but statistical analysis is more robust to these scenarios.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K
−S

 S
ta

tis
tic

Utilization

statistical
stochastic

9 central moving ave − statistical
9 central moving ave − stochastic

Figure 5.24: Comparison of stochastic and statistical analyses: K-S statistics

Analysis speed Stochastic analysis is more accurate when the complete message set is available.

However, it is significantly slower, as shown in Table 5.5. The complexity of stochastic analysis is

very sensitive to many system parameters. For example, it is worse than exponential to the number

of nodes in the system, and increases cubically as the analysis granularity gets smaller. However,

128

Stochastic Statistical
Nodes O(n2n) O(1)

Messages O(n) O(n)
Hyperperiod O(n) O(1)

Worst case response time O(n2) O(1)
Analysis granularity O(n−3) O(1)

Runtime on the example < 19 min each; < 0.01 ms each;
system in Table 3.1 2 hours total 0.24 ms total

Table 5.5: Comparison of stochastic and statistical analyses: analysis complexity

statistical analysis is independent from almost all the system parameters, since it involves only the

evaluation of several closed form formulas. The runtime information1 on the example system as

in Table 3.1 is also compared, which indicates that statistical analysis is more than 107 faster than

stochastic analysis.

1Java implementation on laptop with 1.6GHz CPU and 1.5G RAM

129

Chapter 6

Conclusions and Future Work

In this dissertation, we presented a stochastic analysis framework for the end-to-end la-

tency of distributed real-time automotive systems. The previous work on periodic tasks with deter-

ministic activation times on a single priority based preemptive CPU is extended to accommodate

mixed preemptive scheduling in OSEK operating system standard. We proposed a stochastic analy-

sis framework for computing the pmfs of CAN message response times in systems with unsynchro-

nized ECUs and periodic messages. We provided a characterization of message interferences using

a single message per node, defined by a random queuing jitter and transmission time. We compose

the response times of tasks and messages with the sampling delays caused by information passing

by shared variables among periodically activated tasks and messages. The experimental section

with data extracted from an experimental vehicle proves the applicability of the analysis.

Our claim on statistical analysis for CAN message response times is two folds. First,

it is possible to predict the response time probability distribution of a CAN message (for a user-

defined priority) response time when the only information available is the bus utilization on the set

130

of higher priority messages. Second, it is possible to make the same prediction when the utilization

is known for a message set on a different bus, using the different bus as an estimator of the traffic

load, although with obviously less accuracy. We believe these results are of crucial importance

while designing new car architectures when only partial information is available to the designers

(for instance the existing bus utilization or the maximum queue length on the bus adapter side). In

fact, designers can explore different priority assignments for a new message and evaluate different

probability distributions of the message response times for the different priority assignments. In

return, the distributions, as they represent the timing behavior of a message for a given priority, can

be used in an automatic design process and synthesis flow supporting message priority assignment.

As for future work, the first piece is to perform statistical analysis of software task re-

sponse times and later end-to-end latencies. This requires a good set of test benches that is the

representative for automotive applications, by which we can characterize the typical task execution

time distributions. Based on that, we can analyze the main statistics of the distributions of task re-

sponse times. Also, it is interesting to extend the analysis framework to tasks and messages whose

requests are produced by a sender (data-driven).

Second, as the automotive electronics continue to grow, the current manual analysis and

design process is becoming increasingly impractical and error-prone [36, 40]. As advocated in the

platform-based design methodology [10, 18, 39, 42], a much better approach is to automatically

map the set of tasks onto the platform guaranteeing the correct functionality and timing with opti-

mal resource utilization. Many of the recent researches are targeted to take the design description

at the pure functional level with performance and other constraints along with the architecture of

the platform, and produce correct configurations for the architecture layers including middleware

131

and communication network. Racu et al. [37] discuss algorithms based on binary search techniques

to optimize priority and period assignments with respect to a number of constraints, including end-

to-end deadlines, utilization on resources, and output jitter. Davare et al. [12] automatically assign

task and message periods for distributed automotive systems based on geometric programming to

minimize the total worst case response times over all objects in the system, or other metrics re-

lated to extensibility of the solution. Zheng et al. [29, 53] propose a synthesis procedure based

on approximate timing analysis to optimize the selection of purely periodic and the data driven

activation models in the functional network with respect to the latency constraints. The objective

function can be either the number of event buffers, or the slack between the worst case latencies

and the deadlines. In another work, Zheng et al. [54] optimize the task placement and the signal to

message mapping and automate the assignment of priorities to tasks and messages in order to meet

end-to-end deadline constraints, while minimizing the total worst case end-to-end latencies for all

the paths.

However, none of the previous work, to the best of our knowledge, has used average end-

to-end timing performance as the metric to compare different architecture and mapping choices.

Regardless, the probability of the worst case end-to-end latency value is very small. As we showed

in previous chapters, this probability is usually much smaller than 10−12, which is hardly the rep-

resentative of the typical timing performance of the system. Once the probability distribution of

the end-to-end latency is quickly characterized, it would be very promising to see how it fits in the

automatic mapping and configuration design process.

132

Bibliography

[1] Autosar consortium web page. http://www.autosar.org.

[2] Iso 11898-1. road vehicles - interchange of digital information - controller area network (can)

for high-speed communication. ISO Standard-11898, International Standards Organisation

(ISO), November 1993.

[3] Osek/vdx time-triggered operating system specification version 1.0. http://www.osek-vdx.org,

July 2001.

[4] Osek/vdx binding specification version 1.4.2. http://www.osek-vdx.org, July 2004.

[5] Osek/vdx communication specification version 3.0.3. http://www.osek-vdx.org, July 2004.

[6] Osek/vdx network management: Concept and application programming interface version

2.5.3. http://www.osek-vdx.org, July 2004.

[7] Osek/vdx operating system specification version 2.2.3. http://www.osek-vdx.org, February

2005.

[8] Flexray. protocol specification v2.1 rev. a. http://www.flexray.com, 2006.

133

[9] Ian Broster, Alan Burns, and Guillermo Rodrı́guez-Navas. Probabilistic analysis of can with

faults. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), pages

269–278, 2002.

[10] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew J. McNelly, and Lee Todd.

Surviving The SOC Revolution: A Guide To Platform-based Design. Kluwer Academic Pub-

lishers, Norwell, MA, USA, 1999.

[11] Jeffrey A. Cook, Ilya V. Kolmanovsky, David McNamara, Edward C. Nelson, and

K. Venkatesh Prasad. Control, computing and communications: Technologies for the twenty-

first century model t. Proceedings of the IEEE, Special Issue on Automotive Power Electronics

and Motor Drives, 95(2):334–355, 2007.

[12] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Alberto

Sangiovanni-Vincentelli. Period optimization for hard real-time distributed automotive sys-

tems. In Proceedings of the 44th annual conference on Design automation (DAC ’07), pages

278–283, June 2007.

[13] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network

(can) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–

272, 2007.

[14] José Luis Dı́az, Daniel F. Garcı́a, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello, José Marı́a

López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time sys-

tems. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), pages 289–

302, 2002.

134

[15] Mark K. Gardner. Probabilistic analysis and scheduling of critical soft real-time systems.

UIUC, Phd Thesis, Computer Science, University of Illinois at Urbana-Champaign, 1999.

[16] Mark K. Gardner and Jane W.-S. Liu. Analyzing stochastic fixed-priority real-time systems.

In Proceedings of the 5th International Conference on Tools and Algorithms for Construction

and Analysis of Systems (TACAS ’99), pages 44–58, 1999.

[17] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer Journal

(British Computer Society), 29(5):390–395, October.

[18] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System level

design: Orthogonalization of concerns and platform-based design. IEEE Transactions on

Computer-Aided Design, 19(12), December 2000.

[19] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers. A methodology

to design programmable embedded systems - the y-chart approach. In Embedded Processor

Design Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, pages 18–37.

Springer-Verlag, 2002.

[20] Jong Kim and Kang G. Shin. Execution time analysis of communicating tasks in distributed

systems. IEEE Transactions on Computers, 45(5):572–579, May 1996.

[21] Kanghee Kim, José Luis Dı́az, Lucia Lo Bello, José Marı́a López, Chang-Gun Lee, and

Sang Lyul Min. An exact stochastic analysis of priority-driven periodic real-time systems

and its approximations. IEEE Transactions on Computers, 54(11):1460–1466, 2005.

[22] Hermann Kopetz, Andreas Damm, Christian Koza, Marco Mulazzani, Wolfgang Schwabl,

135

Christoph Senft, and Ralph Zainlinger. Distributed fault-tolerant real-time systems: The mars

approach. IEEE Micro, 9(1):25–40, 1989.

[23] John P. Lehoczky. Real-time queueing theory. In Proceedings of the 17th IEEE Real-Time

Systems Symposium (RTSS’96), pages 186–195, December 1996.

[24] John P. Lehoczky. Real-time queueing network theory. In Proceedings of the 18th IEEE

Real-Time Systems Symposium (RTSS’97), pages 58–67, December 1997.

[25] John P. Lehoczky, Lui Sha, and Ye Ding. The rate-monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings of the 10th IEEE Real-Time Sys-

tems Symposium (RTSS’89), pages 166–171, Santa Monica, CA USA, December 1989.

[26] Wang Lei, Zhaohui Wu, and Mingde Zhao. Worst-case response time analysis for osek/vdx

compliant real-time distributed control systems. In Proceedings of the 28th Annual Inter-

national Computer Software and Applications Conference (COMPSAC’04), pages 148–153,

2004.

[27] Sorin Manolache. Schedulability analysis of real-time systems with stochastic task execu-

tion times. PhD Thesis, Department of Computer and Information Science, IDA, Linkoping

University, 2002.

[28] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability analysis of multi-processor real-

time applications with stochastic task execution times. In Proceedings of the 2002 IEEE/ACM

international conference on Computer-aided design (ICCAD ’02), pages 699–706, New York,

NY, USA, 2002. ACM.

136

[29] Marco Di Natale, Wei Zheng, Claudio Pinello, Paolo Giusto, and Alberto Sangiovanni-

Vincentelli. Optimizing end-to-end latencies by adaptation of the activation events in dis-

tributed automotive systems. In Proceedings of the 13th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS ’07), pages 293–302, April 2007.

[30] N. Navet and Y.-Q. Song. Valuation de performances de la messagerie can du vhicule prototype

psa - action 1 du contrat psa-crin. In Technical report, CRIN, Dresden, Germany, 1996.

[31] N. Navet, Y.-Q.Song, and F. Simonot. Worst-case deadline failure probability in real-

time applications distributed over controller area network. Journal of Systems Architecture,

46(7):607–617, 2000.

[32] Nicolas Navet, Yeqiong Song, Francoise Simonot-Lion, and Cédric Wilwert. Trends in auto-

motive communication systems. Proceedings of the IEEE, 93(6):1204–1223, 2005.

[33] Thomas Nolte, Hans Hansson, and Christer Norström. Probabilistic worst-case response-

time analysis for the controller area network. In Proceedings of the 9th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 200–207, Washington, DC,

USA, May 2003.

[34] Thomas Nolte, Hans Hansson, Christer Norström, and Sasikumar Punnekkat. Using bit-

stuffing distributions in can analysis. In Proceedings of the IEEE/IEE Real-Time Embedded

Systems Workshop (RTES), London, UK, December 2001.

[35] J.C. Palencia and M. Gonzáles Harbour. Schedulability analysis for tasks with static and

dynamic offsets. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS’98),

pages 26–37, December 1998.

137

[36] Razvan Racu, Arne Hamann, Rolf Ernst, and Kai Richter. Automotive software integration. In

Proceedings of the 44th Annual Conference on Design Automation (DAC ’07), pages 545–550,

2007.

[37] Razvan Racu, Marek Jersak, and Rolf Ernst. Applying sensitivity analysis in real-time dis-

tributed systems. In Proceedings of the 11th IEEE Real Time on Embedded Technology and

Applications Symposium (RTAS ’05), pages 160–169, 2005.

[38] Sheldon M. Ross. Introduction to Probability Models, Ninth Edition. Academic Press, Inc.,

Orlando, FL, USA, 2006.

[39] Alberto Sangiovanni-Vincentelli. Defining platform-based design. EEDesign of EETimes,

http://www.eedesign.com/story/OEG20020204S0062, February 2002.

[40] Alberto Sangiovanni-Vincentelli. Integrated electronics in the car and the design chain evo-

lution or revolution? In Proceedings of the conference on Design, Automation and Test in

Europe (DATE ’05), pages 532–533, 2005.

[41] Alberto Sangiovanni-Vincentelli. Quo vadis, sld? reasoning about the trends and challenges

of system level design. Proceedings of the IEEE, 95(3):467–506, 2007.

[42] Alberto Sangiovanni-Vincentelli, Luca Carloni, Fernando De Bernardinis, and Marco Sgroi.

Benefits and challenges for platform-based design. In Proceedings of the 44th Annual Confer-

ence on Design Automation (DAC ’04), pages 409–414, 2004.

[43] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded system design for automo-

tive applications. Computer, 40(10):42–51, 2007.

138

[44] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An

approach to real-time synchronization. IEEE transactions on Computers, 39(9):1175–1185,

September 1990.

[45] Richard P. Stanley and Jim Pitman. A polytope related to empirical distributions, plane trees,

parking functions, and the associahedron. Discrete and Computational Geometry, 27:603–

634, 2002.

[46] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area network (can) message

response times. Control Engineering Practice, 3(8):1163–1169, 1995.

[47] Ken Tindell. Real time systems and fixed priority scheduling. Technical Report Tech. rept.

DoCS 95/notes.Uppsala University. Uppsala, Sweden, March 1995.

[48] Amy J. C. Trappey and David W. Hsiao. Applying collaborative design and modularized

assembly for automotive odm supply chain integration. Computers in Industry, 59(2-3):277–

287, 2008.

[49] Guoqiang Gerald Wang, Marco Di Natale, and Alberto Sangiovanni-Vincentelli. An osek/vdx

implementation of synchronous reactive semantics preserving communication protocols. In

Workshop on Operating Systems Platforms for Embedded Real-Time applications, pages 58–

67, July 2007.

[50] Yun Wang and Manas Saksena. Scheduling fixed-priority tasks with preemption threshold.

In Proceedings of the Sixth International Conference on Real-Time Computing Systems and

Applications (RTCSA ’99), pages 328–337, 1999.

139

[51] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto Sangiovanni-Vincentelli. Statistical

analysis of controller area network message response times. In Submitted to 15th IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS ’09).

[52] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto Sangiovanni-Vincentelli. Stochas-

tic analysis of distributed real-time automotive systems. Submitted to IEEE Transactions on

Industrial Informatics, Special Section on: “Real-Time and (Networked) Embedded Systems”.

[53] Wei Zheng, Marco Di Natale, Claudio Pinello, Paolo Giusto, and Alberto Sangiovanni-

Vincentelli. Synthesis of task and message activation models in real-time distributed auto-

motive systems. In Proceedings of the Conference on Design, Automation and Test in Europe

(DATE ’07), pages 93–98, April 2007.

[54] Wei Zheng, Qi Zhu, Marco Di Natale, and Alberto Sangiovanni-Vincentelli. Definition of

task allocation and priority assignment in hard real-time distributed systems. In Proceedings

of the 28th IEEE International Real-Time Systems Symposium (RTSS ’07), pages 161–170,

December 2007.

140

Appendix A

Alphabetic Notations

Throughout the dissertation, we use calligraphic typeface to denote random variables. For

example, Oi denotes a normal variable, while Oi is a random variable.

• τ : granularity

• τi: the i-th task

• Γi,j : the j-th job of task τi

• Πi,j : path from object oi to oj

• Υi: shared resource i

• Ai,j (Ai,j): arrival time of job Γi,j , or message instance Mi,j

• Bi,j : blocking time of job Γi,j , or message instance Mi,j

• Di,j (Di,j): delay between object oi and oj

141

• Dk
i,j (Dk

i,j): delay of the data consumed by object instance oj,k and the instance of oi who

produces this data

• Ei (Ei): execution time of task τi, or transmission time of message mi

• Fi,j : finish time of job Γi,j , or message instance Mi,j

• GP
k (GP

k): P -level backlog at the beginning of the k-th hyperperiod, i.e. WP
((k−1)H)−

• H: hyperperiod

• hp(P): {τi(mi)|Pi < P}, i.e. the set of tasks (messages) with priority higher than P

• I(P, t): P -level jobs or message instances at time t

• Ji (Ji): release jitter of task τi, or queuing jitter of message mi

• Li,j : end-to-end latency associated with path Ωi,j

• lp(P): {τi(mi)|Pi > P and Ni = non − preemptable}, i.e. the set of lower priority non-

preemptable tasks (messages)

• mi: the i-th message

• Mi,j : the j-th message instance of mi

• Ni: preemption property of task τi, or message mi

• Oi (Oi): initial phase of task τi, or message mi

• Ok
i,j (Ok

i,j): relative phase of oj,k and the previous instance of oi

• oi: the i-th object, i.e. task τi or message mi

142

• Pi: priority of task τi, or message mi

• Qi,j (Qi,j): release time of job Γi,j , or queuing time of message instance Mi,j

• Ri,j (Ri,j): response time of job Γi,j , or message instance Mi,j

• S(P, t): P -level event space at time t

• Ti: period of task τi, or message mi

• U : utilization, Umax: maximum utilization

• V i,j
t : event Qi,j > t

• V
i,j
t : the complement event of V i,j

t , i.e. event Qi,j ≤ t

• WP
t : P -level backlog at time t

• WΓi,j

t : backlog of job Γi,j at time t

• WMi,j

t : backlog of message instance Mi,j at time t

• Xt: queuing pattern at time t

• X t(i,j): the complement queuing pattern of Xt with respect to Γi,j or Mi,j

