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Abstract

Synchronous Reactive Communication: Generalization, Implementation, and

Optimization

by

Guoqiang Wang

Doctor of Philosophy in Engineering Science - Electrical Engineering and Computer

Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

A fundamental asset of a model-based development process is the capability of

providing an automatic implementation of the model that preserves its semantics, and

at the same time makes efficient use of the execution platform resources. Synchronous

Reactive (SR) models are increasingly used in model-based design flows for the development

of embedded control applications.

The implementation of communication links between functional blocks in an SR

model requires buffering schemes and access procedures implemented at the kernel level.

Platform-based design methodology is introduced to synthesize a real-time operating system

when implementing SR models. Previous research has proposed two methods for sizing the

communication buffer. This dissertation demonstrates how it is possible to improve on the
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state of the art, providing not only tighter bounds by leveraging task timing information, but

also an approach that is capable of dealing with a more general model and implementation

platform configuration.

To achieve rigorous model semantics, this dissertation presents semantics pre-

serving implementations of SR communication for multi-rate systems on single processor

architectures. The implemented protocols define the assignment of indices of shared buffers

to writer and reader tasks at activation time, rather than at execution time. Two constant-

time portable solutions are developed in the C language and with the automotive OSEK

OS standard. Run-time complexity and memory requirements are discussed for the two

protocol implementations, and tradeoffs are analyzed. This dissertation completes the SR

model-based design flow by supporting automatic code generation for the double buffer

and the dynamic buffering protocols. To support software portability and reusability, the

ePICos18, compliant to the OSEK OS standard, is used. The generated code is validated

by emulation on the PIC18F452 microcontroller through the MPLAB IDE simulator.

An implementation of communication links with a minimum buffer size is often

desirable, but it may require a longer access time and it may also lead to the violation of

deadline constraints in real-time applications. This dissertation demonstrates the feasibility

of an MILP-based optimization approach that provides the minimum memory implementa-

tion of a set of communication channels within the deadline constraints of the tasks.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Embedded Systems and Design Methodology

In this section, embedded computing is first introduced with examples and its

common characteristics are described. Then embedded system design requirements and

challenges are presented. Finally, to cope with the challenges, system-level design method-

ology, the enabler of ubiquitous computing, is discussed in details.

1.1.1 Embedded Systems

Since the first computer was invented in 1930s, it has been experiencing significant

development: programmable computers, personal computers, workstations, laptop comput-

ers, etc, all of which share the same common characteristics: general-purpose computing.

Another type of computation, called embedded computing, abounds in people’s daily life.

Any computing systems other than a computer can be considered as an embedded system.

Nowadays, in electronic industry, there are more embedded system products in the mar-
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ket than personal computer products. According to ERCIM news [110], more than 98%

of processors applied in 2003 are in embedded systems. This explicitly indicates that it

has already been in the post-PC era. There are many applications for embedded systems

and they mainly fall into two categories, depending whether or not they are safety-critical.

Typical examples of safety-critical embedded systems include transportation systems (e.g.,

aircrafts, automobiles, and railways), military systems (e.g., missiles and radars), medical

diagnostic systems (e.g., robotic surgeons), identity checking equipments (e.g., fingerprint

identifiers, card-key readers), etc. The other category is very broad: examples used for com-

munication include bluetooth devices, cell phones, fax machines, modems, pagers, routers,

etc; examples used for entertainment include camcorders, cameras, CD players, DVD play-

ers, MP3 players, radios, set-top boxes, stereo systems, televisions, VCRs, etc; examples of

office use are printers, scanners, etc; examples for kitchen use are dishwashers, microwaves,

etc.

Unlike general-purpose computers, embedded systems share the following com-

mon characteristics. They usually function for a particular purpose only and are based on

programmable components such as microcontrollers and Digital Signal Processors (DSP).

Embedded systems usually do not have direct interaction or control from end users. How-

ever, they engage the physical world via directly interacting with sensors and actuators.

Reactive embedded real-time systems react to changes in the external environment usually

through performing computation based on data from sensors and producing results to con-

trol actuators in a timely manner. Ideally, the close interaction with the environment never

terminates. The wide range of examples of embedded systems listed above reveals that there
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exist both small and large scale systems in the embedded application arena. Embedded sys-

tem functionality is very heterogeneous. They may need to meet stringent constraints such

as time, power, and weight/size as well as have a higher level of dependability such as

reliability, robustness, fault-tolerance, and availability.

Embedded systems are usually implemented as Systems-On-a-Chip (SOC). Design-

ing embedded electronic products is a complex process, which involves modeling, implemen-

tation, testing, and manufacturing. Functionality of most embedded systems is mapped into

both hardware and software. However, embedded systems are increasingly more software

driven and functionality has steadily shifted from hardware to software, i.e., more and more

functionalities are achieved via embedded software [67].

Ubiquitous embedded computing has been demanded by accident-free automo-

tive, free and safe aerospace, continuously seamless connectivity, etc. This pervasive com-

puting demand has been enabled by new technologies, intelligent sensors/actuators, new

methodologies for embedded system design. Among these enablers, design methodologies

are particularly important, which are the focus of the next subsection.

1.1.2 Design Methodology

Steadily increasing networked embedded devices are usually small, mobile, adapt-

able, and configurable. They need to provide strong guarantees of availability and perfor-

mance. Demands for more elaborate application functionalities further increase embedded

software complexity. Development efforts increase greatly due to the rising design complex-

ity. The dynamics of electronic system market demands for shorter and shorter development

time. Synchronization, concurrency, and heterogeneity are the essential aspects of reactive
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embedded systems. Among them, heterogeneity is the fundamental problem that embedded

system designers have to face. Composition of essential properties such as safety and live-

ness is the key to characterize heterogeneous systems. It is essential for the system designers

to be able to specify, manage, and verify the functionality and performance of concurrent

behavior.

There exist multiple design metrics [117]: unit manufacturing cost, Non-Recurring

Engineering (NRE) cost (the one-time cost of designing the system, e.g., from tooling of sys-

tems), physical size, performance (latency and throughput), power consumption, flexibility

for functionality adaption, time-to-market (if outside of the market window, the revenues

may drop dramatically), system maintainability, etc. The biggest challenge for embedded

system design is to simultaneously optimize numerous design metrics. This may be very

difficult because some of the metrics compete against each other. Therefore, in practice,

the goal of electronic embedded system design is to balance costs from development time

as well as product performance and functionality.

Key embedded system technologies are discussed in [117]. There are three types

of architectures of the computing engine used to perform system functionality: general-

purpose, application-specific, and single-purpose. Unlike single-purpose processors, general-

purpose and application-specific processors have program memory. Designs with general-

purpose processors may achieve low time-to-market, low NRE cost, and high flexibility

while designs with application-specific and single-purpose processors are featured with good

performance, small size, and low power. Application Specific Instruction Set Processors

(ASIP) [103][42] are a cost-effective design style due to the flexible support for cost or
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power reduction and the increased functionality complexity in newer generations of de-

sign. Similarly, there are three types of Integrated Circuit (IC) technologies to support

embedded hardware: full-custom, semi-custom, and programmable logic device (e.g., Field-

Programmable Gate Array (FPGA)). From full-custom to programmable logic, perfor-

mance, time-to-market, and NRE cost decrease while size and power consumption increase.

Embedded system manufacturing cost, area, power consumption, and weight mainly

depend on its hardware components while functional correctness and timeliness are mostly

dependant upon its software components. Embedded software is hard to design [67] be-

cause it requires domain-specific expertise. It is important to deliver low-cost and efficient

implementations in both hardware and software.

Traditional design methods are usually based on Register Transfer Level (RTL)

Hardware Description Languages (HDL) or programming languages such as C/assembly.

There are problems with past electronic design methods: e.g., lack of unified hardware-

software representation which makes specification revision difficult; partitions into hardware

and software are defined a priori so that it cannot verify the entire system and is difficult

to find incompatibilities across the hardware-software boundary; lack of well-defined de-

sign flow which leads to a time-to-market problem. On the other hand, traditional general

software development techniques cannot be directly applied for embedded software design

due to the poor product quality, long development time, and low development productivity.

In addition, monolithic execution platform dependent implementations are unfriendly to

port, upgrade, or customize, thus they have limited chances for reuse. Furthermore, tradi-

tional design methodology cannot model concurrency due to the lack of enabling semantic
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constructs.

With more and more design challenges emerging, the winning strategies for embed-

ded system design are design methodology, testing, and automation. The next generation

of tool chain for modeling, design, validation, and implementation should be capable of pro-

ducing embedded hardware/software systems that are cost-efficient, performance-optimal,

ultra-stable, and highly dependable with reduced time-to-market.

To accomplish these, it may require knowledge from multi-disciplines. Verification

and validation of system properties and functionality to meet design constraints should be

supported as early as possible during the development process. To effectively reduce the

cost and development time, design reuse in all shapes and forms should be well supported. A

system-level design approach is the key for successful development of hardware and software

products characterized as real-time, distributed, parallel, and reactive. Electronic System-

Level (ESL) [43] design methodology starts with a high level of abstraction. Moving to a

higher level of abstraction makes designs in hardware and software indistinguishable so that

it enables to take best advantage of design freedom and prevents errors from the interaction

between software and hardware designs. Hence, it may effectively reduce design time. This

technique has been successfully used several times [39]: design methodology from simulation-

based at transistor level (prior to early 1980s) to simulation-based at gate level (in 1980s),

and then to synthesis-based at register-transfer level (between late 1980s and late 1990s).

Finally, it comes to refinement-based design methodology at system level (from early 2000s).

It is important for system-level design methodology to separate/orthogonalize concerns [60],

for example, to separate the various design aspects: functionality versus architecture and
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computation versus communication. This enables more effective exploration of alternative

solutions, better design complexity management, and component reuse.

Embedded real-time software design must take into consideration of the laws of

physics to control the environment. The design framework should have properties that

better match the application domain and define a model of computation that governs the

interaction of components. The requirements for embedded software development tools are

compilation retargetability, multilevel simulation, source-level debugging tool with links to

In-Circuit Emulation (ICE), and computer-aided exploration of processor architectures.

To cope with the increasing SOC design complexity, increased system design pro-

ductivity, as well as decreased time-to-market, system-level methodology is the key. System-

level design methodologies have already be around for about a decade. Fundamentals with

object-oriented design methods for development of formal executable models at system level

are discussed in [118]. The synthesis/refinement-based ESL approach is the most appealing

because it reduces the risk of making mistakes and uses powerful optimization techniques

to reduce cost (e.g., power, performance, and area) and time of designs, and verifies designs

a lot faster than traditional methodologies. System-level design languages [32] may reduce

the semantics gap between system-level specifications and Intellectual Property (IP) level

implementation decisions.

System-level hardware/software co-design provides a unified design environment.

It consists of three parts at four different abstraction levels. To support reuse, an IP library

incorporates pre-designed implementations of hardware/software/operating systems, cores,

RT components, and gate cells at the system, behavioral, register, and gate levels, respec-
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tively. Synthesis/compilation tools (system synthesis, behavior synthesis, RT synthesis, and

logic synthesis) automatically explore the design space and insert low level implementation

details in the best way with respect to design constraints. Verification tools (model checking,

hardware/software co-simulator, HDL simulator, and gate simulator) ensure correctness at

each level.

Basic principles on system-level methodology are presented in [39]. A system-level

design methodology starts with a well-defined executable specification model that serves

as the golden reference. The most important for functional specification is the underlying

mathematical model of computation. Well-defined (clear/unambiguous) formal mathemat-

ical model semantics for system-level methodology may bridge the gap between system

specification and implementation. Models should be abstract enough and defined at each

level of abstraction. Model refinements from high to low level give the best implementation.

Model equivalence based on simulation semantics specifies that two models are equivalent if

they have the same simulation result. The behavior of a correct implementation should be

consistent with that of the abstract model. Details about model-based design are presented

in next section.

1.2 Model-Based Design

In this section, model-based design, a particular instance of system-level design

methodology is discussed. First of all, commonly used models of computation are intro-

duced, and then some representative model implementation tools are presented.
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1.2.1 Models of Computation

Model-based development of embedded real-time software aims at improving qual-

ity by enabling design-time verification as well as simulation and fostering reuse. This sub-

section introduces those commonly used models of computation. There are excellent aca-

demic articles for each of them. In addition, there are great courses offered in universities

addressing models of computation. Two typical examples are EE249 [97] and EE290N [98],

which are graduate-level classes offered at the University of California, Berkeley.

Models of computation provide a high level of abstraction for behavioral design.

They need to be expressive, general, simple, compilable/synthesizable, and verifiable. A

model of computation is a framework in which to express what sequence of actions must be

taken to complete a computation, e.g., Finite State Machine, Turing machine, continuous

time models (differential equation), etc. There exist many different models of computation

and different models signify different properties. Turing-complete models might be too

powerful and some properties may be undecidable. A good model of computation needs to

be powerful enough for the application domain and has appropriate synthesis and validation

algorithms. The model of a design needs to have a precise, unambiguous semantics. Models

of computation provide a formal framework for reasoning about certain aspects/properties

of an object in embedded systems. In the following, commonly used models of computation

are briefly discussed. Note that the following list is never attempted to be complete.

Process Networks Process Networks (PN) are a model of computation that is based

on asynchronous message passing, where the writer does not need to wait for the reader

to be ready for communication. The blocking read and non-blocking write mechanism
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guarantees the model determinacy. Under the blocking read mechanism, processes cannot

test input queues for emptiness. Typical examples of process networks are the Kahn’s

process networks [57][58], where First-In-First-Out (FIFO) queues with an infinite capacity

are used to model communication between processes. Process networks are Turing-complete.

It is very expressive but key system properties such as deadlock and memory boundedness

are undecidable.

Finite State Machine The Finite State Machine (FSM) model of computation is like

a graphical language. It consists of states and transitions of a system. In terms of reac-

tiveness, FSMs can be categorized as either Moore or Mealy machine, while in terms of

communication mechanism, FSMs can be either synchronous or asynchronous. There ex-

ist powerful algorithms for software/hardware synthesis and verification. However, FSM

models may have problems such as over-specification of implementation, incompact specifi-

cation of numerical computation, and state explosion. To solve these problems, FSMs can

be used together with other models of computation. A representative example is the State-

charts formalism [46], which extends conventional FSMs to have an instantaneous broadcast

synchronous communication mechanism. Another example is the Codesign Finite State Ma-

chine (CFSM) model of computation [8]. A CFSM is an FSM extended with the support

for data handling and asynchronous communication. In CFSM models, synchronicity (zero

and infinite time) and asynchronicity (non-zero, finite, and bounded time) are combined in

a globally-asynchronous and locally-synchronous way. A CFSM model preserves formality

and efficiency in implementation.
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Synchronous Reactive In the Synchronous Reactive (SR) [11] model of computation,

time is abstracted as global discrete ticks. All events in an SR model are synchronized with

ticks, i.e., computation is triggered by a global clock. Conceptually, an SR system takes

zero time to react to events, i.e., computation is simultaneous and instantaneous, which is

the underlying synchrony assumption. Unlike discrete time discussed later, a signal in an

SR model does not need to have a value at every clock tick. Based on the SR model of

computation, synchronous languages have been designed: Esterel [14][13], Lustre [45][19],

Signal [64][44], Statecharts [46]. SR models have strong formal properties and many key

questions are decidable. One of the nice properties is that buffer memory is bounded. The

fixed point semantics of the SR model of computation only addresses the behavior at a clock

tick. The behavior across clock ticks requires a clock calculus [96]. SR models are suitable

for designing applications with concurrent and complex control algorithms.

Discrete Event The Discrete Event (DE) model of computation has an explicit notion

of global time and communication is based on events consisting of a pair of value and time

stamp. Typical examples that use DE are HDLs: Verilog [114] and VHDL [95]. In DE

models, a global event queue is usually maintained according to the event stamps, which

unfortunately leads to tight coordination. The discrete event semantics needs to deal with

simultaneous events and Zeno conditions. Simultaneous events lead to a nondeterministic

behavior and some simulators use delta delay to prevent nondeterminacy. For example, in

Verilog, simultaneous events are handled nondeterministically while in VHDL, the notion

of delta time is introduced to separate a sequence of two simultaneous distinct events so

that they can be processed deterministically. A Zeno condition means that there may be
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an infinite number of time stamps between two finite time stamps. In [66], it is shown that

delta-causality guarantees the absence of Zeno conditions. The problem with DE models

is that it may be difficult to maintain a globally consistent notion of time. To solve this

problem, distributed discrete event modeling is presented in [88].

Dataflow The seminal work on Dataflow (DF) is the computation graphs given by Karp

and Miller [59]. As a special case of the process networks, the dataflow model of compu-

tation [69] is based on asynchronous message passing. A dataflow network is a collection

of functional nodes (commonly called actors) connected over unbounded FIFO queues.

Stateless actors perform computation while unbounded FIFOs perform communication via

sequences of tokens carrying values. A unique output sequence corresponds to a unique

input sequence. At each time, one actor is fired. During firing, actors consume input tokens

and produce output tokens. Actors can be fired only if there are enough tokens in the input

queues. The key property of DF networks is that output sequences do not depend on the

time of firing of actors. There are variant types of dataflow networks. Static dataflow pro-

cedure language is discussed in [30]. Synchronous (or better Static Schedulable) Dataflow

(SDF) [68] [92] networks can be statically scheduled by solving the balance equations at

compile time. In SDF models, an actor is executed when it is known to be fireable. There

is no overhead due to the sequencing of concurrency and buffers can be sized statically. In

Dynamic Dataflow (DDF) [3] models, firings are scheduled only at run time. In Boolean

Dataflow (BDF) [15] and Integer Dataflow (IDF) [16] models, balance equations involving

unknown production/consumption rates are solved symbolically so that data-dependent

routing of tokens is supported. For all DDF, BDF, and IDF models, deadlock, memory
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boundedness, and scheduling are undecidable. In summary, dataflow networks are a pow-

erful formalism for specifying data-dominated systems. They are a partially-ordered model

(no over-specification) and their execution is deterministic (independent of scheduling). DF

models have explicit concurrency and may be used for simulation, scheduling, memory al-

location, and code generation for digital signal processors. Similar to a graphical language,

DF networks are easy to use. There exist powerful verification and synthesis algorithms.

But efficient synthesis is only for restricted models and a DF model cannot describe reactive

control due to blocking read.

Petri Nets Petri Nets (PN) are named after Dr. Carl Adam Petri, in honor of his pi-

oneer work in communication with automata. As an asynchronous model, Petri nets [91]

explicitly and graphically describe sequencing/causality, conflict/nondeterministic choice,

and concurrency. Petri nets have nice properties: the behaviors are dependent upon the

initial marking; the reachability problem with Petri nets is decidable; the behavioral prop-

erty of boundedness implies that the number of tokens in any place cannot grow indefinitely;

the liveness property signifies that any transition can become fireable from any marking;

the conservation property means that the total number of tokens in the net is constant.

Petri nets are added with the time notion in [56] to satisfy the timing constraints of com-

munication protocol architectures for reliable conversion functions.

Continuous Time In the Continuous Time (CT) model of computation [74], communi-

cation is via continuous time signals that depend on the real numbers. A continuous time

model describes Ordinary Differential Equations (ODE) and differential algebraic equa-
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tions, which govern the operation of physical systems, e.g., analog circuits, chemical reac-

tion processes, mechanical systems, etc. The ODEs may be solved by different numerical

schemes such as the Trapezoidal Method, the Forward/Backward Euler Solver, the Runge-

Kutta Solvers, etc.

Discrete Time Discrete Time (DT) [37] is an extension of the synchronous dataflow

model of computation. It is very similar to the synchronous reactive model of computation

with the exception that every signal has a value at every clock tick. On top of the desirable

properties that synchronous dataflow models have, the DT model of computation is tempo-

rally causal, which requires that the outputs depending on the inputs are never produced

before the time of the inputs.

Communicating Sequential Processes Hoare’s Communicating Sequential Process

(CSP) [50] is a rendezvous model, where concurrent processes communicate via the so-

called rendezvous, a synchronous message passing mechanism. Between two communicating

processes, the one that reaches the rendezvous communication point earlier will need to stall

to synchronize with the other process.

Calculus of Concurrent Systems Similar to Hoare’s Communicating Sequential Processes,

Milner’s Calculus of Concurrent Systems (CCS) [87] is another model of computation that

is based on rendezvous.

Giotto The Giotto [47] model of computation defines a time-triggered programming lan-

guage for implementing embedded control systems of hard real-time type. In a Giotto
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model, all software tasks are periodically invoked according to their respective sampling

periods. Together with the FSM model of computation, Giotto is useful for implementing

modal models.

The Tagged Signal Model The tagged signal model [70] provides a very general con-

ceptual framework for comparing and reasoning about models of computation. It provides a

natural model for design refinement, which offers the possibility of type-system-like formal

structures that deal with dynamic behavior in addition to static structures. The tagged

signal model provides a mathematical denotational framework, within which the essential

properties of models of computation can be analyzed and compared. With the tagged signal

model semantics, three categories of abstract semantics can be defined: process networks

type, firing type, and stateful firing type. Examples of concrete semantics conforming to the

process networks abstract semantics are Hoare’s CSP, Milner’s CCS, and Kahn’s process

networks; examples conforming to the firing abstract semantics include DF, DE, and Giotto;

and those that conform to the stateful firing abstract semantics include SR and CT.

1.2.2 Model Implementation Tools

After introducing models of computation, in this subsection existing implementa-

tion tools are discussed for some of them. There are two big categories of the implementation

tools: from either academia or industry. In the following, the first five examples are from

academia, which aim at a better research and development environment. Meanwhile, in-

dustry has paid a close attention to model-based design methodology and the last six are

typical representatives.
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Giotto Giotto defines two virtual machine platforms to implement embedded software

consisting of hard real-time periodic tasks with deterministic mode changes. The Embedded

Machine (E-Machine) [48] defines conditions that enable tasks while the Schedule Machine

(S-Machine) [49] defines task switching for execution. Task enabling events include external

interactions a task may have. Scheduling code can describe standard scheduling policies

such as rate monotonic and earliest deadline first. Giotto compiler automatically targets the

E-Machine and the S-Machine. To achieve data determinism, Giotto [47] delays committing

output data on every connection, which means that there is one additional unit sampling

delay form input to output in any communication.

Metropolis Metropolis [9], successor of Polis [8], is developed at the University of Cali-

fornia, Berkeley. Metropolis provides a design environment for heterogeneous systems. In

the Metropolis framework, the infrastructure consists of models of communication through

abstract semantics, design methodologies at different abstraction levels, and communication

refinement as well as base tools used for design imports, user interface, and simulation. In

Metropolis, system functions are specified via a network of processes, where a process is a se-

quential function plus ports. Metropolis does not commit to any particular communication

semantics. Ports are interconnected by communication media, which define the communi-

cation semantics. Examples of communication media include queues, shared memory, and

so on.

Modelica Modelica [102] is developed and maintained by Modelica Association [4], a

nonprofit organization. Modelica consists of three parts: object-oriented language, standard
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libraries, and simulation environment. The underlying model of computation of Modelica is

captured by a set of differential, algebraic, and discrete equations with real-time constraints.

Modelica is primarily used for modeling large, complex, and heterogenous physical systems

including mechanical, electrical, hydraulic, thermal, power, and control subsystems.

Ptolemy Ptolemy [52][35] is a research project at the University of California, Berkeley.

The goal of the project is to research modeling, simulation, and design of heterogenous

concurrent embedded real-time systems. Ptolemy is a framework that supports design of

embedded software based on well-defined models of computation that govern the interaction

among concurrent components. It started with static dataflow model of computation for

digital signal processing and the current version of the project, Ptolemy II, supports many

of the models of computation discussed above.

The Generic Modeling Environment The Generic Modeling Environment (GME) [65][1]

is developed at Vanderbilt University. The GME is a model-integrated program synthesis

tool and is featured with configurable modeling, meta-modeling, and model visualization.

The configuration of the GME is via metamodels that specify the modeling language of the

application domain. The metamodeling language of the GME is based on the Unified Mod-

eling Language (UML) and Object Constraint Language (OCL). The GME supports design

reuse by metamodel composition. Decorator interfaces of the GME enables customization

of model visualization.

LabVIEW LabVIEW [27] is developed at National Instruments Corporation and the

best supported underlying model of computation is synchronous dataflow. LabVIEW can



19

be viewed as a high level graphical programming language (known as G code). LabVIEW

combines design, simulation, prototyping, and deployment of embedded software in a single

graphical programming tool-chain so that system development time is reduced. Via using

the LabVIEW graphical development environment, it is easy to program systems with

heterogenous executing devices quickly and reliably.

OPNET Developed by OPNET [55], OPNET Modeler is used for modeling and simula-

tion of networks, devices, and protocols. With discrete event as the underlying model of

computation, OPNET Modeler is designed to support hierarchical object-oriented modeling

to facilitate both research and development of communication networks. From the highest

to the lowest level, the hierarchical modeling architecture is network (e.g., LAN), node (e.g.,

devices such as routers), and process (e.g., protocols such as IP/TCP).

SCADE SCADE [34] represents Safety Critical Application Development Environment.

It is the visual editor for Lustre, one of the popular synchronous languages. Lustre and

SCADE are developed for safety-critical embedded software such as avionics software, where

tasks are aligned to a master clock and its sub-clocks. Consistency and deadlock are checked

via clock calculus [96]. The current version of SCADE is Version 6, which supports a unified

design, modeling, and code generation environment.

Signal Processing Worksystem/Designer Signal Processing Worksystem (SPW) is

developed at Cadence and later sold to CoWare. CoWare renamed SPW to Signal Process-

ing Designer (SPD) [54]. The underlying model of computation of SPD is synchronous

dataflow. SPD is an integrated environment used for system-level design, modeling, sim-
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ulation, and implementation of complex digital signal processing systems such as wireless

and multimedia products.

Simulink Simulink with Real-Time Workshop (RTW) [79] is developed at The Math-

Works Incorporation for embedded control software and has been widely used in the au-

tomotive industry. The underlying models of computation that Simulink supports include

synchronous reactive, continuous time. For models with the synchronous reactive seman-

tics, Simulink achieves data determinism with snapshot of inputs and delayed commit of

outputs. Note that Simulink introduces a unit delay only on slow to fast sampling rate

changes.

Stateflow Stateflow [81] is also developed at The MathWorks Incorporation. It is a

powerful model-based design and development tool. As its name implies, the underlying

model of computation is finite state machine. Stateflow is good for designing complex

control and supervisory logic systems.

1.3 Scheduling and Communication Mechanisms

For model-based software design, upon implementation, the functionality of each

model block is accomplished by a run-time task. There are two options to implement a

multi-rate model on a single processor system. In a single task implementation, all the

functionality of the specification is implemented by a single run-time task (or executive),

running at the base rate of the system. Such an implementation is easier to construct,

but often characterized by poor resource utilization. A multi-task implementation typically
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uses one task for each execution rate, and possibly more. All tasks are executed under

the control of an operating system. Each implementation task τi is characterized by a

set of parameters: priority πi, period (periodically activated) or minimum inter-arrival

time (sporadically activated) Ti, worst-case computation time Ci, worst-case response time

Ri, and relative deadline Di. The task execution time is usually finite and a task can be

preempted according to its priority. Schedulability of tasks requires that Ri ≤ Di. Multi-task

implementations allow for a much better schedulability. However, due to preemption, there

may exist problems with inter-task communication, e.g., nondeterministic communication

or data integrity problems. To address these problems, communication protocols have been

proposed in literature. In the rest of this section, scheduling policies and communication

mechanisms are discussed.

1.3.1 Scheduling Policies

Given a system specification consisting of a set of concurrent functional blocks, a

software implementation, consisting of a set of software tasks, can be obtained by software

synthesis tools. In a software synthesis process, there are two sub-problems: automatic

code generation for each task and dynamic scheduling of the generated tasks. Software

synthesis aims at minimizing real-time scheduling overhead. There are three classes of

scheduling: static (schedule completely determined at compile time), dynamic (schedule

determined at run time), quasi-static (most of the schedule computed at compile time, some

scheduling decisions made at run time, but only when necessary). Among them, dynamic

scheduling is usually used for real-time controls featured with preemption and suspension,

static scheduling is good for data processing, and quasi-static scheduling is primarily for
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data-dependent controls. In the following, real-time scheduling and quasi-static scheduling

policies are summarized.

Real-Time Scheduling A real-time system implemented as software consists of a set

of tasks. Tasks are enabled by repeating events in the environment and their execution

must satisfy timing requirements. Real-time scheduling is difficult. There are various types

of scheduling policies proposed for real-time tasks in literature [18], e.g., preemptive and

non-preemptive policies. Under preemptive scheduling, the running task can be preempted

by another active task with a higher priority, i.e., the enabled task with the highest priority

is scheduled for execution at any time; while under non-preemptive scheduling, the running

task cannot be interrupted after it is dispatched, i.e., once a task is chosen to be executed,

it will run to completion even if some tasks with a higher priority become enabled.

In terms of the parameters on which scheduling decisions are based, real-time

scheduling policies can be static or dynamic. For example, for priority-based scheduling,

priorities can be either static or dynamic. Static priorities are assigned offline while dynamic

priorities may change at run time. When there are multiple tasks enabled, the task with

the highest priority is executed.

In terms of the schedule generation time, there are offline and online scheduling

policies. An offline scheduling algorithm is executed on all the tasks in the system before

actual task activation while an online scheduling algorithm is executed at run time upon new

task arrival and running task termination. Offline scheduling is static and typical examples

are Round-Robin (RR) scheduling and static cyclic scheduling. A Round-Robin schedule

picks a task order and executes them forever in that order. A static cyclic executive [75]
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picks a task sequence and executes that sequence forever. Online scheduling is dynamic.

Typical online scheduling policies are priority-based. For online scheduling, the tasks can

be either preemptive or non-preemptive. Compared with online scheduling, it is easy to

construct and analyze an offline schedule. Without preemption and priority calculation,

the overhead with offline scheduling is very low. But it may delay service to more urgent

tasks. Liu-Layland [73] considers systems consisting of periodic tasks with fixed execution

time. It is assumed that the worst-case response time of a task is smaller than the period

of the task. It is proved that with preemptive static priority scheduling, the critical instant

occurs when a task is enabled at the same time as all higher priority tasks. For Rate

Monotonic (RM) [71] scheduling, a higher priority is assigned to a task with a shorter

period. It is demonstrated that scheduling policies based on static priorities can schedule

systems with a utilization less than 0.69. If scheduling based on static priority does not

work, online scheduling based on dynamic priority can be used. The typical examples of

dynamic scheduling policy is Earliest Deadline First (EDF) [73][31]. Its main idea is to

assign the highest priority to the task with the closest deadline. It is shown that EDF can

schedule any set of tasks with a utilization less than 1.

Quasi-Static Scheduling Petri nets model of computation provides a unified model for

mixed control and data processing specifications. As presented in Section 1.2.1, most of the

properties of Petri nets are decidable. Quasi-Static Scheduling (QSS) [29][28] of embedded

software is based on Free-Choice Petri Nets (FCPN), where free choice means that the choice

depends on the token value rather than the token arrival time. For FCPNs, schedulability

can be checked before code generation. QSS finds one schedule for every conditional branch
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at compile time while it chooses one of these schedules according to the actual value of the

data at run time. QSS minimizes run-time overhead with respect to dynamic scheduling

by automatically partitioning the system functions into a minimum number of concurrent

tasks.

1.3.2 Communication Mechanisms

There are different ways to classify inter-task communication, for example, block-

ing versus non-blocking and synchronous versus asynchronous. Communication is non-

blocking if the communication call may return before the communication operation com-

pletes, otherwise it is blocking. Specifically, for blocking read, processes cannot test for

emptiness of input and must wait for an input to arrive before proceeding. For blocking

write, processes must wait for a successful write before continuing. Both Milner’s Calculus

of Communicating Systems and Hoare’s Communicating Sequential Processes use blocking

write/read. Shared variables are examples of non-blocking write/read. FIFOs used in CF-

SMs and SDL (Specification and Description Language) are examples of non-blocking write

and blocking read.

Communication is asynchronous if its execution proceeds at the same time with the

execution of the programm, otherwise it is synchronous. A typical example of synchronous

message passing is rendezvous and a representative example of asynchronous communica-

tion is asynchronous buffered communication. For rendezvous, no space is allocated for

communication data. If one of the communicating blocks (either producer or consumer)

reaches the point of communication, it stalls for synchronization until the other one is also

ready to exchange data, i.e., the read and the write occur simultaneously.
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Note that a non-blocking communication is not necessarily asynchronous. Both

asynchronous and non-blocking communication routines need a separate wait or test call

to make sure that the communication has completed and that resources can be safely

reused [22]. Reading can be consumable or non-consumable, i.e., the result of each write

can be read at most once or several times. For shared memory, multiple nondestructive

reads are possible and writes delete previously stored data.

Communication can be either lossless or lossy. Events or tokens may be lost in

lossy communication. For multi-rate concurrent systems, buffers are usually used to adapt

different rates of the sender and the receiver(s). To achieve lossless communication with

bounded memory, an appropriate buffer sizing is needed, otherwise it may need to block

the sender. As a special example, FIFO communication buffers can be either bounded (e.g.,

CFSMs) or unbounded (e.g., SDL, Khan Process Networks, Petri Nets).

Any (real-time) communication of data between concurrent tasks that cannot be

made atomic at the hardware level must be implemented by using some communication

protocol to protect against access of the reader(s) while a write is in progress or against

modification of the data by the writer task while a read is in progress. In the rest of this

subsection, different implementation mechanisms in terms of blocking and non-blocking are

discussed. A blocking mechanism is also called lock-based and usually requires semaphore

(or spin lock) support from a real-time operating system. Non-blocking mechanisms do not

need a support of locking and can be further sub-categorized as lock-free and wait-free as

discussed below. Note that, though communication is emphasized in the discussion, these

mechanisms are actually general models for resource sharing.
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Blocking Mechanism For lock-based schemes, when a task wants to access the commu-

nication data while another task holds an exclusive lock, it blocks (usually on a semaphore),

and releases the CPU voluntarily. When the lock is released, the task is restored in the

ready state and can safely access the data. Lock-based mechanisms guarantee exclusive

access to shared resources. Semaphores [112] are the most common method for locking a

shared resource. Typical problems associated with resource sharing are priority inversion

and deadlock. A radical solution consists in avoiding preemption during the execution of the

critical sections, but this method affects all tasks (not only those using the given resource)

and is only effective for very short critical sections. Different protocols have been developed

to deal with this problem. The Priority Inheritance Protocol (PIP) [111] limits the priority

inversion caused by resource constraints to a known upper bound in case critical sections are

not nested. In the PIP, the blocking task inherits the highest priority of the tasks that are

waiting for the resources it is currently holding, therefore avoiding preemption from tasks

with a medium priority. The PIP allows to bound the priority inversion in most cases, but

has a costly implementation and does not prevent chained blocking and even deadlock in

case of nested critical sections. The Priority Ceiling Protocol (PCP) [111][26] avoids these

two problems by extending the PIP. The PCP allows to bound the worst-case blocking time

caused by priority inversion to a known value (one critical section, better than the PIP

bound) in all cases, and avoids deadlock. The PCP introduces a priority ceiling for each

semaphore equal to the highest priority of any task that can possibly lock it. A task is

allowed to enter a critical section only when its priority is higher than the priority ceilings

of all semaphores currently locked by other tasks. When a task blocks another one with a
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higher priority, the blocking task gets the priority of the blocked task when it is in the crit-

ical section. The Immediate PCP (IPCP) and the Stack Resource Policy (SRP) [7], which

is its generalization to dynamic priority schemes, further extend the PCP by supporting

multi-unit resources and sharing of the application run-time stack. Compared with the

PCP, a preemption level is statically introduced for each task. Each resource is assigned a

current ceiling equal to the highest preemption level and the system ceiling is defined to be

the maximum of the ceilings of all the locked resources at any given time. When a task uses

a resource, its preemption level is immediately raised to the ceiling level of the resource even

if it is not blocking any task, and the maximum between its preemption level and its prior-

ity becomes its execution priority. This means that any task that can be possibly blocked

by it is not even allowed to start execution until the resource is unlocked. The worst-case

bound on the blocking time is the same as that in the PCP, but the implementation of these

protocols is considerably easier.

Non-blocking Mechanism The non-blocking mechanism can be either lock-free or wait-

free. For a lock-free scheme, when a reader wants to access the communication data, it does

so without blocking. At the end of the operation, it checks the consistency of the data.

If it realizes there was a possible concurrent operation by the writer and the possibility of

having read an inconsistent value, the reader task performs the read operation again. By

leveraging the timing properties of tasks, the number of retries can be upper bounded.

A better non-blocking scheme is wait-free. Under the wait-free mechanism, readers

and writers are protected against concurrent access to data by means of replication of

the communication buffers and by leveraging information about the points in time when
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they are going to access the resource or possibly other information that constrains the

access to the resource (such as the priority or other scheduling-related information). Wait-

free communication protocols have been mostly researched from the perspective of the

programmers of concurrent real-time applications, interested in preserving the consistency

of the data. The corresponding communication semantics is the so-called freshest value

at execution time, meaning that each reader always obtains the latest data written by the

writer task into the channel. Most of the protocols presented in the literature try to optimize

the buffer size based on assumptions on tasks.

In the sequel, typical wait-free protocols with the execution-time freshest value

semantics are reviewed. The first category of the methods provides buffer sizing and access

procedures based on the number of readers that ensures mutual exclusion access. In [24], an

asynchronous protocol is proposed to preserve data consistency for communication between

a single writer and a single reader running on a shared-memory multiprocessor. With no

assumption on task priorities and periods, three buffers are needed: one for the data being

read, one for the data last written (current) by the writer, and another one for the writer

to write a new data item into when the latest written buffer has not been read yet. To

achieve data integrity, a hardware-supported Compare-And-Swap (CAS) instruction is used

to atomically assign the reading position in the buffer array to reader tasks and to update

the pointer to the last written value. This three-slot asynchronous protocol is extended

to systems with single writer and multiple readers in [23]. The multi-reader asynchronous

protocol needs (N + 2) buffer slots, where N is the number of the readers in the system.

The other method provides buffer sizing and buffer indexing by using the Tempo-
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ral Concurrency Control (TCC) that ensures writer and reader tasks never access the same

data item at the same time. The size of the buffer can be computed by upper bounding the

number of times the writer can produce new values while a given data item is considered

valid by at least one reader. This concept is first introduced in [61] and [25], assuming as

the data validity time the worst-case execution time of a reader. In [61], the Non-Blocking

Write (NBW) protocol is presented for a single-writer multiple-reader system executing with

a priority-based preemptive scheduling from a real-time operating system on a distributed

real-time system consisting of a set of nodes connected by a broadcast communication chan-

nel. The writer has its own communication controller, therefore the writer task cannot be

preempted or preempt other reader tasks and thus the non-blocking property of the writer is

achieved. In [25], a timing-based wait-free mechanism called asynchronous circular buffering

protocol is proposed for single-writer multiple-reader systems running on a shared-memory

multiprocessor system with a single global clock. Priority-based preemptive scheduling on

the same processor is assumed. It is further supposed that the worst-case response time is

smaller or equal to the deadline and the deadline is smaller than or equal to the period.

Under this protocol, data sharing is implemented through a sequential algorithm using a

circular buffer and the size of the circular buffer is configured through the timing property

of the set of tasks.

A combination of the previous two buffer sizing methods may be used to obtain

a better buffer size through exploiting the temporal characteristics of real-time tasks. A

transformation mechanism used to optimize buffer sizing based on [23] and [25] is proposed

in [51] for implementations with the execution-time freshest value semantics. Based on
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timing properties, the reader tasks are categorized as either fast or slow. The fast readers

leverage the lifetime-based bound of the NBW [25], and the slow ones leverage the bound

based on the maximum number of active reader instances as in [23]. Overall the space and

temporal performance are both improved. The transformation is applicable to protocols for

both single processor and multiprocessor systems.

1.4 Goal of Dissertation

Among those models of computation that are surveyed in this chapter, the synchro-

nous reactive model of computation has strong formal properties, e.g., decidable termination

and execution with bounded memory, which can be used to verify synchronous reactive sys-

tems. This model of computation is good for specifying periodic real-time tasks. There

has been a steadily increasing interest in this model in both academia and industry. Syn-

chronous reactive models have been traditionally used in hardware logic design and more

recently for modeling control-dominated embedded applications. The synchronous reactive

zero-time semantics is very popular because of the availability of the tools for simulation

and formal verification of system properties. When implementing a high-level model into

code, it is important to preserve its semantics, in order to retain the simulation and veri-

fication results. However, this requires that the run-time behavior when the functions are

implemented by a program with a finite execution time and possibly subject to preemption

is provably equivalent to the synchronous reactive model with zero execution time and no

preemption. In general, defining such a provably correct implementation is nontrivial.

In the following, possible solutions based on the synchronous reactive commu-
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nication mechanisms are discussed. There usually exists a time-space tradeoff between

different communication mechanisms. Lock-based mechanisms are space-efficient because

data buffers (usually in Random Access Memory (RAM)) do not need to be replicated,

however, they typically require complex management procedures (usually in Read-Only

Memory (ROM)). As discussed earlier, especially, they may introduce large blocking times.

Lock-free mechanisms improve time efficiency, but they still suffer from long retry times in

the worst case. Wait-free mechanisms are the most time-efficient, but may require a higher

memory cost for the replicated buffer space.

In spite of the thread of research on wait-free communication with the freshest

value semantics, this non-blocking communication has been rediscovered in the context of

model-based software development and reformulated with the goal of finding communication

mechanisms (typically with a minimum buffer size) for implementing a synchronous reactive

semantics in the communication of a single writer with multiple reader tasks/blocks. The

problem is somewhat different and yet both the optimization problems and the protocol

solutions show many similarities that are not only worth a comparative study, but can

possibly lead to a general theory and further improvement with respect to the state of the

art. The communication mechanisms that provide data consistency with the freshest value

semantics at task execution time cannot guarantee time determinism. The value that is

read by a reader task depends upon the scheduling of the tasks, that is, on their execution

times and the possible occurrence of preemption. For many control applications, this is not

a concern, given the robustness of the control algorithm with respect to time delays. In

other cases where the application may be sensitive to the ensuing jitter, the implementation
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needs to satisfy more stringent requirements. The correct implementation of a synchronous

reactive semantics for the above cases requires assigning a buffer index to the reader, which

maintains the same value during the reader’s execution. Reduction of memory cost due to

communication is an open research issue. Hence this dissertation particularly focuses on

the synchronous reactive model of computation and attempts at providing new results in

this context.

The rest of the dissertation is structured as follows. Chapter 2 surveys the state of

the art on synchronous reactive communication. Based on the limitations associated with

existing solutions, it defines and motivates the problems that are going to be addressed.

Chapter 3 introduces the platform-based design implementation technology for synthesizing

synchronous reactive communication protocols and customizing a supporting real-time op-

erating system automatically. Chapter 4 generalizes synchronous reactive communication

to deal with arbitrary link delays and multiple activation instances per task. It provides

tight bounds on communication buffers. Chapter 5 presents portable and efficient imple-

mentations for two synchronous reactive communication protocols. Furthermore, it provides

automatics code generation support to complete the synchronous reactive model-based de-

velopment flow. Based on the results from Chapter 5, Chapter 6 investigates memory

optimization through automatically choosing proper communication protocols between a

writer and its readers. Finally, Chapter 7 concludes the dissertation with summarizing

contributions and pointing out directions for possible future work.
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Chapter 2

State of the Art and Problem

Statement

Starting from this chapter, the dissertation focuses on synchronous reactive com-

munication between concurrent tasks that implement synchronous reactive model specifica-

tions. First of all, the synchronous reactive communication semantics is formally presented

through defining the communicating writer instance for a reader. Then, current status of

synchronous reactive communication implementation support is discussed for different exe-

cution platforms ranging from uni/multi-processor to distributed architectures. The second

part of this chapter further analyzes current solutions and pinpoints existing limitations.

Based on these, the dissertation defines the interesting problems (communication theory

generalization, semantics preserving implementation, and memory optimization) that need

to be addressed for model-based development of embedded software under the synchronous

reactive semantics. Finally, it further motivates the problems that are solved in this study.
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2.1 State of the Art of SR Communication

In this section, the synchronous reactive communication semantics is formally

defined. Then, the issues that are associated with communication between concurrent

tasks that implement an SR model specification are addressed. The SR communication

semantics requires both data integrity and data determinism. To prevent nondeterministic

communication and communication data from being corrupted, different communication

schemes have been proposed. In the following, it summarizes the current status of semantics-

preserving implementation of the synchronous reactive communication.

2.1.1 Synchronous Reactive Communication Semantics

In a synchronous reactive model, execution takes zero-time. For each writer or

reader bi, bi(j) and ai(j) ∈ R+ represent its jth instance and its corresponding activation

time. Under the synchronous reactive semantics, given that the execution time is zero, the

activation time ai(j) captures also the start time and the finish time of the same instance

of bi. Given time t ≥ 0, define supremum ζi(t) to be the number of times that bi has

occurred up to t, i.e.,

ζi(t) = sup{n|ai(n) ≤ t},

where the sup of an empty set is defined to be zero, so that if bi has not occurred up to t,

then ζi(t) = 0.

Let the input of bi be ii and output be oi. If bj and bi are in an input-output

relationship (bj takes the output of bi as input) and bj is of type feedthrough, there will

be a communication link, denoted as bi → bj, between them. Consider the case where the
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link between bi and bj has no delay. The synchronous reactive semantics specifies that the

input of the nth occurrence of bj is equal to the output of the last occurrence of bi before

bj(n), that is,

ij(n) = oi(m), where m = ζi(aj(n)).

If bi has not occurred yet, then bi(0) is used. If the link carries a unit delay, as indicated

by bi
−1→ bj, the synchronous reactive communication semantics defines

ij(n) = oi(m), where m = max{0, ζi(aj(n))− 1}.

2.1.2 Synchronous Reactive Communication Implementation

Upon implementation, a synchronous reactive model is mapped to underlying ex-

ecuting platforms. However, notice that there is a fundamental difference between the

simulation time of an SR model and the run time of the model implementation, i.e., zero

execution time during simulation and finite execution time at run time. As presented

in [122], due to preemption, this may lead to possible problems (nondeterministic commu-

nication or data integrity) with data transfers when buffers are indexed at run time. A

multi-task implementation may raise issues with respect to the preservation of the behavior

under the zero execution time assumption.

The top of Figure 2.1 illustrates the execution of a pair of blocks with the syn-

chronous reactive zero-time semantics. The horizontal axis represents time. The vertical

arrows capture the time instants when the blocks are activated and compute their outputs

from the input values. Note that, as shown on the top of the figure, it is ij(n) = oi(m) at

simulation time, which is what the synchronous reactive communication semantics requires.
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Figure 2.1: How Preemption May Change Values Read by Reader Tasks

The bottom of Figure 2.1 shows the possible problems with data transfers in a real-time

multi-task implementation. Assume that a fast writer bi, implemented by a high priority

task, communicates with a slow reader bj. The writer finishes its execution with producing

output oi(m) and the reader is executed right after. If the reader performs its read opera-

tion before the preemption by the next writer instance, then ij(n) = oi(m). Otherwise, it is

preempted and a new instance of the writer produces oi(m + 1). In case the read operation

had not been performed before, the reader task reads oi(m + 1), in general different from

the value oi(m). This is known as nondeterministic communication. Even worse, in case the

signal value is not read and written atomically, there is a finite probability that the writer

task/block bi preempts the reader task/block bj while a read is in progress, resulting in

an inconsistent value, namely a data integrity problem. The problems arise because each

functional block is implemented at run time in the context of a task, that is, the code

implementing its functionality, executing on a Central Processing Unit (CPU).

To solve these problems, different mechanisms have been proposed. In the fol-

lowing, some typical communication protocols under the synchronous reactive semantics

are reviewed. As mentioned earlier, wait-free schemes are the preferred choice for the im-
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plementation of semantics-preserving communication protocols due to their simplicity and

efficiency.

A one-to-one communication mechanism that preserves the SR semantics under

deadline monotonic static priority based preemptive scheduling and earliest deadline first

scheduling on a single processor platform with the support of a real-time operating system

has been presented in [109] and [116], respectively. They assume that the deadline is smaller

than the sampling period. A two-place buffer and two buffer indices are required. Due to

the single processor assumption, given that the code that updates the index variables is

executed inside the kernel, at task activation time, there is no need for any hardware-level

mechanism to ensure atomicity when swapping buffer pointers or comparing state variables.

Figure 2.2 shows the high level code of the Double Buffer (DoB) mechanism. Clearly, the

DoB mechanism takes advantages of the priority information of the writer and reader. The

buffers are initialized with a given value and the writing index initially points to the first

buffer. The reading index of a lower priority reader is also initialized because the assignment

of the writing index depends on it. At activation time, the writing index of a lower priority

Data Structures

boolean wrtIdx, rdIdx; message buf[2];
Low to High Priority High to Low Priority

initialization
wrtIdx = 0; rdIdx = wrtIdx = 0;
buf[0] = buf[1] = · · · buf[0] = buf[1] = · · ·

Writer
activation wrtIdx = !wrtIdx;

if (rdIdx == wrtIdx)
wrtIdx = !wrtIdx;

execution buf[wrtIdx] = · · ·
Reader

activation rdIdx = !wrtIdx; rdIdx = wrtIdx;
execution · · · = buf[rdIdx];

Figure 2.2: The Double Buffer Mechanism
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writer is always toggled while the writing index of a higher priority writer is toggled only

when the reading index and the writing index are equal. The reading indices of a higher

and a lower priority reader are assigned as the negated value and the same value of the

writing index, respectively. At execution time, the writer and reader directly writes into

and reads from the slots that have been assigned at their activation times, respectively.

Communication in a Simulink SR model is defined to be point to point, i.e., be-

tween single writer and single reader running on a single processor. To achieve protected

and deterministic communication under the SR semantics in Real-Time Workshop [77],

Rate Transition Buffers (RTB) are inserted between blocks with different sampling rates in

a Simulink SR model. RTBs work as a unit delay block for slow to fast sampling rate tran-

sitions and a zero-order hold block for fast to slow sampling rate transitions. The priority

assignment used in Simulink is rate monotonic. RTBs run at the slow sampling rate but

with a priority equal to that of the fast one. Models with the insertion of RTBs preserve

the synchronous reactive semantics at real time. Note that the Rate Transition Buffering

scheme is actually the double buffer mechanism implemented at the application level.

In the general case of multiple readers, wait-free mechanisms under the SR com-

munication semantics can be constructed by leveraging two properties of the relationship

between the writer and its readers. Similar to the wait-free mechanisms under the execution-

time freshest value semantics in Section 1.3.2, the first method consists in computing an

upper bound for the maximum number of buffers that can be used at any time by reader

tasks. In [113], the writer communicates with a unit delay with M reader blocks with higher

priorities and N reader blocks with lower priorities. The bound is defined for the case of
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communication links with a unit delay, under the assumption that each task instance ter-

minates before its next activation event. The proposed communication scheme is called

the Dynamic Buffering Protocol (DBP). When unit delays are allowed on links, (N + 2)

buffers are demonstrably sufficient, where one buffer guarantees that the writer can safely

update the latest data, one is for the higher priority reader tasks that need to access the

previously written data, and N slots are for the lower priority reader tasks. In the context of

single processor execution platform, according to the logic outlined in [113], the high level

pseudo-code of the Dynamic Buffering (DyB) mechanism is defined in Figure 2.3. The data

structures consist of an array Buf[] of buffers, an array Read[] containing one entry for

each reader task with a lower priority, and an array HPR[] containing one entry for each

reader task with a higher priority. The entry contains the index of the buffer item used by

the corresponding reader or the keyword FREE. Furthermore, two other variables contain

Data Structures char cur, prev; message Buf[N+2];

Writer

/* activation time */ /* execution time */
prev = cur; · · ·
cur = FindFree(); Buffer[cur] = · · ·
FindFree() {

if (prev 6= j ∈ [1,N+2]) ∧ (∀i ∈ [1,N] Read[i] 6= j)
return j;

}
/* activation time */ /* execution time */

Lower if (delay[i]) · · · = Buffer[Read[i]];
Priority Read[i] = prev; · · ·
Reader else /* termination time */

Read[i] = cur; Read[i] = FREE;

Higher Priority /* activation time */ /* execution time */
Reader HPR[i] = prev; · · · = Buf[HPR[i]];

Figure 2.3: The Dynamic Buffering Mechanism
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the index of the latest written entry, cur, and the previous one, prev. The code implement-

ing the operations of the writer and reader tasks is partly executed by the kernel at task

activation time and partly by the tasks at execution time. With the assumption that the

deadline of each task is equal to its period, all tasks complete before their deadlines, and

hence only one task instance is active at any time. The authors of [113] demonstrate how

the M high priority readers always use only one buffer (the one identified in the code by the

prev index) and all the others require, in the worst case, a total of (N + 1) positions.

The other method provides buffer sizing and access procedures by guaranteeing

that writer and reader tasks never access the same data item at the same time. Similar

to the TCC concept used for buffer sizing with the execution-time freshest value semantics

in [25] and [61], the size of the buffer can be computed by upper bounding the number

of times the writer can produce new values while a given data item is considered valid

by at least one reader. This idea is also used in [10] for buffer sizing with no link delay

while preserving the SR semantics. It assumes that the worst-case response time can be

bigger than the sampling period. The offset, oi,j(m), is introduced between bj and bi as

oi,j(m) = aj(m)− ai(n), where n = sup{k|ai(k) ≤ aj(m)}. Clearly, the largest value of oi,j,

denoted by Oi,j, is always smaller than the period of bi, i.e., Oi,j < Ti. Define lifetime to

be

lj = Ow,j + Rj. (2.1)

According to the TCC, the number of buffer items,

NBw,j =
⌈
lj
Tw

⌉
, (2.2)

suffices for all the readers with lifetime ≤ lj. Implementation to single processor, multi-
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processor, and distributed execution platforms are discussed, but no concrete tagging func-

tions (i.e., indexing procedures) are given,

A buffer size upper bound is defined for SR semantics preserving communication

in [10]. Similar to the buffer optimization in communication with the execution-time freshest

value semantics in [51], the buffer bound can be improved by partitioning the reader tasks

in two groups: fast and slow. The NRw readers of τw are sorted by nondecreasing lifetime, so

that li ≤ li+1. The bound based on the data lifetime is used for the fast readers, and the

bound based on the number of reader instances is used for the remaining slow readers. Let

j be the partitioning index of the two groups. The reader tasks with index i ≤ j belong to

the fast reader group while those with index larger than j fall into the slow reader group.

Once j is chosen, the bound on the buffer size provided in [10] is

NBw =
⌈
lj
Tw

⌉
+

NRw∑
i=j+1

⌈
li
Tri

⌉
, (2.3)

where the first term represents a buffer shared among all consumers with li ≤ lj and the

second term is computed based on the number of activations of reader tasks inside the

lifetime. In [10], the index j that defines the two groups is proposed to be computed as

j = max

{
i|

⌈
li
Tw

⌉
≤

i∑
k=1

⌈
lk
Tri

⌉}
. (2.4)

It is difficult to implement synchronous models on distributed execution platforms.

In [20], a layered approach is proposed to map synchronous models onto Time-Triggered

Architectures (TTA), which is introduced in [62] as a strictly synchronous architecture.

From high to low level, the layers are Simulink modeling and simulation, SCADE/Lustre

programming and validation, and execution on TTAs. The TTA for distributed real-time
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systems targets safety-critical applications such as automobile. A TTA-node consists of a

communication controller and a host computer, between which the communication network

is a strict data-sharing interface. To relax the strictly synchronous constraints from the

TTA, Loosely Time-Triggered Architectures (LTTA) are introduced in [12], where clocks

are periodic but not synchronized. A protocol consisting of a coherent system of logical

clocks on LTTAs is proposed to guarantee synchrony. Implementation of synchronous model

specifications on LTTAs is discussed in [115]. To accomplish the mapping from model

specification to execution architecture, the synchronous model is first transformed to an

intermediate model, the Finite FIFO Platform (FFP), which is similar to Kahn’s Process

Networks except that the queues are finite, and then the FFP is implemented on top of an

LTTA.

2.2 Problem Statement

This dissertation focuses on synchronous reactive model-based design for embed-

ded real-time systems implemented as software. There is no unified comprehensive article

that addresses this problem thoroughly from model specification down to code generation.

To lower the complexity of the problem, among the wide range of the target execution

platforms, architectures with a single processor are considered. In the rest of this section,

limitations of the state of the art of implementation of synchronous reactive communication

on single CPU is discussed. Finally those problems that are going to be solved in this

dissertation are presented and further motivated.
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2.2.1 Generalization, Implementation, and Optimization

Along the line of research on the state-of-the-art synchronous reactive communi-

cation provided by [109][116][77][113][10], there are interesting research questions that are

worth of more attention. First of all, it is desirable to generalize the state of the art to

handle more general scenarios, which eventually subsumes the existing synchronous reactive

communication protocols. It is well known that memory is expensive and scant for embed-

ded real-time systems. It is beneficial to study the possibility of achieving a lower/tighter

bound on communication buffers. Secondly, it is valuable to investigate how to preserve

the SR semantics when implementing SR models down to code, how to achieve portable

implementation for design reuse, how to support efficient implementation at the kernel level,

and what supports are needed from real-time operating systems for semantics preservation.

Design automation is playing a more and more important role for embedded system design.

It is interesting to study how to automate the whole process of implementing SR models

onto single processor execution platform with preserving the semantics of the synchronous

reactive model of computation. Finally, the behavior and properties of model blocks may be

quite different and a particular communication protocol may not provide a memory-efficient

buffering implementation. It is important to study the possibility of improving the state of

the art to save more memory on buffer consumption through utilizing different communi-

cation protocols between a writer and its readers. This dissertation attempts to answer all

these questions.
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2.2.2 Limitations of Current Solutions

As discussed in Section 2.1.2, the double buffer mechanism [109][116] supports

the synchronous reactive communication semantics. The Rate Transition Buffer blocks [77]

used in Simulink from The MathWorks is the best known industrial support for preserving

the synchronous reactive communication semantics via the double buffer mechanism. As

presented in Section 2.1.2, in Simulink, communication is defined to be one to one, which

means that a pair of buffers are needed for each pair of communicating blocks under the

double buffer communication scheme. This implies that two readers can never share the

same buffer and hence there would be no opportunity for memory optimization. Since the

RTB is implemented at the application level, in order to preserve both data integrity and

data determinism, Simulink requires that the communicating blocks must be periodic and

their sampling periods must be harmonic, which means that one is an integer multiple of

the other. Furthermore, to maintain the sampling period harmonicity, the writer and its

reader tasks must be activated with the same scheduling phase.

As shown in Section 2.1.2, the dynamic buffering mechanism [113] is defined be-

tween a writer and its multiple readers and is a relatively general communication protocol

with the synchronous reactive semantics. But still it does not answer how to size the com-

munication buffers for scenarios where there are arbitrary communication link delays or

there are multiple instances per task in the system.

As presented in Section 2.1.2, the optimization work based on a hybrid commu-

nication protocol given in [10] is very interesting, but it has two problems that need to be

improved. Firstly, as shown later in Section 4.3, their proposed approach easily suffers from
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sub-optimality due to the proposed definition of the partitioning index, i.e., Equation 2.4.

A better solution can be easily found by considering all the possible partitioning index

values. In addition to the above sub-optimality, another main problem with the bound

expressed by Equations 2.3 and 2.4, however, is the definition of the number of buffers that

are required by the slow reader tasks, which corresponds to the second term on the right

hand side of Equation 2.3. Instead of considering the maximum number of instances that

can be activated for each reader task inside the lifetime and then adding them, it is better

to upper bound the maximum number of slow reader instances that can be active at any

time, reflected by the worst-case response time. A simple example from [113] illustrates

this problem. The illustrative example consists of one writer and two reader tasks, with

priorities lower than that of the writer. The period of the writer is 2 units while the periods

of the two readers are 3 and 5 units. Assuming that the worst-case response times of the

readers are equal to their respective periods, then the bound based on the DBP in [113] is

3 buffers (two lower priority readers and no communication link delay), whereas the bound

calculated according to [10] is 4.

From the above discussion, it is clear that there are serious limitations with the

state-of-the-art synchronous reactive communication protocols that target single processor

execution architectures. This dissertation, therefore, aims at removing all these limitations.

2.2.3 Motivation

As the industry structure is undergoing a revolutionary change, system-level design

becomes growingly the key to success. As embedded system design complexity continuously

increases, more functionality has been shifted to software, which indicates that system
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designs imply major emphasis on software. Model-based design for embedded software is

playing a more critical role. In particular, synchronous reactive models are increasingly

used for development of embedded control algorithms.

The synchronous reactive model of computation is very expressive and it can be

used to specify a wide range of applications. Due to the assumptions made in [109][116][113][10]

(e.g., no link delay or maximum unit delay, single task instance, etc.), the state-of-the-art

SR communication protocols work only for a small subset of the application domain. To

address a broader and practically useful design space, these synchronous implementations

need to be generalized.

Similarly, as presented in Section 2.2.2, the application-level implementation of the

Rate Transition Block in Simulink can only achieve the synchronous reactive semantics for

applications with strict restrictions on sampling periods. For applications with nonharmonic

periods, deterministic communication cannot be supported by the RTB. This is clearly

unacceptable for applications that are sensitive to nondeterministic communication.

Though it is clear that synchronous reactive communication protocols should be

implemented at both the kernel and the application levels, no existing literature addresses

the support for a kernel-level implementation, let alone the implementation tradeoffs for

different synchronous reactive communication protocols.

Indeed, a thorough investigation of all the questions raised in Section 2.2.1 and

a comprehensive study on how to remove those limitations discussed in Section 2.2.2 are

indispensable. All these justify the necessity of this dissertation.
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Part II

Theory Generalization,

Implementation, and Optimization
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Chapter 3

Implementation Technology

In a semantics-preserving implementation of synchronous reactive communication,

readers need to be ensured to access the value produced by the correct instance of the writer

task. In particular, the buffer slot that contains the item produced by the writer has to be

defined at the writer’s activation time. Similarly, the buffer slot read by a reader is defined

at the reader’s activation time. Later, at execution time, the writer/reader will directly use

the buffer positions defined earlier. Both writer and reader tasks, however, are not guar-

anteed to start execution at their release times because of scheduling delays. Therefore,

in general, the selection of the buffer entry that will be written into or read from must be

delegated to the operating system. In this chapter, the platform-based design methodology

is presented for automatic configuration of real-time operating systems and automatic syn-

thesis of synchronous reactive communication protocols. To achieve portability, application

programming interfaces with an emphasis on OSEK are discussed. Finally, the complete

model-based design flow, integrated with the platform-based design methodology, is given.
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3.1 Platform-Based Design Methodology

Embedded systems exist for ubiquitous computing and they are usually imple-

mented as SOCs. Challenges and benefits of SOC design are discussed in [21]. Reuse is

the key to SOC design. Each successive generation of IC technology enables the creation of

products that are significantly faster, consume much less power, and offer more capabilities

at a greatly reduced system cost. Platform-Based Design (PBD) methodology is presented

in [21] for meeting the challenges of comprehensive SOC design due to design productivity.

Design flexibility and productivity can be traded off for each other through different levels

of platforms. Platform-based design leads to productivity gains through emerging design

technologies and methodologies.

The idea of PBD is originated from personal computer design community and

has been generalized and formalized in [36][108][107] to alleviate the increasing time-to-

market pressure on designs of embedded real-time systems. A platform is, in general, an

abstraction that covers a number of possible refinements into a lower level. A platform, i.e.,

a layer of abstraction of the system, hides the complexity of the underlying computation,

communication, sensing, and control. A platform library for building networked embedded

real-time systems consists of a set of pre-designed primitive components to support design

reuse, which improves the design efficiency and design cost. Two adjacent layers and the

mapping tools between them form a platform stack. Therefore, in a PBD methodology, the

design and implementation are structured into abstraction layers and mapping tools provide

the conceptual glue that binds together adjacent abstraction layers. A PBD methodology

is neither a top-down nor a bottom-up approach. For every platform, there are two views:
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one is used to map the upper layer of abstraction into the platform (top-down mapping)

and the other is used to define the class of lower level of abstraction implied by the platform

(bottom-up exporting). Instead, it is indeed a meet-in-the-middle approach, which aims at

providing efficient and effective distribution of resources at a low cost.

3.2 PBD for Real-Time Operating Systems

From the above discussion, it is clear that protocols preserving the SR seman-

tics need kernel-level support to assign reading and writing buffer indices. A Real-Time

Operating System (RTOS) enables communication among software tasks, hardware, and

other system resources. It coordinates software tasks by scheduling those that are ready to

execute. Supports from an RTOS are important for synchronous reactive model-based em-

bedded software design. To achieve an efficient automatic generation of the task model and

the corresponding configuration of the RTOS procedures and data structures, a platform-

based design methodology is introduced as follows.

Figure 3.1 illustrates the stack view of the platform-based design methodology for

real-time operating systems. From top to bottom, it shows the application domain, the

task and communication resource model platform, the mapping tools from the application

to the solution space, the virtual real-time operating system component platform, and

the underlying execution architecture. In the rest of this section, detailed information is

provided for each of them.



51

Execution

Architecture

Application

Functional Model

Task Model; Communication 

Resource Model

Scheduling Policy: FP, DP; 

Communication Resource 

Management Policy

M
apping

E
xport

Task/Resource Model Platform

Virtual RTOS Platform

RTOS API

Figure 3.1: Platform-Based Design for RTOS

3.2.1 Application Model and Execution Architecture

The very top of Figure 3.1 describes the system behavior in terms of functional and

aspectual (i.e., non-functional, performance) requirements, which can be formally specified

using a formal language or a specification tool. For general embedded real-time systems,

the applications can range from safety-critical hard real-time systems to multimedia. For

example, safety-critical hard real-time applications can be functionally modeled as a network

of blocks that execute according to the synchronous reactive semantics [119][14].

To meet different computation demands, the underlying execution platform at the

bottom of Figure 3.1 can be uniprocessor, multiprocessor, or even distributed architectures.
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3.2.2 Platform Models and Middle Meeting Point

In this subsection, the platforms and the middle meeting point in the picture of

the stack view in Figure 3.1 are discussed in details.

Task/Resource Model Platform The task/resource model platform abstracts the char-

acteristics of the set of application tasks and their interaction. Tasks are execution entities

to carry out application functionalities. They are usually categorized as either real-time or

non-real-time. Real-time tasks are further categorized as hard-real-time and soft-real-time.

Tasks are characterized by a set of parameters. Task interaction is usually through shared

resources such as communication buffers. As discussed in Section 1.3.2, task communication

model can be either blocking or non-blocking.

Virtual RTOS Platform The virtual RTOS platform defines the scheduling policies and

inter-task communication protocols that may be used. In the RTOS platform library, the

scheduling policies may be static priority based, e.g., Rate Monotonic [73][71] and Dead-

line Monotonic [72][6], or dynamic priority based, e.g., Earliest Deadline First [73][31] and

Least Laxity First [31][89]. Inter-task communication protocols may support blocking (lock-

based), or non-blocking (lock-free, wait-free) inter-task data transfer and they may provide

an implementation for different communication semantics. As discussed in Section 1.3.2,

examples of lock-based protocols are the Priority Inheritance Protocol [111], the Priority

Ceiling Protocol [111][26], the Stack Resource Policy [7], etc. Examples of lock-free protocols

are the concurrent reading and writing protocol [63], the Non-Blocking Writing protocol,

etc. Examples for wait-free protocols are the buffering tagging protocol [10], the Dynamic
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Buffering Protocol [113], the multi-reader asynchronous protocol [23], etc.

The Middle Meeting Point Software standards have become increasingly important in

industry. To support portability of real-time application software, RTOS Application Pro-

gramming Interface (API) industrial standards have been developed, e.g., OSEK/VDX [101],

POSIX [104], and µITRON [90].

OSEK/VDX standard is mainly for the automotive industry. OSEK stands for

open systems and the corresponding interfaces for automotive electronics while VDX rep-

resents Vehicle Distributed eXecutive. OSEK/VDX is an industrial standard for an open-

ended architecture for distributed control units in vehicles. µITRON represents Micro In-

dustrial The Real-time Operating system Nucleus. µITRON real-time kernel specification

is a Japanese industrial standard and has been used by more than half of the embedded

developers in Japan. POSIX is the acronym for Portable Operating System Interface. It is

a set of international standards consisting of base definitions, system interfaces, shell and

utilities, and rationale. Defining a programming interface, POSIX standard specifies source

code level API and thus supports source code portability. POSIX standard is UNIX-like

and used for general-purpose applications.

In addition to the above industrial RTOS standards, there are also RTOS re-

search frameworks developed by academia. For example, Soft and Hard Real-time Kernel

(SHaRK), is a research kernel designed for testing and implementing new scheduling algo-

rithms. ShaRK implements the standard POSIX 1003.13 PSE52 interface.

An RTOS API standard is introduced at the meeting point of the platform stack

in Figure 3.1 to achieve portability and vendor-independence of software. Through this
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meeting point, the application tasks may use the kernel services by calling the RTOS APIs.

With the PBD methodology, a modular RTOS can be automatically configured from the

virtual RTOS platform library according to the application tasks and the underlying exe-

cution architecture. An RTOS designed in this way only includes the required features and

thus it achieves a small footprint.

As discussed above, there are a large number of available options for the RTOS

synthesis problem. This dissertation focuses on a real-time operating system that supports

a single processor execution platform with a preemptive, priority-based scheduling policy

and conforms to the OSEK/VDX.

3.3 OSEK/VDX

In this section, the OSEK/VDX API standards used to implement the SR semantics-

preserving protocols are introduced. The OSEK/VDX standards originated from France

and Germany and have been widely used in the automotive industry. OSEK/VDX includes

operating system (OS), communication (Com), network management (NM), and debugging

(ORTI). In the following, only OSEK OS is discussed through summarizing the OSEK OS

software architecture, kernel services, and the OSEK implementation language that is used

during system generation.

3.3.1 Software Architecture

The OSEK OS architecture is designed to support OS scalability and application

software portability. Three processing levels are defined in the OSEK OS. From high to
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low priority, they are interrupt level, logical scheduler level, and task level. Tasks are

categorized as either basic or extended based on whether they can enter a wait state by

calling the WaitEvent kernel service. A basic task is not allowed to wait on an event. To

support design reuse and to ease software upgrade, four conformance classes are defined

according to the number of active activations per task, the task type, and the number of

tasks per priority level.

To support application portability, minimum requirements are defined for all four

conformance classes as shown in Table 3.1. For example, for BCC1, the minimum require-

ment specifies single active task activation, eight active tasks, distinct task priority assign-

ment, eight priority levels, one alarm, one application mode, and no event. Any application

that meets the minimum requirements is portable to any OSEK-compliant operating system

that supports the same conformance classes.

Basic Extended
BCC1 BCC2 ECC1 ECC2

Multiple Active
No Yes

BT: No BT: Yes
Task Instances ET: No ET: No
# of Tasks not

8
16

in Suspend State (Any Comb. of BT/ET)
> 1 Task/Priority No Yes No Yes
# of Events/Task - 8
# of Priority Levels 8 16
Resources RES SCHEDULER 8 (including RES SCHEDULER)
Internal Resources 2
Alarm 1
Application Mode 1

Table 3.1: Minimum Requirements for OSEK CC
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3.3.2 Kernel Services

In OSEK OS, the kernel services are structured into different functionality groups,

including interrupt management, task management, resource management, event manage-

ment, alarm management, and error treatment. Table 3.2 summarizes kernel services de-

fined in the OSEK OS standard. In the following, the kernel services are briefly discussed

in functionality groups.

Task Model Basic task; Extended task
Synchronization Event; Semaphore
Semaphore Sync Protocol Priority Ceiling Protocol (Highest Locker Protocol)
Inter-task Comm Mechanism Global variable; Message; Message filtering/notification
Task Management Activate/terminate/chain/state reference
Scheduling Non-/full/mixed preemptive; Round Robin (same level)
Multiple Activation BCC2 tasks and basic tasks in ECC2
Memory Management No virtual memory (MMU); No dynamic allocation
Stack Sharing Yes for BCC and No for ECC
Interrupt Handling ISR Categories 1 and 2; Nesting allowed
Time Management Counter/alarm (relative/absolute; single/cyclic)
Error Management Hook routine; Error code; Fatal/application error

Table 3.2: Summary of the OSEK OS Standard

Interrupt Management An Interrupt Service Routine (ISR) has a statically assigned

priority level higher than that of tasks. There are two categories of ISRs specified in the

OSEK OS standard. An ISR of Category 1 is not allowed to use any kernel services and it

cannot be preempted. Termination of an ISR of Category 1 does not force any rescheduling.

On the other hand, kernel services are allowed in an ISR of Category 2 and rescheduling

will be performed at the end of its execution if there are no other pending ISRs.
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Task Management A basic task has three states: running, ready, and suspended. In

addition to these, an extended task has a fourth state: waiting. A task can be activated

by either ActivateTask or ChainTask and it can only be terminated by itself by calling

TerminateTask. The number of tasks in the system remains constant and multiple con-

current instances of a task are not allowed. If an activation call is made for a task that is

already active, the request will be queued until the current instance terminates. Therefore,

there is no need for dynamic task creation or deletion.

Resource Management Typical resources like mutex and semaphore are used for syn-

chronization or coordination of tasks. Resource management controls access to shared

resources such as memory, program sequences, etc. Access to multiple resources is strictly

under the Stack Resource Protocol, i.e., the Last-In-First-Out (LIFO) principle. To prevent

priority inversion and deadlock, the Priority Ceiling Protocol is used in the OSEK OS.

Event Management In addition to semaphore, synchronization can also be achieved by

using events. The kernel primitive WaitEvent is only accessible to extended tasks. An event

is owned by an extended task and it can be set via kernel primitive SetEvent by either a

basic task, an extended task, or even an ISR of Category 2. Events are non-consumable

and therefore they need to be cleared via kernel primitive ClearEvent by their owners after

being used. Note that both event and semaphore are a blocking synchronization mechanism.

Alarm Management Alarms are managed in a layered manner. OSEK supports rela-

tive and absolute alarms and an alarm can be either single or cyclic. On the OSEK OS

kernel side, counters are measured in ticks and at least one counter is generated from a
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hardware or software timer. On the application side, primitives managing alarms such

as SetRelAlarm/SetAbsAlarm are provided. An alarm can be associated with only one

counter, but a counter can be used as a reference for more than one alarm. An alarm can

be used to activate a task, set an event, or call an alarm callback routine.

Hook Management The hook mechanism is primarily used for error handling, tracing,

and debugging purposes. This mechanism allows application-specific functionalities to be

processed internally by the kernel. As part of the OS, a hook routine has a higher priority

than all tasks and it cannot be preempted by an ISR of Category 2. In particular, ErrorHook

is called upon the occurrence of application errors. PreTaskHook is called before executing a

new task but after moving the task to the running state while PostTaskHook is called after

executing the current task but before leaving the running state. StartupHook is called at

the end of the OS initialization and before the scheduler starts running while ShutdownHook

is called during the OS shutdown.

OS Execution Management There are three system services in this category. Called

from tasks, ISRs of Category 2, or hooks, GetActiveApplicationMode returns the current

application mode. StartOS can only be called from the application’s main function with

a specific execution mode. ShutdownOS is called to abort the overall system execution by

a task, ISR of Category 2, ErrorHook, StartupHook, or the OS itself due to an occurred

fatal error or an undefined internal state.
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3.3.3 OSEK Implementation Language

The OSEK Implementation Language (OIL) [100] has been designed to support

modular configuration for system generation of an application. In this subsection, the

detailed contents of the OIL configuration files are presented. OIL is a mechanism used to

configure an OSEK application inside a particular CPU. The OIL description of an OSEK

application consists of a set of OIL objects that are characterized by a set of attributes

and references. Attributes and references can be either standard or optional (application-

specific). Refer to Table 3.3 for all OSEK OIL objects and their properties.

An OIL configuration is composed of two parts: implementation definition and

application definition. The former defines all standard and application-specific attributes

Object Mandatory Standard Attribute Standard Reference
CPU yes - -

OS yes (= 1)
STATUS; USERESSCHEDULE;

-USEGETSERVICEID; Hooks;
USEPARAMETERACCESS

APPMODE yes (≥ 1) - -

TASK yes (≥ 1)
PRIORITY; SCHEDULE; MESSAGE; EVENT;
ACTIVATION; AUTOSTART RESOURCE

COUNTER no
MAXALLOWEDVALUE;

-
TICKSPERBASE; MINCYCLE

RESOURCE no RESOURCEPROPERTY -
EVENT no MASK -
ISR no CATEGORY MESSAGE; RESOURCE
MESSAGE no NOTIFICATION; etc. -
NWMESSAGE no SIZEINBITS; etc. IPDU
COM no (= 1) COMTIMEBASE; etc. -
IPDU no SIZEINBITS; etc. -
NM no (= 1) - -

Table 3.3: OIL Objects and Their Properties
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and their properties for a particular OSEK implementation while the latter defines the set

of objects and their corresponding attribute values for an OSEK application. All attributes

used in an application definition must be defined in the corresponding implementation

definition.

3.4 The Complete Design Flow

After presenting all the preliminary materials on model-based design and OSEK,

in this section, the complete design flow that integrates model-based design, platform-based

design, and the OSEK application development process is presented. As shown in Figure 3.2,

applications are specified at the system level as synchronous reactive models. First of all,

a model-based design tool takes as input the synchronous reactive model specification and

automatically generates application tasks and an OIL configuration file. Notice that code

that implements the synchronous reactive communication protocols is embedded in the

implementation of tasks. Then, the OIL files are fed to the System Generator (SG), which

automatically configures a kernel by choosing the required modules and customizing the

data structure attributes based on the configuration file. Finally, the application source

code that is automatically generated from the system specification, the selected module

files from the OSEK OS kernel library, and the additional application files produced by the

SG are compiled and linked together to produce an executable file for the application.

This dissertation mainly focuses on the top part of Figure 3.2, i.e., automatic

generation of portable application tasks and an OSEK OIL configuration file that preserve

the synchronous reactive communication semantics.
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Chapter 4

Theory Generalization and Bound

Improvement

In this chapter, the synchronous reactive communication semantics is generalized

to consider arbitrary link delays. Extensions on the synchronous reactive communication

theory and the code that implements the read and write operations in the general case

of multiple-unit delays and deadlines (worst-case response times) larger than periods are

provided. Without giving imperative code implementation, [113] only provides the safety

criterion for the selection of a free buffer. Many implementations meeting the criterion

are possible, with tradeoffs between space and time complexity. In this dissertation, one

possible solution with constant execution time is provided in the context of the general

case. In particular, two constant time SR communication protocols based on the number of

reader instances [113][10] and on temporal concurrency control [10] are presented. Finally,

improvements on buffer bound are defined with respect to the above two protocols.
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4.1 Generalized One-to-Many Communication

In this section, the synchronous reactive communication semantics is first general-

ized to SR models where there may exist arbitrary communication link delays. Then, this

link delay generalization naturally leads to a broader one to many communication scenario.

4.1.1 SR Semantics under Arbitrary Link Delay

In the synchronous reactive (Simulink) model [122][94], each block computes two

functions: the output function and the state update function. Under the semantics of the

SR model of computation, the execution of the block functions takes zero-time, that is,

the result is computed instantaneously when the block is activated. The activation of a

block can be constrained to be periodic (i.e., released at multiples of a given period) or

event-triggered, possibly with a minimum inter-arrival time. Two blocks bi and bj may be

activated at the same time, that is, ai(k) = aj(m). Blocks communicate with each other

through ports. Due to the possibility of existing ports of either input or output type, a block

can be a reader, a writer, or both. A system of the SR model is a network of blocks without

zero-delay cycles. The corresponding fixed point condition together with the definition of a

partial order of the block execution ensures that the semantics is always well-defined.

In general, the communication link can possibly carry a k-unit delay, as indicated

by bi
−k→ bj. Links with multiple-unit delays can be specified as a design parameter. How-

ever, a legitimate value depends upon the deadline and the period of the writer task [94].

For a k-unit link delay, the SR communication semantics defines

ij(n) = oi(m), where m = max{0, ζi(aj(n))− k}.
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Each functional block bi is implemented in the context of a task executing on a CPU,

meaning that the code implementing the output and the state update functions is executed

with an upper bounded execution time in the context of a thread. Recall that tasks are

denoted as τi. The block to task mapping consists of a relation between a block and a task

and of a static scheduling (execution order) of the block code inside the task. M(bi, j, n) is

used to indicate that bi is executed as the nth block in the context of τj.

The task model is captured by a set of parameters. For each instance with index

m of τi, define as release time, ri(m), the instant when the task is ready for execution

(assume ri(m) = ai(m)), the start time, si(m), the instant when it obtains the control of the

CPU, and the finish time, fi(m), the instant when it completes its execution. Introduced

in Section 1.3 but without providing a definition, the worst-case response time is the time

separation between the finish time and the activation time. Recall that in the real-time

domain, τi is also characterized by a relative deadline Di, which can be smaller, equal to,

or greater than Ti. When the relative deadline is larger than the period or minimum inter-

arrival time, there may exist multiple instances of the same task active (but not executing)

at the same time.

The model used in this dissertation assumes that the code implementing a block

only reads the input and writes the output once per activation. Reads and writes can

happen at any time during the execution of the block and are not atomic. After being

mapped to a task, a block is executed with the task’s priority.

While communication is defined among blocks, the buffer bounds are computed

based on the number of tasks. If multiple reader blocks communicating with the same writer
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are mapped into the same task, they need to be counted as one because they may share

the same communication buffer. In the following, the response time of a task is assumed as

the representative of the worst-case response time of all the blocks that are mapped into it.

This assumption, although pessimistic, is safe.

4.1.2 One-to-Many Communication

The existing SR communication protocols are extended with respect to multiple-

unit link delays and multiple instances of a task. A prerequisite of any semantics-preserving

implementation is that the reader block must be implemented with a priority lower than

that of the writer or its scheduling must be constrained by a precedence order for a link

bi → bj without delay [10]. To guarantee that the latency is not higher than a unit delay

in the low to high priority communication [113], it must be Dw ≤ Tw for the writer task.

However, when the deadline (worst-case response time) of a writer is greater than its period,

at least λ units of delay are required in any link from the writer to a higher priority reader,

where λ is defined as the smallest integer such that

Rw ≤ Dw ≤ λTw.

Figure 4.1 defines a generalization of the scenarios in [113], where only the case of

unit delay links is considered. As shown in Figure 4.1, writer task τw communicates with

N lower priority readers. Of those, N0 read data with no delay, N1 with unit delay, and so

on, until Np with p-unit delay. Similarly, τw communicates with M higher priority readers.

Of those, M0 are connected with λ-unit delay links, M1 with (λ + 1)-unit delay links, and so

on, until Mq with (λ + q)-unit delay links. Consider all readers, the maximum link delay κ
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Figure 4.1: A General Scenario: Tasks with Link Delays and Priority Levels

is max(p, λ + q).

For the following discussion, additional definitions are required. Each writer task

is labeled as τw, and each reader task as τri . Let NRw and NBw be the number of readers and

the number of buffers for the writer task τw, respectively.

The example shown in Table 4.1 is used as a running example to demonstrate how

the proposed method improves on the existing approaches. The example consists of one

writer and seven reader tasks. For the purposes of simplicity and comparison, it assumes

that the writer has the highest priority and no delays are defined on the links. The first four

rows refer to the task names, reader task indices, task periods, and worst-case computation

times. The meaning of remaining rows will be explained in the rest of this section.

4.2 Generalized SR Communication Protocols

A buffer-based communication scheme usually consists of two parts: buffer sizing

and buffer indexing. In the following, for each generalized protocol, the communication

buffer sizing mechanism is first presented and then the corresponding buffer indexing pro-
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1 Task τw τr1 τr2 τr3 τr4 τr5 τr6 τr7

2 i - 1 2 3 4 5 6 7

3 Ti 20 8 10 12 22 40 80 240

4 Ci 2 1 2 2 4 4 5 10

5 Ri = Ci +
P

k∈hp(i)
l
Ri
Tk

m
Ck (Eq. 4.1) 2 3 5 7 16 35 77 235

6 li = Owi + Ri (Eq. 2.1) - 23 25 27 36 55 97 255

7
l
li
Tw

m
- 2 2 2 2 3 5 13

8
l

li
Tri

m
- 3 3 3 2 2 2 2

9
Pi

k=1

l
lk
Trk

m
- 3 6 9 11 13 15 17

10
PNRw

k=i

l
lk
Trk

m
- 17 14 11 8 6 4 2

11
l
li
Tw

m
+
PNRw

k=i+1

l
lk
Trk

m
(Eq. 2.3) 17 16 13 10 8 7 7 13

12
l

Ri
Tri

m
- 1 1 1 1 1 1 1

13
Pi

k=1

l
Rk
Trk

m
- 1 2 3 4 5 6 7

14
PNRw

k=i

l
Rk
Trk

m
- 7 6 5 4 3 2 1

15
l
li
Tw

m
+
PNRw

k=i+1

l
Rk
Trk

m
(Eq. 4.6) 7 8 7 6 5 5 6 13

16
Pi

k=1

l
lk
Trk

m
+ 1 - 4 7 10 12 14 16 18

17
PNRw

k=i

l
lk
Trk

m
+ 1 - 18 15 12 9 7 5 3

18
l
li
Tw

m
+
�PNRw

k=i+1

l
lk
Trk

m
+ 1
�

(Eq. 4.8) 18 17 14 11 9 8 8 13

19
Pi

k=1

l
Rk
Trk

m
+ 1 - 2 3 4 5 6 7 8

20
PNRw

k=i

l
Rk
Trk

m
+ 1 - 8 7 6 5 4 3 2

21
l
li
Tw

m
+
�PNRw

k=i+1

l
Rk
Trk

m
+ 1
�

(Eq. 4.9) 8 9 8 7 6 6 7 13

Table 4.1: An Example of Single-Writer Multiple-Reader Configuration (R ≤ T)

cedure is provided. Previous work assumes that the worst-case response time is smaller or

equal to the period. In an implementation using the OSEK automotive operating system

standard [101], this is indeed the case for BCC1 and ECC1 class implementations. However,

the case of the worst-case response time larger than the period has practical relevance, as

confirmed by the other OSEK conformance classes (i.e., BCC2 and ECC2). As shown in

the rest of this section, a generalization to the case R > T is indeed possible.
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4.2.1 Generalized Dynamic Buffering Protocol

The first mechanism used to size a communication buffer is based on the active

number of lower priority reader instances of a writer. The writer and its readers share a

buffer array for data communication. As discussed in the following, the writer writes data

into the buffer in a spatially non-sequential order, therefore, this communication protocol

is also known to be based on spatially-out-of-order writes.

Buffer Sizing of GDBP The generalization to multiple-unit link delays and the case

R > T requires a different set of data structures. In case the delay on a link can be up to k

units, the cur and prev index variables in [113] are no more sufficient. Similar to the unit

delay case presented in [113], on the writer side, it needs to keep only one copy of the current

and the previous k buffer indices, i.e., an array of (k + 1) elements is required to store the

indices referring the current and the last k elements written by the writer. A circular array,

pos[k+1], as shown in Figure 4.2, fulfills this purpose. Integer variable cur is used to index

the entry in pos[] that stores the current buffer index and pos[(cur+j)%(k+1)] (j ≤ k)

marks the index of the element of the shared buffer array containing the item with a j-unit

pos[]

current

−5

−2

−3

−4

cur

previous

Figure 4.2: Data Structures for Writer Side
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delay. When a new instance of the writer task is activated, the old buffer index with a

k-unit delay becomes the new buffer index with a (k + 1)-unit delay, which is not needed

and therefore can be used for storing the new current buffer index. Similarly, the old current

buffer index becomes the new buffer index with a unit delay.

The data structures on the reader side also need to be changed with respect to

the version in [113] as follows. Each reader task now needs multiple entries in Read[], one

for each instance that may be active at the same time. As shown in Figure 4.3, these may

be folded into a single array with each reader task using a contiguous subset of Read[]at

constant offset Roff[] as a circular buffer of indices (one for each instance) with size Ir[].

The array Ri[] is used to index the currently released instance of a reader. Note that the

functions of a specific Ri[] and its corresponding contiguous subset in Read[] are similar

to those of cur and pos[], respectively. Because there may be multiple active instances of

a task existing in the system, a separate array Rii[], similar to Ri[], is needed to recover

LPR (N)

(M)

Rii[]Read[] Ri[]

Ir[0]=2Roff[0]=0

Ir[4]=2

Ir[6]=2

Ir[1]=4

Ir[2]=3

Ir[3]=1

Ir[5]=1

Roff[1]=2

Roff[2]=6

Roff[3]=9
Roff[4]=10

Roff[5]=12
Roff[6]=13

HPR

Figure 4.3: Data Structures for Reader Side (D > T)
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the buffer index of the reader at execution time.

Figure 4.4 shows the data structures that are needed for the generalized dynamic

buffering mechanism. When the worst-case response times can be larger than the periods,

the total number of instances of lower priority readers that can be active at any time is

computed as

ILPRw =
∑

j∈lp(w)

⌈Rτrj

Tj

⌉
,

where lp(w) represents the set of readers with a lower priority than that of the writer and

rj is the index of the reader task. Assuming all tasks have unique priorities, the worst-case

response time can be computed according to the schedulability theory [5][17]:

Rτri
= Cτri

+
∑

j∈hp(i)

⌈
Rτri

Tj

⌉
Cj, (4.1)

where Cτri
is the worst-case computation time of the task containing the reader block and

the summation is extended over hp(i), i.e., all the tasks τj with a priority higher than that

Rii[]

previous

current

−5

−2

−3

−4

cur pos[]

HPR

LPR (N)

(M)

Buf[] Ri[]Read[]

Figure 4.4: Communication Scheme Based on Spatially-out-of-Order Writes
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of τri . Note that a better bound could be obtained by considering the actual position of

the reader block inside the task [93].

Some of the entries in arrays pos[] and Read[] may certainly share buffer indices,

but in the worst case, all of them may index unique buffer entries. Therefore, the size of

the buffer can be computed as the following:

NBw = ILPRw + k + 1, (4.2)

among which ILPRw slots are reserved for lower priority reader instances, k slots store the

writer outputs with a delay from unity to k units, and one entry is for the writer to write

into a new data item. Note that all the higher priority readers share the same copy of the

communication data with a certain communication link delay. Clearly, this buffer sizing

mechanism is based on the number of instances of low priority readers.

Before moving on, the bound based on the maximum number of active reader

instances defined in Equation 4.2 is applied to the example shown in Table 4.1. The gen-

eralized method results in a size bound of 8 items, which is identical to the computed

buffer bound obtained when using the sizing formula in [113]. This is expected because

Formula 4.2 is a generalization of [113].

Buffer Indexing of GDBP The generalization to multiple-unit link delays and the case

R > T also requires a different set of procedures for the reader and writer tasks to access

the communication data structures. There are different ways to implement the FindFree()

procedure that is used to find a free buffer slot by the writer at its activation time. As

shown on the left hand side of Figure 4.5, an array implementation of the list contains two

fields: the use count (use) and the next free slot index (NextFree). The array use is used
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Figure 4.5: A Use Free List Data Structure

to keep track of how many references are currently using the corresponding entry of the

communication buffer. Such references include the active reader task instances using the

buffer or the possibility that the buffer contains one of the last written k instances and the

current one. A zero value of use[i] means that the ith entry of Buf[] is free and can be

overwritten by the writer. The use of the array use to track the buffers currently in use

may lead to a very simple linear time implementation of the routine FindFree() that is

used to find the first available buffer slot. However, FindFree() must be executed at the

activation time of the writer by the kernel or at the highest priority level. A linear time

implementation executing in kernel mode at task activation time is highly undesirable and

it is worthwhile to trade off some memory space for a faster implementation if possible.

A constant time implementation of the same routine is possible via implementing a free

list that keeps track of the indices of the free elements, as shown on the left hand side of

Figure 4.5. The start of the free list is indicated by FreeHd and the free list is terminated

by a value of -1. It is not difficult to find that the values of the use fields along the free list
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are all zeros. Therefore, to further save memory, the two columns can be compacted into

one, as shown on the right hand side of Figure 4.5, containing the value of the next free slot

index or the use count. The free entry can be obtained by getting the FreeHd value, and

list updates can be performed in constant time.

The data structures and the indexing functions for the reader and writer tasks are

defined in Figures 4.6 and 4.7. In the code implementation, the writer has the responsibility

of updating the index to the element of pos[] containing the index of the buffer element

Data Structures
char pos[k+1]; char UseFreeL[NBUF]; /* init with 0, # of users */
char Read[NINSTS]; char cur, FreeHd; /* pos[cur] is current */
message Buf[NBUF]; char Ri[NR], Rii[NR]; /* init with 0 */
Buffer Management Routines

char FindFree() { UseDec(char i) {
char buf id; if (--UseFreeL[i]) {
buf id = FreeHd; UseFreeL[i] = FreeHd;
FreeHd = UseFreeL[FreeHd] FreeHd = i;
return buf id }
} }

Figure 4.6: Data Structures and Supporting Routines for the Generalized CTDBP

Writer: max k-unit delays Low/High Priority Reader: delay[i] ≤ k

activation

cur = (cur-1) % (k+1); Ri[i] = (Ri[i]+1) % Ir[i];
UseDec(pos[cur]); i id = Roff[i] + Ri[i];
pos[cur] = FindFree(); Read[i id] = pos[(cur+delay[i])%(k+1)];
UseFreeL[pos[cur]] = 1; UseFreeL[Read[i id]]++;

execution
· · · Rii[i] = (Rii[i]+1) % Ir[i];
Buf[pos[cur]] = · · · i id = Roff[i] + Rii[i];
· · · · · · = Buf[Read[i id]];

termination UseDec(Read[i id]);

Figure 4.7: Writer/Reader Code for the Generalized CTDBP
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that will store the next written value. Similarly, the readers need to update the Ri[] and

Rii[] at application task activation time and execution time, respectively. In addition, the

writer and the readers must increment the value of UseFreeL[i] whenever they are going

to write into or read from the buffer position of index i, and decrement the UseFreeL[i]

via calling UseDec(i) when they finish using buffer position i. If UseFreeL[i] goes back

to zero, the corresponding buffer slot needs to be freed and added back to the free list. Note

that FindFree() does not have to check for the availability of at least one free buffer slot,

because this is guaranteed by the mechanism that is used to size the communication buffer

array.

Note that, though the array pos[] is presented with the notion of link delays,

however, similar to Read[], it also embeds the notion of multiple writer instances if the

worst-case response time of the writer is bigger than its period. In this case, in addition

to those previous slots (-1,-2,· · · ), more slots (+1,+2,· · · ) are needed to accommodate

multiple concurrent writer instances.

4.2.2 Generalized Temporal Concurrency Control Protocol

The second mechanism used for synchronous reactive communication allows a

writer to write data into a circular communication buffer. Hence, such a buffer sizing

mechanism, as described in the following, is also known as being based on spatially-in-order

writes.

Buffer Sizing of GTCCP First, notice that the generalization to multiple-unit link de-

lays and the case R > T requires the same set of data structures as shown in Figures 4.2
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Figure 4.8: Communication Scheme Based on Spatially-in-Order Writes

and 4.3. Assume that some writer instance k happens at time aw(k) and the writer up-

dates a buffer position of index n as shown in Figure 4.8. The item in position n is used

by the readers that are activated during the time interval between aw(k + delay[i]) and

aw(k + delay[i] + 1) and use a communication link with a delay[i]-unit delay.

The buffer slot indexed by n must remain valid until any reader activated in these

intervals has finished its execution. Future instances of the writer use buffer slots with

indices n+1, n+2, and so on, until, eventually, the buffer index wraps around the circular

buffer and goes back to position n-1. The condition for a correct buffer sizing is that all

the reader instances that used the previous buffer at position n have finished using the data

when some future writer instance goes back to position n and overwrites it.

Note that this size bound includes the buffer item reserved for the writer to update

its current value. Recall that Owi is the maximum offset between any activation of the writer

and its reader τri . If the writer is periodic or sporadic with a minimum inter-arrival time,

then it is Owi ≤ Tw. Let delay[] be the delay on the communication link. The definition

of lifetime for a given reader given by Equation 2.1 can be easily extended. Figure 4.8
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illustrates the basic idea about the communication mechanism based on a circular array.

Define the maximum lifetime of the data produced by writer w for reader ri, denoted by

li, as follows:

li = delay[i]× Tw + Owi + Ri, (4.3)

where the worst-case response time can be computed for each reader using Equation 4.1.

A trivial bound consists in adding the number of buffers that are required by each

reader τrj . However, this estimate is clearly too pessimistic and can be improved. Let NRw

be the number of readers of writer w and the buffer size can be computed as follows:

NBw = max
1≤i≤NRw

⌈
li
Tw

⌉
. (4.4)

Under this communication mechanism, the writer just keeps writing data into the next slot

in the circular buffer at its own sampling rate. Clearly this buffer sizing method mainly

relies on the temporal properties of a writer and its readers. The writer writes into the

circular buffer sequentially and thus it is also known as buffering sizing based on in-order

writes.

Before moving to discuss the buffer indexing procedure, the bound based on the

maximum number of writes defined in Equation 4.4 is applied to the example shown in

Table 4.1. The generalized method based on TCC results in a size bound of 13 items, which

is due to the last reader as shown in row 7 in Table 4.1.

Buffer Indexing of GTCCP Notice that the code implementation shown in Figure 4.7

represents a general implementation of a semantics-preserving single-writer to multiple-

reader communication. Its idea can still be used for the indexing procedure of the Gener-
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Data Structures
char pos[k+1]; char cur, FreeB; /* pos[cur] is current */
message Buf[NBUF]; char Ri[NR], Rii[NR]; /* init with 0 */
char Read[NINSTS];

Buffer Management Routine
char FindFree() {
return (pos[cur]+1) % NBUF
}

Figure 4.9: Data Structures and Supporting Routines for the Generalized TCCP

alized TCCP. However, the code implementation for GTCCP is much simpler than that of

the GDBP since the GTCCP does not need to maintain a shared use free list data structure.

As shown in Figure 4.9, the implementation of the FindFree() procedure is very simple:

increment and modulo by the buffer size. Figure 4.10 shows the writer and reader code.

Notice that due to the absence of the use free list data structure, the code for both writer

and reader at activation time is simpler and there is no reader termination code that needs

special treatment. The good thing about this method is that it does not require much

bookkeeping to achieve constant execution time for finding a safe buffer slot for the writer.

Writer: max k-unit delays Reader: delay[i] ≤ k

activation
cur = (cur-1) % (k+1); Ri[i] = (Ri[i]+1) % Ir[i];
pos[cur] = FindFree(); i id = Roff[i] + Ri[i];

Read[i id] = pos[(cur+delay[i])%(k+1)];

execution
· · · Rii[i] = (Rii[i]+1) % Ir[i];
Buf[pos[cur]] = · · · i id = Roff[i] + Rii[i];
· · · · · · = Buf[Read[i id]];

Figure 4.10: Writer/Reader Code for the Generalized TCCP
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4.3 Buffer Bound Based on Hybrid Scheme

From Sections 4.2.1 and 4.2.2, it is clear that the GTCCP is faster than the GDBP

although constant search algorithms exist for both. The buffer sizing mechanisms show that

the GDBP is good for slow readers and the GTCCP is good for fast readers. Considering

that a writer may have readers with dramatically different temporal characteristics, it may

be memory efficient to use a hybrid communication scheme between a writer and its readers.

This idea has been used in [10], however the proposed buffer bound suffers from limitations

as discussed in Section 2.2.2. In the following, further improvement and generalization to

incorporate multi-unit link delays are provided.

4.3.1 Buffer Bound Improvement

In the context of [10], i.e., no communication link delay, the buffer sizing is given by

Equations 2.1, 2.3, and 2.4. Apply them to the example shown in Table 4.1 and the details

are illustrated by the rows from 5 to 11. The partitioning index given by Equation 2.4 is

7, which means that all the readers are categorized as fast. The corresponding buffer size

is 13, as shown in Row 11. Obviously, this buffer bound corresponds to a pure TCCP as

computed in Section 4.2.2.

However, when going through the entries in Row 11, it is easy to find that the best

buffer bound is actually 7, which corresponds to a partitioning index value of 5 or 6. This

sub-optimality associated with the definition of the partitioning index given by Equation 2.4

can be eliminated by considering all the possible values of j as follows:

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+

NRw∑
i=j+1

⌈
lri
Tri

⌉

. (4.5)
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In reality, as explained in Section 4.2.1, each instance of a slow reader requires

no more than one buffer at any time, which is captured by its worst-case response time.

Therefore, the bound can be improved as follows:

NBw =
⌈
lj
Tw

⌉
+

NRw∑
i=j+1

⌈
Rri
Tri

⌉
. (4.6)

Note that the first term on the right hand side of Equation 4.6 represents the shared buffers

for fast readers that use the TCCP while the second term stands for the dedicated buffers

for slow readers that use the DBP. This improved bound is always demonstrably at least as

good as the bounds in [113] and [10], if not better, given that it is always

Ri < li = Owi + Ri

and, therefore, clearly
⌈
Rri
Tri

⌉
≤

⌈
lri
Tri

⌉
.

For the three-task example [113] shown in Section 2.2.2, the solution with 3 buffers is found

using Equation 4.6.

The partitioning index corresponding to Equation 4.6 is defined as

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+

NRw∑
i=j+1

⌈
Rri
Tri

⌉

. (4.7)

When apply buffer sizing Formula 4.6 and the idea of Equation 2.4 to define the

partitioning index to the example shown in Table 4.1, the computed partitioning index is 6

and the corresponding bound is 6 as shown in Row 15. However, when Equations 4.6 and

4.7 are used, the optimal buffer bound is found to be 5, which corresponds to a value of 4

or 5 for the partitioning index.
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Notice that Equations 2.3 and 4.6 can only used for the purpose of buffer sizing.

In practice, when considering buffer indexing procedures, the slot reserved for the current

writer instance in the first terms on the right hand side cannot be shared by the slow and

fast readers since they have different data structure supports. Therefore, they should be

adjusted as following:

NBw =
⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
li
Tri

⌉
+ 1


 (4.8)

and

NBw =
⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
Rri
Tri

⌉
+ 1


 . (4.9)

Their corresponding partitioning indices are computed as

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
li
Tri

⌉
+ 1






 (4.10)

and

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
Rri
Tri

⌉
+ 1






, (4.11)

respectively. The details of buffer sizing using Equations 4.8 and 4.9 are shown in rows

from 16 to 21 in Table 4.1. The bound based on Equations 4.8 and 4.10 is found to be 8

as shown in Row 18, with the partitioning index to be either 5 or 6. The bound based on

Equations 4.9 and 4.11 is found to be 6 as shown in Row 21, with the partitioning index to

be either 4 or 5.

4.3.2 Generalization Based on Hybrid Scheme

In this subsection, the buffer sizing in Section 4.3.1 is generalized for synchronous

reactive models that have multiple-unit link delays. For this purpose, the lifetime definition
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given by Equation 2.1 is replaced by Equation 4.3. With this generalization, the buffer

sizing formulae 2.3, 2.4, 4.5, 4.6, and 4.7 are good for sizing synchronous reactive models

with multiple task instances and multiple-unit link delays. However, when incorporating

buffer indexing procedures, Equations 4.8, 4.10, 4.9, and 4.11 need to be adjusted to deal

with possible multiple-unit link delays as followings:

NBw =
⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
li
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]


 , (4.12)

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
li
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]






, (4.13)

NBw =
⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
Rri
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]


 , (4.14)

and

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑
i=j+1

⌈
Rri
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]






. (4.15)

As discussed in Section 4.3.1, the second terms on the right hand side of Equa-

tions 4.12 and 4.14 accounts for the buffer consumption by the slow readers and the corre-

sponding communication protocol is the GDBP. However, there is no guarantee that all slow

readers have a lower priority than the writer. Therefore the bound given by Equations 4.12

and 4.14 can be further improved as follows:

NBw =
⌈
lj
Tw

⌉
+




NRw∑

i∈lp(w)V i=j+1

⌈
li
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]


 (4.16)

and

NBw =
⌈
lj
Tw

⌉
+




NRw∑

i∈lp(w)V i=j+1

⌈
Rri
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]


 . (4.17)
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Their corresponding definitions for the partitioning index are

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑

i∈lp(w)V i=j+1

⌈
li
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]






 (4.18)

and

j ∈ 0..NRw|min




⌈
lj
Tw

⌉
+




NRw∑

i∈lp(w)V i=j+1

⌈
Rri
Tri

⌉
+ 1 +

NRwmax
k=j+1

delay[k]






. (4.19)

Consider the buffer sizing given by Equations 4.17 and 4.19. When the partitioning index

is -1, i.e., all the readers fall into the slow reader category, the bound is exactly the same

as Equation 4.2 given in Section 4.2.1. On the other hand, when the partitioning index is

found to be NRw, i.e., all the readers fall into the fast reader category, the bound is exactly

the same as Equation 4.4 given in Section 4.2.2.

4.3.3 Buffer Requirement Evaluation

In this subsection, the generalized buffer sizing approaches discussed above are

applied to two examples.

An Example with R > T The first example is shown in Table 4.2. Similar to the example

shown in Table 4.1, there is one writer and seven readers in this example. The first four

rows in Table 4.2 are task names, reader task indices, worst-case computation times, and

sampling periods. Assume that priorities are assigned based on the rate monotonic policy.

Then, as shown in Row 5, the first three readers have higher priorities and the last four

readers have lower priorities than the writer. As shown in Row 6, the communication link

delay design parameters are chosen to be unit and two units of the sampling rate of the

writer for the first four and last three readers, respectively.
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1 Task τw τr1 τr2 τr3 τr4 τr5 τr6 τr7

2 i - 1 2 3 4 5 6 7

3 Ci 2 1 2 2 4 4 9 10

4 Ti 20 8 10 12 22 40 80 240

5 Relative priority with respect to writer - H H H L L L L

6 delay[i] - 1 1 1 1 2 2 2

7 Ri = Ci +
P

k∈hp(i)
l
Ri
Tk

m
Ck 7 1 3 5 16 35 107 879

8 li = delay[i]× Tw + Owi + Ri - 41 43 45 56 95 167 939

9
l
li
Tw

m
- 3 3 3 3 5 9 47

10
l

li
Tri

m
- 6 5 4 3 3 3 4

11
Pi

k=1

l
lk
Trk

m
- 6 11 15 18 21 24 28

12
PNRw

k=i

l
lk
Trk

m
- 28 22 17 13 10 7 4

13
l
li
Tw

m
+
PNRw

k=i+1

l
lk
Trk

m
28 25 20 16 13 12 13 47

14
l

Ri
Tri

m
- 1 1 1 1 1 2 4

15
Pi

k=1

l
Rk
Trk

m
- 1 2 3 4 5 7 11

16
PNRw

k=i

l
Rk
Trk

m
- 11 10 9 8 7 6 4

17
l
li
Tw

m
+
PNRw

k=i+1

l
Rk
Trk

m
11 13 12 11 10 11 13 47

18
iX

k∈lp(w)V k=1

�
lk

Trk

�
+ 1 +

i
max
k=1

delay[k] - 2 2 2 5 9 12 16

19

NRwX
k∈lp(w)V k=i

�
lk

Trk

�
+ 1 +

NRw
max
k=i

delay[k] - 16 16 16 16 13 10 7

20

�
li
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�
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delay[k]

1A 11 14 14 14 13 14 16 47

Table 4.2: An Example of Single-Writer Multiple-Reader Configuration (R ≤ T or R > T)

Row 7 shows that worst-case response times of reader tasks 6 and 7 are bigger

than their respective periods, which implies that there are multiple instances of these two

tasks. None of the previous work can deal with this general scenario with multiple instances

of a task and multiple-unit link delays. Rows from 10 to 13 show the details of buffer sizing
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based on the Equations 2.3 and 2.4, with a direct generalization of the definition of data

lifetime (i.e., Equation 4.3). As shown in Row 13, Equations 2.3, 2.4, and 4.3 give a buffer

size of 13, with the partitioning index to be 6. When eliminating the sub-optimality with

Equation 2.4, Equations 2.3, 4.5, and 4.3 give a buffer size of 12, with the partitioning

index to be 5. Rows from 14 to 17 show the buffer sizing details when reader task instances

are computed based on worst-case response time, i.e., Equation 4.6. As shown in Row

17, if following the idea of Equation 2.4, the partitioning index is computed as 5 and the

corresponding bound is 11. However, Equations 4.6, 4.7, and 4.3 give a better bound of 10,

with the partitioning index to be 4. In the context of Rows from 10 to 13, Rows from 18

to 20 show the result when taking priorities and separate copies of current and delay slots

into account for slow readers. When using the idea of Equation 2.4, the partitioning index

is 6 and the corresponding bound is 16. From Equations 4.16 and 4.18, the partitioning

index is found to be 5 and the corresponding buffer size is 15. Finally, corresponding to the

context of Rows from 14 to 17, Rows from 21 to 23 show the result when taking priorities

and separate copies of current and delay slots into account for slow readers. Based on the

idea of Equation 2.4, the computed partitioning index is 5 and the corresponding bound

is 14. But Equations 4.17 and 4.19 give a better bound of 11, with the partitioning index

to be -1, which means that the optimal bound is obtained when categorizing all readers as

slow. Notice also that the last entry of Row 23 gives a bound of 47 when all readers are

considered as fast ones, which is identical to the result of the GTCCP as shown by the last

entry in Row 9.
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An Automotive Case Study The buffer sizing approaches are compared on a real case

study consisting of an automotive application. The application description, provided by

a car electronics supplier, consists of a robotized gear shift system. The application is a

complex network of functions, in which approximately two hundred AUTOSAR runnables

(functions called in response to events) execute at different rates and communicate by

exchanging data signals. The runnables are mapped into 16 tasks, as shown in Table 4.3.

Some of the tasks are sporadic and are represented in the table with their worst-case inter-

arrival rates.

The first three columns of Table 4.3 are task indices, periods (or worst-case inter-

arrival times), and priorities. The periods and priorities are directly taken from the auto-

motive application. There are 7 different worst-case rates in the example. Column 4 shows

Task Period (msec) Priority Ci (µsec) NOP NLPR NHPR Utilization (%)
0 1000 10 1500 4 0 0 0.15
1 1000 9 5002 4 3 0 0.50
2 10 13 148 4 0 0 1.48
3 5 16 208 4 0 1 4.16
4 10 12 100 3 0 2 1.00
5 1000 1 131100 3 2 0 13.11
6 1000 5 150000 3 2 1 15.00
7 10 15 330 4 1 12 3.30
8 10 11 10 6 1 1 1.00
9 1000 4 100000 3 14 2 10.00

10 1000 2 120000 3 13 2 12.00
11 4 14 39 2 4 18 0.98
12 12 7 820 2 10 6 6.83
13 50 8 1000 0 0 0 2.00
14 100 6 9850 1 11 6 9.85
15 1000 3 110000 0 29 4 11.00

Table 4.3: An Example Derived from an Automotive Industrial Application
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the worst-case execution time of tasks, among which only 7 are available as measures taken

on the real application. The others have been assigned in an arbitrary way, to achieve the

utilization values used in the experiments (the real application has a quite high utilization).

Columns 5, 6, and 7 represent the numbers of output ports (writers), lower-priority

readers, and higher-priority readers respectively for the task. Also, in the information avail-

able from the real application, the communication topology is only defined as communica-

tion flows among the components. Based on these values, assumptions are made about the

estimated communication among runnables and finally among tasks, thereby completing

the definition of the communication topology. As shown in Columns 5, 6, and 7, there are

46 writers and 145 readers in the derived example. In the experiments, a set of worst-case

computation times have been assigned to tasks to obtain different utilizations. All entries

in Column 8 refer to the values for the case with a utilization U = 92.4%.

This case study is a typical example of system configuration in which the simulation-

based approach in [116] cannot be applied because of the sporadic tasks in the system, for

which the exact activation times are unknown.

The buffer sizes computed from the sizing methods presented in the previous sec-

tions are given in Table 4.4. The first two rows represent the test cases and their cor-

responding utilizations. Altogether, 13 system configurations are tried, with a utilization

range from 62.7% to 92.4%. Row 3 shows the results from Equations 2.3, 2.4, and 4.3, i.e.,

derived from Baleani’s original formula in [10] with the consideration of link delays. Row

4 shows the results based on Equation 4.6, the idea of Equation 2.4, and Equation 4.3, i.e.,

when using the worst-case response time to compute the number of reader instances instead
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1 Case 1 2 3 4 5 6 7 8 9 10 11 12 13

2 Utilization % 62.7 67.7 75.7 80.6 85.6 86.2 88.2 89.6 89.7 90.7 91.2 92.2 92.4

3 Baleani’s [10] 128 128 128 134 134 134 134 134 134 134 134 134 134

4 (l -> R) 128 128 128 134 134 134 134 134 134 134 134 134 134

5 Partition index 127 127 127 130 130 130 130 130 130 130 130 130 130

6 Fix both 127 127 127 130 130 130 130 130 130 130 130 130 130

7 With priority 123 123 123 124 124 124 124 124 124 124 124 124 124

8 CTDBP 162 162 162 162 162 162 162 162 162 162 162 162 162

9 TCCP 991 1145 1289 1370 1575 1595 1612 1612 1614 1656 1656 1656 1656

Table 4.4: Experimental Results of the Automotive Example

of the lifetime. Row 3 and Row 4 show that the corresponding bounds are the same, which

is because the system configuration parameters do not trigger the sub-optimality in Equa-

tion 2.3. Row 5 shows the results when using Equations 2.3, 4.5, and 4.3, i.e., the improved

partitioning index instead of Baleani’s original one. The results in Row 5 are smaller than

the corresponding ones in Row 3. This clearly demonstrates the sub-optimality due to the

definition of the partitioning index in Equation 2.4. Note that the results in Rows from

3 to 5 have taken the buffer indexing procedure into account, i.e., the slow readers keep

a separate set of current and previous buffer slots. Row 6 shows the results when using

Equations 4.14 and 4.15, i.e., considering the improvements in Row 4 and Row 5. The

results in Row 6 are the same as those in Row 5. This further illustrates the sub-optimality

associated with Equation 2.4. Row 7 shows the results when using Equations 4.17 and 4.19,

i.e., taking into account the priorities when sizing the slow readers using the idea of the

DBP. The results shown in Row 7 are smaller than those in Row 6, which justifies that the

slow readers may have either a higher or lower priority than its writer. Rows 8 and 9 show

the sizing results obtained by using the CTDBP and the TCCP, respectively.
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The buffering sizing method proposed in this dissertation allows saving at least

10 buffer positions at higher utilizations when compared with [10], which is approximately

a 7.5% improvement. The DBP policy by itself can overestimate the number of required

buffers by 25%, which is the amount of space gained by separating the buffer handling

policies for slow and fast tasks. Also, the TCCP policy clearly performs very poorly when

the application is a mix of high rate and low rate tasks as shown in this case study.

The table results correspond to the bounds expressed by the formulae, but do

not take into account the time overheads that are necessary for the implementation of the

communication procedures. These overheads consist of additional time spent executing code

at the kernel level, with a possibly high impact on schedulability at very high utilizations.

The next step is an assessment of the time required for the execution of the buffer access

policies and a new set of experiments that show how these overheads are likely to affect the

results. It is possible to define an optimization problem in which the memory required for

the implementation of communication is minimized within the real-time constraints of the

application.
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Chapter 5

Portable Implementation

For embedded software development, efficiency (in terms of time and space) and

portability of application software have become more and more important. In this chapter,

two synchronous reactive communication protocols with constant search time, i.e., the Con-

stant Time Dynamic Buffering Protocol and the Temporal Concurrency Control Protocol,

are presented first and then their corresponding portable efficient implementation details

are given under the OSEK API. A detailed OIL configuration file is presented for customiza-

tion of a supporting real-time operating system. In addition, the tradeoffs between different

protocols in terms of time, space, and implementation complexity are analyzed. Finally,

this chapter is concluded by providing automatic code generation support for two synchro-

nous reactive communication protocols: the Double Buffer Protocol and the Constant Time

Dynamic Buffering Protocol.
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5.1 Efficient SR Communication Protocols

The proposed code implementation is very efficient, as required by its execution

in the kernel mode. In this section, two synchronous reactive communication protocols are

presented. They are special cases of the communication protocols presented in Section 4.2.

The special version (maximum unit link delay and single instance for all tasks) of the proto-

cols is implemented with the consideration of software portability in Section 5.2. However,

the same principle can be applied to implement the generalized version of the SR communi-

cation protocols. Notice that, similar to generalized communication protocols, the protocols

presented in the following are also for a single writer and multiple readers. Note that none

of pos[], Ni[], and Nii[] is needed due to the assumption that worst-case response times

are smaller than periods.

5.1.1 Dynamic Buffering Protocol

When restricting the maximum communication link delay to be unity and assume

that there exists only single instance per task, the Generalized Dynamic Buffering Proto-

col presented in Section 4.2.1 degenerates to the Dynamic Buffering Protocol, whose data

structures and buffer indexing procedures are shown in Figures 5.1 and 5.2. Comparison of

the generalized and the special versions shows that the constant time implementations of

the search procedure FindFree() are exactly the same, but the buffer indexing of the DBP

is simpler than that of the GDBP.

Apply the assumptions of maximum unit link delay and single task instance, buffer
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Data Structures
char Read[NINSTS]; char UseFreeL[NBUF];
message Buf[NBUF]; char cur, prev, FreeHd;

Buffer Management Routines
char FindFree() { UseDec(char i) {
char buf id; if (--UseFreeL[i]) {
buf id = FreeHd; UseFreeL[i] = FreeHd;
FreeHd = UseFreeL[FreeHd] FreeHd = i;
return buf id }
} }

Figure 5.1: Data Structures and Supporting Routines for CTDBP (D ≤ T)

Writer: maximum unit delays Low/High Priority Reader

activation

UseDec(prev); if (delay[i])
prev = cur; Read[i] = prev;
cur = FindFree(); else
UseFreeL[cur] = 1; Read[i] = cur;

if (isHPR[i]==0)
UseFreeL[Read[i]]++;

execution Buf[cur] = · · · · · · = Buf[Read[i]];

termination
if (isHPR[i]==0)
UseDec(Read[i]);

Figure 5.2: Writer/Reader Code for CTDBP (D ≤ T)

sizing Equation 4.2 can be simplified as

NB = N + 2 (5.1)

for the DBP, where N is the number of lower priority readers of the writer.

5.1.2 Temporal Concurrency Control Protocol

Similarly, when applying the assumption of maximum unit communication link

delay and only single instance per task, the Temporal Concurrency Control Protocol can
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be derived from the GTCCP presented in Section 4.2.2. Figures 5.3 and 5.4 illustrate the

data structures and buffer indexing procedures of the TCCP. Similarly, comparison shows

the buffer indexing of the TCCP is simpler than that of the GTCCP.

For the TCCP, communication buffer can be sized via Equation 4.4 with taking

maximum unit link delay into account.

Data Structures Buffer Management Routine
char cur, FreeB; char FindFree() {
message Buf[NBUF]; return (cur+1) % NBUF
char Read[NINSTS]; }

Figure 5.3: Data Structures and Supporting Routines for TCCP (D ≤ T)

Writer: maximum unit delay Reader

activation

prev = cur; if (delay[i])
cur = FindFree(); Read[i] = prev;

else
Read[i] = cur;

execution Buf[cur] = · · · · · · = Buf[Read[i]];

Figure 5.4: Writer/Reader Code for TCCP (D ≤ T)

5.2 Portable Implementation under OSEK API

In a priority-based multi-task implementation with maximum unit communication

link delay, the link delay must be equal to one for readers with a priority higher than the

writer, while for readers with a lower priority, it can be either zero or one. As discussed in

Section 5.1, a pair of variables (cur, prev) refers to the indices of the latest written item

and the previous one.
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Note that the protocols presented in Section 5.1 are for single writer and its readers.

When considering synchronous reactive models with multiple writers, more data structures

need to be introduced. For convenience, Table 5.1 summaries the notations. Variables

cur, prev, N, and WrtInit are defined for each output port (each writer) in the system.

All readers and writers share array Buf[SysNB] for communication. The total buffer size

required by the system, SysNB, is simply the sum of buffer sizes of all writers:

SysNB =
∑

1≤o≤SysNOP
NBwo , (5.2)

where NBwo is computed as specified by the DBP (Equation 5.1) or the TCCP (Equation

4.4) protocols, respectively.

NR number of readers NT number of tasks
delay link delay IsHPR relative priority
WrtInit initial output value pri task priority
Buf[] shared comm. buffer SysNB total buffer size
SysNIP number of input ports SysNOP number of output ports
cur buffer slot with latest data prev buffer slot with previous data
N number of lower priority readers Read[i] buffer slot used by reader i

Table 5.1: Notations Used to Describe a System

Based on the descriptions of the SR semantics-preserving protocols in Section 5.1

and the OSEK basics in Section 3.3, portable implementations in BCC1 are presented in the

following. Note, only standard features of OSEK are used and no modification to the kernel

is required. The implementation that was previously referred as kernel-level will often be

performed by the highest priority task or OS hook routines that cannot be interrupted and

can therefore guarantee atomicity.

In BCC1 and BCC2, events are not available and the alarm mechanism is the
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only way to activate periodic tasks. Since the minimum requirements allow one alarm

only, it can be used to periodically activate a dispatcher task that, in turn, activates the

application tasks at their respective rates. The dispatcher is periodically activated by an

alarm, statically configured as cyclic, every GCDR time units, which denotes the Greatest

Common Divider of the sampling Rates of application tasks.

5.2.1 Dispatcher, Application, and Initialization Tasks

In this subsection, model implementation tasks are discussed with detailed data

structures. For portability purpose, a dispatcher task is used to activate all other periodic

application tasks that implement the system functionality. The initialization of all data

structures is accomplished via a task called init. The definitions for dispatcher, application

tasks, and init for each implementation are presented in the following.

Dispatcher The data structures for the task dispatcher are shown and declared in

Figures 5.5 and 5.6. The array TickL[] has a dimension of LCMR, the Least Common

Multiple of the sampling Rates of application tasks. Each TickL[i] entry has two fields:

DispHd and size. DispHd points to the first task on the dispatch table DTab[] and size

indicates the number of tasks that need to be activated at this specific tick value. The array

DTab[] contains the tasks that need to be activated from tick = 0 to tick = LCMR-1. The

entries of DTab[] are used to index the tasks in the task descriptor array presented later in

this subsection.

The top right column in Figure 5.6 is the initialization of the data structures

used by the dispatcher task. The bottom part of the figure shows the dispatcher task
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Figure 5.5: Task Dispatcher Data Structures

implementation. The meaning of the variables labeled in front of the implementation will

be clear in Chapter 6. During its execution, the counter tick is incremented modulo

LCMR. Then, the value of the field DispHd of TickL[tick] is checked. If it is “-1”, no

task needs to be activated. Otherwise, the tasks in DTab[], as specified by the (DispHd,

size) are processed. For each of them, the dispatcher processes its input and output ports,

performing the read and write procedures specified by the earlier protocols. Specifically, it

calls FindFree() as defined in Figure 5.1 or 5.3 to find a safe buffer slot for each output

port. For each reader, according to Figure 5.2 or 5.4, it defines the buffer slot that the task

will be using during its execution. Then, dispatcher activates the task by calling OSEK

API ActivateTask and, at the end, calls TerminateTask to terminate.

Instead of constructing a static dispatch table as shown in Figures 5.5 and 5.6, an

alternative implementation of the dispatcher is provided in Figure 5.7. A scheduler , e.g.,

a rate monotonic scheduler (Line 2 in Figure 5.7), can be used to determine those tasks

that need to be activated. To achieve this, for each application task, define a corresponding

counter. The counters are initialized appropriately as shown in Figure 5.7 so that all
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Declaration Init without Phase Shift
struct TickEntry { tick = -1; i1 = 0;
char DispHd; for (j = 0; j < LCMR; j++) {
char size; TickL[j].DispHd = -1;

} TickL[LCMR]; TickL[j].size = 0;
for (i = 0; i < NT; i++) {

char tick; if (j % TaskL[i].rate == 0) {
char DTab[TSize]; i2 = TickL[j].size + i1;

DTab[i2] = i;
Compute TSize TickL[j].size++;
char TSize = 0; } }
for (i=0; i<NT; i++) { if (TickL[j].size != 0) {
TSize += LCMR/TaskL[i].rate; TickL[j].DispHd = i1;

} i1 += TickL[j].size;
} }

Implementation of Task dispatcher
1 Task(dispatcher) {

Ck,d,1 2 tick = (tick+1) % LCMR;
Ck,d,2 3 if (TickL[tick].DispHd != -1) {

Ck,τ,1

4 for (k = 0; k < TickL[tick].size; k++) {
5 idx = DTab[k+TickL[tick].DispHd]; /* task id */
6 for (i = 0; i < TaskL[idx].NOP; i++) { /* writers */
7 idx2 = TaskL[idx].OPHd + i;

Ck,w 8 · · · /* kernel-level writer code */
9 }

10 }

Ck,τ,2

11 for (k = 0; k < TickL[tick].size; k++) {
12 idx = DTab[k+TickL[tick].DispHd]; /* task id */
13 for (i = 0; i < TaskL[idx].NIP; i++) { /* readers */
14 idx2 = TaskL[idx].IPHd + i;

Ck,r 15 · · · /* kernel-level reader code */
16 }

Ck,τ,3 17 ActivateTask(idx);
18 }
19 }

Ck,d,3 20 TerminateTask();
21 }

Figure 5.6: Declaration, Initialization, and Implementation of Task Dispatcher
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Data Structure 1 Task(dispatcher) {
char period[NT], counter[NT]; 2 RMS();
Initialization 3 /* kernel-level index assignment */
/* systemStartup = 1; */ 4 for (i=0; i<NT; i++) {
for (i=0; i<NT; i++) { 5 if (counter[i] == 0) {
counter[i] = period[i] - 1; 6 · · · /* code for all writers of task i */

} 7 }
Auxiliary Function 8 }
RMS(void) { 9 for (i=0; i<NT; i++) {
for (i=0; i<NT; i++) { 10 if (counter[i] == 0) {
counter[i]++; 11 · · · /* code for all readers of task i */
if (counter[i] == period[i]) { 12 ActivateTask(i);
counter[i] = 0; 13 }

} 14 }
} 15 TerminateTask();

} 16 }

Figure 5.7: Alternative Implementation of Task Dispatcher

application tasks are scheduled at system startup. The counters are incremented at the

system base rate and reset to 0 when reaching the periods of the corresponding tasks. A

zero counter value means that the corresponding task needs to be scheduled for execution.

Application Tasks In the following, implementations of application tasks under the two

different communication protocols are defined. The declaration of the data structures that

are common to both is summarized in Figure 5.8.

#DEFINE LCMR X #DEFINE SysNIP X #DEFINE TSize X #DEFINE NT X
#DEFINE GCDR X #DEFINE SysNOP X #DEFINE SysNB X
message Buf[SysNB]; char Read[SysNIP];

Figure 5.8: Common Data Structure Declaration
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Implementation of CTDBP Figure 5.9 shows the data structures of the sys-

tem implementation under the CTDBP. The task descriptor array TaskL has an entry for

each task specifying its rate, priority, execution flag, and references to its input and output

port information. rate and pri capture sampling rate and static priority information, re-

spectively. A execution flag done is used to determine when a context switch is executed

upon the termination of a lower priority reader.

The input port descriptor contains the owner task identifier, the communication

source port, the link delay, and the relative priority of the reader with respect to its writer.

Similarly, the output port descriptor specifies the properties of each output port, including

the owner task identifier, the reference to the list of the free entries, FreeHd, the cur and

prev variables, and the BufHd and NB variables. BufHd and NB specify a contiguous segment

in the buffer array Buf[] for each output port. The owner field in the port descriptors is used
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Figure 5.9: Data Structures of System Implementation with CTDBP
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to identify the ownership. All the ports that refer to the same task are stored in contiguous

locations in the respective port descriptor, as specified by (OPHd, NOP) and (IPHd, NIP) in

the task descriptor. The corresponding declarations are shown in Figures 5.10, 5.8, and 5.6.

In addition, Figure 5.10 shows the data structure initialization details. As shown

in Figure 5.11, the communication protocol executes at two levels: on task activation at the

Data Structure
struct TaskEntry { struct OPEntry { struct IPEntry {
char rate; char owner; char owner;
char pri; char FreeHd; char SrcPt;
char done; char cur; char delay;
char OPHd; char prev; char IsHPR;
char NOP; char BufHd; } IPL[SysNIP] = {
char IPHd; char NB; {X,X,X,X},
char NIP; } OPL[SysNOP] = { · · ·

} TaskL[NT] = { {X,0,0,0,0,X}, · · · }; };
{X,X,0,X,X,X,X}, · · · }; char UseFreeL[SysNB];

Initialization
OPL[0].BufHd = 0; /* var and buffer init */
OPL[0].cur = OPL[0].prev = OPL[0].BufHd;
for (i = 1; i < SysNOP; i++) {
OPL[i].BufHd = OPL[i-1].BufHd + OPL[i-1].NB;
OPL[i].cur = OPL[i].prev = OPL[i].BufHd;

}
· · · /* init buffers buffers accordingly */
for (i = 0; i < SysNOP; i++) { /* init of free list*/
UseFreeL[OPL[i].BufHd] = 2; /* not free */
OPL[i].FreeHd = OPL[i].BufHd + 1;
for (j = 2; j < (OPL[i].NB-1); j++) {
k = j + OPL[i].BufHd;
UseFreeL[k] = k + 1;

}
UseFreeL[OPL[i].NB-1+OPL[i].BufHd] = -1;

}

Figure 5.10: Data Structure Declaration and Initialization for CTDBP
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/* activation time */ /* execution time */
/* each writer i */ · · ·
UseDec(i, OPL[i].prev); /* each writer k */

Ψ OPL[i].prev = OPL[i].cur; Buf[OPL[k].cur] = · · ·
OPL[i].cur = FindFree(i); · · ·
UseFreeL[OPL[i].cur] = 1; /* each reader k */

Γ

/* each reader i */ · · · = Buf[Read[k]];
j = IPL[i].SrcPt; · · ·
if (IPL[i].delay) /* termination time: atomic for LPR */
Read[i] = OPL[j].prev; if (IPL[k].IsHPR == 0) {

else t1 = Read[k];
Read[i] = OPL[j].cur; t2 = IPL[k].SrcPt;

if (IPL[i].IsHPR == 0) UseDec(t2,t1);
UseFreeL[Read[i]]++; }

Auxiliary Functions
void UseDec(char i, char j){ char FindFree(char i) {
UseFreeL[j]--; t = OPL[i].FreeHd;
if(UseFreeL[j] == 0) { OPL[i].FreeHd = UseFreeL[t];
UseFreeL[j] = OPL[i].FreeHd; return t;
OPL[i].FreeHd = j; } /* O(1) */

} }

Figure 5.11: Implementation of CTDBP

kernel level and during execution by the application task code. At activation time, if the

task is a writer, for all its output ports, the use count of the buffer item referred by prev

needs to be decremented. If the new count drops to zero, this buffer slot is freed by updating

the free list and the corresponding FreeHd. Also, the cur index and its corresponding use

count are updated. On the other hand, if the task is a reader task, for all its input ports, the

reading indices are assigned according to the specified communication link delay parameter.

For lower priority readers, their corresponding use counts need to be incremented.

The dispatcher task has the same structure as shown in Figure 5.6 and the kernel-

level code for the CTDBP from Figure 5.11 is executed.
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TASK(AppTask i) { void PostTaskHook(void) {
TaskL[i].done = false; char id, j, k, nip;
· · · GetTaskID(id);
Buf[OPL[k].cur] = · · · /* each writer */ if (TaskL[id].done) {
· · · nip = TaskL[id].NIP;
· · · = Buf[Read[k]]; /* each reader */ for (j=0; j<nip; j++) {
· · · k = j + TaskL[id].IPHd;
TaskL[i].done = true; · · · /* Critical Section in Fig 5.11 */
/* atomic hook code by PostTaskHook*/ }
TerminateTask(); }

} }

Figure 5.12: OSEK Implementation of Application Task with CTDBP

Figure 5.12 shows the application-level code required by the CTDBP. The hook

mechanism provided by OSEK is used to let lower priority readers atomically update the

buffer free list at termination time. Specifically, the PostTaskHook is used to execute the

critical section upon the termination of these tasks. Note that the PostTaskHook routine

executes at each context switch and for all the tasks in the system. The status flag done

indicates for which tasks the PostTaskHook needs to be executed and also ensures that the

operations in the PostTaskHook are only executed at task termination time. The done flag

of each task is set to false at the beginning of the task, and changed to true with the last

task statement. The PostTaskHook, shown in Figure 5.12, first obtains the identifier of the

active task by calling the OSEK API GetTaskID. Then, it checks whether its done flag is

set to true. If so, the updates required by the communication protocol are performed.

A second option to achieve the atomicity of the termination code of lower priority

readers is to let the dispatcher execute the termination code as shown in Figure 5.13. At

system startup, the termination code segment in the dispatcher is not needed. This is

accomplished by checking the flag, systemStartup. At system startup, systemStartup is
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Dispatcher in Figure 5.6 Dispatcher in Figure 5.7
if (!systemStartup) { if (!systemStartup) {
for (k=0; k<TickL[tick].size; k++){ for (i=0; i<NT; i++) {
idx = DTab[k+TickL[tick].DispHd]; if (counter[i] == 0) {
for (i=0; i<TaskL[idx].NIP; i++){ for (j=0; j<TaskL[i].NIP; j++) {
idx2 = TaskL[idx].IPHd + i; idx2 = TaskL[i].IPHd + j;
· · ·/* termination code in Fig. 5.11 */ · · ·/* termination code in Fig. 5.11 */

} }
} } }
systemStartup = 0; systemStartup = 0;

} }

Figure 5.13: Achieve Atomicity of Termination Code via Dispatcher

initialized as true as indicated in Figure 5.7 and later on during execution the flag becomes

false. The corresponding code segments in Figure 5.13 need to be placed between Lines 3

and 4 in Figure 5.6 and between Lines 2 and 3 in Figure 5.7.

When a task terminates, the task decrements the use count of the buffer slot for

all the input ports that receive data from a higher priority writer. As discussed earlier,

when the use count of a buffer slot becomes zero, the slot is returned to the free list and

the corresponding writer’s FreeHd may need to be updated using operations that are not

atomic. Since FreeHd and UseFreeL[] are shared by each writer with its lower priority

readers, atomicity of the critical section at termination time must be guaranteed by any

correct implementation. The constant time FindFree() shown in Figure 5.11 takes the

writer’s index as input and returns the current FreeHd after assigning the index of the second

entry on the free list as the new FreeHd. Under the DBP buffer sizing, it is guaranteed that

FreeHd always refers to a valid entry. The memory requirement of the implementation in

Figure 5.9 is summarized in Table 5.2.
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variable char message
count 7×NT+6×SysNOP+5×SysNIP+2×LCMR+TSize+SysNB+1 SysNBD

Table 5.2: Memory Requirement for System Implementation with CTDBP

Implementation of TCCP Figure 5.14 shows the data structures used for the

OSEK implementation of the TCCP. Compared with Figure 5.9, the data structures for the

TCCP implementation are simpler, since no bookkeeping is required by the FindFree().

As discussed in Section 4.2.2, the mechanism based on spatially-in-order writes is used for

the buffer sizing in the TCCP. The size of the shared buffer for the system and the buffer

size of each writer are computed using Equations 5.2 and 4.4, respectively. Similar to the

CTDBP, there are three descriptors to characterize each task, with its input and output

ports. The data structure declaration and the initialization code is shown in Figure 5.15.

Each writer is assigned a continuous segment of Buf[], identified by the pair (BufHd,NB),
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Data Structure
struct TaskEntry { struct OPEntry { struct IPEntry {
char rate; char cur; char SrcPt;
char OPHd; char prev; char delay;
char NOP; char BufHd; } IPL[SysNIP] = {
char IPHd; char NB; {X, X},
char NIP; } OPL[SysNOP] = { · · ·

} TaskL[NT] = {{X,X,X,X,X}, · · · }; {0, 0, 0, X}, · · · }; };
Initialization
OPL[0].cur = OPL[0].prev = OPL[0].BufHd = 0;
for (i = 1; i < SysNOP; i++) {
OPL[i].BufHd = OPL[i-1].BufHd + OPL[i-1].NB;
OPL[i].cur = OPL[i].prev = OPL[i].BufHd;

}
· · · /* init buffers accordingly */

Figure 5.15: Data Structure Declaration and Initialization for TCCP

as illustrated in Figure 5.14. As shown in the buffer indexing procedure in Figure 5.16,

all the task ports need to be processed. The declarations are shown in Figures 5.15, 5.8,

and 5.6. Similar to the implementation of the CTDBP discussed earlier in this section,

for the TCCP, the dispatcher task executes the kernel-level code and the init task executes

the initialization code. As shown in Figure 5.17, the definition of application tasks shares

/* activation time */ /* execution time */
/* each writer i */ · · ·

∆ OPL[i].prev = OPL[i].cur; /* each writer k */
OPL[i].cur = FindFree(i); Buf[OPL[k].cur] = · · ·

Φ

/* each reader i */ · · ·
i2 = IPL[i].SrcPt; /* each reader k */
if (IPL[i].delay) · · · = Buf[Read[k]];
Read[i] = OPL[i2].prev; char FindFree(char idx) {

else return (OPL[idx].cur+1) % OPL[idx].NB;
Read[i] = OPL[i2].cur; } /* O(1) */

Figure 5.16: Implementation of TCCP
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TASK(AppTask i) { /* each reader r */
· · · · · · = Buf[Read[r]];
/* each writer w */ · · ·
Buf[OPL[w].cur] = · · · TerminateTask();
· · · }

Figure 5.17: OSEK Implementation of Application Task with TCCP

the same structure with its counterpart in Figure 5.12, but is simpler because there is no

termination code for the input ports and hence no hook routine is needed. Unlike the

CTDBP, no bookkeeping operation is required for readers at termination time. Since the

writer writes data into a circular buffer, the FindFree() simply increments cur modulo

the buffer size, and returns the remainder as the new cur. Similar to the CTDBP, because

there may be multiple writers in the system, the FindFree() takes as argument the index

of the writer and returns its queue reference FreeHd. The memory requirement of the

implementation in Figure 5.14 is summarized in Table 5.3.

variable char message
count 5×NT+4×SysNOP+3×SysNIP+2×LCMR+TSize+1 SysNBT

Table 5.3: Memory Requirement for System Implementation with TCCP

Initialization Task The data structures of the communication protocols need to be ini-

tialized to obtain a correct behavior. In addition, the initialization of the data structures

of the task dispatcher in Figure 5.6 is performed by the OSEK task init, as shown in

Figure 5.18. The init task executes at system startup. The data structures storing sta-

tic information, such as isHPR, etc, are also initialized at system startup. Besides data

structure initialization, task init calls OSEK API SetRelAlarm to set up the cyclic alarm,
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TASK(init) {
· · · /* init implementation specific auxiliary data structure */
· · · /* init data structure required by protocol */
· · · /* init dispatcher as in Figure 5.6 */
SetRelAlarm(dispAlarm, 0, GCDR); /* set up the relative periodic alarm */
TerminateTask();

}

Figure 5.18: General Structure of Task Init

dispAlarm, associated with the task dispatcher. Finally, it calls TerminateTask to finish.

Note that for both the CTDBP and the TCCP, the init tasks have the same structure of

Figure 5.18, but with different data structures to initialize.

Complexity Comparison and Discussion In the following, the two implementations

discussed above are compared. According to Tables 5.2 and 5.3, the CTDBP requires more

auxiliary data structures than the TCCP, including the counter/free-list structure. The

buffer sizes for the CTDBP and the TCCP are not comparable since they are based on

completely different buffer sizing mechanisms. Although the CTDBP may lead to a smaller

memory requirement [94], the CTDBP implementation is more complex because of the

code required for finding a free buffer slot and for accounting for the buffer usage, and the

necessity to update the shared use free list. Note that the use of PostTaskHook to obtain

atomic termination of lower priority readers brings a spatial overhead. Furthermore, since

the hook mechanism is mainly designed for debugging and error management, its use also

introduces a time overhead at each context switch. Detailed information will be given in

Sections 6.1 and 6.2.
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5.2.2 OIL Configuration File

In this subsection, the OIL configuration file for the implementation of the commu-

nication protocols is defined. Figure 5.19 shows the basic structure of an OIL configuration

file. Inside the container CPU declaration, objects are statically specified. The application

OIL VERSION = "2.5";
/* Implementation Definition */ TASK init {
IMPLEMENTATION myOSEKOS { PRIORITY = X i;
· · · SCHEDULE = NON;

}; /* End of myOSEKOS */ ACTIVATION = 1;
/* Application Definition */ AUTOSTART = TRUE {
CPU myCPU { /* container */ APPMODE = AppMode0;

/* OS Object */ };
OS myOS { };
STATUS = STANDARD; /* Alarm Object */
STARTUPHOOK = FALSE; ALARM dispAlarm {
ERRORHOOK = FALSE; COUNTER = SysTimer;
SHUTDOWNHOOK = FALSE; ACTION = ACTIVATETASK{
PRETASKHOOK = FALSE; TASK = dispatcher;
POSTTASKHOOK = TRUE; };
USEGETSERVICEID = FALSE; AUTOSTART = TRUE {
USERESSCHEDULER = FALSE; ALARMTIME = 0;

}; CYCLETIME = GCDR;
/* Task Object */ APPMODE = AppMode0;
TASK AppTask j { };
PRIORITY = X j; };
SCHEDULE = FULL; /* Counter Object */
ACTIVATION = 1; COUNTER SysTimer {
AUTOSTART = FALSE; MINCYCLE = x;

}; MAXALLOWEDVALUE = x;
· · · TICKSPERBASE = x;
TASK dispatcher { };
PRIORITY = X d; /* Application Mode Object */
SCHEDULE = NON; APPMODE AppMode0 {
ACTIVATION = 1; VALUE = AUTO;
AUTOSTART = FALSE; };

}; }; /* End of myCPU */

Figure 5.19: OIL Configuration File
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tasks are defined by the generic declaration of AppTask j. The SCHEDULE attribute is set

as FULL, indicating a fully preemptive scheduling policy. Under the assumption that the

deadlines of application tasks are not greater than their respective periods, the ACTIVATION

attribute is set to one (as required in BCC1). Application tasks are periodic and are ac-

tivated by the task dispatcher, therefore the attribute AUTOSTART is set to FALSE. For the

task init, the configuration is similarly specified, with the AUTOSTART attribute turned to

on and a single application mode assigned to the APPMODE attribute. The task dispatcher

activates application tasks and performs part of the communication protocol operations on

behalf of the kernel. Therefore, its priority should be higher than those of all application

tasks, and its SCHEDULE attribute is set to NON, indicating a non-preemptive scheduling. The

task dispatcher is activated by an alarm, dispAlarm, so its AUTOSTART attribute is set to

FALSE and an alarm object is specified accordingly. The alarm is associated with a counter,

which is another object defined in the OIL file. The alarm is configured to activate the

task dispatcher through setting its attribute ACTION as ACTIVATETASK. Finally, the alarm’s

AUTOSTART attribute is set to TRUE and the period of dispAlarm is set to GCDR.

When the constant time FindFree() of the DBP is used, the atomicity of the ter-

mination code that updates the shared use free list may be guaranteed by the PostTaskHook

mechanism, which is turned on by setting the corresponding attribute POSTTASKHOOK as

TRUE in the OS object as shown in Figure 5.19.
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5.3 Automatic Code Generation Support

The Code generation environment used in this dissertation is bases on the Real-

Time Workshop. The SR communication functionality (the dispatcher and the communi-

cation buffer) is coded in C via the System Function. To obtain the required format for the

generated code, system-level Target Language Files need to be modified accordingly. The

Embedded Coder produces C code for implementations of system with the SR communica-

tion protocols. The SR communication protocols supported with automatic code generation

in this dissertation include the Double Buffer (DoB) Protocol as shown in Section 2.1 and

the Constant Time Dynamic Buffering (CTDyB) Protocol as discussed in Sections 5.1 and

5.2. Only cases that allow single instance per task are considered. Illustrative examples of

systems under the DoB Protocol and the CTDyB Protocol are used to show the generated

code. The generated application code together with the source code of the ePICos18 is

compiled via the MCC18 compiler and the object files are linked through the MPLINK

linker. Finally, the MPLAB SIM is used to emulate the implementation on the PIC18F452

microcontroller execution platform.

5.3.1 Code Generation Environment

The Real-Time Workshop (RTW) [79] extends the capabilities of the Simulink

and MATLAB by providing automatic code generation, packaging, and compilation directly

from Simulink models. The RTW code generation environment is used from prototyping to

deployment and forms the foundation of the RTW product. Two important features of the

RTW are code generation for user-created blocks via S-Functions and code customization
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flexibility via the Target Language Compiler.

Simulink System Functions The capability of the Simulink environment can be ex-

tended by System Functions (S-Function). An S-Function [80] is a description of a Simulink

block and can be coded in C, MATLAB, etc. Similar to the built-in Simulink blocks, S-

Function blocks use a set of defined APIs to interact with the Simulink engine. S-Functions

are compiled by the mex utility and the compilation results are in Mex-files.

After writing an S-Function for an algorithm, the corresponding block can be

put in a customer-defined library for future reuse. The user interface of the block can be

customized by the masking technique. To customize the code generated for an S-Function

block, a corresponding Target Language Compiler file needs to be prepared.

Target Language Compiler As an indispensable part of the RTW, Target Language

Compiler (TLC) [78] enables customization of generated code. The RTW build process con-

verts a graphical Simulink model into an intermediate form of the Simulink block diagram,

which includes all the model-specific information required for code generation. Then the

TLC transforms the intermediate description into target-specific code.

The TLC includes block-level and system-level files. The block-level (block-target)

files correspond to the Simulink blocks and the system-level (system-target) files capture

model-wide information that specifies header and parameter information for code genera-

tion. The TLC files explicitly control the way how RTW generates code and are open source

to customers. Therefore, it is very flexible to customize the generated code. One important

feature of TLC is that it allows to generate efficient code for customized blocks that are
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built via S-Functions. By default, the TLC generates non-inlined code for S-Functions,

which incurs overhead due to the existence of a large data structure for each instance of an

S-Function block in the model. When a TLC target file does not exist for an S-Function

block, its C code is invoked via a function call. Thus, extra run-time overhead is involved

whenever functions within an S-Function block are called. The overheads can be eliminated

by inlining the S-Function through creating a TLC file for the S-Function. Inlining an S-

function directly integrates the S-function block’s functionality into the generated code so

that it improves the generated code efficiency and reduces memory usage, which is especially

important for Embedded Real-Time (ERT) targets.

RTW Embedded Coder The Real-Time Workshop Embedded Coder (RTWEC) [76]

is an add-on product of the Simulink code generator. It provides a framework for develop-

ment of embedded software, aiming at optimization for execution speed and memory usage.

The C code generated by the RTWEC conforms to ANSI C and ISO C standards. The

RTWEC can generate single-rate or multi-rate code using periodic sampling rates specified

in Simulink models. For a multi-tasking implementation of a multi-rate model, it generates

separate functions for the base rate and sub-rate tasks via the rate grouping technique. In

the following, the RTW environment is extended to support code generation for the SR

communication protocols.

5.3.2 SR Communication Protocol Code Generation

Before delving into code generation, one question that needs to be answered is

how to handle data transfer at the application task level. For the protocols shown in Fig-
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ures 2.2 (the DoB) and 5.2 (the CTDyB), indexing procedures at the kernel and application

levels are presented with declared data structures. Note that the DoB Protocol is actually

a special case of the DyB Protocol. For a writer and its reader, under the DyB, for com-

munication from high to low priority, when no link delay is defined, the buffer size is 2; for

communication from low to high priority, when unit link delay is defined, the buffer size

is also 2. This is exactly what the DoB requires. Therefore the implementation presented

in Section 5.2.1 is also applicable to the DoB Protocol. As discussed in Section 5.2.1, the

kernel-level functionality can be implemented as a task dispatcher. Similar to the rate tran-

sition buffer block in Simulink [79], the application-level indexing can be implemented as

a communication buffer, which reads in and writes out data at the sampling rates of the

writer and reader, respectively.

The next issue to consider is how to manage communication protocol data struc-

tures. The principle is to keep data that does not cross S-Function boundaries local and

maintain data that has to be shared between the dispatcher and the communication buffer

in global memory. The dispatcher writes data into the shared memory while communica-

tion buffers read data from the shared memory when needed. For example, for the DoB in

Figure 2.2, wrtIdx and rdIdx are accessed by both the dispatcher and the communication

buffer (on behalf of the writer and the reader) and thus they are maintained in shared

memory. Similarly, for the CTDyB in Figure 5.2, cur and Read[] are maintained in shared

memory. However, prev, FreeHd, and UseFreeL[] are kept local by the dispatcher. For

both mechanisms, Buf[] is maintained locally by the communication buffer.

Programming Language C is chosen to program the dispatcher and communication
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buffer S-Functions. With a customized interface, the dispatcher and communication buffer

blocks are placed in a custom library. Although C-Mex files are sufficient for simulation, to

improve efficiency of the generated code, TLC files are prepared to inline their corresponding

S-Functions.

Task Dispatcher Figure 5.20 shows the custom SR communication implementation li-

brary. The second block and fourth block in the top row are the task dispatchers for the

DoB and the CTDyB, respectively. They both have no input port and a variant number

of output ports for writing and reading indices. The number of output ports depends on

the number of communication buffer blocks used in a model and the number of readers

the communication buffer blocks may have. In the library shown in Figure 5.20, with the

Figure 5.20: SR Communication Implementation Library Blocks
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default configuration, the DoB dispatcher assigns indices for a writer and its reader, while

the DyB dispatcher assigns indices for a writer and its two readers.

The sampling of the task dispatcher is block-based at the base rate. With the in-

formation on the priority transition type and the communication link delays, the dispatcher

writes out assigned writing and reading buffer indices at the specified sampling rates of the

writers and readers, respectively.

The dispatcher block is constructed as an “atomic” block, which means that the

code corresponding to the dispatcher is always generated as a separate function. This is

required so that rate grouping would not merge the dispatcher function with the possible

application task whose sampling rate is equal to the base rate, which happens when the

base rate coincides with the fastest sampling rate specified in the model.

To generate efficient code, a corresponding TLC file, which specifies how the func-

tionality is turned into implementation code, is prepared for the task dispatchers.

Communication Buffer In Figure 5.20, the first block and third block in the top row are

the communication buffers for the DoB and the CTDyB, respectively. As discussed earlier,

the communication buffer block handles shared data between a writer and its reader(s) at

the application task level. The communication buffer block for the DoB has three input

ports (writing index, data input, and reading index) and one output port. However, the

counterpart for the CTDyB has a variant number of input and output ports, depending on

the number of readers it may have. Similar to the DoB case, each reader contributes to one

input port (for reading index) and one output port (data output). In the library shown in

Figure 5.20, the communication buffer for the CTDyB transfers data between a writer and
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its two readers.

Because the sampling rates of the writer and readers are different, the sampling

of the communication buffer block needs to be port-based. During execution, when data

from the writer comes, the buffer block reads both the data value and the assigned writing

index value and stores the data into the buffer slot that is identified by the writing index.

Similarly, when a reader is expecting communication data, the buffer block reads in the

assigned reading index value and then outputs the data identified by the reading index to

the output port with which the reader connects.

To generate efficient code, a TLC file for the communication buffer block needs to

be coded in a way compliant to rate grouping so that the rate grouping technique can be

used when generating application task functions.

Interaction between Dispatcher and Communication Buffer The last issue to be

addressed is how to support writing and reading index sharing between the dispatcher and

communication buffer S-Functions. This can be accomplished by using the built-in Simulink

block: data store memory. The interaction between the dispatcher block and communication

buffer blocks can consequently be supported by using the corresponding data store write

and data store read blocks. The dispatcher writes assigned writing and reading indices into

the data store memory via the data store write block while on behalf of the writer and the

readers the communication buffers obtain the assigned indices through the data store read

block.

To make model specification constructing easier, the communication buffer can be

masked with its corresponding data store reads into a wrapper block. Similarly, a wrapper
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block can be generated by grouping the dispatcher block and its corresponding data store

writes. The dispatcher and communication buffer wrapper blocks are shown in the second

row in Figure 5.20.

With the integration of the dispatcher, communication buffers, and the data store

memory/read/write blocks, the SR communication semantics can always be guaranteed,

regardless whether the sampling rates of the writer and the readers are in a harmonic

relationship or whether their scheduling phases are the same. This maintains the rigorous

semantics of synchronous reactive model-based design for a broader range of application

domain.

Model-Wide TLC File Customization The SR communication protocols are imple-

mented using the above discussed C-Mex S-Functions and their corresponding TLC files en-

able generation of efficient code. However, model-wide TLC files still need to be customized

so that code can be generated in the format that is required by the two-level implementa-

tion for preserving the SR semantics. In particular, TLC files that control sampling rate

scheduling, base rate function generation, and multi-rate scheduler exporting need to be

modified to obtain the required code format. Furthermore, to generate OSEK tasks, the

main function of the application, and the OIL configuration file, an OSEK-specific TLC

library file is prepared, which is loaded by the RTWEC at the beginning of code generation.

Code Generation Results In the following, a couple of examplary Simulink models are

used to show the generated code of communication protocols with the SR semantics.
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Example of the DoB The example shown in Figure 5.21 is a Simulink model

using the DoB mechanism. The writer consists of an adder that adds its result at the pre-

vious sampling step and a constant of 2. The reader simply corresponds to an output port.

The sampling rates of the writer and the reader are specified as 2 and 3 seconds, respectively,

which are clearly not harmonic. Hence an implementation using the built-in Simulink rate

transition buffer block cannot guarantee deterministic communication. Actually Simulink

does not even allow for the configuration of code generation to have deterministic commu-

nication for nonharmonic sampling periods. Given the specified sampling rates, the task

dispatcher is sampled at a base rate of 1 second. The communication buffer is assumed to

take an initial value of 3.

Figure 5.21: Example of the Double Buffer Mechanism
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Figure 5.22: Code of the DoB Task Dispatcher

The SR semantics-preserving implementation of the DoB example consists of 4

tasks: dispatcher, init, and two application tasks: subRate 1 and subRate 2. Figure 5.22

shows the generated code of the dispatcher task. Note that the implementation of the

dispatcher task in Figure 5.7 is used in the example. At the beginning, a rate monotonic

scheduler executes to update the scheduling counter flags of application tasks. Then, the

DoB dispatcher function, i.e., DoB DoBDisp, is called to assign the writing index for the

higher priority writer according to the DoB mechanism when the writer task subRate 1

needs to be scheduled. Similarly, the reading index is assigned for the reader task subRate 2.

Next the dispatcher function calls OSEK API ActivateTask to activate the writer and

reader tasks as needed. Finally, the dispatcher task calls TerminateTask to finish.

Figure 5.23 shows the generated code of the init task. Model specific initialization

is performed by the DoB initialize function. Before task init calls TerminateTask, it sets

up a relative alarm for activating task dispatcher periodically at the base rate. Note that

the period of the alarm is 1000 ticks of the system timer that it is attached to (a system

timer with a period of 1 msec is assumed in the generated code), and therefore it is exactly

1 second.
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Figure 5.23: Code of the DoB Task init

As a representative of application tasks, Figure 5.24 shows the generated code

of task subRate 2. It first calls the generated step function for sub-rate 2. In function

DoB step2, the reading index rdIdx0, assigned by the task dispatcher, is read in first.

Then, the communication buffer passes the value of the buffer slot identified by rdIdx0 to

the reader. Task subRate 2 finishes by calling OSEK API TerminateTask.

Figure 5.24: Code of Application Task SubRate 2

Example of the CTDyB Figure 5.25 shows a Simulink model that uses the

DyB protocol with a constant search procedure to find a free slot. In this example, the

communication buffer transfers data between a writer and its two readers. The writer is

similar to the one in Figure 5.21 except that the added constant is 1. The sampling rate of

the writer is assumed to be 3 seconds. It assumes that the fast reader has a sampling rate of

2 seconds while the slow reader’s sampling rate is 5 seconds. Notice that the specified rates
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Figure 5.25: Example of the Dynamic Buffering Mechanism

are not in a harmonic relationship. Based on the specified sampling rates, the dispatcher is

sampled at a base rate of 1 second. With the assumption of the rate monotonic priority as-

signment, three buffer slots are needed according the DyB mechanism. The communication

buffer is assumed to take an initial value of 8.

The SR semantics-preserving implementation of the DyB example consists of five

tasks: dispatcher, init, and three application tasks: subRate 1 (fast reader), subRate 2

(writer), and subRate 3 (slow reader). Due to the structural similarity between the gener-

ated code for the CTDyB and the DoB examples, in the following, rather than presenting

the detailed generated code for the CTDyB case, only major differences are highlighted.
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When the writer task needs to be scheduled, according to the CTDyB, the use

count of the buffer slot pointed by prev is decremented and the slot is freed if its use

count drops to zero. Then, the prev is updated and cur is assigned with the first free

slot on the free list and variable FreeHd is updated accordingly. On the reader side, the

dispatcher first assigns the reading index for the fast reader as the value of prev when

it needs to be scheduled. Similarly, at the activation time of the slow reader, its reading

index is assigned as the value of cur since the writer task has a higher priority. Finally, the

dispatcher increments the use count of the slot that assigned to the slow reader. The atomic

termination code for the lower priority reader task (subRate 3) is executed at the beginning

of the DyB task dispatcher. As discussed in Figures 5.7 and 5.13, at system startup, this

segment of code is not needed. The first nested if block checks whether the slow reader task

needs to be scheduled. Upon its activation, the dispatcher decrements the use count of the

buffer slot read by the slow reader’s previous activation and frees the buffer slot when its

use count value becomes zero.

5.3.3 Code Validation Environment and Results

The RTW Embedded Coder provides the Software-In-the-Loop (SIL) validation

technique for subsystems. The generated code of the SR communication protocol imple-

mentations needs to be executed together with an RTOS, but the RTW code validation

environment does not have such a capability. In the rest of this section, the code validation

environment (the execution microcontroller, the real-time operating system, and the tools)

is first discussed and then the corresponding validation results of the above two examples

are presented.
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Execution Microcontroller: PIC18F452 During execution, only one task can have

access to the processing unit, i.e., exclusive access to the processor, the RAM memory, and

the hardware stack. Particularly, the PIC18F452 [86] processor is chosen as the underlying

execution platform in this dissertation. The PIC18F452 processor is type of RISC and it

is an enhanced flash microcontroller with a high performance up to 10MIPS (Millions of

Instructions Per Second) operations. The features of the PIC18F452 are shown in Table 5.4.

The PIC18F452 processor has a C compiler optimized Instruction Set Architecture (ISA)

with 16-bit wide instructions and it supports priority levels for interrupts. Its data path has

a width of 8 bits. It has linearly addressable memory: 32 KBytes program memory and 1.5

KBytes data memory, as shown in Figure 5.26. The data memory is implemented as static

RAM and it contains Special Function Registers (SFRs) and General Purpose Registers

(GPRs). Separate buses are used for data and program memory and therefore concurrent

data and instruction accesses are supported. The RESET vector starts at 0000h and the

interrupt vectors start at 0008h and 0018h for high priority and low priority interrupts,

respectively.

The PIC18 processors manage the hardware stack that is dedicated for function

calls via the PUSH/POP instructions. The return address stack is a piece of RAM with

31 words with a width of 21 bits. It supports any combination of up to 31 program

Device
On-Chip Program Memory On-Chip Data Interrupt Instruction

FLASH # of Single RAM EEPROM Source Set
(Bytes) Word Instr (Bytes) (Bytes)

PIC18F452 32K 16K 1.5K 256 18 75

Table 5.4: Features of the PIC18F452 Microcontroller
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Figure 5.26: Memory Layout of the PIC18F452 Microcontroller

calls and interrupts. Upon execution of CALL/RCALL or acknowledgement of an inter-

rupt, the stack pointer is first incremented and the value of the Program Counter (PC)

is pushed onto the stack slot pointed by the stack pointer, while upon execution of RE-

TURN/RETLW/RETFIE, the PC value is popped off the stack and the stack pointer is

decremented accordingly.

Based on the clock input, four non-overlapping quadrature clocks (Q1, Q2, Q3,

and Q4) are generated via a clock divider as shown in Figure 5.27. An Instruction Cycle

(IC) is defined as the four Q cycles (from Q1 to Q4). The program counter is incremented

during Q1 and the instruction is fetched from the program memory and latched into the
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Figure 5.27: Instruction Pipeline of the PIC18F452 Microcontroller

instruction register during Q4. The instruction decoding and execution take place during

the next Q1 to Q4. Effectively, each instruction takes one IC due to the pipelining.

The ePICos18 The ePICos18 [120], standing for the enhanced PICos18, is an OSEK-

compliant real-time operating system. Based on the PICos18, the ePICos18 provides a

constant time kernel scheduler.

The PICos18 The PICos18 [105], developed by Pragmatec SARL Company [106]

in France, is a multi-task, preemptive, and real-time kernel that fully conforms to the OSEK

standard for the PIC18 family of microcontrollers from the Microchip Technology Inc [82].

Being real-time, the kernel guarantees a deterministic latency for task switching from the

current one to another that is more urgent. The kernel is open source and distributed under

the terms of the GNU General Public License [41].

In the original implementation of the PICos18 (Version 2.10), the four Task Control

Tables (TCT) are not indexed by task identifier. Instead, the task identifiers are stored in
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the lower four bits in the table storing task state and identifier. Therefore, all system

services related to task (except GetTaskID), resource, and event managements need to

search through the TCTs to find the right entry. Hence, the execution time depends on the

position of the task in the TCTs in RAM. What is even worse is that all of them need to

be synchronized, which implies that all four TCTs may need to be updated after sorting

(Bubble Sort is used in Version 2.10) is applied upon adjustment based on task priority. To

lower RAM consumption, the original implementation does not save static information, for

instance, the address and size of the software stack of a task. Unfortunately, it does not

save the location of a task in the task descriptor specified in the input file either. During

context switches, the kernel has to look for the task linearly through the task descriptor

located in ROM. Therefore the search time depends on the place where the task is found in

the input task descriptor file. These greatly affect the determinism of a real-time operating

system.

Support of a Constant Time Kernel The real-time kernel of the PICos18 is

improved in terms of determinism and execution time, which leads to the ePICos18 [120].

The constant time kernel scheduler in the ePICos18 is based on the two-level bitmap tech-

nique, which trades off a moderate increase in memory consumption for better kernel service

performance. With the support of a constant time kernel, the execution times for the en-

hanced version of system services for task management, event management, and resource

management are independent of the number of application tasks and hence good determin-

ism is achieved.

As the performance analysis results in [120] illustrate, the ePICos18 does not
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sacrifice performance: it has a kernel service execution time that is not longer than that

of the original PICos18. The ePICos18 is used to support for simulation and validation of

application implementation throughout this dissertation.

Development/Validation Environment The Windows-based Microchip compiler tool-

suite, MPLAB Integrated Development Environment (IDE), is used as the application de-

velopment and validation environment. The MPLAB IDE consists of the MPASM Assem-

bler [83], the MCC18 compiler [84], and the MPLINK linker [83]. The MPASM and the

MCC18 transform assembly files and C files into relocatable object files, respectively. The

MPLAB Object Librarian manages pre-compiled code to be used with the MPLINK ob-

ject linker. The MPLINK object linker combines all the object files to generate a unique

HEX file that can be loaded onto a microprocessor. The compiled application may be an-

alyzed/validated through simulation/emulation [85]. The MPLAB SIM simulator supports

code development in a PC-hosted environment and microcontroller simulation at the in-

struction level. The verification technique is based on the SIL, a common technique used

for verification after generating code but before downloading binary to target hardware

for execution. Furthermore, the MPLAB ICE 2000 supports enhanced features such as

trace, trigger, and data monitoring. The MPLAB In-Circuit Debugger (ICD) is a powerful

run-time development tool with the in-circuit debugging capability.

The 40 MHz-10 MIPS PIC18F452 [86] microcontroller from the MicroChip Tech-

nology Inc, as discussed above, is used as the target execution hardware platform. The

ePICos18 is running on the PIC18F452 microcontroller to provide run-time support for

application tasks.
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Validation Results To verify that the implemented applications execute as expected,

the MPLAB SIM simulator is used to simulate the generated code. During simulation, the

SCL (Stimulus Control Language) Workbook feature of the register trace is used to log the

input and output(s) of the communication buffer into text files. Then, a program such as

matlab or excel is used to plot the simulation results.

MPLAB SIM Results Figure 5.28 shows the MPLAB SIM results of the gen-

erated code from the DoB Simulink model with the Double Buffer Protocol as shown in

Figure 5.21. The graph shows the output of the writer and the input of the reader versus

time (in seconds). The solid curve displays the writer’s output. The value of the output

increments by 2 at its sampling rate of 2 seconds. The dashed curve in the graph shows

that the reader reads the current output value of the writer, which is expected because the

reader has a lower priority than the writer.
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Figure 5.28: MPLAB SIM Result of the DoB Example
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Figure 5.29: MPLAB SIM Result of the DyB Example (1)

Similarly, Figures 5.29 and 5.30 show the MPLAB SIM results of the generated

code from the DyB Simulink model with the Constant Time Dynamic Buffering Protocol as

shown in Figure 5.25. The solid curve in Figures 5.29 and 5.30 is the writer’s output. The
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Figure 5.30: MPLAB SIM Result of the DyB Example (2)
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value of the output increments by one at a sampling rate of 3 seconds. The dashed curve

in Figures 5.29 shows the input of reader 1, the slow reader in the DyB example. This case

is similar to what is shown in Figure 5.28 since the communication is from a higher priority

writer to a lower priority reader.

Different from what is shown in 5.29, the dashed curve in Figures 5.30 shows the

input of reader 2, the fast reader in the DyB example. Because the reader has a higher

priority than the writer and the communication link has a unit delay, the first two instances

of the fast reader read 8, which is the initial value of the buffer, before the first instance of

the writer finishes its execution. During the following sampling intervals, reader 2 always

reads the output value of the writer with a unit delay. The simulation results show that

the implemented models execute as expected at run time and therefore the synchronous

reactive communication semantics is preserved.

RTW SIM Results It is natural to simulate a Simulink model at design time

to verify the correctness of the behavior. Comparing the simulation results from the RTW

SIM and the MPLAB SIM can also validate the generated code.

Figure 5.31 shows the RTW SIM results of the DoB Simulink model as shown in

Figure 5.21. The results from Scope and Scope1 are the writer output and the reader input,

respectively. Figure 5.32 shows the RTW SIM result of the DyB Simulink model as shown

in Figure 5.25. The results from Scope, Scope1, and Scope2 are the writer output, the slow

reader input, and the fast reader input, respectively.

Scrutinization and comparison of the MPLAB SIM results and the RTW SIM

results show that they are indeed match each other behaviorally. However, there is actually
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Figure 5.31: RTW SIM Result of the DoB Example

a fundamental difference between these two sets of simulation results. The execution takes

zero time in the RTW SIM, but this is not true in the MPLAB SIM. Because the execution

times of the illustrating example models are in microseconds/milliseconds and the unit

used in the figures is second, the execution of the MPLAB SIM seems to take no time.

As a matter of fact, writing and reading occur shortly after their respective sampling time

instants.
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Figure 5.32: RTW SIM Result of the DyB Example
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Chapter 6

Buffer Sizing Optimization with

Timing Constraints

As discussed in Section 4.3, a better buffer bound may be obtained through using

a hybrid communication scheme between a writer and it readers. The basic idea behind

it is that the Temporal Concurrency Control Protocol is good for fast readers while the

Dynamic Buffer Protocol is good for slow readers. The improved bound on buffer size is

given by Equations 4.17 and 4.19 in Section 4.3. But in practice, the optimization process

is more complex because it further involves scheduling overheads due to context switches.

Furthermore, the CTDBP may take a longer time to find a safe buffer slot than the TCCP

and this may lead to scheduling constraint violation. These issues have not been addressed

before and this chapter is dedicated for this purpose. In this chapter, it first formulates the

buffer sizing optimization problem under timing constraints. With the measured execution

time for context switches and communication protocols on the PIC18F452 microcontroller
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and the ePICos18, the formulation is reformulated as a mixed integer linear programming

problem, which is applied to test cases that are either generated randomly or derived from

an automotive industrial application. The optimization problems are solved by glpsol/cplex

solvers and results are compared.

Unlike Section 4.3 which addresses a general scenario (i.e., possibly multiple active

instances per task), only cases that allow single task instance are considered in this chapter.

However, it is clear that with more computational efforts, the same optimization technique

applies to the general scenarios in Section 4.3.

6.1 Buffer Sizing Optimization

The two protocols presented in Section 5.1 have different characteristics. The CT-

DBP needs a relatively long time to find a safe buffer slot for the writer to write into, while

the TCCP is fast but can be quite expensive in terms of memory requirement when there

are readers with long data lifetimes. A mixed scheme [94] may be used to reduce memory

consumption. However, when taking into account the temporal cost for the implementation

of the protocols, the choice of the best communication scheme depends upon the temporal

constraints of the system. There exists the opportunity to minimize the buffer bounds by

automatically choosing inter-task communication mechanisms under timing constraints.

Consider a design problem consisting of a set of communicating tasks with hard

real-time constraints (R ≤ D ≤ T) and scheduled with fixed priorities. Each task implements

a set of communicating reader and/or writer blocks. The problem is to minimize the

memory space required for the communication buffers by partitioning the reader blocks
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into two groups, slow reader blocks, for which the CTDBP should be used, and fast reader

blocks, communicating through the TCCP.

Assume that the atomicity of the termination code of lower priority readers is

achieved by the hook mechanism in case of the CTDBP. As discussed in [122][121][94], the

auxiliary data structures for CTDBP and TCCP are similar and the memory increase due to

PostTaskHook is small. Specifically, e.g., the footprint overhead due to the PostTaskHook

in the final image of system implementation under the CTDBP is 93 Bytes. So they will

not be considered in the formulation of the optimization problem.

6.1.1 Parameters, Variables, Cost Function, and Timing Constraints

The following description of the variables and constraints of the optimization prob-

lem formulation applies to each subsystem consisting of a writer i and its readers j.

Parameters Parameters pi,j and Li,j are introduced to capture the priority ordering of

tasks and the communication topology of the system, respectively, as follows:

pi,j =





1 if πi > πj

0 otherwise

and

Li,j =





1 if wi −→ rj

0 otherwise.
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Optimization variables A boolean variable xi,j is introduced for each pair of writer and

reader to define the communication mechanism to be used, i.e.,

xi,j =





0 if wi
TCCP−→ rj

1 if wi
CTDBP−→ rj.

For each writer wi, the number of slow and fast readers can be easily computed as:

NRSi =
NR∑
j=1

xi,jLi,j and NRFi = NRi − NRSi.

Of those, the number of slow readers with a lower priority than that of the writer is:

NSi =
NR∑
j=1

xi,jpw(i),r(j)Li,j,

where w(i) and r(i) stand for the identifier of the task implementing the writer and reader

block i, respectively.

Correspondingly, based on Equations 4.2 and 5.1, the buffer size that is required

for the implementation of the communication for the slow readers is NBSi, computed as:

NBSi =





NSi + 1 + max
1≤j≤NR

xi,jdelay[j]Li,j if NRSi > 0

0 if NRSi = 0,

and based on Equation 4.4, the buffer size for the implementation of the communication for

the fast readers is:

NBFi = max
1≤j≤NR

(
1− xi,j

) ⌈
lj
Tw(i)

⌉
Li,j.

Cost function The cost function of the formulated optimization problem is defined as

the total buffer size for the system:

NB =
NW∑
i=1

NBi =
NW∑
i=1

(NBFi + NBSi).
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Timing constraints The deadline constraints required by schedulability can be simply

expressed as:

∀τi, Ri ≤ Di.

In the evaluation of Ri, Equation 4.1 needs to be modified with accounting for the

scheduling overhead (context switch overhead) as following:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj + CSO. (6.1)

Note that the set of higher priority tasks hp(i) in Equation 6.1 also includes the dispatcher.

Furthermore, Ri depends on Ck, the worst-case execution time of the protocol at the kernel

level, which in turn depends on the type of communication mechanism. In the following,

how the communication implementation affects Ri is evaluated. Two more intermediate

boolean variables are introduced:

λi = min(1, NRSi) and ρi = min(1, NRFi).

λi = 0 and ρi = 0 mean that writer i communicates with all its readers using the TCCP

and the CTDBP, respectively. When λi = ρi = 1, writer i uses a hybrid protocol with all

its readers. From the definition, λi + ρi > 0.

The update of the communication data structures (buffer indices) is performed by

the kernel at the highest priority level for each task at the time of its activation. Hence, it

can be modeled in the response time formula of each task as a set of additional interference

terms, one for each task, carrying the corresponding overhead. Then, the interference

portion in Equation 6.1 becomes

∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj =

∑

j∈(hp′(i)=hp(i)\{d})

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
Td

⌉
Cd,
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where d identifies the dispatcher task. Assume that the dispatcher task implementation

in Figure 5.6 is chosen. To ease characterization, the dispatcher is partitioned into three

segments as labeled in Figure 5.6. The first segment accounts for the minimum execution

time (Ck,d) when no task needs to be activated. It further includes three parts: the update

of tick (Ck,d,1) at Line 2, the if statement (Ck,d,2) at Line 3, and the call to TerminateTask

(Ck,d,3) at Line 20. The second segment corresponds to the minimum execution time (Ck,τ )

associated with the task that needs to be activated. It is also composed of three por-

tions: the setup and iteration termination check of the for loops to process writers/readers

(Ck,τ,1)/(Ck,τ,2) at Lines (4-7)/(11-14) and the call to ActivateTask (Ck,τ,3) at Line 17. Ck,τ

is the execution time of a task with a single writer and reader that needs to be activated

but excludes the cost for index assignments. The third segment is the index assignment

cost (Ck,w/Ck,r) for a single writer/reader at Line 8/15, characterizing the temporal cost of

the communication protocol.

Based on the above characterization of the dispatcher task, further expansion of

the last term in the above equation gives:

NR∑
q=1

⌈
Ri
Tr(q)

⌉
Ck,r +

NW∑
j=1

⌈
Ri
Tw(j)

⌉
Ck,w +

NT∑
j=1

⌈
Ri
Tj

⌉
Ck,τ +

⌈
Ri
Td

⌉
Ck,d,

The execution times for reading and writing are:

Ck,r = ΓxS(q),q + Φ(1− xS(q),q) and Ck,w = Ψλj + ∆ρj,

respectively, where S(q) returns the identifier of the writer that communicates with reader q,

Ψ/Γ represent the execution time for assigning writer/reader indices for the CTDBP as

shown in Figure 5.11, and ∆/Φ stand for the execution time for assigning writer/reader

indices for the TCCP as shown in Figure 5.16.
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The cost of context switches, CSO in Equation 6.1 can be computed as the sum

of context switch overheads due to the higher priority application tasks, the system clock

interrupt handler, and the task dispatcher.

CSO =
∑

j∈hp′(i)

⌈
Ri
Tj

⌉ (
CSi,j + CSj,ter

)
+

⌈
Ri
Tclk

⌉
(CSi,clk + CSclk,ter) +

⌈
Ri
Td

⌉
(CSclk,d + CSd,ter),

where CSi,j stands for the cost due to context switch from i to j. clk and ter represent

the clock handler and task termination, respectively.

Assume in case of the CTDBP the atomicity of the termination code for lower pri-

ority readers is obtained via the hook mechanism. To model the overhead of PostTaskHook,

two more additional boolean variables are introduced for the application under study:

λ = min(1,
NW∑
i=1

λi) and ρ = min(1,
NW∑
i=1

ρi).

When λ = ρ = 1, both the TCCP and the CTDBP are used in the system, implying that a

PostTaskHook routine is used. Therefore, Ck,τ is computed as:

Ck,τ = λCDk,τ + ρ(1− λ)CTk,τ .

Similarly the cost of each type of context switch is:

CS = λCSD + ρ(1− λ)CST.

6.1.2 Complete Formulation

In summary, the complete formulation of the optimization problem is as follows:

minimize

NB =
NW∑
i=1

(NBFi + NBSi)
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such that

for all tasks ∀i ∈ T

Ri ≤ Di

Ri = Ci +
∑

j∈hp′ (i)

⌈
Ri
Tj

⌉ (
Cj + CSi,j + CSj,ter

)

+
NR∑
q=1

⌈
Ri
Tr(q)

⌉ (
ΓxS(q),q + Φ(1− xS(q),q)

)

+
NW∑
j=1

⌈
Ri
Tw(j)

⌉ (
Ψλj + ∆ρj

)
+

NT∑
j=1

⌈
Ri
Tj

⌉
Ck,τ

+
⌈
Ri
Td

⌉
(Ck,d + CSclk,d + CSd,ter) +

⌈
Ri
Tclk

⌉
(CSi,clk + CSclk,ter)

(6.2)

for all reader tasks ∀i ∈ R

li = delay[i]Tw(S(i)) + OS(i),i + Rr(i)

for all writer tasks ∀i ∈ W

NBFi = max
1≤j≤NR

(
1− xi,j

) ⌈
lj
Tw(i)

⌉
Li,j (6.3)

NBSi = λi




NR∑
j=1

(
xi,jpw(i),r(j)Li,j

)
+ 1 + κi


 (6.4)

κi = max1≤j≤NR
(
delay[j]xi,jLi,j

)
(6.5)

λi = min


1,

NR∑
j=1

xi,jLi,j


 (6.6)

ρi = min


1, NRi −

NR∑
j=1

xi,jLi,j


 (6.7)
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λ = min

(
1,

NW∑
i=1

λi

)
, ρ = min

(
1,

NW∑
i=1

ρi

)
(6.8)

Ck,τ = λCDk,τ + ρ(1− λ)CTk,τ (6.9)

CS = λCSD + ρ(1− λ)CST (6.10)

The context switch overheads CS depend on the underlying real-time operating

system. In the next section, an evaluation of the time costs and overheads that need to be

associated to the protocol implementation alternatives for an OSEK-compliant operating

system is presented. These data are used to complete the formulation of the problem, to

derive its MILP reformulation, and to evaluate the opportunity for optimization in the

experimental section.

6.2 ePICos18-Based Evaluation

In this section, the performance of the implementations presented in Section 5.2

is evaluated using the ePICos18 executing on the 40 MHz-10 MIPS PIC18F452 [86] micro-

processor under the Microchip MPLAB Integrated Development Environment. Compiled

applications are analyzed through the MPLAB SIM simulator at the instruction level and

the MPLAB ICE 2000. Due to pipelining, an instruction takes one Instruction Cycle (IC),

which corresponds to 0.1 µsec. For performance evaluation, the cycle of the software system

timer used to manage alarms and counters in the ePICos18 is assumed to be 5 msec.
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6.2.1 Application Tasks and Dispatcher

In this subsection, performance analysis is conducted for application implementa-

tion tasks and the dispatcher task that is used to activate application tasks during execution.

Application Tasks Table 6.1 summarizes the performance overhead comparison of ap-

plication tasks when using the TCCP and the CTDBP. As shown in Figure 5.17, no book-

keeping code is required for application tasks under the TCCP. An application task with

the CTDBP executes also fast, but the kernel performs the required functionality in a post

task hook routine on behalf of the application task. For the application tasks under the

CTDBP shown in Figure 5.12, measurements show that the costs to reset/set the flag done

at the beginning and at the end of the task executions are 23 ICs and 25 ICs, respectively.

Analysis on the hook routine in Figure 5.12 shows that its cost is 43 ICs if no application

task is executed before it is called, and 77 ICs if some application task was executed but did

not terminate when the call was made; (115+233×Nτ+96×Mτ ) ICs in the worst case if some

application task just terminated and triggers the call, where Nτ and Mτ are the number of

lower and higher priority readers of task τ , respectively. The dispatcher is not an application

task and the overhead imposed on it by PostTaskHook is always 43 ICs. Table 6.1 illustrates

the time advantage of the TCCP with respect to the implementation of application tasks.

Overhead in Application Task PostTaskHook
TCCP 0 0
CTDBP 48 115+233×Nτ+96×Mτ

Table 6.1: Application Task Overhead Comparison (in ICs)
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i - Ck,i,1 Ck,i,2 Ck,i,3 Ck,i =
∑3

j=1 Ck,i,j Ck,w Ck,r

d - 14 17 269 300 - -

τ
TCCP 127 127 253 507 ∆ = 181 Φ = 133
CTDBP 127 127 296 550 Ψ = 365 Γ = 193

Table 6.2: Dispatcher Performance Evaluation (in ICs)

Task Dispatcher Table 6.2 shows the breakdown measurement of the dispatchers with

the TCCP and the CTDBP. Because both versions of the dispatcher share exactly the

same structure, their Ck,d values are 300 ICs. Note that there is no bookkeeping code in

the implementation of application tasks when using the TCCP. Ck,τ,3 of the TCCP is the

execution time of ActivateTask, which is equal to 253 ICs [120]. The difference of 43 ICs

between the CTDBP and the TCCP is due to the call to PostTaskHook in the scheduler

when calling ActivateTask inside the CTDBP dispatcher. This overhead is about 17%. The

last two columns of Table 6.2 show the measured performance for kernel level assignment

of writing and reading indices. The Ck,w and Ck,r characterize the temporal cost of the

communication protocol. The results demonstrate that the TCCP is 102% and 45% faster

than the CTDBP for writer and reader processing at the kernel level, respectively. Clearly,

when taking into account the memory requirements for different protocols, an appropriate

communication protocol is highly dependant upon the temporal properties of the system.

6.2.2 Context Switch Latency of ePICos18

Analysis in [120] shows that the costs to save and restore the context is (308+12×NRA)

and (354+11×NRA) ICs, respectively, where NRA is the number of return addresses on the hard-

ware stack. If the kernel service Schedule is called from an ISR, its execution time is 11 ICs.
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Otherwise, in user mode, its execution time is (786+12×NRA+PstTskHk+11×NRA′+PreTskHk) ICs,

where NRA and NRA′ are the number of return addresses of the current running task and

the restored next running task, respectively, PstTskHk and PreTskHk are the costs due to

PostTaskHook and PreTaskHook, respectively. In non-user mode, its execution is shorter be-

cause no application task is running. When all application tasks have unique priorities,

there is no hook involved, and there are two return addresses to be saved/restored, the

latency of the kernel scheduler is 809 ICs, which is 80.9 µsec and 1.6% of a system tick.

The execution of PostTaskHook is needed after the termination of the application

tasks. However, according to the OSEK standard, it is called upon each context switch

during system execution. As analyzed in Section 6.2.1, the temporal overhead due to calling

the routine when the functionality in the hook is not needed is 77 ICs in the worst case,

which is 7.7 µsec. This implies that the kernel scheduler latency increases to 88.6 µsec. The

relative overhead increase is 9.5% and the context switch occupies 1.8% of a system tick.

The costs of context switch for applications under the TCCP and the CTDBP are

measured and the results are summarized in Tables 6.3 and 6.4, where NSj and MSj represent

the numbers of lower priority and higher priority slow readers of task j, respectively.

CSclk,ter CSclk,d CS′clk,d
mode user user kernel
to τj dispatcher
TCCP 786+12×NRA+11×NRA′ 575+12×NRA 267
CTDBP 863+12×NRA+11×NRA′ 652+12×NRA 310

Table 6.3: Cost of Context Switches from Clock Interrupt (in ICs)
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CSi,j CSi,clk CSj,ter CSd,ter
from τi τj dispatcher
to τj clk τi
TCCP 786+12×NRA+11×NRA′ 489 478+11×NRA′
CTDBP 863+12×NRA+11×NRA′ 489 593+233×NSj+11×NRA′+96×MSj 521+11×NRA′

Table 6.4: Cost of Context Switches from a Task (in ICs, assume πj > πi)

6.3 MILP Reformulation

The formulation of the optimization problem in Section 6.1 contains functions

(ceiling, minimum, and maximum) and product terms of variables, and is not suitable for

automatic processing by a linear or convex optimization solver. However, based on the

performance evaluation results of kernel services and context switches with the ePICos18

from Section 6.2, it is possible to reformulate the nonlinear terms in such a way that the

problem becomes of MILP (Mixed Integer Linear Programming) type. In the following, bold

lettering is used to denote constants (typically for upper and lower bounds) that are used

to reformulate the problem constraints to avoid nonlinear terms. This improves readability

and allows to easily recognize products of variables, as opposed to products of a variable

and one or more constant factors.

6.3.1 Ceiling and Minimum/Maximum Functions

As a first step of reformulation into an MILP format, consider the ceiling, mini-

mum, and maximum functions in this subsection.

Ceiling function To reformulate the ceiling function in Equations 6.2 and 6.3, auxiliary

integer variables αi,j and βj,i are introduced to represent the worst-case number of preemp-
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tions from a higher priority task and the number of writer task activations in the lifetime

of a datum, respectively. These variables are constrained as follows:

αi,j =
⌈
Ri
Tj

⌉
, 0 ≤ αi,j − Ri

Tj
< 1, i ∈ T , j ∈ (T ∪ {d, clk}),

βj,i =
⌈
lj
Ti

⌉
, 0 ≤ βj,i −

lj
Ti

< 1, i ∈ T , j ∈ R.

Note that constraints with strict inequalities of type f(x) < c can be approximated by

f(x) ≤ c− c′, where c′ << c.

The worst-case response time in Equation 6.2 can now be expressed as:

Ri =Ci +
∑

j∈hp′ (i)
αi,j

(
Cj + CSi,j + CSj,ter

)
+

NR∑
q=1

αi,r(q)

(
ΓΓΓxS(q),q + ΦΦΦ(1− xS(q),q)

)
+

NW∑
j=1

(
αi,w(j)

(
ΨΨΨλj + ∆∆∆ρj

))
+

NT∑
j=1

αi,jCk,τ + αi,d (Ck,d + CSclk,d + CSd,ter) + αi,clk (CSi,clk + CSclk,ter).

(6.11)

Similarly, the ceiling can be removed from the formulation of the buffer size in Equation 6.3

for the TCCP:

(1− xi,j)
⌈

lj
Tw(i)Tw(i)Tw(i)

⌉
Li,jLi,jLi,j = (1− xi,j)βj,w(i)Li,jLi,jLi,j. (6.12)

Minimum function The definitions of λi (Eq. 6.6), ρi (Eq. 6.7), λ, and ρ (Eq. 6.8)

involve the evaluation of a minimum function.

The minimum in Eq. 6.6 has the following meaning. Each λi is a binary variable

that assumes value 1 if at least one of the xi,j is equal to one and zero otherwise. The

following set of linear constraints provides an equivalent assignment:

0 ≤ λi ≤ 1, xi,j ≤ λi ≤ NRSi for 1 ≤ i ≤ NW, 1 ≤ j ≤ NR.



146

Similarly, the determination of the values of ρi, λ, and ρ can be reformulated in terms of

linear constraints.

Maximum function Maximum function appears in Equations 6.3 and 6.5. The following

linear constraints require that the left hand side of the previous equations is always larger

than any of the elements of the set that needs to be maximized.

NBFi ≥
(
1− xi,j

)
βj,w(i)Li,j for 1 ≤ i ≤ NW, 1 ≤ j ≤ NR,

κi ≥ delay[j]xi,jLi,j for 1 ≤ i ≤ NW, 1 ≤ j ≤ NR.

Since both NBFi (explicitly) and κi (implicitly through Eq. 6.4) appear in the cost function,

its minimization results in the correct evaluation of the maximum.

6.3.2 Variable Products

The last obstacle for a linear formulation is quadratic terms appearing in the

problem formulation: the product of an integer variable and a binary variable (αi,r(q)xS(q),q,

αi,w(j)λj, αi,w(j)ρj (Eq. 6.11), βj,w(i)xi,j (Eq. 6.12), and λiκi (Eq. 6.4)) and the product of

binary variables (λixi,j (Eq. 6.4)). Since the integer variables are bounded, the products

can be linearized as discussed in [2][40][99]. αi,j are both lower and upper bounded:

αl
i,jαl
i,jαl
i,j =

⌈
Rli
Tj

Rli
Tj

Rli
Tj

⌉
≤ αi,j ≤

⌈
Rui
Tj

Rui
Tj

Rui
Tj

⌉
= αu

i,jαu
i,jαu
i,j.

RliR
l
iR
l
i and RuiR

u
iR
u
i are the lower and upper bound of the worst-case response time of τi, which can be

obtained by considering the cases where all readers are of type fast and slow, respectively.

Given these bounds, αi,r(q)xS(q),q can be reformulated as:

γi,q = αi,r(q)xS(q),q, αl
i,r(q)αl
i,r(q)αl
i,r(q)xS(q),q ≤ γi,q ≤ αu

i,r(q)αu
i,r(q)αu
i,r(q)xS(q),q,
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αi,r(q) −αu
i,r(q)αu
i,r(q)αu
i,r(q)

(
1− xS(q),q

) ≤ γi,q ≤ αi,r(q) −αl
i,r(q)αl
i,r(q)αl
i,r(q)

(
1− xS(q),q

)
.

Similarly, αi,w(j)λj, αi,w(j)ρj, βj,w(i)xi,j, κiλi, and λixi,j can be reformulated in constraints

that are amenable to processing by an MILP solver.

Other remaining products are αi,jCk,τ , αi,jCSi,j, αi,dCSclk,d, αi,dCSd,ter, αi,clkCSi,clk,

and αi,clkCSclk,ter (Eq. 6.11). From Equations 6.9 and 6.10, clearly each of them actually

includes two quadratic terms (λαi,j, ραi,j) and a cubic term (ρλαi,j), where j can be an

application task, the dispatcher, or the clock interrupt handler. λαi,j is reformulated as:

µi,j = λαi,j, λαl
i,jαl
i,jαl
i,j ≤ µi,j ≤ λαu

i,jαu
i,jαu
i,j,

αi,j −αu
i,jαu
i,jαu
i,j(1− λ) ≤ µi,j ≤ αi,j −αl

i,jαl
i,jαl
i,j(1− λ).

Note that ραi,j can be linearly reformulated in a similar way. The cubic term ρλαi,j = ρµi,j

is reformulated as:

ψi,j = ρµi,j, 0 ≤ ψi,j ≤ ραu
i,jαu
i,jαu
i,j, µi,j − (1− ρ)αu

i,jαu
i,jαu
i,j ≤ ψi,j ≤ µi,j.

The only remaining product term (in Eq. 6.11) is

αi,jCSj,ter = αi,j(λCSDj,ter + ρ(1− λ)CSTj,terCSTj,terCSTj,ter). (6.13)

From Table 6.4, it is known that CSTj,terCSTj,terCSTj,ter is constant. However,

CSDj,ter= 593 + 233× NSj + 11× NRA′ + 96× MSj

= CS′Dj,terCS′Dj,terCS′Dj,ter + 137× NSj + 96× NRSj,

where NSj =
∑j=r(m)

m=1,NR xS(m),mpw(S(m)),r(m) and MSj = NRSj − NSj. NRSj is the number of read-

ers of τj that use the CTDBP, i.e., NRSj =
∑j=r(m)

m=1,NR xS(m),m. Among the product terms in
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Equation 6.13, only λαi,jxS(m),m = µi,jxS(m),m is left for reformulation, which is performed

as follows:

ςi,j,m = µi,jxS(m),m, 0 ≤ ςi,j,m ≤ αu
i,jαu
i,jαu
i,jxS(m),m

µi,j −αu
i,jαu
i,jαu
i,j(1− xS(m),m) ≤ ςi,j,m ≤ µi,j.

6.3.3 Complete MILP Formulation

In this subsection, the complete MILP reformulation is summarized. The notations

used in the formulation are self-explanatory.

minimize

NB =
NW∑
i=1

(NBFi + NBSi)

such that

for all tasks ∀i ∈ T

λαl
i,d ≤ νi ≤ λαu

i,d (for νi = λαi,d)

αi,d − αu
i,d (1− λ) ≤ νi ≤ αi,d − αl

i,d (1− λ)

ραl
i,d ≤ φi ≤ ραu

i,d (for φi = ραi,d)

αi,d − αu
i,d (1− ρ) ≤ φi ≤ αi,d − αl

i,d (1− ρ)

0 ≤ ωi ≤ ραu
i,d (for ωi = ρλαi,d = ρνi)

νi − αu
i,d (1− ρ) ≤ ωi ≤ νi

λαl
i,clk ≤ ξi ≤ λαu

i,clk (for ξi = λαi,clk)

αi,clk − αu
i,clk (1− λ) ≤ ξi ≤ αi,clk − αl

i,clk (1− λ)

ραl
i,clk ≤ χi ≤ ραu

i,clk (for χi = ραi,clk)
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αi,clk − αu
i,clk (1− ρ) ≤ χi ≤ αi,clk − αl

i,clk (1− ρ)

0 ≤ ϕi ≤ ραu
i,clk (for ϕi = ρλαi,clk = ρξi)

ξi − αu
i,clk (1− ρ) ≤ ϕi ≤ ξi

Ri ≤ Di

Ri = Ci +
∑

j∈hp′(i)

(
αi,jCj + µi,j(CSDi,j + CS′Dj,ter)

)
+

∑

j∈hp′(i)

j=r(m)∑
m=1,NR

ςi,j,m

(
137pw(S(m)),j + 96

)
+

∑

j∈hp′(i)
(σi,j − ψi,j)(CSTi,j + CSTj,ter)

+
NR∑
q=1

(
(Γ− Φ)γi,q + Φαi,Q

)
+

NW∑
j=1

(
Ψδi,j + ∆εi,j

)

+
NT∑
j=1

(
µi,jC

D
k,τ + (σi,j − ψi,j)CTk,τ

)
+ αi,dCk,d + νi(CSDclk,d + CSDd,ter)

+(φi − ωi)(CSTclk,d + CSTd,ter) + αi,clkCSi,clk + ξiCS
D
clk,ter + (χi − ϕi)CSTclk,ter

for all writer tasks ∀i ∈ W

NBSi = λi




NR∑
j=1

(
xi,jpw(i),r(j)Li,j

)
+ 1 + κi




NBSi =
NR∑
j=1

(
$i,jpw(i),r(j)Li,j

)
+ λi + θi,

0 ≤ θi ≤ κu
iλi (for θi = λiκi)

κi − κu
i(1− λi) ≤ θi ≤ κi

0 ≤ λi ≤ 1, 0 ≤ ρi ≤ 1

λi ≤ λ ≤
NW∑
j=1

λj, ρi ≤ ρ ≤
NW∑
j=1

ρj
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for all reader tasks ∀i ∈ R

li = delay[i]Tw(S(i)) + OS(i),i + Rr(i)

for all tasks ∀i, j ∈ T

0 ≤ αi,j − Ri
Tj

< 1 (for αi,j =
⌈
Ri
Tj

⌉
)

λαl
i,j ≤ µi,j ≤ λαu

i,j (for µi,j = λαi,j)

αi,j − αu
i,j (1− λ) ≤ µi,j ≤ αi,j − αl

i,j (1− λ)

ραl
i,j ≤ σi,j ≤ ραu

i,j (for σi,j = ραi,j)

αi,j − αu
i,j (1− ρ) ≤ σi,j ≤ αi,j − αl

i,j (1− ρ)

0 ≤ ψi,j ≤ ραu
i,j (for ψi,j = ρλαi,j = ρµi,j)

µi,j − αu
i,j (1− ρ) ≤ ψi,j ≤ µi,j

for all tasks ∀i, j ∈ T and for all reader tasks ∀m ∈ R

0 ≤ ςi,j,m ≤ αu
i,jxS(m),m (for ςi,j,m = λαi,jxS(m),m = µi,jxS(m),m)

µi,j − αu
i,j

(
1− xS(m),m

) ≤ ςi,j,m ≤ µi,j

for all tasks ∀i ∈ T and for all reader tasks ∀q ∈ R

αl
i,r(q)xS(q),q ≤ γi,q ≤ αu

i,r(q)xS(q),q (for γi,q = αi,r(q)xS(q),q)

αi,r(q) − αu
i,r(q)

(
1− xS(q),q

) ≤ γi,q ≤ αi,r(q) − αl
i,r(q)

(
1− xS(q),q

)
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for all tasks ∀i ∈ T and for all writer tasks ∀j ∈ W

αl
i,wjλj ≤ δi,j ≤ αu

i,wjλj (for δi,j = αi,wjλj)

αi,wj − αu
i,wj

(
1− λj

) ≤ δi,j ≤ αi,wj − αl
i,wj

(
1− λj

)

αl
i,wjρj ≤ εi,j ≤ αu

i,wjρj (for εi,j = αi,wjρj)

αi,wj − αu
i,wj

(
1− ρj

) ≤ εi,j ≤ αi,wj − αl
i,wj

(
1− ρj

)

for all writer tasks ∀i ∈ W and for all reader tasks ∀j ∈ R

NBFi ≥ (βj,w(i) − ηi,j)Li,j

0 ≤ βj,w(i) − lj
Tw(i)

< 1 (for βj,w(i) =
⌈

lj
Tw(i)

⌉
)

βl
j,w(i)xi,j ≤ ηi,j ≤ βu

j,w(i)xi,j (for ηi,j = βj,w(i)xi,j)

βj,w(i) − βu
j,w(i)(1− xi,j) ≤ ηi,j ≤ βj,w(i) − βl

j,w(i)(1− xi,j)

κi ≥ delay[j]xi,jLi,j

0 ≤ $i,j ≤ xi,j (for $i,j = λixi,j)

λi + xi,j − 1 ≤ $i,j ≤ λi

xi,j ≤ λi ≤
NR∑
m=1

xi,mLi,m

1− xi,j ≤ ρi ≤
NR∑
m=1

(1− xi,m)Li,m

0 ≤ λ ≤ 1 and 0 ≤ ρ ≤ 1

Because the above reformulation does not introduce relaxation or estimation, there

exists a one-to-one correspondence of the optimal solutions between the MILP problem and

the original optimization problem.
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6.4 Experiments

In this section, two case studies based on the formulated MILP are preformed.

For the first case study, hypothetical system configurations are randomly generated by

TGFF while the systems in the second case study are derived from an automotive industrial

application. The formulated MILP problems are solved by using the stand-alone LP/MIP

glpsol [38] solver or the ILOP CPLEX software package [53].

6.4.1 Case Study I

In this subsection, the results of the application of the discussed optimization

method are presented for randomly generated task graphs.

Task Graph Generation The test cases are generated by using the TGFF [33] tool.

Altogether, 809 system configurations are generated with an average number of 12 tasks

per system (a minimum of 8 and a maximum of 16). Each task implements a maximum

of 4 writer and 8 reader blocks and each communication link can have up to 2-unit delays.

Other task set attributes are randomly generated. The execution times of the tasks are

uniformly distributed in [3 × 104, 9 × 104] ICs (average of 6 × 104 ICs). Task periods are

uniformly distributed in [5.5× 105, 14.5× 105] ICs (average of 106 ICs). Task priorities are

statically assigned based on the rate monotonic policy. It is assumed that task deadlines

are equal to their respective periods. The system overheads and the execution times of the

communication protocols have been defined according to the ePICos18-based evaluation in

Section 6.2.
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Results and Discussion Among the randomly generated system configurations, 158 are

unschedulable under either the CTDBP or the TCCP. Among the remaining 651 schedulable

systems, 601 are schedulable under both the CTDBP and the TCCP and 50 are only

schedulable under the TCCP.

Among the 601 schedulable systems, 105 have a smaller buffer size under the CT-

DBP than under the TCCP. Figure 6.1 illustrates the relative buffer size improvement at the

end of the optimization process with respect to implementations consisting of the CTDBP

or the TCCP alone. The horizontal axis (X) represents the percentage of improvement ob-

tained after optimization and the corresponding vertical axis (Y) value denotes the fraction
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Figure 6.1: Systems with a Smaller Buffer Size under CTDBP
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of systems for which the improvement was obtained. For example, 0 on the X axis means

no improvement and the Y value of 4.8% means that for 4.8% of the systems the CTDBP

is the optimal choice. The best improvement with respect to the CTDBP is between 25%

and 30%. Improvements with respect to the TCCP are higher, up to more than 50%, albeit

in only 1% of the cases. An average improvement of 14% and 24.2% on the buffer size are

achieved with respect to the CTDBP-based and the TCCP-based buffer sizes, respectively.

On the other hand, 463 systems have a larger buffer size under the CTDBP than

under the TCCP and Figure 6.2 shows their relative improvements. For 66.1% of these sys-

tem configurations, the buffer sizes under the TCCP are optimal. An average improvement
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Figure 6.2: Systems with a Smaller Buffer Size under TCCP
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of 23.2% and 4.7% on buffer sizes are achieved with respect to the CTDBP-based and the

TCCP-based buffer sizes, respectively.

Other 33 systems have equal buffer sizes under the CTDBP and the TCCP. Fig-

ure 6.3 shows the optimization results. The buffer size is improved upon optimization for

93.9% of them. Experiments also demonstrate that an average relative buffer saving of

16.4% is achieved. Additionally, Figure 6.3 shows the optimization results for those 50 sys-

tems that are schedulable only under the TCCP. Experiments show that for 74% of them

the buffer sizes under the TCCP are optimal. On average, an improvement of 6.3% on

buffer size can be achieved.
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A comparison of the results in Figures 6.1, 6.2, and 6.3 shows that optimization

results in limited improvements when only the TCCP gives a feasible solution. In such

cases, even if there exist slow readers (leading to long lifetimes), it is impossible to use

the CTDBP, which is inherently good for slow readers since the TCCP has better time

performance than the CTDBP and the system is schedulable only under the TCCP.

6.4.2 Case Study II

Consider the automotive example shown in Table 4.3 in Section 4.3.3. The number

of buffers required by the different methods when the implementation overheads for the

communication procedures are included in the analysis are shown in Table 6.5.

The first two rows in Table 6.5 summarize the test cases and their utilizations. The

utilization is increased beyond that of Case 13. Of those 150 system configurations that are

tried beyond 92.4% (some with extremely small increases of the computation times), none

is schedulable under the policy with the lower overheads (i.e., the TCCP). It indicates that

the system is actually very close to its utilization bounds because of overheads as well as

the fixed priority scheduling policy.

1 Case 1 2 3 4 5 6 7 8 9 10 11 12 13

2 Utilization % 62.7 67.7 75.7 80.6 85.6 86.2 88.2 89.6 89.7 90.7 91.2 92.2 92.4

3 CTDBP 162 162 162 162 162 162 162 162 Non Non Non Non Non

4 TCCP 1089 1260 1410 1516 1750 1775 1799 1799 1799 1828 1828 1828 1828

5 MILP optimal 123 123 124 124 124 124 124 124 126 126 384 1828 1828

6 CTDBP 162 162 162 162 162 162 162 162 162 162 162 162 162

7 TCCP 1027 1182 1324 1410 1625 1648 1679 1679 1681 1712 1712 1712 1712

8 MILP optimal 123 123 124 124 124 124 124 124 126 126 126 126 126

Table 6.5: Experimental Results of Case Study II
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Rows from 3 to 5 show the results with all scheduling overheads. Rows 3 and 4

give the bounds based on the CTDBP and the TCCP alone, respectively. Row 3 shows

that the higher utilization configurations (starting from Case 9, at 89.7% utilization) are

unschedulable under the CTDBP, the policy with the larger overheads, or, in general under

any policy that does not leverage the tradeoffs between the two methods like the proposed

optimization approach in this dissertation. For those that are schedulable, the obtained

buffer bound is 162.

All 13 cases are schedulable under the TCCP, albeit with large buffer requirements,

from 1089 to 1828. The results of the MILP optimization are shown in Row 5. In most

cases the memory required is very close to the bound derived without considering the

implementation overheads in Table 4.4 in Section 4.3.3. With the increase in utilization,

the requirements also increase. Eventually, very sharply, and very close to the possible

system schedulability bound, the optimal bound becomes identical to the bound obtained

by using the TCCP alone. This shows how the method can actually leverage the tradeoffs

between time and memory and cover the implementation space obtainable with each of the

two methods alone.

Rows from 6 to 8 gives the buffer sizing results without considering the scheduling

overhead due to context switches. Row 6 shows all test cases are schedulable under the

CTDBP. This is because the consumed processor time due to context switches may be

used to schedule functionalities of systems with bigger utilizations. In addition, the buffer

bounds under the TCCP shown in Row 7 are smaller than the corresponding ones in Row

4, which further justifies that context switch overheads make data lifetime longer and thus
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lead to bigger buffer sizes. Row 8 shows the optimal buffer sizes without considering context

switch overheads. Due to the removal of the context switch overhead, the optimal bounds

for Cases 11, 12, and 13 are much smaller than their corresponding values in Row 5. This is

because more readers with long data lifetimes can be categorized as slow without violating

the timing constraints.
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Part III

Summary
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation explored the opportunity for the synthesis of the real-time op-

erating system layer in the implementation of embedded software models according to the

platform-based design methodology. As the stack view of platform-based design of real-time

operating systems shows, the methodology consists of the task/resource model platform,

the virtual RTOS platform, and the standard RTOS APIs. The dissertation focused on the

synthesis problem of inter-task communication protocols. The problem was studied from a

well defined set of functional models (synchronous reactive with zero-execution time seman-

tics) and the scope was restricted to a simple task/resource model platform defined on a

single processor execution architecture. With respect to the issues arising in the implemen-

tation of semantics-preserving inter-task communication, a survey on the state-of-the-art

protocols was conducted. Two buffer sizing mechanisms based on sequentially in-order and

out-of-order writes were investigated. The conditions under which the platform and the
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protocols provide a semantics-preserving implementation were defined.

Next, the dissertation generalized synchronous reactive communication to be capa-

ble of handling a general model, allowing for multiple active task instances at the same time

and communication links with arbitrary delays. The dissertation demonstrated how it is

possible to leverage task timing information to obtain a tight buffer bound in a synchronous

reactive semantics-preserving implementation of communication channels between a writer

and multiple reader tasks (sporadic or periodic) executing at different rates with unknown

activation phases in the generalized context. The bound subsumes and in general improves

on existing bounds.

Because synchronous reactive communication protocols define buffer indices for

writers and readers at task activation time, generally they require a kernel-level imple-

mentation. Efficient and portable OSEK implementations were presented for the Constant

Time Dynamic Buffering Protocol (CTDBP) and the Temporal Concurrency Control Pro-

tocol (TCCP) by providing detailed data structures and imperative code for the search

procedure used to find a safe slot for a writer. To meet the minimum requirements of the

BCC1 defined in OSEK for portability, only one alarm is used to periodically activate a task

dispatcher that in turn activates all other application tasks at their proper activation time.

Two different implementations for the task dispatcher were presented. One of them is based

on a static dispatch table pre-built at compile time while the other one uses a scheduler to

dynamically decide whether a task needs to be activated. There are two options to obtain

the atomicity of the termination code for lower priority readers to flag their completion

in case of the CTDBP. The first one uses the hook mechanism (PostTaskHook) while the
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second one lets the task dispatcher perform the atomic termination code for lower priority

readers. Comparison of the implementations showed that the TCCP implementation uses

fewer auxiliary data structures and the CTDBP has a higher implementation complexity due

to the management of the use free list to support a constant time search algorithm. Mem-

ory requirements were compared quantitatively for different implementations. Furthermore,

temporal characteristics of different implementations were measured under the PIC18F452

microcontroller and the OSEK-compliant ePICos18. Without the PostTaskHook, the over-

head of context switch is about 80.9µsec. Turning on the PostTaskHook routine increases

the context switch cost by 77 instruction cycles, which is 7.7µsec if the processor frequency

is 40MHz. This implies a 9.5% relative overhead increase. A performance analysis showed

that the TCCP is faster for assigning writing/reading indices than the CTDBP.

Automatic code generation was supported for two synchronous reactive communi-

cation protocols: the double buffer protocol and the constant time dynamic buffering proto-

col. The generated code, with the ePICos18, was validated by emulation on the PIC18F452

microcontroller through the MPLAB IDE simulator. Code validation results confirmed that

by splitting the protocol into parts executing at task activation time and task execution

time, respectively, the generated implementation code can always guarantee both time and

value determinism, regardless of whether the periods of the writer and readers are harmonic

(required by the Rate Transition Block in Simulink) or not. The emulation results were

also compared to the Real-Time Workshop simulation results and consistent behaviors were

obtained.

Memory is scant and expensive for embedded real-time systems and an imple-
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mentation with a minimum buffer size is often desirable. The TCCP is good to implement

communication between a writer and its fast readers while the CTDBP is good for communi-

cation implementation between a writer and its slow readers. But the CTDBP may require

longer access times and possibly lead to the violation of deadline constraints in real-time

applications. This dissertation demonstrated the feasibility of an MILP-based optimization

approach that provides the minimum memory implementation of a set of communication

channels within the deadline constraints of the tasks. The optimization process selectively

chooses either the TCCP or the CTDBP under timing constraints for each pair of writer

and reader. It was demonstrated that the optimal buffer size may be achieved under a

hybrid communication protocol and the optimal partition of the readers is given by the

values of the decision variables.

7.2 Future Work

The efficiency of generated code of the applications using the double buffer mech-

anism where the sampling rates of a writer and its reader are harmonic can be improved by

avoiding storing the data into the shared buffers. For these applications, the shared data

can be transferred directly from the writer to its reader. In addition, automatic code gen-

eration using the proposed model blocks needs to be applied to bigger synchronous reactive

model specifications.

The MILP-based optimization in this dissertation assumes that the static priorities

of tasks are known. It is better to let the optimization process assign priorities to optimize

buffer consumption as well as to achieve better schedulability. In this dissertation, the
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implementation of the dispatcher and a method of obtaining terminating atomicity for lower

priority readers are considered in the MILP formulation. It is interesting to investigate other

options.

This dissertation focused on applications in the hard real-time domain. It is of

interest to investigate how the techniques presented here may be applied to the application

domain of the soft real-time type. It is also interesting and practically useful to provide

a similar thorough study for implementation of synchronous reactive models on execution

platforms that are multiprocessor or distributed architectures.
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