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Abstract

Audio Segmentation for Meetings Speech Processing

by

Kofi Agyeman Boakye

Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

Perhaps more than any other domain, meetings represent a rich source of content

for spoken language research and technology. Two common (and complementary)

forms of meeting speech processing are automatic speech recognition (ASR)—which

seeks to determine what was said—and speaker diarization—which seeks to determine

who spoke when. Because of the complexity of meetings, however, such forms of

processing present a number of challenges. In the case of speech recognition, crosstalk

speech is often the primary source of errors for audio from the personal microphones

worn by participants in the various meetings. This crosstalk typically produces

insertion errors in the recognizer, which mistakenly processes this non-local speech

audio. With speaker diarization, overlapped speech generates a significant number

of errors for most state-of-the-art systems, which are generally unequipped to deal

with this phenomenon. These errors appear in the form of missed speech, where

overlap segments are not identified, and increased speaker error from speaker models

negatively affected by the overlapped speech data.

This thesis sought to address these issues by appropriately employing audio seg-

mentation as a first step to both automatic speech recognition and speaker diarization

in meetings. For ASR, the segmentation of nonspeech and local speech was the objec-
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tive while for speaker diarization, nonspeech, single-speaker speech, and overlapped

speech were the audio classes to be segmented. A major focus was the identification

of features suited to segmenting these audio classes: For crosstalk, cross-channel

features were explored, while for monaural overlapped speech, energy, harmonic, and

spectral features were examined. Using feature subset selection, the best combination

of auxiliary features to baseline MFCCs in the former scenario consisted of normalized

maximum cross-channel correlation and log-energy difference; for the latter scenario,

RMS energy, harmonic energy ratio, and modulation spectrogram features were deter-

mined to be the most useful in the realistic multi-site farfield audio condition. For

ASR, improvements to word error rate of 13.4% relative were made to the baseline on

development data and 9.2% relative on validation data. For speaker diarization, results

proved less consistent, with relative DER improvements of 23.25% on development,

but no significant change on a randomly selected validation set. Closer inspection

revealed performance variability on the meeting level, with some meetings improving

substantially and others degrading. Further analysis over a large set of meetings

confirmed this variability, but also showed many meetings benefitting significantly

from the proposed technique.

Professor Nelson Morgan, Chair Date
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Chapter 1

Introduction

1.1 Spoken language processing in meetings

Perhaps more than any other domain, meetings represents a rich source of content

for spoken language research and technology. From meeting data one can obtain

rich transcription (transcription including punctuation, capitalization, and speaker

labels), perform transcript indexing and summarization, do machine translation, or

carry out high-level language and behavioral analysis with the assistance of dialog

act annotation. Most of these procedures, however, rely on high quality automatic

speech recognition (ASR) transcripts, and, as such, ASR in meetings is an important

and active area of investigation. In addition, because of the presence of multiple

participants in these meetings, it is not only important to determine what was said,

but who said it; indeed, this idea is generally part of the notion of a “transcript”.

Accurate speaker diarization—i.e., determining “Who spoke when?”—is therefore also

of great importance to spoken language processing in meetings and has received much

attention in the research community.

In most typical set-ups, meeting ASR—also referred to as speech-to-text (STT)
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Chapter 1. Introduction

transcription—utilizes audio data obtained from various sensors located within the

meeting room. The most common types are given below:

• Individual Headset Microphone

The individual headset microphone (IHM) is a head-mounted microphone po-

sitioned very close to the participant’s mouth. The microphone is usually a

cardioid or super-cardioid microphone and has the best quality signal for each

speaker.

• Lapel Microphone

The lapel microphone (LM) is another type of individual microphone, but

is placed on the participant’s clothing. The microphone is generally omni-

directional or cardioid and is more susceptible to interfering speech from other

participants.

• Tabletop Microphone

The tabletop microphone is typically an omni-directional pressure-zone micro-

phone (also called a boundary microphone) and is placed between participants

on a table or other flat surface. The number and placement of such microphones

varies based on table geometry and the location and number of participants.

• Linear Microphone Array

The linear microphone array (LMA) is a collection of omni-directional micro-

phones with a fixed linear topology. Depending on the sophistication of the

setup, the array composition can range from four to sixty-four microphones.

The array is usually placed along the wall in a meeting room and enables the

use of microphone beamforming techniques to obtain high signal-to-noise ratio

(SNR) signals for the participants from a distance.

2



Chapter 1. Introduction

• Circular Microphone Array

The circular microphone array (CMA) combines the central location of the

tabletop microphone with the fixed topology of the LMA. It consists of typically

four or eight omni-directional microphones uniformly spaced around a horizon-

tally oriented circle a few inches above table level. The array enables source

localization and speaker tracking.

The first two types comprise the sensors for the nearfield or close-talking microphone

condition and the last three the sensors for the farfield or distant microphone condition.

A diagram of a meeting room instrumentation with these microphones is shown in

Figure 1.1.

Speaker diarization similarly uses audio from such microphones. In contrast to

ASR, however, this is generally limited to the distant microphones. In theory, the

speech from a nearfield microphone should be that of the wearer of the microphone,

making diarization unnecessary (but not trivial because of crosstalk, as discussed

below).

1.2 Crosstalk and overlapped speech

Both automatic speech recognition and speaker diarization in these meetings present

specific challenges owing to the nature of the domain. The existence of multiple

individuals speaking at various times leads to two phenomena in particular: crosstalk

and overlapped speech.

1.2.1 Crosstalk

Crosstalk is a phenomenon associated only with the close-talking microphones and

refers to the presence of speech on a channel that does not originate from the participant

3



Chapter 1. Introduction

Figure 1.1: Diagram of an instrumented meeting room. The lapel and individual headset
microphones correspond to the nearfield recording condition, while the tabletop microphone
and the linear and circular arrays correspond to the farfield condition.

wearing the microphone. This speech is problematic because, as previously mentioned,

it is assumed that the speech coming from a given channel is to be attributed to the

headset or lapel wearer for that channel; words generated from recognition of other

participants’ speech (non-local speech) are regarded as errors—in this case most likely

insertion errors—for the ASR performance evaluation. In [73], for example, word

error rate (WER) differed by 75% relative between recognition on segmented and

unsegmented waveforms, largely due to insertions from crosstalk.

The issue of crosstalk can be addressed within the framework of speech activity de-

tection (SAD), a long-studied problem in speech processing ([16],[93],[52],[35],[62],[95])

and an important pre-processing step for ASR. The speech activity detection task

4



Chapter 1. Introduction

consists of identifying the regions of an audio signal which contain speech from one or

more speakers. This is in contrast to regions of nonspeech, which commonly includes

low-level ambient noise (i.e., silence), laughter, breath noise, and sounds from non-

human sources. For the nearfield condition, we add non-local speech (crosstalk) to the

list of “nonspeech” phenomena. Though many methods exist for determining these

speech activity regions, a common one—and the one of interest for this work—is to

segment the audio into speech and nonspeech regions using a hidden Markov model

(HMM) based segmenter. Because of the acoustic similarity between local speech and

crosstalk, the task of speech activity detection in this context becomes more challeng-

ing. In particular, the features typically used in speech/nonspeech segmentation (e.g.,

log-energy and Mel-frequency cepstral coefficients) are insufficient in many cases to

produce segmentations that yield good ASR performance.

1.2.2 Overlapped speech

Overlapped, or co-channel, speech refers to the case when two or more participants are

speaking simultaneously. Though present in both the nearfield and farfield conditions,

its presence is most pronounced (and most severe) in the farfield case. It is in this

farfield condition, too, that overlapped speech affects the second task of interest:

speaker diarization. Current state-of-the-art speaker diarization systems assign speech

segments to only one speaker, thus incurring missed speech errors in regions where

more than one speaker is active. For these systems, this error may represent a

significant portion of the diarization error. For example, in [116] the authors reveal

that 17% of the diarization error for their state-of-the-art system consisted of missed

speech errors due to overlap when using a single microphone and 43% when using

multiple microphones. A similar system described in [39] had 22% of its diarization

error attributed to overlapped speech in the multiple microphone scenario. To be
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certain, the proportions are high largely due to the low overall diarization error rate

obtained by these systems. This is all the more reason, however, to address the issue

of overlap, as it is now one of the most significant impediments to improved system

performance. In addition, because overlap segments contain speech from multiple

speakers, they should probably not be assigned to any individual speaker cluster nor

included in any individual speaker model. Doing so could adversely affect the quality

of the speaker models, which potentially reduces diarization performance. In [84], for

example, the authors, using an oracle system which identified all overlapped speech

segments, demonstrated an improvement in diarization performance by excluding

these overlap regions from the input to the diarization system.

To identify overlapped speech regions, a framework similar to speech activity

detection can be adopted. An audio segmenter can be used to detect not local, but

co-channel speech. Again the detection task is complicated by the acoustic similarity

between single-speaker and overlapped speech, so the selection of appropriate features

is an area of interest.

1.3 Thesis Goals and Overview

This thesis endeavors to address the issues of crosstalk and overlapped speech described

above by appropriately employing audio segmentation as a first step to both automatic

speech recognition and speaker diarization in meetings. For ASR, the objective is

to identify regions of local speech in the nearfield audio stream, thereby eliminating

the erroneous recognition of the crosstalk speech. For diarization, we seek to identify

overlapped speech for speaker segment labeling as well as for improving the speaker

clustering in the system. Of primary interest, in both cases, is exploring and evaluating

features suited to the detection of the audio classes of nearfield speech (and, hence,

exclude crosstalk) and overlapped farfield speech to achieve high performance from
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these systems.

The thesis is organized as follows. First, Chapter 2 provides background. This

consists of basic information on the two target applications—automatic speech recogni-

tion and speaker diarization—as well as a review of work in the areas of multispeaker

SAD and overlapped speech detection relevant to this thesis. Chapter 3 then outlines

the framework for implementing and evaluating the two audio segmentation systems.

Chapter 4 presents the multispeaker SAD system for improving ASR. The candidate

features explored for the segmenter are discussed and the evaluation experiments

performed as part of the system development are presented and analyzed. The same

is done for overlapped speech handling in Chapter 5. Finally, in Chapter 6, the work

is summarized and concluding remarks are given, with a focus on the contributions

made by this thesis and possibilities for building upon this work.
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Background

As stated in Chapter 1, this thesis seeks to address issues associated with automatic

speech recognition and speaker diarization in meetings. In order to do this, however,

it is necessary to first have an understanding of how each of these applications works.

This chapter provides an overview of the standard approaches for performing ASR

and speaker diarization in the meetings setting. Another necessary step in developing

the proposed systems for speech and overlap detection is a knowledge of other such

attempts as found in the literature—What was done? What worked well? What did

not? This chapter also gives a review of this related work with analysis from a system

development perspective.

2.1 Automatic Speech Recognition in Meetings

The task of automatic speech recognition (ASR) is to determine “What was said?”—

that is, to identify the sequence of words W = w0, w1, . . . , wn contained within the

utterances of an audio data stream. The standard practice is to adopt a probabilistic

framework in which the problem becomes finding the most likely string of words Ŵ
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given a sequence of acoustic observations Y = y0,y1, . . . ,yT. That is,

Ŵ = argmax
W

P (W |Y) (2.1)

Using Bayes’ theorem, this becomes

Ŵ = argmax
W

P (Y|W )P (W )

P (Y)

= argmax
W

P (Y|W )P (W ) (2.2)

since P (Y), the prior probability of the acoustics, is constant over all word strings.

The acoustic observations Y are obtained from the audio signal through a process

referred to as feature extraction. This procedure seeks to yield a parameterization of

the waveform that is robust and that captures as much of the information necessary

to perform recognition while discarding the remainder, such as noise. The first term in

Equation 2.2, P (Y|W ), represents the probability of observing the sequence Y given

a specified word sequence W and is determined by an acoustic model. The second

term, P (W ) is the a priori probability of observing W independent of the observed

signal and is determined using a language model. These two models represent the two

major components of a statistical ASR system, as shown in Figure 2.1.

Acoustic Model

Acoustic modeling seeks to provide a method of calculating the likelihood of any vector

sequence Y given a word w. Typically, rather than explicitly model a word, however,

each word is decomposed into sub-word units referred to as phones which are then

modeled as a sequence of states Q = q0, q1, . . . , qm. Thus the optimization becomes
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Speech

Feature 
Extraction

Probability
Estimation

Language
Model

Acoustic
Model

Decoding

Words

Figure 2.1: A typical ASR system. Speech audio is processed into a stream of features
that, using probabilistic acoustic and language models, is decoded into a sequence of
words.

Ŵ = argmax
W

∑
Q

P (Y|Q,W )P (Q|W )P (W )

≈ argmax
W

∑
Q

P (Y|Q)P (Q|W )P (W ) (2.3)

where we assume that the acoustic observations are independent of the word sequence

given the state sequence. Each phone is typically represented using a hidden Markov

model (HMM). An HMM is a finite state machine that models the generation of a

sequence of random variables (here the vector sequence Y) using a set of underlying

hidden states (here the states of the phone). At every time step t, the finite state ma-

chine undergoes a transition to a state j and emits a speech vector yt with probability

bj(yt). This transition from a previous state i to a state j occurs probabilistically
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with discrete probability aij. In addition, a first-order Markov process is assumed,

meaning the transition at every time step depends only on the state at the immediately

preceding time step. Given an acoustic phone model M , the joint probability of the

vector sequence Y and a state sequence X = x0, x1, . . . , xT is calculated as the product

of the transition probabilities and emission probabilities. That is,

P (Y, X|M) = ax0x1

T∏
t=1

bxt(yt)axtxt+1 (2.4)

where x0 is the model entry state and xT+1 is the model exit state. Individual phone

models are joined together by merging adjacent exit and entry states to form a

composite HMM of words. These word HMMs are then joined together to model

entire utterances. The acoustic model is trained by estimating the HMM parameters

(the transition probabilities and the emission probability model parameters) using

a procedure referred to as Baum-Welch Re-estimation. This procedure is discussed

further in Section 3.2.1.

Language Model

The language model attempts to estimate the a priori probability of a word sequence

W = w0, w1, . . . , wn. This joint probability can be represented as a product of

conditional probabilities of the form:

P (w0, w1, . . . , wn) = P (w0)
n∏
k=1

P (wk|w0, w1, . . . , wk−1) (2.5)

Thus, estimating the word sequence probability becomes a question of estimating

the probability of a word wk given the preceding words W k−1
0 = w0, w1, . . . , wk−1.

Typically this is done by making the simplifying assumption that wk depends only on
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the preceding n− 1 words. That is,

P (wk|W k−1
0 ) = P (wk|W k−1

k−n+1) (2.6)

The sequence of N words is referred to as an N-gram. N-grams simultaneously encode

syntax, semantics, and pragmatics without the need for explicit linguistic rules such

as a formal language grammar. In addition, they concentrate on local dependencies,

making them very effective for languages such as English, where word order is important

and the strongest contextual effects tend to come from near-neighbors [124].

N-gram probabilities are usually estimated from frequency counts of training text

data. So for the case of word bigrams (N = 2),

P̂ (wk|wk−1) =
b(wk−1, wk)

u(wk−1)
(2.7)

where b(wk−1, wk) is the bigram count for the sequence ‘ab’ and u(wk−1) is the

unigram count for the word ‘a’. For most state-of-the-art large-vocabulary continuous

speech recognition (LVCSR) systems, bigrams and trigrams are employed for language

modeling.

Because some bigrams or trigrams may appear very few times or not at all in the

training data, a number of smoothing techniques have been developed to improve

the estimates. One involves linear interpolation—e.g., taking the weighted mean of

unigram, bigram, and trigram probabilities. Another, referred to as discounting, redis-

tributes probability mass from more frequently occurring N-grams to less frequently

occurring ones. Lastly, back-off is a procedure in which, say, a trigram probability is

replaced by a scaled bigram probability—i.e., we “back off” to a lower order N-gram

model.
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Decoding

Decoding attempts to find the state (and, consequently, word) sequence with the high-

est likelihood given the sequence of feature vectors. This search problem corresponds

to replacing the summation in Equation 2.3 with a maximization, giving:

Ŵ ≈ argmax
W

max
Q

P (Y|Q)P (Q|W )P (W ) (2.8)

The most common procedure for doing this is Viterbi decoding, which uses a dynamic

programming algorithm to perform breadth-first search.

ASR in the nearfield condition is generally performed by decoding each individ-

ual audio channel separately. For the farfield condition, recognition is done in one of

two ways. The data streams are combined either at the signal level (e.g., through some

type of microphone beamforming) as in [104] and [41], or at the recognition hypothesis

level, as in [37]. The latter consists of generating hypotheses for individual channels

and finding the most probable word sequence across all channels. This method tends

to be much more computationally intensive and is less frequently used in practice. As

is standard, the ASR performance metric for meetings is the word error rate (WER).

The WER is computed according to:

WER =
Ndeletions +Ninsertions +Nsubstitutions

Ntokens

(2.9)

where the numerator is the sum of all ASR output token errors and the denominator

is the number of scoreable tokens in a reference transcription. The errors are of

three types: missed tokens (deletions), inserted tokens (insertions), and incorrectly

recognized tokens (substitutions). The types of errors are determined based on a

dynamic programming string alignment to the reference transcription that globally
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minimizes a Levenshtein distance function, which can weight correct, inserted, deleted,

and substituted words differently (e.g., 0, 3, 3, and 4, respectively). The algorithm is

detailed in [98].

2.1.1 Related Work

Though single-channel speech activity detection has been studied in the speech

processing community for some time now ([16],[93], and [52] are some older examples),

the establishment of standardized corpora and evaluations for speech recognition

in meetings is a somewhat recent development, and consequently the amount of

work specific to multispeaker speech activity detection is rather small. The most

relevant work to this thesis comes from Wrigley et al. in [119] and [118]. The authors

performed a systematic analysis of features for classifying multi-channel audio. Rather

than look at the two classes of speech and nonspeech, though, they subdivided the

classes further into four: local channel speech, crosstalk speech, local channel and

crosstalk speech (i.e., overlapped speech), and no speech. They then looked at the

frame-level classification accuracy (true and false positives) for each class with the

various features selected for analysis. This was done for both features individually as

well as combinations of features, the latter being done to find the best combination

for a given audio class. A key result from this work was that, from among the twenty

features examined, the single best performing feature for each class was one derived

from cross-channel correlation, providing evidence of the importance of incorporating

cross-channel information into modeling for this multi-channel detection task.

In addition to the work by Wrigley et al., there have been a number of related

efforts towards multispeaker speech activity detection. These include the work by

Pfau et al., Dines et al., and Laskowski et al. and are described below.
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Pfau et al in [89] proposed an ergodic HMM (eHMM) speech activity detector

consisting of two states—speech and nonspeech—and a number of intermediate states

to enforce time constraints on transitions. The features used for the HMM were

critical band loudness values, energy, and zero-crossing rate. As a post-processing step

the authors thresholded cross-channel correlations to identify and remove crosstalk

speech segments, a step that yielded on average a 12% relative frame error rate (FER)

reduction.

Taking cues from Wrigley et al., Dines et al. in [25] used kurtosis, mean cross-

correlation, and maximum cross-correlation as auxiliary features for their nearfield

speech activity detector. They also proposed a cross-meeting normalized energy feature

which compared the target channel energy to the sum of the energy of all channels.

Lastly, they applied a crosstalk suppression algorithm based on adaptive-LMS echo

cancellation to the recordings prior to generating their baseline perceptual linear

predictive (PLP) features. Using a system based on a multi-layer perceptron (MLP)

classifier, the resulting segments achieved a WER within 1.3% of that obtained by

manual segmentation of the audio, though with the assistance of some tuning of the

speech/nonspeech class prior probabilities.

In [54], Laskowski et al., using a cross-channel correlation thresholding scheme

produced ASR WER performance improvements of 6% absolute over an energy-

thresholding baseline. This improved thresholding scheme later became a first-pass

segmentation step in a multi-channel speech activity detection system that modeled

vocal interaction between meeting participants with joint multi-participant models

([55],[53], [56], and [57]). For meeting data from the 2005 and 2006 NIST Rich

Transcription evaluations, the system achieved a WER performance within 1.6% and

2.2%, respectively, of manual segmentation on a first-pass speech recognition decoding.

In all of the work described above, the use of cross-channel features played a major

role in improving speech activity detection performance for the nearfield multispeaker
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audio. This, of course, should not be too surprising given the nature of the phenomenon

being addressed: crosstalk speech. With information about the audio on other channels,

a speech activity detector should be better able to determine if speech on a target

channel is local or not. Thus, the focus of this thesis regarding features for improving

multispeaker SAD is exclusively features of a cross-channel nature. The question then

becomes, “What specific cross-channel information should be encoded to produce

these features?” The answer is given and discussed in Section 4.2.

2.2 Speaker Diarization in Meetings

Automatic speaker diarization seeks to determine, “Who spoke when?”—that is, to

partition an input audio stream into segments, generally homogeneous, according to

the speaker identity. These speaker identities are typically relative to a given recording

(e.g., “Speaker A, Speaker B, etc.”) rather than absolute, in contrast to speaker

identification or speaker tracking, where a priori knowledge of the speakers’ voices is

provided. For most speaker diarization tasks, the number of speakers is also unknown

a priori.

As shown in Figure 2.2, the standard approach for speaker diarization decomposes

the task into four subtasks: speech activity detection, speaker segmentation/change-

point detection, speaker clustering, and re-segmentation.

Speech Activity Detection

Speech activity detection first identifies audio regions containing speech from any of

the speakers present in the recording, as these are the only relevant regions for speaker

identity annotation. Depending on the domain of the data being used, the non-speech

regions that are discarded may contain various acoustic phenomena, such as silence,

music, room noise, or background noise. Speech activity detection is typically per-
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Figure 2.2: A typical speaker diarization system. Detected speech segments are analyzed
for change-points and the resulting segments are clustered. The segments are refined using
models from previous stages and segments with time and speaker labels are produced.

formed using maximum-likelihood (ML) classification with Gaussian mixture models

(GMMs) trained on labeled training data (e.g., [117]).

Speaker Segmentation/Change-Point Detection

For segmentation/change-point detection, the standard approach is to observe adjacent

windows of data and determine whether the windows originated from the same or
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different speakers. This is determined by calculating a distance metric between the

two windows—either using a variation on the Bayesian Information Criterion (BIC)

technique introduced by Chen and Gopalakrishnam in [20] or, as pioneered by Siegler

et al. in [102], representing each window as a Gaussian or mixture of Gaussians and

computing the distance between the two distributions (e.g., using the symmetric KL-2

distance).

Speaker Clustering

Speaker clustering seeks to cluster segments from the same speaker together, ideally

producing one cluster for each speaker present in the recording with all segments

from a given speaker in a single cluster. Typically a hierarchical, agglomerative

clustering procedure is used with a BIC based stopping criterion. A common distance

metric for cluster merging within this BIC based scheme is the generalized likelihood

ratio (GLR) [33], which compares the likelihood of a merged cluster to that of two

separate clusters, each modeled by a Gaussian or mixture of Gaussians. A notable

variation to this approach has been proposed by Ajmera and Wooters in [3] and

consists of fixing the number of parameters between the two BIC hypotheses so as to

eliminate the need for tuning the BIC penalty term. The above segmentation and

clustering steps can also be performed iteratively to jointly optimize the two. This

is done either using a set of GMMs as in [20], or using an ergodic HMM as in [68] and [3].

Re-segmentation

Re-segmentation attempts to refine the original segmentation boundaries and/or fill

in short segments that may have been removed for more robust processing in the

clustering stage. This is typically performed by Viterbi decoding (possibly in an

iterative fashion) of the audio data using the final cluster and speech/nonspeech

models obtained from the previous stages.
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The performance of a speaker diarization system is measured using the diariza-

tion error rate (DER) [96]. This is defined as the sum of the per-speaker false alarm

(falsely identifying speech), missed speech (failing to identify speech), and speaker

error (incorrectly identifying the speaker) times, divided by the total amount of speech

time in a test audio file. That is,

DER =
TFA + TMISS + TSPKR

TSPEECH

(2.10)

Note that this is a time-weighted error metric and therefore intrinsically gives greater

importance to more talkative speakers. The same formulation, however, can be

modified to be speaker-weighted if desired, but the version in Equation 2.10 is the

standard. The DER is computed by first finding an optimal one-to-one mapping

of the reference, or ground-truth, speaker identities to the identities output by the

diarization system and then determining the errors (false alarm, missed speech, and

speaker) accordingly. Typically unscored regions determined by a “forgiveness collar”

are placed at segment boundaries to address both inconsistencies in the annotation

of segment times and the philosophical argument of when speech actually begins

for word-initial stop consonants. The collar is generally on the order of 0.25 s (the

value used in this work) and spans a region both preceding and following the segment

boundary.

The standard approach for speaker diarization described above has been developed

with the underlying assumption that segments are speaker-homogeneous. Change-

point detection determines if two speech windows correspond to the same speaker or

two distinct speakers. Speaker clustering makes a hard assignment of segments to

speaker clusters, preventing a segment containing speech from multiple speakers from

being assigned to multiple clusters. As a result, only one speaker label can be applied
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to each speech segment. The nature of conversational speech, however, is such that

invariably speakers will overlap. It is, therefore, important to explore techniques for

handling overlapped speech—both its detection and its processing—and the previous

work toward this effort is described below.

2.2.1 Related Work

The initial work done on overlapped, or co-channel, speech detection was within the

framework of identifying “usable” speech for speaker recognition tasks. By “usable”

it is meant that the speech frame or segment can provide information to aid in

determining the identity of a particular speaker. This depends largely on the ratio

of target to interfering speaker energy—referred to as the target-to-interferer ratio

(TIR)—of the frame or segment (see [66]).

Lewis and Ramachandran in [61] compared the performance of three features—

Mel-frequency cepstral coefficients (MFCCs), linear prediction cepstral coefficients

(LPCCs), and a proposed pitch prediction feature (PPF)—for speaker count labeling

of speech frames in both a closed-set (speaker-dependent) and open-set (speaker-

independent) scenario. This last feature was computed as the standard deviation of

the distance between pitch peaks, as obtained from the autocorrelation of a linear

prediction (LP) residual. Experiments were performed on artificial overlapped speech

obtained by summing audio signals from the New England portion of the TIMIT

database [31]. The results indicated that the proposed pitch prediction feature was

superior to either the MFCCs or LPCCs. Unfortunately, no combination of features

was performed to see if such an approach would yield improvements.

Shao and Wang in [101] employed multi-pitch tracking for identifying usable speech

for closed-set speaker recognition. Speaker count labeling was determined by the

number of pitch tracks in the frame and single-speaker frames were deemed usable. This
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approach was shown to consistently improve speaker recognition performance. Again,

experiments were performed on artificially generated data from the New England

subset of the TIMIT database.

Zissman et al. in [125] successfully distinguished target-only, jammer-only, and

target-plus-jammer speech segments with a reported accuracy of 80% using a Gaussian

classifier with cepstral features. A number of factors contributed to this high level of

performance, however. For one, as in the previous work, artificially generated overlap

segments were used for the experiments. In addition, the task was speaker-dependent—

i.e., the training and testing target and jammer speakers, respectively, were the same.

Lastly, intervals of silence were removed beforehand.

A large effort ([121],[123],[49],[50], [66],[65],[122],[19], and [106]) has been given

by Yantorno et al. in this area as well. In [49] and [66], the authors demonstrated

the effectiveness of the spectral autocorrelation ratio (SAR) as a measure of usable

speech for speaker recognition. In [122], and [19] this was modified to the spectral

autocorrelation peak-to-valley ratio (SAPVR) and developed as a feature for co-channel

speech detection. Both the SAR and SAPVR take advantage of the structure of voiced

speech in the frequency domain, namely the regularly-spaced harmonic peaks. In

the time domain, a related measure—the adjacent pitch period comparison (APPC)—

was explored as a usability measure in [65]. This approach was useful in spotting

approximately 75% of usable segments for speaker identification as determined by

TIR. Combination experiments were performed on these two features too in [123],

increasing the correctly identified segments to 84%. In [50], between 83% and 92%

of usable speech segments were found to be bracketed by spikes in speech amplitude

kurtosis, indicating a method of identifying such segments. The authors make a

point to note that the kurtosis “by itself does not point to usable clusters, rather

a coarse location where usable clusters may be searched in a co-channel utterance”.

Wrigley et al., however, obtained good performance (67.5% true positives at the
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equal error rate point) for nearfield overlapped speech detection using kurtosis as a

feature. Lastly, the work in [106] demonstrated that linear predictive coding (LPC)

analysis—specifically, identifying the number of peaks within the typical range for the

first formant (0-1kHz)—was also a viable method of determining usable speech.

In all of the work described above, the overlapped speech data was artificially

generated by mixing single-speech audio data. This was necessary since the TIR of the

speech segments was of interest and this information can only reliably be obtained if

the speech energy of the individual speakers is available. In addition, the common data

set, TIMIT, being clean, nearfield recordings, differs significantly from the reverberant,

farfield signals obtained in meetings. There are, nevertheless, a number of things to

take away from this work. The primary one is that, in seeking to identify overlapped

speech, the features/measures exploited the structure of single-speaker voiced speech,

both in the time domain (e.g., APPC, and PPF) and the frequency domain (e.g.,

SAPVR and formant peak count). This structure relates to both the harmonics and

the spectral envelope of the speech signal. In the presence of an overlapping speaker,

this structure is typically altered, and so by encoding this information in the form of

one or more features, the two forms of speech can be distinguished.

Even more so than multispeaker SAD, the work on overlapped speech detection

specific to meetings is quite recent. Yamamoto et al. in [120], using microphone

array processing techniques, detected overlapped speech by applying support vector

regression on the eigenvalues of the spatial correlation matrix. These values give the

relative power of the sources estimated, from which a decision about whether there is a

single or multiple sources can be made. Applying the technique to a single meeting in a

room with a reverberation time of 0.5 s and recorded using a circular microphone array,

the approach detected around 50% of the overlapping segments. It should be noted,

however, that the results were obtained using an optimal threshold. Asano and Ogata

in [7] detected multiple speech events—and, consequently, overlapped speech segments—
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using an adaptive beamforming framework. The approach first uses an adaptation

of the MUSIC method of source localization [100] to identify peaks in the spatial

spectrum based on half-second audio segments. The segments are then clustered using

K-means (the number of speakers must be known a priori) to determine the spatial

range of each speaker. Speech events for each speaker are detected and overlapped

speech is identified by finding overlapping speech events. Though overlapped speech

detection performance was not given, the authors demonstrated an 8% improvement of

phoneme accuracy for ASR using the combined speech event detection and separation

procedure.

The nearfield multi-channel audio work of Wrigley et al. described in section 2.1.1

has some relevance to overlapped speech detection as well. This is because one of the

four classes defined for the detection task was speech plus crosstalk—i.e., overlapped

speech. One potentially significant difference, though, is the TIR of overlapped

segments in the nearfield case. Since the individual headset microphone location is

much closer to the target speaker than the interfering speaker, it is likely that the

TIR will be high. It is also likely, however, that features which work well detecting

overlapped speech in high TIR conditions should work well in low TIR conditions.

The other significant difference is the nearfield versus farfield condition. The speech

from the close-talking microphones has a higher SNR and suffers less from reverberant

effects and so the behavior—and, consequently, performance—of the features may

differ. This is certainly the case in the STT task, where word error rates for farfield

consistently exceed those for nearfield (see, for example, [73] and [104]). That being

said, Wrigley’s results point to energy, kurtosis, and cross-channel correlation as being

the most effective features for overlap detection.

The first mention of overlap detection specifically for speaker diarization comes

from van Leeuwen and Huijbregts in [111]. The authors attempted to directly integrate

overlap detection into a diarization system by building two-speaker HMM state models
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for each possible pair of overlapping speakers using speech from pairs of clusters from

the diarization engine. The segmentation HMM was then modified to allow transitions

between single-speaker and two-speaker states and a final re-segmentation of the audio

data was performed. The features used in the system consisted of 12 perceptual

linear prediction (PLP) coefficients plus log-energy, along with first differences. The

authors state that the approach, though producing overlapped speech segments, did

not improve diarization performance and only correctly identified the overlapping

speakers in about one third of the overlap segments.

Otterson and Ostendorf, however, demonstrated the potential benefit of utilizing

overlap information in speaker diarization in [84]. In oracle experiments with perfect

overlap detection, the authors demonstrated a 17% relative improvement in diarization

error rate on data from the NIST Rich Transcription meeting evaluations by both

excluding overlapped speech from speaker clustering and assigning additional speakers

in overlapped speech regions of the diarization system output. In his Ph.D. thesis

[83], Otterson also investigated methods of automatic overlap detection for speaker

diarization using both monaural features and multi-microphone location ones.

In the monaural case, he examined a number of features based on Hough transform

pitch detection. These include Hough image entropy, synthesized spectral match,

harmonic screen, normalized square synthesis error, spectral flatness, peak-to-valley-

ratio spectral flatness, and envelope correlation. On synthesized overlapped speech

generated using a subset of the TIMIT corpus, a generalized linear model (GLM)

classifier with these features in combination with MFCCs was able to detect 74.7%

of overlapped speech frames with a false detect rate of 12.3%. He also observed that

the pitch-based overlap detection features performed roughly as well as MFCCs and

the combination of the features improved performance. Similar experiments on real

meeting data, unfortunately, yielded poor results.
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In the multi-microphone case, Otterson examined features derived from microphone

delays. Using a GMM classifier with these location features and MFCCs, he obtained

a precision of 0.24, a recall of 0.58 and an F-score of 0.34 for data from the NIST

meeting evaluations. By feeding these GMM posteriors into a multi-layer perceptron

(MLP), the performance was altered to a precision of 0.67, a recall of 0.19, and an

F-score of 0.30—an improvement since high precision is preferred for this task (this is

discussed later in Section 3.3).

The limited work on overlapped speech detection in meetings seems to point down

two general paths. On one hand, there are the multi-microphone approaches, which

utilize array processing techniques and have demonstrated moderate success. On the

other, there are the monaural, or single-microphone, approaches, which bear similarity

to the usable speech detection methods, but have thus far been less successful under

realistic conditions. In this thesis, the latter is pursued over the former, with the

intention of making significant inroads to performing this challenging task. The

methods and measures devised to do so are discussed in the chapter to come.
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Experimental Framework

In this chapter, the groundwork is lain for the related tasks of handling crosstalk

and overlapped speech in meetings. The chapter begins with an explanation of the

audio segmentation procedure to be employed, followed by a discussion of the system

development process. Lastly, the evaluation paradigm is presented and the evaluation

procedure for each task detailed.

3.1 Audio Segmentation: The Heart of the Matter

Crosstalk and overlapped speech, as discussed in Section 1.2, both represent undesirable

acoustic events from the perspective of speech processing systems. The presence of

crosstalk speech on nearfield audio channels leads to insertion errors for ASR systems,

which mistakenly attempt to recognize speech in these audio regions. Overlapped

speech, on the other hand, produces missed speech errors, as diarization systems

hypothesize only one speaker per speech region. In addition, these overlap segments,

containing speech from multiple speakers, potentially have a negative effect on speaker

modeling. A reasonable approach to address both of these problems is to employ an

audio segmentation scheme.
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Audio segmentation, in general, consists of segmenting a continuous audio stream

into acoustically homogeneous regions, where the notion of homogeneity is task-

dependent. In the case of crosstalk, the issue is sufficiently addressed by segmenting

the local speech regions that are to be processed by the recognizer. Thus, a system

which focuses on local speech by utilizing features which distinguish it from its

counterpart, crosstalk, is what is desired. In reality, this involves improving an already

existing component of the ASR system: the speech activity detector. For overlapped

speech in diarization, the objective is somewhat different. In this case we seek to

explicitly identify these overlap regions. By doing so, additional speaker labels can be

applied and the overlap regions can be further processed to improve speaker clustering.

One possibility would be to process the audio in the overlap segments to separate the

speakers, and a number of source separation techniques exist such as those based on

independent component analysis (ICA) [59], adaptive decorrelation filtering [114], and

harmonic enhancement and suppression [72]. A simple first step, however, is to exclude

these overlap regions from the speaker clustering phase of the diarization procedure.

Since overlapped speech is simply a subset of speech in general, it again makes sense to

view this as a modification to the already existing speech activity detection component

of the diarization engine. Rather than segment speech and nonspeech, an alternative

“overlap-aware” audio segmenter would segment (single-speaker) speech, nonspeech,

and overlapped speech. To do this, of course, would once again require the use of

additional features, ones that are suited to distinguishing overlap from single-speaker

speech and nonspeech. Figure 3.1 diagrams the use of audio segmentation as described

above for the applications of ASR and speaker diarization.
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Audio Segmenter Words

Local
Speech

Recognizer

(a) Automatic speech recognition. Only local speech is processed by the
recognizer.

Audio Segmenter Speaker 
times/labels

Speech

Diarization
Engine

Overlap

(b) Speaker diarization. Single-speaker speech is processed by the diarization
engine while overlap segments are assigned additional speaker labels as a
post-processing step.

Figure 3.1: Diagram of the interface of the proposed audio segmenters for (a) automatic
speech recognition and (b) speaker diarization.

3.2 Segmentation System Development

To develop a segmenter as described above requires a number of key design decisions.

First and foremost, of course, is the basic implementation of the segmenter. For

this work, an HMM approach was adopted, as it represented a natural choice for

segmentation; the HMM, for instance, combines both classification and sequence

modeling, unlike, say, a support vector machine, which is limited to frame-level

classification. Even more important to this work, however, is the selection of features
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for identifying the audio classes of interest. The following sections discuss these two

major components of the segmentation system development, highlighting some of the

associated design issues and noting how they were addressed here.

3.2.1 The HMM Segmenter: An Overview

In Section 2.1, the hidden Markov model was identified as one of the central components

to statistical speech recognition as it is generally framed. The modeling of a sequence

of words is quite similar to the modeling of a sequence of audio classes, though, and

for many cases the HMM approach is used in audio segmentation as well.

We begin with an analogous optimization problem: finding the most likely sequence

of audio classes C = c0, c1, . . . , cn (which can be as abstract as desired) given a sequence

of observation vectors Y:

Ĉ = argmax
C

P (Y|C)P (C) (3.1)

The first term corresponds to the acoustic model for the audio classes and the second

the “language” model, which in this case can be a simple unigram or bigram model.

As before, for the acoustic model, it is useful to divide the classes into (even more

abstract) sub-units and model these using an HMM. That is, we assume the sequence

of observation vectors Y is the result of an underlying process that consists of state

transition and vector emission where the states Q = q0, q1, . . . , qm are hidden. The

subdivision of the audio classes potentially improves the modeling of quasi-stationary

acoustic phenomena. Using three states for each class as done here, for example,

permits one state to model the onset of the phenomenon, one to model the main

stationary component, and one to model the end. Sub-units are also useful in enforcing

minimum duration constraints for audio classes, as in the segmentation component of

the diarization system described in Section 3.3.4.
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Since the formulation is the same as with ASR, the acoustic model here is also

of the parametric form given in Equation 2.4. Previously, little mention was made

of the output probability bj(yt). In reality, the choice of this probability function is

crucial since it needs to model all of the relevant variability in the feature space, in

this case acoustically-derived features such as MFCCs. Though alternatives exist (e.g.,

vector quantization), the most common approach for speech and audio is to model

the features using a continuous density Gaussian mixture model (GMM). That is,

bj(yt) =
M∑
m=1

cjmN(yt;µjm,Σjm) (3.2)

where cjm is the weight of the mixture component m in state j and N(yt;µjm,Σjm)

denotes a multivariate Gaussian of mean µ and covariance Σ. Furthermore, in many

cases this covariance matrix is constrained to be diagonal, greatly reducing the number

of model parameters and thus the amount of training data needed to estimate these

parameters. The GMM allows for the modeling of complex distributions with multiple

modes, the complexity being determined by the number of mixtures used. As with all

parametric modeling, one seeks a number of mixtures (and, thus, parameters) that

balances the trade-off between model accuracy and generalization on unseen data.

As mentioned in Section 2.1, the model parameters of the HMM are trained using

Baum-Welch re-estimation, an instance of the well-known expectation maximization

(EM) algorithm. The algorithm consists of the following steps:

1. Initialize the parameter values.

2. Calculate the forward and backward probability of each state.

3. Update the HMM parameters using the newly obtained probabilities from 2.

4. Repeat steps 2 and 3 until no significant increase in model likelihood is obtained.
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In step 1, the HMM transition probabilities are typically initialized using alignment

information from the training data, while the GMM parameters are initialized using a

clustering procedure to partition the feature space into K regions and compute means

for the K mixtures. In step 2, the forward probability is defined as

αj(t) = P (y1, . . . ,yt, x(t) = j|M) (3.3)

and represents the joint probability of observing the first t speech vectors and being

in state j at time t. The backward probability βj(t), is

βj(t) = P (yt+1, . . . ,yT|x(t) = j,M) (3.4)

and represents the probability of observing the vectors from t+ 1 to the end of the

sequence, given we are in state j at time t. The two quantities are efficiently com-

puted using a recursion, the forward-backward algorithm. The forward and backward

probabilities allow for the computation of the state occupation likelihoods γj(t), which

are used to update the HMM parameters. The EM algorithm is locally optimal and is

guaranteed to not decrease the model likelihood.

Viterbi Decoding

For decoding, the maximum likelihood state sequence—i.e., the sequence which

maximizes P (Y, X|M) in Equation 2.4—is used as a computationally efficient approx-

imation to the complete likelihood, given by

P (Y, X|M) =
∑
X

ax0x1

T∏
t=1

bxt(yt)axtxt+1 (3.5)

≈ max
X

ax0x1

T∏
t=1

bxt(yt)axtxt+1 (3.6)
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This latter likelihood, in turn, can be computed iteratively in what is known as the

Viterbi algorithm. For a given model M , let ψj(t) represent the maximum likelihood

of observing vector y0 to yt and being in state j at time t. This partial likelihood can

be computed using the recursion

ψj(t) = max
i
{ψi(t− 1)aij}bj(yt) (3.7)

where ψ1(1) = 1 and ψj(1) = a1jbj(y1) for 1 < j < N . The maximum likelihood is

then given by

ψN(T ) = max
i
{ψi(T )aiN} (3.8)

To prevent underflow, log-probabilities are generally used and the products in the

equations above become summations.

The Viterbi algorithm is visualized as finding a path through a trellis where the

vertical dimension corresponds to the possible states and the horizontal to frames. The

log-probability for any path is computed by summing the log transition probabilities

and the log output probabilities along that path. The paths are grown from left-to-

right column-by-column. At time t, each partial path is known for all states and the

log form of Equation 3.7 is used to extend the partial paths by one time step. Since

the state at each time is known using this procedure, segment start and end times

can be obtained by identifying frames where state transitions take place.

3.2.2 Feature Fusion

A major focus of this thesis is investigating which features work well for the audio

segmentation tasks of local and overlapped speech detection when used in the HMM

based segmenter as described above. For most classification tasks, features are typically

used in combination rather than in isolation, so the combination of the candidate
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features must also be considered. Several schemes exist for combining features in a

statistical classifier, each with its benefits and drawbacks.

Concatenation and Transformation

The simplest and most straightforward method, serial fusion, consists of concatenating

the individual features or feature vectors into a supervector. One issue with this

method is that it can result in feature vectors of very large size, leading one to fall prey

to Bellman’s curse of dimensionality [9]—that is, a sparsity of data and an increase in

noise with the addition of dimensions. It may also be the case that the features are

highly correlated, which violates the independence assumption of classifiers such as

diagonal-covariance multivariate GMMs (discussed in Section 3.2.1). These issues can

be addressed, however, using dimensionality reduction techniques, which represent

the next level of complexity in feature combination methods.

The simplest of these techniques is principal component analysis (PCA) [29], in

which the supervector data is decorrelated and projected into a lower-dimensional

space based on the variance of each feature vector dimension. This approach has a

number of potential issues, however. First, PCA assumes the features obey a (uni-

or multivariate) Gaussian distribution. This can be addressed by Gaussianizing the

data, a technique discussed in Section 3.2.4. Secondly, this approach is based on the

assumption that higher-variance dimensions provide more information for classification.

This assumption may be violated if the features have different dynamic ranges. This,

too, can be addressed; one can apply either Gaussianization or simple variance

normalization. Thirdly, the PCA projection only ensures the global decorrelation

of features. For classification, though, it is usually most important for the features

representing a given class (e.g., an HMM state) to be decorrelated. This last issue is

addressed by the alternate technique of linear discriminant analysis (LDA) [26].
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LDA is a feature transformation technique that, like PCA, can be used to obtain

a linear projection of decorrelated feature supervectors with reduced dimension.

LDA, however, uses class label information to find a projection that maximizes the

ratio of between-class to within-class covariance and so preserves class-separating

dimensions rather than simply high-variance ones. This makes feature scaling such

as variance normalization unnecessary. LDA is based on the assumption that the

covariances for all classes is the same, though, which is often violated in speech-related

classification problems. To address this, a generalization of LDA, the heteroscedastic

linear discriminant analysis (HLDA) [51] is often employed. HLDA utilizes class-

conditional covariance matrices to produce a transformation matrix for supervector

projection. This, of course, requires that there be sufficient data for each class to

reliably estimate these parameters, a potential issue for minority classes and small data

sets. It is possible, though, to interpolate between the global and class-conditional

parameters in this case, as in [17] to yield smoothed estimates and improve performance.

Despite the improvements over concatenation that may be obtained using any

of the above transformations, the dimensionality reduction techniques all have the

problem of dimensionality selection; that is, how does one determine the dimensionality

of the projection space? Though several automatic methods exist for selection (e.g.,

[67],[115],[110], and [92]), most yield results inferior to manual selection and are not

widely used. Manual selection may prove time and computationally intensive, however,

in particular for complex classification systems with large amounts of data such as in

speech-related areas. All of this suggests the benefits of feature transformation are far

from guaranteed.

Multi-stream Likelihood/Posterior Combination

An alternate class of combination techniques, termed parallel fusion, uses parallel

streams of features in synchrony and merges information from the various streams by
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way of frame-level likelihoods or posteriors from independently trained probabilistic

models such as a GMM or MLP. In doing so, the techniques sidestep many of the issues

faced by the concatenative class of combination methods. The multi-stream approach

is particularly well-suited for speech processing, as there exists an understanding of

band-level processing within the human auditory system that provides a basis for

many of the processing techniques and tools in use today (MFCCs, PLPs, Gammatone

filterbanks, among others). This gives rise to multi-band systems such as [13], [107],

[69], and [81]. To merge stream information, the simplest and most widely used

methods are the sum and the product rule—the arithmetic and geometric mean of the

posteriors, respectively. Generalizations of these two approaches exist in which streams

are not equally weighted, but determining appropriate weights can prove challenging,

especially for large numbers of streams. Though more principled approaches exist,

a common technique is to manually tune the weights using held-out data. As with

the manual dimensionality selection associated with feature transformation methods,

this procedure may take a lot of time and computational resources. In addition to the

weights of the streams, the appropriate number of streams and the features which are

assigned to each stream may not be obvious either.

Given that parallel fusion, too, has its own set of issues, it is not surprising that

performance of this approach relative to simple concatenation varies. In [27], for

example, using separate streams for PLP and MSG features yielded a significant

improvement in WER (76.5% vs. 63%) for the Aurora task while in [21], perfor-

mance using concatenation and multiple streams was similar (5.9% vs. 5.8%) on the

Numbers95 task.

Having analyzed the various methods of feature fusion, it was decided that simple

concatenation was sufficient for the purposes of this thesis. As feature selection also

figures heavily in this work, it was anticipated that some of the potential pitfalls of

concatenation (such as redundant correlated features) would be avoided.
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3.2.3 Feature Selection

Having determined a method of combining features, it is important to realize that

using all features in combination may be suboptimal for the desired segmentation

systems. Some features may simply be unnecessary, neither improving nor worsening

performance given the feature ensemble. This may be the case even if the feature

works well in isolation or in a smaller ensemble. Other features may actually worsen

performance. Again, this may occur even if the feature displays discriminative

properties in isolation or in a smaller collection of features. It becomes necessary, then,

to search the space of feature combinations to find the “best” combination according to

some criterion. For N features, an exhaustive search yields 2N possible combinations

(if the set of no features is included), which quickly becomes intractable as N increases,

especially if the evaluation of the feature combination is computationally intensive, as

in the case of the target applications for this work. As is often the case, optimality

may need to be sacrificed for efficiency and a “good” feature combination may have to

suffice. The methods by which this combination is determined fall under the category

of feature selection, a topic which has received much attention in the machine learning,

pattern recognition, statistics, and several other communities.

Though defined by many authors, the most relevant definition of feature selection

to this work comes from Koller and Sahami in [48] as follows: a process which aims to

choose a subset of features for improving prediction accuracy or decreasing the size

of the structure without significantly decreasing prediction accuracy of the classifier

built using only the selected features. Dash and Liu in [23] outline the four major

components of a feature selection method:

1. A search/generation procedure to generate the next candidate subset;

2. An evaluation function to evaluate the subset under examination;
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3. A stopping criterion to decide when to stop; and

4. A validation procedure to check whether the subset is valid.

Broadly speaking, feature selection methods fall within either the filter model—in

which selection is performed as a filtering preprocessing step to the induction algorithm

(e.g., machine learning classifier)—or the wrapper model—in which the subset selection

algorithm exists as a wrapper around the induction algorithm. Though the filter

method is generally less computationally intensive, John et al. in [42] argue for the use

of wrapper approaches, with the reasoning that the induction method that ultimately

uses the feature subset should better estimate the accuracy than a separate measure

that may have a different inductive bias. Perhaps consequently, these approaches have

received more attention and tend to dominate in machine learning and related fields.

The wrapper model was adopted here, too, for this work.

Figure 3.2 gives a diagram of the wrapper approach to feature subset selection. In

this approach, the induction algorithm is considered a “black box”. The algorithm is

run on the dataset, usually partitioned into training and test/cross-validation sets,

with different sets of feature removed from the data (search/generation). Subsets are

iteratively evaluated by the induction algorithm (evaluation function) until all subsets

have been evaluated (stopping criterion). The subset of features with the highest

evaluation is chosen as the final set on which to run the induction algorithm. The

classifier is then evaluated on an independent test set that was not used during the

search (validation procedure).

In terms of the search/generation procedure for feature selection, many common

AI algorithms have been employed. The most commonly used, however, fall under

one of two types of greedy algorithms: forward selection and backward elimination.

In forward selection, features are successively added starting from an empty set.

Each of the N features is evaluated and the feature yielding the best performance is
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Figure 3.2: The wrapper approach to feature selection. The induction algorithm, considered
a “black box” by the subset selection algorithm, is repeatedly applied and the results
evaluated as part of the selection process.

first added. This feature is then combined with each of the remaining N − 1 features

and the best of these two-feature combinations is selected. Note that this is only the

best two-feature combination involving the single best feature; all other two-feature

combinations are disregarded. The process iterates until the addition of a feature

causes a performance degradation; until no improvement in performance is obtained;

or until all features have been added, in which case the best performing set in the

series is chosen.

One potential issue with forward selection is the fact that each addition of a new

feature may render one or more of the already included features irrelevant. This may

arise, for example, in the case of correlated features. Backward elimination avoids this

problem by starting with the full ensemble of features and successively eliminating the

worst performing features, one at a time. In the first stage, each of the N features is

individually removed to create N sets of N − 1 features. Each set is evaluated and the

best performing set is selected. Each of the remaining N −1 features in this set is then
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removed and the best N − 2-feature subset of the N − 1 features is determined. The

process continues until performance degrades; until performance ceases to improve; or

until no features remain, in which case the best performing set in the series is once

again chosen.

Backward elimination has drawbacks as well. Sometimes features are dropped that

would be significant when added to the final reduced feature set. In addition, if the

total number of features N is very large, evaluation of the feature sets may be prove

too computationally expensive for some classifiers (e.g., support vector machines or

neural networks).

For this thesis, two different feature selection approaches were adopted for the two

different tasks. In the case of the multispeaker SAD system, the number of features

explored was small enough that exhaustive search of all 2N combinations could be

performed to find the globally optimal set of features. This was not so for overlapped

speech detection, for which a backward elimination method was adopted. Though the

number of features in this case is large enough to merit the use of a suboptimal greedy

algorithm, it was not large enough to be prohibitive for the backward elimination

procedure.

3.2.4 Feature Transformation

A common issue for classification systems is robustness to data mismatches. For

speech and audio data, the mismatch typically relates to the channel (e.g., headset vs.

distant microphone) or the recording environment (e.g., different rooms or microphone

locations). The most severe form of this mismatch occurs between training and

test sets, but another form can arise within either (or both) of these sets and also

results in reduced performance. In the case of meeting speech processing, for example,

having training or test data from a variety of sites—and, hence, different recording
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environments—creates an internal mismatch that can affect the performance of the

trained models. This is particularly the case with farfield audio data, which is much

more susceptible to the reverberant and convolutive effects of the room in which it

was recorded.

One possible technique to address this issue is to perform meeting-level transfor-

mations so that the distributions of features in the various meetings is similar. The

simplest method of doing this is mean-variance normalization, in which feature values

are first shifted by the estimated sample mean and then scaled by the inverse of the

estimated sample standard deviation to produce a distribution with zero mean and

unity standard deviation for each feature in each meeting. This approach, however,

can only address linear differences in data, which may be insufficient in real-world

environments with complex acoustic and channel effects.

Consequently, nonlinear normalization techniques have also been proposed and

have demonstrated good results ([71],[24], and [99]). One such procedure was adopted

for this work. For each meeting, feature space Gaussianization is performed indepen-

dently on each feature vector component by using a nonlinear warping constructed

from histograms and an inverse Gaussian function. The result is a feature component

normalized to a zero-mean unity-variance Gaussian distribution. The technique was

motivated by Saon et al. in [99], in which the authors applied feature space Gaus-

sianization to obtain an 11% relative WER improvement on an in-car database over

standard linear feature space transformations. In addition, they motivated the choice

of normal target distribution by suggesting it facilitates the use of diagonal covariance

Gaussians in the acoustic models. To further facilitate this, a decorrelation procedure

via the Karhunen-Loeve Transform (KLT) was applied after the Gaussianization. As

previously mentioned, the distortion effects are most significant in the farfield condi-

tion, and so the transformation was only applied in the overlapped speech detection

system.
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3.3 System Evaluation: Are We Making a Difference?

A critical component to the development of any system is its evaluation. Evaluation

provides a clear way of testing experimental hypotheses and determining if objectives

have been met. Furthermore, having a well-defined evaluation plan can simplify the

research and development process by providing better direction for, and consistency

between, efforts. The history of speech technologies provides a good example of this.

In the early days of the field, research sites were effectively islands to themselves;

though working on the same problems, each site used its own data sources and metrics

for evaluation. The outcome of this was reported results that were neither reproducible

nor fully comparable. With the advent of standardized evaluation plans—and with

them, standardized data corpora—efforts became more directed and collective, and

the pace of advancement increased.

Since 2002, the National Institute of Standards in Technology (NIST) has run a

rich transcription (RT) evaluation for meetings speech processing. The evaluation

measures the progress towards developing systems that “provide the basis for the

generation of more usable transcriptions of human-human speech in meetings for both

humans and machines” [76][77][78][79]. The tasks involved have included speaker

localization, speech activity detection, speech-to-text (commonly referred to as ASR),

speaker diarization, and speaker attributed speech-to-text (essentially a combination

of ASR and speaker diarization). The evaluation plan prescribes data for system

development and testing and defines performance metrics for the various tasks. The

NIST RT evaluation, then, was a natural choice for an evaluation framework and was

consequently adopted for this thesis.

Ultimately this work seeks to improve meeting ASR and speaker diarization.

However, the proposed method of doing so involves audio segmentation preprocessing

for each application. It is important, then, to make the distinction between the
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performance—and, thus, evaluation—of the intermediate application and the target

application in each case.

As mentioned in Section 2.1, the primary performance metric for ASR is word

error rate, which can be decomposed into the constituent metrics of substitution,

deletion, and insertion error rates. Speech/nonspeech segmentation performance, in

contrast, is often measured using speech diarization error rate (SDER). This metric

is computed similarly to the speaker diarization error rate in Equation 2.10, but

with the speaker error term removed, as no speaker labels are applied. Because ASR

output is greatly affected by the input speech segmentation (as is evident, for example,

from the insertion errors caused by crosstalk), SDER and WER tend to be highly

correlated. For this work, WER improvement was the evaluation metric selected, but

SDER performance was measured as well to better analyze the connection between

segmentation and recognition; knowing the false alarm rate and its relation to the

insertion rate, for example, makes it easier to identify a system improvement as being

due to reduced crosstalk.

For speaker diarization, the primary metric is, of course, diarization error rate. As

a rather uncommon task, the detection of overlapped speech itself lacks a standard

metric, but common segmentation metrics are applicable. Here, as well, DER could

be modified to an “overlap diarization error rate” (ODER), analogous to SDER and

computed in the same fashion. A serious issue with this is the relatively small (though,

as has been argued, certainly significant) amount of overlapped speech involved. For

a meeting such as those in the evaluation test sets, the total amount of overlapped

speech can be on the order of a few minutes. Related to this, the overlap segments

are generally very short in duration. Figure 3.3 shows a histogram of the overlap

segment durations for the AMI corpus. The median overlap duration is 0.46 s. The

result of this is very low false alarms, but very high miss rates and, with them, high

overlap diarization error rates. If we consider the target application, however, we
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Figure 3.3: Histogram of overlapped speech segment durations in the AMI meeting corpus.
The median value is 0.46 s

realize that the two constituent errors of the ODER impact the diarization system

quite differently. False alarms generated by the overlapped speech segmenter carry

through to increase the diarization false alarm error, while misses have no effect on the

baseline DER. The importance of a low false alarm operating point for the segmenter

is more clearly conveyed through the metrics of precision, recall, and F-score. For

segmentation, precision can be computed as

Precision =
TOVERLAP − TMISS

TOVERLAP − TMISS + TFA

(3.9)

and measures in frames the number of true positives divided by the sum of true and

false positives. A low false alarm rate, as desired for this task, translates to a high

precision. Recall measures the number of true positives over the sum of true positives

and false negatives and is calculated as

Recall =
TOVERLAP − TMISS

TOVERLAP

(3.10)
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The F-score is a summary metric obtained by dividing the geometric mean of the

precision and recall by the arithmetic mean. These three metrics were utilized in

addition to relative DER improvement, the primary figure of merit.

The sections to follow further describe the evaluation of the audio segmentation

systems, detailing the evaluation data as well as the recognition and diarization

systems used for measuring target application performance.

3.3.1 Multispeaker Speech Activity Detection

The performance of the nearfield SAD system was evaluated using data from the

2004 and 2005 NIST RT meeting evaluations. This consists of collections of 11- to

12-minute excerpts of recordings of multiparty meetings from different sites—and,

thus, with different room acoustics. The audio was obtained from individual headset

microphones with a 16 kHz sampling rate. Table 3.1 lists the meetings from the 2004

and 2005 evaluations, along with relevant statistics such as number of speakers, excerpt

length, and amount of speech. The 2004 evaluation served as a development test set,

where system modifications—primarily the selection of candidate features—could be

performed prior to a final validation on the 2005 data. This is in line with the wrapper

model approach outlined in Figure 3.2.

To measure the significance of the different word error rate results produced by

the recognizer for the segmentations generated by the SAD system, the matched pairs

sentence-segment word error (MAPSSWE) test was used. This test, suggested for

ASR evaluations by Gillick in [32] and implemented by NIST [85], looks at the number

of errors occurring in sentence-segments specific to the output of the two systems

being compared. For MAPSSWE the segments are sequences of words that include

recognition errors in at least one of the two systems being compared, bounded on

both sides by two or more words correctly identified by both systems. This contrasts
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the standard matched pairs sign test, which looks at entire sentences rather than

these shorter sentence-segments. The rationale for the MAPSSWE approach is to

increase the sample size and thus obtain better statistics. This is justified by asserting

that the errors in two adjacent segments are independent because they are separated

by at least two correctly recognized words, and most ASR systems do not exploit

more than a trigram context. Given the large number of segments, the central limit

theorem states that the distribution of the number of errors is normally distributed.

The MAPSSWE test, then, is a t-test for estimating the mean difference of normal

distributions with unknown variances. To perform the test, the mean and variance of

the segment-level error difference, µ̂z and σ̂2
z , respectively, are computed. The null

hypothesis asserts that µz = 0 and the probability of this hypothesis is calculated

according to P = 2Pr(Z ≥ |w|), where Z ∼ N(0, 1) and w is a realization of W , given

by

W =
µ̂z

σ̂z/
√
n

(3.11)

Systems were deemed significantly different if P < 0.05.

3.3.2 The ICSI-SRI RT-05S Meeting ASR System

To evaluate the performance of ASR using segments obtained from the multispeaker

SAD system, the ICSI-SRI system [104] from the NIST Spring 2005 Rich Transcription

meeting recognition evaluation (RT-05S) [77], was used. The system is based on the

SRI-ICSI-UW conversational telephone speech (CTS) recognizer [105] for the NIST

Fall 2004 Rich Transcription evaluation (RT-04F) [75] with various adaptations for

the meeting domain.
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Number of Excerpt Amount of
Meeting

Speakers Length (mins) Speech (mins)
R

T
-0

4S

CMU 20030109-1530 4 11.02 10.62
CMU 20030109-1600 4 11.10 10.99
ICSI 20000807-1000 6 11.37 10.60
ICSI 20011030-1030 10 11.50 11.01
LDC 20011121-1700 3 11.03 10.41
LDC 20011207-1800 3 11.62 10.09
NIST 20030623-1409 6 11.23 10.66
NIST 20030925-1517 4 11.03 9.81

R
T

-0
5S

AMI 20041210-1052 4 12.18 10.76
AMI 20050204-1206 4 11.91 10.59
CMU 20050228-1615 4 12.03 11.39
CMU 20050301-1415 4 11.97 10.86
ICSI 20010531-1030 7 12.18 11.02
ICSI 20011113-1100 9 11.99 11.03
NIST 20050412-1303 9 12.12 9.99
NIST 20050427-0939 4 11.93 10.75
VT 20050304-1300 5 11.98 10.62
VT 20050318-1430 5 12.08 9.05

Table 3.1: Test meetings for the RT-04S and RT-05S evaluations.

Basic System

The system diagram is shown in Figure 3.4. The “upper” tier of decoding steps

is based on MFCC features. The “lower” tier of decoding steps uses PLP features.

The outputs from the two tiers are combined twice using word confusion networks

(the crossed ovals in the diagram). With the exception of the first stage of each

tier, the acoustic models are adapted to the output of the previous step from the

other tier (i.e., cross-adapted) using maximum likelihood linear regression (MLLR)

adaptation [60]. The final output is the result of a three-way system combination

of non cross-word MFCC (MFCC-nonCW), cross-word MFCC (MFCC-CW), and

crossword PLP (PLP-CW) decoding branches and runs in under 20 times real time.
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MFC+MLP
nonCW

MFC+MLP
CW

MFC+MLP
nonCW

MFC+MLP
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Decoding/rescoring step

Legend
Hypotheses for MLLR or output

Lattice generation/use

Lattice or 1-best output
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Figure 3.4: Diagram of the ICSI-SRI RT-05S meeting recognition system. The “upper”
tier of decoding steps is based on MFCC features, while the “lower” tier uses PLP features.

Acoustic Features

The MFCC features consist of 12 cepstral coefficients, energy, first-, second-, and

third-order differences, and 2 x 5 voicing features developed by Graciarena et al. and

described in [34]. The cepstral features were normalized using vocal tract length

normalization (VTLN) [113] as well as zero-mean and unit-variance normalization

per speaker/cluster. The features were then transformed using heteroscedastic linear

discriminant analysis (HLDA). Finally, a 25-component Tandem/HATs [74] feature

vector estimated by multilayer perceptrons was appended. The same sequence of
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processing steps occurred with the PLP coefficients, with the exception of appending

voicing and MLP features.

Acoustic Models

The acoustic models were trained using the minimum phone error (MPE) criterion

[91] on about 1400 hours of conversational telephone speech data. These models were

then adapted for the meeting domain using maximum a posteriori (MAP) adaptation

of about 100 hours of meeting data.

Language Models

Decoding involved the use of three language models: a multiword bigram for generat-

ing lattices, a multiword trigram for decoding from lattices, and a word 4-gram for

lattice and N-best rescoring. The language models were estimated from a mix of tele-

phone conversations, meeting transcripts, broadcast, and Web data. The vocabulary

consisted of about 55,000 words.

3.3.3 Overlapped Speech Detection

The farfield overlapped speech detection system was evaluated using test sets obtained

from the AMI meeting corpus [18]. The corpus is a multi-modal data set consisting of

100 hours of meeting recordings. The meetings are primarily scenario-based (about

two-thirds are of this form), ranging in duration from 11 to 90 minutes, and each having

four participants. As with the RT data, recordings were produced at multiple sites

with different room acoustics. These recordings contain on average 15% overlapped

speech, making them highly useful for this task.

A rather different approach was taken for selecting the evaluation test sets from

this data. Two of the main sources of acoustic variability which affect the performance
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of audio segmentation are noise and differences in room acoustics. To analyze the

influence of each of these sources, test sets were constructed to control for them. The

first test condition consisted of 12 meetings recorded at a single site, IDIAP, using

audio data obtained by summing the nearfield headset channels of the participants,

referred to as “mixed-headset” audio. With high SNR and minimal environment

variability, the results for this set were intended to represent an upper bound of system

performance. This is analogous to the nearfield microphone condition for meeting

ASR, which serves as an upper bound for farfield recognition performance. This subset

of meetings contains approximately 17% overlapped speech. The second test condition

consisted of the same 12 meetings, but using farfield audio. The third (and final

development) condition consisted of 10 meetings randomly selected from the corpus

and using farfield audio. This multi-site test set represented the most realistic—and,

consequently, most challenging—of the development set test conditions. This meeting

subset also contains around 17% overlapped speech on average. The final validation

test set consisted of the farfield audio of 10 meetings that were also randomly selected

from the corpus, but done so as not to include any meetings from the development

data. For this data, overlapped speech comprises about 17% of the total speech. Table

3.2 lists the meetings for the various test sets along with relevant statistics such as

the amount of speech and percentage of overlapped speech.

Statistical significance of DER results was determined using a modification to

the MAPSSWE test for ASR described in Section 3.3.1. By sampling the output

segmentation of the diarization system at a regular interval (here, one second), “words”

corresponding to speaker labels were produced of the form:

Reference: <sil> Dave Dave Dave Joe Joe Joe Mark Mark <sil> Dave

System 1: <sil> spk1 spk1 spk1 spk2 spk2 spk2 spk3 spk3 <sil> spk1

System 2: <sil> spkA spkA spkC spkC spkB spkB spkC spkC <sil> spkB
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Afterwards, an optimal mapping was made between system speaker names and reference

names (as in standard DER scoring) and the MAPSSWE test was performed. Here,

too, the threshold for significance was set at P < 0.05.

Another part of the overlap segmenter experimental setup which merits explanation

is the use of the single distant microphone (SDM) audio condition. As listed in Section

1.1, there are various sensors used to obtain audio data in meetings. This is particularly

true for the distant microphone condition, where multiple microphones can be employed

for signal enhancement, source localization, or source separation. The availability of

multiple microphones allows for processing techniques which improve the performance

of spoken language technology systems, such as those for automatic speech recognition

and speaker diarization. Microphone beamforming, for example, can increase the

signal-to-noise ratio of the speech signal, leading to lower WERs (on the order of a

15% relative improvement in the case of [41], for example). The use of delay features

computed from multiple distant microphones, too, has yielded significant gains (also

about 15% relative as in [86]) for speaker diarization.

The benefits of multiple microphones is certainly clear. Indeed, the MDM condition

is the primary condition for the NIST RT evaluations. There are some cases, however,

when using multiple microphones is problematic, and overlapped speech detection

within the framework presented here is among them. The segmentation of overlapped

speech regions requires the selection of the appropriate acoustically-derived features

for the task, a primary focus of this work. The delay-and-sum beamforming signal

enhancement commonly performed in MDM processing, by computing delays relative

to the dominant speaker, however, suppresses speaker overlap and in doing so negatively

affects any features derived from the resulting signal. Further still, the delay features

obtained as a by-product of this procedure produce speaker clustering improvements

that effectively obviate the overlap exclusion method. Otterson and Ostendorf in [84],

for example, showed that overlap exclusion yielded no improvements on top of those
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Amount of Percent
Meeting

Speech (mins) Overlap(%)

A
M

I
S
in

gl
e-

si
te

IS1000a 14.47 13.60
IS1001a 9.84 15.79
IS1001b 25.13 9.43
IS1001c 16.84 9.69
IS1003b 16.90 12.44
IS1003d 26.71 34.22
IS1006b 26.67 16.11
IS1006d 24.24 39.03
IS1008a 11.68 4.84
IS1008b 21.26 6.67
IS1008c 19.74 13.61
IS1008d 18.84 12.93

A
M

I
M

u
lt

i-
si

te

EN2003a 26.39 9.00
EN2009b 31.57 19.21
ES2008a 11.50 5.47
ES2015d 24.76 29.04
IN1008 44.71 9.02
IN1012 44.17 27.67
IS1002c 26.91 11.38
IS1003b 16.90 12.44
IS1008b 21.26 6.67
TS3009c 31.41 26.53

A
M

I
V

al
id

at
io

n

EN2006a 35.29 18.81
EN2006b 29.64 22.24
ES2002a 12.16 10.83
ES2003c 28.08 5.04
IN1014 49.31 13.85
IS1002d 15.19 17.14
IS1004d 22.17 19.57
TS3006c 33.65 21.76
TS3007a 17.01 13.25
TS3010c 20.22 12.11

Table 3.2: Test meetings for the AMI single-site, multi-site, and validation evaluation test
sets.
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obtained by the use of delay features. A single distant microphone does not have these

issues, however, and so this alternate condition was used for this work. Here the SDM

channel was obtained by randomly selecting from one of the several microphone array

(both circular and linear) channels available. As with the nearfield audio, the data

was sampled at 16 kHz and noise-reduced via Wiener filtering.

This is not to say, of course, that MDM overlapped speech detection is not feasible.

Recall that Asano and Ogata in the work described in Section 2.2.1, for example,

detected overlapped speech events using adaptive beamforming. The SDM condition,

however, benefits much more from the HMM based segmentation framework. In

addition, with diarization error rates some 60% higher than with multiple distant

microphones ([116]), the SDM diarization task may also benefit more from the focus

of attention.

3.3.4 The ICSI RT-07S Speaker Diarization System

Similar to the ASR task, a state-of-the-art speaker diarization system was used

to evaluate the performance of the overlapped speech detection system. The ICSI

system [116] fielded in the speaker diarization component of the NIST Spring 2007

Rich Transcription meeting recognition evaluation (RT-07S) [79] served this purpose.

The system is based on agglomerative clustering of segments with merging using a

modification of the Bayesian Information Criterion in which the number of parameters

between the two BIC hypotheses is constant. This modification, mentioned in Section

2.2 and proposed in [3], eliminates the need for a BIC penalty term and thus one of

the parameters that must be tuned.
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Basic System

A diagram of the system is shown in Figure 3.5. Front-end acoustic processing is first

performed followed by speech/nonspeech detection using energy information. After

starting with a uniform segmentation of speech segments that corresponds to a large

number of clusters, the system then proceeds with several iterations of cluster merging

along with model re-training and re-alignment. The final output consists of speech

segments with speaker labels corresponding to the final N speaker models obtained

through clustering.

Front-end Processing

The acoustic processing consists of Wiener filtering of the audio data followed by

feature extraction. The Wiener filtering seeks to reduce corrupting noise—assumed to

be additive and stochastic—based on noise spectral estimates in nonspeech regions.

The nonspeech regions were determined by a voice activity detection (VAD) component

in the Aurora 2 front-end proposed by ICSI, OGI, and Qualcomm in [1]. The feature

extraction generates 19 MFCCs every 10 ms with a 30 ms analysis window. In speech

processing the use of higher order cepstra (i.e., beyond 12) has been shown to improve

performance on speaker-specific tasks (e.g., speaker recognition [97] [22]) and suggests

that these components capture more speaker-specific information.

Speech/Nonspeech Detection

The speech/nonspeech detector performs iterative training and re-segmentation of the

audio into three classes: speech, silence, and audible nonspeech. To bootstrap the

process, an initial segmentation is created with an HMM that contains a speech and

silence GMM trained on broadcast news data. The silence region is then subdivided

into two classes—regions with low energy and regions with high energy and high

zero-crossing rates—and new GMMs are trained. A GMM is then also trained for
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the speech class. Since it is possible that a recording may not have a significant

amount of audible nonspeech, the system checks to see if the speech and audible

nonspeech models are similar by comparing the BIC score of a single model to that of

two separate models. In the event that they are similar, the audible nonspeech model

is discarded and a speech model is trained on the pooled data of the two classes. The

features used for the process consist of 12 MFCCs, zero-crossing rate, and first- and

second-order differences. For this thesis, reference segmentation was utilized in lieu of

the speech/nonspeech detector. This was done so as not to confound the false alarm

error contributions of the overlap handling and diarization systems.

Diarization Algorithm

The agglomerative clustering algorithm initially splits the data into K clusters (where

K is chosen to be much greater than the number of true speakers), and then iteratively

merges the clusters until a stopping criterion is met. The acoustic data is modeled

using an ergodic HMM, where the initial number of states is equal to the initial

number of clusters (K). The final number of states corresponds to the hypothesized

number of speakers, with each state modeling a distinct speaker. In addition, each

state has a set of substates (all of which share the same GMM) that serve to impose a

minimum duration on the model. Here, the minimum duration was chosen to be 2.5 s.

The overall diarization procedure is as follows:

1. Run front-end acoustic processing.

2. Run speech/nonspeech detection.

3. Extract acoustic features from the data and remove nonspeech frames.

4. Create models for the K initial clusters via linear initialization.
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5. Perform several iterations of segmentation and training to refine the initial

models.

6. Perform iterative merging and retraining as follows:

(a) Run a Viterbi decoding to re-segment the data.

(b) Retrain the models using the Expectation-Maximization (EM) algorithm

and the segmentation from step (a).

(c) Select the cluster pair with the largest merge score (based on ∆BIC) that

is > 0.

(d) If no such pair of clusters is found, stop and output the current clustering.

(e) Merge the pair of clusters found in step (c). The models for the individual

clusters in the pair are replaced by a single, combined model.

(f) Go to step (a).
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Figure 3.5: Diagram of the ICSI RT-07S meeting diarization system. The system performs
iterative clustering and segmentation on detected speech regions starting with a uniform
segmentation corresponding to K clusters. The merging decision is based on a modified
version of the Bayesian Information Criterion (BIC).
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Multispeaker SAD for Improved ASR

The segmentation of an audio signal into regions of speech and nonspeech is a critical

first step in the task of automatic speech recognition. This is especially the case within

the context of multispeaker meetings with nearfield recordings obtained using lapel or

individual headset microphones. For these meetings, a significant amount of crosstalk

(considered nonspeech for the desired recognition task) may be present on the channel,

leading to insertion errors produced by the ASR system. This chapter describes

the development of a multispeaker SAD system utilizing cross-channel features to

address the phenomenon of crosstalk and consequently improve the accuracy of speech

recognition.

4.1 System Overview

As mentioned in chapter 3, the key component to performing the audio segmentation

is the HMM based segmenter. In this section, an overview of the speech/nonspeech

segmenter used for speech activity detection is given.
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4.1.1 HMM Architecture

The speech/nonspeech segmenter was derived from an HMM based speech recognition

system, namely the SRI DECIPHER recognizer. The system was modified and

simplified to consist of only two classes: 1)“local speech” (sp); and 2) “nonspeech”

(nsp), here a broad class which includes (but is not limited to) low-level ambient

noise (i.e., silence), laughter, breath noise, and, most importantly, crosstalk. Each

class is represented with a three-state phone model. State emission probabilities are

modeled using a multivariate Gaussian Mixture Model with 256 components and

diagonal covariance matrices. The Gaussians for the states in the same class are

shared, with separate mixture weights for each state. This mixture tying procedure is

quite common and is done for statistical efficiency; i.e., to provide robustness to small

amounts of training data [8]. For training, the GMMs are initialized using iterative

Gaussian splitting and the Linde-Buzo-Gray (LBG) vector quantization algorithm [63].

This algorithm provides a method of partitioning the feature space into K regions in

each of which a Gaussian mean is to be estimated. After these statistics are collected,

the Baum-Welch algorithm is performed to re-estimate the GMM parameters and

estimate the HMM transition probabilities. For testing, segmentation is carried out

by decoding the full IHM channel waveform. The decoding is potentially performed

multiple times, with decreasing transition penalty between the speech and nonspeech

classes, so as to generate segments that do not exceed 60 seconds in length.

4.1.2 Segmenter Post-processing

In designing a multispeaker SAD system, it is necessary to be mindful of the final

application of the system, in this case automatic speech recognition. Specifically, it

is important to be aware of the behavior of the ASR system to different types of

SAD system errors. If the SAD system has a false alarm error, depending on the

58



Chapter 4. Multispeaker SAD for Improved ASR

nature of the audio in the false alarm region, it may be possible for the ASR system

to recover from this error. Indeed, the ICSI-SRI meeting recognition system includes

a “REJECT” model to deal with audio regions where no plausible word hypothesis can

be generated. This is useful for addressing some forms of nonspeech audio such as

coughs, paper shuffling, etc.; but not others, such as crosstalk. If the SAD system,

however, has a missed detection error, it is not possible for the ASR system to recover;

the system cannot recognize what is not there. Even in the case where an utterance

is “clipped” (i.e., has the beginning or end speech cut off), the recognition could be

severely impacted since the decoding of one word influences the decoding of other

words in its vicinity through language modeling. In light of this, the speech segments

output by the SAD system were post-processed to make them more suitable for the

ASR system. To mitigate the effect of “clipped” segments as described above, the

segments were padded on both ends by a fixed amount. Similarly, adjacent speech

segments having a separation by nonspeech smaller than a given threshold were merged

to “smooth” the segmentation. The merged segments were limited to a maximum

duration of 60s.

4.1.3 Parameter Tuning

As with most systems, the speech/nonspeech segmenter has a number of parameters

which need to be tuned to optimize performance. The segment padding amount

and merging threshold are two such parameters. Another is the language model

weight, which scales the language model log-probabilities. These parameters were

optimized using a grid search technique on held-out data. Because of the high time

and computational costs associated with performing recognition, coupled with the

number of evaluations necessary to estimate optimal parameters, minimum speech

diarization error rate (SDER) was used as the optimization criterion. As mentioned
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in Section 3.3, this metric tends to correlate highly with WER, and thus serves as a

reasonable substitute metric.

4.2 Candidate Features

As with any classifier, the selection of the appropriate features for this HMM based

audio segmenter is of critical importance to its intended task. In this section, the

candidate features for inclusion in the system are presented and analyzed.

4.2.1 Fixing Component Length

In this thesis, a supervised approach to SAD has been adopted which involves training

on several meetings and testing on others. As should be expected, these meetings vary

in number of participants and, consequently, the number of channels of audio data.

This presents a potential issue given the desire to use cross-channel features to improve

performance under crosstalk conditions. How do we produce a parameterization of

this cross-channel data with fixed component length—a necessity for the Gaussian

mixture modeling—given a variable number of channels per meeting?

One possible approach is to determine the feature vector length based on the

meeting in the training and test data with the fewest channels. If, for example,

the fewest channels in a collection of meetings is four, then three cross-channel

computations can be performed for each reference channel in the collection. This

approach raises a number of issues, however. First is the ordering of the features; it is

not clear which channel (in addition to the reference) should be chosen for computing

the first component, the second component, and so on. One choice would be a random

or arbitrary ordering per meeting. Another possibility would be to do a sorted ordering

(ascending or descending) by feature value per frame. A second issue which arises
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is the selection of channels in meetings with greater than this minimum number of

channels. Again, simple random selection could be applied. Perhaps a better method

would be to select channels based on an estimated signal-to-noise ratio. This approach

was used by Anguera et al. in [5] to select the reference channel for TDOA feature

calculation in their farfield microphone beamforming algorithm. Better still would be

to compute features for all channels and select the channels based on some form of

mutual information. This is, however, significantly more computationally intensive

than the other approaches. In each case, though, it seems as if information is lost as

channels are completely discarded. A third issue is that the approach is potentially

limited in dealing with new or unseen data. It is reasonable to expect that in some

cases the number of channels of the test meetings is unavailable prior to testing. If a

test meeting had fewer channels than any training meeting, proper feature generation

and, consequently, speech segmentation could not be performed. In a similar case, if

new training data became available which again had fewer channels than any previous

training meeting, features would potentially have to be recomputed for all of the

training data—clearly an undesirable undertaking. The only way to prevent either

situation would be to use the absolute minimum number of channels—two channels

and, hence, one feature vector component—for all meetings. This is clearly suboptimal,

however, in that as many as 10 channels of audio data would simply be discarded.

Another approach would be to use per frame statistics—order statistics such

as minimum and maximum, as well as mean, variance, etc.—of the features to fix

the vector length, as proposed by Wrigley et al. in [119]. This approach addresses

the ordering and channel selection issues raised by the previous one. In addition,

since these statistics (most notably, the mean) are a function of all channels, more

information is preserved. There is one issue, with this approach, however, and it relates

to the small number of values over which these statistics are calculated. Some meetings

have as few as three channels and thus two values from which frame-level statistics are
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computed. This limits us to the simplest of statistics—minimum, maximum, mean,

range, and variance—all of which are highly sensitive to outliers, and some of which are

quite unreliable given such few samples. Nevertheless, using order statistics presents

significantly fewer complications than the previously described approach and so was

adopted for this work. Specifically, the statistics stated above (with the exception of

variance) are examined here.

4.2.2 Cepstral Features (MFCCs)

The standard cepstral features serve as a baseline for performance of the speech activ-

ity detection system. These consist of 12th-order Mel-frequency cepstral coefficients

(MFCCs), log-energy, and their first- and second-order differences. The MFCCs are

calculated as follows: An FFT is taken of a windowed version of the waveform. The

magnitude coefficients are then binned by correlating them with each triangular filter

in a Mel-scale (scaling based on human pitch-perception) filter bank. The log of

these values is taken followed by a decorrelation procedure (DCT) and dimensionality

reduction. These features are common to a number of speech-related fields—speech

recognition, speaker recognition, and speaker diarization, for instance—and so rep-

resent a natural choice for feature selection. The log-energy parameter, as well, is a

fundamental component to most SAD systems and the cepstral features, being largely

independent of energy, could provide information to aid in distinguishing local speech

from other phenomena with similar energy levels. Breaths and coughs, for example, fall

in this category and are quite prevalent on individual headset channels, especially for

participants who possess poor microphone technique. These features were computed

over a window of 25 ms advanced by 20 ms and cepstral mean subtraction (CMS) was

performed as a waveform-level normalization.
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4.2.3 Normalized Maximum Cross-Correlation (NMXC)

Cross-channel correlation is a clear first choice for a feature to address crosstalk and

this is evidenced by its prevalence in the literature (e.g., [118],[119],[90],[89], and [54]).

A crosstalk speech signal on the channel of a speaker who is not talking is likely to have

a high correlation with the local speech signal on the channel of the active speaker.

Thus, it is possible to identify crosstalk regions by observing the maximum cross-

correlation of two nearfield microphone channels within a small window. Maximum

cross-correlation alone, however, is insufficient for two reasons. First, the maximum

cross-correlation value between signals on two channels i and j is the same regardless

of which is the reference channel. As a result, one cannot distinguish between the

local speech channel and the crosstalk channel during instances of crosstalk speech.

Indeed, in [118], cross-correlation was effective in identifying speech plus crosstalk

(i.e., overlapped speech), but much less so in identifying either speech or crosstalk

individually. Second, differences in microphone gains may cause maximum cross-

correlation values between different microphone pairs to be less comparable to one

another. To address these issues, the cross-correlation is typically normalized by

dividing by the frame-level energy of the target channel [119], the non-target channel

[54], or the square root of each [119]. For this thesis, non-target normalization was

used, as initial experiments indicated superior performance to the other two. Thus,

we define the normalized maximum cross-correlation between a target (i.e., reference)

channel i and non-target channel j to be

Γij =
maxτ φij(τ)

φjj(0)
(4.1)

where φij(τ) represents the cross-correlation at lag τ and φjj(0) is the non-target

channel autocorrelation for lag 0 (i.e., its short-time energy). Cross-correlation and

autocorrelation values were computed over a context window of 50 ms using a Hamming
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window function with an advance of 20 ms.
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Figure 4.1: Normalized histograms of the (a) maximum, (b) minimum, (c) mean, and (d)
range of the normalized maximum cross-correlation (NMXC) in meeting Bdb001.

Figure 4.1 shows the normalized histograms of the maximum, minimum, mean,

and range of the NMXC feature for the two classes of (local) speech and nonspeech

in a selected meeting, Bdb001, from the ICSI meeting corpus [40]. The first thing to

note is that the speech class histogram appears to have an exponential distribution

for each of the four statistics, with the maximum number of values near zero and
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an exponential drop-off. The values for the nonspeech class, in contrast, are very

concentrated near zero with many fewer beyond this region. To illustrate, the median

nonspeech class value for each of the statistics is 0.57, 0.01, 0.21, and 0.55, respectively;

compare this with 12.65, 0.34, 4.37, and 11.63, respectively, for speech. The two class

distributions, at first blush, do not seem to coincide with initial expectations; crosstalk,

considered here to be nonspeech, was hypothesized to have high correlation. In fact,

the reason for the significant difference in the two class distributions comes from the

energy normalization. In the case where the target channel has crosstalk and the

non-target channel has local speech, the feature value becomes small because of the

significantly larger energy content on the non-target channel. When the situation is

reversed, the lower energy content of the non-target channel produces a large feature

value. The result is two class distributions which are quite distinguishable; applying a

simple threshold, for example, would produce high classification accuracy on this data.

4.2.4 Log-Energy Difference (LED)

In the previous section, we saw that the utility of the NMXC feature came from the

channel normalization. The difference in relative channel energies produced features of

very different values for the two classes. It seems reasonable, then, to directly use this

relative channel energy as a feature, which is what is done with the next candidate

feature—the log-energy difference (LED).

Just as energy is a good feature for detecting speech activity for a single channel,

relative energy between channels should serve well to detect local speech activity using

multiple channels. For example, if a single participant is speaking, his or her channel

should have the highest relative energy. Furthermore, if there is crosstalk on the other

channels, the energy on these channels is coupled with that of the speaker’s and the

relative energy over the crosstalk segment should be approximately constant. The
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log-energy difference, examined here, represents the log of the ratio of short-time

energy between two channels. That is, for channels i and j at frame index t,

Dij(t) = Ei(t)− Ej(t) (4.2)

where E represents short-time log-energy. As with the baseline features, the short-time

energy is computed over a window of 25 ms with an advance of 20 ms.

Liu and Kubala introduced log-energy difference for segmentation in [64], but

made no comparison of the feature’s performance to cross-channel correlation or any

other feature. Similarly, inspired by the idea of using relative channel energy, Dines et

al. [25] proposed a cross-meeting normalized energy feature which compares the target

channel energy to the sum of the energy of all channels as mentioned in 2.1.1. Energy

ratios have also been shown to complement TDOA location features for improved

speaker diarization [82].

Figure 4.2 shows the normalized histograms of the maximum, minimum, mean,

and range of the LED feature for the two classes of (local) speech and nonspeech in the

same meeting as Section 4.2.3. First of note is that the speech class for each statistic

is unimodal. This would also be the case for the nonspeech class, but a second peak is

visible for each of the maximum, minimum (only very slightly), and mean statistics,

creating a bimodal distribution. The multiple peaks are due to differences in gain

from the various personal microphones; if one microphone has a smaller gain than

another, the difference in log-energy will be greater for the first than the second. It is

possible to address this by subtracting the minimum frame log-energy of the channel

from all values for that channel as in [10]. This minimum energy serves as a noise

floor estimate for the channel and has the advantage of being largely independent

of the amount of speech activity in the channel. The approach was not adopted

here, however, as initial experiments showed no signs of significant improvement. A

66



Chapter 4. Multispeaker SAD for Improved ASR

−4 −2 0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

 

 

Nonspeech
Speech

(a) Maximum
−8 −6 −4 −2 0 2 4 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

Nonspeech
Speech

(b) Minimum

−4 −2 0 2 4 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 

Nonspeech
Speech

(c) Mean
0 1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

Nonspeech
Speech

(d) Range

Figure 4.2: Normalized histograms of the (a) maximum, (b) minimum, (c) mean, and (d)
range of the log-energy difference (LED) in meeting Bdb001.

possible reason for this is the use of additional statistics ([10] used only maximum and

minimum). Another is better optimization of tuning parameters (the parameters were

not re-optimized for the LED feature in the other work). At any rate, even though

some of the distributions are bimodal, the classes should still be modeled without

difficulty since a GMM is utilized.
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Also of note is the separation between the two classes. The maximum log-energy

difference shows the smallest overlap in distributions, followed by the mean, the

minimum, and the range. The distance between the two class means, however, gives

a different ranking. The minimum statistic gives the largest distance (3.4), followed

by the mean (2.8), the maximum (2.6), and lastly the range (0.8). In general, the

separation between the classes for maximum, minimum, and mean are similar while for

the range it is much smaller. Nevertheless, each statistic appears capable of yielding

good classification accuracy. The theoretical threshold of zero, in addition, would only

be a reasonable choice for the minimum log-energy difference.

4.2.5 Time Difference of Arrival Values (TDOA)

For a collection of personal microphones, let dij(t) correspond to the time difference

of arrival (TDOA) of a speech signal s(t) between microphones i and j computed at

time t. If s(t) corresponds to the speech of the individual associated with microphone

i, then it is clear that

dij(t) > 0 ∀ j 6= i (4.3)

That is, the speech of the individual should arrive at his or her personal microphone

before any other microphone. This relationship suggests that it may be possible to

distinguish crosstalk speech from local speech using such TDOA values.

TDOA values are the fundamental feature of most speaker localization algorithms

(e.g., [15], [103], and [38]). The TDOA values are also a key component to delay-

and-sum beamforming, a signal enhancement technique and pre-processing step for

both automatic speech recognition and speaker diarization in meetings. In the

multiple distant microphone (MDM) condition, the various signals are combined using

delay-and-sum beamforming to produce an enhanced audio signal with a higher signal-

to-noise ratio than any single channel. In addition, the work of Ellis and Liu [28] first
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demonstrated that TDOA values can serve as useful features for speaker turn detection,

a component of speaker diarization. Later work by Pardo et al. improved upon these

results by using the features in a full MDM diarization system (segmentation and

clustering) in isolation ([87]) and in combination with cepstral features ([88] and

[86]). Otterson in [84] later revealed that these TDOA features also improve speaker

clustering for diarization in the presence of overlapped speech.

For this work, the TDOA values were computed using the generalized cross-

correlation phase transform method (GCC-PHAT). For two channels i, and j, the

generalized cross-correlation is given by

Ĝ(f) = Xi(f)X∗j (f)Ψij(f) (4.4)

Where Xi(f) and Xj(f) are the Fourier transforms of the two signals and Ψij(f) is a

weighting function. The estimated delay is then computed as

d̂(i, j) = argmax
τ

(R̂(τ)) (4.5)

Where R̂(τ) is the inverse Fourier transform of Equation 4.4. The GCC-PHAT,

as presented by Knapp and Carter in [46], represents a version of the generalized

cross-correlation in which the weighting function is given as

ΨPHAT
ij (f) =

1

|Xi(f)X∗j (f)|
(4.6)

That is, the cross-spectrum is whitened prior to computing the cross-correlation. With

this particular weighting, the cross-correlation is computed using only phase informa-

tion, hence the name phase transform. The GCC-PHAT method is a popular technique

for source localization in reverberant environments, as motivated by Brandstein and

Silverman in [14].
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For a given meeting, one nearfield microphone channel is arbitrarily selected as a

reference and TDOA values are computed between this channel and all other nearfield

channels. The TDOA values for a given non-reference channel are then derived by

identifying the estimated delay between that channel and the reference, and then

computing the delay between the other channels based on the known delays with the

reference. This drastically reduces computational complexity, as only N − 1 delays

need to be computed rather than
(
N
2

)
. In addition, to improve the quality of the

estimates, a procedure based on the work in [6] and [4] was adopted. For a given

channel, the N -best TDOA candidates (for this work N = 4) between the target

and reference channels are selected for every frame and a 1-best sequence of delays is

obtained using Viterbi decoding. For the Viterbi algorithm, the states are taken as

the N possible delay values at each time step and the emission probabilities as the

GCC-PHAT value for each delay. The transition probability between two states i and

j is defined as

aij(t) =
max diff(i, j)− |TDOAi(t)− TDOAj(t− 1)|

max diff(i, j)
(4.7)

where max diff(i, j) = maxi,j(|TDOAi(t)−TDOAj(t−1)|). This formulation produces

values only between 0 and 1, assigning a probability of 0 to the most distant delay

pair. GCC-PHAT values are computed over a window of 500 ms (similar to [88]) with

an advance of 20 ms.

Figure 4.3 shows the normalized histograms of the maximum, minimum, mean,

and range of the TDOA feature for the two classes of (local) speech and nonspeech

for the same meeting, Bdb001. The class distributions here are quite different from

those of the NMXC and LED feature statistics. The speech class distributions are

characterized by two distinct and narrow peaks with very low values elsewhere. These

peaks correspond to speech activity by the dominant speakers of the meeting. For
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Figure 4.3: Normalized histograms of the (a) maximum, (b) minimum, (c) mean, and (d)
range of the time-difference-of-arrival (TDOA) in meeting Bdb001.

nonspeech, there is one main peak for the minimum and range statistics and two

small and much less distinct peaks for the maximum and mean statistics. A reason for

this spread may be that TDOA estimates are noisier and, consequently, less reliable

for nonspeech. Though the distributions in this case defy general categorization, a

significant difference between class distributions exists for the statistics, suggesting

usefulness for classification.
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4.3 Experiments

This section details the experiments associated with evaluating the candidate features

mentioned above for use in the multispeaker SAD system. This consisted of

1. Single-feature combination to observe the performance of each feature when

combined with the baseline features;

2. Feature selection, in which all feature subset combinations were evaluated and

an optimal one selected for the final system; and

3. Evaluation of the final system on unseen test data.

4.3.1 Single-Feature Combination

In this first set of experiments, each cross-channel feature was combined with the

baseline cepstral features to determine its ability to improve both SAD and ASR

performance as well as to compare the performance of the different features with

one another. As a part of this, the combination of the various statistics for the

cross-channel features was analyzed, with the assumption that certain statistics may

prove more useful for some features than others. The systems in these experiments

were evaluated using the 2004 NIST RT evaluation test data (“Eval04” for short)

listed in Table 3.1. The speech activity detector was trained on the nearfield audio

data consisting of the first ten minutes of 73 meetings from the ICSI meeting corpus

and 15 meetings from the NIST Meeting Room pilot corpus [30] for a total of 88 hours

of data. The tuning parameters were optimized using held-out data from the AMI

meeting corpus. A list of the training and tuning meetings is found in Appendix A.
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Results

The results for the various combinations are presented in Table 4.1. The first column

gives the feature combination, with “MFCC” being the baseline cepstral features,

“NMXC” the normalized maximum cross-correlation, “LED” the log-energy difference,

and “TDOA” the time-delay-of-arrival values. The “Reference segmentation” row

refers to using manually-obtained time marks obtained for word error scoring. This

provides an upper bound for the ASR word error rate performance obtained from the

different automatic segmentations. The other two major column divisions contain the

speech diarization error rate and ASR word error rate performance results, with a

breakdown into the constituent metrics of each. The final column, “R.I.”, gives the

relative improvement of the multispeaker SAD system in terms of word error rate

compared to using the baseline features.

SDER WER R.I.
System

FA Miss Total Subs. Del. Ins. Total (%)

MFCC 9.51 33.07 43.54 12.8 13.2 3.9 29.9 -
+ NMXC (max,min) 0.66 36.94 37.73 12.3 13.2 1.3 26.8 10.4
+ NMXC (max,min,µ) 0.65 37.08 37.81 12.4 13.1 1.3 26.9 10.0
+ NMXC (max,min,range) 0.85 37.00 37.97 12.3 13.4 1.4 27.1 9.4
+ NMXC (max,min,µ,range) 0.92 37.08 38.14 12.3 13.3 1.4 27.0 9.7
+ LED (max,min) 1.27 35.06 36.71 12.6 12.2 1.8 26.6 11.0
+ LED (max,min,µ) 1.01 35.07 36.44 13.0 12.2 1.6 26.8 10.4
+ LED (max,min,range) 0.96 35.24 36.46 12.4 12.2 1.6 26.2 12.4
+ LED (max,min,µ,range) 0.87 35.09 36.15 12.6 12.0 1.5 26.1 12.7
+ TDOA (max,min) 7.73 34.22 42.69 12.7 12.6 2.3 27.6 7.7
+ TDOA (max,min,µ) 7.48 34.33 42.59 13.0 13.1 2.9 28.9 3.3
+ TDOA (max,min,range) 8.33 33.95 43.03 13.1 12.7 3.2 29.0 3.0
+ TDOA (max,min,µ,rnge) 8.57 33.69 43.12 13.1 12.8 3.0 28.9 3.3

Reference segmentation - - - 12.6 10.5 2.1 25.1 16.1

Table 4.1: Performance comparisons on Eval04 data for single-feature combination systems.
The “+” indicates the following feature is concatenated with the baseline MFCCs and the
“(...)” indicates which statistics are included in the feature.
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First and foremost of note is that each feature combination yields an improvement

over the baseline, indicating the benefit of using these cross-channel features. It is

also true (but not shown here) that the combination performance exceeds that of

each cross-channel feature in isolation; preliminary experiments on similar data, for

example, showed a 15% relative improvement for the LED feature when combined with

MFCCs. The baseline and cross-channel features, then, are both necessary for good

segmentation performance. For the data shown here, the smallest improvement in

terms of WER comes from the “(max,min,range)” combination of TDOA values. The

WER reduction is from 29.9 to 29.0. Using the MAPSSWE test shows a statistically

significant difference for even this case.

So how exactly are the features improving the system? For SDER, miss errors

increase in every case, but false alarm errors are significantly reduced. This is most

evident with the NMXC feature, for which false alarms are reduced from 9.51% to

below 1% for every combination of statistics. The smallest reduction comes from a

combination of TDOA value statistics, “(max,min,mean, and range)”, with a false

alarm rate of 8.57%. Generally speaking, for false alarms, the NMXC feature performs

best with the LED feature performing slightly less well and the TDOA features much

more poorly than the other two. Looking at WER, the picture is slightly less clear. For

substitutions, the NMXC feature yields reductions in all cases and the LED feature in

three of the four cases. The TDOA values, however, produce no significant reductions

in substitutions. Deletions are reduced significantly for the LED and three of the four

TDOA combinations, but not in any of the NMXC combinations. Clear improvements

are obtained for insertion errors with all feature combinations, however. Indeed, it

was hypothesized in Section 2.1.1 that the cross-channel features would address the

crosstalk phenomenon and, consequently, the insertion errors that came about as a

result of this crosstalk. The results seem to support this. Generally speaking, for

insertions, again the NMXC feature performs best with the LED feature closely behind.
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The TDOA feature again performs significantly more poorly than the other two. The

trends seen for the false alarms and insertions, however, do not carry over to either

DER or WER. The TDOA feature performs most poorly for both DER and WER,

and significantly so. The LED feature, though, performs best overall with the NMXC

feature performing in between the LED and TDOA features. The reason for this is

that the LED feature yields a significant reduction (about 1% absolute) in deletion

errors while the NMXC feature does not. This is somewhat unexpected, as the SDER

miss errors are not reduced using this feature.

To select the best combination of statistics for each feature, the reduction in WER

was used. By this criterion, maximum and minimum provide the best combination for

the NMXC feature; maximum, minimum, mean, and range work best for the LED

feature; and maximum and minimum again are the best for the TDOA feature. The

relative WER improvements are 10.4%, 12.7%, and 7.7%, respectively. Note that the

best system goes much of the way towards eliminating the performance gap between

the baseline and reference systems.

Metric Correlations

In Section 3.3 it was stated that the SDER of a SAD segmentation has a strong

positive correlation with the ASR WER obtained from a recognition run using this

segmentation. In this way SDER serves as a reasonable predictor of ASR performance

in cases where a full recognition run is not feasible, such as the optimization for param-

eter tuning mentioned in Section 4.1.3. Figure 4.4 shows a plot of DER-WER pairs

for the various feature combinations listed in Table 4.1. The dashed line represents

the best-fit line for the data obtained via regression. The plot suggests that there is,

indeed, a strong positive correlation between these two metrics, helping to verify the

claim. The correlation is not perfect, however, as evidenced by the outlier to the far

right. This point, incidentally, represents the best combination for the TDOA feature;
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the WER is much lower than should be expected for the given DER. Computing

Pearson’s linear correlation coefficient on the data gives a value of 0.94 which confirms

the strong correlation.
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Figure 4.4: Plot of WER versus DER for the systems in Table 4.1. The dashed line
represents the best linear fit to the data in the least-squared sense. A strong linear
relationship is apparent and is confirmed by the linear correlation coefficient of 0.94.

Given the strong connection between SDER and ASR WER, there likely exists

correlations between the constituent metrics of each—namely, false alarms, misses,

deletions, insertions, and substitutions. It seems reasonable to presume that false

alarm errors in speech activity detection lead to insertion errors for speech recognition,

particularly in the case of crosstalk, as has been asserted. Nonspeech regions which are

falsely detected as speech—possibly due to phenomena containing significant energy

content such as breathing, coughing, laughter, or crosstalk—provide the recognizer

with opportunities to hypothesize words that are either nonexistent or not uttered by
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the wearer of the personal microphone. This does not always occur, however, since, as

previously mentioned, some such phenomena can be addressed by a “REJECT” model,

as employed in the ICSI-SRI recognizer. It also seems plausible to presume that missed

detections result in deletion errors by the recognizer. Without the opportunity to

process the audio within a missed speech region, the recognizer will not hypothesize

words within that region and should produce deletion errors. A priori, it is not

clear how strongly either of the two speech diarization metrics should correlate with

substitutions. With the addition or removal of speech audio regions, whole sequences

of hypothesized words may change, resulting in insertions, substitutions, and deletions.

As with DER and WER, the correlations of false alarms and misses to insertions,

Diarization ASR Correlation
Metric Metric Coefficient

False Alarms Insertions 0.96
False Alarms Substitutions 0.76

Misses Substitutions -0.87
Misses Deletions 0.53
DER WER 0.94

Table 4.2: Correlation between diarization metrics and related ASR metrics.

deletions, and substitutions was computed for the data in Table 4.1. The results

are quite interesting. As anticipated, there exists a high positive correlation of 0.96

between false alarm errors in diarization and insertion errors in ASR. This supports the

claim that the reduction in insertion errors obtained using the cross-channel features

is evidence of crosstalk being addressed by the approach.

There also appears to be a rather strong positive correlation of 0.76 between false

alarms and substitutions. This arises because of a particular error pattern, illustrated

in the scoring example for meeting CMU_20030109-1600 in Figure 4.5. The figure

shows three text columns, corresponding to the error decision, the reference token, and
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the ASR hypothesis token, respectively. Along with each tokens is the forced-alignment

time for its beginning and end. For this example, the recognizer correctly hypothesizes

COR          that's(530.945-531.115)   that's(530.940-531.120)
COR          good(531.115-531.365)    good(531.120-531.370)
INS                                   @reject@(531.450-533.270)
INS                             yeah(534.780-535.100)
INS                                    @reject@(538.150-539.550)
INS                                    @reject@(539.980-541.450)
SUB       wow(549.610-549.820)   @reject@(551.350-552.310)
SUB          it's(549.820-549.950)    @reject@(552.580-553.010)
SUB          crazy(549.950-550.300)   @reject@(553.650-555.150)
SUB          or(555.250-555.460)    wear(555.250-555.470)
COR          safety(555.460-555.900)   safety(555.470-555.910)
COR          for(555.900-556.030)    for(555.910-556.030)
COR          that(556.030-556.170)    that(556.030-556.170)
COR          matter(556.170-556.560)   matter(556.170-556.510)

Figure 4.5: Scoring example from meeting CMU 20030109-1600. The error pattern seen
here contributes to the positive correlation between false alarms and substitutions.

the first two tokens, but then proceeds to insert tokens in a nonspeech (i.e., false

alarm) region from 531.365 s-549.610 s. Note that three of the four hypothesized tokens

in this region correspond to the REJECT model; this is common in crosstalk false

alarm regions where the crosstalk speech is of lower volume and thus the recognizer

cannot properly identify the words. The error generation propagates into speech

regions as the @reject token continues to be hypothesized. The result is a series of

substitution errors following the insertion errors. Eventually, the errors cease and the

recognizer resumes correctly identifying the words. The existence of this pattern is

further supported by the high correlation between insertions and substitutions (0.85)

for this data as well.

As for misses and substitutions, we see that a strong negative correlation of -0.87

exists between the two. This is at least in part explained by the error pattern revealed
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in Figure 4.5 combined with the fact that misses generally trade off with false alarms

(their correlation is -0.79). As misses increase, false alarms—which play a role in both

insertion and, it seems, substitutions—are reduced.

Lastly, unlike the one between false alarms and insertions, the correlation between

misses and deletions of 0.53 seems surprisingly low. Recall, however, that a reduction

in deletion errors was observed for the LED feature relative to the baseline, even

though misses actually increased. Indeed, if the LED feature data is removed, the

correlation jumps up to a high value of 0.84. Though the low correlation can be

explained from a data perspective, the results leave something to be desired as far as

intuition is concerned. How can increased misses yield fewer deletions? Unfortunately,

error scoring analysis in this case revealed no clear pattern. Comparing the output

of systems with lower miss and higher deletion rates to those with higher miss and

lower deletion rates showed that deletions for one can become correct tokens for

the other, but the mechanism by which this occurs was not evident. An example is

shown in Figure 4.6 for meeting ICSI_20011030-1030. The first output corresponds

to segmentation produced using the baseline cepstral features and the second to

segmentation from the maximum, minimum, mean, and range statistics of the LED

feature. In the first case, one of the “there’s” tokens is absent in the hypothesis,

leading to a deletion. Despite no obvious changes in speech activity region, the token

is properly recognized in the second case and, furthermore, a substitution in the first

case is corrected.

Another interesting area of analysis is the variance relationship between the scores

of correlated metrics, presented in Table 4.3. The variance for false alarms is several

times larger than for any other metric. The correlated ASR metrics of insertions and

deletions, however, are rather small. This implies a relative lack of sensitivity by either

to changes in false alarms and, perhaps, a robustness of the ASR system to this type

of segmentation error. The use of a “REJECT” model, is likely a contributing factor
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COR          okay(391.450-391.740)   okay(391.300-391.740)
COR          so(392.426-392.686)   so(392.420-392.690)
DEL          there's(392.686-392.936)   
DEL          a(392.936-392.976)   
COR          there's(393.106-393.296)   there's(392.690-392.940)
DEL          a(392.936-392.976)   
COR          there's(393.106-393.296)      there's(392.690-392.940)
SUB          a(393.296-393.326)            this(393.110-393.310)
SUB          little(393.326-393.636)       whole(393.310-393.610)
COR          thing(393.756-393.986)        thing(393.750-393.990)

COR          okay(391.450-391.740)   okay(391.440-391.740)
COR          so(392.426-392.686)   so(392.420-392.690)
COR          there's(392.686-392.936)   there's(392.690-392.940)
DEL          a(392.936-392.976)   
COR          there's(393.106-393.296)      there's(393.110-393.310)
DEL          a(392.936-392.976)   
COR          there's(393.106-393.296)      there's(393.110-393.310)
COR          a(393.296-393.326)            a(393.310-393.340)
SUB          little(393.326-393.636)       whole(393.340-393.620)
COR          thing(393.756-393.986)        thing(393.750-393.980)

Figure 4.6: Scoring example from meeting ICSI 20011030-1030. The deleted token,
“there’s” in the first case is properly recognized in the second and the substituted “this” is
recognized correctly as “a”.

here. Relatively speaking, deletions and substitutions appear to be more sensitive to

missed speech errors, but for the case of deletions, the weaker correlation with misses

obscures the relationship somewhat.

FA Ins. Subs. Miss Del. Subs.

Variance 12.41 0.51 0.10 1.68 0.24 0.10

Table 4.3: Variances of correlated SDER and WER metrics.
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4.3.2 Feature Selection

Having compared and contrasted the various statistics combinations for the three

cross-channel features, the next step was to observe the three features in combination.

As discussed in Section 3.2.3, several methods exist for selecting a good combination

of features. Though it was stated that exhaustive search can become intractable in

many cases, the small number of features used here made this approach feasible and

attractive, since it is guaranteed to find the globally optimal subset of features. For

this experiment, the same training, tuning, and evaluation data was used as in Section

4.3.1. Each of the 23 = 8 feature combination subsets was evaluated (including the

empty set, which corresponds to the cepstral baseline).

Results

The results for the feature selection experiments are given in Table 4.4 and are

presented in the same format as the previous experiments.

SDER WER R.I.
System

FA Miss Total Subs. Del. Ins. Total (%)

MFCC 9.51 33.07 43.54 12.8 13.2 3.9 29.9 -
+ NMXC+LED+TDOA 2.86 34.06 37.40 12.9 11.7 1.4 25.9 13.4
+ LED+TDOA 0.84 35.02 36.00 12.6 12.1 1.4 26.1 12.7
+ NMXC+LED 3.15 33.47 37.14 12.9 11.5 1.5 25.9 13.4
+ NMXC+TDOA 5.80 34.42 41.02 12.8 12.3 1.8 27.0 9.7
+ NMXC 0.66 36.94 37.73 12.3 13.2 1.3 26.8 10.4
+ LED 0.87 35.09 36.15 12.6 12.0 1.5 26.1 12.7
+ TDOA 7.73 34.22 42.69 12.7 12.6 2.3 27.6 7.7

Reference segmentation - - - 12.6 10.5 2.1 25.1 16.1

Table 4.4: Performance comparisons on Eval04 data for systems representing all possible
feature combinations. The “+” indicates the following feature is concatenated with the
baseline MFCCs .
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Here, too, we first note that all feature combinations improve over the baseline

performance. The smallest relative WER improvement is 7.7% and is obtained

using only the TDOA feature with the MFCCs. The MAPSSWE test once again

determines this difference to be significant. Generally speaking, the same improvement

trends emerge for the multiple feature combination systems as they did for single-

feature combination. In all cases, false alarm errors are significantly reduced with the

additional features while missed speech errors remain at the same level or increase

slightly. In terms of WER, the most significant improvements appear in the insertion

errors followed by deletions and lastly substitutions, which change very little. The

trend of improved deletions was less consistent in the single-feature combinations,

where the various NMXC statistics combinations produced no significant improvement,

the TDOA value statistics a small improvement, and the LED feature the largest

one. The seemingly curious phenomenon of reductions in deletions accompanied by

increases in misses, however, does emerge here, unfortunately with no additional clues

to the cause.

It is noteworthy that here, too, the largest reductions in deletion errors involve

feature combinations including the LED feature. Following this logic, one might

anticipate the best improvements in insertions to come from combinations involving

the NMXC feature, as it consistently yielded the largest reductions in the previous

experiments. This, however, is not categorically true, as the combination of NMXC

and TDOA features produces the second-lowest reduction in insertion errors. It is

the TDOA feature in single combination with MFCCs, though, that yields the lowest

reduction, so it seems plausible that the combination of best and worst feature might

produce this poor performance. Looking more closely at the two-feature combinations,

we see that the combination of the first- and second-best individual features in

terms of WER—the LED and NMXC features—produces the best combination. The

combination of the second- and third-best features, similarly, leads to the poorest
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performance. In addition, though the WER difference between the first- and second-

and second- and third-ranked individual features is about the same, the improvement

from combining numbers one and two is much smaller than the degradation from

combining numbers two and three. Interestingly, the full three-feature set produces no

gains over any subset. The performance essentially matches that of the subset in which

the TDOA feature is removed, suggesting that the feature provides no information in

this combination, though in single-feature combination can do so. Again using WER

improvement as the optimization criterion, the subset of NMXC and LED features

was chosen as the feature combination to be used in the final SAD system. Note that

this system narrows the performance gap with the reference segmentation to a low 0.8

for this data and obtains a substantial relative WER improvement of 13.4%.

4.3.3 Final System

For the final phase of the adopted experimental paradigm, it was necessary to validate

the multispeaker SAD system by evaluating on an independent test set. A modified

version of the data from the 2005 NIST RT evaluations, shown in Table 3.1 of

Section 3.3.1, was used for this task. The modification consisted of removing one

meeting, NIST_20050412-1303, which contained a participant on speakerphone who,

consequently, had no associated personal microphone channel. This situation would

result in a large number of insertion errors triggered by crosstalk. A method to address

this using a single distant microphone as a stand-in for the speakerphone participant’s

personal microphone channel was presented in [10] and was shown to be effective.

However, to simplify comparisons, the meeting was excluded for this work. This was

also done by Laskowski et al. in [53], who referred to the set as rt05s_eval*, for

similar purposes.
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For this test, the speech activity detector was trained using all of the training data

from the previous experiments, plus the first ten minutes of 35 meetings from the

AMI meeting corpus (also listed in Appendix A). For optimizing the various tuning

parameters, the Eval04 test data was used, with the expectation that the diversity

of the meetings in the tuning set would improve generalization to this unseen test data.

Results

The results for the final system are presented in Table 4.5 in the same format as the

previous experiments.

SDER WER R.I.
System

FA Miss Total Subs. Del. Ins. Total (%)

MFCC 8.66 6.71 15.37 10.7 9.7 3.6 24.0 -
+ NMXC+LED 1.44 6.65 8.09 10.9 9.2 1.7 21.8 9.2

Reference segmentation - - - 11.1 6.0 1.8 18.8 21.7

Table 4.5: Performance comparisons on Eval05* data for systems representing the baseline
and best feature combinations.

The first thing to note is that the baseline and reference error rates are much

lower—24.0 and 18.8, respectively as compared to 29.9 and 25.1, respectively. The

performance gap between the two, however, is slightly wider. In terms of SDER, we see

that the final system, which includes the NMXC and LED features, produces significant

reductions in false alarms, leaving misses essentially unchanged but nearly halving

the overall diarization error rate. On the ASR side, this translates into substitutions

being relatively unchanged, deletions decreasing slightly (by 0.2% absolute), and

insertions dropping significantly (by almost 2% absolute). The final system, then,

appears to be highly tuned to reducing insertion errors and thus addressing crosstalk.

Both the deletion and insertion rate reductions on the development data were greater,

though, and the system achieves a relative WER improvement of 9.2% on this data
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as compared to 13.4% on the development data. In addition, the performance gap

in this case is 3% as compared to 0.8% previously. This could partly be explained

by the reference segmentation being better for this test set than the other, which is

possible since the gap between baseline and reference is higher here. It could also

partly be explained by the limits to which such systems can generalize; it is rare that

performance of a system will not degrade when tested on unseen data.

4.4 Discussion

This chapter presented the work towards addressing the issue of crosstalk for nearfield

microphone meeting recognition. Using the framework outlined in Chapter 3, a

multispeaker speech activity detection system was developed that incorporated cross-

channel features to improve the segmentation of local speech and nonspeech, and

subsequently improve recognition performance. The results here showed that all three

proposed features–normalized maximum cross-correlation, log-energy difference, and

time-difference-of-arrival values improved performance, in particular by reducing the

insertion errors typically associated with crosstalk. The best combination of features

proved to be the NMXC and LED features, reducing WER by 13.4% relative on the

development data and 9.2% relative on the validation set. This compares to a possible

relative improvement of 16.1% and 21.7%, respectively, as determined by reference

segmentation.

These numbers suggest that there are still possible gains to be made by the

segmentation system. Where, exactly, do they lie? One clue can be found by doing a

site-level performance analysis, as shown in Table 4.6. Here the baseline, final, and

reference WER results are presented by site for the Eval05* test set.

A number of interesting things are revealed by these numbers. First, the AMI and

ICSI data give similar performance results for both the baseline and proposed systems
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WER
System

ALL AMI CMU ICSI NIST VT

MFCC 24.0 21.6 22.8 20.7 22.9 32.5
+ NMXC+LED 21.8 21.8 21.7 20.8 20.9 23.5

Reference segmentation 18.8 18.8 19.8 15.7 19.6 20.8

Table 4.6: Site-level performance comparisons on Eval05* data for baseline and best-
combination systems.

while a significant gap exists between these and the reference segmentation. For the

AMI meetings, the difference is about 3% absolute, while for the ICSI data it is as

high as 5%. The reason for this is revealed by looking at the WER breakdown, shown

in Figure 4.7. Both systems have similar performance to the reference for insertions

and substitutions, but do much more poorly for deletion errors. Indeed the differences

in deletions are about the same as for overall WER, indicating that deletions almost

completely explain the discrepancy. For CMU, NIST, and VT the proposed system

narrows the performance gap by an increasing amount. For CMU and NIST this

comes from reduced deletions, as the insertion performance here, too, is similar for

the baseline, proposed, and reference. A huge reduction in insertion errors, however,

is obtained on the VT meetings (from 10.6 to 1.4), vividly demonstrating the utility

of the cross-channel features and the proposed system. As in the other cases, the

remaining error consists primarily of deletions. This trend is also apparent over all

sites, as displayed in Table 4.5.

Given that deletions appear to be the majority of the remaining errors, it would

be useful to see if any pattern exists in the occurrence of these errors. To do this,

the recognition output obtained using the proposed system segmentation was scored

against the output using the reference segmentation and the deleted tokens were

identified. Figure 4.8 presents the counts of the most common deletions occurring in

the data.
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Figure 4.7: Bar graph of site-level performances on Eval05* data for the systems presented
in Table 4.6

The graph shows that the top four deleted tokens all fall within the category

of backchannels—words that provide feedback to the dominant speaker, indicating

that the non-dominant speaker is still engaged in conversation. The majority of

the backchannels, in addition, consist of the top two tokens “uhhuh” and “yeah”,

with a significant drop-off thereafter. Because of their function in conversation

(i.e., encouraging another participant to continue speaking), the backchannels are

typically uttered at a lower volume than words uttered when the speaker has the floor.

Consequently, the audio associated with these tokens has lower energy content. Since

the speaker does not have the floor, these words also often appear in isolation and

sometimes overlap the speech of the dominant speaker. It is easy to see how such

speech regions, then, may go undetected by automatic systems still largely based on

energy, such as those described in this chapter. One possible change that may help
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Figure 4.8: Histogram of deleted tokens when scoring ASR output using reference segmen-
tation against output using automatic segmentation.

address the problem is to adjust the segmenter’s operating point via the language

model weighting to increase the amount of speech detected. This may allow for more

short segments to be detected, some of which may be backchannels. The false alarm

error will likely increase, but the recognizer, with its “REJECT” model, could be robust

to this. Another possibility is to improve the modeling of these backchannel speech

regions by increasing their number in the training data, either in absolute or relative

terms.

Of course, all of this sidesteps the question of the importance of these deleted

words. Generally occurring in isolation, these deletions should not affect other word

hypotheses greatly. Somewhat related to this, the semantic and syntactic importance

of these words is rather low. They also provide no information about meeting content,

making them of little use for downstream processing such as summarization or topic
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identification. One exception is the word “yeah”, not as a backchannel, but as an

affirmation. One could imagine a meeting—e.g., for example a budget proposal—

where this word could be of great significance—e.g., indicating the budget was, in fact,

approved. It is not clear how often this context is encountered, however. Thus, though

the deletion errors remaining present a challenge for further system development, these

deletions can be considered the “least harmful” for many target applications.
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Chapter 5

Overlapped Speech Handling for

Improved Speaker Diarization

The presence of overlapped, or co-channel, speech in meetings is a common occurrence

and a natural consequence of the spontaneous multiparty conversations which arise

within these meetings. This speech, in addition, presents a significant challenge to

automatic systems that process audio data from meetings, such as speaker diarization

systems. Specifically, in regions where more than one speaker is active, missed speech

errors will be incurred and, given the high performance of some state-of-the-art

systems, this can be a substantial portion of the overall diarization error. Furthermore,

because overlap segments contain speech from multiple speakers, including them

in any one speaker model may adversely affect the quality of the models, which

potentially reduces diarization performance. This chapter describes the development

of a monaural overlapped speech detection, labeling, and exclusion system which seeks

to improve diarization performance by addressing these issues.
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5.1 System Overview

As with multispeaker SAD, the HMM based segmenter is a major component to the

overlapped speech handling system. This section gives an overview of this overlapped

speech segmenter, highlighting key differences with the speech/nonspeech segmenter

of Chapter 4. The pre-processing overlap exclusion for speaker clustering and post-

processing segment labeling—the other major components of this system—are also

described.

5.1.1 HMM Architecture

The overlap detector is an HMM based segmenter consisting of three classes—“speech”

(sp), “nonspeech” (nsp), and “overlapped speech” (olap). As with the multispeaker

SAD system, each class is represented with a three-state model and emission probabili-

ties are modeled using a 256-component multivariate GMM with diagonal covariances.

For each class HMM, mixtures are shared between the three states, with separate

mixture weights for each state. The models are trained using an iterative Gaussian

splitting technique with successive re-estimation. In this case, the mixture splitting

proceeds by copying the mixture component with the largest weight and perturbing

the two mixtures by plus or minus 0.2 standard deviations. Once the final number of

mixtures is reached, a single Baum-Welch iteration is performed for GMM parameter

re-estimation and transition probability estimation. In contrast to the multispeaker

SAD system, decoding consists of a single Viterbi pass of the SDM channel waveform.

Rather than use a language model for class transitions, a word network was used.

This word network is a higher-level finite state machine that models class transitions

via a network of arcs (the set of possible transitions) and associated probabilities (the

transition probabilities). This method is useful for representing simple grammars such

as the three-class “grammar” of the overlap detector. In particular, since the network of
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arcs is explicitly specified, it is possible to prohibit certain transitions. For overlapped

speech detection, it is almost never the case that two speakers spontaneously and

simultaneously overlap completely. Rather, one speaker will begin to speak and the

other will overlap briefly to interrupt (as with a backchannel or floor-grabber) or the

two speakers will overlap as the floor passes from one speaker to another. In either

case, overlapped speech is preceded and followed by speech, not nonspeech. This

constraint is imposed by the word network used, shown in Figure 5.1.

Non-
speech

Speech

Overlap

2

1

0

a00

a11

a22

a12

a01

a21

a10

Figure 5.1: Finite state machine representing the HMM word network. The transition
between speech and overlap, a12, is the sole tuning parameter of the system.

5.1.2 Parameter Tuning

Whereas the nearfield speech/nonspeech segmenter had three tunable parameters, the

overlapped speech segmenter has only one: the transition penalty between the speech

and overlapped speech classes. This single parameter allows for tuning (though some-

what coarsely) the trade-off of misses versus false alarms—or recall versus precision—for
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overlapped speech detection. As mentioned in Section 3.3, a high precision operating

point is what is desired, since false alarms from the detector increase the baseline

diarization error rate, whereas misses have zero effect. This is the reason, too, why the

segment padding and merging post-processing performed for the speech/nonspeech

segmenter are not performed (and thus not tuned) here. Though high precision is

desirable, ultimately improved DER performance of the diarization engine is the goal,

and this was the optimization criterion for tuning, with held-out data being used as

in Chapter 4.

5.1.3 Overlap Speaker Labeling

To apply the segment information obtained from the overlap detector to the diarization

system, the following procedure is employed. For each frame y, the diarization system

produces speaker likelihoods, p(y|Ck), based on each cluster model Ck. Speaker cluster

posteriors are then computed according to

p(Ck|y) =
p(y|Ck)p(Ck)

p(y)

=
p(y|Ck)p(Ck)∑
k p(y|Ck)p(Ck)

(5.1)

where p(Ck) is calculated as the proportion of data frames assigned to cluster Ck. By

summing the speaker posteriors over the frames of the identified overlap segment, a

single “score” for each speaker is obtained. Typically, the diarization system will have

assigned the segment to the speaker with the highest score, in which case the speaker

with the second highest score is chosen as the other speaker. In the event that the

system has chosen another speaker, then this highest-scoring speaker is selected as the

additional speaker. Note that this procedure limits the number of possible overlapping

speakers to two, but for the corpora of interest two-speaker overlap typically comprises
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80% or more of the instances of overlapped speech [109].

5.1.4 Overlap Exclusion

In addition to using overlap segment information in a post-processing procedure as

described above, this information was utilized in a pre-processing step in which these

segments were excluded from the speaker clustering process of the diarization system.

The expectation was that this would result in purer speaker clusters and thus improve

the diarization system performance by reducing speaker error. Because the speaker

label assignment in the post-processing step utilizes speaker posteriors—which may

improve as a result of the purer clusters—it was hypothesized that this procedure

would benefit from the pre-processing as well.

5.2 Candidate Features

Based on related work (detailed in Section 2.2.1) as well as previous work (see [12] and

[11]), several features were identified as candidates for use in the segmenter. These

include cepstral features, RMS energy, zero-crossing rate, kurtosis, LPC residual energy,

spectral flatness, and modulation spectrogram features. Each feature is presented and

discussed in this section, with a focus on providing motivation for the feature as well

as analyzing potential performance.

5.2.1 Cepstral Features (MFCCs)

As with the speech/nonspeech segmenter, the baseline features for the overlapped

speech segmenter were derived from Mel-frequency cepstra, specifically 12th-order

MFCCs along with first differences. The cepstral coefficients, which serve as a

representation of the speech spectral envelope, should be able to provide information
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about whether multiple speakers are active in a time segment. Recall, for example,

from Section 2.2.1 that Zissman et al. [125] distinguished between single-speaker and

overlapped speech using such features. Many significant differences exist between the

experimental setups, however, and so different performance results were anticipated.

The procedure for the computing the MFCCs was the same as in Section 4.2.2, though

here they were computed using a Hamming window of 60 ms with an advance of 10 ms.

5.2.2 RMS Energy

The energy content of a speech segment will likely be affected by the presence of

additional speakers. At the most basic level, the superposition of speech from two

speakers will produce a signal with higher energy than that of either individual speaker.

This effect is enhanced, however, by the nature of conversational dynamics: in many

cases one or more of the overlapping speakers in a meeting will speak more loudly

to be heard and understood by the other participants. This is most true for the

floor-grabbing scenario, where the interjecting speaker tries to establish dominance;

in the case of backchannels, this is less likely to occur. For this work, the short-time

root-mean-squared energy was used. This is computed according to

ERMS =

√∑N−1
i=0 x[i]2

N
(5.2)

Energy was computed using a Hamming window of 60 ms with an advance of 10 ms.

Also, to compensate for potential channel gain differences, signal waveforms were nor-

malized based on overall RMS channel energy estimates prior to energy computation.

Figure 5.2 shows a plot of the normalized histogram of the RMS energy feature

for the three classes of nonspeech, speech, and overlapped speech using the mixed-

headset audio in a selected meeting, IS1004c, from the AMI meeting corpus [18].
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Figure 5.2: Normalized histograms of the (a) raw and (b) Gaussianized RMS energy for
meeting IS1004c.

Figure 5.2 (a) shows the raw feature distribution while 5.2 (b) shows the distribution

after the Gaussianizing feature transformation. The raw features appear to have an

exponential distribution for each of the three classes, with the nonspeech class being

most concentrated toward zero, followed by the speech and then the overlap class; this

seems to confirm the hypothesis about overlapped speech energy content above. After

Gaussianization, each of these features resembles a normal distribution, demonstrating

the effectiveness of the technique. In addition, the positional relationship of the three

classes is much more clear after the transformation. For example, we see that the

separation between the speech and overlapped classes is much smaller than either with

the nonspeech class.

Given that the transformation effectively produces Gaussian distributions, a useful

measure of separation between the classes (in particular for feature comparison) is the

symmetric Kullback-Leibler distance (KL-2). The KL-2 distance is a symmetrized

version of the Kullback-Leibler (KL) divergence [43], which measures the difference

between two probability distributions P and Q. For a continuous random variable,
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the KL divergence is given as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (5.3)

The KL-2 distance ∆KL is obtained by summing the divergence between P and Q

with the divergence between Q and P ; that is, ∆KL = DKL(P ||Q)+DKL(Q||P ). Note

that, though symmetric, the KL-2 distance does not obey the triangle inequality and

as such is not a true distance. For the data shown here, the minimum KL-2 distance

is between the speech and overlap classes and has value 0.386. Compare this to a

KL-2 distance of 4.376 between speech and nonspeech and 7.44 between overlap and

nonspeech.

5.2.3 Zero-Crossing Rate

The zero-crossing rate (ZCR)—the rate of sign changes along a signal—is commonly

used in speech processing for audio classification. Some common classification tasks

include voiced/unvoiced classification [2], endpoint detection [94], and speech/music

discrimination [108]. The periodicity of voiced speech and music tends to produce a

lower zero-crossing rate than unvoiced speech (e.g., fricatives) and background noise,

making the value useful for such tasks. In the case of simultaneously voiced speech

from overlapping speakers, it is plausible that the superposition of the speech signals,

in addition to increasing energy, will increase the zero-crossing rate. The value may

then be of use for the overlapped speech detection task. The feature was computed

according to

ZCR =
1

2N

N−1∑
i=1

| sgn(x[i])− sgn(x[i− 1])| (5.4)

where N is the number of samples in the applied Hamming window, here set to 50 ms.

Figure 5.3 shows the normalized histograms of the zero-crossing rate for the same
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Figure 5.3: Normalized histograms of the (a) raw and (b) Gaussianized zero-crossing rate
for meeting IS1004c.

meeting as before. The distributions of the raw features exhibit a strong positive skew,

with the majority of values between 0 and 0.2 and the tail extending to about 0.8. In

addition, there appears to be very little difference in the positions of the three class

distributions. On the right, the Gaussianization succeeds in making the distributions

more symmetric and centered about zero. This plot also reveals a slight difference

in distribution positions with nonspeech the farthest to the left followed closely by

speech which is in turn followed closely by overlap. The difference, however, does not

appear significant enough to confirm the hypothesis. In terms of KL-2, the smallest

distance here is between speech and nonspeech (0.014), followed by speech and overlap

(0.126) and lastly nonspeech and overlap (0.216). Note that these results differ by an

order of magnitude with those of the RMS energy feature.
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5.2.4 Kurtosis

The kurtosis of a zero-mean random variable x is defined as

κx =
E[x4]

[E[x2]]2
− 3 (5.5)

where E[·] is the expectation operator. This serves as a measure of the “Gaussianity”

of a random variable, with super-Gaussian, or leptokurotic, random variables having

kurtosis greater than zero and sub-Gaussian, or platykurtotic, random variables

having kurtosis less than zero. Speech signals, which are typically modeled as having a

Laplacian or Gamma distribution, tend to be super-Gaussian. Furthermore, the sum

of such distributions—in line with the central limit theorem—has lower kurtosis (i.e.,

is more Gaussian) than individual distributions. This was observed by LeBlanc and

DeLeon in [58] and Krishnamachari et al. in [50]. As such, signal kurtosis could serve

as an effective feature for detecting overlapped speech. This was one of the features

considered by Wrigley et al. and was one of the better performing features for detecting

speech plus crosstalk; indeed, it was selected by their sequential feature selection (SFS)

algorithm for inclusion in the final feature ensemble for overlapped speech detection.

For this work, signal kurtosis was computed using a Hamming window of 50 ms with

an advance of 10 ms. The normalized histograms of the kurtosis feature for the three

audio classes are presented in Figure 5.4. As with the zero-crossing rate, the raw

kurtosis distributions exhibit a strong positive skew. Here, too, the distributions are

almost completely overlapping. A great distinction between the classes, however, is

apparent upon Gaussianizing the data. The nonspeech class separates from the speech

and overlap classes with KL-2 distances of 0.764 and 1.06, respectively. The speech

and overlap classes, however, exhibit little separation, as is confirmed by their KL-2

distance of 0.05. Generally speaking, these distances are larger than those of the

zero-crossing rate, but much smaller than those of the RMS energy.
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Figure 5.4: Normalized histograms of the (a) raw and (b) Gaussianized kurtosis for meeting
IS1004c.

5.2.5 LPC Residual Energy

Linear predictive coding (LPC) analysis is an important speech processing technique

used in many applications such as speech coding [36], speech activity detection [80],

as well as speech and speaker recognition. LPC is based on the source-filter model of

human speech production, in which glottal excitations act as the source signal that is

filtered by the vocal tract (mouth, tongue, and lips) to produce the output speech

signal. Mathematically, this is represented as

Y (z) = X(z)H(z) (5.6)

where Y (z) represents the output signal, X(z) the excitation source signal, and H(z)

the vocal tract filter. The vocal tract is modeled as an all-pole digital filter of the

form

Ĥ(z) =
G

1 + a1z−1 + a2z−2 + · · ·+ apz−p
=
S(z)

E(z)
(5.7)
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where p is the model order, G is the gain, and E(z) is the excitation input. The predic-

tion coefficients a1, a2, . . . , ap encode information about the formants—the resonances

of the vocal tract. By inverse filtering Y (z) with Ĥ−1(z), the excitation signal can be

obtained. Since Ĥ(z) does not perfectly model the vocal tract, the resulting signal,

termed the residual will also contain a component representing the error associated

with the modeling.

The source-filter model, and consequently the LPC model, is based on single-

speaker speech production. In the case of, say, two overlapped speakers, the output

speech signal will contain formants for each of the speakers, potentially doubling the

number of peaks. Depending on the model order, the LPC coefficients may not suitably

represent this formant structure. In [106], for example, the authors demonstrated

a case where an 8th-order LPC model was unable to model the two peaks between

0 kHz and 800 kHz of overlapped speakers whereas a 16th-order model properly did

so. The result of poor modeling is greater prediction error and, consequently, more

energy in the residual signal. It was hypothesized, then, that LPC residual energy

could serve as a useful feature for this overlapped speech detection task. For this work,

a 12th-order LPC model was used, the coefficients being computed every 25 ms with

an advance of 10 ms.

Figure 5.5 shows the normalized histograms for this residual energy feature. Similar

to the RMS energy of Section 5.2.2, the raw residual energy class distributions appear

exponential in nature. Any separation between the classes, however, is not visible for

this plot. The feature Gaussianization, in addition, was less effective in this case. The

overlap class is noticeably more symmetric, but the other two, especially nonspeech,

have strong positive skew. In addition, the class means are rather distant from the

target value of zero. The reason for both is the large number of raw feature values

very close to zero. The transformation, however, does reveal a noticeable separation

between the classes, with nonspeech farthest to the left, followed by speech, and
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Figure 5.5: Normalized histograms of the (a) raw and (b) Gaussianized LPC residual
energy for meeting IS1004c.

then overlap. The separation, too, supports the hypothesized trend of higher residual

energy for overlapped speech than single-speaker speech. This separation measures

a KL-2 distance of 0.82, larger than any of the above listed distances for these two

classes. The distance between speech and nonspeech is 4.34 and between nonspeech

and overlap is 11.54, the latter also the largest distance for the two classes.

5.2.6 Spectral Flatness

The spectral flatness measure, SFMdB, in dB is given as:

SFMdB = 10 log10

Gm

Am
(5.8)

Gm = N

√√√√N−1∏
i=0

X(i) and Am =
1

N

N−1∑
i=0

X(i) (5.9)

where Gm is the geometric mean, Am is the arithmetic mean, X(i) is the magnitude

of the spectral line i, and N is the number of FFT points or spectral lines. Signals
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that have power evenly distributed across all spectral bands—the most extreme

example being white noise—tend to have high spectral flatness; those that have

power concentrated in a small number of bands—the most extreme example being a

simple sinusoid—tend to have low spectral flatness. As such, spectral flatness, like

zero-crossing rate, is often used as a measure of voicing (e.g., [122]) in speech signals.

Because the measure is related to the shape of the spectrum, spectral flatness may

also be of use in distinguishing single-speaker speech from overlapped speech. In the

case of simultaneous voiced speech, the harmonics of the overlapping speakers will

produce many more concentrated energy bands than for a single speaker. The extent

to which this effect is observed depends on the difference in fundamental frequencies

of the speakers as well as the relative energies, but for many cases the result should

be reduced spectral flatness. The spectral flatness measure was computed over a

Hamming window of 50 ms and using the first 100 bins of a 1024-point FFT.
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Figure 5.6: Normalized histograms of the (a) raw and (b) Gaussianized spectral flatness
for meeting IS1004c.

In contrast to the preceding features, the normalized histograms of the raw spectral

flatness feature (shown in Figure 5.6(a)) have very different distributions for the three
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classes. The nonspeech class—positioned farthest to the right—resembles a normal

distribution with small variance, while the overlap class—positioned farthest to the

left—resembles a large-variance Gaussian with some positive skew. The speech class is

bimodal—the sum of Gaussians representing voiced and unvoiced speech. In addition,

the separation between nonspeech and overlap is quite large: a KL-2 distance of

15.56. The separation between speech and overlap, however, is small—in particular

for voiced speech (the leftmost of the two Gaussian “humps”). For this case, feature

transformation has the seemingly undesirable effect of bringing the class distributions

closer together: the KL-2 distance between nonspeech and overlap is reduced to

7.29. The previously bimodal speech data, however, is successfully transformed into a

normal distribution and the lower spectral flatness of overlap compared to speech is

evident. The KL-2 distance between these two classes is 0.379 and between speech

and nonspeech is 4.184. These distances are quite similar to those for the RMS energy

feature, making for an interesting comparison in terms of feature performance.

5.2.7 Harmonic Energy Ratio

As described in Section 5.2.6, the frequency-domain structure of simultaneous voiced

speech in many cases differs from that of single-speaker speech. Specifically, the

harmonic structure of the speech from the various speakers produces concentrations

of energy in frequency bins associated with the integer multiples of each speaker’s

fundamental frequency. By explicitly analyzing the energy distribution between

harmonic and non-harmonic frequency bands, one should be able to distinguish single-

speaker and overlapped speech. The harmonic energy ratio (HER), which encodes this

information, represents the ratio of harmonic to non-harmonic energy for a frame as

determined by a pitch detector. In the case of overlapped speech, the pitch detector

estimates the fundamental frequency of the dominant speaker. Since the harmonic
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energy of any other speakers will likely lie outside of the regions of harmonic energy

for this speaker, the ratio will be lower than for the single-speaker scenario. The

ratio was computed by selecting each harmonic FFT band (as determined by pitch

detection) plus two adjacent bands, computing the energy and dividing by the energy

of the remaining bands. In the event no pitch was detected, the average pitch value

was used and the ratio computed accordingly. The HER was computed over a window

of 50 ms.
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Figure 5.7: Normalized histograms of the (a) raw and (b) Gaussianized harmonic energy
ratio for meeting IS1004c.

Figure 5.7 shows the normalized histograms of the HER for the example meeting.

As with many other features, the raw harmonic energy ratio exhibits an exponential

distribution for all three classes, with a large number of values concentrated near

zero. This concentration is especially true for the nonspeech class and is explained by

the fact that the “harmonic” bands selected when no pitch is detected contain little

energy since no real harmonics exist. For this plot it also appears that the overlap

probability mass lies slightly to the left of the speech mass, matching the hypothesis

about HER values for these classes. This is slightly more evident when observing the
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Gaussianized feature distributions in Figure 5.7 (b). The nonspeech class is clearly to

the left of speech and overlap, while the overlap class appears slightly to the left of

speech (µolap = 0.30, µsp = 0.35). This small separation between speech and overlap is

also revealed by the KL-2 distance of 0.176, one of the smaller values for the features

examined.

5.2.8 Diarization Posterior Entropy

The diarization posterior entropy (DPE) [109][11], represents the entropy of frame-level

speaker posteriors as determined by speaker likelihoods output by the diarization

system. The posteriors, computed according to Equation 5.1, indicate the confidence

of the system in identifying the speaker. For single-speaker speech, confidence should

be high and a single speaker model should give high probability while the remainder

give significantly lower values and low entropy. In overlapped speech, by comparison,

there should be lower, more evenly distributed probabilities among the overlapping

speakers and, as a result, the entropy should be higher. To compute the feature, the

frame-level posteriors were first filtered with a Hamming window of 500 ms. At each

frame y, the resulting values were used to compute the entropy according to

H(p(Ck|y)) =
∑
k

p(Ck|y) log
1

p(Ck|y))
(5.10)

Lastly, the entropy was normalized by the maximum possible entropy given the M

speaker classes, log(M). This was done to make values comparable between meetings,

which varied in number of hypothesized speakers.

As with the previous features, normalized histograms for the diarization posterior

entropy are shown for meeting IS1004c. Unlike the other features, the raw DPE

class distributions possess a large negative skew, particularly in the case of speech

and overlap. In terms of positioning, the nonspeech class is farthest to the right,
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Figure 5.8: Normalized histograms of the (a) raw and (b) Gaussianized diarization posterior
entropy for meeting IS1004c.

followed by overlap and, lastly, speech. The ordering conforms to the initial hypothesis:

overlapped speech exhibits a slightly higher entropy than single-speaker speech. The

nonspeech class has a much higher, though lower-variance, entropy than both speech

and overlap since such data is modeled poorly by all speaker models. As with the

spectral flatness measure, the Gaussianization procedure, though making the data

more normally distributed, appears to bring the class distributions closer to one

another. The KL-2 distance between speech and overlap for this transformed feature

is 0.188, comparable to that of the harmonic energy ratio.

5.2.9 Modulation Spectrogram Features

The modulation spectrogram (MSG) provides an alternative and complementary

representation of the speech signal with a focus on temporal structure. Developed

by Kingsbury et al. and detailed in [44], the spectrogram was originally designed to

capture key aspects of the auditory cortical representation of speech. These include

critical-band frequency resolution, adaptation in the form of automatic gain control,
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sensitivity to low-frequency amplitude modulations, and the enhancement of spectro-

temporal peaks. Using features derived from this spectrogram, the authors showed

the stability of the representation to noise and reverberation for automatic speech

recognition. The features were later adopted for use in other speech processing tasks

such as speaker verification [45], speaker diarization [112], and laughter detection [47].

Given the relation these tasks have to overlapped speech detection, and given that

noise and reverberation are serious issues for this detection task, it seems reasonable

that the MSG features may be of use here as well.

The features are computed as follows. The spectrogram of the signal is generated

using an FFT with step size of 10 ms and an analysis window of 25 ms. The spectrogram

is then divided and integrated into 18 subbands according to the Bark scale. A square

root is applied to the sequence of framewise subband energies, which are then processed

by two different filters—a 0-8 Hz filter and an 8-16 Hz filter—each of analysis length

equal to 210 ms. To complete the process, feedback automatic gain control is applied

to individual subbands and the features are locally normalized to be zero-mean and

unit-variance. For each frame, the MSG features capture the low-pass and band-pass

behavior of the spectrogram of the signal within each of the 18 subbands, resulting in

a total of 36 features per frame.

5.3 Experiments

A series of experiments were conducted to evaluate the performance of the various

candidate features mentioned above. As with multispeaker SAD, the experiments are

organized into three groups, as follows:

1. Single-feature combination to observe the performance of each feature when

combined with the baseline features;
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2. Feature selection, in which feature combinations were determined using the

backward elimination algorithm described in Section 3.2.3; and

3. Evaluation of the final system on unseen validation test data.

5.3.1 Single-Feature Combination

For this initial set of experiments, each candidate feature was combined with the

baseline MFCCs to observe and analyze the improvement obtained by each with regard

to both detection of overlapped speech and speaker diarization. The various systems

were evaluated using the summed nearfield and SDM conditions of the single-site test

set (“AMI Single-site”) defined in Table 3.2 of Section 3.3.3 and the SDM condition of

the multi-site test set (“AMI Multi-site”) defined in the same table. In the single-site

case, training of the segmenter was performed using 22 meetings, ranging in duration

from 13 to 40 minutes for a total of 10 hours of audio. The tuning parameter was

optimized using held-out data consisting of 4 additional meetings from this site. For

the multi-site evaluation, the training data consisted of 40 meetings ranging in duration

from 13 to 58 minutes and totaling 20 hours. The tuning data in this case consisted

of 10 meetings. The list of meetings for each set can be found in Appendix A. The

overlapped speech segments identified for training, tuning, and testing were obtained

using forced alignments of nearfield speech to reference transcriptions, a procedure

performed by the SRI DECIPHER recognizer.

Results

The results for the three experimental conditions are found below and presented

separately.
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Single-site nearfield

Table 5.1 shows the results for the single-site nearfield condition. The first column

gives the system, as identified by the features in use. The “∆” refers to the inclusion

of the feature first differences, which was done for all combinations. The “Reference

segmentation” presented in the final row corresponds to using the reference overlap

segmentation information obtained as described above. The next major column divi-

sion contains the detection performance metrics of precision, recall, and F-score. The

last column division contains various DER improvement metrics. “Labeling” refers to

the improvement obtained solely by adding the additional overlap speaker labels to the

detected segments (segment post-processing). “Exclusion” refers to the improvement

obtained solely by excluding detected overlapped speech from the speaker clustering

portion of the diarization algorithm (segment pre-processing). “Both” refers to the

gain made by doing both procedures. This last set of metrics is also presented in the

bar graph of Figure 5.9. The first thing to note is the high precision performance of

Rel. DER Imp. (%)
System Prec. Recall F-Score

Labeling Exclusion Both

MFCC + ∆ 0.76 0.15 0.26 5.14 -5.32 -0.66
MFCC + RMS Eg + ∆ 0.78 0.15 0.25 5.58 3.34 8.48
MFCC + Spec Flatness + ∆ 0.80 0.17 0.29 6.95 1.76 8.53
MFCC + HER + ∆ 0.83 0.15 0.26 6.64 4.00 10.29
MFCC + LPC Eg + ∆ 0.77 0.15 0.25 5.10 3.60 8.44
MFCC + MSG + ∆ 0.82 0.21 0.33 8.09 4.26 11.47
MFCC + DPE + ∆ 0.69 0.19 0.30 4.66 -5.27 -0.97
MFCC + Kurtosis + ∆ 0.82 0.04 0.07 1.36 1.93 3.16
MFCC + ZCR + ∆ 0.78 0.12 0.21 4.09 -2.02 1.67

Reference segmentation - - - 26.59 10.99 37.10

Table 5.1: Performance comparisons on single-site nearfield data for single-feature
combination systems. The “∆” indicates first differences were included in the feature set.

all systems. Recall from Section 3.3 that high precision was important for systems
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performing this particular segmentation task. These results show that, in seeking

to maximize DER improvement (the tuning optimization criterion), a high precision

operating point is achieved, highlighting the connection between the two. The highest

precision of 0.83 is obtained by the HER feature while the lowest, 0.69, is obtained

by the DPE feature. In contrast to precision, recall for the systems is very low, a

consequence of the need to trade off between the two. The recall values are generally

very similar, with the exception of the maximum of 0.21 from the MSG features and

the minimum of 0.04 from kurtosis, the two major outliers. These MSG features also

seem to strike the best balance between precision and recall as indicated by F-score,

since they achieve the maximum of 0.33 for this evaluation condition. Though F-scores
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Figure 5.9: Bar graph of performance results from Table 5.1 (reference segmentation
results omitted).

for the different features are generally similar, the results in terms of relative DER

improvement vary significantly. For segment labeling, the best performing system
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is the one with MSG features, yielding a relative improvement of 8.09% while the

worst performing feature, kurtosis, yields an improvement of only 1.36%, a difference

not deemed statistically significant. The performance differences are even greater

where overlap exclusion is concerned, with some features (MFCC, DPE, and ZCR)

actually worsening the diarization. This is somewhat curious as all three features

produce significant improvements in the labeling case. For the DPE feature this

could be explained by the relatively low precision, but the hypothesis clearly does

not hold for the other two. Further investigation reveals that in each case a single

meeting—IS1008d for MFCC and IS1000a for DPE and ZCR—degrades significantly

(more than doubles) in terms of speaker error when overlap exclusion is performed.

This indicates a certain sensitivity of the diarization algorithm to data selection for

these meetings. For cases in which both labeling and exclusion produce positive

improvements, even larger improvements are gained when both are employed. The

MSG features system remains the best under this scenario with an improvement of

11.47% relative while the worst is the DPE feature system with -0.97%, though this is

entirely due to the poor overlap exclusion results. Comparing the three scenarios in

both the table and in Figure 5.9 reveals that more of the overall improvement comes

from the labeling than the exclusion. Last of note here is that the MSG system, which

was best for all three cases, lags far behind the performance for ideal segmentation

with the references.

Single-site farfield

Table 5.2 and Figure 5.10 present the results for the single-site farfield condition in

the same format as the previous experiments. For this condition, the ZCR feature

obtains the highest precision of 0.85 while the DPE feature once again has the lowest

precision, in this case 0.54. This range in precision is wider than the previous one and

the average value across the features is lower. This trend is to be expected, though,
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since the farfield condition introduces greater variability in the form of noise and

room reverberation. The recall values split into three groups, with low performers

around 0.08, the majority around 0.15, and high performers around 0.19. The highest

recall is obtained by the RMS energy feature while the lowest is by the HER and

DPE features. As with recall, the F-scores divide into three groups around 0.16, 0.24,

and 0.3. One of the high performers is the set of MSG features, which once again

appears to strike a good balance between precision and recall. With regard to relative

Rel. DER Imp. (%)
System Prec. Recall F-Score

Labeling Exclusion Both

MFCC + ∆ 0.76 0.13 0.23 3.19 4.81 7.94
MFCC + RMS Eg + ∆ 0.71 0.20 0.31 3.58 3.32 6.93
MFCC + Spec Flatness + ∆ 0.78 0.15 0.25 3.61 4.46 8.04
MFCC + HER + ∆ 0.70 0.08 0.15 1.07 3.64 4.98
MFCC + LPC Eg + ∆ 0.57 0.15 0.24 -0.36 1.72 1.27
MFCC + MSG + ∆ 0.82 0.19 0.31 5.11 5.63 10.54
MFCC + DPE + ∆ 0.54 0.08 0.14 -0.26 2.08 1.89
MFCC + Kurtosis + ∆ 0.81 0.09 0.16 2.34 1.89 4.36
MFCC + ZCR + ∆ 0.85 0.14 0.23 4.26 1.85 5.76

Reference segmentation - - - 18.71 7.42 27.07

Table 5.2: Performance comparisons on single-site farfield data for single-feature combi-
nation systems. The “∆” indicates first differences were included in the feature set.

DER improvement, the MSG features, as before, yield the greatest improvement in

all three categories. The least improvement in all three categories is also obtained

by one feature, the LPC residual energy. Previously this feature had average per-

formance relative to the others. This significant degradation suggests a relatively

higher sensitivity to reverberation and noise than other features. The improvements

made by overlap labeling in this case are lower than with the nearfield audio. Indeed,

two features—LPC residual energy and diarization posterior entropy—now increase

the DER slightly (though not to a significant level). For exclusion, we no longer
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Figure 5.10: Bar graph of performance results from Table 5.2 (reference segmentation
results omitted).

see negative improvements and, related to this, the average rate of improvement

has increased. Also, as is most evident in Figure 5.10, the contribution to the over-

all improvement by labeling and exclusion is now roughly the same. This is not

true, however, when using the reference segmentation, where the ratio is similar to

that of the nearfield condition. The reference segmentation here has a smaller perfor-

mance gap with the best system, but the ideal gains to be made have also been reduced.

Multi-site farfield

The final single-feature combination results are shown in Table 5.2 and Figure 5.11

and pertain to experiments under the multi-site farfield evaluation condition defined

in Section 3.3.3. In terms of precision, the highest performance is obtained by the
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modulation spectrogram features and the lowest, as in the other two cases, by the

DPE feature. There is also a noticeable reduction in the general precision performance

Rel. DER Imp. (%)
System Prec. Recall F-Score

Labeling Exclusion Both

MFCC + ∆ 0.53 0.07 0.13 -0.43 5.74 5.19
MFCC + RMS Eg + ∆ 0.61 0.28 0.38 -0.18 5.92 5.83
MFCC + Spec Flatness 0.67 0.19 0.30 1.28 4.55 6.59
MFCC + HER + ∆ 0.57 0.07 0.12 0.03 7.75 7.51
MFCC + LPC Eg + ∆ 0.65 0.21 0.31 0.95 6.19 7.42
MFCC + MSG + ∆ 0.71 0.15 0.25 1.31 0.85 1.89
MFCC + DPE + ∆ 0.51 0.18 0.26 -1.46 6.38 5.13
MFCC + Kurtosis + ∆ 0.64 0.07 0.13 0.43 8.42 8.79
MFCC + ZCR + ∆ 0.67 0.08 0.15 0.79 5.19 6.04

Reference segmentation - - - 15.75 12.48 27.62

Table 5.3: Performance comparisons on multi-site farfield data for single-feature combina-
tion systems. The “∆” indicates first differences were included in the feature set.

as compared to the other two conditions, with the highest precision being 0.71 and the

lowest 0.51. This is again to be expected with the additional increase in variability due

to the different recording environments of the meetings. For recall, the best feature is

once again RMS energy, with a performance of 0.28, while MFCCs, HER, and kurtosis

all have the lowest performance of 0.07. Furthermore, this high recall for the RMS

energy is better than that of any of the previous systems. This can also be said of the

F-score of this same feature, the result of such a high recall. Similarly, the low recall

of the HER feature causes it to yet again produce the lowest F-score.

The results for relative DER improvement are rather different for this condition

than the previous two. In the other two cases, the MSG features yielded the largest

improvement across all three categories. Here, the MSG features give the best results

for overlap segment labeling (though marginally), but the features actually perform

quite poorly for overlap exclusion and for the two together. In addition, it is the
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kurtosis feature—one of the lowest performers previously—that yields the greatest

improvement for these categories.

Further investigation reveals that the problem comes from the tuning of the speech-

to-overlap transition penalty. Running an oracle experiment using the MSG features

in which the optimal penalty was selected yielded relative DER improvements of

1.77%, 9.06%, and 10.22%, corresponding to overlap labeling, overlap exclusion, and

the two together. In addition, the selected tuning parameter value differed greatly

from the optimal in this multi-site case whereas for the single-site case the selected

and optimal were the same. Of course, this is not surprising, given the better match of

the tuning data to test data in the latter scenario, but the sensitivity of the features

to tuning should be of concern. The feature transformations performed were in part

intended to address this issue, but to some extent it still persists. The problem of

generalizing to unseen data, as mentioned in Section 4.3.3, is always present, however,

so the challenge becomes employing techniques to mitigate its effects.

That being said, the majority of the candidate features actually perform fairly

well in this multi-site condition. With the exception of the MSG features, the lowest

relative DER improvement with overlap exclusion is 4.55% and overall is 5.13%, which

are higher than in the single-site condition. The improvements made by overlap

labeling have decreased further still compared to the other two conditions, but the

improvements from overlap exclusion have increased, resulting in only a small decrease

in overall improvement. The overall potential gains, as indicated by the reference

segmentation results, remain about the same as in the farfield single-site condition,

but the contribution by labeling has decreased while the contribution by exclusion has

increased, just as with the automatic systems. Lastly, the performance gap between

reference and the best system has increased dramatically for the overlap segment

labeling, but only slightly for exclusion and overall.

116



Chapter 5. Overlapped Speech Handling for Improved Speaker Diarization

-2

0

2

4

6

8

10
R

el
at

iv
e 

D
ER

 Im
p

ro
ve

m
e

n
t 

(%
)

Feature Combination

Multi-site farfield performance

Labeling

Exclusion

Both

Figure 5.11: Bar graph of performance results from Table 5.3 (reference segmentation
results omitted).

5.3.2 Feature Selection

The results of the single-feature combination experiments generally confirmed the util-

ity of the candidate features for overlapped speech detection. Additional experiments

were then performed to observe the features in combination and determine a good

subset of features for the overlap detection system. As explained in Section 3.2.3,

the backward elimination algorithm was chosen to determine this subset. Beginning

with the full set of features, the worst-performing feature was removed from the

collection at each step, one at a time. The evaluation criterion was again relative DER

improvement, in this case using both overlap segment labeling and overlap exclusion.

Also note that, since the cepstral features were regarded as the baseline, they were not

considered for removal. Given the relatively small number of features, the process was
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run until only these baseline features remained and the best performing combination

was then identified. The same training, tuning, and evaluation data was used for these

experiments as for the ones in Section 5.3.1.

Results

As with single-feature combination, experiments were performed under three experi-

mental conditions and are presented separately.

Single-site nearfield

Table 5.4 shows the results for the single-site nearfield evaluation condition. The

table structure is similar to the one for Section 5.3.1, the one difference being the

first column here identifies the removed feature for a step in the elimination process.

The steps proceed sequentially down the rows, starting with the full set of features

(represented as “None” being removed), until all but the baseline MFCCs have been

removed. As with the previous experiments, first differences are included as features

for all systems.

As can be seen in the table, the algorithm begins with all of the features and

successively removes spectral flatness, zero-crossing rate, kurtosis, RMS energy, the

modulation spectrogram features, diarization posterior entropy, LPC residual, and

finally the harmonic energy ratio. This order of removal, it should be noted, only

roughly follows the the reverse order of performance for the features in single-feature

combination. DPE (the worst performing feature), for example, is removed quite late

in the process while spectral flatness (one of the best features) is removed first. A

reason for this could be that the posteriors, being not directly generated from the

acoustic data, are less correlated to other features and thus possess utility; other

features, such as RMS and LPC residual energy, are highly correlated and thus may

not both be necessary. Looking at overlap detection metrics, an interesting trend is
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Rel. DER Imp. (%)
Removed Feature Prec. Recall F-Score

Labeling Exclusion Both

None 0.78 0.31 0.45 10.02 -12.70 -3.16
Spec Flatness 0.79 0.25 0.38 7.91 8.09 15.03
ZCR 0.78 0.29 0.42 8.84 7.38 14.51
Kurtosis 0.77 0.27 0.40 7.87 3.78 11.52
RMS Eg 0.80 0.25 0.38 9.14 7.87 15.78
MSG 0.79 0.20 0.31 7.25 3.82 9.89
DPE 0.78 0.19 0.30 7.16 -3.25 3.21
LPC Eg 0.83 0.15 0.26 6.64 4.00 10.29
HER 0.76 0.15 0.26 5.14 -5.32 -0.66

Reference segmentation - - - 26.59 10.99 37.10

Table 5.4: Performance comparisons on single-site nearfield data for feature combinations
determined using backward elimination. Each row represents a subset created by the
removal of the one feature—listed in the first column—that produces the greatest gain or
least degradation.

observable. The precision performance stays relatively stable as features are removed,

while recall and, consequently, F-score performance decrease with the removal of

features. The one notable exception is the high precision of 0.83 achieved when the

LPC residual energy feature is removed.

As with recall and F-score, the relative DER improvement from labeling generally

decreases as features are removed, with the highest performance obtained by using

all features. The trend is much less consistent with exclusion, however; this is most

notable in the case of the negative improvement of -12.70% when the same set of all

features is used. The removal of the spectral flatness feature, a modest performer in

the corresponding single-feature combination condition, restores the trend and gives

the best performing combination of 8.09%. The combination giving the best overall

improvement is achieved after removing the RMS energy and consists of MFCCs, MSG,

DPE, LPC residual energy, and HER. The combination yields a relative DER improve-

ment of 15.78%, higher than the best single-feature combination system—including
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the MSG features—which yielded an improvement of 11.47%. Indeed, for each of the

DER improvement categories, the best performing system exceeded the performance

of the best single-feature combination system for that category and, more generally,

the multiple-feature combinations outperformed the single-feature ones. This served to

narrow the performance gap between the automatic and reference results, in particular

for overlap exclusion. Lastly, it is interesting to note that the best overall relative

DER improvement follows a decrease in improvement from a previous step. This

shows that stopping when no improvement or negative improvement is obtained, as is

an alternative to running the removal process to completion, can sometimes produce

poorer results.

Single-site farfield

The results using the farfield single-site data are presented in Table 5.5 in the same

format as above. Again we see that the single-feature combination performance does

not reliably predict order of removal, as evidenced once again by the DPE feature

and, rather surprisingly, the MSG features. The removal of the MSG features in

the previous experiment nearly halved the overall DER improvement, but here its

removal leads to the best performing combination in terms of exclusion and overall

improvement: MFCCS, LPC residual energy, kurtosis, DPE, ZCR, HER, and spectral

flatness. As with the previous case, a noticeable trend of decreasing recall and F-scores

with the removal of features exists. The pattern for precision consists of a steady level

until the maximum value of 0.84 is obtained when the DPE feature is removed, followed

by a small decrease thereafter. The maximum recall and F-score of 0.25 and 0.37,

respectively, are both achieved with the removal of the RMS energy feature. Generally

speaking, the values for overlap detection metrics of this farfield data are lower than

those of the corresponding nearfield set. To some extent this is to be expected, as the

farfield data presents a greater challenge in terms of acoustic variability from noise
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Rel. DER Imp. (%)
Removed Feature Prec. Recall F-Score

Labeling Exclusion Both

None 0.74 0.23 0.35 4.20 -5.40 -0.55
RMS Eg 0.73 0.25 0.37 4.55 8.07 12.82
MSG 0.71 0.23 0.34 3.48 12.85 16.33
LPC Eg 0.72 0.21 0.33 3.29 7.84 10.64
Kurtosis 0.70 0.20 0.31 3.35 7.16 10.61
DPE 0.84 0.18 0.30 5.07 7.68 12.43
ZCR 0.80 0.17 0.28 4.20 4.29 8.49
HER 0.78 0.15 0.25 3.61 4.46 8.04
Spec Flatness 0.76 0.13 0.23 3.19 4.81 7.94

Reference segmentation - - - 18.71 7.42 27.07

Table 5.5: Performance comparisons on single-site farfield data for feature combinations
determined using backward elimination. Each row represents a subset created by the
removal of the one feature—listed in the first column—that produces the greatest gain or
least degradation.

and reverberation. As with the detection metrics, the relative DER improvement

metric for overlap labeling exhibits reduced performance for this data. Recall, though,

that in the single-feature combination experiments, labeling performance also declined

between nearfield and farfield conditions. This was accompanied by an increase in

overlap exclusion performance, which also occurs here to some extent. There is also

the trend of decreased relative DER improvement as features are removed, with the

notable exceptions of the maximum for each of the improvement categories. The

maximum exclusion DER improvement is most notable, as it appears that the auto-

matic system outperformed the reference segmentation. Indeed, a number of exclusion

performance values exceed the presumed “best” performance obtained using this

reference segmentation.

How can this be? The answer, after detailed analysis, it seems, is that not all

overlap segments are created equal. Though adulterated by one or more additional

speakers, some segments of overlapped speech provide useful information for speaker
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modeling and, as a result, when these segments are excluded, the speaker error is

higher. Indeed, this phenomenon, was the basic principle of the “usable” speech

co-channel speech detection work described in Section 2.2.1 and appears to hold true

in the context of diarization as well. This is particularly plausible here given the

method with which overlapped speech was identified: using nearfield forced alignment.

The relative energy content of each overlapping speaker is not known, so the extent to

which the dominant speaker is corrupted could be quite small. The automatic system,

detecting many fewer overlap segments in general, removes such “usable” segments

less frequently and the DER improvement is thus higher. In some cases, then, the

reference segmentation is less than “ideal”.

Multi-site farfield

Table 5.6 shows the results for the multi-site farfield evaluation condition. It is inter-

esting to see that the best performance for precision, recall, and F-score is produced

in each case with a very small number of the candidate features (two for precision,

one for recall, and one for one of the two best F-scores). The combination giving

the best recall and F-score performance, in addition, represents an exception to the

repeated trend of reduced performance in these categories as features are removed.

This combination occurs after the removal of the MSG features, which, in contrast

to the other evaluation conditions, produced very low DER improvements for this

data. These features do appear to be useful for DER improvement, however, as they

remain in the feature combinations giving the best labeling, exclusion, and overall

relative DER improvement. The combinations giving the best exclusion and overall

DER improvement also utilize a small number of the features for this condition.

As with the single-site farfield condition, a number of the combinations give

performance on overlap exclusion which exceeds that of the reference segmentation.

Further investigation reveals that the same phenomenon is at work here, namely
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Rel. DER Imp. (%)
Removed Feature Prec. Recall F-Score

Labeling Exclusion Both

None 0.70 0.24 0.36 2.38 13.27 16.20
ZCR 0.72 0.25 0.37 2.50 12.45 15.04
LPC Eg 0.70 0.26 0.38 2.56 9.25 11.93
Kurtosis 0.70 0.21 0.33 2.35 11.38 14.59
Spec Flatness 0.66 0.24 0.35 1.89 16.39 18.19
DPE 0.70 0.19 0.30 1.83 21.21 23.25
HER 0.77 0.15 0.25 2.50 5.25 8.33
MSG 0.61 0.28 0.38 -0.18 5.92 5.83
RMS Eg 0.53 0.07 0.13 -0.43 5.74 5.19

Reference segmentation - - - 15.75 12.48 27.62

Table 5.6: Performance comparisons on multi-site farfield data for feature combinations
determined using backward elimination. Each row represents a subset created by the
removal of the one feature—listed in the first column—that produces the greatest gain or
least degradation.

that usable—and, more importantly, useful—overlapped speech is being excluded.

The result is that the overall performance of the best system has a relatively small

performance gap with the “ideal” system results. The feature combination for the

final overlapped speech handling system was chosen using the best combination for

this condition, namely MFCCs, RMS energy, MSG features, and the harmonic energy

ratio.

5.3.3 Final System

As with the multispeaker SAD system, the overlapped speech handling system was

evaluated on an independent test set for validation. This set consisted of 10 randomly

selected meetings from the AMI corpus (the “AMI Validation” set listed in Table

3.2) using single distant microphone recordings. For this test the overlapped speech

detector was trained using the best feature combination from the multi-site farfield

condition—namely, MFCCs, RMS energy, harmonic energy ratio, and modulation
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spectrogram features. In addition, the same 40 training and 10 tuning meetings for

the condition were used here.

Results

The results for the final system are presented in Table 5.7. In addition, results for the

baseline MFCCs and the reference segmentation are included. As with the development

data, the baseline MFCCs produce low performance in terms of precision, recall, and

F-score. Previously, a small gain was made from performing overlap exclusion with

these features, but in this case little difference results.

Rel. DER Imp. (%)
System Prec. Recall F-Score

Labeling Exclusion Both

Baseline MFCCs 0.56 0.04 0.07 0.23 -0.06 -0.09
Combination 0.58 0.19 0.28 0.23 -0.09 -0.66

Reference segmentation - - - 13.09 9.91 23.46

Table 5.7: Performance results on validation data for the baseline MFCC features and the
best feature combination in Table 5.6.

With regard to the combined-feature system, a major difference is evident. Preci-

sion, recall, and F-score are all greater for this feature set than the baseline features,

but the precision performance for the system here is considerably lower than for any

feature combination with the development data. The result is that no significant

gains are made by the labeling or exclusion procedures. This stands in contrast to the

reference segmentation, where gains comparable to the ones made on the previous

multi-site test set are achieved.

How do we account for this difference? Investigation of the tuning parameter

with oracle experiments revealed no significant difference between the automatically

obtained and the optimal parameter values. Evaluation of other feature combinations

in the selection process similarly yielded no improvements. An analysis of performance
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Figure 5.12: Bar graph of meeting-level performance on validation data for the “Combina-
tion” system of Table 5.7.

on the meeting level, as shown in Figure 5.12, however, did help to explain the

results. The bar graph shows that for four meetings—ES2003c, IN1014, IS1002d,

and IS1004d—substantial performance improvements are obtained with the overlap

handling procedure, the major contribution once again being from overlap exclusion.

This first meeting, in particular, improves by nearly 30% relative. For three other

meetings—EN2006b, ES2002a, and TS3010c—no significant change is observed. The

remaining three meetings degrade in performance, most notably TS3007a, which

worsens by nearly 40% and thus strongly influences the average performance shown in

Table 5.7.

For comparison, Figure 5.13 shows a similar bar graph for the multi-site devel-

opment meetings. Here, too, there are select meetings—namely, EN2009b, IN1008,

IN1012, and TS3009c—which benefit substantially (indeed, more than for the valida-
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Figure 5.13: Bar graph of meeting-level performance on development data for the best
feature combination system of Table 5.6.

tion set) from this overlap handling procedure. Interestingly one meeting, IS1008b,

improved from overlap exclusion while significantly worsening from overlap labeling.

As with the validation set, some meetings degrade in performance—here, EN2003a

and ES2008a—but in this case only moderately. Lastly, there exist meetings here as

well which are not significantly affected by the procedure.

This trend is further illustrated by testing on still more meetings. Figure 5.14

shows scatter plots of relative DER improvement due to labeling (Figure 5.14 (a))

and exclusion (Figure 5.14 (b)) versus percent overlapped speech for several meetings

including those from the multi-site development and validation test sets. For labeling,

a strong positive correlation exists between DER improvement and the overlapped

speech percentage in the meeting, as should be expected for a reasonably performing

system. In addition, though the percentage changes achieved by labeling alone are
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generally too small to be significant, the changes that are significant tend be positive

and, hence, improvements. Regarding exclusion, no such correlation is evident. The

development data meetings appear concentrated in the positive portion of the relative

DER improvement axis while the validation meetings are less so; this trend is also

seen for overlap labeling. For the data as a whole, though, the majority of changes

in DER are the result of improvements. The distribution of these improvements is

bimodal, with a peak in the 2% area (not statistically significant) and one around

13%.

5.4 Discussion

The work presented in this chapter sought to address the issue of overlapped speech

in meeting audio processed using speaker diarization. As in Chapter 4, an HMM

based audio segmenter was utilized as an enhanced pre-processing component to the

target application. In addition to MFCCs, nine features were investigated for the

segmentation task across three conditions: single-site nearfield, single-site farfield,

and multi-site farfield. The rankings for the single-feature combinations for the three

conditions are shown in Table 5.8. The results reveal that for many features it is

difficult to predict relative performance when moving from one condition to the

other, evidence of the significance of the variability differences between the conditions.

Variability also played a role in the final validation results, as it was shown that

significant variation existed between relative DER improvements for a large number

of test meetings, in particular for overlap exclusion.

This large variation is likely evidence of the sensitivity of the diarization algorithm

to meeting variability, a phenomenon documented in the literature. Otterson in [83],

for example, when analyzing the effect of various location features for improving

speaker diarization noted that the range between the best and worst scores using a
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Single/Near Single/Far Multi/Far

MSG MSG Kurtosis
HER Spec Flatness HER

Spec Flatness MFCC LPC Eg
RMS Eg RMS Eg Spec Flatness
LPC Eg ZCR ZCR
Kurtosis HER RMS Eg

ZCR Kurtosis MFCC
MFCC DPE DPE
DPE LPC Eg MSG

Table 5.8: Rankings of features in the single-feature combination scenario for the three
development testing conditions.

feature was up to 50% and no lower than 20.7%. Mirghafori and Wooters in [70],

identified two types of audio files which bring about this sensitivity: “nuts”, which

exhibit unusually high DER (and, thus, are hard to “crack”), and “flakes”, which are

very sensitive to tuning parameters. Nuts were characterized by many speakers and a

large number of speaker turn changes, while flakes were not so easily identified. In

addition to tuning parameters, meetings may also be sensitive to data selection, as

in the case of overlap exclusion. This is partly explained by the removal of usable

overlapped speech as discussed in Section 5.3.2, but this accounts for degradations

in performance and not improvements as witnessed here. Regardless, the results in

Figure 5.14 indicate that significant improvements can be obtained, at least for overlap

exclusion, on a number of meetings. The challenge becomes identifying the factors

which limit the range of meetings for which this occurs.
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Figure 5.14: Scatter plots of relative DER improvement for (a) Segment labeling and (b)
Overlap segment exclusion versus percent overlapped speech for several meetings from the
AMI corpus. “Sampled” refers to a sampling of meetings across the percent overlapped
speech spectrum; “Validation” denotes the validation meetings; and “Development” refers
to meetings from the multi-site development test set of Section 5.3.2.
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Conclusion

The work in this thesis emerged from the identification of two issues, distinct but

related, that affect the processing of speech in the multiparty meeting domain:

• Crosstalk—the presence of speech on a personal microphone channel not originat-

ing from the microphone wearer—can erroneously be processed by an automatic

speech recognition system, often producing word hypotheses that represent

insertion errors from the local speech perspective. These errors can propagate

beyond the crosstalk region as well due to the context dependencies of N -gram

language models.

• Overlapped speech, in failing to be identified by state-of-the-art diarization

systems, produces missed speech errors which can constitute a significant portion

of the error of these well-performing systems. In addition, this speech can

negatively affect speaker modeling in the clustering process, increasing speaker

error as a result.

To address these issues, the common approach of audio segmentation was adopted.

In the case of crosstalk, local speech on nearfield audio was to be segmented for
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multispeaker SAD. In the case of overlapped speech, this speech was to be segmented

separately from single-speaker speech to (on the pre-processing end) be excluded

from speaker clustering and (on the post-processing end) be identified for overlapped

speaker labeling. The HMM framework formed the basis of the two audio segmenters

and a primary focus was to identify appropriate features for segmenting the relevant

audio classes for improving ASR and speaker diarization.

6.1 Multispeaker SAD

For ASR (Chapter 4), an HMM based segmenter was designed and implemented that

incorporated both standard cepstral features as well as cross-channel features. The

latter were believed to be important to distinguish local speech from crosstalk due

to the cross-channel nature of the phenomenon. The features explored consisted of

the normalized maximum cross-channel correlation, the log-energy difference, and

time-delay-of-arrival values. To address the issue of a variable number of channels in

the meetings, simple statistics (maximum, minimum, mean, and range) of the various

feature values were used rather than the values themselves.

In a series of development experiments, each individual feature in combination

with the baseline MFCCs achieved significant improvements over this baseline, and the

optimal combination of MFCCs, NMXCs, and LEDs produced still more gains. For

final validation, the improvements were reduced, but still significant at 9.2% relative

WER improvement. Furthermore, analysis of errors and the correlation between error

metrics indicated that the source of improvement came from reduced insertion errors

and thus reduced crosstalk false alarms by the segmenter. Lastly, additional analysis

revealed that a significant portion of the remaining errors are due to deletions of

backchannels, which may be difficult to detect and lower in importance than other

tokens.
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6.2 Overlapped Speech Handling

For speaker diarization, a similar segmenter was designed and implemented. In this

case, however, features related to energy, harmonics, and the spectral envelope of the

speech signal were explored in addition to the baseline MFCCs. Such features may

be used to exploit the difference in structure of single-speaker and overlapped speech.

The specific features investigated were RMS energy, zero-crossing rate, kurtosis, LPC

residual energy, spectral flatness, harmonic energy ratio, diarization posterior entropy,

and modulation spectrogram features, and evaluation occurred across three conditions—

single-site nearfield, single-site farfield, and multi-site farfield—with the intention of

controlling for variability as occurs across sites and across channels.

Again, a series of system development experiments were performed to identify

effective features for the task. Feature performance varied across condition, however,

to the extent that the best feature in one case—the modulation spectrogram features—

became the worst in another. Nevertheless, significant improvements of around

10% could be made when combining individual features with the baseline MFCCs.

When combining multiple features, this number rose as high as 23%, but testing on

validation data initially indicated no such gains. A closer analysis of the data revealed

that a high variability exists for performance across meetings—in particular for the

overlap exclusion pre-processing technique—but a number of meetings tend to benefit

significantly from the procedure.

6.3 Contributions and Future Work

This thesis furthered the work on audio segmentation in meetings, providing a sys-

tematic analysis of features for the segmentation of both local speech for nearfield

audio and overlapped speech for farfield audio. The use of TDOA values, though
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common for multi-microphone farfield speech processing, appears to not have been

successfully employed in nearfield segmentation previously. The use of the harmonic

energy ratio and modulation spectrogram features for overlapped speech detection, too,

seems to appear first here. This overlap work, in addition, stands out, as little success

has been made thus far in monaural overlapped speech detection for farfield audio,

especially in the meeting domain. As discussed in Section 2.2.1, most efforts toward

overlapped speech detection have involved artificial mixtures of clean speech (such as

from the TIMIT database). Though the amount varied significantly, improvements

to speaker diarization from overlap handling were demonstrated using single distant

microphone audio from real recordings. The most comparable work to this is [83].

But, as previously mentioned, results were poor when the algorithm was applied to

real recordings.

As the primary interest lay in the investigation of appropriate features, the audio

segmentation systems presented in this thesis stand to gain from many refinements.

As discussed in Section 3.2.2, for example, feature fusion is a large area of study that,

for this thesis, was not fully explored. In addition, modifications to the basic HMM

architecture—for instance, employing a hybrid HMM/ANN or TANDEM approach—

have not been treated here.

The results on speaker diarization point in a number of directions. First, we saw

that, for the most realistic condition, the majority of the performance gain was due

to overlapped speech exclusion. The high precision criterion of the system, however,

was largely an optimization for overlap speaker labeling, since it was based on the

assumption of solely false alarms being detrimental. The trade-off between false alarms

and misses for speaker clustering after overlap exclusion has yet to be examined. It

is conceivable that a diarization system could be robust to false alarms and benefit

from reduced misses from this perspective. Second, the issue of “nuts” and “flakes”,

in particular regarding overlap exclusion, needs to further be explored. Increasing

133



Chapter 6. Conclusion

the consistency of performance improvement is important to having this proposed

technique be adopted. Finally, since the primary source of improvement is reduced

speaker error, it may be possible to achieve similar improvements by incorporating the

features directly into the diarization system. This is akin to Otterson and Ostendorf’s

use of location features to improve speaker clustering in the MDM condition in [84].

Vinyals and Friedland in [112], for example, have already demonstrated improved

diarization in the SDM condition with the modulation spectrogram features examined

here. Other features from the candidate list may prove useful as well.
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Training and Tuning Meetings

Eval04

Meetings

Train

20011115 20011211 20020111 20020213 20020304
20020627 20020731 20020815 20020904 20020911
20021003 20030702 20030729 20031204 20031215
Bdb001 Bed002 Bed003 Bed004 Bed005
Bed006 Bed008 Bed009 Bed010 Bed011
Bed012 Bed013 Bed014 Bed015 Bed016
Bed017 Bmr001 Bmr002 Bmr003 Bmr005
Bmr006 Bmr007 Bmr008 Bmr009 Bmr010
Bmr011 Bmr012 Bmr014 Bmr015 Bmr016
Bmr019 Bmr020 Bmr021 Bmr022 Bmr023
Bmr024 Bmr025 Bmr026 Bmr027 Bmr028
Bmr029 Bmr030 Bmr031 Bns001 Bns002
Bns003 Bro003 Bro004 Bro005 Bro007
Bro008 Bro010 Bro011 Bro012 Bro013
Bro014 Bro015 Bro016 Bro017 Bro018
Bro019 Bro021 Bro022 Bro023 Bro024
Bro025 Bro026 Bro027 Bro028 Bsr001
Btr001 Btr002 Buw001

Tune ES2009b ES2009d IS1009a IS1009c
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Eval05*

The Eval05* training set consists of the same meetings as the Eval04 training set with

the addition of the 35 meetings presented in the table below. Tuning for Eval05* was

performed using the Eval04 test meetings, listed in Table 3.1.

Meetings

Train

ES2006a ES2006b ES2006c ES2007a ES2007b
ES2007c ES2007d IS1000a IS1000b IS1000d
IS1001a IS1001b IS1001c IS1001d IS1002b
IS1002c IS1002d IS1003a IS1003b IS1003c
IS1003d IS1004a IS1004b IS1004c IS1004d
IS1005a IS1005b IS1005c IS1006a IS1006b
IS1006c IS1006d IS1007a IS1007b IS1007c

AMI Single-site

Meetings

Train

IS1000b IS1000c IS1001d IS1002b IS1002c
IS1003a IS1003c IS1004a IS1004b IS1004c
IS1005a IS1005b IS1005c IS1006a IS1006c
IS1007a IS1007b IS1007c IS1009a IS1009b
IS1009c IS1009d

Tune IS1000d IS1002d IS1004d IS1007d
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AMI Multi-site

Meetings

Train

EN2002d ES2002d ES2003b ES2004b ES2005b
ES2005d ES2006a ES2006b ES2007a ES2007d
ES2008d ES2009b ES2011a ES2012a ES2012b
ES2014a ES2014b ES2016a ES2016c IB4002
IB4005 IN1001 IN1009 IS1000c IS1001a
IS1001b IS1004a IS1005b IS1006a IS1006b
IS1007a IS1009a TS3003c TS3004d TS3006b
TS3008a TS3008b TS3009b TS3010a TS3010b

Tune
EN2004a ES2013c IS1001c IS1001d IS1005a
IS1007b IS1007c TS3006a TS3007c TS3012b

AMI Validation

The training and tuning sets for the validation test set were the same as those for the

AMI Multi-site test set.
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[1] Andre Adami, Lukáš Burget, Stephane Dupont, Hari Garudadri, Frantisek Grezl,
Hynek Hermansky, Pratibha Jain, Sachin Kajarekar, Nelson Morgan, and Sunil
Sivadas. Qualcomm-ICSI-OGI features for ASR. In Proceedings of ICSLP, pages
21–24, 2002. Denver, CO.

[2] Sassan Ahmadi and Andreas S. Spanias. Cepstrum-based pitch detection using
a new statistical V/UV classification algorithm. IEEE Transactions on Speech
and Audio Processing, 7(3):333–338, May 1999.

[3] J. Ajmera and C. Wooters. A robust speaker clustering algorithm. In Proceedings
of the IEEE ASRU Workshop, pages 411–416, 2003. St. Thomas, US Virgin
Islands.

[4] Xavier Anguera. Robust Speaker Diarization for Meetings. PhD thesis, Poly-
technic University of Catalonia, October 2006.

[5] Xavier Anguera, Chuck Wooters, and Javier Hernando. Speaker diarization for
multi-party meetings using acoustic fusion. In Proceedings of the IEEE ASRU
Workshop, pages 426–431, 2005. San Juan, Puerto Rico.

[6] Xavier Anguera, Chuck Wooters, and Jose M. Pardo. Robust speaker diarzation
for meetings: ICSI rt06s meetings evaluation system. In S. Renals, S. Bengio, and
J. Fiscus, editors, Machine Learning for Multimodal Interaction, volume 4299 of
Lecture Notes in Computer Science, pages 346–358. Springer Berlin/Heidelberg,
2006.

[7] Futoshi Asano and Jun Ogata. Detection and separation of speech events in
meeting recordings. In Proceedings of INTERSPEECH-ICSLP, pages 2586–2589,
2006. Pittsburgh, PA.

[8] Jerome R. Bellegarda and David Nahamoo. Tied continuous parameter modeling
for speech recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 38(12):2033–2045, December 1990.

138



BIBLIOGRAPHY

[9] Richard E. Bellman. Adaptive Control Processes. Princeton University Press,
Princeton,NJ, 1961.

[10] Kofi Boakye and Andreas Stolcke. Improved speech activity detection using
cross-channel features for recognition of multiparty meetings. In Proceedings of
INTERSPEECH-ICSLP, pages 1962–1965, 2006. Pittsburgh, PA.

[11] Kofi Boakye, Beatriz Trueba-Hornero, Oriol Vinyals, and Gerald Friedland.
Overlapped speech detection for improved speaker diarization in multiparty
meetings. In Proceedings of ICASSP, pages 4353–4356, 2008. Las Vegas, NV.

[12] Kofi Boakye, Oriol Vinyals, and Gerald Friedland. Two’s a crowd: Improving
speaker diarization by automatically identifying and excluding overlapped speech.
In Proceedings of INTERSPEECH, pages 32–35, 2008. Brisbane, Australia.

[13] H. Bourlard and S. Dupont. A new asr approach based in independent processing
and recombination of partial frequency bands. In Proceedings of ICSLP, pages
426–429, 1996. Philadelphia, PA.

[14] Michael S. Brandstein and Harvey F. Silverman. A robust method for speech
signal time-delay estimation in reverberant rooms. In Proceedings of ICASSP,
pages 375–378, 1997. Munich, Germany.

[15] M.S. Brandstein, J.E. Adcock, and H.F. Silverman. A closed-form location
estimator for use with room environment microphonearrays. IEEE Transactions
on Speech and Audio Processing, 5(1):45–50, January 1997.

[16] K. Bullington and J.M. Fraser. Engineering aspects of TASI. Technical report,
Bell System Technical Journal, March 1959.
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B. Peskin, C. Wooters, and J. Zheng. Further progress in meeting recognition:
The ICSI-SRI Spring 2005 speech-to-text evaluation system. In Steve Renals
and Samy Bengio, editors, Machine Learning for Multimodal Interaction: Second
International Workshop, MLMI 2005, volume 3869 of Lecture Notes in Computer
Science, pages 463–475. Springer, 2005.

147



BIBLIOGRAPHY

[105] Andreas Stolcke, Chuck Wooters, Nikki Mirghafori, Tuomo Pirinen, Ivan Bulyko,
Dave Gelbart, Martin Graciarena, Scott Otterson, Barbara Peskin, and Mari
Ostendorf. Progress in meeting recognition: The ICSI-SRI-UW spring 2004
evaluation system. In Proceedings of NIST ICASSP 2004 Meeting Recognition
Workshop, 2004. Montreal, Canada.

[106] Nithya Sundaram, Robert E. Yantorno, Brett Y. Smolenski, and Ananth N.
Iyer. Usable speech detection using linear predictive analysis - a model based
approach. In Proceedings of ISPACS, pages 231–235, 2003. Awaji Island, Japan.

[107] Sangita Tibrewala and Hynek Hermansky. Multi-band and adaptation ap-
proached to robust speech recognition. In Proceedings of EUROSPEECH, pages
2619–2622, 1997. Rhodes, Greece.

[108] Kari Torkkola. Real-time discrimination of broadcast speech/music. In Proceed-
ings of ICASSP, pages 993–996, 1996. Atlanta, GA.

[109] B. Trueba-Hornero. Handling overlapped speech in speaker diarization. Master’s
thesis, Universitat Politecnica de Catalunya, May 2008.

[110] Sergio Valle, Weihua Li, and S. Joe Qin. Selection of the number of principal
components: The variance reconstruction error criterion with a comparison to
other methods. Industria Engineering Chemical Research, 38(11):4389–4401,
September 1999.

[111] David van Leeuwen and Marijn Huijbregts. The AMI speaker diarization system
for NIST rt06s meeting data. In Proceedings of of the Rich Transcription 2006
Meeting Recognition Evaluation Workshop, pages 371–384, 2006. Washington,
D.C.

[112] Oriol Vinyals and Gerald Friedland. Modulation spectrogram features for speaker
diarization. In Proceedings of INTERSPEECH, pages 630–633, 2008. Brisbane,
Australia.

[113] Hisashi Wakita. Normalization of vowels by vocal-tract length and its application
to vowel identification. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(2):183–192, 1977.

[114] Ehud Weinstein, Meir Feder, and Alan V. Oppenheim. Multi-channel signal
separation by decorrelation. IEEE Transactions on Speech and Audio Processing,
1(4):405–413, October 1993.

[115] S. Wold. Cross validatory estimation of the number of components in factor and
principal component analysis. Technometrics, 20:397–406, 1978.

148



BIBLIOGRAPHY

[116] C. Wooters and M. Huijberts. The ICSI RT07s speaker diarization system. In
Proceedings of of the Rich Transcription 2007 Meeting Recognition Evaluation
Workshop, 2007. Baltimore, MD.

[117] Chuck Wooters, James Fung, Barbara Peskin, and Xavier Anguera. Toward
robust speaker segmentation: The ICSI-SRI fall 2004 diarization system. In
Proceedings of NIST ICASSP 2004 Rich Transcription Workshop (RT-04), 2004.
Palisades, NY.

[118] S.N. Wrigley, G.J. Brown, V. Wan, and S. Renals. Speech and crosstalk detection
in multi-channel audio. IEEE Transactions on Speech and Audio Processing,
13(1):84–91, 2005.

[119] Stuart N. Wrigley, Guy J. Brown, Vincent Wan, and Steve Renals. Feature
selection for the classification of crosstalk in multi-channel audio. In Proceedings
of EUROSPEECH, pages 469–472, 2003. Geneva, Switzerland.

[120] Kiyoshi Yamamoto, Futoshi Asano, Takeshi Yamada, and Nobuhiko Kitawaka.
Detection of overlapping speech in meetings using support vector regression. In
Proceedings of IWAENC 2005, pages 37–40, 2005. Eindhoven, The Netherlands.

[121] Robert E. Yantorno. Co-channel speech and speaker identification study. Final
Report for Summer Research Faculty Program, September 1998.

[122] Robert E. Yantorno, Kasturi R. Krishnamachari, and Jereme Lovekin. The
spectral autocorrelation peak valley ratio (SAPVR) - a usable speech measure
employed as a co-channel detection system. In Proceedings of the IEEE Workshop
on Intelligent Signal Processing, pages 193–197, 2001. Hungary.

[123] Robert E. Yantorno, Brett Y. Smolenski, and Nishant Chandra. Usable speech
measures and their fusion. In Proceedings of the IEEE International Symposium
on Circuits and Systems, pages 734–737, 1999.

[124] Steve Young. Large vocabulary continuous speech recognition: a review. Tech-
nical report, Cambridge University Engineering Department, April 1996.

[125] M.A. Zissman, C.J. Weinstein, and L.D. Braida. Automatic talker activity
labeling for co-channel talker interference suppression. In Proceedings of ICASSP,
pages 813–816, 1990. Albuquerque, NM.

149


	List of Figures
	List of Tables
	Introduction
	Spoken language processing in meetings
	Crosstalk and overlapped speech
	Crosstalk
	Overlapped speech

	Thesis Goals and Overview

	Background
	Automatic Speech Recognition in Meetings
	Related Work

	Speaker Diarization in Meetings
	Related Work


	Experimental Framework
	Audio Segmentation: The Heart of the Matter
	Segmentation System Development
	The HMM Segmenter: An Overview
	Feature Fusion
	Feature Selection
	Feature Transformation

	System Evaluation: Are We Making a Difference?
	Multispeaker Speech Activity Detection
	The ICSI-SRI RT-05S Meeting ASR System
	Overlapped Speech Detection
	The ICSI RT-07S Speaker Diarization System


	Multispeaker SAD for Improved ASR
	System Overview
	HMM Architecture
	Segmenter Post-processing
	Parameter Tuning

	Candidate Features
	Fixing Component Length
	Cepstral Features (MFCCs)
	Normalized Maximum Cross-Correlation (NMXC)
	Log-Energy Difference (LED)
	Time Difference of Arrival Values (TDOA)

	Experiments
	Single-Feature Combination
	Feature Selection
	Final System

	Discussion

	Overlapped Speech Handling for Improved Speaker Diarization
	System Overview
	HMM Architecture
	Parameter Tuning
	Overlap Speaker Labeling
	Overlap Exclusion

	Candidate Features
	Cepstral Features (MFCCs)
	RMS Energy
	Zero-Crossing Rate
	Kurtosis
	LPC Residual Energy
	Spectral Flatness
	Harmonic Energy Ratio
	Diarization Posterior Entropy
	Modulation Spectrogram Features

	Experiments
	Single-Feature Combination
	Feature Selection
	Final System

	Discussion

	Conclusion
	Multispeaker SAD
	Overlapped Speech Handling
	Contributions and Future Work

	Training and Tuning Meetings
	Bibliography

