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Abstract

Privacy Preserving Joins on Secure Coprocessors

by

Yaping Li

Doctor of Philosophy in Engineering-Computer Science

University of California, BERKELEY

Professor Doug Tygar, Chair

The field of privacy preserving joins (PPJ) considers the question of how mutually distrustful

entities share data in a privacy preserving way such that no party learns more than what

can be deduced from its input and output alone. In my thesis, I focus on general join

operations involving arbitrary predicates. Previous researchers have considered solutions

using a trusted third party (TTP) and general secure multi-party computation. The former

requires a high level of trust in the TTP by all entities. The latter is a well-known theoretical

result of computing general joins in a privacy preserving way. However, the computation

and communication complexity is normally too high for this approach to be practical.

In my thesis, I explore solutions that strike a balance between the level of re-

quired trust and performance. I propose solutions to compute privacy preserving joins

efficiently through a trusted third party with secure coprocessors being the only trusted

component. I present a rigorous definition of privacy preserving joins under this set-
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ting, propose privacy preserving join algorithms and prove their correctness and secu-

rity. I give explicit expressions for their computation costs, evaluate their performance,

and show that the performance is superior than that of secure multi-party computation.

Professor Doug Tygar
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Background and Motivation

The field of privacy preserving joins (PPJ) considers the question of how mutually

distrustful entities share data in a privacy preserving way such that no party learns more

than what can be deduced from its input and output alone. Here are two motivating

applications of privacy preserving joins:

• The Transportation Security and Administration and the FBI, have been developing

a program to mine data about airline passengers to determine who should be selected

for additional screening, or denied the right to board an airplane. Airport security

checks use a do-not-fly list. Airlines and government agencies may wish to discover

whether people are both on a passenger list and a list of potential terrorists, without

revealing their respective lists.

• Epidemiological researchers may wish to study correlations between drug reactions and
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some genetic sequences, which may require joining DNA information from a gene bank

with patient records from various hospitals. A hospital disclosing patient information

will likely violate Health Insurance Portability and Accountability Act [1], and it is

desirable to access only matching sequences from the gene bank.

In a relational database, a join operation combines records from two tables, result-

ing in a new table. Two records are combined and inserted into the new table if the join

predicate evaluates positively. Examples of join predicates are equality, greater than, and

similarity predicates. Here is an example of similarity predicates. For set-valued attributes,

the goal of Jaccard coefficient > f is to find all set pairs where the ratio of the intersection

size to union size is greater than a fraction f .

A straightforward solution to the PPJ problem relies on a Trusted Third Party

(TTP) and requires trust in the TTP. Data owners submit their inputs to a TTP, and

the TTP computes the desired join function and distributes the results. But trusting

a TTP is problematic. In addition, a TTP is an attractive target, since it contains valuable

information.

Another approach involves Secure Multi-party Computation (SMC) and is com-

putationally expensive. SMC allows mutually distrustful parties collectively to perform a

computation over their private data [16, 32, 34] such that no party learns more than what

can be inferred from its own input and output of the computation alone. Generic proto-

cols were designed to show the plausibility of such approach [16] and solutions to various

constrained cases of the more general challenge of SMC were proposed [13, 28]. This ap-

proach assumes a low level of trust among the parties. General SMC computation is the
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best known result for the problem of computing joins of arbitrary predicates in a privacy

preserving way. However, the computation and communication complexity of this approach

is normally too high for it to be practical.

Researchers have proposed distributed solutions for set intersection [13, 28] where

the join predicate can only be equality. Joins involving arbitrary predicates, e.g. <, are

important as well as fairly common in databases. In this thesis, we study PPJ that compute

arbitrary join predicates.

Are there solutions that strike a balance between the level of required trust and

performance? In this thesis, we explore answers to this question. We show that

Thesis Statement

Mutually distrustful parties can compute privacy preserving joins efficiently

through a trusted third party with secure coprocessors being the only trusted

component.

In particular, we present a secure network service for privacy preserving joins that

functions as a TTP, with the only trusted component being a secure coprocessor [20, 37, 47] .

The IBM 4758 [22] and its later generation the IBM 4764 cryptographic coprocessors [23]

are examples of commercially available, tamper-responding secure coprocessors. We argue

that on the one hand, the trust level required for a secure coprocessor is much lower than

that for a completely trusted TTP. On the other hand, the complexity of computing a

function on multiple parties’ data in a privacy preserving way is much lower than that of

the general SMC approach as in [32, 34].
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The technical challenge in implementing such a service arises from the following:

• Secure coprocessors have limited capabilities. They rely on the server to which they

are attached for disk storage or communication with other machines. They also have

small memory (e.g. 4MB in an IBM 4758 and 64MB in an IBM 4764). The factors

constraining the memory size are cost and heat dispensation. The trend towards

consolidating the secure coprocessor functionality on a single chip also constrains the

amount of memory as larger memories reduce the yield.

• While the internal state of a computation within the secure coprocessor cannot be

seen from outside, the interactions between the server and the secure coprocessor can

be observed.

Simply encrypting communication between the data providers and the secure pro-

cessor is insufficient. The join computation needs to be carefully orchestrated such that

the read and write accesses made by the secure coprocessor cannot be exploited to make

unwanted inferences.

Careful orchestration of join computation in the face of limited memory has been

a staple of database research for a long time. The goal in the past, however, has been

the minimization of I/O to maximize performance. While the I/O minimization is still

important, avoiding leakage through patterns in I/O accesses now becomes paramount in

designing privacy preserving join algorithms.



5

1.2 Contributions

In this dissertation, we study the problem of privacy preserving joins. We lever-

age the power of secure coprocessors to design general joins algorithms involving arbitrary

predicates. Chapter 2 introduces related work in this area. Chapter 3 formulates the prob-

lem of privacy preserving joins on secure coprocessors. Chapter 4 gives a first attempt to

define privacy preserving joins on secure coprocessors and propose several algorithms that

are provably secure under this definition. Chapter 5 shows how to remove an unnecessary

assumption in the previous definition to arrive at a more general formulation.

Chapter 4 presents a secure information sharing service offering privacy preserving

joins, built using off-the-shelf secure coprocessors. Examples of such commercially available

devices are the IBM 4758 [22] and its later generation the IBM 4764 cryptographic copro-

cessors [23]. Our design satisfies the desiderata for such a service: we can do general joins

involving arbitrary predicates across any number of databases; nothing apart from the re-

sult is revealed to the recipients; the only trusted component is the secure coprocessor; and

the system is provably secure. We make the following contributions in this part:

• Formulation of the problem of computing join in which the goal is to prevent infor-

mation leakage through patterns in I/O while maximizing performance.

• Articulation of the criteria for proving the security of a join algorithm in such an

environment.

• Development of safe algorithms for different operational parameters and their cost

analysis. Algorithm 1 (page 27) and 2 (page 32) are designed for secure coprocessor
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with small and large memories respectively. Algorithm 3 (page 39) is a sort-based

equijoin algorithm where the join predicate is equality.

In Chapter 4, we make an assumption which leaks a control amount of information

to simplify our algorithm design. When joining two tables A and B, we assume that the

maximum number of tuples in B that match a tuple in A can be leaked. However, leaking

such information does not satisfy the most stringent definition of a privacy preserving join:

this information cannot be inferred from only the input and output of a protocol alone. In

Chapter 5, we lift this assumption to arrive at a more general formulation of the problem.

We make the following contributions in this part:

• We formulate the problem of privacy preserving joins in the setting of a secure copro-

cessor. We remove an assumption in our previous privacy definition in Chapter 4 to

arrive at a more general definition.

• We propose three privacy preserving algorithms which compute general joins of ar-

bitrary predicates and prove their correctness and security. Algorithm 4 (page 55)

and 5 (page 57) guarantee 100% privacy preserving but have high computation cost.

Algorithm 6 (page 58) is able to trade privacy preserving level 1− ε, where ε ∈ [0, 1]

is design parameter, with communication cost efficiently.

• We give explicit expressions for computation cost of the three proposed algorithms,

evaluate their performance together with that of secure multi-party computation, and

discuss the trade-off between them. We discuss the tradeoff between privacy preserving

level and communication cost in Algorithm 6.
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• We show that our solution to the privacy preserving joins over arbitrary predicates is

more efficient than the results from previous work. General multi-party computation

is the best known result for the particular problem of computing joins of arbitrary

predicates in a privacy preserving way. The computation and communication com-

plexities of this approach are normally too high for them to be practical.

• We show that the trust level required for our proposed system with a secure coproces-

sor is much lower than that for a completely trusted TTP. However, the complexity

of computing a function on multiple parties’ data in a privacy preserving way is much

lower than that of the general secure multi-party computation approach as in [32, 34].
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Chapter 2

Related Work

2.1 Protocol Based Approaches

Privacy preserving joins are a constrained case of the more general challenge of

secure multi-party computation (SMC), originally proposed by Andrew C. Yao in a 1982

paper [46]. In that publication, the millionaire problem was introduced: Alice and Bob are

two millionaires who want to find out who is richer without revealing the precise amount

of their wealth. Yao proposed a solution allowing Alice and Bob to satisfy their curiosity

while respecting the constraints.

This problem and result gave way to a generalization called multi-party com-

putation (MPC) protocols [18]. In an MPC problem, a given number of participants

p1, p2, . . . , pN each have a private data value, respectively d1, d2, . . . , dN . The participants

want to compute F (d1, d2, ..., dN ). An MPC protocol is called secure if information learned

by each participant i from the protocol could be derived from di and F (d1, d2, ..., dN ).

Secure multiparty computation protocols exist for all two-party computations as
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well as for any multi-party computations with honest majority [16]. Most secure MPC

protocols are computationally expensive and are thus mostly of theoretical significance.

To avoid the high computational cost, researchers have proposed various solutions

for specialized functions. The problem of privately computing various set related operations

has generated significant interests in the research community. The work most relevant to

this thesis are the three following papers:

• Agrawal, Evfimievski, and Srikant (AES) propose two party protocols for set inter-

section, intersection size, equijoin, and equijoin size [5]. These protocols use commu-

tative encryption and are provably safe for the honest-but-curious adversarial model.

However, the protocols are only safe when an input database contains only unique

elements, otherwise an attacker observing a protocol execution may learn statistics

on the inputs.

• Freedman, Nissim, and Pinkas propose efficient two party protocols related to set

intersection [13]. The proposed solutions include protocols for set intersection and

approximating the size of the intersection. Freedman et. al also investigated other

variants of the matching problem, including extending the protocol to the multi-party

setting as well as considering the problem of approximate matching. These protocols

are based on representing sets as roots of a polynomial and exploit the property of

homomorphic encryption.

• Inspired by the results of Freeman et al [13], Kissner and Song propose efficient privacy

preserving operations on multisets [28]. Kissner and Song point out that Freedman

et al’s solution does not use properties of polynomials beyond evaluation at given
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points. Kissner and Song explore the power of polynomial representation of mul-

tisets, using operations on polynomials to obtain efficient, secure, and composable

privacy-preserving multiset operations. These multiset operations include the union,

intersection, and element reduction operations.

Both Freedman et al’s protocol and Kissner et al’s protocol are equality based

protocols where the join predicate is equality. Joins involving arbitrary predicates are fairly

common in databases. In this thesis, we study algorithms that compute arbitrary join

predicates.

2.2 Secure Coprocessors

The solutions in the previous section are protocol-based. Various security and

privacy related applications have used a special hardware, a secure coprocessor, in their

design. We first give a brief history of secure coprocessors, then describe its main features,

and finally elaborate on its various applications, in particular, applications related to privacy

preserving computations.

2.2.1 A Brief History

In a distributed computing scenario, a common question arises: Why should one

trust the computation carried out on a remote machine? Secure coprocessors were pro-

posed as one of the solutions to this problem. This approach systematically amplifies small

amounts of hardware security into broader system security to achieve the goal of remote

trust.
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The IBM 4758 and its later generation the IBM 4764 are two commercially avail-

able secure coprocessors. Sean W. Smith was one of the chief researchers who designed the

IBM 4758. His book, Trusted Computing Platforms: Design and Applications [38], has the

development history and technical details on the IBM 4758. Section 2.2.1 and 2.2.2 are

adapted from this book.

We now give a very brief history of the research endeavors that preceded the

development of the IBM secure coprocessors. Steven Kent’s 1980 thesis [27] at MIT sys-

tematically explored the use of what he called tamper-resistant modules (TRMs) to protect

external software. Steve White and Liam Comerford at IBM Watson then followed up the

work by Kent and others, with ABYSS (a Basic Yorktown Security System) [43]. Steve

White and colleagues then developed and refined the ABYSS design into a much more

comprehensive system, Citadel [33, 44]. Some of the Citadel prototypes from IBM be-

came the foundation of the Dyad project, built by Bennet Yee and J. D. Tygar in the

early 1990s [40, 41, 47, 48]. Yee and Tygar implement four types of electronic commerce

applications on top of a secure coprocessor. The implemented applications include: copy

protections for software, electronic cash, electronic contracts, and secure postage.

2.2.2 Three Main Features

The IBM 4758 is a tamper-responding, sealed device that has a processor, memory

storage, and fast crypto-support. The following three main features collectively enable

trusted computation on a remote site: tamper detection/response, secure bootstrapping,

and outbound authentication. I elaborate on the three features in the following sections.
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Tamper Detection/Response

An IBM 4758 contains measures to sense when tampering is occurring. Its memory

is zeroized and the rest of the device disabled upon detection of tampering. Specifically,

an IBM 4758 is wrapped with sensing grids which can detect tampering. The grids of con-

ductors are monitored by circuitry that can detect changes in the properties (open, short,

changes in conductivity) of the conductors. The conductors themselves closely resemble

the material in which they are embedded—making discovery, isolation, and manipulation

more difficult. These grids are arranged in several layers; the sensing circuitry can detect

accidental connection between layers as well as changes in an individual layer. Upon detec-

tion of tamper, the memory is zeroized which destroys the primary secret of the device, the

private key of an RSA or DSA key pair.

Secure Bootstrapping

Secure bootstrapping allows a secure coprocessor to amplify small amounts of

hardware security into broader system security. Specifically, the code blocks are organized

into a hierarchy of decreasing privilege levels. A typical hierarchy is Miniboot, OS, and

applications with Miniboot having the highest privilege. Each card is shipped with minimum

software configuration (Miniboot only). The trust is rooted in trusting the manufacturer,

the owner of the Miniboot. Operating system and/or application code is installed with the

secure bootstrapping architecture which gradually extends the trust boundary to include

OS and subsequently application software.
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Outbound Authentication

Outbound Authentication (OA) gives the ability for the code running on a secure

coprocessor to prove who it is to remote parties. At a high level, the outbound authen-

tication scheme creates chains of signed certificates. Based on the theoretical framework

developed by Sean W. Smith [38], when given chains of signed certificated, a relying party

will be able to authenticate a particular software entity within a particular untampered

platform. Specifically, the outbound authentication mechanism provided by the secure co-

processor ensures that it is indeed executing a known, trusted version of the application

code, running under a known, trusted version of the OS, and loaded by a known, trusted

version of the bootstrap code within a particular untampered platform.

2.2.3 Secure Coprocessor Aided Applications

Many applications have used secure coprocessors in their design. They include

auditable digital time stamping [42], secure e-commerce [48], secure fine-grained access

control [15], secure data mining [2], and private information retrieval [39]. Tiny trusted

devices were used for secure function evaluation in [25].

Using secure coprocessors, Bhattacharjee et al. developed a federated architec-

ture for privacy preserving collaborative data mining and analysis in [8]. The proposed

architecture, where a secure coprocessor serves as the federator, allows mutually distrustful

enterprises to mine their data in a privacy preserving way. In their setting, a typical com-

putation consists of two steps at the federator. The first is to join the tables residing with

different enterprises. The second step is to mine the resulting join table. Bhattacharjee et
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al. mentioned in passing that care should be taken to handle joins in a privacy preserving

way. However, they did not propose how to achieve this goal. As for the second step, they

propose two light weight data mining operations. Their work is not a complete solution to

privacy preserving data mining applications in the sense that it does not solve the privacy

preserving join problem.

Our work complements [8] in the sense that we address the question of privacy

preserving joins. We provide solutions to join various autonomous databases in a privacy

preserving way via a secure coprocessor. The join result of our solutions may be further

processed and used as the input to the lightweight data mining algorithms in [8].
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Chapter 3

Problem Formulation

This chapter formulates the problem we address in this dissertation. In Section 3.1,

we describe system requirements for privacy preserving joins on a secure coprocessor. In

Section 3.2, we give an overview of the system. In Section 3.3, we introduce the threat

model. Finally, in Section 3.4, we illustrate using classical nested loop joins some of the

subtleties of the problem. This investigation enables us to distill the design principles

underlying the proposed algorithms.

3.1 Desiderata

A system offering privacy preserving join service has the following desirable at-

tributes:

• The system should be able to handle general joins involving arbitrary predicates. The

national security application cited in Chapter 1 requires a fuzzy match on profiles.

Similarly, the patient records spread across hospitals may require complex matching
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in the healthcare application.

• The system should be able to handle multi-party joins. The recipient of the join result

can be a party different from one of the data providers.

• The recipient should only be able to learn the result of the join computation. No

other party should be able to learn the result values or the data values in someone

else’s input.

• The system should be provably secure. The trusted component should be small,

simple, and isolated [6].

3.2 System Overview

Our goal is to build a privacy preserving join service with a secure coprocessor.

Our computation model consists of a service provider and any number of service requestors.

A service provider includes a secure coprocessor T and a host H to which T is attached. H

is a general purpose computer which provides additional memory and disk space for T . For

simplicity, we refer to H’s memory and disk as its memory in the rest of the dissertation.

Service requestors are data owners and recipients of a join result which can be different from

the data owners. The data owners send their data to the service provider which computes

the join and distributes the results to the intended recipients. We assume authenticated

and secure communication channels between the service provider and individual service

requestors [12]. Similarly, any temporary value output by T to H is also encrypted. We

assume that the join algorithms and the join predicates are known to the parties.
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Without loss of generality, we will consider the two data provider cases in Chap-

ter 4. Specifically, two parties PA and PB that have private relations A and B are partic-

ipating in the privacy preserving join operation and the result C is sent to the party PC ,

which is not PA or PB. In Chapter 5, our treatment of the problem is in terms of arbitrary

numbers of data providers.

3.3 Threat Model

In our problem setting, the only trusted component is the secure coprocessor. All

other components, including H, are untrusted. We assume that no party (including H) can

observe the state of the computation inside T or tamper with the code loaded into it.

We distinguish two types of standard adversary models in this dissertation: Honest-

but-curious and malicious adversaries [16]. We show how to reduce a malicious adversary to

an honest-but-curious adversary later in this section. Consequently, our algorithm design

in the rest of this dissertation will exclusively focus on the honest-but-curious model.

Honest-But-Curious Adversaries. In this model, parties follow the prescribed pro-

tocol properly, but may keep intermediate computation results, e.g. messages exchanged,

and try to deduce additional information from them other than the protocol result. A pro-

tocol is privacy preserving if no party may learn additional information other than what

can be deduced from its input and output of the protocol.

Malicious Adversaries. In this model, parties may deviate arbitrarily from the

protocol. In particular, we cannot hope to avoid parties (i) refusing to participate in the

protocol, (ii) substituting an input with an arbitrary value, and (iii) prematurely aborting
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the protocol. We show how to detect other types of deviations in our problem setting next.

3.3.1 Detecting Malicious Behavior

Reducing a malicious adversary to an honest-but-curious one is done by using

cryptographic tools on T to detect malicious behaviors. In our problem setting, an honest-

but-curious adversary may observe H’s memory contents and the communications between

H and T during program execution. A malicious adversary can additionally modify H’s

memory contents. In this thesis, we propose to use authenticated encryption (see Sec-

tion 3.3.3) to detect memory tampering. Upon detection of such tampering, T terminates

the program execution immediately.

3.3.2 Hiding Memory Access Patterns

We address three issues in preventing an honest-but-curious adversary from learn-

ing additional information by observing T ’s program execution. The first is to prevent

timing attacks. One example of a timing attack is when an adversary can tell whether two

tuples match or not if it observes that T takes a different amount of time when comparing

two tuples that match and ones that do not. The standard approach to avoid timing attacks

is to pad the variance in processing steps to constant time by burning CPU cycles as needed

[15]. To keep the algorithm descriptions simple, we will not show the steps that burn CPU

cycles.

The second issue is to hide H’s memory content from an adversary. This is simul-

taneously achieved by using the authenticated encryption.

The third issue is to prevent an adversary from learning additional information
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from T ’s memory access pattern to H. Our definition for privacy preserving joins is built

on hiding memory access patterns.

3.3.3 Authenticated Computation

Given that nothing but T is trusted, we have the challenge of validating the

authenticity and protecting the secrecy of the computation done by T .

We use the outbound authentication mechanism (Section 2.2.2) provided by the

secure coprocessor to ensure that it is indeed executing a known, trusted version of the

application code, running under a known, trusted version of the OS, and loaded by a

known, trusted version of the bootstrap code.

We assume that PA and PB have signed a digital contract [15] prescribing what

data can be shared and which computations are permissible. T holds a copy of the contract

and serves as an arbiter of it. Contracts are kept encrypted at the server. At the start of a

join computation, T authenticates the identities of PA and PB to ensure that the parties it

is interacting with are indeed the ones listed in the contract. Then T sets up the symmetric

keys to be used with PA and PB respectively. Each party prepends its relation with the

contract ID and encrypts the two together as one message.

We require an encryption scheme that provides both message privacy and message

authenticity. Such schemes are called authenticated encryption and include XCBC, IAPM,

and OCB [14, 26, 35]. We choose OCB (which stands for “offset codebook”) over the other

two, as it requires the least number of block cipher operations (m+2 block cipher operations

to encrypt (resp. decrypt) m plaintext (resp. ciphertext) blocks). It is also provably

secure: (a) an adversary is unable to distinguish OCB-outputs from an equal number of
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random bits (privacy) and an adversary is unable to generate any valid 〈Nonce, Ciphertext,

Authentication Tag〉 triple (authenticity). The indistinguishability from random strings

implies that OCB is semantically secure [35], which ensures with high probability that

duplicate tuples will be encrypted differently.

Encryption under OCB [35] requires an n-bit nonce I where n is the block size.

The nonce would typically be an identifier selected by the sender. In OCB, two states,

Offset and Checksum, are computed accumulatively as blocks are sequentially encrypted.

The offset Z[i] is used in encrypting and decrypting block i where Z[0] = Ek(I ⊕ Ek(0n)),

Z[i] = f(Z[i−1], i) for i > 0 and some easily computable function f(·, ·). When encrypting a

plaintext block T [i], the ciphertext C[i] = Ek(T [i]⊕Z[i])⊕Z[i] for 1 ≤ i < m where m is the

total number of message blocks. The final cipher block C[m] = T [m]⊕Y [m][first|T [m]|bits]

where Y [m] = Ek(len(T [m])⊕ g(Ek(0n))⊕Z[m]), len(T [m]) the length of the final message

block, and g(·) some easily computable function. The state Checksum = T [1] ⊕ · · · ⊕

T [m − 1] ⊕ C[m]0∗ ⊕ Y [m] and the tag T = Ek(Checksum ⊕ Z[m])[first τ bits] where

C[m]0∗ represents padding the last cipher block to the block size. The first τ bits are the

authentication tag T . The nonce I and the ciphertext C[1] · · ·C[m−1]C[m]T are transferred

to the recipient.

When decrypting a ciphertext block C[i], the plaintext P [i] = E−1
k (Z̄[i]⊕ C[i])⊕

Z̄[i] for 1 ≤ i < m where Z̄[i] is computed from the received nonce. Let Y [m] =

Ek(len(C[m]) ⊕ g(Ek(0n)) ⊕ Z̄[m]). P [m] = C[m] ⊕ Y [m][first |C[m]| bit]. Checksum

= P [1]⊕ · · · ⊕ P [m− 1]⊕ C[m]0∗ ⊕ Y [m]. Let T ′ = Ek(Checksum⊕ Z[m])[first τ bits]. If

T ′ = T , then accept the message, otherwise reject.
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Since we use authenticated encryption, an adversary who does not know the key

cannot impersonate PA or PB, nor can it tamper with the encrypted tuples in any way that

will not be detected. Similarly, for communication of result from T to PC .

Thus, the only vulnerability that an adversary can hope to exploit is the pattern

in the interactions between H and T . Our algorithms are designed to thwart the adversary

from learning anything by observing this interaction.

3.4 Design Principles

We first present two straightforward, but unsafe, adaptations of the classical nested

loop join algorithm. We discuss them as they help derive the design principles underlying

our proposed algorithms.

3.4.1 A Straightforward, but Unsafe Algorithm

Here is a straightforward adaptation of the classical nested loop join algorithm.

T first obtains an encrypted tuple of A by sending a read request to H and decrypts the

tuple inside its memory. T then reads a tuple of B, decrypts it, and compares it with the

decrypted tuple of A. If the match succeeds, T encrypts the result tuple and outputs it to

H to write to disk. The above step is repeated for the rest of the tuples of B and then the

procedure is repeated for the rest of the tuples of A.

Unfortunately, this straightforward adaptation is not safe, although the input as

well as output values remain encrypted outside of T . An adversary (e.g., H colluding with

PA who does not receive the join result) can easily determine which encrypted tuples of
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A joined with which tuples of B, simply by observing whether T outputted a result tuple

before the read request for the next B tuple. If this information becomes available to PA,

then PA can determine which of its tuples have a match with a tuple of PB.

3.4.2 An Incorrect Fix

What if T waits for M tuples (or a random number of tuples < M) to be created

and then outputs them in a block? Unfortunately, the adversary can still estimate the

distribution of matches. In addition, the adversary can also launch timing attacks; since

encryption takes significant time, it can determine whether there was a match by monitoring

inter-request times for B tuples.

3.4.3 Principles

We can derive two important principles from the above discussion:

1. Fixed Time The evaluation of the join predicate and the composition of tuples should

take same time irrespective of whether the comparison yields a match.

2. Fixed Size There should not be any difference in the amount of output produced

irrespective of whether the comparison yields a match.
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Chapter 4

First Attempt on Privacy

Preserving Joins on Secure

Coprocessors

In this chapter, we attempted an initial definition of privacy preserving joins on

secure coprocessors. We proposed three algorithms which are provably secure with respect

to our definition and analyzed their performance. However, these algorithms are limited in

the sense that they leak a controlled amount of information by definition. We modify our

definition in the next chapter and arrive at a more general formulation.

The rest of the chapter is organized as follows. In Section 4.1, we give the sim-

plifying assumptions and notations. In Section 4.2, we define the correctness criteria for

proving the safety of the join algorithms. In Section 4.3, we make some observations that

apply to all proposed algorithms.
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In Section 4.4, we provide two provably safe algorithms for general join in which

the matching predicate can be an arbitrary function. They offer a range of performance

trade-offs under different operating parameters.

Section 4.5 is devoted to the study of equijoins. Surprisingly, adaptations of clas-

sical sort-merge join or hash join turn out to be unsafe. We then provide a safe algorithm.

In Section 4.6, we analyze the performance characteristics of the proposed algo-

rithms.

4.1 Assumptions and Notations

To simplify exposition, we will assume that the tuples of A, B, and C are of the

same size and that the free memory of the secure processor can hold at most M + 2 such

tuples. Note that we need to be able to hold at least two input tuples in memory during

the join processing and expressing memory size as M + 2 simplifies cost expressions. N is

the maximum number of tuples from B that match a tuple from A. Our algorithms have

been designed to handle the general case where M < N . We also assume that M is much

smaller than |A| or |B|.

We will omit from the algorithms the details of the communication between H,

PA, PB, and PC . Assume that PA and PB have sent their encrypted relations A and B

respectively to H, who has stored them on its local disk. Similarly, T writes the encrypted

join result to H’s disk (invoking the server process running on H), which H then sends to

PC . The algorithms will describe the code executed by T .

We will indicate a transfer of data from T to H by prepending the operation
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with the keyword put; the keyword get will indicate a transfer from H to T . We will use

encrypt(·) and decrypt(·) to denote the encryption and decryption functions respectively.

We will ignore the use of keys in these functions. We assume fixed size tuples and that the

server knows their size.

We do not discuss issues such as schema discovery and schema mappings. We

assume schemas can be shared. The design presented in [3] can be used for this purpose.

4.2 Definition of Privacy Preserving Joins

We discussed in Section 3.3 that an adversary can only infer information from the

pattern of interactions between the server and the secure coprocessor. Therefore, for an

algorithm running on a secure coprocessor to be safe, it must not reveal any information

from its accesses to the server. Building upon the definitions in [19], we formalize this

intuition as follows:

Definition 1 (Privacy Preserving Join Algorithms). Assume we have database relations

A, B, C and D, where |A| = |C|, |B| = |D|, A and C have identical schema, as do B

and D. For any given N (Section 4.1), let JAC (respectively, JCD) be the ordered list of

server locations read and written by the secure coprocessor during the join of A (resp. C)

and B (resp. D). The join algorithm is privacy preserving if JAC and JCD are identically

distributed.

If the access pattern is independent of the underlying data then the access pat-

tern will be identical for all the relations that satisfy the conditions given in Definition 1.

Therefore, to prove that an algorithm is safe, we will show that the access pattern does not
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depend on the data in the underlying relations.

4.3 Observations

The following remarks apply to all the proposed algorithms.

Safeguarding Against Timing Attacks The standard approach for avoiding timing

attacks is to pad the variance in processing steps to constant time by burning CPU cycles

as needed [15]. To keep the algorithm descriptions simple, we will not show the steps that

burn CPU cycles in any of the algorithms.

Decoys Our algorithms encrypt a decoy plaintext and output it if necessary to prevent

information leakage. Decoys are decrypted and filtered out by the recipient. They may

take the form of a fixed string pattern. The semantically secure encryption generates

indistinguishable cipher texts from multiple encryptions of the same plain text, which can

be recovered from any one of them at the time of decryption [35].

Setting N In some applications, N might be known a priori. A safe estimate for N

would be |B| but it can hurt performance, particularly if the actual value is much smaller.

Guessing N too small and rerunning the algorithm if the actual value happens to be larger

leaks information. A safe way to compute exact N would be to run a nested loop join,

but without outputting any result tuple. Note that this preprocessing step does not leak

information.
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Cost Analysis We will compare the cost of our algorithms in terms of the number of

tuple transfers between the secure processor and the server, assuming disk I/Os can be

pipelined with the transfers between the server and the secure coprocessor. Every time

the secure processor gets a tuple from the server, it is decrypted. Similarly, a tuple is

encrypted before the secure coprocessor outputs it to the server. Thus, the number of

transfers between the coprocessor and server also reflects the total number of encryption

and decryption operations.

4.4 General Join Algorithms

We present two algorithms for general joins in which the join predicate is specified

through an arbitrary match() function. A join in this general setting requires every tuple

of the outer relation to be compared with every tuple of the inner relation [9].

4.4.1 Algorithm 1

Algorithm 1 has been designed for secure coprocessors with small memories. It

outputs an encrypted join tuple if there is a match and an encrypted decoy of the same size

otherwise. Because of semantically secure encryption, all the decoy tuples will look different

and an adversary cannot decipher whether there was a match or not.

Using the above strategy, a straightforward algorithm will generate an output of

size |A||B|. Algorithm 1 generates N |B| output tuples by cleverly using scratch[] array

of size 2N allocated in H′s memory. In a pass over B, after processing every N tuples (a

round), T obliviously sorts scratch[] giving lower priority to decoy tuples. Consequently,
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Algorithm 1 For Secure Coprocessors with Small Memory
for each tuple a ∈ A do

put 2N encrypted decoy tuples to scratch[];

aT = decrypt(get a);

i = 0;

for each tuple b ∈ B do

bT = decrypt(get b);

if match(aT , bT ) then

put scratch[(i mod N) + N ] =

encrypt(join(aT , bT ));

else

put scratch[(i mod N) + N ] =

encrypt(join(decoy, decoy));

end if

i = i + 1;

if i mod N == 0 then

Obliviously sort scratch[] giving lower priority to decoy tuples;

end if

end for

if i mod N 6= 0 then

Obliviously sort scratch[] giving lower priority to decoy tuples;

end if

Request H to write first N of scratch[] to disk;

end for
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any joined tuples in the last N location of scratch[] will be moved to the first locations

of scratch[]. However, because of sorting being oblivious, an adversary cannot know the

boundary. After the last round, the first N locations of scratch[] will contain only the result

tuples and possibly some decoy tuples and the server writes them to disk.

Oblivious Sorting An oblivious sorting algorithm sorts a list of encrypted elements such

that no observer learns the relationship between the position of any element in the original

list and the output list. Oblivious sorting of a list of n elements using the Bitonic sort

algorithm proceeds in stages [7]. Assuming n is a power of 2, at each stage, the n elements

are divided into sequential groups of size 2i where i depends on the stage. Within each group,

an element is compared with one that is 2i−1 elements away. Each pair of the encrypted

elements is brought into the secure coprocessor, decrypted, compared, and re-encrypted

before they are written out to their original positions, and possibly swapped. There are a

total of approximately 1
2(log2 n)2 stages and 1

2n comparisons at each stage. Therefore, the

cost of oblivious Bitonic sort is 1
4n(log2 n)2 comparisons and n(log2 n)2 element transfers

between the secure coprocessor and the server.

Encryption Since both A and B are accessed sequentially, they can be encrypted using

the procedure described in Section 3.3.3. However, oblivious sorting of scratch[] requires

non-sequential access to its tuples. We next describe the encryption of tuples in scratch[]

in the OCB mode. For simplicity, assume that the size of a tuple is the same as the length

of one cipher block.

After an oblivious sort, the first N locations of the array scratch[] contain the
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joined tuples that T has seen so far and possibly some decoy tuples; the last N locations

contain N decoy tuples. Conceptually, the first N tuples in scratch[] and the N output

tuples from the next round will be treated as one message.

At the end of the last stage of an oblivious sort, T keeps the following two states for

continuing encryption in the next round: an offset Z[N ] and a Checksum = T [1]⊕· · ·⊕T [N ]

where T [i] are the plaintext of tuples in the first N locations in scratch[]. In the next round,

T encrypts the N output tuples as message blocks T [N + 1] through T [2N ] and computes

a tag for the entire message.

We next describe how to perform encryption and decryption when obliviously

sorting scratch[]. T generates a fresh nonce for re-encrypting output tuples at each stage

of the Bitonic sort. When comparing a pair of tuples, T decrypts scratch[i] and scratch[j],

compares them, then re-encrypts them with offsets Z̄[i] and Z̄[j] computed from the fresh

nonce for the current stage. T then computes Checksum = Checksum⊕P [i]⊕P [j]. At the

end of a stage, if T accepts the 2N tuples it just decrypted, it continues to the next step,

otherwise, it terminates the computation. After re-encrypting the last tuple for a stage, T

computes the tag for the 2N tuples it just encrypted and keeps this tag in the memory for

the authentication check at the next stage.

We next investigate the extra cost of encrypting n tuples (elements) non-sequentially.

As before, the size of a tuple is the same as the length of one cipher block. In Bitonic sort,

an element is compared with one that is half the distance away in the same group. In order

to decrypt the (n/2+1)th element without sequentially decrypting every tuple before it, we

apply the function f(·, ·) i = n/2 times to obtain Z[i + 1] = f(· · · f(f(Z[1], 2), 3) · · · , i + 1).
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Then the second element is compared with the (n/2 + 2)th element and Z[2] = f(Z[1], 2)

and Z[i + 2] = f(Z[i + 1], i + 2), and so on. Thus, within the same group, no additional

application of f(·, ·) is required except for the first pair. Hence, at a stage in which there

are j groups of size i where ij = n, the total additional f(·, ·) applications is 1
2 ij = n/2.

Since there are 1
2(log n)2 stages in Bitonic sort, a total of additional n

4 (log n)2 applications

of f(·, ·) are needed for sorting a set of n elements compared to sequentially encrypting n

elements at each stage.

Correctness (Proof Sketch)

For every tuple of A, the algorithm goes through the same number of rounds

(d|B|/Ne). In every round, T outputs the same amount (N tuples) to the same locations

of scratch[]. After all the rounds are over, T obliviously sorts scratch[], which accesses

scratch[] independent of the underlying data. Finally, the first N locations of scratch[] are

always accessed for writing the result tuples to disk. Thus, Definition 1 is satisfied.

Cost Analysis

During the execution of Algorithm 1, T gets |A| tuples from A and |A||B| tuples

from B. It outputs 2N decoy tuples for each a ∈ A, for a total of 2|A|N decoy tuples. For

each comparison of a ∈ A and b ∈ B, T outputs a result tuple, for a total of |A||B| output

tuples. For every a ∈ A and every block of N tuples in B, T obliviously sorts 2N tuples,

which leads to transferring a total of 2|A||B|(log2(2N))2 tuples into and out of T ’s memory.

Finally, the server writes N |A| tuples to disk.

Thus, in terms of the number of tuple transfers in and out of T ’s memory, the
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complexity of Algorithm 1 is:

|A|+ 2N |A|+ 2|A||B|+ 2|A||B|(log2(2N))2.

4.4.2 A Variant of Algorithm 1

Consider a variant of Algorithm 1 that also matches every tuple of B with every

tuple of A, but does not use scratch[]. Instead, for a given tuple of A, it writes |B|

tuples, result or decoys, to the memory of H. At the end of the pass, |B| output tuples

are obliviously sorted giving lower priority to decoy tuples and only the first N tuples are

saved.

The number of tuple transfers in and out of T ’s memory will now be |A|+2|A||B|+

|A||B|(log2 |B|)2. Assume |A| = |B|, and define α to be N/|B|. Clearly, Algorithm 1

outperforms this variant for small values of α; we do not discuss it further.

4.4.3 Algorithm 2

Algorithm 2 has been designed for secure coprocessors with larger memories. It

optimizes the use of the memory of the secure processor to reduce the number of output

tuples, while not leaking any information in the process.

Define γ = max(1, dN/(M − δ)e). Here δ represents the small amount of memory

needed for data structures other than those needed for holding the input and result tuples

(e.g. counters). For every tuple a of A, T reads entire B a total of γ times to find all

the matches for a. Conceptually, imagine partitioning the tuples from B that match a

into γ groups of dN/γe tuples each. During pass i over B, T computes the ith group of

the matched tuples and outputs them to H at the end of the pass. Note that unlike the
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standard blocked nested loop join in which the input relations are partitioned in chunks of

fixed size, the partitioning here is over the matched tuples.

Recall that N is the maximum number of B tuples that match with any of the

tuples in A. Clearly, there may be tuples in A that match with less than N tuples of B. In

that case, when T runs out of real join tuples, it outputs an appropriate number of decoy

tuples.

Since both A and B are accessed sequentially and the output tuples are also

produced sequentially, they can be encrypted using the procedure described in Section 3.3.3.

Correctness (Proof Sketch)

Every tuple of A causes γ passes over B. After every pass over B, T sends an

output of fixed size to H. Thus, the access pattern is independent of the underlying data

and Definition 1 is satisfied.

Cost Analysis

During the execution of Algorithm 2, T gets |A| tuples from A, γ|A||B| tuples

from B, and outputs N |A| tuples. Finally, the server writes N |A| tuples to disk.

Therefore, in terms of the number of tuple transfers in and out of T ’s memory,

the complexity of Algorithm 2 is:

|A|+ N |A|+ γ|A||B|.
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Algorithm 2 For Secure Coprocessors with Larger Memories
γ = max(1, dN/(M − δ)e); {#passes over B for every A tuple}

blk = dN/γe; {#output tuples in a pass}

for each tuple a ∈ A do

aT = decrypt(get a);

last = 0; {position of the last matched B tuple}

for i = 1 to γ do

matches = 0; {#matches in the current pass}

current = 0; {position of the current B tuple}

for each tuple b ∈ B do

bT = decrypt(get b);

if current > last and matches < blk then

if match(aT , bT ) then

joined[matches] = encrypt(join(aT , bT ));

matches = matches + 1;

last = current;

end if

end if

current = current + 1;

end for

append (blk −matches) encrypted decoy tuples to joined[];

put joined[] to H and request H to write joined[] to disk;

end for

end for
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Parameter Selection

We now discuss how to partition T ’s memory between the input and the result

tuples to minimize the number of transfers between T and H. Define F = M +1− δ where

δ represents the small amount of memory needed for data structures other than the input

and result tuples. We consider separately the following two cases: (1) N > F , and (2)

N ≤ F .

For Case (1), blocking of A is not helpful as we will explain momentarily in Sec-

tion 4.4.3. So, we keep only one tuple of A in memory and our problem becomes optimally

partitioning F between the tuples from B and the joined tuples. Let F = Fb + Fj where

Fb denotes the number of B tuples and Fj represents the number of joined tuples. The

goal is to find Fb and Fj such that the number of transfers for joining an A tuple with B is

minimized.

Observe that for each a ∈ A, it is optimal to scan B a total of γ = dN/(M − δ)e

times. For each scan of B, T outputs blk = dN/γe joined tuples where blk < M − δ. We

allocate M − δ− blk tuples for B tuples. So the partition is Fb = M − δ− blk and Fj = blk.

For Case (2), we partition the free memory of T among the tuples in A, B, and

the joined tuples. Let F = Fa + Fb + Fj , where Fa denotes the number of tuples from A,

Fb the number of tuples from B, and Fj the number of joined tuples. The goal is to find

Fa, Fb, and Fj such that the number of transfers for joining A with B is minimized.

Observe that when T can hold more than N tuples, it is optimal if T scans B at

most once for each a ∈ A. Define Q to be the largest integer such that Q(1 + N) ≤ F ,

i.e., T can hold Q tuples in A and all of their matching tuples in B up to QN matching
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tuples. Then the optimal way to partition the memory is Fa = Q, Fb = F −Q(1 + N), and

Fj = QN .

Understanding Blocking of A

We next discuss why blocking of A does not result in any performance gain.

Assume that we partition A into blocks of size K. For each tuple in a block, T

allocates a piece of memory to hold a maximum of N ′ < N joined tuples. T reads into

its memory one block L of A at a time. For each L, T scans the entire table B a total of

P = dN/N ′e times to find a maximum of PN ′ matching tuples for each tuple in A. Pad the

matching tuples for each a ∈ A to a total of PN ′ tuples. Conceptually, imagine partitioning

these tuples into P groups. During each pass i of B, T retains the ith group of the PN ′

matching tuples for each element in L and outputs to H the matching tuples at the end of

each pass.

The complexity of this algorithm is d|A|/KedN/N ′e|B| where d|A|/Ke represents

the number of blocks in A and dN/N ′e the number of scans of B per block. Assume that

|A| is an integer multiple of K, and N is an integer multiple of N ′ and M respectively.

Recall that the complexity for Algorithm 2 is γ|A||B|. Since KN ′ < M , blocking A is

computationally more expensive than the non-blocking case. In terms of transfers between

T and H, Algorithm 2 does |A|+ γ|A||B|+ N |A| tuple transfers while the blocking version

does |A| + d|A|/KedN/N ′e|B| + N |A| transfers. The non-blocking version performs less

transfers.
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4.4.4 Parallelism

Consider a server which has more than one secure coprocessor attached. It is

readily apparent that both the above algorithms (as well as the upcoming Algorithm 3) are

easy to parallelize with a linear speed-up in the number of processors.

4.5 Equijoin Algorithms

We now investigate the special, but important, case of equijoins. This study

turned out to be quite instructive, as we could not enhance some well known algorithms

with security features. We first report those false starts and then present a safe algorithm.

4.5.1 False Starts

We explore the adaptation of classical sort-merge join, grace hash join, and the

idea of commutative encryption from [5, 10, 21].

Sort-Merge Join (Unsafe)

Assume M = 10 and for a particular tuple a ∈ A there are 3 matches in B. After

the third match, when T reads the next tuple from B, it realizes that there are no more

matches in B for a. Therefore, T will read the next tuple from A. Such an execution will

reveal the number of matches for each tuple.
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Hash-based Join (Unsafe)

We consider the family of grace hash join algorithms [11, 29]. They begin by

partitioning A and B into disjoint subsets called buckets. Each bucket contains only tuples

with the same hash of the join attribute value. The corresponding buckets are then joined

to produce the result.

The algorithm below depicts our attempt to ensure that the partitioning of a

relation into bucket does not leak information. The basic idea is to fill any empty space in

all other buckets with decoy tuples as soon as one of them becomes full and output all of

them to the server.

Unfortunately, the partitioning phase unavoidably leaks partial information. 1

Obliviously shuffle A (see[24]);

for each a ∈ A do

aT = decrypt(get a);

Place encrypt(a) into the ith bucket, where i = hash(aT .joinattr);

if the ith bucket is full then

Fill all other buckets with decoy tuples and output all the buckets to H;

end if

end for

1For example, an adversary can distinguish between a uniformly distributed relation A and a highly
skewed one B. Let the size of a bucket be p tuples and let the number of buckets be n.

When partitioning A, all of the buckets will fill up at relatively the same speed. T will output the buckets
after it has read and hashed about np tuples. On the other hand, when partitioning B, one of the buckets
will fill up much faster than the rest. T will now output the buckets after reading a little more than p tuples.
By observing the difference in the number of tuples T reads between writes, an adversary may learn partial
information about the distribution of the values of the join attribute.
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Commutative Encryption (Unsafe)

We now consider an algorithm inspired by the idea of commutative encryption

used in [5, 10, 21].

The first encryption is done by the data providers before sending their relations

to H. Now, T executes the algorithm below. The key point is that T employs symmetric

encryption [36] using the same key for re-encrypting the two relations.

Obliviously shuffle A;

for each a ∈ A do

aT = decrypt(get a);

put symmetric encrypt(aT );

end for

Similarly re-encrypt B using same key;

Do sort-merge join on the encrypted relations; {Can be done by server}

Unfortunately, this adaptation is also unsafe (it leaks the distribution of the du-

plicates).

4.5.2 Privacy preserving Sort-Based Join (Safe)

We now present a safe sort-based equijoin algorithm. This algorithm can be viewed

as a specialization of Algorithm 1. Assume T has obliviously sorted B. The key insight is

that the B tuples that will join with an A tuple will come from at most N consecutive posi-

tions in B. This observation is used to avoid the processing of B in rounds and obliviously
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Algorithm 3 Sort-Based Join
Obliviously sort B on the join attribute;

for each tuple a ∈ A do

aT = decrypt(get a);

put scratch[] = N encrypted decoy tuples;

i = 0;

for each tuple b in B do

bT = decrypt(get b);

t = decrypt(get scratch[i mod N ]);

if bT .joinattr == aT .joinattr then

put scratch[i mod N ] =

encrypt(join(aT , bT ));

else

put scratch[i mod N ] = encrypt(t);

end if

i = i + 1;

end for

Request H to write scratch[] to disk;

end for
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sorting scratch[] after each round. The size of scratch[] now reduces to N tuples.

For every A tuple, Algorithm 3 initializes scratch[] with N decoy tuples. Now, for

every tuple that T reads from B, T also reads a specific location from scratch[] in a circular

fashion; for the ith tuple, T reads scratch[i mod N ]. T writes back to the same location

either the value just read (though encrypted differently so it is indistinguishable to the

adversary) or the joined tuple if the tuple from B matches the tuple of A. A logical concern

is how to avoid overwriting real result tuples from a previous match. The overwriting will

never happen because all the real result tuples will be in at most N consecutive positions

in scratch[].

To ensure authenticated computation, both A and B relations need to be encrypted

under OCB mode. Since A is accessed sequentially, it can be encrypted using the procedure

described in Section 3.3.3. However, B requires oblivious sorting. Hence, its encryption

should use the strategy described for encrypting scratch[] array in Section 4.4.1.

We now describe how to encrypt and decrypt tuples in scratch[] in the OCB mode.

We refer to T reading tuples from 0 to N − 1 in scratch[] as a round. In each round, T

treats the N tuples written to and read from and scratch[] as one message respectively. In

each round, if T accepts the N tuples it decrypted, it continues to the next round; otherwise

it terminates the computation. For the N output tuples in each round, T encrypts them in

the OCB mode with a fresh nonce and the same encryption key.

Correctness (Proof Sketch)

Since B is sorted obliviously, this step is safe. After getting a tuple from B, T

always reads a specific location from scratch[] and always writes something of the same
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size back to the same location. These actions are executed regardless of the content of the

underlying relations. Therefore, Definition 1 is satisfied.

Cost Analysis

T first obliviously sorts B leading to a total of |B|(log2 |B|)2 tuple transfers. Dur-

ing the rest of the execution, T gets |A| tuples from A and |A||B| tuples from B. For every

tuple of A, T outputs N decoy tuples, for a total of N |A| decoy tuples. For every tuple of

A and B, T gets a decoy tuple from H and outputs a result tuple, for a total of |A||B| gets

of decoy tuples and |A||B| puts of result tuples. Finally, the server writes N |A| tuples to

disk.

Thus, in terms of transfers in and out of T ’s memory, the complexity of Algorithm 3

is:

|A|+ |A|N + |B|(log2 |B|)2 + 3|A||B|.

If the data providers can send sorted data to the service, the step of oblivious

sorting can be avoided and the complexity becomes:

|A|+ |A|N + 3|A||B|.

4.6 Performance Analysis

In this section, we study the performance characteristics of the proposed algo-

rithms. We identify two important parameters:

• α = N/|B|
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• γ = dN/Me (ignoring 1− δ)

Note α ∈ [1/|B|, 1] assuming there is at least one matching tuple for every a ∈ A, and

γ ∈ [1, |B|].

Two other parameters that merit consideration are: (i) the size of the tuples, and

(ii) the size of the relations. The first plays an insignificant role in Algorithms 1 and 3.

For Algorithm 2, its effect can be understood by understanding γ. The running

time of the algorithms increases quadratically in terms of the size of the relations, but that

is what we expected. It is more interesting to study the performance with respect to α and

γ.

Taking |A| = |B|, we rewrite the cost formulas for the three algorithms as follows:

Algorithm 1 |B|+ 2|B|2 + 2α|B|2 + 2|B|2(log 2α|B|)2

Algorithm 2 |B|+ α|B|2 + γ|B|2

Algorithm 3 |B|+ 3|B|2 + α|B|2 + |B|(log |B|)2

4.6.1 γ = 1

We find that Algorithm 2 dominates the other two algorithms. To see this, set α

to 1 (the largest value it can take) for Algorithm 2 and set it to 1/|B| (the smallest value)

for Algorithms 1 and 3 and examine the cost formulas.

Note γ is 1 when the maximum number of B tuples that join with any of the

A tuples can fit in the free memory of T . It is interesting that in this case, Algorithm 2

designed for general joins beats a specialized algorithm that works only for equijoins. The

relative performance gap increases as the size of the relations increases.
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4.6.2 General Joins, γ > 1

Algorithm 1 outperforms Algorithm 2 when γ > 2 + α + 2(log 2α|B|)2. Let’s

substitute 1
|B| for α (the smallest value it can take). Algorithm 1 outperforms Algorithm 2

when γ > 4, i.e., N is more than 4 times the free memory of the secure coprocessor. For a

fixed table size |B|, as α increases, γ also increases.

4.6.3 Equijoins, γ > 1

Both Algorithms 1 and 3 are insensitive to γ. To compare them, let us substitute

α in the last term in the cost formula for Algorithm 1 with 1/|B|, the smallest value α

takes. We rewrite the cost formula for Algorithm 1 as |B|+ 2|B|2 + 2α|B|2 + 2|B|2. Then

the comparison of Algorithm 3 to Algorithm 1 reduces to comparing |B|(log |B|)2 and

α|B|2 + |B|2. In this case, Algorithm 3 outperforms Algorithm 1 for any value of α and |B|.

Finally, let us compare Algorithm 3 to Algorithm 2. Their cost comparison boils

down to comparing 3|B|2 + |B|(log |B|)2 with γ|B|2. When γ ≤ 3, Algorithm 2 outperforms

Algorithm 3 regardless of the value of |B|. When 3 < γ < 4, Algorithm 3 outperforms

Algorithm 2 for sufficiently large |B|. When γ ≥ 4, Algorithm 3 outperforms Algorithm 2

whenever |B| ≥ 1.

4.6.4 Performance Relationship Summary

Figure 4.1 summarizes the performance relationship among the three algorithms.
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Figure 4.1: Performance Relationship

4.6.5 Comparison with Secure Function Evaluation

We now compare the performance of the proposed algorithms to the technique

for secure function evaluation (SFE), based on secure circuit evaluation [17, 45]. Since

Algorithm 2 performs better than Algorithm 1, we will conservatively compare Algorithm 1

to the most recent (and to the best of our knowledge, most efficient) technique, provided

in [32, 34].

We will compare the number of communications in this analysis. We are again

being conservative; we are comparing communication between the secure coprocessor and

the server it is attached to in the case of Algorithm 1 to the communication across wide-area

network in the case of SFE.

Assume |A| = |B| and that each tuple is w bits wide, that the output has |B|Nw

bits, and that the circuit for matching two w-bit tuples requires Ge(w) gates. Then a secure

circuit for general join will have at least |B|2Ge(w) gates. Note that Ge(w) ≥ 2w in the

simple case that two tuples are matched if their L1 Norm is smaller than some threshold.

Assume k0 is the number of bits in the supplemental keys used while building
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the circuit, the cheating probability of PA is exponentially small in l, and the cheating

probability of PB is exponentially small in n. In practice, ko ≥ 64 and l = n ≥ 50.

PA and PB need to make at least |B|w 1-out-of-2 oblivious transfers where each

oblivious transfer uses one public key encryption, 4l|B|2Ge(w) pseudo-random function

evaluations, 2l|B|wN public key encryptions for partial proofs of knowledge and gradual

opening of commitments, and nl|B|wN public key encryptions for blind signatures.

PA needs to send 2l copies of 4koB2Ge(w) bit encrypted circuit to PB and send at

least 32lk1 bits for each oblivious transfer. Here, k1 is the security parameter for oblivious

transfer; k1 ≥ 100 in practice. PB sends 2nl|B|wNk1 bit commitments to PA.

Total communication cost can thus be estimated as

8lko|B|2Ge(w) + 32lk1(|B|w) + 2nlNk1(|B|w).

To compare the communication cost of SFE and our solutions in bits, we multiply the cost

formula for Algorithm 1 with w. Let k0 = 64, k1 = 100, l = n = 50, their minimum values

suggested in [32], and take Ge(w) = 2w. For low values of α, it can be seen that SFE can

be orders of magnitude slower.
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Chapter 5

Privacy Preserving Joins on Secure

Coprocessors

In this chapter, we further study privacy preserving join algorithms on secure

coprocessors based on our initial attempt in the previous chapter.

In Section 5.1, we point out two problems in our previous definition of a privacy

preserving join in Chapter 4. We then remove the assumption of the number N in this

previous definition and arrive at a more general formulation of the problem.

In Section: 5.2, we describe the assumptions, notations, and cryptographic tools

we use in this chapter. In Section 5.2.2, we optimize the performance of the oblivious sort

algorithm used in Chapter 4. In Section 5.2.3, we describe our usage of a pseudo random

number generator to avoid materializing a table of the cartesian product of multiple tables.

In Section 5.3, we propose three provably correct and secure algorithms to compute

general joins of arbitrary predicates. Our solutions overcome the challenge of the limited
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memory capacity of a secure coprocessor, by utilizing available cryptographic tools in a

nontrivial way. We discuss different memory requirements of our proposed algorithms, and

explore how to trade little privacy with significant performance improvement.

In Section 5.4, we evaluate the performance of our algorithms by numerical exam-

ples and show the performance superiority of our approach over that of secure multi-party

computation.

5.1 New Definition of Privacy Preserving Joins

In this section, we describe the safety definition formalized in Chapter 4 and point

out three problems, two privacy related and one performance, implied by the definition. We

then define what it means for an algorithm running on a secure coprocessor to be privacy

preserving with respect to an honest-but-curious adversary. For the sake of simplicity, we

henceforward only say an algorithm is privacy preserving when the context is clear.

5.1.1 Problems in Previous Definition

We stated in Chapter 1 that for an algorithm to be privacy preserving, it must not

reveal any information from its accesses to H. The assumption of honest-but-curious ad-

versaries model is implicit in the statement. We quote our definition of a privacy preserving

join on a secure coprocessor in Chapter 1 as follows:

Definition 2. [Privacy Preserving Join Algorithms] Assume we have database relations A,

B, C and D, where |A| = |C|, |B| = |D|, A and C have identical schema, as do B and D.

For any given N (representing the maximum number of tuples in B (resp. D) that match
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a tuple in A (resp. C)), let JAC (respectively, JCD) be the ordered list of server locations

read and written by the secure coprocessor during the join of A (resp. C) and B (resp. D).

The join algorithm is privacy preserving if JAC and JCD are identically distributed.

The fundamental goal of a privacy preserving join algorithm is to reveal no infor-

mation other than what can be inferred from the join result. Although the above intuition

for a privacy preserving join algorithm is correct, we point out two problems in Definition 2

that cause the algorithms satisfying the definition to leak more information than what we

expect from the fundamental goal.

Firstly, the assumption of the number N permits join algorithms to leak the knowl-

edge of N by definition. All of the proposed algorithms in 4 produce a fixed output of N |A|

equal sized tuples which is a super set of the real join results. An adversary who sits between

H and a recipient of the join result may estimate N once it observes the size of the output,

given it knows |A| and the size of a join tuple. Another way for an adversary to learn N is

by eavesdropping the communication between H and T since T outputs result tuples to the

external memory and disks in batches of N . We find it unnecessary and not well justified

in practice for a join algorithm to reveal N . In particular, there might be cases where N is

sensitive information and shall not be made public.

Secondly, lacking of an explicit requirement of a join result allows a recipient

to infer more information than had it received exact join results . Definition 2 does not

explicitly prescribe the join result which allows the algorithms in Chapter 4 to produce a

superset of the real join result and leak information. The algorithms in Chapter 4 are nested

loop join based. For a tuple a ∈ A, if a matches N ′ < N tuples in B, these algorithms
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generate an extra N − N ′ decoy tuples to pad the output to a group of N tuples. Since

decoy tuples are simply fixed string patterns of the same length as real join tuples (see

Chapter 4), a recipient is able to determine the number of real joins per group and derive

statistics of the number of joins per tuple in A. This knowledge would not be available to

a recipient had it received only the real join tuples.

In terms of performance, the decoy tuples in the final join result incur unnecessary

overhead. The algorithms in Chapter 4 output a fixed amount of N |A| join tuples regardless

of the actual join result size. This is not ideal for most of the applications. In particular,

for a highly skewed join result set, this output size may dramatically exceed the size of

the original query result. Consider a worst case scenario: let one of the tuples in A match

all the tuples in B and none of the rest of the tuples in A matches any tuple in B. The

proposed algorithms in [4] produce an output of size |A||B| whereas the actual join size is

only |B|. The situation is aggravated when joining multiple tables A1, . . . , Ai. In the worst

case, the output size can be |A1| · · · |Ai| whereas the real join size is merely a small portion

of it.

5.1.2 Proposed Definition

We define privacy preserving joins with respect to honest-but-curious adversaries.

We distinguish our definition from Definition 2 in three aspects: a) removal of the assump-

tion of N , b) an explicit requirement of a join algorithm to compute exact join results with

no additional padding, and c) extension to the multi-party scenario.

In Definition 3, we are given two sets of input tables Ai’s and Bi’s where Ai and

Bi having the same size and schema respectively, and joining all Ai’s produces the same



51

output size as joining all Bi’s over the same query. Definition 3 asserts that an algorithm

computing the query in question is privacy preserving if the distribution of the memory

access patterns when running the algorithm on inputs Ai’s is identical with that when

running it on Bi’s. Alternatively, we say a join algorithm is privacy preserving if its access

pattern is independent of the input tables.

Definition 3. [Privacy Preserving Joins]Let f : Dm 7→ D be an m-way join function

where D is any database and A an algorithm that computes f . Assume arbitrary databases

Ā = (A1, . . . , Am) and B̄ = (B1, . . . , Bm) where |Ai| = |Bi|, Ai and Bi have identical

schemas respectively, and |f(Ā)| = |f(B̄)|. Let JĀ(resp. JB̄) be the ordered list of host

locations a secure coprocessor reads and writes during the execution of A on Ā (resp. B̄).

Then A is privacy preserving if JĀ and JB̄ are identically distributed.

5.2 Preliminaries

This section describes the assumptions, notations and cryptographic tools used in

this chapter.

5.2.1 Assumptions and Notations

Assume J participating databases X1, . . . , XJ . Let D = X1 × · · · × XJ , L =

|D|, I = {1, . . . , L}, and iTuple be an element in D. Let R denote the set of the join

results with size S. For the ease of exposition, we assume that D is materialized in H’s

memory. When joining J tuples, our proposed algorithms refer to the logical index of the

corresponding iTuple in D instead of the indices of the J tuples in their respective tables.



52

In real implementation, a logical index can be easily converted into the individual index of

each of the J tuples and D need not be materialized.

Let a decoy be a string of a fixed pattern with the same length as a real join result.

When encrypted, two decoys appear completely indistinguishable. To avoid information

leakage, T outputs a decoy when it needs to output something but there is no real join

result. oTuple stands for an output tuple. An oTuple can be either a real join result or

a decoy and a tuple can be either an iTuple or oTuple. Without loss of generality, We

assume that an iTuple and oTuple have the same constant size. We assume a constant

memory space allocated for iTuples, program code, and other necessary data structure

and variables. Let M in unit of tuples be the free memory of T and we assume that M is

dedicated to the storage of oTuples. In our discussion of communication cost, we state the

cost in terms of tuples.

5.2.2 Oblivious Sort

We use oblivious sorting as a cryptographic building block in our proposed al-

gorithms. In this section, we optimize the performance of the oblivious sort used in Sec-

tion 4.4.1 of Chapter 4.

Our algorithms require removing the generated decoys in a privacy preserving way.

Assume a list of encrypted output tuples on H’s memory, some of them are real join results

and some are decoys. One way to remove the decoy tuples is as follows: T reads a tuple,

decrypts it, and outputs nothing if it is a decoy. Otherwise it re-encrypts the tuple and

outputs the encrypted tuple. An adversary that observes earlier program execution knows

which iTuple produces the tuple that T just read. It will be able to determine that this
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particular iTuple does not produce a match if it sees no output at this time. What if

T reads a block of K tuples at a time, then outputs the real joins? Unfortunately, the

adversary can still estimate the distribution of the matches.

We propose using oblivious sort to remove the decoys in a privacy preserving

and efficient way. Suppose we want to keep µ target elements in a list of length ω and

remove the rest. The target elements are the real join results. A straightforward way is to

obliviously sort the entire list, separate the unwanted elements from the rest, and remove

them. This results in a cost of 1
4ω(log2 ω)2 comparisons and ω(log2 ω)2 element transfers

between the secure coprocessor and the host. Alternatively, we propose applying oblivious

sort on smaller portions of the list repeatedly to improve efficiency.

First, we create a buffer of µ+∆ elements, where ∆ is the size of a swap area. We

copy µ + ∆ elements from the source list to the buffer, and obliviously sort them to keep

the target elements in the top µ positions in the buffer. Since at most µ elements are kept,

the bottom ∆ elements in the swap area can be overwritten. We copy another ∆ elements

from the source list, and overwrite the bottom ∆ elements. We obliviously sort the buffer

again to keep all the wanted elements in the top positions.

This process is continued until all elements in the source list are processed. The

top µ elements in the buffer are now the desired elements to keep. During the process, we

need to obliviously sort the buffer ω−µ−∆
∆ + 1 times, and each time we need to perform

µ+∆
4 [log2(µ + ∆)]2 comparisons. Therefore, the total number of comparisons, denoted as

C(ω,µ)(∆), is given by C(ω,µ)(∆) = ω−µ
∆

µ+∆
4 [log2(µ + ∆)]2. The number of element transfers

is merely 4C(ω,µ)(∆)
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Given ω and µ, it is possible to minimize the total number of element transfers

between the secure coprocessor and the host, by carefully selecting ∆. The optimal ∆,

denoted as ∆∗, can be found by solving the following optimization problem:

∆∗ = arg min
∆>0

4C(ω,µ)(∆). (5.1)

Since ∆∗ also minimizes log[C(ω,µ)(∆)], ∆∗ can be found by solving

∂

∂∆
log[C(ω,µ)(∆)] =

µ

∆
− 2

log2(µ + ∆)
= 0.

As such, ∆∗ is the first quadrant intersection point of the two curves ∆
µ and log2(µ+∆)

2 , and

does not depend on ω.

5.2.3 Generating Random Order

Algorithm 6 in Section 5.3 needs to randomly access every tuple in D exactly

once. T could generate a random permutation over I, then access D based on this random

order. Materializing a random permutation over a large index set is slow and requires a

lot of storage space. We propose using a Pseudo Random Number Generator (PRNG) to

generate a random permutation on the fly.

A special PRNG, Maximal Linear Feedback Shift Register (MLFSR) with n in-

ternal states generates all possible integers in {1, . . . , 2n − 1} before it produces repeated

values. For an index set I, we choose an MLFSR with l internal states where l is the

smallest integer such that 2l − 1 ≥ |I|. Calling the MLFSR 2l − 1 times will eventually

generate every number in {1, . . . , 2l − 1} exactly once. A generated number that is outside

I is simply discarded.
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5.3 Privacy Preserving Joins

In this section, we present three join algorithms designed for a secure coprocessor

T and discuss their communication cost and privacy preserving level. In the algorithm

description, function satisfy(·) takes an iTuple as input and outputs true if the iTuple

satisfies the join predicate and false otherwise. The function join(·) takes an iTuple as

input and returns a join result.

For simplicity, we treat only the plaintext databases and skip the discussion of

the cryptographic operations including encryption, decryption, and MAC authentication

throughout our description of the algorithms. These related topics have been covered in

Section 5.2.

5.3.1 Algorithm 4 for Secure Coprocessors with Small Memory

Intuitively, if T always outputs a tuple regardless of whether there is a real join

or not, then the communication patterns between T and H are independent of the contents

of the participating databases. Consequently, an adversary does not learn any information

on the contents of the participating databases by observing the traffic between the T and

H. We turn the intuition into Algorithm 4.

For participating databases X1, . . . , XJ , T sequentially reads iTuples in a prede-

fined and fixed order, writes a join result to H if the current iTuple leads to one, and writes

a decoy otherwise. Hence, Algorithm 4 always outputs L oTuples, regardless if there are

only S real results.

After reading all tuples, T has output all S real results and L−S decoys. Next, T
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Algorithm 4 : For Secure Coprocessors with Small Memory
for each iTuple do

if satisfy(iTuple) then

write join(iTuple) to H

else

write a decoy to H

end if

end for

optimally oblivious sort outputs giving priority to decoys

remove decoys and output S results

filters out the decoys in oTuples by obliviously sorting the oTuples, giving priority to the

decoys. T then reads in all oTuples, removes the decoy tuples, and outputs the real joins.

The advantage of this algorithm is that it only requires a memory size of two,

of which one for an iTuple and the other for an oTuple and also a memory size of two

during the oblivious shuffling phase. Meanwhile, this implies that Algorithm 4 does not

take advantage of a large memory, resulting in significant communication cost when S is

much smaller than L, which is typically the case.

Proof of Security

Proof. From the description of Algorithm 4, the communication patterns between T and H

are determined by the input size L and the output size S alone, and thus are independent of

the contents of X1, . . . , XJ . Algorithm 4 satisfies Definition 3 and is privacy preserving.
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Communication Cost

The communication cost is L for read and write respectively, and L−S
∆∗ (S+∆∗)[log2(S+

∆∗)]2 for oblivious sort, where ∆∗ is the optimal swap size given by Eqn. 5.1 with ω = L

and µ = S. We summarize the total communication cost in the following:

2L +
L− S

∆∗ (S + ∆∗)[log2(S + ∆∗)]2. (5.2)

5.3.2 Algorithm 5 for Secure Coprocessors with Large Memory

We observe that a significant portion of the communication cost of Algorithm 4 is

from obliviously filtering L − S decoys. One way to remove this portion of cost is to only

write out the real results by doing the following: for participating databases X1, . . . , XJ ,

T sequentially reads iTuples in a pre-defined order. If the current iTuple leads to a join

result, T stores it in its memory.

If T flushes all M results in its memory toH whenever the memory is full, assuming

T processes N iTuples between two flushes, then an adversary who observes the commu-

nication patterns knows that there are M results in these N iTuples. This information

leakage undermines the privacy preserving property of the algorithm.

To address this problem, T can write out the stored M results only after scanning

all L iTuples. T keeps repeating this process until it outputs all S join results.

Consequently, M results are written out to the host machine every L tuples; the

writing cycle is L tuples and the writing efficiency is M
L .

To avoid recording the same join result twice, T records the index of the iTuple

that leads to the previous join result, and only starts to store a result if the current index
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exceeds the recorded one. The resulting Algorithm 5 is shown below.

Proof of Security

Proof. The secure coprocessor reads L iTuples sequentially a total of dS/Me times. After

each but the last scan of the L iTuples, the secure coprocessor outputs M result tuples.

It outputs L − (d S
M e − 1)M tuples after the last scan. The communication patterns are

determined by the input size L, the output size S, and the memory size M of the secure

coprocessor, and thus is independent of the contents of X1, . . . , XJ . Algorithm 5 satisfies

Definition 3 and is privacy preserving.

Communication Cost

The write cost S of Algorithm 5 is clearly minimal. The read cost is d S
M eL, because

T spends d S
M e write cycles to output all S results to H, and T reads all L iTuples in each

cycle. Hence, the total communication cost is then given by

S + d S

M
eL. (5.3)

As the memory size M increases, the communication cost decreases roughly proportionally

to 1/M and the cost reduction is more significant in the region where M is small, as

illustrated in Figure 5.1. The communication cost approaches the minimum S + L, as M

approaches S.

5.3.3 Algorithm 6 for Trading Privacy Preserving Level with Efficiency

In Algorithm 5, during each write cycle, T has to read all iTuples before it outputs

the M results stored in its memory. When M ¿ S, T spends a large number of write cycles
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Algorithm 5 : For Secure Coprocessors with Large Memory
// lindex: largest index of iTuple that leads to a join

// pindex: index of iTuple of previous join

lindex := 0; pindex :=-1

while pindex < lindex do

prepare to read one round of iTuple in a fixed order

for each iTuple do

if satisfy(iTuple) && current index > pindex then

store join(iTuple) in memory

if current index > lindex then

lindex := current index

end if

end if

if memory is full then

write M results to H

pindex := current index

end if

end for

end while

output S results
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to output all S join results, resulting in a high read cost. One way to improve the efficiency

is to shorten the write cycle.

We assume that T knows L and S, and is able to randomly read every iTuple

once and only once. This can be done by reading the tuples according to an order generated

by a PRNG, as we discussed in Section 5.2.3.

To achieve better write efficiency, T can first partition L randomly ordered iTuples

into L
n segments, each containing randomly selected n tuples. As T processes a segment,

it stores the join results in its memory. T writes all stored results to H after finishing

processing one segment. It repeats the process until completing all segments. T then

obliviously filters out the decoys and outputs the real results.

If the number of join results generated for a segment is no more than the memory

size, i.e. K <= M , then T simply writes out M oTuples with M −K decoys. In this case,

T can achieve a write efficiency of M/n, which is better than the one of Algorithm 5.

However, in the case where K > M , T will not able to output all the join results

in one pass and will need to access this segment again to output the missing results. Al-

ternatively, T can use Algorithm 5 to re-output all the join results. Nevertheless, these

“salvage actions may lead to information leakage and compromise the privacy preserving

property of the join process. We refer to this case as a blemish case.

It is certainly a design goal to minimize the probability of such a blemish case.

Let x(n) be a random variable denoting the number of join results in n randomly selected

iTuples. Denote the event of having k results in these n iTuples. The probability of

x(n) = k is the same as the probability of having k balls of certain color out of n balls, which
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are selected from L balls in a non-replacement fashion. By a simple counting argument,

this probability is given by

P [x(n) = k] =
1(
L
n

)
(

L− S

n− k

)(
S

k

)
, (5.4)

As such, P [x(n) ≤ M ] is given by

P [x(n) ≤ M ] =
1(
L
n

)
M∑

k=1

(
L− S

n− k

)(
S

k

)
(5.5)

The probability for a blemish case to happen, i.e., at least one of the segments

contains more than M join results, is bounded by L
nP [x(n) > M ], the so-called union bound.

We denote this bound as PM (n). It is then crucial to make PM (n) be acceptably small.

Intuitively, the larger the segment size n, the higher the chance a blemish case

happens, and the less privacy preserving a join process is. Meanwhile, a larger n also

implies fewer decoys generated to pad the output for each segment to M oTuples, which

in turn reduces the cost of obliviously filtering the decoys for final output. We see a clear

trade-off between efficiency and level of privacy preserving in the process described above.

Let 1 − ε be a privacy preserving parameter where ε ∈ [0, 1] can be chosen to be

arbitrarily small. The optimal segment size, denoted by n∗, is the minimum n that satisfies

PM (n) < ε. n∗ can be found by solving the following problem:

n∗ = arg min
n>0

n subject to PM (n) < ε. (5.6)

The significance of n∗ is that, if T processes iTuples by this optimal segment size n∗, then

a blemish case will happen only with probability ε.

Following above analysis, we propose Algorithm 6 with a privacy preserving guar-

antee of probability 1− ε where ε ∈ [0, 1].
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Algorithm 6 : For Trading Privacy Preserving Level with Efficiency
screen all iTuples to get L and S

compute n∗ from Eqn. 5.6

use PRNG to generate a random order for reading iTuples

p1 :=0; p2 :=0

for each iTuple do

increment p2

if satisfy(iTuple) then

record join(iTuple) in memory

end if

if p2 − p1 == n∗ || p2 == L then

output max(S, M) real results and decoys to H

p1 := p2

end if

end for

optimally oblivious sort output giving priority to decoys

remove decoys and output S results
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Figure 5.1: Communication cost of Algorithm 5 as a function of memory size M , under
setting L = 640, 000 and S = 6, 400.

Proof of Correctness and Security

Proof. In the algorithm description, the communication patterns between T and H during

the entire process are only functions of L, S and M , and thus are independent of the

contents of X1, . . . , XJ .

Algorithm 6 outputs all S real results and is correct if a blemish case does not

occur. Hence, its correctness is guaranteed with probability 1− ε.

When a blemish case occurs, T will not be able to record and output all the results

for the current segment. Consequently, the number of total real results written to H is less

than S and the join process is not correct. In this case, T needs to perform “salvage” actions,

which might leak additional information about the contents of participating databases.

However, the probability for such events to happen is bounded by ε.
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Figure 5.2: Communication cost of Algorithm 6 as a function of ε, under setting L =
640, 000, S = 6, 400, and M = 64.

Based on the above argument, Algorithm 6 is privacy preserving with probability

at least 1− ε.

Communication Cost and Trade-off between Privacy Preserving Level and Ef-

ficiency

The read cost of Algorithm 6 is merely 2L: L for screening and L for actual

processing. The write cost of A3 consists of two portions: one of outputting the results and

the other of oblivious sort. The first portion costs d L
n∗ eM ; the oblivious sort part costs

d L
n∗ eM − S

∆∗ (S + ∆∗)[log2(S + ∆∗)],

where ∆∗ is the size of the swap area that minimizes the cost for obliviously filtering

d L
n∗ eM − S decoys. We compute ∆∗ by solving the problem in Eqn. 5.1, with ω = d L

n∗ eM
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Figure 5.3: Communication cost of Algorithm 6 as a function of M , under setting L =
640, 000, S = 6, 400 and ε = 10−20.

and µ = S. The total communication cost of Algorithm 6 is then given by

2L + d L

n∗
eM +

d L
n∗ eM − S

∆∗ (S + ∆∗)[log2(S + ∆∗)] (5.7)

for the case where ε 6= 0 and M < S.

As ε increases, the privacy preserving level drops. Algorithm 6 can increase the

segment size n∗ while still keeping the chance of encountering blemish cases being less

than ε. Consequently, the communication cost of Algorithm 6 deceases monotonically as ε

increases, as shown in Figure 5.2.

Based on the same argument, the communication cost of Algorithm 6 increases

as ε decreases. In the extreme case where ε = 0 and M < S, n∗ can only be M . In this

case, T writes out one real result or decoy upon processing every iTuple, and Algorithm 6

reduces to Algorithm 4.
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From Figure 5.2 we observe that decreases in the communication cost of Algorithm

6 is less significant as ε approaches 1. For example, the cost reduction is more than 1.3×107

as ε increases from 10−60 to 10−50, while the reduction is only less than 107 as ε increases

from 10−20 to 10−10. This implies that it is more profitable to trade privacy preserving level

with efficiency when ε is small than when it is large.

As the memory size M increases, Algorithm 6 can increase the segment size n∗

while still maintaining the same privacy preserving level 1−ε. In the case where M ≥ S and

n∗ = L, Algorithm 6 ends up outputting all S results at the end of the screening process1

and the communication cost is the minimum L + S. This relation between communication

cost and M is illustrated in Figure 5.3.

Similar to the relationship between cost reduction and ε, the cost reduction is more

significant for a small M (with respect to S) than that for a large M . Hence, to improve

efficiency, upgrading memories yields more gain when M is small than when it is large, with

respect to a target S.

5.3.4 Comparison of Algorithms 4, 5 and 6

We compare levels of privacy preserving and communication costs of Algorithms

4, 5, and 6 in Table 5.1.

As seen from Table 5.1, Algorithm 4 and 5 guarantee 100% privacy preserving,

while Algorithm 6 guarantees (1− ε)× 100% privacy preserving, which is by design. How-

ever, as ε can be chosen to be arbitrarily small to meet practical needs, we believe Algorithm
1It is easy to see T can record join results in its memory during the screening process. If the memory is

not full after screening all iTuples, then T knows it has recorded all S results and is ready to output them.
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Privacy Preserv- Communication Cost

-ing Level

4 100% 2L + L−S
∆∗ (S + ∆∗)[log2(S + ∆∗)]2

5 100% S + d S
M eL

6 (1− ε)× 100% 2L + d L
n∗ eM +

d L
n∗ eM−S

∆∗ (S + ∆∗)[log2(S + ∆∗)]2

(for the case ε 6= 0 and M < S)

Table 5.1: Level of privacy preserving vs. communication cost.

6 is practically as secure as Algorithm 4 and 5. For example, if ε = 10−10, then on average,

Algorithm 6 performs a “salvage” action once every 1010 trials.

In general, Algorithm 4 has the highest communication cost among the three

algorithms. Directly comparing the communication costs of Algorithm 5 and 6 is difficult.

The communication cost of Algorithm 5 mainly depends on the write efficiency M
L , while

that of Algorithm 6 mainly depends on the cost associated with oblivious filtering.

For large L and small M with respect to S, the write efficiency of an algorithm

dominates the communication cost. Algorithm 5 has low write efficiency; hence, Algorithm

6 outperforms Algorithm 5 in terms of communication cost. This is illustrated in the next

section.

In cases where M is close to S, Algorithm 5’s write efficiency M/L is high with

respect to the optimal value S/ L. Consequently, Algorithm 5 might have less communi-

cation cost than that of Algorithm 6. Algorithm 5 might be attractive in some scenarios
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considering its preservation of privacy and ease of implementation for it does not require

oblivious sort or random access to iTuples.

5.3.5 Parallelism

When more than one T is available at the same H, it is possible for the proposed

algorithms to run parallelly to speed up the join process. Assume a total of P secure

coprocessors.

For Algorithm 4, parallelly processing iTuples and generating oTuples can be

achieved by simply partitioning the iTuples into P sets and allocating one set to one

coprocessor to process. Oblivious filtering out decoys in parallel requires a parallel bitonic

sort. Assume we have N items to sort on P secure coprocessors where N > P . Each secure

coprocessor has about N/P items and first sorts them locally using sequential bitonic sort.

Then the P secure coprocessors sort the P sorted lists using bitonic sort and treats each

list as one single element.

For Algorithm 5, one T serves as the coordinator of parallelism. It screens the

iTuples and calculates the output size S. Without loss of generality, we assume that S

divides P , and so denote blk = S
P . The coordinator then asks the ith T to output a total

of blk join results starting from [(i − 1)blk]th join results. It is necessary that all T s read

the iTuples in the same predefined and fixed order. Algorithm 5 enjoys a linear speed up

in performance.

For Algorithms 6, the input partitioning is done through the use of the maximal

LFSR. All T seed their maximal LFSR with the same value respectively such that all the

LFSRs will generate the same sequence of random numbers. Each T is then responsible
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for a particular range of the sequence of random numbers generated; it only processes the

iTuples with an index that falls in its respective range. Parallelism in processing iTuples

and generating oTuples can be achieved. Again, Algorithm 6 uses a parallel bitonic sort to

exploit the power of multiple secure coprocessors.

5.4 Numerical Results

In this section, we present numerical analysis of the proposed algorithms, as well

as a general-purpose secure multi-party computation (SMC) algorithm, in the case of join-

ing two equal-size databases X1 and X2 privately where no information other than prior

information L, S and M is leaked. We do not compare the performance of our algorithms

with that of the algorithms in [4] since they have different assumptions and provide different

levels of privacy. We consider three different settings of L, S and M to study how different

memory, input and output sizes affect the cost of each algorithm.

setting 1 setting 2 setting 3

L 640K 640K 2.56M

S 6.4K 6.4K 25.6K

M 64 256 256

Table 5.2: Different settings of L, S and M tested in the numerical experiments.

We explain the purposes of pairs of the settings in Table 5.2. Setting 2 has a

memory size four times of that of Setting 1, with everything else being the same. We wish

to study how each algorithm responds to changes in T ’s memory size. Setting 2 and 3 have
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the same memory size, while the input and output sizes of Setting 2 are a quarter of those

of Setting 3 respectively.

We choose the algorithm in [32, 34] as the reference SMC algorithm. It is most

efficient to the best of our knowledge. As suggested in [32], its communication cost is given

by

ξ1κ0LGe($) + 32ξ1κ1($
√

L) + 2ξ2ξ1κ1(S$), (5.8)

where κ0 = 64, κ1 = 100 are two security parameters, Ge($) = 2$, $ is the length of

tuples in bits, ξ1 and ξ2 are the parameters to control the privacy preserving level. As the

communication cost we compute here is in terms of tuples, $ simply takes the value of one.

To have a privacy preserving level of 1 − 10−20, we take ξ1 = ξ2 = 67. We compute the

SMC’s communication cost using Eqn. 5.8 with the above parameter settings.

Algorithm 4, 5 and 6 perform privacy preserving joins at different costs. The costs

of Algorithm 4 and 5 are computed straightforwardly using the corresponding formulas in

Table 5.1. The cost of Algorithm 6 is computed as a function of the privacy preserving

parameter ε.

For arbitrary ε ∈ [0, 1], we compute n∗ by solving the problem in Eqn. 5.6. Upon

knowing n∗, we find the optimal swap size ∆∗ for an oblivious sort by solving the optimiza-

tion problem in Eqn. 5.1, and compute the cost of Algorithm 6 using the corresponding

formula in Table 5.1. Under the example settings, we show the minimum communication

cost as a function of ε in logarithmic scale in Figure 5.4.

As seen from Figure 5.4, for the same amount of increase in ε, the cost reduction

of Algorithm 6 in setting 1 with a smaller memory size M , is more significant than that in
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Figure 5.4: Computational cost of Algorithm 6 (logarithmic scale) as a function of privacy
preserving parameter ε, under different settings of L, S and M .

setting 2 with a larger M . This implies that tuning privacy preserving level is more effective

in reducing the communication cost of systems with a small M with respect to the number

of join results S, which we believe is typical in practice.

In practice, an ε in the range of 10−10 to 10−20 achieves a good level of privacy

preserving. We choose ε to be 10−10 and 10−20 to show the performance of Algorithm 6

under different privacy preserving levels. The results are shown in Table 5.3, together with

the cost of Algorithm 4, 5 and 6.

As seen from Table 5.3, regardless of the increase in memory size M , the cost of

Algorithm 4 is the highest and remains the same with fixed input and output sizes. The cost

of Algorithm 5 changes inversely proportional to M . With a strict privacy preserving level

of ε = 10−20, Algorithm 6 has the minimal cost which is orders of magnitudes less than those
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setting 1 setting 2 setting 3

SMC in [32] 1.1× 1010 1.1× 1010 4.5× 1010

4 2.3× 108 2.3× 108 1.2× 109

5 6.4× 107 1.6× 107 2.6× 108

6 (ε = 10−20) 7.4× 106 3.4× 106 1.8× 107

6 (ε = 10−10) 4.6× 106 2.8× 106 1.5× 107

Cost reduction:

6 (ε = 10−20) 88% 79% 93%

v.s. 5

Table 5.3: Communication costs of Algorithm 4, 5 and 6, for different settings of L, S and
M .

of the other two algorithms in the experiments. Notice even the most expensive Algorithm

4 already outperforms the reference SMC algorithm by at least one order of magnitude in

terms of communication cost2. This supports our argument that our proposed algorithms

is much more efficient than SMC.

The last row in Table 5.3 represents the cost reduction of Algorithm 6 with ε =

10−20 against Algorithm 5. We observe that the advantage of Algorithm 6 over Algorithm

5 is more significant when M is much less than S, and when the problem scale is large,

i.e., when L and S are large. We believe this is typical in most practical scenarios. These

observations confirm our discussions in Section 5.3.4.

2 Careful readers might notice the cost of SMC is for communication between participating databases,
while the costs of the proposed algorithms are for communication between T and H. In practice, the former
could be more significant than the latter in nature and a direct comparison between them is unfair for
our proposed algorithm. For simplicity, we do not differentiate these two types of communications. The
observations and conclusions shall still hold if we do.
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Chapter 6

Conclusions

This thesis explores some issues associated with privacy preserving joins. But

many areas remain to be explored. Here, we list a few particularly interesting challenges:

• Our proposed algorithms use nested loop joins. Nest loop joins impose a lower bound

on the communication cost. An intuitive way to construct privacy preserving join

algorithms is to modify existing efficient join algorithms, such as sort merge join

and hash join. However, we showed informally in Section 4.5.1 (page 37) that such

adaptation leaks information. It would be interesting to formally prove a lower bound

on the communication cost for privacy preserving joins in a secure coprocessor setting.

• Before we prove a lower bound on the performance, are there faster algorithms than

what we have proposed? Among the proposed algorithms, Algorithm A 6 is efficient

for practical input and output sizes. However, it makes two passes over the cartesian

product of the two input tables. A one pass algorithm would dramatically reduce the

I/O overhead. Does a one pass algorithm exit?
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• We propose three algorithms for different design parameters for our general notion of

privacy preserving joins in Chapter 5. These three algorithms compute joins involving

arbitrary predicates. Typically, efficient algorithms exist for specific secure multiparty

computations. Are there more efficient algorithms to compute specific joins, e.g., one

of the most common joins, equijoins?

• We study join operations in this thesis. It would be interesting to develop algorithms

for other database operations, particularly aggregation. Aggregation queries output

statistics over the join of two tables. It is not necessary to materialize the join result,

but only to give statistics over the join table. In this case, we only need to worry

about leaking information when accessing the input tables, but not the output tables.

Do efficient algorithms exist for this simplified task?

• We explore the parallelism issue when more than one secure coprocessors are attached

to a host (page 37 and 68). Algorithms A2 and A5 are easy to parallelize with a linear

speed-up in the number of processors. Algorithms A1, A3, A4, and A6 use bitonic

sort [7] in a secure coprocessor setting to sort data obliviously. We explain how to sort

obliviously in parallel using bitonic sort (page 68). However, implementing a parallel

bitonic sort is tricky due to synchronization issue. Synchronization can also add

significant complexity. It would be interesting to design an efficient parallel bitonic

sort algorithm, implement it, and study its performance.

• We employ a computation model which involves minimum interaction between data

owners and the privacy preserving service provider. In this model, data owners send

data to the service provider which computes the join and returns the result to des-
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ignated recipients. Other possible computation models may involve data owners in

the computation process such that they collaborate with the service provider to com-

pute the join. Are there more efficient privacy preserving join algorithms in this more

interactive computational models?

• We make certain privacy and performance trade-offs in some of our algorithms. Al-

gorithms A1, A2, and A3 leak a controlled amount of information. Algorithm A6

trades little privacy with significant performance gain. We wonder if other interest-

ing trade-offs exist such that relaxing the privacy requirements in certain ways yields

considerable amount of performance gain.

• We give analyses on the performance of our algorithms. It would be interesting to im-

plement our algorithms on an IBM secure coprocessor and study the real performance

and see how the measured performance relate to our prediction.
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Glossary

OA The Outbound Authentication (OA) mechanism provided by the secure coprocessor

ensures that it is indeed executing a known, trusted version of the application code,

running under a known, trusted version of the OS, and loaded by a known, trusted

version of the bootstrap code within a particular untampered platform.

PPJ Privacy Preserving Joins (PPJ) enable mutually distrustful entities to join their data

in a privacy preserving way such that no party learns more than what can be deduced

from its own input and output of the join computation alone.

SMC In Secure Multi-party Computation (SMC) mutually distrustful parties collectively

perform a computation over their private data such that no party learns more than

what can be inferred from its own input and output of the computation alone.

TTP In cryptography a trusted third party (TTP) is an entity which facilitates interactions

between two parties who both trust the third party; they use this trust to secure their

own interactions.
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Key Notations

⊥ Our algorithms encrypt a decoy plaintext ⊥ and output it if necessary to prevent infor-

mation leakage. Decoys are decrypted and filtered out by the recipient. They may

take the form of a fixed string pattern.

γ Define γ = max(1, dN/(M − δ)e).

T T represents a secure coprocessor.

A Party PA owns a private relation A.

a Tuple a represents a tuple in Table A.

B Party PB owns a private relation B.

b Tuple b represents a tuple in Table B.

C Table C represents the result of joining tables A and B.

c Tuple c represents a tuple in Table C.

D Assume J input databases X1, . . . , XJ . D = X1 × · · · ×XJ .



84

D Table D is a private relation and an input to a privacy preserving join operation.

F F = M + 1− δ represents T ’s free memory.

H The host H is a general purpose computer to which a secure coprocessor is attached and

provides additional memory and disk space for the secure coprocessor.

I The index I = {1, . . . , L} is associated with the input table D.

iTuple Tuple iTuple represents an element in the input table D.

L Assume J input databases X1, . . . , XJ . Let D = X1 × · · · ×XJ , L = |D|.

M To simplify exposition, we will assume that the tuples of tables A, B, and C are of the

same size and that the free memory of the secure processor can hold at most M + 2

such tuples.

N N is the maximum number of tuples from Table B that match a tuple from Table A.

oTuple Tuple oTuple represents an output tuple and can be either a real join result or a

decoy.

PA Party PA has a private relation A which is an input to a privacy preserving join.

PB Party PB has a private relation B which is an input to a privacy preserving join.

PC Party PC represents the recipient of a privacy perserving join operation over private

relations A and B and is not PA nor PB.
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Q Define Q to be the largest integer such that Q(1 + N) ≤ F , i.e., T can hold Q tuples in

A and all of their matching tuples in B up to QN matching tuples.

R The set of the join tuples is R.

S S = |R| represents the number of the join tuples.


