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Abstract

Pay-as-you-go Data Cleaning and Integration

by

Shawn R. Jeffery

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Chair

Many emerging applications such as Web mash-ups and large-scale sensor deploy-

ments seek to make use of large collections of heterogeneous data sources to enable

powerful new services. These sources range from traditional sources such as relational

databases to emerging sources such as structured data on the Web and streaming sen-

sor data.

In order to realize the potential of these applications, however, the data from

these disparate sources must be cleaned and integrated. In emerging data sources

such as the Web and sensors, traditional cleaning and integration techniques are

necessary, but not sufficient to deal with the unique challenges presented by this data.

I argue that new techniques, based on the concept of pay-as-you-go are crucial for

incorporating such data sources into applications. This concept provides a framework

for building cleaning and integration solutions that are easy to deploy and maintain,

efficiently leverage human feedback where possible, and automatically adapt their

processing to the underlying data.

In this thesis, I contribute key building blocks designed to provide pay-as-you-
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go data cleaning and integration. Specifically, I develop the following techniques:

Roomba, a technique for effectively involving user feedback to augment data cleaning

mechanisms; Metaphysical Data Independence (MDI), a means of hiding all details

of sensor data cleaning and integration under a single interface; SMURF an adap-

tive cleaning tool for providing MDI for RFID data; and ESP, a declarative-query

based cleaning framework for sensor data streams. These techniques all embody key

principles that underly the pay-as-you-go philosophy: ease of setup and deployment,

adaptability, and incremental integration.

Additionally, I show that a focus on the pay-as-you-go philosophy does not pre-

clude effective data cleaning and integration mechanisms. Indeed, in many cases the

techniques developed in this thesis are capable of producing higher-quality data than

current cleaning and integration techniques. For instance, effective use of human feed-

back is able to integrate data in a large-scale data integration scenario with half the

human cost of current approaches. Similarly, an adaptive approach to cleaning RFID

data is able to produce a three-fold reduction in data error rate in certain scenarios

compared to the state-of-the-art RFID middleware solutions.

In summary, this thesis makes two broad contributions. First, it demonstrates that

a pay-as-you-go approach to data cleaning and integration enables an emerging class

of applications dependent on data derived from many heterogeneous data sources.

Second, it proposes a suite of pay-as-you-go based data cleaning and integration

techniques that provide a solid foundation on which to build the systems to support

these applications.

Professor Michael J. Franklin
Dissertation Committee Chair
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Chapter 1

Introduction

The quantity and complexity of structured data is rapidly increasing in a variety of

new environments: large-scale sensor deployments [TPS+05] provide unprecedented

insight into the physical world, an increasingly structured Web [MHC+06] is promising

to make the bulk of human knowledge accessible in one large networked repository,

large enterprises are becoming more reliant on data-driven IT infrastructures, and

large-scale scientific collaborations (e.g., the LHC project [LHC08]) are linking vast

amounts of data. As these data sources continue to grow in both scale and complexity,

new applications are leveraging these disparate data sources to provide new services,

such as Web mash-ups [HM08], cross-enterprise SOA systems [SF08], and world-wide

sensing infrastructures [KNLZ07].

These emerging applications and environments, however, pose many new data

management challenges. In particular, data in these environments are dirty, incon-

sistent, rapidly changing, and highly heterogeneous. Thus, before data can be used

by applications, they must be cleaned and integrated. Data cleaning refers to the

process of resolving errors such as missing or duplicate data, while data integration

is the means by which multiple autonomous heterogeneous data sources are merged

1



into a single coherent picture of the underlying data. These processes are interrelated

as many errors that need cleaning arise due to integrating heterogeneous sources.

Traditional data cleaning and integration techniques are necessary but not sufficient

to deal with these new sources of data. Therefore, there is a need for techniques that

are capable of cleaning and integrating data from these data sources.

This thesis sets out to address this challenge. The key principle used in my re-

search for enabling data cleaning and integration techniques for these new data sources

is the concept of pay-as-you-go [FHM05]. When applied to data cleaning and integra-

tion, this principle states that these processes are on-going, and as such, techniques

must be designed to handle continuous, incremental cleaning. More specifically, pay-

as-you-go techniques should have three important properties. First, pay-as-you-go

techniques should make judicious use of human effort (i.e., the “pay” component of

pay-as-you-go) to incrementally improve data quality over time (i.e., the “as-you-go”

component). Second, these techniques should automatically adapt to the characteris-

tics of the underlying data sources when the use of human effort is infeasible. Finally,

there should be little up-front investment for pay-as-you-go solutions: such techniques

should be easy to initially deploy.

In this thesis, I develop a set of pay-as-you-go techniques to integrate and clean

data from a wide range of sources. Due to the interrelated nature of data cleaning and

integration, I address both processes with pay-as-you-go techniques. These techniques

embody different aspects of the pay-as-you-go principle to directly address the unique

challenges presented by emerging data sources.

In this initial chapter, I first ground my research by describing a motivating appli-

cation that utilizes data from multiple heterogeneous data sources, many of which are

ill-handled by current data integration technology. I then discuss the shortcomings

of current data management systems in providing data for this type of application.
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Next, I describe the principle of pay-as-you-go integration and cleaning. Finally, I

outline the pay-as-you-go techniques for next-generation data integration platforms

developed as part of this thesis.

1.1 Total Consumer Awareness

While there are many emerging applications that utilize data derived from a wide

variety of heterogeneous data sources, one particularly compelling example is Total

Consumer Awareness. Rather than using only price, brand, and sometimes quality

information to decide what products to buy, in a TCA application consumers are

given the complete spectrum of information about a particular product when making

a purchasing decision: e.g., the product’s origin and transportation mechanism, the

actual chemical significance of the each ingredient, comparable prices for the product

in nearby stores or online, and recommendations from friends and family. Given this

data at the point of purchase, accessed either through the Web or mobile devices,

consumers can make much more informed decisions about the products they buy.

A concrete example of TCA is illustrated in Figure 1.1. In this figure, a user at

a store is interested in information about a particular product. He enters or scans

identifying information for a product (e.g., UPC [GS108], EPC ID [EPC05b], or

product name) into a mobile device (e.g., [iPh08, NFC08]). Using this information,

the device connects with the TCA services to access a wealth of information about

that product, including health and environmental impacts, friends’ recommendations,

and prices at nearby stores. This information is then tailored to the user’s preferences

and presented in an easy to understand manner. To produce this information, TCA

integrates data from a range of data sources falling into two broad categories: Web

data and sensor data.
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Figure 1.1. An example of a Total Consumer Awareness (TCA) application.

Web Data

There is a large amount of product information residing on the Web, ranging

from traditional HTML pages to streaming RSS feeds. The TCA application ex-

tracts general product information from the manufacturer’s website using informa-

tion extraction techniques (e.g., [CDYR08]). This data is correlated with product

catalog information and user reviews using sites such as Amazon [AZN08] or Shop-

ping.com [Sho08]. Such sites typically offer APIs that allow access to semi-structured

data feeds (e.g., RSS).

Deeper product information such as product recalls or the product’s health risks

can be extracted from both governmental and non-governmental sources such as the

FDA [FDA08], recalls.gov [Rec08], or WebMD [WMD08]. These sites can either be
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crawled and integrated using information extraction techniques as noted above, or can

be accessed using form-based interfaces. For instance, the U.S. Consumer Product

Safety Commission provides a form for accessing its database of recalled consumer

products [CPS08]. Such data sources, where databases are accessible behind Web

forms, are referred to as the deep web [Ber01].

Finally, product reviews and recommendations from friends and family can be

gleaned from online social networks. For instance, the social-networking site Facebook

allows users to recommend products to their friends [FBA08]. Through APIs exposed

by Facebook, the TCA application can access and flow this data to its users.

Sensor Data

The other broad class of information utilized in this application is data produced

by sensors: devices placed in the physical world that monitor and report data about

some attribute of reality.

Radio Frequency Identification (RFID) provides fine-grained insights into a prod-

uct’s life-cycle. Through data derived from RFID tagging, the TCA application can

determine, for example, the factory in which the product was manufactured. By com-

bining this information with data collected from sensors monitoring environmental

conditions in or near the factory (e.g., air and water quality), the application can

derive an estimated environmental impact of producing that product.

RFID can provide additional detail regarding the transport of the product through

its supply chain. RFID readers installed at critical points in the supply chain such

as shipping docks and distribution centers provide shipping route and timing infor-

mation. This data can be used to determine the freshness of the product as well ad-

ditional environmental impact based on distance traveled (e.g., food miles [Pax94]).

Sensors placed on or near the product during shipping can be used to determine

the transport conditions, such as temperature and acceleration. For instance, an
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acceleration-sensing device (e.g., a WISP [SSP+06]) on a product could report that

the item was handled carefully during distribution.

With RFID-enabled distribution centers and retail stores (e.g., smart

shelves [DKB03]), TCA can access the real-time availability of a product in its

entire distribution network. Correlating these data with the user’s location informa-

tion (through GPS or cell phone positioning such as [LCC+05]) and product pricing

information available online (e.g., [TF08]) allows TCA to alert the user of equivalent

products at nearby stores.

Such an application has potential to change the way consumers interact with

products. By collecting, processing, cleaning, and correlating this information and

presenting it to consumers at the time of purchase, TCA empowers consumers to be

significantly more informed about the products they buy. Thus, TCA has the power

to resolve many of the information asymmetries present in today’s markets [Sti61,

Sti02]; consumers can choose products based on more complete information, not just

price, brand, and limited quality information. Thus, manufacturers will be driven to

produce products more in line with what consumers care about, hopefully promoting

higher quality, healthier, and more sustainable products and practices.

To realize this vision of TCA, however, there are significant data management

challenges to overcome. TCA accesses a wide array of heterogeneous data sources,

each with its own semantics and format. These sources contain data that are missing,

inconsistent, and ambiguous. Additionally, the data is rapidly changing and dynamic.

As I explain next, current data integration and cleaning techniques are ill-suited to

deal with such challenges at the scale required by TCA.
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1.2 Current Challenges

Traditional data management systems are based on several assumptions that pre-

vent them from handling data in environments such as TCA.

First of all, most data management systems assume that the data in the database

is completely valid: that is, they ignore any errors, inconsistencies, or other problems

with the data. When dealing with data on the Web entered by humans or with

sensor data produced by faulty devices, however, dirty data is not just an exceptional

condition, it is the norm.

Traditional systems also assume that the data in the database is complete: if a

datum is not in the database, it does not exist. Again, with fallible humans or sensors

producing data, data will be missing, and the data management system must account

for this missing data.

Another shortcoming of current data management solutions is that they assume

that data unambiguously maps to real-world entities and that there are no duplicate

entities in the system. When dealing with domains outside those traditionally handled

by relational databases (e.g., back-office processing), semantic mappings between data

are hard to define and duplicate entities are prevalent.

Currently, database systems assume that time and space are simply attributes

just like any other attribute in the system. Time and space, however, have special

significance in reality, and can be utilized to help address shortcomings of the data

(e.g., the techniques presented in Chapter 6).

Finally, current systems assume that any data that does not fit with these expec-

tations can be cleaned and integrated once, after which they will adhere to all of the

above assumptions. That is, traditional data integration typically works in a two-

phased approach: during the first phase the data is cleaned and/or the appropriate
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cleaning pipelines are created, a time-intensive task that can require extensive human

involvement. Once this phase is complete, the system begins its operational phase,

where it is assumed that the data is valid, complete, and unambiguous.

When dealing with large amounts of continuously changing data in the real world,

cleaning and integration are never complete. As such, these processes must contin-

ually adapt to the data. Furthermore, applications that utilize large collections of

heterogeneous data (e.g., TCA) typically do not need perfectly clean and integrated

data (which is likely impossible), but rather “close enough” cleaning and integration;

instead, the primary needs of such applications typically focus on ease of initial setup,

evolvability and adaptability, and minimizing human effort.

1.3 The Pay-As-You-Go Principle

Traditional cleaning and integration mechanisms are necessary to deal with the

challenges described above, but are not sufficient given the nature of these large-scale

heterogeneous data sources. As described in the preceding sections, it is typically

impossible to tightly integrate all relevant data sources: the data is of a scale and

heterogeneity such that full, one-time integration is not feasible and if it were, the

continually changing nature of the data precludes such an approach.

In this thesis, I address these issues using an incremental, pay-as-you-go approach

as the basis for designing data cleaning and integration tools. These tools are easy to

deploy and provide basic cleaning and integration out of the box. Over time, through

the combination of semi-automated techniques and judicious use of human effort, pay-

as-you-go tools gradually improve the quality of the underlying data. Where the use

of human effort is infeasible, such as with streaming sensor data, pay-as-you-go tools

automatically adapt to the characteristics of the underlying data and environment.
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Figure 1.2. Pay-as-you-go integration compared to traditional integration.

To contrast the pay-as-you-go approach with that of traditional data cleaning and

integration, Figure 1.2 compares the functionality over time provided by a traditional

data management system compared to a system using tools based on the pay-as-you-

go principle. Traditional data integration, shown as a dashed line, requires a long

setup phase during which structure is imposed on unstructured data, schemas are

matched, and the data are cleaned (phase A). The length of this phase is determined

by the amount of data to be integrated and its heterogeneity. Only once this process is

complete does the system go live and begin providing functionality (B). Since data in

these new application environments are always changing, periodic upkeep is necessary

in order to structure, match, and clean the data (C). There are two major drawbacks

to this approach. First, the data are inaccessible for the entire setup phase. As the

amount and complexity of the data grow, so does the period of time during which the

data are inaccessible. Second, the maintenance cost in this approach is high because

the data must be periodically re-integrated as the data fluctuate.

A system utilizing pay-as-you-go cleaning and integration tools, on the other hand,

provides immediate benefit, as such tools are designed to be easy to set-up and de-

ploy, and provide basic services such as keyword search (D). Pay-as-you-go tools are
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designed to progressively process the data by adding structure, matching schemas

and objects, and cleaning the data incrementally and iteratively over time (E). Thus,

the data in such a system are continually improving. Finally, during normal oper-

ation, pay-as-you-go-based tools continue their ongoing integration to accommodate

the continual fluctuations of the data (F).

Pay-as-you-go techniques are crucial for enabling data cleaning and integration to

cope with challenges presented by large collections of heterogeneous data. In these

environments, there are many data sources with complex interactions that are rapidly

changing, and thus any data cleaning or integration solution must be easy to deploy

and flexible to maintain thereafter. Additionally, the data are of such scale and

heterogeneity that they cannot be cleaned and integrated all at once; they must be

integrated incrementally using pay-as-you-go techniques. Furthermore, in some cases,

such as with streaming sensor data, there is no time for human intervention, and so

the cleaning techniques must be designed to automatically adapt over time.

Dataspaces

Dataspaces [FHM05, HFM06, MHF06] provide a context for the pay-as-you-go

techniques presented in this thesis. Dataspaces are a vision for next-generation data

integration environments and systems that describes a set of principles for extending

traditional technology to new data sources and application environments. These

principles include encompassing large collections of heterogeneous data, unified access

through both simple (e.g., keyword search) and complex (e.g., structured query)

interfaces, and best-effort behavior.

For the purposes of this thesis, I define a dataspace as a collection of multiple het-

erogeneous data sources, both traditional and emerging, including sensor data, Web

data, and traditional databases. A dataspace system (also referred to as a dataspace
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support platform, or DSSP) is a software system designed to manage such data. The

goal of a dataspace system is to incorporate data from these disparate data sources

and to process, clean, merge, and integrate these data for use in applications via struc-

tured queries, visualizations, and data exploration. I term the class of applications

that utilize dataspace data (e.g., TCA) as dataspace applications.

1.4 Pay-as-you-go Techniques

Having introduced the pay-as-you-go principle, its benefits, and the broader datas-

pace context, I now briefly outline the pay-as-you-go data cleaning and integration

techniques I develop in this thesis.

Roomba: Pay-as-you-go Guidance of Human Input

The first technique I present is Roomba (Chapter 3), a means of efficiently utilizing

human feedback to continually improve large-scale structured and semi-structured

data repositories, such as Google Base [GB07] and similar sites found on the Web.

A primary challenge to large-scale data integration in dataspaces is creating se-

mantic equivalences between elements from different data sources that correspond

to the same real-world entity or concept. These correspondences are necessary to

provide quality data to applications utilizing dataspace data. As part of the pay-as-

you-go approach, dataspaces use automated mechanisms such as schema matching

and entity resolution to provide initial correspondences, termed candidate matches.

For instance: “the schema elements ’school’ and ’university’ may be the same.” One

practical way to resolve such a match is to ask a human to confirm or reject the match.

Since the number of such questions that could benefit from human feedback typically

far exceed the resources available, only a limited number of tasks can be presented to

humans. Thus, the key challenge in involving humans in data integration tasks is to
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determine an order in which to solicit user feedback for confirming candidate matches

such that the most useful matches are presented to humans first.

To address this challenge, I develop a decision-theoretic framework for ordering

candidate matches for user confirmation using the concept of the value of perfect infor-

mation (VPI ) [RN03]. At the core of this concept is a utility function that quantifies

the desirability of a given state; thus, I devise a utility function for a dataspace based

on query result quality. While an exact calculation of VPI is computationally infea-

sible, I show in practice how to efficiently apply an approximation of VPI in concert

with this utility function to order user confirmations.

One of the key advantages of this method is that it considers candidate matches

produced from multiple types of mechanisms (e.g., schema matching, entity resolu-

tion) in a uniform fashion. Hence, the system can weigh, for example, the benefit of

asking to confirm a schema match versus that of confirming the identity of references

to two objects in the domain.

A detailed experimental evaluation on both real and synthetic datasets shows that

the ordering of user feedback produced by this VPI-based approach yields a dataspace

with a significantly higher utility, and thus better query result quality, than a wide

range of other ordering strategies.

To utilize this decision-theoretic framework in a dataspace, I develop Roomba, a

system for guiding user feedback in a dataspace system.

Metaphysical Data Independence

Roomba provides pay-as-you-go support for data integration problems (e.g.,

schema matching, entity resolution) that arise when dealing with traditional rela-

tional data or data on the Web; many dataspace applications, however, depend on

data collected from the physical world through sensor devices as well. Unfortunately,

12



there is a wide gulf between the raw data produced by sensors and the high-level

needs of dataspace applications. I term this gulf the physical-digital divide. Specifi-

cally, sensor data is unreliable, semantically low-level, and rapidly changing. The first

step in integrating sensor data into a dataspace application is to provide a means by

which applications can interact with sensor data at the application’s semantic level,

without dealing with the challenges associated with the physical-digital divide.

To address this issue, in the next part of this thesis (Chapter 4) I present Meta-

physical Data Independence (MDI ), an interface for exposing sensor data to dataspace

applications. MDI proposes a layer of independence that shields applications from the

challenges that arise when dealing with the physical-digital divide. The key philoso-

phy behind MDI is that applications should not deal with any aspect of the physical

devices, but rather should interface with a high-level reconstruction of the physical

world created by a dataspace system.

SMURF: Adaptive Cleaning of RFID Data Streams

To instantiate the MDI interface, a dataspace system must deal with the unreliable

and rapidly changing nature of sensor data. While Roomba provides such services in

environments where humans can be put in the loop, when dealing with sensor data

that is streaming in real-time, these processes must be automated. To this end, I

develop SMURF (Statistical sMoothing of Unreliable RFid data), a cleaning mecha-

nism that alleviates issues associated with RFID data through adaptive techniques

based on a novel statistical framework (Chapter 5). SMURF models the unrelia-

bility of RFID readings by viewing RFID streams as a statistical sample of tags in

the physical world, and exploits techniques grounded in sampling theory to drive its

cleaning processes. Through the use of statistical tools such as binomial sampling

and π-estimators [SSW92], SMURF continuously adapts its cleaning techniques in a

principled manner to provide accurate RFID data to applications.
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Through a detailed experimental study in multiple scenarios, I show that

SMURF’s techniques can eliminate many of the errors associated with RFID data

to effectively provide MDI to dataspace applications.

ESP: A Declarative Framework for Sensor Data Processing

MDI and SMURF provide an interface and mechanism for pay-as-you-go clean-

ing and integration of sensor data. To provide a framework for incorporating these

techniques into a dataspace system, I develop Extensible Sensor stream Processing

(ESP)(Chapter 6). ESP is modular framework for building data cleaning pipelines

focused on streaming data produced by sensor devices. ESP is built using declara-

tive query processing as found in relational database query languages to enable rapid

deployment of cleaning solutions with little up-front cost. Over time, ESP can be

incrementally upgraded due to its modular nature: individual modules can be en-

hanced through declarative means or by embedding more complex techniques such as

those used in SMURF.

I demonstrate ESP’s effectiveness and ease of use through three real-world sce-

narios. First, I show a data cleaning pipeline built for RFID data that successively

refines dirty RFID data streams. Second, I show ESP-based pipelines built to correct

for errors commonly found in wireless sensor network data streams. Finally, I demon-

strate the use of ESP to build a pipeline for integrating multiple sensor streams (e.g.,

RFID, wireless sensors, motion detectors) to produce a “person detector” in a digital

home scenario. In all of these scenarios, ESP-based pipelines produce clean data with

minimal deployment overhead.

1.5 Contributions

To summarize, the contributions of this thesis are as follows:

14



• Pay-as-you-go data cleaning and integration: I identify the importance of

applying the pay-as-you-go principle to data cleaning and integration to enable

emerging applications such as Total Consumer Awareness.

• User feedback to integrate dataspace data: To enable dataspaces to clean

and integrate data in a pay-as-you-go manner, I propose a model and a mecha-

nism, Roomba, for efficiently soliciting user feedback in data integration tasks.

Roomba enables a dataspace to incrementally integrate data by determining

the most important tasks in which to involve humans (Chapter 3).

• Identification of the physical-digital divide: There exists a disconnect

between the raw data produced by sensor devices and the data expected by high-

level applications that I call the physical-digital divide. I outline the reasons for

this divide and the challenges it presents for applications, illustrated through

multiple real-world studies (Chapter 4).

• Metaphysical Data Independence: To shield dataspace applications from

the challenges associated with the physical-digital divide, I propose Metaphys-

ical Data Independence (MDI), a philosophy for building dataspace system in-

terfaces that hides all details of the underlying devices (Chapter 4).

• Adaptive cleaning for cleaning RFID data: To clean RFID data in an

adaptive, pay-as-you-go manner, I develop SMURF, an adaptive mechanism for

providing MDI for RFID-based applications (Chapter 5).

• A declarative framework for sensor data processing: To enable easy to

deploy sensor data cleaning infrastructures for providing MDI, I present ESP, a

framework of declarative cleaning stages designed to clean sensor data streams.

Additionally, I describe how ESP tracks data quality estimates through its

pipeline (Chapter 6).
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1.6 Summary

The next generation of data-intensive applications will be built upon heteroge-

neous data derived from a wide range of sources, including the Web and sensors. To

enable these applications, next-generation data integration platforms such as datas-

pace systems must integrate data from a variety of data sources and provide a unified

interface to this data. I argue that due to the large-scale, heterogeneous, and dy-

namic nature of these new application environments, data integration and cleaning

techniques must be built around the concept of “pay-as-you-go”. In this chapter, I

have outlined a suite of such techniques that enable next-generation data integration

platforms to handle data from sources such as large-scale heterogeneous repositories

(e.g., the Web) and sensor deployments.

The remainder of this dissertation is organized as follows. Chapter 2 provides a

background on relevant concepts. Chapter 3 discusses incremental cleaning involving

user feedback. Chapter 4 presents metaphysical data independence, a philosophy for

cleaning and integrating sensor data streams that hides all details of the underlying

devices. SMURF, an adaptive mechanism for cleaning RFID data, is discussed in

Chapter 5. In Chapter 6, I outline an general framework for cleaning sensor data

streams to provide MDI using declarative query processing. Finally, Chapter 7 pro-

vides concluding remarks.
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Chapter 2

Background

In this chapter, I present background material to place the ideas and techniques

developed in this thesis in the context of prior research. I first discuss dataspace

data with a focus on two of the emerging data sources that are gaining importance to

dataspace applications: data on the Web and data produced by sensor technologies. I

highlight the challenges associated with utilizing these data sources using traditional

data processing techniques. Then, I outline current data integration technologies and

how they attempt to address these challenges. Note that additional background and

related work specific to each topic are covered in the relevant chapter.

2.1 Dataspace Data

As discussed in the previous chapter, dataspace data consist of a wide range of

data sources, encompassing traditional sources as well as emerging data sources. Here

I detail two of the more important types of emerging data sources, data on the Web

and sensor data streams.
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2.1.1 Data on the Web

While the Web has traditionally been dominated by unstructured content, there

has recently been an increase in the Web’s volume and diversity of data. This di-

versity of data can be roughly grouped into three categories, differing in their degree

of organization: structured, semi-structured, and unstructured content. Structured

data follows a strict format, the most common of which is a tabular layout as used

in relational databases. Unstructured data, on the other hand, has very little orga-

nization; they are typically free-text. Semi-structured data [MAG+97] falls between

structured and unstructured data: it has some organization, but the organization is

not necessarily strictly followed. I discuss each class in detail below.

Structured Data

Historically, structured data repositories have been network-accessible through

distributed and federated database systems (e.g., [LHM+84, Sto86, SAL+96]), but

the Web has enabled increased access to structured data repositories through multiple

mechanisms. Recently, Deep Web searching tools [Ber01] and Web APIs (Application

Programming Interfaces), are opening up even more such repositories. Conceptually

similar, both mechanisms provide simple Web-accessible interfaces to potentially com-

plex structured-data backends.

The deep web refers to online content, typically stored in a relational database,

accessible through HTML forms. On a deep web site, a form exposes some set of

attributes on which to search. Upon form submission, these attributes are used to

construct a query that is posed to the backend database. The site then renders the

results of this query, usually in HTML or XML. For instance, the site Cars.com [Car08]

exposes a large database of for-sale car listings via a simple form-based interface, as

shown in Figure 2.1. This figure shows the form page where users can enter car
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attributes and the result page returned by the site after submitting such a query.

Recent estimates put the number of pages in the deep web in the tens of millions

of forms [MJC+07], each of which may lead to hundreds of thousands of pages (e.g.,

[Car08]).

Figure 2.1. An example deep web site, Cars.com.

Web-accessible APIs are programming interfaces, usually exposed through

standards-based mechanisms such as HTTP [FGM+99, Fie00] or SOAP [GHM+06],

to applications that return data in a standard format such as XML. Web APIs have

grown in popularity recently, primarily due to the explosion of mash-ups, websites that

integrate data from two or more Web APIs to produce a new service. For instance,

Housingmaps.com [HM08] combines map data from the Google Maps API [GMA08]

and Craigslist.com [CL08] to display apartment listings on a map.

Semi-Structured Data

XML data [BPSM98] is arguably the most ubiquitous form of semi-structured data

on the Web. It is generally rich in structure and often has a schema. There are many

XML repositories available on the Web, including protein databases [SP08, PIR08]

and bibliography data [DBL08].

Another form of semi-structured data on the Web can be found in Google

Base [GB07]. Google Base in an online semi-structured repository of user-uploaded
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content. The primary unit of data in Google Base is an item, that consists of one or

more attribute-value pairs (e.g., 〈“make”= “Toyota”, “model” = “Prius”〉). Items are

organized into item types, which are essentially domains or verticals, such as vehicles

or recipes. For each item type, Google Base provides a set of recommended attributes

(i.e., schema) and popular values for each attribute. Users can, however, make up

their own attributes and values for their items. Google Base also provides form-based

interfaces and Web APIs for structured querying of this data. See Chapter 3 for an

in-depth study involving Google Base.

The loosest form of semi-structured data on the Web is annotated or tagged data,

that have emerged as a light-weight means of adding structure to Web data. In these

schemes, key-words or terms (usually referred to as tags) are associated with some

piece of information, such as a picture [Fli07, vAD04], Web page [GC07, Del07],

or email message [GM08]. Tags provide a simple structure that enables classifica-

tion, navigation, and search. One of the more popular examples of such a scheme is

Flickr [Fli07], where users add descriptive nouns, verbs, or adjectives to pictures.

Unstructured Data

While much of data on the Web are unstructured, there are techniques for access-

ing and incorporating such data into structured data processing infrastructures such

as a dataspace system.

Information extraction (IE) is a set of natural language processing techniques that

convert unstructured text into structured data (see [CL96, CM03, AS06, DRV06] for

recent overviews of such techniques). As a simple IE example, the text “Chimpanzees

like to eat figs and orangutans like to eat mangoes” can be structured, for exam-

ple, as the key-value pairs 〈“animal”= “Chimpanzee”, “eats” = “figs”〉, 〈“animal”=

“Orangutan”, “eats” = “mangoes”〉. An example of a structured repository created
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via information extraction is DBLife [DS+07], which stores structured information

about the data management research community extracted from pages on the Web.

2.1.2 Sensor Data

Another emerging source of data is streams yielded by sensing devices. Sensors

are physical devices designed to monitor some real-world phenomena and report these

data, usually at regular intervals. There are a wide variety of sensor types, each with

its own characteristics; here, I briefly outline the two main types that are addressed

in this thesis.

Radio Frequency Identification (RFID)

RFID is an electronic tagging and tracking technology designed to provide non-

line-of-sight identification [Wan04]. For the purposes of this dissertation, a typical

RFID installation consists of three components: readers, antennae, and tags (see

Figure 2.2). A reader uses antennae to communicate with tags using RF signals to

produce lists of tag IDs in its detection field.

(a) Example RFID Tags [Ali05a] (b) RFID Reader and Antenna [ALR05]

Figure 2.2. RFID Components (not to scale).

There are multiple types of RFID technology for different frequencies, the two
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most prevalent being 13.56 MHz and 915 MHz. 13.56 MHz RFID has a range of

roughly 6 cm and is used primarily for contact-based tagging. 915 MHz technology has

a long detection range (roughly 10-20 feet) and is typical of supply chain management-

type applications. In this thesis I focus on 915 MHz technology as it is both the most

promising as well as the most unreliable RFID technology.

RFID tags may either be passive (no on-board battery) or active (battery-

powered). Passive tags are energized by the RF signals from the readers. Both

types of tag store a unique identifier code (e.g., a 64- or 96-bit ID for EPCGlobal

tags [EPC05a]). Additionally, both active and passive tags may collect other types

of information: for example, passive tags have been augmented with accelerometers

and light sensors [SSP+06]. I focus primarily on passive tags, as they are the most

widespread type of RFID tag.

Readers interrogate nearby tags by sending out an RF signal. Tags in the area

respond to these signals with their unique identifier code. Since there may be many

tags in a reader’s vicinity all trying to respond at once, readers typically employ an

anti-collision protocol to identify individual tags. As part of this process, readers

internally use multiple interrogation cycles to determine all tags in the reader’s vicin-

ity. The details of these protocols are specific to each type of reader and are typically

proprietary.

Externally, the results of multiple reader interrogation cycles are exposed as a

group through what I term an epoch.1 For each epoch, the reader keeps track of all

the tags it has identified, as well as additional information such as the number of

interrogation responses for each tag during that epoch and the time at which the

tag was last read. A reader store this information internally in a tag list that is

periodically transferred to its clients. An example tag list is shown in Table 2.1:

1 In ALE terms, an epoch is a read cycle [ALE05].

22



each row contains information for a single tag in an epoch, including the tag ID, the

number of interrogation responses in that epoch, and a timestamp for the epoch. The

epoch size, which may be specified as a number of interrogation cycles or as a unit of

time, is configured as part of the initial reader hardware setup. A typical epoch on

the order of 0.25 seconds [Ali05b, Sen04].

Tag ID Responses Timestamp

8576 2387 2345 8678 9 11:07:06
8576 4577 3467 2357 1 11:07:06
8576 3246 3267 5685 7 11:07:07

Table 2.1. Example RFID reader tag list.

RFID technology is employed in a variety of applications, including inventory

management, ID badges and access control, and supply-chain monitoring.

Wireless Sensor Networks

Wireless sensor networks (WSNs) represent another sensing technology for mon-

itoring the physical world. WSNs provide fine-grained information through ad-hoc

networking and inexpensive sensing. WSNs consist of many (sometimes hundreds or

thousands) of sensor motes (see Figure 2.3), each of which consists of a microproces-

sor, a sensor board containing some number of sensors to collect real-world data (e.g.,

temperature, light, sound), a wireless radio, and an on-board battery.

Figure 2.3. An Intel Berkeley Mote.
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Upon deployment, a WSN’s motes self-organize into an ad-hoc wireless network.

Periodically or in response to some stimulus, an individual mote uses its sensor board

to collect data. These data are then sent over the wireless network to other motes,

where the data can be processed or aggregated and then passed on to other motes

via wireless radio. Eventually, the data will reach a gateway mote, a mote that is

connected to both the wireless network as well as a wired network, where it can

be stored in a database or sent over a traditional wired network to other services.

Analogous to epochs in RFID readers, this sensing and communication can also be

grouped into epochs [MFHH02], where motes are globally scheduled to sense and

transmit their data at regular intervals. Under this scheme, the output of a WSN can

be thought of as a stream of tuples with a format similar to that shown in Table 2.2.

Note that not all motes report during all epochs: messages may be dropped. Also

note that the WSN may perform in-network processing such as aggregations (e.g.,

the average temperature across a set of motes).

Epoch Mote ID Temperature Light Sound

1 1 22.5 5.6 1.3
1 2 21.3 7.1 2.4
2 2 20.9 4.9 2.4
3 1 21.2 5.0 1.1
3 2 20.7 7.1 2.5

Table 2.2. Example sensor data stream.

There has been a large body of work on the specific operations of WSNs, in-

cluding different networking [PHL+05] and data processing techniques [MFHH02,

BGS01, DGM+04]. Wireless sensors networks have been deployed in a wide range

of scenarios such as environmental and habitat monitoring [MCP+02, Son06], home

automation [DR05], and traffic monitoring [HBZ+06].

24



2.1.3 Data Management Challenges

The new sources of data discussed above (i.e., the Web, sensors) present many

challenges to applications that seek to make use of this data. I briefly outline some

of the challenges here; additional details are provided in subsequent chapters.

With Web data, the primary challenge arises from scale and heterogeneity. First,

there are typically many ways of describing real-world concepts and entities. For

instance, the two different strings “University of California at Berkeley” and “Cal

Berkeley” refer to the same university in reality. In order to pose queries over such

data, these two different references must be reconciled to point to the same entity.

In large scale repositories such as the Web, solving this problem is compounded by

the fact that there is no well-defined domain. To illustrate the challenge in such an

environment, consider the string “Berkeley”. In the single domain of universities, it

maps to the same entity as the two stings above, but when there is no such single

domain, this string may map to the university, the city, or even the eighteenth-century

British Empiricist George Berkeley.

Sensor data, on the other hand, suffer from their own set of challenges. Most sens-

ing technology is designed for large-scale deployments, such as tagging all products in

a retail store or monitoring an entire forest, where cost is the driving factor. As such,

these devices are typically built with inexpensive, and thus error-prone, hardware that

produces dirty data. These dirty data manifests itself in many forms. First, there is a

large amount of missing data: devices are not sensitive enough to detect all phenom-

ena in the real world, they fail outright and do not report any readings, or messages

from sensors are dropped when using wireless communication. Another problem with

sensor data is that they are often incorrect: devices often fail and produce erroneous

readings. Finally, the data can be ambiguous: multiple devices may report conflict-

ing readings. Such challenges have been widely recognized in prior work. Work from
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ETH Zurich recognizes the poor behavior of RFID technology [FL04], while the Intel

Research Lab in Seattle has characterized the performance and errors in RFID tech-

nology in order to better guide ubiquitous applications [FJPR04, HBF+04]. Other

sensor-based applications have encountered similar issues in regard to dirty sensor

data [BGH+05, DR05]. In Chapters 4, 5, and 6, I present additional data from

experimental studies revealing the extent of this problem.

2.2 Data Integration and Cleaning

As mentioned above, there are many challenges posed by these new sources of data.

Here, I summarize research to date in both data integration and data cleaning. While

historically separate topics, I address both data cleaning and integration as they are

both relevant in the process of collecting data from multiple heterogeneous sources

into a single dataspace. For more background about data cleaning and integration,

see [RD00, DH05] for recent surveys on each.

I first discuss general systems and architectures for data cleaning and integration,

including data warehouses, distributed and Web data integration systems, and datas-

pace systems. I then describe specific data integration and cleaning techniques for

both traditional data sources as well as for sensor data.

2.2.1 Data Integration and Cleaning in Data Warehouses

Data warehouses collect large amounts of data from multiple databases to store in

one repository. As such, warehouses have extensive support for both data integration

and cleaning to deal with errors or inconsistencies in data that typically arise due to

input errors, missing data, or heterogeneous data. Techniques employed by data ware-
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houses tend to focus on a small set of well-defined tasks, including transformations,

matchings, and duplicate elimination.

Figure 2.4. The Extract-Transform-Load (ETL) paradigm for integrating multiple
data sources into a data warehouse.

Much of this process is captured in the Extract-Transform-Load (ETL) process as

illustrated in Figure 2.4. In this process, data from source databases are first extracted

from each data source. Then, data are typically processed through a pipeline of

stages, each responsible for some aspect of cleaning and integration. Typically, these

stages include schema matching and entity resolution [RD00] (I discuss these specific

techniques in more detail below). Additionally, these stages handle data corrections

such as misspellings and other data entry errors. Finally, data is bulk-loaded into the

warehouse. For an overview of data warehousing technology, see [CD97].

2.2.2 Cleaning and Integration Infrastructures

There are a wide variety of tools for assisting in data integration and data cleaning,

primarily originating from commercial vendors (e.g., [II08, Ora08, Inf08]). These

frameworks typically consist of a suite of mechanisms designed for data analysis and

transformations along with tools for organizing such mechanisms in workflows.

In the research community, various projects have built infrastructures for

data cleaning and integration (e.g., [VVSK00, HS98, CGGM03, WSF95]).
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AJAX [GFSS00] is a tool for developing data cleaning pipelines based on a declarative

paradigm. In AJAX, an administrator specifies the high-level operations such as

mappings and transformations at the logical level, which are separated from the ac-

tual implementations for each operation at the physical level. Potter’s Wheel [Vij01]

provides an interactive means of cleaning data through a spreadsheet-like interface

on which users specify transformations and other cleaning operations. The system

also helps to identify dirty data for correction by the user.

2.2.3 Distributed and Web-based Data Integration

Federated and Web-based databases provide another means by which structured

data from multiple sources have been integrated. Such systems provide unified access

to multiple networked, autonomous data sources through a single interface. Typically,

such a system follows a wrapper-mediator architecture [Wie92]. In this architecture,

a mediator accesses multiple data sources, each of which has its data exposed in a

common format through a wrapper. Examples of federated data integration systems

are the Information Manifold [LRO96], TSIMMIS [CGMH+94], and Garlic [CHS+95].

2.2.4 Dataspace Systems

As mentioned in Chapter 1, dataspace systems are next-generation data integra-

tion platforms designed to deal with large collections of heterogeneous data. While the

characteristics of external applications and internal composition of each dataspace sys-

tem vary, such systems share a few common traits. First, they seek to encompass all

types of data sources (not just structured data in a single domain, for example), and

thus typically manage highly heterogeneous data. Second, they unify these sources

through a single interface designed such that both existing and emerging applications

can leverage dataspace data using traditional data access and exploration techniques.
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As such, they support simple keyword searches, complex structured queries, or a mix-

ture of both. Third, dataspace systems are designed to be best-effort: that is, the

system returns the best answer it can at the time of query, which may be approximate

given the data available. As such, dataspace systems typically support some notion

of uncertainty tracking. Finally, since data integration and cleaning in dataspaces is

a continuous process, dataspace systems are designed to evolve and adapt to provide

tighter integration and better data over time. Many projects are building dataspace

systems targeted at different environments; here I outline a few of these efforts.

HiFi is a data integration platform for real-world data designed for processing

queries over distributed sensor data streams [FJK+05]. The goal of HiFi is to provide

access for traditional applications (e.g., SQL-based) by cleaning, processing, and ag-

gregating disparate data streams derived from both sensors and static data sources.

Underlying HiFi is the concept of a Uniform Declarative Framework : all levels of the

system run on a common declarative interface. This framework enables rapid system

deployment, modularity, ease of reasoning, and simple configuration.

PAYGO (an acronym for Pay-As-You-GO) is an architecture for managing and

accessing large collections of heterogeneous data such as those found on the Web,

designed with the pay-as-you-go principle underlying all aspects of the architec-

ture [MJC+07]. While the application area is very different from HiFi, the goals

are similar: data derived from diverse sources need to be cleaned and integrated be-

fore they can be used by applications. PAYGO recognizes that as the heterogeneity

and scale of the data increases in data integration environments, new techniques are

necessary in order to make sense of this data. First, data integration in PAYGO is

an ongoing process, and as such, all aspects of the architecture needs to be designed

using the pay-as-you-go principle. Second, PAYGO is designed to understand data

uncertainty at all levels; it models uncertainty in each of its components and tracks

the data’s uncertainty as they flow through the system.
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Similar to PAYGO, the CIMPLE project [DRC+06] is developing a software plat-

form for creating online communities. CIMPLE focuses on extracting and managing

structure from data-rich online communities, as well as leveraging community involve-

ment to assist in cleaning and integration. DBLife [DS+07], as mentioned earlier, is

an output of this project.

The iMeMex system [BDG+07] is a dataspace system for managing personal infor-

mation, such as the data found on a personal computer. This system defines a unified

data model for personal data information and then proposes a set of pay-as-you-go

techniques for integrating such data (e.g., [SDK+07]).

2.2.5 Data Cleaning and Integration Mechanisms

Having discussed general frameworks and architectures for data cleaning and in-

tegration, I now discuss in more detail specific mechanisms used in such systems. In

particular, I discuss schema matching, entity resolution, and sensor data cleaning.

Figure 2.5. Schema matching and entity resolution between two data sources describ-
ing universities.

Schema Matching

One common problem with integrating multiple data sources is that the struc-

ture in which the data is stored in each source may differ. For instance, one data
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source describing universities may use the term “University” where another may use

“School”, as shown in Figure 2.5. In order to integrate these sources, the schemata

of each data source must be mapped to one another; this process is called schema

matching [DH05].

Many techniques have been developed for schema matching, generally falling un-

der two categories. In rule-based matching [DH05], a set of hand-built rules guide

matching decisions. For instance, a rule might state that two schema elements can be

deemed equal if they have the same name, data type, and domain. Learning-based

matching, on the other hand, determines correspondences between schema elements

using machine-learning techniques such as Naive Bayes [Jen96]. As an example of

a learning-based mechanism, LSD (Learning Source Descriptions) combines the out-

put of multiple Naive Bayes learners to identify semantic mappings between data

sources [DDH01]. See [DH05, RB01] for a broad overview of schema matching tech-

niques.

Entity Resolution

Another challenge with integrating multiple data sources is that the sources may

contain multiple, different references to the same real-world entity. For instance, the

two databases in Figure 2.5 refer to the same three universities, but with different

representations and attributes. When integrating these data sources, these references

must be reconciled such that there is only one reference to each university.

There are a variety of techniques used for entity resolution2, again falling into the

two basic categories of rule-based and learning-based mechanisms. As an example of

rule-based mechanisms, SecondString is a library of a entity-resolution mechanisms

that uses string similarity techniques such as edit distance and TF-IDF to determine

2This process goes by a variety of terms, including entity resolution, reference reconciliation,
object de-duplication, and merge-purge.
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if two references point to the same entity [CRF03]. An example of a learning-based

mechanism is ALIAS, which uses an active-learning based approach. ALIAS trains its

classifiers for determining duplicate entities by selecting training instances for human

labeling that are both representative of the larger dataset as well as challenging for

automated techniques to resolve [SB02].

Sensor Data Cleaning

Recently, many mechanisms have been developed specifically for cleaning sensor

data. Some work has focused on techniques for low-level cleaning, typically involving

statistical or machine learning approaches [EN03, MPD04]. The BBQ system uses

models of sensor data to accurately and efficiently answer wireless sensor network

queries with defined confidence intervals [DGM+04]. Similarly, the work in [PGM05]

uses regression applied to sensor networks for inference purposes. These techniques

are typically expensive to deploy as they require building and training statistical

models.

Other work, in contrast, has addressed high-level cleaning using global information

derived from data mining techniques or based on integrity constraints [RDTC06,

KBS06]. These approaches suffer from the same heavyweight-deployment challenges

as the statistical approaches.

In contrast, several projects in research and industry have explored simple tech-

niques to clean sensor data, typically based on fixed-window smoothing [BGH+05,

BLHS04, GS04, iAn06, WL05](see Chapter 5 for a detailed discussion on such tech-

niques). In many cases, such approaches fail to adequately clean the data. All

together, these techniques form a suite of tools that can be used to clean sensor data

but must be evolved to provide both easy to deploy and effective cleaning.

Note that since sensor data is typically streaming, many of these techniques
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can be applied within streaming data processing infrastructures such as Tele-

graphCQ [CCD+03], STREAM [BBD+02], and Aurora [ACC+03].

2.3 Chapter Summary

In this chapter, I presented background knowledge for the techniques presented

in this thesis. In particular, I described two emerging data sources: structured data

on the Web and streaming sensor data, which are the focus of this thesis. I then

described the challenges associated with processing data from these sources, and the

previous and current approaches for doing so.

In the following chapters, I develop specific pay-as-you-go techniques for cleaning

and integrating these emerging data sources. The goal of these techniques is to

directly address the challenges associated with these new data sources to provide clean

and integrated data to dataspace applications such as Total Consumer Awareness.
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Chapter 3

Guiding User Feedback to Clean

Dataspace Data

In this chapter, I present the first major research contribution of this dissertation,

a mechanism for utilizing human feedback for data integration tasks in dataspaces.1 I

develop a technique based on decision theory, specifically the value of perfect informa-

tion [RN03], that estimates the benefit to the dataspace of possible data integration

tasks. Given these estimates, tasks that provide the most benefit are presented to

humans for confirmation. I present a performance study on multiple real world and

synthetic datasets that investigates the benefits of this approach. Finally, I outline

the architecture of Roomba, a utility for use within a dataspace system designed to

employ this VPI-based integration technique.

1Much of the work presented in this chapter has been published in [JFH08].
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3.1 Introduction

Applications such as Total Consumer Awareness (as described in Section 1.1) uti-

lize dataspace data from a wide range of heterogeneous sources. One of the primary

challenges in supporting these types of applications is large-scale semantic data inte-

gration [DH05]. Heterogeneous data originating from disparate sources often contain

different representations of the same real-world entity or concept. For example, two

employee records in two different enterprise databases may refer to the same person.

Similarly, on the Web there are multiple ways of referring to the same product or

person, for instance. Typically, a dataspace system employs a set of mechanisms for

semantic integration, such as schema matching [RB01] and entity resolution [CRF03],

to determine semantic equivalences between elements in the dataspace. The output

of these mechanisms are a set of candidate matches that state with some confidence

that two elements in the dataspace refer to the same real-world entity or concept.

Since these matches, when confirmed, define the semantic equivalences in a datas-

pace, accurate query processing in a dataspace system depends on the accuracy of

these matches being confirmed. Thus, a way to provide better query results in a

dataspace system is to confirm candidate matches by soliciting user feedback. For

instance, a human could be asked to confirm the equivalence of two schema elements

or asked if two objects are duplicates. In a large-scale dataspace (e.g., a dataspace

for Web data) there are far too many candidate matches that could benefit from user

feedback; the dataspace system may not be able to involve users in all of them. To

address this problem, I apply the pay-as-you-go principle: with limited human atten-

tion and resources, the dataspace system should ask users to confirm only the most

important matches. Thus, the key to soliciting user feedback in such a system is to

order candidate matches by importance such that the most useful matches can be

confirmed first. In fact, this is a common challenge in a set of recent scenarios where
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the goal is to leverage mass collaboration, or the so-called wisdom of crowds [Sur04],

in order to better understand sets of data [vAD04, MDV+03, Fli07].

In this chapter, I consider the problem of determining the order in which to confirm

candidate matches to provide the most benefit to a dataspace. To this end, I apply

decision theory to the context of data integration to reason about such tasks in a

principled manner.

I begin by developing a method for ordering candidate matches for user con-

firmation using the decision-theoretic concept of the value of perfect information

(VPI ) [RN03]. VPI provides a means of estimating the benefit to the dataspace

of determining the correctness of a candidate match through soliciting user feedback.

One of the key advantages of this method is that it considers candidate matches pro-

duced from multiple mechanisms in a uniform fashion. Hence, the system can weigh,

for example, the benefit of asking to confirm a schema match versus confirming the

identity of references to two entities in the domain. In this regard, this approach is

distinguished from previous research in soliciting user feedback for data integration

tasks (e.g., [SB02, WYDM04, DDH01]) that are tightly integrated with a particular

mechanism such as schema matching or entity resolution.

At the core of VPI is a utility function that quantifies the desirability of a given

state of the world; thus to apply VPI to dataspaces, I devise a utility function for

dataspaces based on query result quality. Since the correctness of all unconfirmed

candidate matches is unknown, the exact utility of a dataspace at a given instant

cannot be exactly computed. Thus, I develop a set of approximations that allow the

system to efficiently estimate the utility of a dataspace.

I describe a detailed experimental evaluation on both real and synthetic datasets

showing that the ordering of user feedback produced by this VPI-based approach

yields a dataspace with a significantly higher utility than a variety of other ordering
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strategies. I also illustrate experimentally the benefit of considering the output of

multiple data integration mechanisms in a single framework: I show that an ordering

approach that treats each class of mechanism separately for user-feedback purposes

yields poor overall utility. Furthermore, the experiments explore various charac-

teristics of data integration environments to investigate the effect of environmental

properties on the efficacy of user feedback.

Finally, I outline the design of Roomba, a system that incorporates this decision-

theoretic framework to guide a dataspace system in soliciting user feedback in a

pay-as-you-go manner.

This section is organized as follows. Section 3.2 describes the terminology and

general problem setting of this chapter. Section 3.3 discusses the decision-theoretic

framework I develop for ordering match confirmations. Section 3.4 presents a detailed

empirical evaluation of this match ordering strategy. In Section 3.5 I show how to

relax the query answering model to consider unconfirmed matches. I describe Roomba

in Section 3.6. Section 3.7 presents related work.

3.2 Preliminaries

I begin by describing the problem setting and defining the terms used throughout

this chapter.

3.2.1 Dataspace Triples

I model a dataspace D as a collection of triples of the form 〈object, attribute, value〉

(see Table 3.2.1 for an example). Objects and attributes are represented as strings.

Values can be strings or can come from other domains (e.g., numbers or dates). Note

that the sets of strings used for objects, attributes, and values are not necessarily
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disjoint. Intuitively, an object refers to some real-world entity and a triple describes

the value of some attribute of that entity. I use the term element to refer to anything

that is either an object, attribute, or value in the dataspace.

I do not assume that the data in the dataspace is actually stored as triples. Rather,

the triples may be a logical view over multiple sets of data residing in independent

systems.

〈object, attribute, value〉

t0 = 〈Wisconsin, SchoolColor, Cardinal〉
t1 = 〈Cal, SchoolColor, Blue〉
t2 = 〈Washington, SchoolColor, Purple〉
t3 = 〈Berkeley, Color, Navy〉
t4 = 〈UW-Madison, Color, Red〉
t5 = 〈Stanford, Color, Cardinal〉

Example 3.2.1 An example dataspace with six triples, describing properties of uni-

versities. �

3.2.2 Dataspace Heterogeneity and Candidate Matches

Since the data in a dataspace come from multiple disparate sources, they can dis-

play a high degree of heterogeneity. For example, the triples in the dataspace could

be collected from a set of databases in an enterprise or from a large collection of tables

on the Web. As a result, non-equal strings in a dataspace do not necessarily denote

different entities or attributes in the real world. For instance, Example 3.2.1 shows

a dataspace describing properties of universities. In this example, the objects “Wis-

consin” and “UW-Madison” refer to the same university, the attributes “Color” and

“SchoolColor” describe the same property of universities, and the values “cardinal”

and “red” are the same in reality.
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In a dataspace system, there is a set of mechanisms that try to identify such equiv-

alences between elements. In particular, there are techniques for schema matching

that predict whether two attributes are the same (see [RB01, DH05] for overviews

of such techniques), and there are techniques for entity resolution that will predict

whether two object or value references are about the same real-world entity (see

[CRF03, Win99] for overviews of these techniques).

The output of these mechanisms are modeled as a set of candidate matches, each

of the form (e1, e2, c), where e1 and e2 are elements in the dataspace and c is a number

between 0 and 1 denoting the confidence the mechanism has in its prediction. The

techniques presented in this chapter are agnostic to the details of the mechanisms.

While in some cases the mechanisms can predict equivalence between elements

with complete confidence, most of the time they cannot. Since query processing in

a dataspace system depends on the quality of these matches, query results will be

better when the matches are certain. Thus, the goal is to solicit feedback from users

to confirm the matches produced by the mechanisms. Confirming a candidate match

involves posing a question about the match to the user that can be answered with a

“yes” or a “no”. I assume that there exists a separate component that can translate

a given candidate match into a such a question.

As discussed above, the number of candidate matches potentially exceeds the

amount of human attention available to confirm them; hence, the approach is to

confirm matches in a pay-as-you-go manner, where confirmations are requested in-

crementally. This approach takes advantage of the fact that some matches provide

more benefit to the dataspace when confirmed than others: they are involved in more

queries with greater importance or are associated with more data. Similarly, some

matches may never be of interest, and therefore spending any human effort on them

is unnecessary.
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Since only a fraction of the candidate matches can be confirmed, the challenge is

to determine which matches provide the most benefit when confirmed. Hence, the

problem I consider here is ordering candidate matches for confirmation to provide the

most benefit to the dataspace.

Clearly, the means by which the system asks for confirmation is important. There

needs to be some way to formulate a natural language question given a candidate

match. Also, the system will likely have to ask multiple users the same question in

order to form a consensus in the spirit of the ESP Game [vAD04]. Furthermore, there

may be subjective cases where two elements may be the same to some users, but not

the same to others (e.g., red and cardinal are the same color to most people, but are

different to artist, graphic designers, or college football fans). In this work, I focus

on providing the foundation for building solutions to these challenges.

3.2.3 Perfect and Known Dataspace States

To model the benefit of confirming individual candidate matches, I define the

perfect dataspace DP corresponding to D. In DP , all the correct matches have been

reconciled and two different strings necessarily represent distinct objects, attributes,

or values in the real world. Here, I assume that the real world can be partitioned as

such using only strings; in some cases, however, it may be necessary to contextualize

the strings with additional metadata to avoid linking unrelated concepts through a

common string (e.g., the strings “Cal” and “City of Berkeley” may be incorrectly

deemed equivalent if the matches (“Cal”,“Berkeley”, c1) and (“Berkeley”, “City of

Berkeley”, c2) are confirmed). Once the equivalence between strings in D is known,

DP can be produced by replacing all the strings belonging to the same equivalence

class by one representative element of that class. Of course, keep in mind that DP is

not actually known.
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The known dataspace for D, on the other hand, consists of the triples in D and the

set of equivalences between elements determined by confirmed matches. Whenever

the system receives a confirmation of a candidate match, it notes the equivalence of

the two elements in the match in a concordance table.

At any given point, query processing is performed on the current known dataspace

state. A confirmed match (e1, e2, c) causes the system to treat the elements e1 and e2

as equivalent for query processing purposes (through the use of a concordance table as

discussed above). Initially, I assume that only confirmed matches are used in query

processing; this requirement is relaxed in Section 3.5 to accommodate other query

answering models.

3.2.4 Queries and Workloads

This discussion considers three classes of queries: atomic queries, keyword queries

and conjunctive queries.

An atomic query is of the form (object = d), (attribute = d), or (value = d) where

d is some constant. The answer to an atomic query Q over a dataspace D, denoted

by Q(D), is the set of triples that satisfy the equality.

A keyword query is of the form k, where k is a string. A keyword query is

shorthand for the following: ((object = k) ∨ (attribute = k) ∨ (value = k)); i.e., a

query that requests all the triples that contain k anywhere in the triple.

Finally, a conjunctive query, a conjunction of atomic and keyword queries, is of

the form (a1 ∧ . . . ∧ an) where ai is either an atomic query or a keyword query. The

answer returned by a conjunctive query is the intersection of the triples returned by

each of its conjuncts.

Recall that when querying the known dataspace D, the query processor utilizes all
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the confirmed candidate matches, treating the elements in each match equivalently.

On the other hand, the query Q over DP , the perfect dataspace corresponding to D,

takes into consideration all matches that are correct in reality. I denote the result set

of Q over DP by Q(DP ).

When determining which candidate match to confirm, the dataspace system takes

into consideration how such a confirmation would affect the quality of query answering

on a query workload. A query workload is a set of pairs of the form (Q, w), where Q

is a query and w is a weight attributed to the query denoting its relative importance.

Typically, the weight assigned to a query is proportional to its frequency in the

workload, but it can also be proportional to other measures of importance, such as

the monetary value associated with answering it, or in relation to a particular set of

queries for which the system is to be optimized.

3.2.5 Dataspace Statistics

I assume that the dataspace system contains basic statistics on occurrences of

elements in triples in the dataspace. In particular, the dataspace system maintains

statistics on the cardinality of the result set of atomic queries over the dataspace D.

These queries may be derived from the dataspace workload or may be seeded with

important queries. For example, for the atomic query Q : (object = d), the dataspace

stores the number of triples in D that have d in their first position, denoted |D1
d|.

For conjunctive queries, the DSSP may either maintain multi-column statistics to

determine the result sizes of conjunctive queries or use standard techniques in the

literature (e.g., [Ioa03, CDS04]) to estimate such cardinalities.
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Figure 3.1. An architecture for incorporating user feedback in a dataspace system.

3.2.6 Overall architecture

To summarize, the overall architecture for incorporating user feedback in a datas-

pace system is shown in Figure 3.1. In this figure, a dataspace system (DSSP) man-

ages multiple heterogeneous data sources. The data from these sources are represented

as triples internally in the dataspace system. As noted above, triples may not actually

be stored in a dataspace, but could be a logical view of the data in the dataspace.

Triples are analyzed by multiple data integration mechanisms (e.g., schema match-

ing, entity resolution) to produce candidate matches. Matches flow into a module

that determines the most beneficial match to confirm; this component is the focus

of this chapter. A question-asking module converts the most beneficial match into a

question suitable for presentation to a user (e.g., “Are the schema elements ’college’

and ’university’ the same?”, possibly with additional context if necessary). When a

user confirms a match, it is entered into an equivalence table that notes the semantic

equivalence between two dataspace elements. Elements in these correspondences are

employed during query processing as discussed above.
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3.3 Ordering Match Confirmations

Having laid out the problem setting, this section introduces a decision-theoretic

approach to ordering candidate matches for user confirmation in a dataspace. The key

concept from decision theory I use is the value of perfect information (VPI ) [RN03].

The value of perfect information is a means of quantifying the potential benefit of

determining the true value for some unknown. In what follows, I explain how the

concept of VPI can be applied to the context of obtaining information about the

correctness of a given candidate match, denoted by mj.

Suppose we are given a dataspace D and a set of candidate matches M =

{m1, . . . ,ml}. Let us assume that there is some means of measuring the utility of the

dataspace w.r.t. the candidate matches, denoted by U(D, M), which I explain shortly.

Given a candidate match mj, if the system asks the user to confirm mj, there are

two possible outcomes, each with their respective dataspace: either mj is confirmed

as correct or it is rejected as false. I denote the two possible resulting dataspaces by

D+
mj

and D−
mj

.

Furthermore, let us assume that the probability of mj being correct is pj, and

therefore the expected utility of confirming mj can be expressed as the weighted sum

of the two possible outcomes: U(D+
mj

, M \ {mj}) · pj + U(D−
mj

, M \ {mj}) · (1− pj).

Note that these terms do not include mj in the set of candidate matches because it

has either been confirmed or rejected.

Hence, the benefit of confirming mj can be expressed as the following difference:

Benefit(mj) =U(D+
mj

, M \ {mj}) · pj+

U(D−
mj

, M \ {mj}) · (1− pj)−

U(D, M). (3.1)
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Broadly speaking, the utility of a dataspace D is measured by the quality of

the results obtained for the queries in the workload W on D compared to what the

dataspace system would have obtained if it knew the perfect dataspace DP . To define

U(D, M), I first need to define the result quality of the query Q over a dataspace D,

which I denote by r(Q, D, M).

Recall that Q is evaluated over the dataspace D with the current known set of

confirmed matches. Since our queries do not involve negation, all the results the

dataspace system returns will be correct w.r.t. DP , but there may be missing results

because some correct matches are not confirmed. Hence, I define

r(Q, D, M) =
|Q(D)|
|Q(DP )|

and the utility of the dataspace is defined as the weighted sum of the qualities for

each the queries in the workload:

U(D, M) =
∑

(Qi,wi)∈W

r(Qi, D,M) · wi. (3.2)

The goal is to order the matches to confirm by the benefit outlined in Equa-

tion 3.1: the matches that are expected to produce the most benefit when confirmed

are presented to the user first. However, in order to put this formula to use, we still

face two challenges. First, we do not know the probability pj that candidate match

mj is correct. Second, since we do not know the perfect dataspace DP , we cannot

actually compute the utility of a dataspace as defined in Equation 3.2.

I address the first challenge by approximating the probability pj by cj, the con-

fidence measure associated with candidate match mj. In practice, the confidence

numbers associated with the candidate matches are not probabilities, but for our

purposes it is a reasonable approximation to interpret them as such. In Section 3.4,
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I show how to handle cases where such an approximation does not hold. The second

challenge is the topic of the next subsection.

3.3.1 Estimated Utility of a Dataspace

In what follows, I show how to estimate the utility of a dataspace using expected

utility . Note that the set M represents the uncertainty about how D differs from the

perfect dataspace DP ; any subset of the candidate matches in M may be correct. I

denote the expected utility of D w.r.t. the matches M by EU(D, M) and the expected

quality for a query Q w.r.t. D and M as Er(Q,D, M).

Once we have EU(D, M), the value of perfect information w.r.t. a particular

match mj is expressed by the following equation, obtained by reformulating Equa-

tion 3.1 to use cj instead of pj and to refer to expected utility rather than utility:

V PI(mj) =EU(D+
mj

, M \ {mj}) · cj+

EU(D−
mj

, M \ {mj}) · (1− cj)−

EU(D, M). (3.3)

The key to computing EU(D, M) is to estimate the size of the result of a query Q

over the perfect dataspace DP . I illustrate the method for computing Er(Q, D, M)

for atomic queries of the form Q : (object = d), where d is some constant. The

reasoning for other atomic, keyword, and conjunctive queries is similar. Once we have

Er(Q, D, M), the formula for EU(D, M) can be obtained by applying Equation 3.2.

Let us assume that the confidences of the matches in M being correct are inde-

pendent of each other and that M is a complete set of candidates; i.e., if e1 and e2

are two elements in D and are the same in DP , then there will be a candidate match
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(e1, e2, c) in M for some value of c. Given the dataspace D, there are multiple pos-

sible perfect dataspaces that are consistent with D and M . Each such dataspace is

obtained by selecting a subset M1 ⊆M as correct matches, and M \M1 as incorrect

matches. I denote the perfect dataspace obtained from D and M1 by DM1 .

Er(Q, D, M) is computed by the weighted result quality of Q on each of these

candidate perfect dataspaces. Since it is assumed that the confidences of matches in

M are independent of each other, Er(Q, D, M) is computed as follows:

Er(Q, D, M) =
∑

M1⊆M

|Q(D)|
|Q(DM1)|

Pr(DM1) (3.4)

where

Pr(DM1) =
∏

mi∈M1

ci ·
∏

mi 6∈M1

(1− ci).

Finally, to compute Equation 3.4 we need to evaluate |Q(DM1)|, the estimated

size of Q on one of the possible candidate perfect dataspaces.

Recall that the size of Q over D, |Q(D)|, is the number of triples in D where d

occurs in the first position of the triple. Hence, |Q(D)| = |D1
d|, which can be found

using the statistics available on the dataspace. In DM1 , the constant d is deemed

equal to a set of other constants in its equivalence class, d1, . . . , dm. Hence, the result

of Q over DM1 also includes the triples with d1, . . . , dm in their first position and

therefore |Q(DM1)| = |D1
d| + |D1

d1
| + . . . + |D1

dm
|, which can also be computed using

the dataspace statistics.
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3.3.2 Approximating Expected Utility

In practice, we do not want to compute Equation 3.4 exactly as written because it

requires iterating over all possible candidate perfect dataspaces, the number of which

is exponential in |M |, the size of the set of candidate matches. Hence, in this sub-

section I show how to approximate EU(D, M) using several simplifying assumptions.

The experimental evaluation in Section 3.4 shows that despite these approximations,

this approach produces a good ordering of candidate matches.

Two approximations are already built into the development of Equation 3.4. First,

the confidences of the matches in M are not necessarily independent of each other.

There may, for instance, be one-to-one mappings between two data sources such that

a rejected match between two elements would increase the confidence of all other

matches in which those elements participate; such considerations can be layered on

top of the techniques presented here. Second, the set M may not include all possible

correct matches, though we can always assume there is a candidate match for every

pair of elements in D.

The main approximation made when computing the VPI w.r.t. a candidate match

mj of the form (e1, e2, cj) is to assume that M = {mj}. That is, it is assumed that

M includes only the candidate match for which we are computing the VPI. The

effect of this assumption is that we consider only two candidate perfect dataspaces,

one in which mj holds and the other in which mj does not hold. These two perfect

dataspaces are denoted by De1=e2
mj

and De1 6=e2
mj

, respectively.

Given this approximation, we can rewrite Equation 3.4 where {mj} is substituted

for M :
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Er′(Q, D, {mj}) =
|Q(D)|
|Q(De1=e2

mj )|
cj+

|Q(D)|
|Q(De1 6=e2

mj )|
(1− cj) (3.5)

and therefore the expected utility of D w.r.t. M = {mj} can be written as

EU(D, {mj}) =
∑

(Qi,wi)∈W

wi · (
|Qi(D)|
|Qi(D

e1=e2
mj )|

cj+

|Qi(D)|
|Qi(D

e1 6=e2
mj )|

(1− cj))

=
∑

(Qi,wi)∈W

wi ·
|Qi(D)|
|Qi(D

e1=e2
mj )|

cj+

∑
(Qi,wi)∈W

wi ·
|Qi(D)|
|Qi(D

e1 6=e2
mj )|

(1− cj). (3.6)

3.3.3 The Value of Perfect Information

Now let us return to Equation 3.3. By substituting {mj} for M , we obtain the

following:

V PI(mj) =EU(D+
mj

, {}) · cj+

EU(D−
mj

, {}) · (1− cj)−

EU(D, {mj}). (3.7)

Now note that once we employ the assumption that M = {mj}, Er′(Q, D+
mj

, {})

and Er′(Q, D−
mj

, {}) are both 1 because they evaluate the utility of a dataspace that

is the same as its corresponding perfect dataspace. Thus, using these values with

Equation 3.6, EU(D+
mj

, {}) · cj and EU(D−
mj

, {}) · (1− cj) become
∑

(Qi,wi)∈W wi · cj
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and
∑

(Qi,wi)∈W wi · (1 − cj), respectively. Furthermore, note that the last term at

the end of Equation 3.6 also evaluates the utility of a dataspace that is the same

as its corresponding perfect dataspace and thus simplifies to
∑

(Qi,wi)∈W wi · (1− cj).

Therefore, this term cancels with the second term of Equation 3.7. Hence we are left

with the following:

V PI(mj) =
∑

(Qi,wi)∈W

wi · cj−

∑
(Qi,wi)∈W

wi · cj
|Qi(D)|
|Qi(D

e1=e2
mj )|

=
∑

(Qi,wi)∈W

wi · cj

(
1− |Qi(D)|
|Qi(D

e1=e2
mj )|

)
.

Finally, observe that only queries in W that refer to either e1 or e2 can contribute

to the above sum; otherwise, the numerator and denominator are the same. Hence, if

Wmj
denotes the set of queries that refer to either e1 or e2, then the above formula can

be restricted to yield the following. This equation forms the basis for my VPI-based

user feedback ordering approach.

V PI(mj) =
∑

(Qi,wi)∈Wmj

wi · cj

(
1− |Qi(D)|
|Qi(D

e1=e2
mj )|

)
. (3.8)

By calculating the VPI value for each candidate match using this equation, a

dataspace system can produce a list of matches ordered by the potential benefit of

confirming the match.

Example 3.3.1 Consider an example unconfirmed candidate match mj =

(“red”, “cardinal”, 0.8) in the dataspace from Example 3.2.1. The value of perfect

information for mj is computed as follows.
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Assume that the dataspace workload W contains two queries relevant to mj, Q1 :

(value = “red”) with a weight w1 = 0.9 and Q2 : (value = “cardinal”) with a weight

w1 = 0.5, and thus Wmj
= {(Q1, 0.9), (Q2, 0.5)}. In the example dataspace D, the

cardinalities of the two relevant values in the third position is |D3
“red” | = 1 and

|D3
“cardinal” | = 2. Therefore, the query cardinalities in the known dataspace D are

|Q1(D)| = |D3
“red” | = 1 and |Q2(D)| = |D3

“cardinal” | = 2. In the perfect dataspace

where the values “cardinal” and “red” refer to the same color, the cardinality for both

queries is |Q(D“red”=“cardinal”
mj

)| = |D3
“red” |+ |D3

“cardinal” | = 3.

Applying Equation 3.8 to compute the VPI for mj, we have:

V PI(mj) =w1 · cj

(
1− |Q1(D)|
|Q1(D“red”=“cardinal”

mj
)|

)
+

w2 · cj

(
1− |Q2(D)|
|Q2(D“red”=“cardinal”

mj
)|

)

=0.9 · 0.8
(

1− 1

3

)
+ 0.5 · 0.8

(
1− 2

3

)
= 0.61.

This value represents the expected increase in utility of the dataspace after confirming

candidate match mj. �

3.4 Experimental Evaluation

In this section I present a detailed experimental evaluation of the VPI-based ap-

proach presented in the previous section, using both real-world and synthetic datasets

.

3.4.1 Google Base Experiments

The first set of experiments I present uses real-world datasets derived from Google

Base [GB07].
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Experimental Setup

Google Base. Google Base is an online repository of semi-structured, user-provided

data. Recall from Chapter 2 that the primary unit of data in Google Base is an item,

each of which consists of an item ID and one or more attribute/value pairs. An item

can be converted to one or more triples, each containing the item ID and one of the

attribute/value pairs. Items are organized into item types such as vehicles or recipes.

While there are recommended attributes and values for each item, users can make

up their own attributes and values when uploading items. Since each user is free to

use their own terminology in their items, there are many cases where different strings

for attributes or values in two different items refer to the same concept in reality.

Examples of such correspondences are: (“address” ↔ “location”), (“door count” ↔

“doors”), and (“Tan” ↔ “beige”).

Google Base datasets. To collect the data used for our experiments, I sampled

Google Base to get 1000 elements from each of the 16 standard item types recom-

mended by Google Base. These item types encompass most of the data in Google

Base across a wide range of domains. The item types sampled from are as follows:

business locations, course schedules, events and activities, housing, jobs, mobile, news and

articles, personals, products, recipes, reference articles, reviews, services, travel packages,

vehicles, wanted ads.

I partitioned this sample into two datasets (characteristics for these datasets are

shown in Table 3.1):

• Full : This dataset contains all 16 item types, and thus represents the full range of

semantic heterogeneity that exists in Google Base. Due to this heterogeneity, correct

correspondences are hard for the mechanisms (described below) to determine and
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Characteristic Restricted Full

Total items 8000 16000
Total triples 60716 148050
Unique triples 52773 113489
Total attributes 333 708
Total values 6900 16924
Total elements 7233 17632
Candidate matches 839 4853
Percent correct matches 0.33 0.23
Avg matches per element 2.8 4.9

Table 3.1. Statistics for the Google Base datasets. Total items denotes the total
number of Google Base items in each dataset. Each of these items may contain
multiple triples and thus total triples is the total number of triples contained in those
items. Many of these triples are identical: unique triples is the the number of unique
triples in each dataset. In these datasets, the elements of interest are attributes and
values; this table shows the counts for each of these types of elements and the total
number of elements. Additionally, I show statistics for the matches: the total number
of matches produced by the mechanisms (Candidate matches), the fraction of correct
matches (Percent correct matches), and the average number of matches in which each
element participates (Avg matches per element).

thus many of the matches are incorrect; only 23% of the matches in this dataset are

correct matches.

• Restricted : This dataset contains a relatively small amount of semantic hetero-

geneity: there are fewer cases where two strings refer to the same real-world entity.

Thus, the mechanisms produce a smaller number of matches and a higher percentage

of correct matches (see Table 3.1). This dataset was created by selecting items from

item types that contained less heterogeneity. These item types are as follows: business

locations, housing, news and articles, products, recipes, reference articles, reviews, wanted

ads.

Ground truth. In order to evaluate the VPI-based techniques against ground-truth,
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I manually annotated the dataset with correspondences between attributes and values

in each dataset.

Mechanisms. I employ two different types of mechanisms, each applied to both

attribute and value matching.

For the first mechanism, I use Google Base’s internal attribute and value matching,

termed adjustments, designed to convert attributes and values to canonical strings.

For example, the attribute “Address” is converted to “location” and the value “F”

is converted to “female”. The Google Base data includes for each adjustment both

the original string and the adjusted string. Each original and adjusted string pair

represents a candidate match. Note that matches produced by this mechanism are

particularly challenging to use in VPI calculations as the matches do not have an

associated confidence. I discuss how to address this challenge below.

The second mechanism I use is the SecondString library [SS07] for approximate

string matching. This mechanism also operates on both attributes and values. From

this library, I use the SoftTFIDF approach [CRF03], a hybrid approach combining the

Jaro-Winkler metric [Win99] (a measure based on how many characters the strings

have in common and their ordering) with TF-IDF similarity. This mechanism was

shown to have the best string matching accuracy in a variety of experiments [CRF03].

For a match’s confidence, this mechanism produces a “score”, a number between 0

and 1, with 1 indicating the highest degree of similarity. While this score is loosely

correlated with the probability the match is correct, it is inaccurate. To limit the

number of candidate matches, only matches with a score greater than 0.5 are consid-

ered for confirmation.

Candidate matches. Using these two mechanisms, I produce a set of candidate
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matches for each dataset. These matches are annotated as correct or incorrect as

determined by the manual annotation.

Converting confidences to probabilities. Since the VPI-based approach uses

the confidence numbers produced by mechanisms as probabilities to drive its VPI

calculations, a major challenge presented by these candidate matches is to convert

the match confidences into probabilities.

To address this challenge, I use a histogram-based learning approach. As matches

are confirmed, the dataspace system compiles how many times each mechanism pro-

duces correct or incorrect matches and the corresponding input confidence (or lack

thereof) for each match. Using these observed probabilities, the system maintains

a histogram for each mechanism that maps the confidence value for matches pro-

duced by that mechanism to a probability: each bucket corresponds to an input

confidence range and the bucket contains the computed probability for that input

confidence. Upon each confirmed match (or after a batch of confirmed matches), the

system recomputes the probabilities for each mechanism and then applies the com-

puted probabilities to the remaining candidate matches for that mechanism based on

their confidences. Note that for mechanisms without any confidence value (e.g., the

Google Base adjustments in this scenario), this approach assigns a single confidence

value based on the percentage of correct matches produced (and confirmed as correct)

by that mechanism (i.e., the histogram only has one bucket).

Queries. I use a query generator to generate a set of queries. Each generated

query refers to a single element and is representative of the set of queries that refer

that element. For simplicity, the generator only produces keyword queries. The

generator assigns to each query a weight w using a distribution to represent the

frequency of queries on this element. Since the distribution of query-term frequencies

on Web search engines typically follows a long-tailed distribution [SHMM98], for w
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in these experiments values are selected from a Pareto distribution [CB02]. Other

query workloads below are evaluated below.

Match ordering strategies. I compare a variety of candidate match ordering

strategies. Each strategy implements a score(mj) function, which returns a numerical

score for a given candidate match mj = (e1, e2, cj). A higher score indicates that a

candidate match should be confirmed sooner.

• V PI: score(mj) = V PI(mj). Each candidate match is scored with the value of

perfect information as defined in Equation 3.8.

• QueryWeight: score(mj) =
∑

(Qi,wi)∈Wmj
wi. Each candidate match is scored with

the sum of query weights for that match’s relevant queries. The intuition behind

this strategy is that important queries should have their relevant matches confirmed

earlier.

• NumTriples: score(mj) = |De1|+|De2|. This strategy scores each candidate match

by number of triples in which the two elements in the match appear. The rationale

behind this strategy is that matches containing elements appearing in many triples

are more important since queries involving the elements in these matches will miss

more data if the match is correct but not confirmed.

• GreedyOracle: For each unconfirmed candidate match, this strategy runs the en-

tire query workload W and measures the actual increase in utility resulting from

confirming that match. To calculate the actual utility, this strategy uses the manual

annotation for all matches to determine if they are correct or not in reality. The

match with the highest resulting utility is chosen as the next confirmation. Note that

this strategy is not a realistic ordering approach as it relies on knowing the correctness

of all candidate matches as well as running the entire workload for all unconfirmed

matches for each match confirmation. It represents an upper-bound on any myopic

strategy.
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• Random: Finally, the naive strategy for ordering confirmations is to treat each

candidate match as equally important. Thus, the next match to confirm in this

strategy is chosen randomly. This strategy provides a baseline to which the above

strategies can be compared

Confirming candidate matches. All candidate matches are scored using each of

the above strategies and the match with the highest score is chosen to confirm using

the correct answer as determined by the manual annotation. After each confirmed

match, the set of equivalence classes are updated and the process repeats.

Measurement. After confirming some percentage of candidate matches using each

of the orderings produced by each strategy, I run the query workload W over the

dataspace and measure the utility using the utility function defined in Equation 3.2.

I report the percent of improvement in utility over a dataspace with no confirmed

matches. Conceptually, a higher value for this metric means that query results have

a higher recall, especially for important queries (as defined by the query weights).

Basic Tests

To study the basic efficacy of the VPI-based approach, the first experiments in-

vestigate the performance of different ordering strategies on both of the Google Base

datasets. I use the basic setup as described above with each dataset.

The resulting utility produced by confirming matches ordered by each strategy for

the Full dataset is shown in Figure 3.2. The results in this graph can be interpreted as

follows. Since only a small fraction of candidate matches can be confirmed in a large-

scale dataspace, the goal is to provide the highest utility with as few confirmations

as possible. Thus, the slope of the curve at lower percentages of confirmations is the

key component to the curve: the steeper the slope, the better the ordering.
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Figure 3.2. Basic test comparing a VPI-based approach for ordering user feedback to
other approaches run over the Full dataset.
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Figure 3.3. Basic test comparing a VPI-based approach for ordering user feedback to
other approaches run over the Restricted dataset.
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First observe the curve for the GreedyOracle strategy. This approach selects the

most beneficial candidate matches to confirm first and thus the curve is very steep for

the early confirmations. As it confirms more matches, the curve flattens out as these

matches provide less benefit to the dataspace. Finally, it converges to the utility of

the perfect dataspace, i.e., the dataspace where all element equivalences are known.

As can be seen, the V PI strategy performs comparatively well. The V PI strategy

performs well despite the fact that this dataset is particularly challenging for any non-

oracle strategy as there is a large degree of semantic heterogeneity. First, this dataset

contains many incorrect matches, which provide no benefit to the dataspace’s utility

when rejected. More challenging, however, is that many of the incorrect matches are

given similar confidences. As an example of the challenges in this dataset, consider the

following matches created by the SecondString mechanism in the vehicles item type:

the candidate match (“AM/FM Stereo Cassette/Cd”, “AM/FM Stereo Cassette & CD

Player”) is correct in reality with a confidence of 0.91 while the match (“AM/FM

Stereo Cassette/Cd”, “AM/FM Stereo Cassette”) is incorrect in reality but is given

a similar confidence of 0.92. The V PI strategy is unable to discern between these

two matches and thus occasionally incorrectly orders them. Despite these challenges,

however, the V PI strategy substantially outperforms all other non-oracle strategies.

In contrast, the slopes of the curves for the other strategies are much shallower;

it takes many more confirmations to produce a dataspace with a high utility. The

NumTriples strategy does particularly poorly. These results emphasize the impor-

tance of considering the query workload when selecting candidate matches for con-

firmation: NumTriples performs poorly because it fails to consider the workload.

The utility of the dataspace increases roughly linearly as the percent of confirma-

tions increase for the Random curve since it treats each candidate match as equally

important.
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Strategy 10% matches con-
firmed

0.95 of perfect datas-
pace

V PI 17.2 0.20
QueryWeight 7.0 0.55
NumTriples 3.9 0.75
Random 3.2 0.80
GreedyOracle 18.7 0.20

Table 3.2. Two measures of candidate match ordering effectiveness (shown for the
Restricted dataset). The first column shows the resulting percent of improvement
after confirming 10% percent of the matches. The second column shows the fraction
of confirmed matches required to reach a dataspace whose utility is 0.95 of the utility
of the perfect dataspace.

The results for the basic tests on the Restricted dataset are shown in Figure 3.3.

Here, the V PI-strategy does particularly well; it tracks the GreedyOracle curve

closely. Since this dataset contains less semantic heterogeneity than the Full dataset,

the V PI strategy is able to easily discern the best matches to confirm.

While these graphs provide a holistic view of how each strategy performs, I present

in Table 3.2 two alternative views of this data (for the Restricted dataset) to better

illustrate the effect of match ordering strategy on dataspace utility. First, since a

DSSP for a large-scale dataspace can only request feedback for a very small number

of candidate matches, I report the improvement after a small fraction of confirmed

matches (here, 10%). Second, since the goal of user feedback is to move the known

dataspace state towards the perfect dataspace, I report how many confirmations are

required from each strategy until the utility of the dataspace reaches some fraction

of the utility of the perfect dataspace (here, 0.95).

These numbers further emphasize the effectiveness of a VPI-based ordering ap-

proach. With only a small percentage of confirmations in using the V PI strategy, the

utility of the dataspace closely approaches the utility of the perfect dataspace. For

instance, with only 20% of the confirmations, the V PI strategy is able to produce a
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Figure 3.4. Experiment comparing a strategy that separately orders candidate
matches from disparate mechanisms to the V PI strategy, run on the Restricted
dataset.

dataspace that is 95% of the perfect dataspace, equivalent to the oracle strategy and

over twice as fast as the next-best strategy.

Partitioned Ordering

To study the need for a single unifying means of reasoning about user feedback

in a dataspace, I compare the V PI approach to an ordering algorithm that treats

candidate matches produced by different mechanisms separately. The general idea

with this strategy is that the output of each mechanism is ordered separately in

a partition for each mechanism’s matches, and then these partitions are ordered. I

term this ordering strategy Partitioned, where score(mj) is calculated as follows. The

algorithm separates its matches into partitions corresponding to the output of the two

mechanisms. These partitions are roughly ordered based on the relative performance

of each mechanism. For this experiment, Partitioned orders Google Base adjustments

first, followed by SecondString matches. To provide a fair comparison, within each

partition the matches are ordered by their VPI score. This strategy represents the
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case where individual mechanisms each perform their own ordering; there is no global

ordering beyond deciding how to the order partitions.

For this experiment, I compare the Partitioned strategy to the V PI strategy

using the experimental setup as in the basic tests using the Restricted dataset. I also

include the curve for the Random strategy for reference. The results are shown in

Figure 3.4.

Here we can see the distinct phases of match confirmations in the Partitioned

curve: in the early confirmations (prior to point A), the algorithm confirms matches

from Google Base adjustments, after which (after point A) it confirms SecondString

matches.

Of note in this figure is the tail end of the Google Base confirmation phase (point

A) and the start of the SecondString confirmation phase (point B). The highly-ranked

SecondString confirmations provide more benefit than the lower-ranked Google Base

confirmations, but since the two types of candidate matches are ordered separately,

these non-beneficial Google Base matches are confirmed first and thus the overall

utility of the dataspace suffers: at 10% confirmations, the percent improvement for

Partitioned is 9.4%, whereas with the V PI strategy it is 17.2%.

This problem is not just a result of this particular setup or due to the details of

the Partitioned strategy. Rather, any strategy that treats the output from different

mechanisms separately will suffer from the same issues we see here. The problem is

a result of multiple independent mechanisms using different, incomparable means of

ordering candidate matches and thus there is no way to balance between the output

of multiple mechanisms.

The key to solving this problem is that candidate matches from different mecha-

nisms need to be globally ordered based on the overall benefit to the dataspace and

not based on their ranking relative to matches produced within each mechanism. The
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V PI strategy scores matches from different mechanisms in a uniform manner based

on the expected increase in utility of the dataspace on confirmation; thus it is able to

interleave match confirmations from multiple mechanisms in a principled manner to

produce a dataspace with a higher utility using less user feedback.

Other Query Workloads

The above experiments used a query workload representative of a workload found

on a Web search engine; here, I explore the effectiveness of the V PI approach in other

environments by experimenting with different query workloads on the same dataset.

I generate workloads for the Full dataset containing query weights using different

types of distributions: Pareto (modified to produce values between 0 and 1) as was

used above, a Normal distribution with a mean of 0.5 and a standard deviation of

0.25 (Normal(0.5, 0.25)), a Uniform distribution between 0 to 1 (Uniform(0, 1)),

and a Uniform distribution between 0.5 to 1 (Uniform(0.5, 1)). I generate a curve

for each query weight distribution using the V PI ordering strategy. Additionally, I

show the curve for the Random strategy to provide a baseline. Changing the query

weights used to generate the workload affects the overall utility of the dataspace; thus,

in order to present all curves on the same graph, I report the percent of potential

improvement in utility: i.e., the ratio of improvement between a dataspace with no

confirmations and the perfect dataspace. The results are shown in Figure 3.5.

Observe that while the V PI strategy performs best with the highly-skewed Pareto

query workload, its effectiveness on all other workloads is close to that of the Pareto

workload. Thus, across a range of query workloads in this scenario, the V PI strategy

effectively orders candidate matches for confirmation.
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Figure 3.5. The effect of different query workloads on the performance of the V PI
strategy run over the Full dataset.

Different Means of Assigning Confidence

Recall that Google Base does not assign confidences to its adjustments and the

confidences for the matches produced by SecondString are not accurate as probabil-

ities. In the experiments above, I used the histogram-based approach for converting

confidences to probabilities as discussed in Section 3.4.1. Here, I investigate the

effectiveness of this approach on the V PI-based strategy’s performance.

I compare the histogram-based technique as used in the previous experiments

(labeled here as VPI with full histogram) to three other VPI-based approaches and

the Random strategy (shown in Figure 3.6). In VPI with 0.5 for GB, the confidences

for the matches produced by Google Base are set to 0.5, while the confidences for

the SecondString matches are left as is. This is the baseline strategy. In VPI with

GB histogram, the Google Base matches are converted to probabilities using the

histogram technique while the SecondString matches are left as is. In VPI with SStr

histogram, the SecondString matches are converted using the histogram technique

while the confidence for the Google Base matches are left at 0.5. Note that I also
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experimented with different bucket sizes for the histogram technique. As expected,

the effectiveness is higher at smaller bucket sizes, although there is not a marked

difference. For all experiments with the histogram approach, the bucket size is set to

0.01.

The results of this experiment are presented in Figure 3.6. First, observe that the

curve for VPI with 0.5 for GB provides the least benefit for ordering confirmations.

This performance is due to the inaccurate confidences produced by SecondString and

the lack of confidences for Google Base matches. A slight improvement occurs when

using the histogram approach to convert the confidence for the Google Base matches

(VPI with GB histogram). The improvement is small because the conversion is very

coarse-grained: all Google Base matches have no input confidence and thus get as-

signed to the same histogram bucket resulting in all Google Base matches getting the

same output probability. When the SecondString match confidences are converted to

probabilities, we see a large jump in the V PI strategy’s effectiveness (VPI with SStr

histogram). Here, the histogram approach is able to map input confidences to prob-

abilities at a very fine resolution. Finally, when confidences for both SecondString

and Google Base matches are converted (VPI with full histogram), the V PI strategy

has the best performance, although only slightly more than just converting the Sec-

ondString matches due to the issues with the Google Base matches mentioned above.

This experiment shows that the histogram-based technique for converting confidences

to probabilities can provide a substantial increase in effectiveness for the V PI strat-

egy, but in order to realize its full potential it is better to have initial confidences

assigned per match.
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Figure 3.6. The performance of the V PI strategy using different means of assigning
probabilities to matches, run over the Full dataset.

3.4.2 Synthetic Data Experiments

The experiments above show that the VPI-based strategy is effective in multiple

real-world dataspace scenarios derived from Google Base data. In order to investi-

gate the VPI-based strategy in an even wider range of scenarios, I built a dataspace

generator capable of creating dataspaces with different characteristics.

Results on Synthetic Datasets

Using the dataspace generator, I ran a series of tests that evaluated the V PI

strategy under a variety of dataspace environments. Here I summarize the findings

in these experiments.

Basic tests. I generated a dataspace that recreates a realistic large scale data inte-

gration environment using realistic values or distributions for different characteristics:

e.g., 100000 elements and a zipfian distribution for the query weights and items per
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element. In this dataspace, the V PI strategy is able to produce a dataspace whose

utility remains within 5% of the utilty produced by the oracle strategy.

Robustness tests. The V PI strategy is robust to variations in the dataspace charac-

teristics: manipulating one characteristic of the dataspace (e.g., matches per element,

items per element) while leaving the others at the realistic values used in the basic

tests above has very little effect on the efficacy of the V PI strategy. For instance,

to test the effect of differing degrees of heterogeneity, I generate dataspaces with

different distributions for the number of matches in which an element participates.

Regardless of the distribution used in this experiment, the utilities produced by the

V PI strategy was within 10% of the percent of potential improvement in utility (as

described in the query workload experiment in the previous section). I varied other

parameters of the dataspace and ran similar experiments; all experiments produced

results similar to the first experiment. In particular, I varied the distributions for the

number items in which each element appears, I introduced errors into element cardi-

nality statistics, used different mechanism accuracies, and used different distributions

for the query weights (as investigated above with the Google Base datasets).

Parameter exploration tests. By setting all parameters but one to trivial con-

stants (e.g., 1 item per element, 0.5 query weight), we can study the effect that one

parameter has on the V PI strategy’s effectiveness. We can then determine in what

environments it is particularly important to employ an intelligent ordering mechanism

for user feedback.

These experiments reveal that in cases where there is a wide range or high skew

in the values for a particular parameter, the benefit provided by the V PI strategy is

greater: it is able to effectively determine the matches that provide the most benefit

and confirm them first.

For instance, when I manipulate the query weight distribution (and set all other
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parameters to trivial constants), the percent of potential improvement in the datas-

pace by the V PI strategy after 10% confirmation in a dataspace with a zipfian query

weight distribution is 0.35, whereas with a uniform distribution between 0 and 1 for

the query weights, the percent of potential improvement is only 0.19. With smaller

ranges in the query weights, the improvement is even less. Note that these results

illustrate the potential benefit of employing an intelligent ordering strategy in en-

vironments such as Web search where some queries are orders of magnitude more

frequent than others. On the other hand, in environments with more homogeneous

queries, the selection method is less important.

3.5 Query Answering Using Thresholding

Up to this point in the presentation, I have assumed that a dataspace system

employs a query answering model that uses only confirmed matches. Since the goal

of a dataspace system is to to provide query access to its underlying data sources

even when they have not been fully integrated, it is likely that the system will need

to also provide results that are based on matches that are not confirmed, but whose

confidence is above a threshold. In this approach, the elements e1 and e2 in match

m = (e1, e2, c) are considered equivalent if the confidence c is greater than a threshold

T . The actual value of T depends on systems’s tolerance of false negatives versus

false positives: the lower the threshold, the more data included in queries, but the

higher the potential for erroneous query results.

Here, I analyze the impact of such a query answering model on the VPI-based

match scoring mechanism and show that the decision-theoretic framework can be

applied with only minor changes to the utility function. We follow a similar process as

in Section 3.3 to derive an equation for the value of perfect information for confirming

match mj when the query answering module uses thresholding.
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I first need to redefine result quality when thresholding is used for query answering.

Here, the query answering module may use an incorrect match if its confidence is

above the threshold; thus, some answers in Q(D) may not be correct w.r.t. Q(DP ).

To account for these incorrect results as well as the missed results due to correct but

unused matches as before, the equation for result quality is altered to consider both

precision and recall using F-measure [VR79]2, defined as

2 · precision · recall

precision + recall
.

Precision and recall are defined in this context as follows:

precision(Q,D, M) =
|Q(D) ∩Q(DP )|

|Q(D)|

recall(Q, D, M) =
|Q(D) ∩Q(DP )|
|Q(DP )|

.

The result quality of query Q is redefined using F-measure as follows:

r(Q, D, M) =
2 |Q(D)∩Q(DP )|

|Q(D)| · |Q(D)∩Q(DP )|
|Q(DP )|

|Q(D)∩Q(DP )|
|Q(D)| + |Q(D)∩Q(DP )|

|Q(DP )|

=
2(|Q(D) ∩Q(DP )|)
|Q(D)|+ |Q(DP )|

.

Substituting this formula into Equation 3.4, the expected result quality,

Er(Q, D, M), when using thresholding becomes:

Er(Q, D, M) =
∑

M1⊆M

2(|Q(D) ∩Q(DM1)|)
|Q(D)|+ |Q(DM1)|

Pr(DM1) (3.9)

2Here, I use F-measure with precision and recall as equally important, sometimes referred to as
F1-measure.
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From Section 3.3.1, we already know how to compute |Q(D)| and |Q(DM1)| in

this equation. To compute |Q(D)∩Q(DM1)|, first recall that in DM1 , the constant d

is deemed equal by the matches in M1 to a set of other constants in its equivalence

class, {d1, . . . , dm}, which I denote here as EM1
d . Similarly, the matches in M that

are above the threshold T determine a set of constants in D that are assumed to be

equal to d when computing Q(D), denoted as EM
d . The set Q(D)∩Q(DM1) includes

the triples that have an element from the intersection of these two equivalence classes

in the first position. Therefore, |Q(D) ∩Q(DM1)| = |D1
d|+

∑
di∈(EM

d ∩E
M1
d )
|D1

di
|.

Since computing Equation 3.9 is prohibitively expensive, Er(Q,D, M) is approx-

imated by employing the same assumption made in Section 3.3.2 where M = {mj}.

Thus, we rewrite Equation 3.9 with {mj} substituted for M :

Er′(Q, D, {mj}) =
2(|Q(D) ∩Q(De1=e2

mj
)|)

|Q(D)|+ |Q(De1=e2
mj )|

cj+

2(|Q(D) ∩Q(De1 6=e2
mj

)|)
|Q(D)|+ |Q(De1 6=e2

mj )|
(1− cj). (3.10)

Finally, following the same logic used to derive Equation 3.8, we have:

V PI(mj) =∑
(Qi,wi)∈Wmj

cj · wi

(
1−

2(|Qi(D) ∩Qi(D
e1=e2
mj

)|)
|Qi(D)|+ |Qi(D

e1=e2
mj )|

)
. (3.11)

I implemented this VPI scoring method and experimentally evaluated the ordering

it produced when the query answering module uses thresholding. These experiments

yielded results very similar to those presented in the previous section, verifying the

fact that this framework can be applied to query answering using thresholding. I omit

the details of these experiments due to their similarity with the previous section’s

results.
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3.6 Roomba

Having developmed the VPI-based mechanism for ordering candidate matches and

shown its effectiveness, I now outline the architecture of Roomba3, a component of

a dataspace system that incorporates the decision-theoretic framework presented in

the previous sections to provide efficient, pay-as-you-go match ordering using VPI.

To facilitate a pay-as-you-go mode of interaction, a dataspace system contains a

user interaction module that determines the appropriate time to interrupt the user

with confirmation request, such as in [HKPH03]. At such a time, this module calls

the method getNextMatch() exposed by Roomba that returns the next best match

to confirm. The naive approach to supporting such a method call is to order all

matches once and then return the next best match from the list on each call to

getNextMatch().

In a pay-as-you-go dataspace system, however, getNextMatch() is called over

time as the system runs; thus, a particular ordering of matches derived at one point

of time using one state of the dataspace may become invalid as the characteristics of

the dataspace change. A match’s VPI score depends on the queries for which it is

relevant, the cardinalities of the elements involved in the match, and the confidence

of the match. Furthermore, over time confirmed matches may be fed back to the data

integration mechanisms which, as a result, may alter some match predictions.

The key to efficiently supporting getNextMatch() under changing conditions is

to limit the number of VPI scores that need to be recomputed when some aspect of

the dataspace changes. Here I briefly outline the techniques employed by Roomba

to efficiently compute the next best match as the characteristics of the dataspace

change.

3The name “Roomba” alludes to the vacuuming robot of the same name [iRo07]. Just as the
robot discovers what needs to be cleaned your room, the Roomba system aids a dataspace system
in determining what needs to be cleaned in the dataspace.
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Roomba operates in three phases: initialization, update monitoring, and

getNextMatch().

Initialization: The initialization phase creates all the data structures used by

Roomba and produces an initial ordering of matches. At this point, Roomba also

calculates the element cardinality statistics over the dataspace. In order to facilitate

efficient VPI recomputation, Roomba builds indexes that map from each aspect of

the data that factors into the VPI calculation to matches that would be affected by a

change in that data. Finally Roomba calculates the initial VPI score for each match

as defined in Equation 3.3 and stores them in an ordered list. Note that these VPI

computations can be done in parallel.

Update Monitoring: While the system runs, the dataspace’s conditions will con-

tinuously change, potentially causing an invalidation of the ordering derived during

initialization. When such a change occurs, a ChangeMonitor notes the type of

change (i.e., element cardinality, query workload, or match confidence) and utilizes

the indexes built during the initialization phase to find the matches that are affected

by the particular change. Only these matches are flagged for recomputation in a

recalculation list to be processed on the next call to getNextMatch().

getNextMatch(): On a call to getNextMatch(), Roomba sends the recalculation list

to the VPI calculator to recompute and reorder any matches whose VPI score may

have changed. Note that here, too, the VPI calculations can be done in parallel.

Roomba then returns the top match off the list for user confirmation.

The overall architecture of Roomba is shown in Figure 3.7. The storage engine

of Roomba stores and indexes elements, matches produced by different mechanisms,

and the query workload. The ChangeMonitor watches elements, matches, and queries

for any changes, at which point it sends affected matched to the recalculation list as
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Figure 3.7. Roomba architecture.

described above. The core of Roomba is the VPI calculator which uses Equation 3.8

to estimate the benefit of confirming each match. These matches are ordered by

estimated benefit and stored in the Ordered Matches list. When the Question Asker

(as described in Section 3.2) requests a match, Roomba returns the top match from

this list.

3.7 Related Work

While the decision-theoretic framework is based on formalisms used in the AI

community [RN03], decision theory and the value of perfect information are well-

known concepts in many fields such as economics [MVN44, MCWG95] and health

care [CS03]. Within the data management community, there has been work on ap-

plying expected utility to query optimization [CHS99].

Previous work on soliciting user feedback in data integration systems has focused

on the output of a single mechanism. The work in [DDH01] and [WYDM04] addresses
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incorporating user feedback into schema matching tasks. Similarly, [SB02] introduces

an active-learning based approach to entity resolution that requests user feedback

to help train classifiers. These approaches are closely tied to a single type of data

integration task (e.g., schema matching or entity resolution) and cannot be easily

applied to other tasks. Furthermore, their overall goal is to reduce the uncertainty in

the produced matches without regard to how important those matches are to queries

in the dataspace. Rather than reasoning about user feedback for each mechanism

separately, a primary benefit of the VPI-based framework presented here is that it

treats multiple mechanisms uniformly and judiciously balances between them with

the goal of providing better query results for the dataspace.

The MOBS [MDV+03] approach to building data integration systems outlines a

framework for learning the correctness of matches by soliciting feedback from many

users and combining the responses to converge to the correct answer. While MOBS

handles the result of match confirmations, it does not address how to select which

match to pose to the user in the first place. Thus, Roomba naturally fits within this

framework by providing the most beneficial match for MOBS to confirm.

3.8 Chapter Summary

This chapter presented a decision-theoretic approach to ordering user feedback in

a dataspace. As part of this framework, I developed a utility function that captures

the usefulness of a given dataspace state in terms of query result quality. I then pre-

sented a means of selecting matches for confirmation based on their value of perfect

information: the expected increase in dataspace utility upon requesting user feedback

for the match. Importantly, this framework enables reasoning about the benefit of

confirming matches from multiple data integration mechanisms in a uniform fashion.

I described a set of experiments on real and synthetic datasets that validated the ben-
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efits of this approach. Finally, I outlined Roomba, an architecture for incorporating

this VPI-based approach in a dataspace system.

While this work provides a foundation for guiding user feedback in a dataspace

system, there are many interesting directions for future work. First of all, Roomba

could be extended to deal with imperfect user feedback. Here, I assumed that users

answered correctly every time: a confirmation meant that the match was correct in

reality. Users, however, are human and may not always be correct: matches may be

ambiguous or challenging to answer correctly, or users may be malicious. To cope

with uncertainty in user feedback, the dataspace could ask the same confirmation

of multiple users and employ a majority voting scheme. More advanced approaches

involve modeling user responses as probabilistically related to the true answer of the

match and then adjusting the confidence of a match on confirmation [RN03].

Another area of future work is to explore other types of user feedback. In this

chapter, I explored how to efficiently involve users in resolving uncertainty through

explicit user feedback. A dataspace system can also leverage the wealth of research

on implicit feedback (e.g., [JGP+05, CLWB01, RJ05]) to improve the certainty of

candidate matches. For instance, the click-through rate of query results supply an

indicator of the correctness of the matches employed during query answering: a click

on a particular result may indicate that the matches used to compute that result are

correct, causing the dataspace system to increase the confidence of those matches. A

system can also use information from subsequent queries, or query chains [RJ05], to

reason about the correctness of matches not employed during query processing. If, for

instance, a user searches for “red” and then subsequently searches for “cardinal”, then

the system can increase the confidence of the candidate match (“red”, “cardinal”, c).

While this chapter focused on entity resolution and schema matching, Roomba can

be used with many other data integration mechanisms, such as information extraction
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(e.g., [CDYR08]). As such, Roomba provides a powerful tool for applications such as

Total Consumer Awareness that rely on cleaned and integrated dataspace data.
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Chapter 4

Metaphysical Data Independence

Roomba provides pay-as-you-go support for data integration challenges that arise

when dealing with traditional relational data or data on the Web; dataspace appli-

cations such as TCA, however, depend on data collected from the physical world

through sensor devices as well. Unfortunately, there is a wide gulf, that I term the

physical-digital divide, between the raw data produced by sensors and the high-level

needs of dataspace applications. In particular, sensor data is unreliable, semantically

low-level, and rapidly changing. In this chapter, I define the physical-digital divide

and illustrate its challenges through multiple real-world studies. I then present Meta-

physical Data Independence (MDI ), an interface for exposing sensor data that shields

applications from the challenges that arise when dealing with the physical-digital

divide.1

1Much of the work presented in this chapter has been published in [JFG08].
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4.1 Introduction

With the widespread deployment of physical sensing devices such as wireless sensor

networks and RFID technology, the physical world is being brought ever closer to

the digital world: RFID provides enterprises with up-to-the-second information on

their supply chains [EPC05b]; wireless sensor networks enable unprecedented visibility

into environmental and structural processes [TPS+05]; and ubiquitous computing

technology is changing the way we interact with our surroundings [AM00]. Many

dataspace applications rely on this data to provide new and powerful services. For

instance, the Total Consumer Awareness application presented in Chapter 1 uses

sensors to provide better visibility into supply chains to consumers.

One of the main challenges in building sensor-based dataspace applications such

as TCA is the wide gulf between the data produced by devices in the physical world

and the needs and requirements of these applications in the digital world. I term this

rift the physical-digital divide.

The crux of the problem is that the raw data provided by a set of sensor devices

do not adequately represent the aspects of physical world being monitored. Rather,

the data are noisy due to outliers and mis-calibrated sensors, incomplete as a result of

dropped messages, and coarse-grained in both time and space as devices necessarily

sample periodically and cannot be deployed with complete coverage. Furthermore,

in many cases an application may require data for which no sensing device exists

(e.g., [CKZ+05, REA99]). For instance, a user of a TCA application may interested

in the environmental impact of manufacturing a given product (e.g., the amount of

greenhouse gases produced during manufacturing). There is no device that provides

exactly this data; rather, it must be derived using multiple sensor streams as well as

stored data.

As such, sensor-based deployments typically include complex logic to map from
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Figure 4.1. Today’s sensor-based applications are tightly-coupled with the underlying
sensors and thus complex and hard to manage. Metaphysical Data Independence
allows applications to interact with a reconstruction of the physical world in the
digital world, greatly simplifying application deployment.

low-level, dirty sensor data to high-level application concepts and maintain this map-

ping over time [BGH+05, TPS+05]. Any errors or fluctuations in the underlying de-

vices must be handled directly by the application. As a result, current sensor-based

applications tend to be complex, brittle, and hard to evolve.

To address this problem, I introduce a new layer of data independence, Meta-

physical Data Independence2(MDI), that shields sensor-based applications from the

challenges associated with managing and accessing physical sensor devices. Just as

traditional RDBMSs use physical and logical data independence to hide the complex-

ity and changes of the physical data storage and base schema, respectively, MDI hides

the complexity of the physical sensing devices from sensor-based applications.

The key philosophy behind Metaphysical Data Independence is that sensor data

should be abstracted as data about the physical world; that is, applications should

2The term “metaphysical” is a loose reference to Plato’s Divided Line philosophy concerning the
real world and the perceived world [Pla]. He conjectured that the physical world is only accessible
through a person’s imperfect senses and thus knowledge and reason must be used to guide any
perception of the real world.

79



interact with a reconstruction of the physical world in the digital world, as if the

physical-digital divide did not exist (as illustrated in Figure 4.1).

To represent this reconstruction, we need to model the physical world at a level

appropriate for use across many applications. The challenge in defining this model is

to balance the tension between hiding the complexity of sensor data and providing

data at a semantic level that is appropriate for a large class of applications.

To this end, I outline a data model for sensor-based applications based on the

concepts of objects, attributes, and uncertainty estimates. Objects in this model

correspond to real-world entities such as people, products, and rooms. Each object

has a set of associated attributes such as location, temperature, and velocity. Due to

the uncertainty of sensor data, an integral part of this model is the use of uncertainty

estimates. The set of all objects, their attributes, and associated uncertainty estimates

at a given epoch make up the “state of the world” in that epoch.

The fundamental aspect of this model and interface is that they expose as little

information about the underlying physical devices as possible. Just as an application

interacting with a traditional relational database using SQL does not have to know

anything about the underlying storage mechanisms, disk usage, or data format, an

application using MDI can be oblivious to details of the devices on which it is deployed.

The remainder of this chapter is organized as follows. In Section 4.2, I define the

physical-digital divide. I then outline MDI in Section 4.3.

4.2 The Physical-Digital Divide

The physical-digital divide is the disconnect between the data produced by devices

monitoring the physical world and data expected by data processing infrastructures in

the digital world. I illustrate the physical-digital divide using examples from two of the
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more common types of sensing devices, RFID readers and wireless sensor networks.

While each type of sensing device presents specific data processing challenges, there

are many issues that are common across devices. In this section, I highlight four main

factors that contribute to the physical-digital divide.

4.2.1 Sensor Data Unreliability

Sensors often employ low cost, low power hardware and wireless communication,

which lead to frequently dropped messages. For example, the observed read rate, or

percentage of tags in a reader’s vicinity that are actually reported, in real-world RFID

deployments is often in the 60 − 70% range [JAF+06a, Lau05]; in other words, over

30% of the tag readings are routinely dropped. Wireless sensors also demonstrate

similar errors. For instance, in a wireless sensor network experiment at the Intel

Research Lab in Berkeley, each sensor delivered, on average, only 42% of the data it

was asked to report [Lab05].

Not only are readings frequently dropped, but often individual sensor readings

are unreliable. In a sensor network deployment in Sonoma County, CA, for example,

8 out of 33 temperature-sensing motes failed, but continued to report readings that

slowly rose to above 100o Celsius [Son06].

Thus, the data produced by sensors must be appropriately cleaned to compensate

for these failures before they can be used by any application. Incorporating cleaning

logic in applications greatly increases the complexity of the application.
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4.2.2 Granularity Mismatch

Sensor-based applications tend to have specific notions of time and space that

usually do not correspond to the sensing granularity of the underlying devices [DM06,

JAF+06b].

Temporally, the actual sensing granularity of the devices may be coarser than an

application desires due to power or bandwidth limitations as in the case of wireless

sensors, or it may finer such as with the high sample rate of RFID readers.

Similarly, the spatial sensing granularity of devices may not match an application’s

notion of space. One device may monitor multiple application-level spatial units, such

as rooms or shelves. Conversely, there may be multiple devices that monitor the same

spatial unit. For instance, RFID deployments usually deploy multiple readers in close

proximity to ensure full coverage of the area of interest.

This mismatch in sensing granularity potentially causes semantic errors. For in-

stance, redundant readings in space could lead to an application seeing an object in

two places at the same time.

4.2.3 The Semantic Gap

Usually, sensor-based applications view the world as high-level concepts; sensing

devices, on the other hand, produce low-level data that often has little meaning to

the application.

In many cases, applications are interested in data for which no physical sensing

device exists. For instance, TCA monitors data about products on a supply chain.

Other common examples of such data include people in pervasive applications [AM00]

and attributes of manufactured goods in industrial processes [REA99]. These high-
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level application concepts must be derived through the combination of data from

multiple devices as well as other sources of data.

Translating from low-level device readings to application-level concepts involves

intimate knowledge of the environment, devices, and the data they produce, thus

complicating application development and deployment.

4.2.4 Variability in Sensor Deployments

Not only do sensor data exhibit the issues described above, but the nature of these

issues changes over time and from deployment to deployment.

Wireless sensor motes, for instance, lose accuracy as their batteries wear [TPS+05].

RFID readers produce different quality data and their detection fields vary depending

on the environment in which they are deployed [FJPR04]. For example, during a series

of RFID reader tests in a variety of environments, the quality of readings from readers

in two different rooms, next door to each other, varied greatly. (See Section 5.2 for a

detailed description of this experiment.)

As a result of this variability, sensor deployments that are not designed to be ad-

justed to varied environments tend to produce erroneous data as conditions change.

4.3 Metaphysical Data Independence

Motivated by the complexities associated with the physical-digital divide, I pro-

pose a new layer of data independence, Metaphysical Data Independence (MDI). MDI

defines a separation of concerns between the application logic and the logic needed to

access and manage the data from physical devices. The key philosophical statement

behind MDI is that the specifics of the underlying devices are abstracted away behind
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a model of the physical world that represents a reconstruction of this world in the

digital world.

4.3.1 Object Model

The model for supporting MDI consists of objects, attributes, and uncertainty

estimates.

Objects: At the core of this model is the concept of an object. An object is

loosely defined as any entity in the real world to which an application may uniquely

refer. For instance, a digital home may have people objects, room objects, and pet

objects. The actual objects defined for each deployment may vary dramatically, but

experience shows that within an application the appropriate objects are evident (e.g.,

[Mar06, SSW+05]).

Attributes: Associated with each object is a set of attributes that describe the

state of that object. Attributes are attached directly to the object, and in general

have little meaning without this association (e.g., temperature means nothing unless

it is the temperature of some object). The primary attributes of any real-world object

are time and space (location); these attributes are typically included for all objects.

Examples of other attributes include temperature and velocity. An attribute may

also be a complex multi-valued field instead of a single value. For instance, some

attributes may describe the contour of a value in a certain area [GBT+04].

While an attribute is dependent on the object that it describes, it is independent

of any physical sensing device. There may be multiple devices that observe the same

value. For instance, wireless motes and some RFID tags [SSP+06] both sense light

levels. Soft sensors [Qin96], on the other hand, may be used to combine data from

multiple types of sensors to derive an attribute. Alternatively, no physical device may

be required at all to sense a particular attribute; model-based sensing [DGM+04],
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cached values, or archived data may be used. In any case, such acquisition and

processing is hidden by the model.

Uncertainty: Due to the limitations of sensing devices, an estimate of the uncer-

tainty in the reported data is essential. Thus, throughout this model is the notion

of uncertainty. Uncertainty serves as the unifying means by which device-dependent

processing can be hidden.

Uncertainty estimates appear at multiple levels. Attached to each object is a con-

fidence of existence, as described in the previous chapter. Additionally, each attribute

has some uncertainty value(s) with which it is associated. The exact representation

of these values are dependent on the type of attribute. For instance, the uncertainty

of a particular value for a temperature attribute may be represented as a range and

confidence [DGM+04], while uncertainty in location could be described with a spatial

probability distribution function. Regardless of the description method, uncertainty

is expressed in a device-independent manner.

The set of all objects, their attributes, and uncertainty at a given time-step make

up the “state of the world” at that time-step.

4.3.2 Interface

Data expressed in this model can be accessed as a stream of object states, ideally

through declarative means using languages such as CQL [ABW06] or those defined

as part of the HiFi [RJK+05] or SASE [WDR06] projects.

Sensor-based applications have differing needs in terms of data; the interface

should allow applications to specify selection predicates on which objects and at-

tributes are necessary. Given these predicates, the sensor infrastructure can optimize

access to these data. Similarly, since different applications have different data quality
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requirements, the interface needs to allow applications to request the desired level

of data quality through uncertainty predicates. Such predicates can help guide the

infrastructure on which devices to use and by which means to produce the requested

data. Further, some sensor data processing is inherently application-specific. Thus,

the interface should allow user-defined code to be pushed down into the sensor infras-

tructure to assist in data processing.

As there are potentially many applications accessing data from the same set of

devices, but with different requirements, the sensor infrastructure should support

multiple streams of MDI data. Generating this output should be done in such a

way as to minimize access to the devices themselves and to maximize sharing across

streams [Kri06]. Further, the interface should provide seamless access to present,

past, and future MDI data. That is, access to streaming data (present), archival data

(past), and future predictions based on models should all happen through the same

interface in a unified manner.

Finally, note that while there will always be uses of sensor devices that demand

low-level access to the data and devices, such as advanced scientific monitoring ap-

plications or tight-loop sensor-actuator systems, there is a large class of emerging

sensor-based applications that would benefit from the higher level of abstraction with

which to interact with sensor data that MDI provides.

4.4 Chapter Summary

To deal with the challenges associated with the physical-digital divide, datas-

pace applications must be shielded from any aspect of the underlying devices. In

this chapter, I outlined Metaphysical Data Independence, a philosophy for building
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sensor infrastructures that hides all aspects of the physical-digital divide and allows

applications to use sensor data oblivious to the challenges in producing the data.

Metaphysical data independence provides a powerful basis on which to build pay-

as-you-go support for dataspace systems that integrate sensor data. As a result,

applications such as TCA can seamlessly incorporate sensor data streams.

In the following Chapters, I develop two techniques for providing MDI. In Chap-

ter 5, I describe a technique for alleviating many of challenges associated with RFID

utilizing statistical mechanisms. In Chapter 6, I present a framework for building

data processing infrastructures that produce MDI data.
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Chapter 5

Adaptive Cleaning of RFID Data

MDI protects applications from the complexities of dealing with low-level sensor

data; to instantiate this interface, a dataspace system must deal with unreliable and

rapidly changing sensor data. While Roomba provides such services in dataspace

environments where humans can be put in the loop, when dealing with unreliable

sensor data that are streaming in real-time, these processes must be automated.

To this end, in this chapter I develop SMURF (Statistical sMoothing of Unreliable

RFid data), a cleaning tool that alleviates issues associated with using RFID data

through adaptive techniques based on a novel statistical framework.1 I begin with a

detailed study on the characteristics of RFID data. I then detail SMURF’s statistical

framework and present a detailed experimental study demonstrating its effectiveness.

Finally, I discuss MDI-SMURF, an architecture that utilizes SMURF’s statistical

framework to provide Metaphysical Data Independence for RFID-based applications

1Much of the work presented in this chapter has been published in [JGF06, JFG08].
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5.1 Introduction

RFID (Radio Frequency IDentification) technology promises revolutions in areas

such as supply chain management and ubiquitous computing enabled by pervasive,

low-cost sensing and identification. A primary factor limiting the widespread adop-

tion of RFID technology is the unreliability of the data streams produced by RFID

readers [Lau05]. The observed read rate (i.e., percentage of tags in a reader’s vicinity

that are actually reported) in real-world RFID deployments is often in the 60-70%

range (see Section 5.2); in other words, over 30% of the tag readings are routinely

dropped.

The standard data-cleaning mechanism for RFID data is a temporal “smoothing

filter”: a sliding window over the reader’s data stream that interpolates for lost read-

ings from each tag within the time window [GS04, iAn06]. The goal is to reduce or

eliminate dropped readings by giving each tag more opportunities to be read within

the smoothing window. While the implementation of such filters vary, a smooth-

ing filter’s functionality can be expressed as a simplified continuous query (e.g., in

CQL [ABW06]) as shown in Query 1 (for a 5 second window). This query states that

if the tag appears at least once in the window, it is considered to be present for the

entire window.

Query 1 CQL Smoothing Filter to Correct for Dropped Readings.

SELECT distinct tag id

FROM rfid readings stream [RANGE ’5 sec’]

GROUP BY tag id

Static Window Smoothing. Typically, a smoothing filter requires the application

to fix the window size (as in the above CQL statement). Setting the window size,

however, is a non-trivial task: the ideal smoothing-window size needs to carefully

balance two opposing application requirements (as shown in Figure 5.1): ensuring
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Figure 5.1. Tension in setting the smoothing-window size for tracking a single tag
(dark bars indicate the tag is present/read): small windows fail to fill in dropped
readings (false negatives); large windows fail to capture tag movement (false posi-
tives).

completeness for the set of tag readings (due to reader unreliability) and capturing

tag dynamics (due to tag movements in and out of the reader’s detection field).

– Completeness: To ensure that all tags in the reader’s detection range are read, the

smoothing window must be large enough to correct for reader unreliability. Small win-

dow sizes cause readings for some tags to be lost, leading to false negatives (i.e., tags

mistakenly assumed to have exited the reader’s detection range) and, consequently,

a large underestimation bias (e.g., always under-counting the tag population). Ad-

justing the window size for completeness depends on the reader’s read rate, which, in

turn, depends on both the type of reader and tag as well as the physical surround-

ings [Dan05, FJPR04].

– Tag dynamics: Using a large smoothing window, on the other hand, risks not

accurately detecting tag movements within the window, leading to false positives (i.e.,

tags mistakenly assumed to be present after they have exited the reader’s detection

range).

Adjusting the window size for tag dynamics depends on the movement character-

istics of the tags, which, in turn, can vary significantly depending on the application;
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for instance, a tag motionless on a shelf exhibits a different movement pattern from

a tag on a conveyor belt.

As a result, a considerable challenge to deploying RFID-based applications is

ascertaining the characteristics of the environment and configuring the filter to take

into account the above factors. Furthermore, no single window size is expected to

be effective over the lifetime of a deployment as both the reader reliability and tag

behavior may vary dynamically; thus, either the window size must be repeatedly

reconfigured, or the quality of the data suffers.

A second major problem with fixed-window smoothing techniques is the use of a

single window size for all tags in a deployment. Different subsets of tagged objects

may behave very differently from others. For instance in a warehouse environment,

some tagged items may be placed on a shelf while others are moved on forklifts. The

best smoothing window size for each of these groups of tags is potentially different.

Adaptive Windowing for MDI. The key to masking the unreliability of RFID

data in support of Metaphysical Data Independence is to hide the window size from

the application and instead automatically determine the window size initially and

then adapt it as the system runs. To this end, I have developed SMURF (Statistical

sMoothing of Unreliable RFid data), an adaptive smoothing filter that does not re-

quire the application to set the window size; instead, it determines the window size

automatically and continuously adapts it over the lifetime of the system based on

observed readings.

The main challenge for an adaptive smoothing scheme is to distinguish between

periods of dropped readings and periods when a tag has moved. To address this

problem, SMURF uses a statistical sampling-based approach. One of the key ideas

behind SMURF’s adaptive algorithms is that RFID data streams can be modeled as a

random sample of the tags in a reader’s detection range. Through this sample-based
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view of observed RFID readings, SMURF employs algorithms grounded in statistical

sampling theory to drive its adaptive smoothing techniques. Furthermore, SMURF

adapts its smoothing-window sizes at a much finer granularity compared to traditional

smoothing filters that fix a single window size for the entire tag population.

The remainder of this chapter is organized as follows. I first provide a deeper

background on the unreliable nature of RFID in Section 5.2. With this background,

I detail SMURF’s core statistical framework and adaptive smoothing filter in Sec-

tion 5.3. Section 5.4 presents an experimental study of SMURF’s effectiveness. In

Section 5.5, I discuss how SMURF is used to instantiate MDI through the MDI-

SMURF architecture.

5.2 RFID Technology Challenges

In this section give a brief background on the challenges facing current RFID

deployments.

RFID Reader and Tag Performance.

To better understand the properties of RFID readings, I profile two RFID readers

with different tags in two environments. The profiling methodology is as follows. I

suspend a single tag at varying distances in the same plane as the antenna. For every

6-inch increment of distance from the reader, I measure the read rate (number of

responses to number of interrogations) for 100 epochs.

These profiling experiments use two types of readers, the Alien ALR-9780 [ALR05]

and the Sensormatic Agile 2 [Sen06], with three types of tags (Alien “I2”, “M”,

and “Squiggle” [Ali05a]). I test various combinations of these readers and tags in

two environments. The first environment, a large, wide-open room with little metal

present, represents a controlled environment for RFID technology: I eliminate many
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of the causes of degraded read rates [FJPR04]. The second profiling environment,

a lab with metal objects such as desks and computer equipment, represents a noisy

environment.

Figure 5.2 depicts the results from two different profiling experiments showing the

read rate of the tag at distances ranging from 0 to 20 feet. The plots shown here are

representative of the 8 different profiles I collected; all other experiments yielded a

curve similar in shape to one of these two plots.
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(a) Alien reader with Alien Squiggle tag in a controlled

environment.
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(b) Sensormatic reader with Alien I2 tag in a noisy envi-

ronment.

Figure 5.2. Read rate of a single tag at varying distances from the reader in different
environments. Error bars represent ± one standard deviation.

All of the profiles I collected have similar properties despite being generated using

different readers, tags, and environments. First, the overall detection range of all

readers and tags profiled remains relatively constant at 15-20 feet. Second, within

each reader’s detection range, there are two distinct regions: (1) The area directly

in front of the reader, termed the reader’s major detection region [HBF+04], giving

high detection probabilities (read rates at or above 95%); and, (2) the reader’s minor

detection region, extending from the end of the major detection region to the edge of

the reader’s full detection range, where the read rate fluctuates as it drops to zero at

the end of the detection range.
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The main difference between the observed profiles lies in the percentage of the

reader’s detection range corresponding to its major detection region. For instance,

the major detection region corresponds to roughly 75% of the full detection range for

the profile in Figure 5.2(a), whereas it makes up only 25% of the range in the profile in

Figure 5.2(b). All of the experiments showed similar behavior. Note that these find-

ings are consistent with the results of in-depth commercial studies of the performance

of many different tags and readers under highly-controlled conditions [Dea04].

I also test the readers to determine how they respond to the presence of multiple

tags in their detection ranges. For these tests, I suspend 10 tags in the same plane as

the reader and measure the average read rate for 100 epochs at varying distances from

the reader. While the overall properties of the observed profile are similar to the single

tag case (there is still a separation between a major and minor detection region), the

read rate in the major detection region typically drops to around 80%. Additional

tests show that the read rate in the major detection region stays somewhat constant

with increasing numbers of tags, at least up to 25 tags in the reader’s detection range.

In the remainder of this chapter, I use these observations in the design of MDI-

SMURF’s cleaning mechanisms and in the implementation of an RFID data generator

for evaluating these techniques.

5.3 RFID Data Cleaning with SMURF

In this section I present the adaptive smoothing filter SMURF uses to deal with

the unreliabilities of RFID data.
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5.3.1 RFID Data: A Statistical Sampling Perspective

SMURF captures tag dynamics while compensating for lost RFID readings in a

principled, statistical manner. The key idea is that the observed RFID readings can

be viewed as a random sample of the population of tags in the physical world.

Consider an epoch t. Recall from the RFID background in the previous chapter

that an epoch is a reader’s unit of detection. Epochs represent the basic time units,

many of which can be combined to make up a smoothing window [GS04, iAn06].

Without loss of generality, let Nt denote the (unknown) size of the underlying tag

population at epoch t, and let St ⊆ {1, . . . , Nt} denote the subset of tags observed

(“sampled”) during that epoch. SMURF views St as an unequal probability random

sample of the tag population.

SMURF uses a per-epoch sampling probability pi,t for each tag that represents the

probability that tag i is detected in epoch t. While there are many possible means

of deriving this value, SMURF utilizes the response-count information stored in the

reader’s tag list (Table 2.1). Specifically, for each tag i ∈ St, SMURF employs the

response-count information for tag i in conjunction with the known number of inter-

rogation cycles per epoch to derive pi,t. This sampling probability pi,t is empirically

estimated as the observed read rate for tag i during that epoch; for instance, assuming

a reader configuration of 10 interrogation cycles per epoch, the sampling probabili-

ties for the first and second tags in Table 2.1 would be px78,t = 0.9 and px57,t = 0.1,

respectively. Of course, these sampling probabilities differ across tags and can also

vary over time as the observed tags move within reader’s detection range.

The key insight of viewing each RFID epoch as a “sampling trial” enables

SMURF’s novel, statistical-driven perspective on adaptive RFID data cleaning. In

a nutshell, SMURF views the observed readings within a smoothing window as the

result of repeated random-sampling trials, and employs techniques and estimators
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Figure 5.3. The internal architecture of SMURF’s adaptive smoothing filter.

grounded in statistical sampling theory to reason about the underlying physical-world

phenomena and drive its adaptive RFID data cleaning algorithms.

More specifically, SMURF uses the statistical properties of the observed random

sample to appropriately adapt the size of its smoothing window based on (1) com-

pleteness requirements, and (2) signal transitions detected as statistically-significant

changes in the underlying tag readings. Further, even for window sizes that are

necessarily small (to capture fast-varying signals), SMURF uses sampling-based es-

timators [Coc77, SSW92] to provide accurate, unbiased estimates for tag-population

aggregates (e.g., counts), and thus avoids the systematic under-counting of conven-

tional smoothing techniques. Thus, SMURF’s sampling-based foundation enables it

to explore the tension between completeness and tag dynamics in a principled, sta-

tistical manner that continuously adapts the smoothing strategy based on statistical

properties of the data to provide accurate, unbiased data to applications.

5.3.2 SMURF’s Adaptive Smoothing Filter

The overall architecture of SMURF’s adaptive smoothing filter is presented in

Figure 5.3. This filter contains two primary cleaning mechanisms aimed at (1) pro-

ducing accurate data streams for individual tag ID readings (per-tag cleaning); and
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(2) providing accurate aggregate (e.g., count) estimates over large tag populations

(multi-tag cleaning). Additionally, SMURF incorporates two modules that apply to

both data-cleaning techniques: a sliding-window processor for fine-grained RFID data

smoothing, and an optimization mechanism for improving cleaning effectiveness by

detecting mobile tags. Finally, SMURF contains shadow modules for both per-tag

and multi-tag smoothing to calculate uncertainty estimates.

Sliding Window Processing. As with any window-based cleaning scheme, SMURF

produces an output reading for a given tag ID if there exists at least one reading

for that tag within the smoothing window [GS04, iAn06]. SMURF’s sliding-window

processor implements two basic modifications to conventional RFID smoothing filters:

(1) partitioned RFID smoothing, and (2) epoch-based mid-window slide.

To handle subsets of tagged objects that behave differently from others, SMURF’s

cleaning techniques adapt the smoothing-window size at a much finer granularity

than traditional smoothing mechanisms. At one extreme, when tracking individual

tag movements, SMURF runs its adaptive sliding-window processing per tag ID. In

general, the granularity of SMURF’s windowing mechanisms is determined by the

aggregate query of interest. That is, by a pair (subset, aggregate) determining

the subset of tags over which the aggregate value (e.g., count) is monitored. Note

that such fine-grained processing can be expressed in a declarative fashion, such as

through the Partition By clause in CQL.

As epochs are a sample cycle in SMURF’s sampling-based model of RFID data,

SMURF slides its windows by a single epoch (as opposed to a time period or by

tuples). Furthermore, SMURF produces readings with a timestamp corresponding to

the midpoint of the window after the entire window has been seen. This behavior

captures the intuitive notion of smoothing: e.g., if there are reported readings at times
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t − 1 and t + 1, then there is likely a reading at time t. I experimentally validated

that this approach yields the most reliable readings.

5.3.3 Adaptive Per-Tag Cleaning

To clean readings from a single tag, the fundamental challenge is to distinguish

between periods of dropped readings and periods where the tag has actually left

the reader’s detection field. SMURF must set its window size such that it provides

completeness for periods of dropped readings as well as accurately captures transitions

for periods where the tag has left. To help differentiate between these two behaviors

and to guide subsequent window adaptations, SMURF employs statistical mechanisms

based on its random-sample view of RFID data.

A Binomial Sampling Model for Single Tag Readings. Consider the simple

case of cleaning the readings from a single tag (say, i) based on a reader’s observations

over a smoothing window of size wi epochs (say, Wi = (t − wi, t]). Assume, for the

time being, that tag i is present in the reader’s range throughout the window Wi,

and has the same probability, pi, of being observed in each epoch of Wi. SMURF

views each epoch as an independent Bernoulli trial (i.e., a sampling draw for tag

i) with success probability pi. This, in turn, implies that the number of successful

observations of tag i in the window is a random variable that follows a binomial

distribution with parameters (wi, pi) (i.e., B(wi, pi)). In the general case, assume

that tag i is seen in only a subset Si ⊆ Wi of all the epochs in Wi, and let pavg
i

denote the average empirical read rate over these observation epochs; that is, pavg
i =∑

t∈Si
pi,t/|Si|, where each pi,t is calculated based on the reader’s tag list information

as shown in Section 5.3.1. Note that it is assumed that within an appropriately-sized

window, the pi,ts will be relatively homogeneous and thus averaging is a valid estimate
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of the actual pi,t.
2 Based on the discussion above, and under the assumption that

the tag stays within the reader’s detection field throughout Wi, Si can be viewed

as a binomial sample (of epochs in Wi) and |Si| as a B(wi, p
avg
i ) binomial random

variable; thus, from standard probability theory, the expectation and variance of |Si|

is expressed as:

E[|Si|] = wip
avg
i and Var[|Si|] = wip

avg
i (1− pavg

i ).

Next, I discuss how SMURF employs this binomial sampling model to adjust

its smoothing window for per-tag cleaning and accurately detect transitions (e.g.,

departures of tag i).

Per-Tag Adaptive Window Size Adjustment. With the binomial sampling

model in place, I first consider the problem of setting SMURF’s window size wi to

guarantee completeness. In other words, we want to ensure that there are enough

epochs in Wi such that tag i is observed if it exists within the reader’s range. Given

the statistical nature of the model, these guarantees are necessarily probabilistic; that

is, wi can be set to ensure that tag i is read with high probability, as described in the

following lemma.

Lemma 1 Let pavg
i denote the observation probability for tag i during an epoch.

Then, setting the number of epochs within the smoothing window to be wi ≥ d ln(1/δ)
pavg

i
e

ensures that tag i is observed within Wi with probability > 1− δ.

Proof: Based on the model of independent Bernoulli trials for observing tag i, the

probability that we miss a reading from tag i over wi sampling trials is exactly (1−

pavg
i )wi . Setting this probability ≤ δ and taking logs gives wi ln(1 − pavg

i ) ≤ ln δ.

Combining this result with the inequality −x ≥ ln(1−x) for x ∈ (0, 1), we see that it

2 In cases where this homogeneity assumption does not hold due to a tag moving rapidly away
from the reader, the mobile tag detection algorithm (Section 5.3.5) allows SMURF to appropriately
size its window to capture tag dynamics.
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suffices to require that −wip
avg
i ≤ ln δ, or, equivalently, wi ≥ ln(1/δ)

pavg
i

. This completes

the proof.

Thus, a window size of wi = d ln(1/δ)
pavg

i
e is sufficient to guarantee completeness (with

high probability). In general, due to the weak (logarithmic) dependence on δ, small

settings for δ (i.e., less than 0.1) do not have a large effect on the overall window size.

While using a smoothing-window size as suggested by Lemma 1 guarantees com-

pleteness (i.e., correct detection of tag i) with high probability, it can also lead to

missing the temporal variation in the underlying signal (e.g., due to the movements

of tag i). Note that in the per-tag case, we are dealing with a binary signal: either

tag i is there (value = 1) or it is not (value = 0). As discussed earlier, large smooth-

ing windows can miss signal transitions, where tag i is mistakenly presumed to be

present in the reader’s detection range due to the interpolation of readings inside the

window (Figure 5.1). In order to avoid smoothing over transitions and producing

many false positives, SMURF needs to accurately determine when tag i exited the

reader’s detection range (as opposed to a period of dropped readings) and decrease

the size of its window. I term this process transition detection.

Given the unreliability of tag readings, accurate transition detection is crucial:

readings will routinely be lost (e.g., for tags outside the reader’s major detection

region (Figure 5.2)), and thus an overly-sensitive transition detection mechanism can

result in failing to compensate for lost readings. On the other hand, a coarse detection

mechanism can miss true signal transitions, resulting, once again, in false positives.

SMURF employs its binomial sampling model to detect transitions in a principled

manner as statistically-significant deviations in the observed binomial sample size

from its expected value. More formally, assuming that the current window size wi and

sampling probability pavg
i are not too small, it follows from a Central Limit Theorem

(CLT) argument that, assuming no transition occurred in the current window, the
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value of |Si| is within ±2
√

Var[|Si|] of its expectation with probability close to 0.98.

Based on this observation, SMURF flags a transition (i.e., exit) for tag i in the

current window if the number of observed readings is less than the expected number

of readings and the following condition holds3:

||Si| − wip
avg
i | > 2

√
wip

avg
i (1− pavg

i ). (5.1)

Estimating Data Quality for Cleaned Per-Tag Readings. Through its prin-

cipled, statistical sampling framework, SMURF can also compute and attach uncer-

tainty estimates for each tag reading emitted to higher-level applications. More specif-

ically, consider the value |Si| for tag i in the current window, and let wip
avg
i − |Si| =

η, where η does not satisfy the transition condition (5.1) above. Then, we can attach

an uncertainty indicator with the emitted reading of tag i, indicating the level of

confidence in the presence of tag i (during the window). This is done by estimating

an upper bound on the probability

Pr[wip
avg
i − |Si| = η | tag i is present]

< Pr[|wip
avg
i − |Si|| ≥ η | tag i is present].

Such upper bounds can be estimated based on either a CLT argument using the η-

percentiles of the Normal distribution, or standard tail inequalities for the binomial

distribution, such as Chernoff bounds [MR95]. For instance, using Chernoff bounds,

we have

Pr[|wip
avg
i − |Si|| ≥ η | tag i is present]

≤ 2e−η2/(2wip
avg
i ).

3 More conservative, non-CLT-based probabilistic criteria, e.g., based on the Chebyshev or Cher-
noff bounds [MR95], can also be used here.
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(a) Normal sliding window processing for

tag i in SMURF. At each epoch, SMURF

emits a reading with a timestamp corre-

sponding to the midpoint of the window.

(b) Ensuring completeness. In

the left-most window, the

pavg
i demands a larger win-

dow such that the tag has a

high probability (1−δ) of be-

ing detected. Thus, the win-

dow size is increased.

(c) Transition detection. In the

left-most window, the num-

ber of readings indicates a

statistically-significant devia-

tion given the pavg
i . Thus,

a transition is likely to have

occurred so the window is

halved.

Figure 5.4. Graphical depiction of per-tag cleaning in SMURF.

For the experimental evaluation (Section 5.4), I use the above equation based on

Chernoff bounds to compute SMURF’s uncertainty estimates.

SMURF Per-Tag Cleaning Algorithm. A pseudo-code description of SMURF’s

adaptive per-tag cleaning algorithm is depicted in Algorithm 1. SMURF employs

the common Additive-Increase/Multiplicative-Decrease (AIMD) paradigm [CJ89] to

adjust its window size for each tag i, based on guidance from its binomial-sampling

model as discussed above.4

SMURF runs its sliding-window smoothing for each observed tag i. The window

size is initially set to one epoch for each tag, and then adjusted dynamically based on

observed readings. (If at any point during processing SMURF sees an empty window

for a tag, it resets its window size to one epoch.)

During each new epoch, and for each tag i, SMURF starts by processing the read-

ings of tag i inside the window Wi (processWindow(Wi)). This processing includes

4Note that this algorithm uses only simple mathematical operations; thus, the overhead beyond
traditional smoothing techniques is minimal.
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Algorithm 1 SMURF Adaptive Per-Tag Cleaning

Require: T = set of all observed tag IDs

δ = desired completeness confidence

∀i ∈ T, wi ← 1

while (getNextEpoch()) do

for (i in T ) do

processWindow(Wi)

w∗
i ← completenessSize(pavg

i , δ) // Lemma 1

if (w∗
i > wi) then

wi ← max{min{wi + 1, w∗
i }, 1}

else if (detectTransition(|Si|, wi, pavg
i )) then

wi ← max{min{wi/2, w
∗
i }, 1}

end if

end for

end while

estimating the required model parameters for tag i (e.g., pavg
i , |Si|) using tag-list in-

formation as well as emitting an output reading for tag i if there exists at least one

reading within the window. Then, SMURF consults its binomial-sampling model to

determine the number of epochs necessary to ensure completeness with high probabil-

ity (completenessSize(pavg
i , δ)), based on Lemma 1. If the required size w∗

i exceeds

the current window size wi = |Wi|, SMURF grows its current window size for tag i

additively. This additive window growth rule allows SMURF to incrementally moni-

tor the tag’s readings as the window grows and thus remain responsive to changes in

the underlying signal.

If the current window size satisfies the completeness requirement, then SMURF

tries to detect if a transition occurred during Wi (detectTransition(|Si|, wi, pavg
i )),

based on Condition (5.1). If a transition is flagged, SMURF multiplicatively de-
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creases the size of its current smoothing window for tag i (i.e., divides it in half).

By multiplicatively decreasing its window size, SMURF can quickly react to detected

transitions, while at the same time avoiding over-reaction in the unlikely event of an

incorrect transition detection. Of course, if the completeness requirement is met and

no transition is detected, SMURF continues with its current window size for tag i.

To summarize, Figure 5.4 graphically depicts some example scenarios in SMURF’s

basic per-tag cleaning scheme.

5.3.4 Adaptive Multi-Tag Aggregate Cleaning

In many real-world RFID scenarios, applications need to track large populations of

tags, typically in the several hundreds or thousands. In addition, applications often

do not require information for each individual tag, and only need to track simple

aggregates (e.g., counts or averages) over the entire tag population. For instance, a

retail-store monitoring application may only need to know when the count of items

on a shelf drops below a certain threshold.

A simple cleaning approach in such scenarios is to apply SMURF’s per-tag clean-

ing algorithms (Section 5.3.3) for each individual tag in the population and then

aggregate the results across individual smoothing filters for each epoch. Such a solu-

tion, however, potentially suffers from underestimation bias: tags not read at all in

a window will not be counted. Additionally, this approach incurs overhead: SMURF

needs to continuously track and dynamically adapt the window for each individual

tag; furthermore, many window adjustments can happen (e.g., with mobile tags) even

though the underlying aggregate signal (e.g., population count) remains stable. To
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avoid these problems, SMURF employs statistical-estimation techniques to accurately

estimate the population count without cleaning on a per-tag basis.

Random-Sampling Model and Estimators for Multi-Tag Aggregates. Con-

sider the problem of estimating the count of the tag population over a window of size

w epochs (say, W = (t−w, t]). As earlier, I use pavg
i to denote the average empirical

sampling probability for tag i during W (i.e., the average read rate over all observa-

tions of i in W derived from the reader’s tag list information). SMURF views each

epoch as an independent “sampling experiment” (i.e., Bernoulli trial) with success

probability pavg
i ; thus, the overall probability of reading tag i at least once during W

is estimated as:

πi = 1− (1− pavg
i )w. (5.2)

Again, the size w of the smoothing window plays a critical role in capturing the

underlying aggregate signal: a large w ensures completeness (i.e., all πi’s are close

to 1), but a small w is often needed to ensure that the variability in the population

count is adequately captured. Unfortunately, compromising on completeness implies

that RFID smoothing algorithms that simply report the observed readings count can

suffer from consistent underestimation errors.

SMURF employs its unequal-probability random sampling model to correct for

this under-estimation bias through the use of π-estimators (also known as Horvitz-

Thompson estimators) [SSW92] to approximate population aggregates.5 Specifically,

let SW ⊆ {1, . . . , NW} denote the subset of observed (i.e., sampled) RFID tags over

the window W (NW denotes the true count), with sampling probabilities determined

by Equation (5.2). The π-estimator for the population count based on the sample

5 Although the discussion here focuses primarily on tag counts, SMURF’s π-estimator scheme for
adaptive multi-tag cleaning can be easily extended to other aggregates. For instance, if the goal is
to estimate the sum of some measure (e.g., temperature) over the underlying tag population, then
the contribution of tag i to the π-estimator formula becomes yi

πi
, where yi is the measured quantity

of interest.
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SW is defined as:

N̂W =
∑
i∈SW

1

πi

.

In other words, the count π-estimator weights each sample point i with its sam-

pling probability πi. The reason for this is fairly intuitive: if tag i, which is observed

with probability πi, appears once in the sample, then, on average, we expect to have

1/πi tags with similar probabilities in the full population (since πi · 1/πi = 1); thus,

the single occurrence of tag i in the sample is essentially a “representative” of 1/πi

tags in the full population.

The N̂W π-estimator is unbiased (correct on expectation); that is, E[N̂W ] = NW

[SSW92]. Thus, by weighting with sampling probabilities, SMURF’s π-estimator

techniques correct for the underestimation bias of conventional smoothing schemes

in a principled, statistical manner (even for small smoothing window sizes). Similar

calculations show that, assuming independence across different tags, the variance of

N̂W is estimated by [SSW92]:

V̂ar[N̂W ] =
∑
i∈SW

1− πi

π2
i

. (5.3)

Of course, even though SMURF guarantees unbiasedness, as the window shrinks,

the observed sample size and corresponding πi’s also drop, resulting in possibly

lower-quality (high-variance) π-estimators. As the experimental results demonstrate,

SMURF’s π-estimation algorithms still significantly outperform conventional smooth-

ing algorithms in such “difficult” settings.

Adaptive Window Size Adjustment for Multi-Tag Aggregates. As in the

single-tag case, I first consider the problem of upper-bounding SMURF’s smoothing

window in a manner that results in reasonably complete readings over the reader’s

detection range. Let SW denote the sample of (distinct) tags read over the current

smoothing window W , and let pavg =
∑

i∈SW
pavg

i /|SW | denote the average per-epoch
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sampling probability over all observed tags. Following a rationale similar to that used

in Lemma 1, the upper bound for SMURF’s smoothing window size for multi-tag

aggregate cleaning is set at w = d ln(1/δ)
pavg e; in other words, for completeness, we require

that the “average tag” in the underlying population is read with high probability

(≥ 1−δ). Note that a more pessimistic window-size estimate would use the minimum

of the pavg
i s in the above calculation to ensure that the “worst” tag is read; however,

since SMURF employs π-estimators to correct for missed readings, such a pessimistic

window could result in over-estimation errors.

SMURF also employs its random-sampling model and π-estimator calculations

in order to dynamically adapt its smoothing window size to accurately capture the

temporal variation in the population count (analogous to transition detection in the

per-tag case). The key observation here is that SMURF can detect transitions in

the underlying aggregate signal as statistically-significant changes in its aggregate

estimates over sub-ranges of its current smoothing window. Specifically, assume W =

(t−w, t] is the current window, and let W ′ = (t−w/2, t] denote the second half of W .

Also, let N̂W and N̂W ′ denote the π-estimators for the tag population counts during

W and W ′, respectively. Under similar CLT-like assumptions as in Section 5.3.3, the

corresponding true population counts (NW and NW ′) satisfy NW ∈ N̂W±2

√
V̂ar[N̂W ]

and NW ′ ∈ N̂W ′ ± 2

√
V̂ar[N̂W ′ ] with high probability. Based on these observations,

SMURF detects that a statistically-significant transition in population count has

occurred in the second half of W if the following condition is satisfied:

|N̂W − N̂W ′| > 2

(√
V̂ar[N̂W ] +

√
V̂ar[N̂W ′ ]

)
. (5.4)

The above condition essentially asserts that the difference |NW − NW ′| of true

counts is non-zero with high probability.

There are two important points to note here. First, remember that the key prob-

lem with adaptive smoothing-window sizing is to correct for false-positive readings
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due to a large window W and a drop-off in the true number of tags in the detection

range over W . (An increase in the tag count over W is always “caught”, regardless

of the current window size, since the observed new readings are by default interpo-

lated throughout the smoothing window.) Condition (5.4) attempts to accurately

capture such significant drop-offs within the current window, and allows SMURF to

adaptively shrink its smoothing window size.

Second, while Condition (5.4) with W ′ = (t−w/2, t] is sufficient to identify count

changes that persist for at least w/2 epochs within the smoothing window, it may still

miss transitions that last for < w/2 epochs. A more general solution here is to check

Condition (5.4) for a series of dyadic-size windows W ′ = (t−w/2i, t] (i = 1, 2, . . .) at

the tail end of W and signal a transition whenever one of these conditions is satisfied.

Note that, as the window W slides across time, any transition is initially located at

the tail end of W and thus can be discovered by the above technique. The caveat

here is that as the sub-range within W decreases, the variability of the N̂W ′ estimate

goes up, making it difficult to detect very short-lived transitions. The empirical

results demonstrate that using Condition (5.4) for just the second-half window W ′ =

(t−w/2, t] is sufficient to provide accurate population-count estimates to applications.

Estimating Data Quality for Cleaned Multi-Tag Readings. Similar to the

single-tag case, SMURF’s statistical sampling foundation allows for uncertainty indi-

cators to be attached to derived π-estimates and emitted to higher-level applications.

In the multi-tag case, such indicators take the form of appropriate confidence intervals

for the N̂W π-estimators based on their unbiasedness and observed sample variances.

Such intervals can be computed through standard probabilistic methods, e.g., using

the Normal distribution based on CLT arguments, or using the (more conservative)

Chebyshev bound [MR95]:

Pr[|N̂W −NW |] ≥ η] ≤ V̂ar[N̂W ]

η2
.
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For SMURF’s confidence interval, η, I use the following equation based on the

Chebyshev bound above:

η =

√
V̂ar[N̂W ]

α
, (5.5)

where 1 − α is the desired confidence level; that is, for (1 − α) percent of the

readings reported by SMURF, we expect the true value of the tag count aggregate to

be in the range N̂W ± η.

SMURF Multi-Tag Cleaning Algorithm. Algorithm 2 depicts the pseudo-code

for SMURF’s multi-tag cleaning scheme that incorporates the above techniques. Sim-

ilar to per-tag cleaning, SMURF uses AIMD to adjust its smoothing window size;

however, in contrast to the per-tag case, only a single window W is maintained (and

adapted) for all observed tags.

Algorithm 2 SMURF Adaptive Multi-Tag Cleaning

Require: δ = desired average completeness confidence

w ← 1

while (getNextEpoch()) do

processWindow(W )

W ← slideWindow(w)

w∗ ← completenessSize(pavg, δ) // Lemma 1

if (detectTransition(N̂W ,N̂W ′ ,V̂ar[N̂W ],V̂ar[N̂W ′ ])) then

wi ← max{min{wi/2, w
∗
i }, 1}

else if (w∗ > w) then

wi ← max{min{wi + 1, w∗
i }, 1}

end if

end while

For each epoch, SMURF starts by processing the readings in the window W
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(processWindow(W )). This involves computing key window parameters (e.g., pavg,

N̂W ′ , V̂ar[N̂W ′ ]), determining the aggregate contribution from each tag (1/πi), and

calculating (and subsequently emitting) the estimated tag count (N̂W ) using π-

estimation.

The window is then checked for a statistically-significant change in the count es-

timate in its second half (detectTransition (N̂W , N̂W ′ , V̂ar[N̂W ], V̂ar[N̂W ′ ])) based

on Condition (5.4). If a change is detected, SMURF halves its window size. Oth-

erwise, SMURF checks if the current window meets the completeness requirement

based on the average tag detection probability pavg and grows its window additively,

if necessary.

Note that the ordering of the increasing and decreasing phases in Algorithm 2 is

reversed from the per-tag case. Since SMURF’s π-estimation scales-up readings in

a window to estimate the underlying tag population, the completeness requirement

(i.e., a large window) is not as crucial for accurate estimation as in the single-tag case

(where a missed reading causes a 100% error). Thus, multi-tag processing in SMURF

focuses primarily on capturing transitions in the aggregate and uses π-estimation to

compensate for small windows in an unbiased manner.

5.3.5 Mobile Tag Detection

Here I present an enhancement to SMURF processing that applies to both per-tag

and multi-tag cleaning.

Tags that are detected far away from the reader with a low probability can force

SMURF to use a large smoothing-window (based on Lemma 1). While large windows

are necessary to accurately detect static tags placed far from the reader, they can

cause problems in environments where tags are mobile. For per-tag cleaning, a mobile

tag detected with a low pi,t just before it leaves the reader’s detection range causes
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a large number of false positives since it forces an abnormally large window. In the

multi-tag case, a similar reading results in an overly large contribution to the overall

count estimate, and thus a large over-estimation error.

To alleviate the effects of low pi,ts produced by mobile tags, we enhance SMURF

with a pre-processing stage that recognizes mobile tags that are exiting the detec-

tion range and reacts accordingly. This stage, termed mobile tag detection, monitors

individual tag pi,ts and attempts to determine when low detection probabilities are

caused by an exiting mobile tag (as opposed to a static remote tag, which should

force a large window). Mobile tag detection uses a simple heuristic: tags that are

read with consistently falling pi,ts are likely to be moving away from the reader and,

thus, may be exiting the detection range soon. Such readings with low pi,t values are

filtered out by SMURF’s mobile tag detector.

SMURF’s mobile tag detection algorithm forms a best-fit line using least squares

fitting with the observed pi,ts in the window. Using the slope of this line (in units of

∆pi,t

epochs
), SMURF calculates a filter threshold as filterThresh = ε− slope · wmd. This

threshold is a value of pi,t for which it is estimated that the pi,t for the tag will drop

below some value ε in the next wmd epochs, where wmd is wi in the per-tag case and w

in the multi-tag case. The reason the algorithm looks ahead wmd epochs is intuitive:

the larger the window the greater the potential for false positives if the tag exits;

thus, SMURF more aggressively filters readings when the window size is large. Using

ε = 0 yields a good indication of whether the tag will be exiting the detection range

soon. Mobile tag detection filters all readings for mobile tags whose pi,ts fall below

this threshold, thus preventing such readings from adversely influencing the window

size calculation or count estimation.
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5.4 Experimental Evaluation

In this section, I experimentally evaluate SMURF’s data cleaning techniques. For

both per-tag and multi-tag cleaning, I illustrate two key points: (1) there is no

single static window that works well in the face of fluctuating tag movement, reader

unreliability, or both; and (2) across a range of environments with different levels

of tag movement and reader unreliability, SMURF’s cleaning techniques produce an

accurate stream of readings (both individual tag IDs and counts) describing tags in

the physical world.

5.4.1 Experimental Setup

In order to run experiments across a wide variety of scenarios, I built a data

generator to produce synthetic RFID streams given realistic configurations of tags

and readers.

Reader Detection Model. The data generator is based on RFID reader detection

regions as observed in the tests described in Section 5.2. I simplify a reader’s detection

field to derive a model of RFID readers as shown in Figure 5.5.

Figure 5.5. Reader model and tag behavior for the RFID data generator.
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The model uses the following parameters to capture a wide variety of reader

behavior under different conditions:

• DetectionRange: the distance in feet from the reader to the edge of the reader’s

detection range.

• MajorPercentage: the percent of the reader’s overall detection range that is

the major detection region.

• MajorReadRate: the read rate (i.e., the probability of detection) of a tag

within the major detection region.

While the experimental studies show that the read rate in the minor detection

region has high variance (Section 5.2), for the sake of simplicity the read rate in

this region is modeled as a linear drop-off from the end of the major detection

region to the end of the reader’s detection range. I ran additional tests where

I introduced variance into the read rate in the minor detection region; these

experiments yielded similar results to those presented here.

Tag Behavior. I randomly place NumTags tags uniformly between 0 and 20 feet

from the reader along its central axis. Here I have detailed data describing the read

rate of the readers along this axis as described in Section 5.2. By moving the tags

along this axis, I can generate readings with pi,ts corresponding to many types of

movement. For instance, the pi,ts of readings produced by a tag passing through an

RFID-enabled door can be generated by moving a tag from outside DetectionRange

to directly in front of the reader, and then back to outside DetectionRange.

Tags move between 0 and 20 feet following one of two behaviors representative of

a range of RFID applications:

1. Pallet : All tags have the same velocity. This simulates grouped tags, such as

tagged items on a pallet.
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2. Fido: Each tag chooses a random initial velocity (uniform between 1 and 3

feet/epoch). Note that the average velocity, 2 feet/epoch, is roughly equiv-

alent to conveyor-belt speed [UWR06]. Every 100 epochs, on average, each

tag switches from a moving state to a resting state (and vice versa). When

a tag resumes movement, it chooses another random velocity between 1 and

3 feet/epoch. This behavior simulates tracking environments such as a digital

home, where each tag displays independent random behavior.

Data Generation. The generator is run for NumEpochs epochs.6 At each epoch,

the generator determines which tags are detected based on the read rate at each tag’s

location relative to the reader. It then produces a set of readings containing a tag

ID, epoch number, and the tag’s pi,t (the read rate at which the reader read the tag).

Additionally, the generator produces the set of all tags within the reader’s detection

range at each epoch to serve as the reality against which I compare the output of

each cleaning mechanism.

Table 5.1 summarizes the experimental parameters used to produce synthetic

RFID data traces. I manipulate the other parameters as part of these experiments.

The settings for the RFID detection model were chosen as they represent the average

of the reader/tag combinations profiled. Recall from Section 5.2 the average read

rate drops to around 0.8 with multiple tags in the reader’s detection field; I set

MajorReadRate to reflect this behavior.

Smoothing Schemes. The data produced by the generator is cleaned using SMURF

as well as various-sized static smoothing-window schemes. I denote each fixed-window

scheme as Static-x, where x is the size of the window in epochs (1 epoch ≈ 0.2

seconds).

6To eliminate effects caused by the start or end of the trace, the generator is run for an additional
300 epochs and the first and last 150 epochs are omitted from the measurements.
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Parameter Value

DetectionRange 15 feet
MajorReadRate 0.8
MajorPercentage varied
NumTags 25 (per-tag), 100 (multi-tag)
V elocity varied
NumEpochs 5000 epochs

Table 5.1. Experimental parameters.

5.4.2 Per-Tag Cleaning Experiments

The first set of experiments examine cleaning techniques that report individual

tag ID readings. I analyze the performance of different cleaning schemes as the

environment changes in terms of tag movement and reader reliability.

The evaluation metric for per-tag cleaning is average errors per epoch. An

error is a reading that indicates a tag exists when it does not (a false posi-

tive), or a (lack of) reading where a tag exists, but is not reported (a false

negative). The average errors per epoch is calculated as
∑NumEpochs

j=1 (FalsePos-

itivesj + FalseNegativesj)/NumEpochs. This metric captures both types of errors

in one metric that allows us to easily compare the effectiveness of each scheme.

Experiment 1: Varied Reader Reliability. In the first test, I determine how each

technique reacts to different levels of reader unreliability. The tags move according to

Fido behavior and the major detection region percentage is varied. At each value for

MajorPercentage between 0 and 1, I measure the average errors per epoch produced

by each scheme (recall that a lower value for MajorPercentage corresponds to a

more unreliable environment). Figure 5.6 shows the results of this experiment.

As can be seen, when the major detection region percentage is 0 (a noisy envi-

ronment), the large windows do comparatively well, producing around 4 errors per

epoch (i.e., misreporting about 4 tags out of 25 per epoch, on average). The traces for
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Figure 5.6. Average errors per epoch as MajorPercentage varies from 0 to 1 with
tags following Fido behavior.

raw and Static-2 are truncated due to their poor performance. As MajorPercentage

increases, the accuracy of all schemes improves due to more reliable raw data. When

the major detection region makes up the entire detection field (MajorPercentage =

1), the small windows are competitive; Static-2 misreports slightly more than 1 tag

out of 25 per epoch, on average.

In this experiment, SMURF cleaning has the lowest errors per epoch across the

entire range of environments. Its relative performance is particularly good in this

case because of its partitioned smoothing: it adapts, on a per-tag basis, to each tag’s

independent random behavior. Static windowing schemes that use a single window

for all tags cannot capture this variation.

To further investigate the mechanisms behind each smoothing scheme, I drill-down

on a 200 epoch trace of this experiment. I focus on readings produced from a single

tag ID in a noisy environment: the major detection region percentage is set to 0 (the

left-most x-value in Figure 5.6). The readings produced by the reader in this scenario

are particularly challenging to clean as the data are highly unreliable and the tag
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Figure 5.7. A 200-epoch trace of different mechanisms cleaning the readings from a
single tag moving with Fido behavior.

sporadically moves at a high velocity: a smoothing scheme must be able to discern

between periods of dropped readings and periods when the tag is transiently absent.

Figure 5.7 shows this time-line. The top section of the figure shows the tag’s

distance relative to the reader: the tag moves with a high velocity for a period, stops

(at point A) for a period at the edge of the detection field, and then resumes move-

ment. The middle section of the graph shows reality (e.g., the readings that would

have been produced by a perfect reader), readings produced by the best two static

window smoothing schemes (according the Figure 5.6), and the output of SMURF.

The bottom section shows SMURF’s window size over the course of the trace.

During the first period, the tag rapidly moves in and out of the detection field;

the challenge for any smoothing scheme is to accurately capture this movement. Both

static windows, however, fail to capture all of the tag’s transitions. In the worst case,

Static-25 continuously reports the tag as present. Smaller windows would catch these

transitions, but would perform worse during the second phase of this trace.

At point A (around epoch 2230), the tag stops at the edge of the detection range,

causing the reader to infrequently report the tag. Static-10 fails to report the tag’s

behavior due to lack of readings: according to Static-10, the tag is still moving. Static-
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Figure 5.8. Average errors per epoch as tag velocities vary from 0 to 2 feet/epoch
following Pallet behavior.

25 accurately reports the tag’s presence only because it reports the tag’s existence

continuously.

SMURF, in comparison, captures the high-level behavior of the tag during the

entire trace. During the first phase of tag movement, it keeps its window size small,

as can be seen at the bottom of the figure, and accurately reports that the tag is

moving; it succeeds at catching all transitions. Once the tag stops, SMURF grows

its window in reaction to the unreliable readings it receives during this period. Thus,

SMURF accurately reports the tag as present despite the severe lack of readings.7

Experiment 2: Varied Tag Velocity. Next, I measure each scheme’s effectiveness

as the tag velocity changes. The MajorPercentage is fixed at 0.7 (representing a

controlled environment) and tags move according to Pallet behavior. At each velocity

from 0 and 2 feet/epoch, I measure the average errors per epoch produced by each

scheme. Figure 5.8 shows the results of this experiment. Additionally, I measure

7Note that there is a short period just after point A where all schemes fail to report the tag while
it exists. During this period, the reader produces no readings; no scheme without foreknowledge of
the tag’s motion can report the tag before it is read.
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(b) Average false negatives per epoch.

Figure 5.9. Average errors per epoch as tag velocities vary from 0 to 2 feet/epoch
following Pallet behavior, separated into false positives and false negatives.

separately the average false positives and average false negatives produced per epoch

by each scheme, shown in Figure 5.9.

The results illustrate the challenge in setting a static smoothing window. As the

tag velocity increases, there is no single static window that does consistently well.

Static-25 and Static-10 do well when the tags are motionless by eliminating many

of the dropped readings (they miss less than 1 tag out of 25 every other epoch, on

average). As the tags speed up, however, the performance of the large windows

degrade due to many false positives. The reason the errors for the two large windows

drop at higher velocities is because at that point they continuously report all tags

as present. Thus, while they produce a large number of false positives, they produce

few or no false negatives.

On the other hand, the smaller windows (Static-2 and Static-5 ), aren’t able to

fully compensate for lost readings. As the tag velocity increases, these schemes be-

come comparatively better by filling in some of the missed readings without producing

many false positives. Static-5, however, performs poorly at high tag speeds due to

false positives. In a deployment where tags move with different velocities or change
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velocities over the course of time, an application cannot set a single static smoothing

window that captures the variation in tag movement to provide accurate data.

SMURF, in contrast, consistently performs well as the tags increase speed. When

the tags are motionless, it removes many of the false negatives and is competitive

with the large window schemes.

As the tags increase velocity, SMURF is able to generally track the best static

window. At low velocities, SMURF does well, but not as well as Static-5. Here,

tags are not moving fast and thus mobile tag detection has little effect. As a re-

sult, SMURF’s binomial sampling scheme occasionally sets its window too large: it

produces roughly twice as many false positives as Static-5 at lower velocities. As

the tags speed up, however, mobile tag detection filters readings from tags that are

exiting and thus reduces the false positives. As can be seen in Figure 5.9, from tag

velocities of 1 to 1.25 feet/epoch both SMURF and Static-5 show similar increases

in false negatives, but SMURF produces only 2/3rds the false positives as Static-5.

At the highest velocities, Static-2 performs better than SMURF. Here, the tag

velocity is approaching a fundamental limitation for any detection scheme: if the time

between transitions is smaller than the window size, then the transition will be lost.

In this setup, at 2 feet/epoch the time between transitions is 5 epochs. Thus, for

a smoothing scheme to be able to detect a transition, the window size must be set

smaller than 5 epochs. In this experiment (MajorReadRate = 0.8, MajorPercentage

= 0.7), SMURF uses an average window size (without transition detection or mobile

tag detection) of d ln(1/δ)
pavg

i
e = d ln(1/0.05)

0.68
e = 5. Thus, the tag velocity in this case is

at SMURF’s limit; transition detection and mobile tag detection prevent it from

breaking down completely.

Experiment 3: δ as a Declarative Parameter. While the primary contribution

of SMURF is the removal of the imperative window size parameter from RFID data
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cleaning, SMURF provides a parameter δ, where (1− δ) is the probability of reading

a tag if it exists, that allows the application to declare a preference for reduced false

positives or reduced false negatives.

To analyze how the value for this parameter affects SMURF cleaning, I run

SMURF with different values for δ. For this experiment, MajorPercentage is set

to 0.7 and tags move according to Fido behavior. Given that the dependence on δ

of the binomial sampling approach used by SMURF is weak (logarithmic), using a

small δ is common practice. Thus, I vary δ between 0.1 (90% completeness) to 0.01

(99% completeness). The results are shown in Figure 5.10. I ran this experiment with

multiple tag and reader characteristics; all experiments produced similar results.

First of all, notice that the value of δ has very little impact on the overall number

of errors SMURF produces. This means that an application that does not tune δ will

not be adversely affected by choosing a standard value (e.g., 0.05).

Second, δ is a declarative parameter that allows an application to express what

data it wants; SMURF then determines how to produce that data. If an application,

such as an RFID-enabled doorway, desires responsiveness (low false positives), it

can set δ closer to 0.1, in which case SMURF sets its window smaller. Conversely, an

application (e.g., shelf-monitoring) that desires completeness (less false negatives) can

set δ closer to 0.01 causing SMURF to grow its window larger to meet the completeness

requirement. In either case, the value of δ has little impact on overall error.

Experiment 4: Accuracy of Uncertainty Estimates. Here I measure the accu-

racy of SMURF’s uncertainty estimation. For this experiment, I use the same setup

as in Experiment 2: MajorPercentage is set at 0.7 and tags move according to Pal-

let behavior at varying speeds. At each tag velocity, I measure the accuracy of the

uncertainty estimate. Accuracy measures how close the estimate is to reality, where

reality is 1 if the tag is in the reader’s detection field for the given epoch, 0 if it is
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Figure 5.10. Errors per epoch using different values of δ.

not. If we denote a reading’s uncertainty estimate as conf , then for correct readings

the accuracy is defined as conf , and for incorrect readings the accuracy is defined as

(1− conf).

For SMURF’s estimation strategy, I assign an uncertainty estimate based on the

Chernoff bound as described in Section 5.3. I denote this strategy as Chernoff. I

compare the accuracy of SMURF’s uncertainty estimation to three other strategies.

The first comparison strategy, Percent, assigns a confidence based on the percent

of positive readings in a window: conf = |Si|
wi

. Strategy Average simply assigns a

confidence using the average of the detection probabilities: conf = pavg
i . The third

algorithm I compare, Unit, assigns unit uncertainty estimates to every output reading:

conf = 1.

Strategy Average accuracy

Percent 0.73 (0.04)
Average 0.59 (0.02)
Unit 0.94 (0.03)
Chernoff 0.95 (0.01)

Table 5.2. Average accuracy of different mechanisms for estimating uncertainty across
a range of tag velocities. The standard deviation is in parenthesis.
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The results are shown in Table 5.2, reported as the average accuracy of the un-

certainty estimates across all environments. Strategies Average and Percent perform

poorly as they tend to assign quality estimates that are too low. Both Chernoff and

Unit perform well. Unit performs well due to the fact that SMURF is very successful

at producing clean data. In a sense, the goal of SMURF is to produce readings of

confidence 1, so it is no surprise that Unit performs well. Chernoff, on the other hand,

achieves the highest accuracy by assigning high confidence to true positive readings

and lower confidence to false positive readings.

Experiment 5: Experiences with Real RFID Data. The previous experiments

were based on a generator that created RFID data based on a simple model. Real-

world RFID data does not follow this model exactly. Here I describe experiences with

real RFID data and the performance of cleaning mechanisms on this data. First, I

collect real RFID data under varying circumstances and examine how it differs from

the model used in the generator. Second, I show that SMURF’s cleaning techniques

are robust to any discrepancies.

For these experiments, I recreate the conditions used in Experiment 2 through an

RFID testbed deployed in the controlled environment from Section 5.2 using an Alien

reader [ALR05] and a single Alien “I2” [Ali05a] tag suspended in the same plane as

the antenna. I gather data using tag velocities ranging from 0 to 2 feet/epoch. For

the motionless tag test, results from data collected every 0.5 feet from 0 to 15 feet

(the reader’s detection range is approximately 15 feet) are averaged. For the mobile

tag tests, I move the tag back and forth between 0 and 20 feet from the reader. For

tag velocities that cannot be produced in the testbed (1.5 and 2 feet/epoch) I collect

data at lower velocities and then speed up the data traces. All runs are performed for

2000 epochs (≈ 400 seconds). Additionally, I collect limited traces from two reader

positions in the noisy environment, differing by ≈ 5 feet.
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During the course of these experiments, I discovered that real RFID data differ

from the model in two main ways. First, if the reader is deployed near obstacles

(e.g., walls), its detection field does not follow the same shape as seen in all other

positions: it is much more irregular. The detection field for a reader deployed close

to a wall and metal desks, for instance, has multiple high and low detection regions.

Such behavior argues for an adaptive approach to data cleaning: very small changes

in the environment can cause dramatic changes in RFID reader and thus necessitates

changes to any static windowing scheme.

Real RFID data differ from the model in another important way: the reader

occasionally produces many more or many less readings than expected based on the

reported pi,t. For instance, the reader occasionally produces many readings with a

very low pi,t (e.g., 0.1) in a window; SMURF is robust to such cases. In rare cases,

a tag statically placed at very specific distances relative to the reader (e.g., ≈ 12

feet ± 2 inches for one of the reader positions) will cause the reader to occasionally

produce only one reading in 5-10 epochs, but report the pi,t of the reading as greater

than 0.8. Based on this pi,t, it is expected to see roughly 8 readings in a window of

10 epochs. In such cases, the SMURF algorithm mistakenly signals a transition and

shrinks the window, causing many false negatives (e.g., 12% dropped readings versus

10% for Static-10 and 2% for Static-25 ). As such behavior occurs rarely and only in

very specific locations with static tags, it is not expected to be a problem in practice.

If necessary, the δ parameter can be used to help alleviate the effects of these types

of readings: by setting δ to 0.01, the dropped readings are reduced to 6%.

Finally, these tests confirm the two key points. Across the different speeds and

environments, there is no single static window that works uniformly well. At high

speeds in the controlled environment, Static-2 works very well, while it falters at slow

speeds and in the noisy environment. On the other hand, Static-25 works very well

with a motionless tag, but performs poorly when the tag starts moving. In contrast,
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SMURF handles all of these cases well. When the tag moves fast in the controlled

environment, it closely follows Static-2 while at the same time competing with Static-

25 when the tag is motionless. On average, SMURF performs the best: for instance,

in the controlled environment, SMURF averages 0.05 errors per epoch, compared to

0.06 for Static-2 and Static-5, 0.14 for Static-10, and 0.18 for Static-25.

Due to the difficulty in running controlled experiments with RFID technology, for

the remainder of the experiments I use synthetic data streams.

5.4.3 Multi-Tag Aggregate Cleaning Experiments

As stated in Section 5.3.4, many applications only need a count of the tagged

items in the area. Here I compare techniques for accurately counting the number of

tags in a reader’s detection field.

I show the same static windowing schemes as the previous experiments (Static-2,

Static-5, Static-10, Static-25 ). For count aggregates, these schemes use the equivalent

of a windowed count distinct operation. For SMURF processing, I show two versions,

as outlined in Section 5.3.4: SMURF using per-tag cleaning with summation (σ-

SMURF) and SMURF using π-estimators (π-SMURF).

As π-SMURF cannot produce individual tag readings, I change the evaluation

metric to root-mean-square error (RMS error) of the count of reported tags compared

to reality.

Experiment 6: Varied Reliability and Tag Velocity. I test the accuracy of the

counts produced by each scheme as either the level of tag movement or unreliability

increases. I run the same tests as Experiments 1 and 2, but with more tags (100),

and measure the RMS error of each scheme’s output compared to reality.

To determine the count accuracy of different schemes as the tag velocity increases,
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I run a similar test to Experiment 2. The MajorPercentage is set at 0.25 and the

tag velocity is varied between 0 and 2 feet/epoch using Pallet behavior. The results

are shown in Figure 5.11(a).
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Figure 5.11. The RMS error of different cleaning schemes counting 100 tags.

In most cases, both σ-SMURF and π-SMURF are more accurate than any static

window. π-SMURF does particularly well here due to its unbiased nature. σ-SMURF,

however, suffers from under-counting. To illustrate, I also measure the mean error of

the count estimates (a measure of the bias of an estimator). At a tag velocity of 1

foot/epoch, for example, σ-SMURF has an mean error of -6.5, indicating an under-

count of 6.5 items, on average. π-SMURF, in comparison, only has a mean error of

-0.3: on expectation, π-SMURF provides accurate estimates.

To determine how each scheme performs as the level of reliability changes, similar

to Experiment 1, I move tags using Fido behavior and vary the major detection region

percentage. At each value of MajorPercentage, I measure the error of each scheme.

Here, both σ-SMURF and π-SMURF are competitive with the best static window.

The results are shown in Figure 5.11(b). Across a range of environments, both

σ-SMURF and π-SMURF are competitive with the best static window. Note that
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this case represents the worst-case scenario for π-SMURF. As tags are moving inde-

pendently and at random, on average there are an equal number of tags exiting and

entering the detection field at each epoch. Since π-SMURF only looks at the count of

tags, it is unable to recognize these changes. Despite this limitation, it remains close

to the best scheme.

Experiment 7: Accuracy of Multi-Tag Uncertainty Estimates. I also verify

the accuracy of SMURF’s uncertainty estimates in the multi-tag case. For these tests,

I fix the confidence bound at 95% and confirm that the true count of tags falls within

the range supplied by SMURF’s confidence interval. For this uncertainty estimate,

I use π-SMURF for the count estimate and derive a confidence interval based on

the Chebyshev bound as described in Equation 5.5. I use the same setup as in the

second half of Experiment 6: tags are moved according to Fido behavior and the

major detection region percentage is varied. For each value of MajorPercentage,

I measure the hit rate, or percentage of epochs for which the true count of tags is

within SMURF’s confidence interval.

Across most of the range of MajorPercentage, the true count of tags is within

the confidence interval over 95% of the time; when MajorPercentage is between

0 and 0.9, the average hit rate is 0.97. When the reader is highly reliable

(MajorPercentage > 0.9), however, the hit rate suffers: when MajorPercentage =

1, the hit rate falls to 0.28. This low accuracy is due to the fact that the tags are

mobile in a very reliable environment: within the smoothing window the pavg
i is high

(> 0.8), yielding a low variance for the estimator and consequently a tight confidence

interval; at the same time, the tags are highly mobile, so some tags included in the

estimate have left the detection range causing a less accurate count estimate. In

general, SMURF’s uncertainty estimates will be less accurate when the reader is very

reliable and tags are moving quickly. Since it is highly unlikely for a reader to have a
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MajorPercentage greater than 0.9, these poor uncertainty estimates are likely not a

problem in practice. Note that SMURF’s uncertainty estimates remain accurate when

the reader is highly reliable and the tags are not mobile; when MajorPercentage = 1

and the tags are not mobile, the hit rate rises to 0.99.

Figure 5.12. A simulated pallet moving through three phases in a warehouse: shelf,
forklift, and conveyor belt.

Experiment 8: Tracking Counts in a Dynamic Environment. Here I investi-

gate how different multi-tag cleaning schemes react as conditions change over time.

I simulate tag movement and reader characteristics typical of a warehouse scenario

over the course of 15000 epochs. In this scenario, an application monitors the count

of 100 tags placed together on a pallet as it travels through the warehouse in three

phases (as depicted at the top of Figure 5.12):

1. Shelf : In the first phase, the pallet is motionless on a shelf. Due to interference

from the shelf and other tags in the vicinity, the read rate is low: the MajorReadRate

is set to to 0.5 and MajorPercentage to 0.5.

2. Forklift : After 5000 epochs, a forklift picks up the pallet and begins moving.

Here, there is less reader interference due to other tags or obstructions, but the forklift
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reduces the major detection region (MajorReadRate = 0.8, MajorPercentage =

0.25). The forklift’s motion is simulated by moving the tags at 0.5 feet/epoch.

3. Conveyor Belt : In the final phase, I simulate the pallet traveling on a

conveyor belt. Here, the reader environment is controlled to reduce unreliability

(MajorReadRate = 0.8, MajorPercentage = 0.7). The tags, however, move very

fast (2 feet/epoch).

These three phases simulate realistic conditions in terms of tag and reader behav-

ior. Any cleaning scheme should be able to handle all of these conditions to produce

accurate readings describing the count of items on the pallet as it moves through the

warehouse.

The data produced by the tags on the pallet is cleaned using different schemes

and measure the RMS error during each phase as shown in the middle section of

Figure 5.12. Additionally, I include a trace of a 100-epoch sliding window of the

RMS error for each scheme to illustrate how accuracy changes over time.

When the pallet is on the shelf, the raw data (not shown) is very poor (reporting

less than 20 tags out of 100 per epoch on average). To clean this data, a large window

must be used: with either counting technique, SMURF provides a stream of count

readings that are competitive with Static-25, the largest static window (of course,

larger windows would do better here, but I omit them due to poor performance

during the remainder of the experiment). The bottom portion of the figure shows the

trace of a 100-epoch moving average of the window size set by π-SMURF. During the

period when the tags are motionless, π-SMURF sets its window large to compensate

for the unreliability of the reader.

Once the tags start moving, both SMURF techniques adjust their window sizes

to balance unreliability and tag movement to outperform all static window schemes.

Finally, when the tags are moving very fast in a controlled environment, π-SMURF
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does particularly well as it drastically reduces its window size in reaction to the

tags’ movement while using π-estimators to avoid under-counting with such a small

window.

As can be seen, there is no single static window that the warehouse monitoring

application case use to provide accurate counts in this scenario. Using SMURF, in

contrast, the application can get accurate readings throughout the pallet’s lifetime

without setting the smoothing window size. π-SMURF further refines its accuracy

by providing an unbiased estimate.

5.5 Providing MDI for RFID-based Applications

In the previous sections, I detailed how SMURF effectively deals with RFID’s

unreliable and frequently changing nature by adaptively cleaning the data streams.

In this section, I give an overview of MDI-SMURF, an infrastructure that utilizes

SMURF and its statistical framework to provide data that conforms to the Meta-

physical Data Independence interface.

MDI-SMURF Overview

MDI-SMURF is an RFID middleware platform organized as set of processing

stages as shown in Figure 5.13, each designed to deal with a different aspect of RFID

data. To track uncertainty for exposure through the MDI inteface, MDI-SMURF

contains an associated uncertainty-tracking shadow pipeline. RFID data from readers

flow into a smoothing filter as described in the previous section to compensate for

missed readings. A shadow module estimates the resulting uncertainty of the cleaned

readings. These cleaned readings are then streamed into a module that extends

SMURF’s statistical framework to address errors and semantic issues that arise from

multiple RFID readers deployed in close proximity. A simple conversion module

130



Figure 5.13. An architecture for providing MDI for RFID data using SMURF.

translates the temporally and spatially cleaned readings to MDI readings with the

following schema: (objectID[uncertainty], location[uncertainty], time).

In the remainder of this section, I briefly outline the spatial cleaning and conver-

sion components of MDI-SMURF.

Spatial Cleaning

There is typically a spatial mismatch between readers’ detection fields and

application-level spatial units. That is, the area in which a reader is able to de-

tect tags is usually not the same as the unit of space in which the application is

interested. Furthermore, most RFID deployments contain multiple readers placed in

close proximity to ensure full coverage of the area of interest and ensure completeness.

These two factors lead to overlapping detection fields, causing potential duplicate

readings. Duplicates may be from readers in the same area (e.g., two readers in

the same room of a digital home) and thus reinforce each other; in such a case, the
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Figure 5.14. Spatial issues in RFID deployments. Readings for tag 1 reported by
readers A.1 and A.2 reinforce each other, while readings for tag 2 from readers A.1
and B.2 must be arbitrated.

system should boost the confidence of these readings. In other cases, the readings may

conflict with one another (e.g., two readers on adjacent shelves in a retail scenario)

and must be arbitrated, as discussed in the previous chapter.

Figure 5.14 illustrates these issues. Here, a digital home application is monitoring

room occupancy for two rooms using four RFID readers (two in each room). Rein-

forcement is shown by the readings for tag 1 from readers A.1 and A.2. Arbitration

is necessary for the readings for tag 2 from readers A.1 and B.2.

The opportunities of reinforcement and the challenges of arbitration cause prob-

lems for sensor-based applications. In the case of reinforcement, an application has

to understand the effect on overall confidence, and perhaps collapse several readings

into a single reading with appropriately-adjusted (higher) confidence. For arbitra-

tion, the application is presented with a tag that is reported in two or more locations

and must somehow decide on an appropriate spatial location the tag. Dealing with

both of these issues involves detailed knowledge of the detection fields of the readers

involved and how these fields change over time, further complicating the processing

of RFID readings.

Here, I briefly outline some ideas on how to apply SMURF’s statistical-modeling
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techniques to handle such issues in the design of a spatial RFID smoothing filter

designed to enable applications to effectively cope with reinforcement and arbitration

in RFID readings.

In a nutshell, this spatial smoothing filter approaches RFID reinforcement and

arbitration issues using a spatial window abstraction. A spatial window is a grouping

of readers across space that provides a multi-resolution probabilistic statement about

a tag’s actual location The output of the filter’s spatial windowing is a combination of

intersections and unions of reader detection fields, with attached uncertainty estimates

indicating the probability of the tag being located inside the corresponding spatial

window. Applications can map these spatial windows to application-level spatial

units; as we discuss below, MDI-SMURF incorporates a module that enables each

deployment to specify the appropriate spatial mappings.

The abstract goal of the spatial smoothing filter, then, is to determine, for each

tag, appropriate groupings of reader detection fields as well as corresponding uncer-

tainty indicators (i.e., existence probabilities) for the tag in each grouping. I outline

a brief example showing how some of the above ideas can be applied in the context

of spatial cleaning.

Example 5.5.1 Consider a simple scenario with two RFID readers A and B and

let r(A) and r(B) denote their (possibly overlapping) detection fields. The output

of each reader is fed into a temporal smoothing module that assigns an uncertainty

estimate for the existence of any tag i in its detection field based on the sampling

bounds outlined earlier in this paper; that is, we can estimate the probabilities ρr(A) =

Pr[i ∈ r(A)] and ρr(B) = Pr[i ∈ r(B)].

Since r(A) and r(B) can overlap, in order to provide a multi-resolution spatial

window to applications, a spatial smoothing filter can also estimate the uncertainty

indicators for other spatial regions of interest, such as r(A) ∩ r(B) and r(A) ∪ r(B).
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To compute ρr(A)∩r(B), the “naive” approach of assuming independence of readers

(i.e., setting ρr(A)∩r(B) = ρr(A) ·ρr(B)) is incorrect if the detection fields overlap. In-

stead, the spatial smoothing filter can estimate the uncertainty of r(A) ∩ r(B) (i.e.,

the probability that tag i lies in the overlap region of readers A and B) using the for-

mula ρr(A)∩r(B) = Pr[i ∈ r(A)|i ∈ r(B)] ·ρr(B), where the conditional probability on

the right-hand side of the equation can be estimated using a variety of techniques such

as using the percentage of spatial overlap across detection ranges together with some

spatial uniformity assumption, or from historical overlap data collected for the two

readers. Similarly, the spatial smoothing filter can estimate ρr(A)∪r(B) = ρr(A) +ρr(B)

−ρr(A)∩r(B).

Higher-level applications are then provided with a multi-resolution spatial-window

probabilistic statement of the form: {r(A)[ρr(A)], r(B)[ρr(B)], r(A) ∩ r(B)[ρr(A)∩r(B)],

r(A)∪r(B)[ρr(A)∪r(B)]}, and can determine the appropriate level of spatial localization

for the tag based on the observed confidence levels. �

Conversion There is a semantic gap between the low-level data RFID readers provide

and the needs of applications. The output of most RFID middleware is a stream of

tag IDs and the reader at which they were read. Applications, on the other hand,

typically want to know about high-level concepts such as products, people, rooms,

and shelves.

The final stage in the MDI-SMURF pipeline is a conversion module that translates

the smoothed and spatially processed streams from RFID-specific readings into MDI

readings. Basically, the main goal of this module is to convert the data into a stream

with the following schema: (objectID[uncertainty], location[uncertainty],

time). Producing the objectID involves a relatively simple mapping from tag ID to

an application-specific object ID, such as the approach proposed for ONS [ONS05].

For the location, the spatial smoothing filter’s spatial windows need to be mapped to
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an application-level spatial unit as mentioned above. This module can incorporate

this logic internally so as to shield applications from such complexity. In the next

chapter, I show how these mappings can be defined in a declarative manner to ease

configuration.

Hiding these mappings in MDI-SMURF rather than exposing them to the appli-

cation provides the final step for supporting MDI: all RFID-specific information is

hidden by MDI-SMURF. Thus, tag IDs in a deployment can change (e.g., the deploy-

ment can switch from pallet-level to item-level tagging) or the actual readers may

change; any applications using MDI-SMURF can be oblivious to such changes.

By successively correcting all challenges associated with the physical-digital divide

facing RFID-based applications, MDI-SMURF provides Metaphysical Data Indepen-

dence for a wide array of emerging applications. As a result, RFID applications are

less complex and easier to manage and maintain.

5.6 Chapter Summary

One of the major challenges in crossing the physical-digital divide to provide

MDI to applications is unreliable data. To alleviate this challenge for RFID data, I

developed SMURF, an adaptive tool for RFID data cleaning. SMURF is a smoothing

filter designed to correct for missed readings through a novel statistical framework.

In a detailed experimental study, SMURF was shown to provide significantly cleaner

data in a wide range of scenarios.

To demonstrate how to build an infrastructure that supports MDI, I detailed MDI-

SMURF, an infrastructure for providing RFID data to applications. MDI-SMURF

accepts raw, unreliable RFID readings that are mostly unusable by applications, and

processes them through a series of cleaning stages, including the smoothing filter
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discussed above. MDI-SMURF then produces clean data streams at the application’s

semantic level.

RFID data has the potential to provide incredibly detailed insight into processes

in the physical world for applications such as Total Consumer Awareness. SMURF

and MDI-SMURF provide mechanisms by which such data can be utilized by these

applications.
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Chapter 6

A Declarative Framework for

Sensor Data Processing

The work presented in the previous two chapters described an interface and mech-

anism for pay-as-you-go cleaning and integrating of sensor data for use in dataspace

applications. To provide a general framework for incorporating these techniques into

a dataspace system, I develop Extensible Sensor stream Processing (ESP).1 ESP gen-

eralizes the MDI-SMURF approach to providing MDI in a dataspace system: it is a

modular framework for building data cleaning pipelines focused on streaming data

produced by sensor devices. The primary goal of ESP is to enable pay-as-you-go evo-

lution of sensor data processing infrastructures. ESP is built using declarative query

processing as found in relational database query languages to enable rapid deployment

of cleaning solutions with little up-front cost. Over time, ESP can be incrementally

upgraded due to its modular nature: individual modules can be enhanced through

declarative means or by embedding more complex techniques such as those used in

SMURF.

1Portions of the work presented in this chapter have been published in [JAF+06a, JAF+06b,
SJFW06].
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In this chapter, I introduce ESP and its declarative framework for building sensor

data processing infrastructures in a pay-as-you-go manner. I then demonstrate its

effectiveness and ease of use through three real-world studies involving RFID in a

retail scenario, wireless sensor networks in environmental monitoring, and multiple

types of sensors in a pervasive application. Finally, I describe how ESP tracks data

quality estimates through its pipeline.

6.1 Introduction

To incorporate sensor data into dataspace applications such as TCA, data from

the physical world must be captured through imperfect sensing devices and trans-

lated into MDI data understandable by such applications. This process, which I

refer to as crossing the physical-digital divide, presents many issues (as described in

Chapter 4): the data are unreliable, mismatched in temporal and spatial granular-

ity, semantically low-level compared to what applications desire, and display a high

degree of variability. A primary challenge in crossing this divide is building data

processing infrastructures to alleviate these issues. In this chapter, I present Exten-

sible Sensor stream Processing (ESP), a pay-as-you-go based framework for building

infrastructures to translate sensor data into MDI data. The primary goal of ESP is

to enable pay-as-you-go deployment and evolution of sensor data processing infras-

tructures. First, ESP is built using declarative query processing as found in relational

database query languages to enable rapid deployment of cleaning solutions with little

up-front cost. Second, ESP adopts a modular framework that can be incrementally

upgraded over time: individual modules can be enhanced through declarative means

or by embedding more complex techniques such as those used in SMURF.

To provide a simple and flexible means of programming sensor data process-

ing infrastructures, ESP uses declarative processing based on relational query lan-
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guages and exploits recent advances in relational processing techniques for data

streams [ACC+03, BBD+02, CCD+03]. Programmers specify processing stages in

ESP using high-level declarative queries over relational data streams2; the system

then translates the queries into the appropriate low-level operations necessary to

produce their results. Thus, programmers do not have to write low-level device inter-

action code (e.g., nesC for TinyOS [GLvB+03]). Additionally, declarative languages

provide data independence, such that in many cases cleaning operations do not need

to be changed when devices are added, removed, or upgraded. As an example of a

declarative query for sensor data cleaning, consider Query 2 which fills in lost tem-

perature readings from a wireless sensor network using a 5 second moving average

over each sensor’s readings.

Query 2 Example declarative query to interpolate for lost sensor readings. This query

runs a 5 second moving average over each sensor’s readings.

SELECT node_id, AVG(temperature)

FROM sensor_readings_stream [RANGE ’5 sec’]

GROUP BY node_id

ESP utilizes the temporal and spatial nature of sensor data to drive many of its

processes. Sensor data tend to be correlated in both time and space; the readings

observed at one time instant are indicative of the readings observed at the next time

instant, as are readings at nearby devices. Thus, I introduce the concepts of temporal

and spatial granule to capture these correlations. These granules define a unit of

time and space inside which the data are mostly homogeneous. These abstractions

can be used to recover lost readings or remove outliers using temporal and spatial

aggregation.

The ESP framework segments its data processing into five programmable stages,

2In ESP, I use CQL [ABW06] as the declarative language as I use a data stream system, Tele-
graphCQ [CCD+03], designed to process CQL. In principle, any declarative language would provide
the benefits outlined here.
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each responsible for a different logical aspect of the data, ranging from operations on

individual readings to operations involving complex processing across multiple devices

and outside data sources.

In this chapter, I first detail ESP and how it alleviates the challenges associ-

ated with physical-digital divide using pay-as-you-go principles (Section 6.2). I then

ground ESP in three real-world scenarios that illustrate how ESP is used and demon-

strate its effectiveness (Sections 6.3, 6.4, and 6.5). Finally, I outline how ESP can be

augmented with a quality tracking pipeline that continually estimates the closeness

of the data produced by ESP to reality (Section 6.6).

6.2 ESP’s Declarative Cleaning Framework

In this section, I introduce Extensible Sensor stream Processing (ESP), a declar-

ative pipelined framework for building sensor data cleaning infrastructures. ESP is

designed with the pay-as-you-go principle in mind to address the challenges associated

with the physical-digital divide.

ESP enables infrastructures that clean and integrate raw physical sensor data by

processing multiple sensor streams, exploiting the temporal and spatial aspects of

sensor data, to produce a single, improved output stream that can be used directly

by applications. I first define the temporal and spatial abstractions that drive many

of ESP’s cleaning mechanisms.

6.2.1 Temporal and Spatial Granules

ESP uses high-level abstractions called temporal and spatial granules to capture

time and space in sensor-based applications. These granules define units of time and

space inside which the data are expected to be homogeneous. ESP uses the granule
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concept to aggregate, sample, and detect outliers. These abstractions exploit the fact

that many applications are not interested in individual readings or devices, but with

higher-level data in time and space.

Temporal Granules

Although many sensor devices can produce data at frequent intervals, applications

are usually concerned with data from a larger time period, or temporal granule. For in-

stance, an environmental monitoring application that builds models of micro-climates

in a redwood tree needs readings at 5 minute intervals to capture environmental vari-

ations [TPS+05]. Within a temporal granule, readings are expected to be largely

homogeneous.

To support this notion of temporal granules, ESP uses windowed processing to

group readings. A window defines a finite set of readings (in terms of an interval of

time) within a data stream. Within a window, ESP can aggregate multiple readings

into one or compare readings to detect outliers.

Spatial Granules

Just as with readings in time, readings from devices physically close to each other

are expected to be mostly homogeneous; a spatial granule defines the unit of space

in which this homogeneity is expected to hold. Furthermore, a spatial granule is the

smallest unit of space in which an application is interested, even though devices may

have a finer spatial granularity. Examples of spatial granules include a shelf in a

library scenario or a room in a digital home application.

To support spatial granules, ESP organizes sensors into proximity groups. A

proximity group defines a set of sensors of the same type monitoring the same spatial

granule. For instance, a set of motes monitoring the temperature in the same room
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Figure 6.1. ESP processing stages with the typical form of the declarative query for
each stage. The relevant portion of the query is in boldface

may be grouped into the same proximity group, as may two RFID readers monitoring

the same library shelf. Just as a time window is the unit of processing for a temporal

granule, a proximity group is the processing unit for a spatial granule.

In many applications, the size of the temporal and spatial granules are obvious

from the nature of the application or environment (e.g., 5 minute intervals in redwood

monitoring or rooms in a digital home). In some cases, however, it may be desirable

to determine the granule sizes automatically as described in Chapter 5.

6.2.2 ESP Cleaning Stages

Having described the fundamental abstractions underlying ESP, I now outline

ESP’s processing stages. Through an analysis of typical sensor-based applications, I

distilled a set of logically distinct operations that occur in a large class of applications

to clean data produced by many types of sensor devices. Using these observations,

ESP organizes sensor stream processing into a cascade of five programmable stages:

Point - Smooth - Merge - Arbitrate - Virtualize. These stages operate on different
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aspects of the data, from finest (single readings) to coarsest (readings from multiple

sensors and other data sources). Not all stages are necessary for a given deployment.

Stage 1, Point : The Point stage operates over a single value in a sensor stream.

The primary purpose of this stage is to filter individual values (e.g., errant RFID tags

or obvious outliers) or to convert fields within an individual tuple. The general form

for the Point query (as well as all other stages) is shown in Fig. 6.1. ESP applies

the Point query to each sensor’s readings, filtering all readings that do not match a

predicate.

Stage 2, Smooth : In Smooth, ESP uses the temporal granule defined by the appli-

cation to correct for missed readings and to detect outliers in a single sensor stream.

The Smooth query processes its input stream, smooth input (a stream of readings

from a single device, provided by ESP), in windows of readings determined by the

size of the temporal granule. For each of these windows, Smooth runs the specified

aggregate function, outputs a processed reading, and then advances the window by

one input reading. Note that both Point and Smooth operations can be pushed down

to capable sensor devices (e.g., wireless motes).

Note that the functionality of Smooth is similar to SMURF’s temporal smoothing

filter; due to ESP’s modular nature, SMURF-like techniques could be used in this

stage if more advanced functionality is desired.

Stage 3, Merge : Analogous to the temporal processing in the Smooth stage, Merge

uses the application’s spatial granule to correct for missed readings and remove out-

liers spatially. At each time step, Merge processes input readings from a single type

of device and groups the readings by the specified spatial granule using the GROUP

BY clause. Merge then processes each of these groups using an aggregate function to

produce output readings for each spatial granule.
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Stage 4, Arbitrate : Spatial granules may not map directly to sensor detection fields,

leading to possible conflicts between the readings from different proximity groups that

are physically close to one another. The Arbitrate stage deals with conflicts, such as

duplicate readings, between data streams from different spatial granules. The query

for Arbitrate groups its input stream by spatial granule and then uses the HAVING

clause to filter readings from spatial granules that do not match a predicate.

Stage 5, Virtualize : Finally, some types of data cleaning utilize readings from

across different types of sensors or stored data for improved data cleaning. To provide

a platform for such techniques, the Virtualize stage combines readings from different

types of devices and different spatial granules. The Virtualize query uses the JOIN

construct to combine readings from different sources based on timestamps, IDs, or

other common attributes. Additional processing can be specified using an optional

predicate. Furthermore, this stage provides the final support necessary to convert

sensor data into MDI data using joins with static data sources (e.g., mapping from

EPC ID to product ID and name).

By separating sensor data cleaning into distinct stages, cleaning pipelines are easy

to deploy and configure, affording many opportunities to reuse stages from previous

deployments with changes localized to individual stages. Additionally, the cleaned

data produced by ESP pipelines can be shared across many applications.

In the next three sections, I show detailed ESP processing and demonstrate ESP’s

overall effectiveness and ease of configuration with three typical sensor deployments.

6.3 RFID-based Scenario

Here I present an example of sensor data cleaning based on ESP through a retail

scenario using RFID technology, similar to the one introduced in Section 6.1. Such
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technology is notoriously error-prone: tags that exist are frequently missed while

other tags that are not in a reader’s normal view are sometimes read. ESP can be

used to build a cleaning pipeline to correct for these errors.

6.3.1 ESP Cleaning of RFID Data

Figure 6.2. Shelf scenario setup with 2 shelves, each with an RFID reader and 10
tags statically placed within 6 feet of the antenna (5 tags at 3 feet, 5 tags at 6 feet).
Additionally, 5 tags were relocated every 40 seconds.

Consider an application that continuously monitors the count of items on each

shelf using Query 3 (shown below). This query looks at the stream of RFID data

in 5-second slices. Within each of these slices, the query groups the readings by the

shelf at which the tag was read, and then counts the number of distinct tag IDs at

each shelf. Here, the window clause indicates the temporal granule (5 seconds) and

the GROUP BY clause denotes the spatial granule (a shelf).

Query 3 Shelf monitoring query to determine the number of products on each shelf.

SELECT shelf, COUNT(distinct tag_id) AS num_products

FROM rfid_data [RANGE ’5 sec’]

GROUP BY shelf

To study ESP used for cleaning RFID data, I ran an experiment emulating a

retail scenario. The experimental setup is depicted in Fig. 6.2. The setup consists of
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(b) Query 3 results using raw RFID data

Figure 6.3. Query 3 results in reality and over the raw data.

two 915 MHz RFID readers from Alien Technology [ALR05], each responsible for one

shelf and thus each forming a proximity group. The readers’ sample period (epoch

size) was set at 5Hz (i.e., 5 interrogation cycles per second). Each shelf was stocked

with 10 items represented with Alien “I2” tags [Ali05a], EPC Class 1 RFID tags

designed for long-range detection in a controlled environment. Tags were suspended

in the same plane as the reader, spaced 1.5 feet apart from each other, and at two

distances from the reader, 3 feet and 6 feet. Tags were oriented such that their

antennae were directly facing the reader. Note that this setup is overly favorable to

RFID technology as it attempts to alleviate many of the known causes of degraded

readings [FJPR04, FL04]. To introduce a dynamic component into the experiment,

5 tags placed 9 feet from the reader were relocated between the two shelves every 40

seconds.

The metric used to evaluate ESP’s cleaning is the average relative error of the

results of Query 3, which is defined as 1
N

∑N
i=0(

|Ri−Ti|
Ti

), where N is total number of

time steps (epochs), i is the time step at the granularity of the reader (5Hz), Ri is

the reported count of tags on a shelf at time i, and Ti is the true count of tags on a

shelf at i. This metric denotes how far off, on average, the reported count of tags is

from reality. The experiment was performed three times; all runs produced similar

results.

The results of the experiment without data cleaning are shown in Fig. 6.3. Fig-
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ure 6.3(a) depicts the trace of the actual count of tags on each shelf over the course

of the experiment. Figure 6.3(b) shows the results of running the Query 3 over the

raw data. If the application were to use the output of the RFID readers directly, the

results would be near-meaningless: the average relative error of the output of Query

3 compared to reality for the duration of the experiment was 0.41 (i.e., the count of

the number of tags on each shelf was off by almost half, on average). For instance, if

an application wants to be notified when the number of items on a shelf drops below

5, then the query using the raw data would report that a shelf has low inventory 2.3

times per second, on average.

Figure 6.4. ESP pipeline for cleaning RFID data.

An ESP pipeline can be used to clean this data, as shown in Fig. 6.4. In this case,

the Smooth and Arbitrate stages for ESP are used; the RFID reader already provides

Point functionality natively by removing tags that fail a checksum [Ali05b] and since

there is only one sensor per proximity group, Merge is not needed.
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Figure 6.5. Query 3 results after different stages of processing.

6.3.2 Stage 2: Smooth

At the Smooth stage (shown in Query 4), ESP interpolates for lost readings within

a temporal granule. ESP runs this query over each reader’s data stream. This query

begins by breaking the stream into 5-second slices (corresponding to the size of the

temporal granule). For each of these slices, Smooth groups by tag ID and then counts

the number of occurrences for that tag. The output of Smooth, then, is a reading for

each tag seen at any point within the window and the number of times it was read.

After each window is processed, ESP moves the window forward by one input reading.

Through this sliding window operation, Smooth fills in dropped readings for any tag

seen at least once in a 5 second time period. Note that this stage is a static version

of the windowed-smoothing approach used by SMURF (discussed in Chapter 5).

Query 4 Interpolating for lost readings in the Smooth stage.

SELECT tag_id, COUNT(*)

FROM smooth_input [RANGE ’5 sec’]

GROUP BY tag_id

The results of Query 3 over the data produced by this stage are shown in Fig.

6.5(a). The Smooth stage is able to eliminate the constant low inventory alerts gen-

erated by the query using the raw data.

The count of items per shelf, however, is still fairly inaccurate (an average relative

error of 0.24) due to the close proximity of the readers and discrepancies in their
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performance. As seen in Fig. 6.5(a), the antenna for shelf 0 read more tags than

that of shelf 1, despite being of the same model; the counts reported for shelf 0

were consistently 4 to 5 tags higher than reality. Different configurations of antennae

produced similar results; this difference is likely due to known issues with the antenna

ports on these particular RFID readers [Ali05c]. Processing in the Smooth stage has

alleviated the issues with dropped readings, but any application using this data will

be misled into thinking that shelf 0 has extra items.

6.3.3 Stage 4: Arbitrate

The Arbitrate stage (shown in Query 5) corrects for duplicate readings caused by

the close proximity of the readers. At each time step, Arbitrate determines all tags

that were read by multiple spatial granules and the number of times each tag was

read by each granule. It then assigns the tag to the spatial granule that read the tag

the most. ESP runs Arbitrate over the union of the streams produced by Query 4.3

Query 5 Correcting for duplicate readings in the Arbitrate stage. The inner query

determines the count of readings for a given tag in each spatial granule; the outer

query selects the spatial granule with the highest count for each tag.
SELECT spatial_granule, tag_id

FROM arbitrate_input ai1 [RANGE ’NOW’]

GROUP BY spatial_granule, tag_id

HAVING COUNT(*) >= ALL(SELECT COUNT(*)

FROM arbitrate_input ai2

[RANGE ’NOW’]

WHERE ai1.tag_id = ai2.tag_id

GROUP BY spatial_granule)

The results of running Query 3 over the smoothed and arbitrated data are shown

in Fig. 6.5(b). Observe that ESP de-duplicates the readings as well as corrects for the

3Although the Merge stage is unused in this case, ESP automatically adds a spatial granule
attribute to each stream, corresponding to each proximity group (i.e., each shelf).
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differing performance of the two antennae to provide a substantially more accurate

count of the tags on each shelf. After Arbitrate processing, the average relative error

of Query 3 is 0.04. This equates to an error of being off by less than one item, on

average. The results show that in this scenario, ESP provides a significant reduction

in error over the raw RFID data: recall that the original item counts using the raw

data were off by almost half compared to reality.

6.4 Environment Monitoring Scenario

In the previous section, I demonstrated the ability of an ESP pipeline to clean

RFID data streams. Next, I present a use case where ESP hides the unreliabilities of

wireless sensor networks.

Wireless sensor networks enable new classes of pervasive applications that monitor

environments such as the home or animal habitats with high resolution. In order to

alleviate the effects of imprecise readings, calibration errors, outliers, and unreliable

network communication, previous deployments involving sensor networks have had

to post-process the readings, primarily by hand, to produce data that can be used

by the application [BGH+05, DR05, DGM+04]. To reduce the complexity associated

with sensor network application deployment, applications can use ESP to provide

cleaned sensor data. I demonstrate two types of wireless sensor network data cleaning:

outlier detection of fail-dirty motes, and temporal and spatial smoothing to correct

for dropped messages.

6.4.1 Outlier Detection

Recall that sensor motes are known to “fail-dirty” and produce outlier readings.

ESP can be used to alleviate the effects of these fail-dirty motes. To demonstrate
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the effectiveness of outlier detection using ESP, I use a 2 day trace from a sensor

network deployed in the Intel Research Lab in Berkeley to monitor the lab’s envi-

ronment [Lab05]. I focus on three motes in the same room, assigned to the same

proximity group. In this trace, one of the motes fails by reporting increasing tem-

peratures, rising to over 100oC. I implement the Point and Merge stages of ESP to

eliminate the outlier readings. Smooth is not used because it cannot correct for ex-

tended errors produced by one sensor.4 Arbitrate is not necessary as there is only one

spatial granule.

Stage 1: Point

The Point stage filters any readings beyond its expected range; in this case, ESP

filters readings where the temperature is higher than 50oC (Query 6) .

Query 6 Simple filtering at the Point stage.
SELECT *

FROM point_input

WHERE temperature < 50

Stage 3: Merge

In this example, the Merge stage does outlier detection within a spatial granule

by computing the average of the readings from different motes in the same prox-

imity group and then omitting individual readings that are outside of two standard

deviations from the mean (shown in Query 7). Note that these techniques are not

intended to be statistically complex, but to the contrary, demonstrate the extent to

which relatively simple techniques can be effectively used in the ESP framework.

Figure 6.6 shows the outcome of this experiment. The top line represents the

4Smooth could, however, be used to correct for individual outlier readings in a single mote using
the same mechanisms presented here.
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Query 7 Outlier detection in the Merge stage.

SELECT spatial_granule, AVG(temp)

FROM merge_input s [RANGE ’5 min’],

(SELECT spatial_granule, AVG(temp) AS average,

STDDEV(temp) AS standard_deviation

FROM merge_input [RANGE ’5 min’]) AS a

WHERE a.spatial_granule = s.spatial_granule AND

a.average + (2*a.standard_deviation) < s.temp AND

a.average - (2*a.standard_deviation) > s.temp

outlier mote’s readings. The middle line depicts the average of all three motes. If

an application were to use the average of the three motes as a representation of

the room’s temperature, it would see temperatures exceeding 50oC. The bottom lines

show the traces of the two functioning motes as well as the output of ESP with outlier

detection processing. Observe that ESP is able to detect when the outlier mote begins

to deviate from the other motes and then omit its reading from its average calculation.
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6.4.2 Temporal and Spatial Smoothing of Sensor Data

Wireless sensor networks have another serious problem beyond fail-dirty motes:

the network frequently drops messages. This problem is especially prevalent when

sensor networks are deployed in the real world.

An ESP pipeline for a wireless sensor network can mask the unreliability of a sensor

network by both temporally and spatially aggregating to correct for dropped readings.

I demonstrate this cleaning through an application responsible for monitoring the

temperature of a redwood tree at each elevation range in the tree.

I validated ESP processing on a three and a half day trace of data collected from

sensors on a redwood tree in Sonoma County, CA as part of a large-scale sensor

network deployment to study micro-climates of redwood trees [Son06]. 33 motes

were placed along the trunk of the tree at varying heights. Data (e.g., temperature

and humidity) were sensed at 5 minute intervals and logged to a local storage buffer

(collected at the end of the experiment) and also sent over the multi-hop network. I

grouped the motes at nearby heights into 2-node, non-overlapping proximity groups

(corresponding to the spatial granules in this deployment), where the distance between

motes in a proximity group was less than 1 foot.

Note that the log data is incorrect with respect to the ground truth due to fail-

dirty sensors: 8 out of the 33 motes failed dirty. The readings from these motes were

removed by hand shortly after data collection, but before I received the data.5

As ESP is addressing communication errors in this case, the metric of success is

the epoch yield. Epoch yield describes the number of the readings reported to the

application as a fraction of the total number of readings the application requested.

For the raw data, the epoch yield in this trace was 40% (ideally, the epoch yield should

be 100%). In other words, the application only received 40% of the data it requested.

5ESP could employ the techniques shown in Section 6.4.1 to remove these outliers automatically.
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Additionally, I measure the percent error in the readings. For this application, an

error of less than 1oC is typically acceptable for trend analysis. Therefore, the goal

of ESP in this application should be to increase the epoch yield while minimizing the

percent of readings with an error greater than 1oC.

Here, the Smooth and Merge stages in ESP temporally and spatially aggregate

sensor readings to increase the epoch yield of the sensor deployment.

Stage 2: Smooth

In the Smooth stage, ESP temporally aggregates readings from a single sensor.

By running a sliding window average on each sensor stream, lost readings from a

single mote are masked within the window. After the Smooth stage, the epoch yield

is increased to 77%. 99% of these readings were within 1oC of the logged data.

Stage 3: Merge

In the Merge stage, ESP performs spatial aggregation for each spatial granule

(again, in the form of a windowed average) to further alleviate the effects of lost

readings. The Merge stage increases the epoch yield to 92%. This improvement of

reporting is at the slight cost of decreasing the percent of readings within 1oC of the

logged data to 94%. Thus, with ESP cleaning, biologists can get nearly complete

data with a slight decrease in the accuracy.

Through the use of simple outlier detection and temporal and spatial smoothing,

in this case an ESP pipeline is able to increase the ability of applications to make sense

of the data they are getting from their sensors. Rather than spending time tediously

post-processing the data, applications can focus on the high-level logic, rather than

conversion, calibration, and error correction.
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6.5 Digital Home Scenario

In Sects. 6.3 and 6.4, I demonstrated how ESP can provide a cleaning infras-

tructure to correct for a wide variety of problems associated with different physical

devices. Next, I demonstrate the ease of configuration of ESP and highlight the use of

multiple types of sensors to enhance data cleaning. Furthermore, this section shows

how ESP can be used to provide Metaphysical Data Independence.

Multiple projects are developing sensors and infrastructures to instrument the

home to provide both a better living experience for inhabitants as well as a more

efficient use of home resources [MIT06, KOA+99]. Such applications use a wide

variety of sensor devices providing low-level data (e.g., RFID, sensor motes, pressure

sensors). In this section, I show that pipelines defined for other deployments (i.e.,

pipelines from the previous two sections) can be easily re-tasked to a new environment

due to ESP’s high-level declarative nature. Furthermore, ESP can serve as a platform

for combining readings from multiple devices to provide a virtual “person detector”

sensor. This type of processing is a higher level of cleaning; data from multiple

heterogeneous devices, appropriately combined, can provide higher quality data. The

output of ESP is a stream of MDI-level events describing the presence of a person in

the room.

I demonstrate the use of ESP in a digital home scenario by outfitting a room

with two RFID readers, a small sensor network of three motes, and three X10 motion

detectors [X1005] tasked to determine when someone is in the room (Fig. 6.7(a)).

The room corresponds to one spatial granule for the application; thus, the two RFID

readers make up one proximity group, the motes constitute another, and the X10

detectors form a third. During the experiment, one person, outfitted with an RFID

tag, moved in and out of the room, while talking, at one minute intervals (Fig. 6.7(b)).

The raw data from the sensors are presented in Figs. 6.7(c)- 6.7(e)
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I present the ESP processing to clean the individual sensor streams and then

describe how ESP utilizes these streams to create a person detector.

(a) Digital home setup
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(e) Raw X10 motion detectors. A mark indicates

that the device reported movement
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(f) Data after ESP processing

Figure 6.7. A “Person Detector” in the digital home.

6.5.1 Low-Level Sensor Cleaning

Recall the main advantages of ESP’s declarative pipelined approach: previously

built stages can be reused, changes necessary to tailor processing to each new de-

ployment are isolated to small logical units, and these changes are easy to make and

reason about as the stages are expressed as high-level queries. In this deployment,
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the ESP pipelines to clean the individual sensor streams (RFID, wireless sensors,

and motion detectors) utilize almost exactly the same processing stages as defined in

the previous two sections. Changes necessary for this deployment involved slightly

modifying queries in a small number of stages.

Stage 5: Virtualize

The main new feature of this use case (as compared to the previous scenarios) is

the use of the Virtualize stage. Virtualize allows a deployment to combine readings

from multiple different types of devices to perform application-level integration. In

this case, Virtualize turns the set of heterogeneous devices into a “person detector.”

It uses a voting query that normalizes all sensor input streams to a single vote of

whether or not it has determined that a person is in the room (Query 8). The query

then adds up the votes and registers that a person is in the room if the sum is higher

than a threshold.

Query 8 “Person Detector” logic at the Virtualize stage.
SELECT ’Person-in-room’

FROM (SELECT 1 AS cnt

FROM sensors_input [RANGE ’NOW’]

WHERE sensors.noise > 525) AS sensor_count,

(SELECT 1 AS cnt

FROM rfid_input [RANGE ’NOW’]

HAVING count(distinct tag_id) > 1)

AS rfid_count,

(SELECT 1 AS cnt

FROM motion_input [RANGE ’NOW’]

WHERE value = ’ON’) AS motion_count

WHERE sensor_count.cnt +

rfid_count.cnt +

motion_count.cnt >= threshold

The output of the ESP pipeline is shown in Fig. 6.7(f). As can be seen in this

case, simple and easy to deploy logic is capable of generally approximating reality.

ESP is able to correctly indicate that a person is in the room 92% of the time.
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Since the data produced by ESP is not perfect, the application must be able to

obtain information on quality through a means independent of the underlying devices.

In the next section, I describe a set of techniques for estimating the quality of a data

stream produced by ESP.

6.6 Quality Estimation for Sensor Data Streams

While cleaning sensor data streams can substantially improve the quality of re-

ported readings, no technique can reliably eliminate all errors. I argue that in many

cases, it is essential for an application to be made aware of the level of reliability of

its input streams, so that it can make appropriate decisions. For instance, a digital

home application acting on unreliable data produced by a mediocre cleaning tool

may sporadically turn on and off the house’s lights. With an accurate estimate of the

quality of the data stream, such an application could threshold its decision-making

on the quality of the data, thus “calming” the application. As another example, a

TCA application could use quality information to ensure that consumers only received

high-quality data on which to make their decisions.

The goal of this section is to develop techniques that can be used to provide

applications with useful information about the quality of the cleaned data streams.

Here, I introduce a quality tracking pipeline that consists of a set of quality estimation

modules that shadow ESP’s main data cleaning pipeline, as shown in Figure 6.8. Each

module in this shadow pipeline is associated with a particular module in ESP and

tracks the quality of the data as the sensor streams are cleaned.

I develop these quality tracking algorithms in the context of object-detection

applications : applications that rely on continuous detection of real-world objects.

The person detector application in the previous section is an ODA; other example
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Figure 6.8. Example cleaning pipeline including the shadow quality estimation
pipeline.

ODAs include military tracking, monitoring inventory, and tracking wildlife [CKRS04,

HKL+06, Hog06, Mar06, SOS05].

I derive online algorithms for the quality tracking modules that provide accurate

measures of quality as the ODA streams flow through the cleaning process. These

modules track two measures of quality: confidence and coverage [Wid05]. Confidence,

a value associated with individual readings, tracks the estimated probability of a

reading in the data stream being correct, i.e., the probability of the reported object

actually being present at the given location and time. Coverage, a value associated

with a window of readings, tracks the estimated fraction of present objects that

are accounted for within a window of the data stream. While there may be many

possible instantiations for these modules, an experimental evaluation show that that

this approach produces good results.

Applications can make direct use of confidence or coverage. For example, in the

above digital home scenario, the application may want to turn on the lights only

when the estimated confidence that someone is in the room exceeds a threshold.
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In an animal tracking application reporting numbers of animals present in specific

regions, counts derived from the data stream may be scaled up based on estimated

coverage.

6.6.1 Data Model and Cleaning Techniques

For the purposes of this section, I simplify ESP’s model and cleaning techniques

for use in ODAs. In such applications, the data stream can be abstracted for cleaning

and quality estimation purposes to the schema <oid,time,loc>. oid’s identify the

objects in the application (such as a person or an animal), whose presence are reported

by sensors (such as RFID readers, wireless sensors, or image analysis). As before, each

sensor is associated with a spatial granule in which it detects objects; loc identifies

this granule (not the actual spatial coordinates) of the object. The temporal granule

is denoted as time. Since there could be multiple sensors associated with a spatial

granule, there could be duplicate <oid,time,loc> values in the stream.

In this section, I focus on three ESP stages: Smooth, Merge, Arbitrate. Each stage

is augmented with a shadow quality estimation stage that tracks the quality of the

readings produced by that stage.

Smooth : For applications that track objects, Smooth emits an output reading at time

t if there is at least one input reading in a window of size W ending at t. Formally, a

reading <o,t,l> is output after temporal smoothing if there exists a reading <o,t’,l>

in the input data stream with (t−W ) ≤ t′ ≤ t. Notice that temporal smoothing does

not eliminate any readings in the input stream, but only adds additional readings.

Merge : In these applications, Merge aggregates multiple streams from the same

spatial granule as follows: the output of Merge contains a reading for an object if any

one of the sensors in the granule reports it. Formally, a reading <o,t,l> is output
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after Merge if there exists a reading <o,t,l> in the input of at least one of the sensors

in the spatial granule. (The presence of sensor IDs is assumed.)

Arbitrate : The objective of Arbitrate is to identify readings of the form <o,t,l1>,

<o,t,l2> that report the same object at multiple different locations (i.e., spatial gran-

ules) at the same time. Since these conflicts are usually resolved using application-

level logic (e.g., in a Virtualize stage), this cleaning module simply identifies such

conflicting readings and marks them for later resolution.

6.6.2 Quality of ODA Data Streams

In this section, I define the quality of an ODA data stream as the difference

between the reported data and reality.

Conceptually, the reality stream is a virtual stream consisting of readings at each

time interval for all objects present in each of the application’s spatial granules. This

stream represents physical reality: it is the stream that the ODA sensors would

produce if the technology were perfect (i.e., if sensors reported all objects present in

their spatial granule at each time instant). At a high level, the quality of an ODA

stream measures the deviation (in terms of false positives and negatives) of the data

stream from the reality stream.

I use two components for an intuitive notion of quality —confidence and coverage—

to capture how closely the data stream resembles the reality stream. Confidence

accounts for objects that are not present in reality but are reported, and coverage

accounts for objects that are present in reality but are not reported. I first define

confidence and coverage formally, then discuss estimating these values in an online

ODA cleaning pipeline.
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Definitions of Confidence and Coverage

Consider the reality stream R, and an ODA data stream D whose quality we want

to measure after the application of zero or more cleaning modules. Given R and D, I

define: (1) True Positives, TP, as the set of all readings that are present in R as well

as D; (2) False Positives, FP, as the set of all readings that are present in D but not

in R; (3) False Negatives, FN, as the set of all readings present in R but not in D.

Confidence and coverage are defined as follows:

Definition 6.6.1 (Confidence) Confidence is a per-reading value that gives the

probability that the reading exists in the reality stream (i.e., that the object is present

in reality at the given time and location). Ideally, confidence is 1 for all readings in TP

and 0 for all readings in FP. This metric naturally extends to the entire data stream

D, or any subset of readings: The confidence for a set of readings is the average of

the confidences of the individual readings.

Definition 6.6.2 (Coverage) Coverage is a window-level value assigned to a set of

readings for a given time period T . It gives the fraction of readings from R in the time

period T that are present in D. Hence, for the entire stream, or for any time-window

having associated values of TP, FP and FN, Coverage = |TP|
|TP∪FN|

.

Quality Estimation

Since the exact values for TP, FP and FN are not known, the exact confidence and

coverage of a cleaned data stream cannot be determined; thus, the goal is to provide

estimates of confidence and coverage. The estimates of confidence and coverage are

denoted by Econf and Ecov, respectively. Though the ideal confidence of each reading

is either 0 or 1, Econf estimates the probability of a reading being correct and ranges

between 0 and 1.
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The schema of a reading in an ODA stream is augmented with these estimates.

Quality estimation for each cleaning module is based on the incoming data stream

of readings with the schema <oid,time,loc,Econf,Ecov>, the output data stream

with the same schema, and knowledge of the ESP stage’s cleaning mechanism.

To seed the estimation process, initial estimates for Econf and Ecov are needed

before any cleaning has been performed. Confidence and coverage for a raw data

stream usually depends on several properties, which are heavily dependent on the

sensors, objects, and the particular ODA deployment; thus, there are no general

techniques for initial quality estimation of an ODA stream. There are, however, a

wide variety of techniques that are applicable. For instance, work on building models

of sensor error characteristics and detection fields [DGM+04, FGB02] can be used to

infer initial estimates.

As an example of how to derive an initial confidence, estimated confidence for

an RFID reading can be estimated as follows. Initially, an RFID middleware system

receives a tag list from an RFID reader. As previously mentioned, each tag id in the

tag list contains the number of times it has been read in the epoch, which can be

used to calculate the read rate. The read rate for each tag t is the ratio of responses

to total interrogations, Rt

It
. This read rate can be used as the initial confidence.

Next I look at each of the cleaning modules individually and show how these

techniques estimate the quality of the resulting stream. I focus in the remainder of

this discussion on confidence calculation; see [SJFW06] for a description of coverage

calculations.

6.6.3 Quality Calculation for Smooth and Merge

Recall that Smooth aggregates expected readings across time, taking advantage

of the redundancy of readings in time. Merge, on the other hand, spatially aggre-
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gates streams from multiple sensors that are monitoring the same spatial granule; it

combines readings from individual unreliable sensors to produce a single data stream

with higher quality.

Both stages operate over a window of readings of width W and thus the two

can be treated similarly for quality estimation purposes. It is assumed that windows

slide by 1 epoch, although this approach applies directly to other slide granularities.

Smooth uses a time window (temporal granule) of Wt epochs; Merge uses a spatial

window consisting of the readings from Ws sensors in a spatial granule for the same

epoch. The output of either stage is a reading for each window (i.e., a reading at each

time-unit) if there exists at least one reading within the window.

Confidence Calculation

Consider a particular object O in a temporal window (for Smooth) or spatial

window (for Merge) of size W (I use W to represent either Wt or Ws). Let the

number of readings of object O in the window be r, and let their confidences be

c1, c2, . . . , cr.

The goal of confidence estimation here is to assign a high confidence to an out-

put reading if the corresponding object was actually present in reality, and a low

confidence if it was not. Econf is calculated on the intuition that the greater the

evidence of an object being present in a window, the greater the output confidence

for that reading. Intuitively, two factors contribute to the evidence of the presence

of the object within a window: (1) higher individual confidences of the input, de-

note greater evidence of the presence of an object, and (2) a larger number of input

readings denote a greater the evidence of the presence of an object.

While there are potentially many ways to account for the above factors in the

output confidence, I use a linear combination of these factors. In Section 6.6.5, I
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show empirically that this approach produces accurate confidence estimates. After

processing a window with confidences c1, c2, . . . , cr, both quality estimation stages

emit a confidence Econf for each object in W as given by Equation 6.1:

Econf =
1

W
[αS + (1− α)r] (6.1)

where S =
∑r

i=1 ci and W is either Wt or Ws.

Note that I use the same equation for both Smooth and Merge. The weighting factor,

α, could be different in the two cases.

6.6.4 Quality Calculation for Arbitrate

Arbitrate is designed to detect objects that are reported by sensors monitoring

different (but possibly adjacent) spatial granules to the granule in which the object is

present. Arbitrate attempts to determine which of the conflicting readings are correct

(true positives), and which are incorrect (false positives).

I assume that Arbitrate does not remove any readings, but only adjusts the con-

fidences. For example, if sensors for two spatial granules both report an object with

an equal confidence, it would be desirable to retain both of the readings with lower

confidence since they are in conflict with each other. Conflicts can then be resolved

at a higher-level such as in Virtualize or by a human.

Confidence Calculation

I now show how to revise the confidences of readings in Arbitrate. The input

to this stage is a set of n data streams, one from each of the application’s spatial

granules, L1, L2, . . . , Ln. Let the input streams contain r (r ≤ n) conflicting readings
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for an object and epoch from different spatial granules. I denote the confidences of

these r readings by c1, c2, . . . , cr respectively.

Since each conflicting reading reduces the likelihood of any other conflicting read-

ing being correct, this stage reduces the confidences of each conflicting reading. The

revised confidence cnew
i for each reading is estimated based on the following two con-

siderations. First, each additional spatial granule reporting an object reduces the

new confidences of each of the outgoing readings of the same object in that epoch.

Second, the higher the confidence of conflicting readings, the greater should be the

decrease in their updated confidence values. The intuition here is that the higher the

confidence of a particular reading, the lower the chance that the object is present in

some other spatial granule.

The confidence of outgoing readings is updated by scaling down each confidence

using the probability that the object is not present in the other spatial granules.

Equation 6.2 shows the formula for the new confidence.

cnew
i = ci ∗ Πj=r

j=1,j 6=i(1− cj) (6.2)

Since ci estimates the probability of the object being present in spatial granule Li,

(1− ci) estimates the probability of it not being in Li.

6.6.5 Experimental Evaluation

In this section, I experimentally evaluate the algorithms for tracking quality using

an RFID scenario similar to that described in the retail scenario above.

I validate the quality tracking algorithms by measuring the accuracy of the con-

fidence estimates, Econf, denoted as Aconf. Intuitively, Aconf gives the closeness of

the estimate Econf to the actual confidence. I compute Aconf as follows. For an
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Figure 6.9. Experimental RFID Setup.

incorrect reading, a lower Econf implies higher accuracy and for a correct reading, a

higher Econf implies a higher accuracy. Therefore, I define Aconf to be (1−Econf) for

incorrect readings and Econf for correct readings. I define the confidence estimation

accuracy of an entire stream D as the average of Aconf for all readings in D.

Experimental Setup

These experiments use an RFID data generator that produces data streams based

on the setup shown in Figure 6.9. This deployment consists of two spatial granules,

each containing 10 tags arranged in two rows separated by 3 feet. Each spatial granule

is monitored by 2 RFID readers, placed 3 feet from the first row of tags on either

side.

Based on the RFID detection model illustrated in Figure 6.10 and this RFID

deployment, the generator produces RFID readings for use in these experiments.

Here, I set p to 0.9, d to 8, θ to 45, and s to 0.1. (similar to the model used

in [HBF+04]). During each epoch, the simulated readers attempt to detect each tag
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Figure 6.10. Simplified RFID detection model. The probability of detection within
the major detection region is p; outside it is s.

using a biased coin-flip based on either p or s (depending on where each tag is located

relative to the reader).

This deployment demands all three types of cleaning modules. Smooth is needed

to account for false negatives produced by the unreliable readers. Merge is used to

further alleviate the effects of false negatives using multiple readers associated with

the same spatial granule. Finally, due to the proximity of the two spatial granules,

Arbitrate is necessary to remove duplicate readings.

Experimental Results

To investigate the effectiveness of these estimation algorithms, I test the accuracy

of the quality estimation for the full pipeline with all three types of cleaning modules.

Here, I run Smooth over each stream from the four readers, then the streams are

spatially aggregated using Merge, and finally, conflicts are detected using Arbitrate. I

then measure the accuracy of the confidence estimates of the resulting stream. In this

case, the overall accuracy of the confidence estimation is 0.86. This shows that the

confidence estimates are very close to the actual confidence. Hence, low confidences

are assigned most often for wrong readings, and high confidences for correct readings.

To further explore how the confidence estimation performs, I plot the distributions

for the confidence estimations for both correct readings in the cleaned stream (true
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positives) and incorrect readings (false positives). Figure 6.11 shows these distribu-

tions.

The graphs show that, as desired, the algorithms for confidence estimation does

indeed assign a high confidence for correct readings and very low confidence to false

positives. For most readings in the resulting data stream that are correct (i.e., the

corresponding object exists in the reported location at the reported time), the es-

timates assign a high confidence between 0.7 and 1 (Figure 6.11(a)). For incorrect

readings in the data stream, the estimates assign a low confidence; most false positives

are given a confidence less than 0.1 (Figure 6.11(b)).
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Figure 6.11. Confidence distributions for true/false positives after Smooth + Merge
+ Arbitrate.

Note the cluster of low confidence true positives in Figure 6.11(a). Before arbi-

tration, some false positives were assigned too high a confidence: some false positives

received confidences higher than 0.8 and many received a confidence of 0.1-0.2. These

high confidence estimates are all reduced after arbitration, where all false positives

receive a confidence of 0-0.1. As a result of these conflicting readings, however, ar-

bitration incorrectly lowers the confidence of some correct readings, resulting in the

small peak for the low confidence range in Figure 6.11(a). This effect is due to the
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fact that arbitration lowers the confidence of readings, overall thus shifting the entire

distribution of confidences to the left.

These results show that with simple and intuitive algorithms for tracking quality

across multiple processing stages, an infrastructure such as one built using ESP can

produce good estimates of the resulting data stream for use in higher-level applica-

tions.

6.7 Chapter Summary

In this chapter, I developed ESP, a framework for building pay-as-you-go clean-

ing and integration infrastructures for sensor data. ESP employs declarative query

processing as its means of programming, and as such cleaning infrastructures built

using ESP are easy to deploy and maintain over time. Finally, I demonstrated how

uncertainty estimates can be attached to the data produced by ESP, thus informing

applications of the inherent uncertainty in the data. ESP forms a foundation for

building sensor infrastructures to support dataspace applications.
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Chapter 7

Conclusions

Through the innovative use of disparate data sources, powerful new applications

are emerging in a many areas: Total Consumer Awareness has the potential to rev-

olutionize consumer behavior by exposing supply-chain data and other product in-

formation, Web mash-ups correlate multiple data sources to provide new services,

and world-wide sensor networks provide unprecedented understanding of the physical

world.

In order to realize the potential of these applications, however, the data must

be organized and processed such that these applications can make use of them. To

this end, pay-as-you-go data cleaning and integration provide a foundation for next-

generation data integration platforms : data integration systems that unify access,

management, and understanding of these heterogeneous data sources (e.g., dataspace

systems). The pay-as-you-go paradigm captures the nature of data cleaning and

integration in dataspaces and provides a powerful philosophy for organizing specific

techniques.

In this thesis, I have developed key building blocks designed to provide pay-as-

you-go data cleaning: Roomba, a technique for effectively involving user feedback
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to augment data cleaning mechanisms; Metaphysical Data Independence, a means of

hiding all details of sensor data cleaning and integration under a single interface;

SMURF an adaptive mechanism for cleaning RFID data; and ESP, a declarative-

query based cleaning framework for sensor data streams. These techniques embody

three important principles that should underlie any pay-as-you-go cleaning approach:

ease of setup and deployment, efficient use of human input, and adaptability.

Additionally, I showed that a focus on the pay-as-you-go philosophy does not

preclude effective data integration mechanisms. Indeed, in many cases the techniques

developed in this thesis are capable of producing higher-quality data than current

cleaning and integration techniques.

The work in this thesis lays a foundation for unifying disparate data sources in a

dataspace from which there are many directions for future work.

One area of future work is investigating the application of human input to sen-

sor data. Many sensor-based applications are real-time and thus preclude such ap-

proaches, but there are cases where it makes sense to have humans in the loop. For

instance, humans could be leveraged to clean sensor data that is to be archived for

later analysis. At an extreme, mass collaboration could potentially be used to move

human-based cleaning into near-real time.

The work in this thesis addressed quality assessment of dataspace data by mul-

tiple means; however, one of the keys to supporting dataspace applications is the

development of a unified framework for quality assessment and tracking, applicable

to all data sources and processes within a dataspace. Such a framework and asso-

ciated interface for exposing quality data is essential in enabling robust dataspace

applications.

One of the most interesting areas of philosophical exploration is the expansion

of the MDI approach to data sources beyond sensors. MDI advocated a complete
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independence from the sources of the data, so a natural next step is to investigate

how such a philosophy applies to Web data or to the unification of Web and sensor

data, such as in TCA. Such an interface, utilizing a common abstraction for data as

well as quality, could become the standard means by which applications interact with

dataspace data.

Finally, there remains an open question on how to build shared dataspace systems

that provide the same underlying data to multiple applications, where each applica-

tion has a different notion of how much cleaning and integration is necessary. For

instance, an application utilizing supply-chain data for inventory planning needs more

accurate sensor data than a TCA application. As another example, different applica-

tions may have different notions of semantic equivalence; e.g., the colors “cardinal”

and “red” are the same for most applications, but different to graphic design applica-

tions. A single dataspace system servicing these diverse applications would need to

internally track multiple versions of the same data and expose them through differ-

ent interfaces. Determining a flexible means of exposing dataspace data in different

ways to different applications in an efficient manner is a challenging open research

direction.

In summary, this thesis makes two broad contributions. First, it demonstrates

that a pay-as-you-go approach to data cleaning and integration is both necessary and

feasible to access large collections of heterogeneous data sources and make their data

usable for an emerging class of applications. Second, it proposes a suite of pay-as-you-

go based data cleaning and integration techniques that address different challenges

associated with providing dataspace data to applications. Dataspace applications

have the power to change the world by presenting disparate data in never-before-seen

forms; the contributions of this thesis provide the necessary first steps in realizing the

potential of these applications.
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