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Abstract—Internet security does not only depend on the
security-related investments of individual users, but also on how
these users affect each other. In a non-cooperative environment,
each user chooses a level of investment to minimize his own
security risk plus the cost of investment. Not surprisingly, this
selfish behavior often results in undesirable security degradation
of the overall system. In this paper, (1) we first characterize the
price of anarchy (POA) of network security under two models:
an “Effective-investment” model, and a “Bad-traffic” model. We
give insight on how the POA depends on the network topology,
individual users’ cost functions, and their mutual influence. We
also introduce the concept of “weighted POA” to bound the
region of all feasible payoffs. (2) In a repeated game, on the
other hand, users have more incentive to cooperate for their
long term interests. We consider the socially best outcome that
can be supported by the repeated game, and give a ratio between
this outcome and the social optimum. (3) Next, we compare the
benefits of improving security technology or improving incentives,
and show that improving technology alone may not offset the
efficiency loss due to the lack of incentives. (4) Finally, we
characterize the performance of correlated equilibrium (CE)
in the security game. Although the paper focuses on Internet
security, many results are generally applicable to games with
positive externalities.

Index Terms—Internet security, game theory, price of anarchy,
repeated game, correlated equilibrium, positive externality

I. INTRODUCTION

Security in a communication network depends not only on
the security investment made by individual users, but also on
the interdependency among them. If a careless user puts in
little effort in protecting his computer system, then it is easy
for viruses to infect this computer and through it continue
to infect others’. On the contrary, if a user invests more to
protect himself, then other users will also benefit since the
chance of contagious infection is reduced. Define each user’s
“strategy” as his investment level, then each user’s investment
has a “positive externality” on other users.

Users in the Internet are heterogeneous. They have different
valuations of security and different unit cost of investment.
For example, government and commercial websites usually
prioritize their security, since security breaches would lead to
large financial losses or other consequences. They are also
more willing and efficient in implementing security measures.
On the other hand, an ordinary computer user may care less
about security, and also may be less efficient in improving it
due to the lack of awareness and expertise. There are many
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other users lying between these two categories. If users are
selfish, some of them may choose to invest more, whereas
others may choose to “free ride”, that is, given that the security
level is already “good” thanks to the investment of others, such
users make no investment to save cost. However, if every user
tends to rely on others, the resulting outcome may be far worse
for all users. This is the free riding problem in game theory
as studied in, for example, [1].

Besides user preferences, the network topology, which de-
scribes the (logical) interdependent relationship among dif-
ferent users, is also important. For example, assume that in
a local network, user A directly connected to the Internet.
All other users are connected to A and exchange a large
amount of traffic with A. Intuitively, the security level of A
is particularly important for the local network since A has the
largest influence on other users. If A has a low valuation of his
own security, then it will invest little and the whole network
suffers. How the network topology affects the efficiency of
selfish investment in network security will be one of our
focuses.

In this paper, we study how network topology, users’
preference and their mutual influence affect network security
in a non-cooperative setting. In a one-shot game (i.e., strategic-
form game), we derive the “Price of Anarchy” (POA) [2]
as a function of the above factors. Here, POA is defined
as the worst-case ratio between the “social cost” at a Nash
Equilibrium (NE) and Social Optimum (SO). Furthermore, we
introduce the concept of “Weighted-POA” to bound the regions
of all possible vectors of payoffs. In a repeated game, users
have more incentive to cooperate for their long-term interest.
We study the “socially best” equilibrium in the repeated game,
and compare it to the Social Optimum.

Next, we compare the benefits of improving security tech-
nology or improving incentives, and show that improving
technology alone may not offset the efficiency loss due to
the lack of incentives. Finally, we consider the performance
of correlated equilibrium (CE) (a more general notion than
NE) in the security game and characterize the best and worst
CE’s. Interestingly, some performance bounds of CE coincide
with the POA of NE.

A. Related Works

Varian studied the network security problem using game
theory in [1]. There, the effort of each user (or player) is
assumed to be equally important to all other users, and the
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network topology is not taken into account. Also, [1] is not
focused on the efficiency analysis (i.e., POA).

“Price of Anarchy” (POA) [2], measuring the performance
of the worst-case equilibrium compared to the Social Opti-
mum, has been studied in various games in recent years, most
of them with “negative externality”. Roughgarden et al. shows
that the POA is generally unbounded in the “selfish routing
game” [3], [4], where each user chooses some link(s) to send
his traffic in order to minimize his congestion delay. Ozdaglar
et al. derived the POA in a “price competition game” in [5] and
[6], where a number of network service providers choose their
prices to attract users and maximize their own revenues. In [7],
Johari et al. studied the “resource allocation game”, where
each user bids for the resource to maximize his payoff, and
showed that the POA is 3/4 assuming concave utility functions.
In all the above games, there is “negative externality” among
the players: for example in the “selfish routing game”, if a
user sends his traffic through a link, other users sharing that
link will suffer larger delays.

On the contrary, in the network security game we study
here, if a user increases his investment, the security level of
other users will improve. In this sense, it falls into the category
of games with positive externalities. Therefore, many results
in this paper may be applicable to other similar scenarios. For
example, assume that a number of service providers (SP) build
networks which are interconnected. If a SP invests to upgrade
her own network, the performance of the whole network
improves and may bring more revenue to all SP’s.

In [8], Aspnes et al. formulated an “inoculation game” and
studied its POA. There, each player in the network decides
whether to install anti-virus software to avoid infection. Dif-
ferent from our work, [8] has assumed binary decisions and
the same cost function for all players.

II. PRICE OF ANARCHY (POA) IN THE

STRATEGIC-FORM GAME

Assume there are n “players”. The security investment
(or “effort”, we use them interchangeably) of player i is
xi ≥ 0. This includes both money (e.g., for purchasing anti-
virus software) and time/energy (e.g., for system scanning,
patching). So this is not a “one-time” investment. The cost
per unit of investment is ci > 0. Denote fi(x) as player
i’s “security risk”: the loss due to attacks or virus infections
from the network, where x is the vector of investments by all
players. fi(x) is decreasing in each xj (thus reflecting positive
externality) and non-negative. We assume that it is convex and
differentiable, and that fi(x = 0) > 0 is finite. Then the “cost
function” of player i is

gi(x) := fi(x) + cixi (1)

Note that the function fi(·) is generally different for different
players.

In a Nash game, player i chooses his investment xi ≥ 0 to
minimize gi(x). First, we prove in Appendix A1 that

Proposition 1: There exists some pure-strategy Nash Equi-
librium (NE) in this game.
In the paper we consider pure-strategy NE. Denote x̄ as the
vector of investments at some NE, and x∗ as the vector of

investments at Social Optimum (SO). Also denote the unit
cost vector c = (c1, c2, . . . , cn)T .

We aim to find the POA, Q, which upper-bounds ρ(x̄),
where

ρ(x̄) :=
G(x̄)

G∗
=

∑

i gi(x̄)
∑

i gi(x∗)

is the ratio between the social cost at the NE x̄ and at the
social optimum. For convenience, sometimes we simply write
ρ(x̄) as ρ if there is no confusion.

Before getting to the derivation, we illustrate the POA in
a simple example. Assume there are 2 players, with their
investments denoted as x1 ≥ 0 and x2 ≥ 0. The cost
function is gi(x) = f(y) + xi, i = 1, 2, where f(y) is the
security risk of both players, and y = x1 + x2 is the total
investment. Assume that f(y) is non-negative, decreasing,
convex, and satisfies f(y) → 0 when y → ∞. The social
cost is G(x) = g1(x) + g2(x) = 2 · f(y) + y.
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Fig. 1. POA in a simple example

At a NE x̄, ∂gi(x̄)
∂xi

= f ′(x̄1 + x̄2) + 1 = 0, i = 1, 2. Denote
ȳ = x̄1 + x̄2, then −f ′(ȳ) = 1. This is shown in Fig 1. Then,
the social cost Ḡ = 2 · f(ȳ) + ȳ. Note that

∫ ∞

ȳ
(−f ′(z))dz =

f(ȳ) − f(∞) = f(ȳ) (since f(y) → 0 as y → ∞), therefore
in Fig 1, 2 · f(ȳ) is the area B + C + D, and Ḡ is equal to
the area of A + (B + C + D).

At SO (Social Optimum), on the other hand, the total invest-
ment y∗ satisfies −2f ′(y∗) = 1. Using a similar argument as
before, G∗ = 2f(y∗)+y∗ is equal to the area of (A+B)+D.

Then, the ratio Ḡ/G∗ = [A+(B+C+D)]/[(A+B)+D] ≤
(B + C)/B ≤ 2. We will show later that this upper bound is
tight. So the POA is 2.

Now we analyze the POA with the general cost function (1).
In some sense, it is a generalization of the above example.

Lemma 1: For any NE x̄, ρ(x̄) satisfies

ρ(x̄) ≤ max{1,max
k

{(−
∑

i

∂fi(x̄)

∂xk

)/ck}} (2)

Note that (−
∑

i
∂fi(x̄)
∂xk

) is the marginal “benefit” to the
security of all users by increasing xk at the NE; whereas ck

is the marginal cost of increasing xk. The second term in the
RHS (right-hand-side) of (2) is the maximal ratio between
these two.
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Proof: At NE,
{

∂fi(x̄)
∂xi

= −ci if x̄i > 0
∂fi(x̄)

∂xi
≥ −ci if x̄i = 0

(3)

By definition,

ρ(x̄) =
G(x̄)

G∗
=

∑

i fi(x̄) + cT x̄
∑

i fi(x∗) + cT x∗

Since fi(·) is convex for all i. Then fi(x̄) ≤ fi(x
∗)+ (x̄−

x∗)T∇fi(x̄). So

ρ ≤
(x̄ − x∗)T

∑

i ∇fi(x̄) + cT x̄ +
∑

i fi(x
∗)

∑

i fi(x∗) + cT x∗

=
−x∗T

∑

i ∇fi(x̄) + x̄T [c +
∑

i ∇fi(x̄)] +
∑

i fi(x
∗)

∑

i fi(x∗) + cT x∗

Note that

x̄T [c +
∑

i ∇fi(x̄)] =
∑

i x̄i[ci +
∑

k
∂fk(x̄)

∂xi
]

There are two possibilities for every player i: (a) If x̄i = 0,
then x̄i[ci +

∑

k
∂fk(x̄)

∂xi
] = 0. (b) If x̄i > 0, then ∂fi(x̄)

∂xi
=

−ci. Since ∂fk(x̄)
∂xi

≤ 0 for all k, then
∑

k
∂fk(x̄)

∂xi
≤ −ci, so

x̄i[ci +
∑

k
∂fk(x̄)

∂xi
] ≤ 0.

As a result,

ρ(x̄) ≤
−x∗T

∑

i ∇fi(x̄) +
∑

i fi(x
∗)

∑

i fi(x∗) + cT x∗
(4)

(i) If x∗
i = 0 for all i, then the RHS is 1, so ρ(x̄) ≤ 1.

Since ρ cannot be smaller than 1, we have ρ = 1.
(ii) If not all x∗

i = 0, then cT x∗ > 0. Note that the RHS
of (4) is not less than 1, by the definition of ρ(x̄). So, if we
subtract

∑

i fi(x
∗) (non-negative) from both the numerator

and the denominator, the resulting ratio upper-bounds the
RHS. That is,

ρ(x̄) ≤
−x∗T

∑

i ∇fi(x̄)

cT x∗
≤ max

k
{(−

∑

i

∂fi(x̄)

∂xk

)/ck}

where
∑

i
∂fi(x̄)
∂xk

is the k’th element of the vector
∑

i ∇fi(x̄).
Combining case (i) and (ii), the proof is completed.

In the following, we give two models of the network security
game. Each model defines a concrete form of fi(·). They are
formulated to capture the key parameters of the system while
being amenable to mathematical analysis.

A. Effective-investment (“EI”) model

Generalizing [1], we consider an “Effective-investment”
(EI) model. In this model, the security risk of player i depends
on an “effective investment”, which we assume is a linear
combination of the investments of himself and other players.

Specifically, let pi(
∑n

j=1 αjizj) be the probability that
player i is infected by a virus (or suffers an attack), given the
amount of efforts every player puts in. The effort of player j,
zj , is weighted by αji, reflecting the “importance” of player
j to player i. Let vi be the cost of player i if he suffers an
attack; and ci be the cost per unit of effort by player i. Then,
the total cost of player i is gi(z) = vipi(

∑n
j=1 αjizj) + cizi.

For convenience, we “normalize” the expression in the
following way. Let the normalized effort be xi := cizi,∀i.
Then

gi(x) = vipi(
∑n

j=1
αji

cj
xj) + xi

= vipi(
αii

ci

∑n
j=1 βjixj) + xi

where βji := ci

αii

αji

cj
(so βii = 1). We call βji the “relative

importance” of player j to player i.
Define the function Vi(y) = vi · pi(

αii

ci
y), where y is a

dummy variable. Then gi(x) = fi(x) + xi, where

fi(x) = Vi(
∑n

j=1 βjixj) (5)

Note that Vi(·) is still decreasing, non-negative and convex.
Proposition 2: In the EI model defined above,

ρ ≤ maxk{1 +
∑

i:i6=k βki}. Furthermore, the bound is tight.
Proof: Let x̄ be some NE. Denote h :=

∑

i ∇fi(x̄). Then
the kth element of h

hk =
∑

i

∂Vi(
Pn

j=1
βjix̄j)

∂xk

=
∑

i βki · V
′
i (

∑n
j=1 βjix̄j)

From (3), we have
∂Vi(
Pn

j=1
βjix̄j)

∂xi
= βii ·

V ′
i (

∑n
j=1 βjix̄j) = V ′

i (
∑n

j=1 βjix̄j) ≥ −1. So
hk ≥ −

∑

i βki. Plug this into (2), we obtain an upper
bound of ρ:

ρ ≤ max{1,max
k

{−hk}} ≤ Q := max
k

{1 +
∑

i:i6=k

βki} (6)

which completes the proof.
(6) gives some interesting insight into the game. Since βki

is player k’s “relative importance” to player i, then 1 +
∑

i:i6=k βki =
∑

i βki is player k’s relative importance to
the society. (6) shows that the POA is bounded by the
maximal social “importance” among the players. Interestingly,
the bound does not depend on the specific form of Vi(·) as
long as it’s convex, decreasing and non-negative.

It also provides a simple way to compute POA under the
model. We define a “dependency graph” as in Fig. 2, where
each vertex stands for a player, and there is a directed edge
from k to i if βki > 0. In Fig. 2, player 3 has the highest social
importance, and ρ ≤ 1 + (0.6 + 0.8 + 0.8) = 3.2. In another
special case, if for each pair (k, i), either βki = 1 or βki = 0,
then the POA is bounded by the maximum out-degree of the
graph plus 1. If all players are equally important to each other,
i.e., βki = 1,∀k, i, then ρ ≤ n (i.e., POA is the number of
players). This also explains why the POA is 2 in the example
considered in Fig 1.

The following is a worst case scenario that shows the bound
is tight. Assume there are n players, n ≥ 2. βki = 1,∀k, i;
and for all i, Vi(yi) = [(1 − ǫ)(1 − yi)]+, where [·]+ means
positive part, yi =

∑n
j=1 βjixj =

∑n
j=1 xj , ǫ > 0 but is very

small.1

Given x−i = 0, gi(x) = [(1−ǫ)(1−xi)]+ +xi = (1−ǫ)+
ǫ · xi when xi ≤ 1, so the best response for player i is to let
xi = 0. Therefore, x̄i = 0,∀i is a NE, and the resulting social

1Although Vi(yi) is not differentiable at yi = 1, it can be approximated by
a differentiable function arbitrarily closely, such as the result of the example
is not affected.
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Fig. 2. Dependency Graph and the Price of Anarchy (In this figure, ρ ≤
1 + (0.6 + 0.8 + 0.8) = 3.2)

cost G(x̄) =
∑

i[Vi(0) + x̄i] = (1 − ǫ)n. Since the social
cost is G(x) = n · [(1 − ǫ)(1 −

∑

i xi)]+ +
∑

i xi, the social
optimum is attained when

∑

i x∗
i = 1 (since n(1 − ǫ) > 1).

Then, G(x∗) = 1. Therefore ρ = (1 − ǫ)n → n when ǫ → 0.
When ǫ = 0, x̄i = 0,∀i is still a NE. In that case ρ = n.

B. Bad-traffic (“BT”) Model

Next, we consider a model which is based on the amount of
“bad traffic” (e.g., traffic that causes virus infection) from one
player to another. Let rki be the total rate of traffic from k to
i. How much traffic in rki will do harm to player i depends
on the investments of both k and i. So denote φk,i(xk, xi) as
the probability that player k’s traffic does harm to player i.
Clearly φk,i(·, ·) is a decreasing function. We also assume it
is convex. Then, the rate at which player i is infected by the
traffic from player k is rkiφk,i(xk, xi). Let vi be player i’s loss
when it’s infected by a virus, then gi(x) = fi(x) + xi, where
the investment xi has been normalized such that its coefficient
(the unit cost) is 1, and

fi(x) = vi

∑

k 6=i

rkiφk,i(xk, xi)

If the “firewall” of each player is symmetric (i.e., it treats
the incoming and outgoing traffic in the same way), then it’s
reasonable to assume that φk,i(xk, xi) = φi,k(xi, xk).

Proposition 3: In the BT model, ρ ≤ 1+max(i,j):i6=j
virji

vjrij
.

The bound is also tight.
Proof: Let h :=

∑

i ∇fi(x̄) for some NE x̄. Then the
j-th element

hj =
∑

i

∂fi(x̄)

∂xj

=
∑

i6=j

∂fi(x̄)

∂xj

+
∂fj(x̄)

∂xj

=
∑

i6=j

virji

∂φj,i(x̄j , x̄i)

∂xj

+ vj

∑

i6=j

rij

∂φi,j(x̄i, x̄j)

∂xj

We have

qj :=

∑

i6=j
∂fi(x̄)

∂xj

∂fj(x̄)
∂xj

=

∑

i6=j virji
∂φj,i(x̄j ,x̄i)

∂xj

vj

∑

i6=j rij
∂φi,j(x̄i,x̄j)

∂xj

=

∑

i6=j virji
∂φj,i(x̄j ,x̄i)

∂xj

∑

i6=j vjrij
∂φj,i(x̄j ,x̄i)

∂xj

≤ max
i:i6=j

virji

vjrij

where the 3rd equality holds because φi,j(xi, xj) =
φj,i(xj , xi) by assumption.

From (3), we know that ∂fj(x̄)
∂xj

≥ −1. So

hj = (1 + qj)
∂fj(x̄)

∂xj

≥ −(1 + max
i:i6=j

virji

vjrij

)

According to (2), it follows that

ρ ≤ max{1,max
j

{−hj}} ≤ Q := 1 + max
(i,j):i6=j

virji

vjrij

(7)

which completes the proof.
Note that virji is the damage to player i caused by player j
if player i is infected by all the traffic sent by j, and vjrij

is the damage to player j caused by player i if player j is
infected by all the traffic sent by i. Therefore, (7) means that
the POA is upper-bounded by the “maximum imbalance” of
the network. As a special case, if each pair of the network is
“balanced”, i.e., virji = vjrij ,∀i, j, then ρ ≤ 2!

To show the bound is tight, we can use a similar example
as in section II-A. Let there be two players, and assume
v1r21 = v1r12 = 1; φ1,2(x1, x2) = (1−ǫ)(1−x1−x2)+. Then
it becomes the same as the previous example when n = 2.
Therefore ρ → 2 as ǫ → 0. And ρ = 2 when ǫ = 0.

Note that when the network becomes larger, the imbalance
between a certain pair of players becomes less important.
Thus ρ may be much less than the worst case bound in large
networks due to the averaging effect.

III. BOUNDING THE PAYOFF REGIONS

USING “WEIGHTED POA”

So far, the research on POA in various games has largely
focused on the worst-case ratio between the social cost (or
welfare) achieved at the Nash Equilibria and Social Optimum.
Given one of them, the range of the other is bounded. However,
this is only one-dimensional information. In any multi-player
game, the players’ payoffs form a vector which is multi-
dimensional. If an observer observes a NE payoff vector, it
would be interesting to characterize or bound the region of all
feasible vectors of individual payoffs, sometimes even without
knowing the exact cost functions. This region gives much
more information than solely the social optimum, because
it characterizes the tradeoff of efficiency and fairness among
different players. Conversely, given any feasible payoff vector,
it is also interesting to bound the region of the possible payoff
vectors at all Nash Equilibria.

We show that this can be done by generalizing POA to the
concept of “Weighted POA”, Qw, which is an upper bound of
ρw(x̄), where

ρw(x̄) :=
Gw(x̄)

G∗
w

=

∑

i wi · gi(x̄)
∑

i wi · gi(x∗
w

)

Here, w ∈ Rn
++ is a weight vector, x̄ is the vector of invest-

ments at a NE of the original game; whereas x∗
w

minimizes a
weighted social cost Gw(x) :=

∑

i wi · gi(x).
To obtain Qw, consider a modified game where the cost

function of player i is

ĝi(x) := f̂i(x) + ĉixi = wi · gi(x) = wifi(x) + wi · cixi



5

Note that in this game, the NE strategies are the same as
the original game: given any x−i, player i’s best response
remains the same (since his cost function is only multiplied
by a constant). So the two games are strategically equivalent,
and thus have the same NE’s. As a result, the weighted POA
Qw of the original game is exactly the POA in the modified
game (Note the definition of x∗

w
). Applying (2) to the modified

game, we have

ρw(x̄) ≤ max{1,max
k

{(−
∑

i

∂f̂i(x̄)

∂xk

)/ĉk}}

= max{1,max
k

{(−
∑

i

wi∂fi(x̄)

∂xk

)/(wkck)}}(8)

Then, one can easily obtain the weighted POA for the two
models in the last section.

Proposition 4: In the EI model,

ρw ≤ Qw := max
k

{1 +

∑

i:i6=k wiβki

wk

} (9)

In the BT model,

ρw ≤ Qw := 1 + max
(i,j):i6=j

wivirji

wjvjrij

(10)

Since ρw(x̄) = Gw(x̄)
G∗

w

=
P

i wi·gi(x̄)P
i wi·gi(x∗

w
) ≤ Qw, we have

∑

i wi·gi(x
∗
w

) ≥
∑

i wi·gi(x̄)/Qw. Notice that x∗
w

minimizes
Gw(x) =

∑

i wi · gi(x), so for any feasible x,
∑

i

wi · gi(x) ≥
∑

i

wi · gi(x
∗
w

) ≥
∑

i

wi · gi(x̄)/Qw

Then we have
Proposition 5: Given any NE payoff vector ḡ, then any

feasible payoff vector g must be within the region

B := {g|wT g ≥ wT ḡ/Qw,∀w ∈ Rn
++}

Conversely, given any feasible payoff vector g, any possible
NE payoff vector ḡ is in the region

B̄ := {ḡ|wT ḡ ≤ wT g · Qw,∀w ∈ Rn
++}

In other words, the Pareto frontier of B lower-bounds the
Pareto frontier of the feasible region of g. (A similar statement
can be said for B̄.) As an illustrating example, consider the EI
model, where the cost function of player i is in the form of
gi(x) = Vi(

∑n
j=1 βjixj)+xi. Assume there are two players in

the game, and β11 = β22 = 1, β12 = β21 = 0.2. Also assume
that gi(x) = (1−

∑2
j=1 βjixi)++xi, for i = 1, 2. It is easy to

verify that x̄i = 0, i = 1, 2 is a NE, and g1(x̄) = g2(x̄) = 1.
One can further find that the boundary (Pareto frontier) of
the feasible payoff region in this example is composed of the
two axes and the following line segments (the computation is
omitted):

{

g2 = −5 · (g1 −
1

1.2 ) + 1
1.2 g1 ∈ [0, 5

6 ]

g2 = −0.2 · (g1 −
1

1.2 ) + 1
1.2 g1 ∈ [0, 5]

which is the dashed line in Fig. 3.
By Proposition 5, for every weight vector w, there is a

straight line that lower-bounds the feasible payoff region. After
plotting the lower bounds for many different w’s, we obtain a

bound for the feasible payoff region (Fig 3). Note that the
bound only depends on the coefficients βji’s, but not the
specific form of V1(·) and V2(·). We see that the feasible region
is indeed within the bound.
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Fig. 3. Bounding the feasible region using weighted POA

IV. REPEATED GAME

The Folk Theorem [9] provides a Subgame Perfect Equilib-
rium (SPE) in a repeated game with discounted costs when
the discount factor sufficiently close to 1, to support any
cost vector that is Pareto-dominated by the “reservation cost”
vector g. The ith element of g, gi, is defined as

gi := min
xi≥0

gi(x) given that xj = 0,∀j 6= i

and we denote xi as a minimizer. gi = gi(xi = xi,x−i = 0)
is the minimal cost achievable by player i when other players
are punishing him by making minimal investments 0.

Without loss of generality, we assume that gi(x) = fi(x)+
xi, instead of gi(x) = fi(x)+cixi in (1). This can be done by
normalizing the investment and re-defining the function fi(x).

For simplicity, we make some additional assumptions in this
section:

1) fi(x) (and gi(x)) is strictly convex in xi if x−i = 0.
So xi is unique.

2) ∂gi(0)
∂xi

< 0 for all i. So, xi > 0.
3) For each player, fi(x) is strictly decreasing with xj for

some j 6= i. That is, positive externality exists.

By assumption 2 and 3, we have gi(x) < gi(xi = xi,x−i =
0) = gi,∀i. Therefore g(x) < g is feasible.

A Performance Bound of the best SPE

According to the Folk Theorem [9], any feasible vector g <
g can be supported by a SPE. So the set of SPE is quite large
in general. By negotiating with each other, the players can
agree on some SPE. In this section, we are interested in the
performance of the “socially best SPE” that can be supported,
that is, the SPE with the minimum social cost (denoted as
GE). Such a SPE is “optimal” for the society, provided that
it is also rational for individual players. We will compare it
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to the social optimum by considering the “performance ratio”
γ = GE/G∗, where G∗ is the optimal social cost, and

GE = infx≥0

∑

i gi(x)
s.t. gi(x) < gi,∀i

(11)

Since gi(·) is convex by assumption, due to continuity,

GE = minx≥0

∑

i gi(x)
s.t. gi(x) ≤ gi,∀i

(12)

where gi(x) ≤ gi is the rationality constraint for each player
i. Denote by xE a solution of (12). Then

∑

i gi(xE) = GE .
Recall that gi(x) = fi(x) + xi, where the investment xi

has been normalized such that its coefficient (unit cost) is 1.
Then, to solve (12), we form a partial Lagrangian

L(x, λ′) :=
∑

k gk(x) +
∑

k λ′
k[gk(x) − gk]

=
∑

k(1 + λ′
k)gk(x) −

∑

k λ′
kgk

and pose the problem maxλ′≥0 minx≥0 L(x, λ′).
Let λ be the vector of dual variables when the problem is

solved (i.e., when the optimal solution xE is reached). Then
differentiating L(x, λ′) in terms of xi, we have the optimality
condition

{

∑

k(1 + λk)[−∂fk(xE)
∂xi

] = 1 + λi if xE,i > 0
∑

k(1 + λk)[−∂fk(xE)
∂xi

] ≤ 1 + λi if xE,i = 0
(13)

Proposition 6: The performance ratio γ is upper-bounded
by γ = GE/G∗ ≤ maxk{1 + λk}.
The result can be understood as follows: if λk = 0 for all k,
then all the incentive-compatibility constraints are not active
at the optimal point of (12). So, individual rationality is not a
constraining factor for achieving the social optimum. In this
case, γ = 1, meaning that the best SPE achieves the social
optimal. But if λk > 0 for some k, the individual rationality
of player k prevent the system from achieving social optimum.
Larger λk leads to a poorer performance bound on the best
SPE relative to SO.

Proof: Consider the following convex optimization prob-
lem parametrized by t = (t1, t2, . . . , tn), with optimal value
V (t):

V (t) = minx≥0

∑

i gi(x)
s.t. gi(x) ≤ ti,∀i

(14)

When t = g, it is the same as problem (12) that gives
the social cost of the best SPE; when t = g∗, it gives the
same solution as the Social Optimum. According to the theory
of convex optimization ([15], page 250), the “value function”
V (t) is convex in t. Therefore,

V (g) − V (g∗) ≤ ∇V (g)(g − g∗)

Also, ∇V (g) = −λ, where λ is the vector of dual variables
when the problem with t = g is solved. So,

GE = V (g)
≤ V (g∗) + λT (g∗ − g)
= G∗ + λT (g∗ − g)
≤ G∗ + λT g∗

Then

γ =
GE

G∗
≤ 1 +

λT g∗

1T g∗
≤ max

k
{1 + λk}

which completes the proof.
Proposition 6 gives an upper bound on γ assuming the

general cost function gi(x) = fi(x) + xi. Although it is
applicable to the two specific models introduced before, it
is not explicitly related to the network parameters. In the
following, we give an explicit bound for the EI model.

Proposition 7: In the EI model where
gi(x) = Vi(

∑n
j=1 βjixj) + xi, γ is bounded by

γ ≤ min{max
i,j,k

βik

βjk

, Q}

where Q = maxk{1 +
∑

i:i6=k βki}.
The part γ ≤ Q is straightforward: since the set of SPE
includes all NE’s, the best SPE must be better than the worst
NE. The other part is derived from Proposition 6 (its proof is
included in Appendix A2).

Note that the inequality γ ≤ maxi,j,k
βik

βjk
may not give a

tight bound, especially when βjk is very small for some j, k.
But in the following simple example, it is tight and shows
that the best SPE achieves the social optimum. Assume n
players, and βij = 1,∀i, j. Then, the POA of the one-shot
game is ρ ≤ Q = n according to (6). In the repeated game,
however, the performance ratio γ ≤ maxi,j,m

βim

βjm
= 1 (i.e.,

social optimum is achieved). This illustrates the performance
gain resulting from the repeated game.

V. IMPROVEMENT OF TECHNOLOGY

Recall that the general cost function of player i is

gi(x) = fi(x) + xi. (15)

.
Now assume that the security technology has improved. We

would like to study how effective is technology improvement
compared to the improvement of incentives. Assume that the
new cost function of player i is

g̃i(x) = fi(a · x) + xi, a > 1. (16)

This means that the effectiveness of the investment vector
x has improved by a times (i.e., the risk decreases faster with
x than before). Equivalently, if we define x′ = a ·x, then (16)
is g̃i(x) = fi(x

′)+x′
i/a, which means a decrease of unit cost

if we regard x′ as the investment.
Proposition 8: Denote by G∗ the optimal social cost with

cost functions (15), and by G̃∗ the optimal social cost with
cost functions (16). Then, G∗ ≥ G̃∗ ≥ G∗/a. That is, the
optimal social cost decreases but cannot decrease more than
a times.

Proof: First, for all x, g̃i(x) ≤ gi(x). Therefore G̃∗ ≤
G∗.

Let the optimal investment vector for the improved cost
functions be x̃∗. Then, gi(a · x̃∗) = fi(a · x̃∗) + a · x̃∗

i . Also,
g̃i(x̃

∗) = fi(a·x̃
∗)+x̃∗

i . Then, a·g̃i(x̃
∗) = a·fi(a·x̃

∗)+a·x̃∗
i ≥

gi(a · x̃∗), because fi(·) is non-negative and a > 1.
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Therefore, we have a ·
∑

i g̃i(x̃
∗) = a · G̃∗ ≥ G(a · x̃∗) ≥

G(x∗) = G∗, where x∗ minimizes G(x) =
∑

i gi(x). This
completes the proof.
Here we have seen that the optimal social cost (after technol-
ogy improved a times) is at least a fraction of 1/a of the social
optimum before. On the other hand, we have the following
about the POA after technology improvement.

Proposition 9: The POA of the network security game with
improved technology does not change in the EI model and the
BT model.

Proof: The POA in the EI model only depends on the
values of βji’s, which does not change witht the new cost
functions. To see this, note that

g̃i(x) = fi(a · x) + xi

= Vi(a ·
∑

j

βjixj) + xi.

Define the function Ṽi(y) = Vi(a · y),∀i, where y is a
dummy variable, then g̃i(x) = Ṽi(

∑

j βjixj)+xi, where Ṽi(·)
is still convex, decreasing and non-negative. So the βji values
do not change. By Proposition 2, the POA remains the same.

In the BT model, define φ̃k,i(xk, xi) := φk,i(a · xk, a · xi),
we still have φ̃k,i(xk, xi) = φ̃i,k(xi, xk). So by Proposition 3,
the POA has the same expression as before.
To compare the effect of incentive improvement and tech-
nology improvement, consider the following two options to
improve the network security.

1) With the current technology, deploy proper incentivizing
mechanisms (e.g., reward and punishment) to achieve
the social optimum.

2) All players upgrade to the new technology, without
solving the incentive problem.

With option 1, the resulting social cost is G∗. With option
2, the social cost is G̃(x̃NE), where G̃(·) =

∑

i g̃i(·) is the
social cost function after technology improvement, with g̃i(·)
defined in (16), and x̃NE is a NE in the new game. Define
ρ(x̃NE) := G̃(x̃NE)/G̃∗, then the ratio between the social
costs with option 2 and option 1 is

G̃(x̃NE)/G∗ = ρ(x̃NE) · G̃∗/G∗ ≥ ρ(x̃NE)/a

where the last step follows from Proposition 8. Also, by
Proposition 9, in the EI or BT model, ρ(x̃NE) is equal to the
POA shown in Prop. 2 and 3 in the worst case. For example,
assume the EI model with βij = 1,∀i, j. Then in the worst
case, ρ(x̃NE) = n. When the number of players n is large,
G̃(x̃NE)/G∗ may be much larger than 1.

From this discussion, we see that the technology im-
provement may not offset the negative effect of the lack of
incentives, and solving the incentive problem may be more
important than merely counting on new technologies.

VI. CORRELATED EQUILIBRIUM (CE)

Correlated equilibrium (CE) [10] is a more general notion
of equilibrium which includes the set of NE. In this section
we consider the performance bounds of CE.

Conceptually, one may think of a CE as being imple-
mented with the help of a mediator [11]. First the mediator

selects a recommended strategy profile x with probability
µ(x). Then the mediator confidentially tells each player i the
component xi of this strategy profile that is recommended
for him. Each player i is free to choose whether to obey
the mediator’s recommendations. µ(x) is a CE iff it would
be a Nash equilibrium for all players to obey the mediator’s
recommendations. Note that given a recommended xi, player
i only knows µ(x−i|xi) (i.e., a partial knowledge of other
players’ recommended strategies). Then in a CE, xi should be
a best response to the randomized stratgies of other players
with distribution µ(x−i|xi). CE can also be implemented with
a pre-play meeting of the players [9], where they decide the
CE they will play. Later they use a device which generates a
signal with the distribution µ, and separately gives each player
their partial information.

Interestingly, CE can also arise from simple and natural
dynamics (without coordination via a mediator or a pre-play
meeting). References [12] and [13] showed that in an infinite
repeated game, if each player observes the history of other
players’ actions, and decides his action in each period based on
a “regret-minimizing” criterion, then the empirical frequency
of the players’ actions converge to some CE. Note that in these
dynamics, each player does not need to know other players’
cost functions, but only their actions in the past. (Specifically
in the network security game, observing the actions of his
neighbors is sufficient.) This is very natural since in practice,
different players tend to adjust their investments based on their
observation of others’ investments.

For simplicity, in this paper we focus on CE whose support
is on a discrete set of strategy profiles. We call such a CE
a discrete CE. More formally, µ is a discrete CE iff (1) it
is a CE; and (2) the probability µ(x) > 0 only for x ∈ Sµ,
where Sµ, the support of the distribution µ, is a discrete set of
strategy profiles. That is, Sµ = {xi ∈ Rn

+, i = 1, 2, . . . ,Mµ},
where xi denotes a strategy profile, Mµ < ∞ is the cardinality
of Sµ and

∑

x∈Sµ
µ(x) = 1. (But each player can still choose

his investment from R+.) Discrete CE exist in the security
game since pure-strategy NE exists (Proposition 1), and a pure-
strategy NE is clearly a discrete CE. Appendix A3 gives an
example of discrete CE which is not a pure-strategy NE.

We first write down the conditions for a discrete CE with the
general cost function gi(x) = fi(x) + xi,∀i. If µ(x) is a dis-
crete CE, then for any xi with a positive marginal probability,
xi is a best response to the conditional distribution µ(x−i|xi),
i.e., xi ∈ arg minx′

i
∈R+

∑

x−i
[fi(x

′
i,x−i) + x′

i]µ(x−i|xi).
(Recall that player i can choose his investment from R+.)
Since the objective function in the right-hand-side is convex
and differentiable in x′

i, the first-order condition is
{

∑

x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) + 1 = 0 if xi > 0
∑

x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) + 1 ≥ 0 if xi = 0
(17)

where
∑

x−i

∂fi(xi,x−i)
∂xi

µ(x−i|xi) can also be simply written

as E(∂fi(xi,x−i)
∂xi

|xi).

A. How good can a CE get?

The first question we would like to investigate is: does there
always exist a CE that achieves the social optimum (SO) in the
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security game? The answer is generally not. If a CE achieves
SO, then the CE should have probability 1 on the set of x that
minimizes the social cost. For convenience, assume there is a
unique x∗ that minimizes the social cost. In other words, each
time, the mediator chooses x∗ and recommends x∗

i to player
i. If x∗

i > 0, then it satisfies

∑

k

∂fk(x∗)

∂xi

= −1

Since
∑

k
∂fk(x∗)

∂xi
≤ ∂fi(x

∗)
∂xi

, we have ∂gi(x
∗)

∂xi
= ∂fi(x

∗)
∂xi

+
1 ≥ 0. If the inequality is strict, then player i has incentive to
invest less than x∗

i . Therefore in general, CE cannot achieve
SO in this game.

But, a CE can be better than all NE’s in this game. Appendix
A3 gives an example. The example is different in nature from
that in [10] since each player can choose his investment from
R+.

B. The worst-case discrete CE

As mentioned before, CE can result from simple and natural
dynamics in an infinitely repeated game (without a mediator or
pre-play meeting). But like NE’s, the resulting CE may not be
efficient. In this section, we consider the POA of discrete CE,
which is defined as the performance ratio of the worst discrete
CE compared to the SO. In the Weighted-sum model and the
Bad-traffic model, we show that the POA of discrete CE is the
identical to that of pure-strategy NE derived before, although
the set of discrete CE’s is larger than the set of pure-strategy
NE’s in general.

Lemma 2: The POA of discrete CE, denoted as ρCE , sat-
isfies

ρCE ≤ max
µ(x)∈CD

{max{1,max
k

[E(−
∑

i

∂fi(x)

∂xk

)]}}

where CD is the set of discrete CE’s, the distribution µ(x)
defines a discrete CE, and the expectation is taken over the
distribution µ(x).
Although the distribution µ(x) seems quite complicated, the
proof of Lemma 2 (shown in Appendix A4) is similar to that
of Lemma 1.

Proposition 10: In the EI model and the BT model, the
POA of discrete CE is the same as the POA of NE. That is,
in the EI model,

ρCE ≤ max
k

{1 +
∑

i:i6=k

βki},

and in the BT model,

ρCE ≤ (1 + max
(i,j):i6=j

virji

vjrij

).

The proof is included in Appendix A5.

VII. CONCLUSIONS

We have studied the equilibrium performance of the network
security game. Our model explicitly considered the network
topology, players’ different cost functions, and their relative

importance to each other. We showed that in the strategic-
form game, the POA can be very large and tends to increase
with the network size, and the dependency and imbalance
among the players. This indicates severe efficiency problems
in selfish investment. Not surprisingly, the best equilibrium in
the repeated games usually gives much better performance,
and it’s possible to achieve social optimum if that does not
conflict with individual interests. Implementing the strategies
supporting an SPE in a repeated game, however, needs more
communications and cooperation among the players.

We have compared the benefits of improving security
technology and improving incentives. In particular, we show
that the POA of NE’s is invariant with the improvement
of technology, under the EI model and the BT model. So,
improving technology alone may not offset the efficiency loss
due to the lack of incentives. Finally, we have studied the
performance of correlated equilibrium (CE). We have shown
that although CE cannot achieve SO in general, it can be much
better than all pure-strategy NE’s. In terms of the worst-case
bounds, the POA’s of discrete CE’s are the same as the POA’s
of NE’s under our two models.

Given that the POA is large in certain scenarios, a natural
question is how to design schemes or mechanisms to improve
the investment incentives for better network security. This
has not been a focus of this paper, and we would like to
study it more in the future. As discussed above, repeated
games and correlated equilibriums can yield better outcomes.
Another conceptually simple scheme, with the coordination of
a social planner, is “due care” (see, for example, [1]). In this
scheme, each player i is required to invest no less than x∗

i , the
investment in the socially optimal configuration. Otherwise, he
is punished according to the negative effect he causes to other
players. Although in theory, “dual care” scheme can achieve
the social optimum, in practice, however, it is not easy to
implement. Firstly, to find the optimal level of investment by
each user, a large amount of information needs to be collected.
Secondly, to enforce the scheme, the social planner needs to
monitor the players’ actual efforts and investments, which may
be hindered by the privacy concern of the players. In the
future, we would like to further explore effective and practical
schemes to improve the efficiency of security investments.
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APPENDIX

A1. Proof of Proposition 1

Consider player i’s set of best responses, BRi(x−i), to
x−i ≥ 0. Define xi,max := [fi(0) + ǫ]/ci where ǫ > 0, then
due to convexity of fi(x) in xi, we have

fi(xi = 0,x−i) − fi(xi = xi,max,x−i)

≥ xi,max · (−
∂fi(xi,max,x−i)

∂xi

)

=
fi(0) + ǫ

ci

(−
∂fi(xi,max,x−i)

∂xi

)

. Since fi(xi = 0,x−i) ≤ fi(0), and fi(xi = xi,max,x−i) ≥
0, it follows that

fi(0) ≥
fi(0) + ǫ

ci

(−
∂fi(xi,max,x−i)

∂xi

)

which means that ∂fi(xi,max,x−i)
∂xi

+ ci > 0. So, BRi(x−i) ⊆
[0, xi,max].

Let xmax = maxi xi,max. Consider a modified game where
the strategy set of each player is restricted to [0, xmax]. Since
the set is compact and convex, and the cost function is convex,
therefore this is a convex game and has some pure-strategy NE
[14], denoted as x̄.

Given x̄−i, x̄i is also a best response in the strategy set
[0,∞), because the best response cannot be larger than xmax

as shown above. Therefore, x̄ is also a pure-strategy NE in
the original game.

A2. Proof of Proposition 7

It is useful to first give a sketch of the proof before going
to the details. Roughly, the KKT condition (for the best SPE),
as in equation (13), is

∑

k(1 + λk)[−∂fk(xE)
∂xi

] = 1 + λi,∀i
(except for some “corner cases” which will be taken care of
by Lemma 4). Without considering the corner cases, we have
the following by inequality (18):

γ ≤ max
i,j

1 + λi

1 + λj

= max
i,j

∑

k(1 + λk)[−∂fk(xE)
∂xi

]
∑

k(1 + λk)[−∂fk(xE)
∂xj

]

≤ max
i,j,k

{
∂fk(xE)

∂xi

/
∂fk(xE)

∂xj

}

which is Proposition 11. Then by plugging in fk(·) of the EI
model, Proposition 7 immediately follows.

Now we begin the detailed proof.
As assumed in section 4, g(x) < g is feasible.

Lemma 3: If g(x) < g is feasible, then at the optimal
solution of problem (12), at least one dual variable is 0. That
is, ∃i0 such that λi0 = 0.

Proof: Suppose λi > 0,∀i. Then all constraints in (12)
are active. As a result, GE =

∑

k gk.
Since ∃x such that g(x) < g, then for this x,

∑

k gk(x) <
∑

k gk. x is a feasible point for (12), so GE ≤
∑

k gk(x) <
∑

k gk, which contradicts GE =
∑

k gk.
From Proposition 6, we need to bound maxk{1 + λk}. Since
1 + λi ≥ 1,∀i, and 1 + λi0 = 1 (by Lemma 3), it is easy to
see that

γ ≤ max
k

{1 + λk} = max
i,j

1 + λi

1 + λj

(18)

Before moving to Proposition 11, we need another obser-
vation:

Lemma 4: If for some i,
∑

k(1 + λk)[−∂fk(xE)
∂xi

] < 1 + λi,
then λi = 0.

Proof: From (13), it follows that xE,i = 0. Since
∑

k(1+

λk)[−∂fk(xE)
∂xi

] < 1 + λi, and every term on the left is non-
negative, we have

(1 + λi)[−
∂fi(xE)

∂xi

] < 1 + λi

That is, ∂fi(xE)
∂xi

+ 1 = ∂gi(xE)
∂xi

> 0. Since fi(x) is convex
in xi, and xE,i = 0, then

gi(xi,xE,−i) ≥ gi(xE,i,xE,−i)+
∂gi(xE)

∂xi

(xi − 0) > gi(xE)

where we have used the fact that xi > 0.
Note that gi(xi,xE,−i) ≤ gi(xi,0−i) = gi. Therefore,

gi(xE) < gi

So λi = 0.
Proposition 11: With the general cost function gi(x) =

fi(x) + xi, γ is upper-bounded by

γ ≤ min{max
i,j,k

{
∂fk(xE)

∂xi

/
∂fk(xE)

∂xj

}, Q}

where Q is the POA derived before for Nash Equilibria in
the one-shot game (i.e., ρ ≤ Q), and xE achieves the optimal
social cost in the set of SPE.

Proof: First of all, since any NE is Pareto-dominated by
g, the best SPE is at least as good as NE. So γ ≤ Q.

Consider πi,j := 1+λi

1+λj
. (a) If λi = 0, then πi,j ≤ 1. (b)

If λi, λj > 0, then according to Lemma 4, we have
∑

k(1 +

λk)[−∂fk(xE)
∂xi

] = 1+λi and
∑

k(1+λk)[−∂fk(xE)
∂xj

] = 1+λj .
Therefore

πi,j =

∑

k(1 + λk)[−∂fk(xE)
∂xi

]
∑

k(1 + λk)[−∂fk(xE)
∂xj

]
≤ max

k
{
∂fk(xE)

∂xi

/
∂fk(xE)

∂xj

}

(c) If λi > 0 but λj = 0, then from Lemma 4,
∑

k(1 +

λk)[−∂fk(xE)
∂xi

] = 1+λi and
∑

k(1+λk)[−∂fk(xE)
∂xj

] ≤ 1+λj .
Therefore,

πi,j ≤

∑

k(1 + λk)[−∂fk(xE)
∂xi

]
∑

k(1 + λk)[−∂fk(xE)
∂xj

]
≤ max

k
{
∂fk(xE)

∂xi

/
∂fk(xE)

∂xj

}
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Considering the cases (a), (b) and (c), and from equation
(18), we have

γ ≤ max
i,j

πi,j ≤ max
i,j,k

{
∂fk(xE)

∂xi

/
∂fk(xE)

∂xj

}

which completes the proof.
Proposition 11 applies to any game with the cost function
gi(x) = fi(x) + xi, where fi(x) is non-negative, decreasing
in each xi, and satisfies the assumption (1)-(3) at the beginning
of section 4. This includes the EI model and the BT model
introduced before. It is not easy to find an explicit form of
the upper bound on γ in Proposition 11 for the BT model.
However, for the EI model, we have the simple expression
shown in Proposition 7:

γ ≤ min{max
i,j,k

βik

βjk

, Q}

where Q = maxk{1 +
∑

i:i6=k βki}.
Proof: The part γ ≤ Q is straightforward: since the set

of SPE includes all NE’s, the best SPE must be better than
the worst NE. Also, since ∂fk(xE)

xi
= βikV ′

k(
∑

m βmkxE,m),

and ∂fk(xE)
xj

= βjkV ′
k(

∑

m βmkxE,m), using Proposition 11,

we have γ ≤ maxi,j,k
βik

βjk
.

A3. An example where a CE is more efficient than all NE’s

Assume that the cost functions are strictly convex, then all
NEs must be pure-strategy NE’s (because the best response of
each player i to any randomization of x−i is unique). In the
following example, the CE has high probability on an efficient
strategy profile, while all NE’s are less efficient.

Consider the EI model with only 2 players, with cost
functions g1(x) = f(x1 + α · x2) + x1, and g2(x) =
f(x2 + α · x1) + x2, where α > 1,x ≥ 0. (Note that the
cost functions of the two players are symmetric.) We compute
the pure NE’s first. Assume that there exists yNE > 0 such
that f ′(yNE) + 1 = 0. Then the best response of player 1 to
x2 is BR1(x2) = (yNE − α · x2)+, and the best response of
player 2 to x1 is BR2(x1) = (yNE −α ·x1)+. Then there are
3 pure-strategy NE’s, shown in Fig. 4.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

A B

C D

NE 1NE 1

x
1

x
2

NE 2

NE 3

BR
1
(x

2
)

BR
2
(x

1
)

Fig. 4. Pure-strategy NE’s

Denote by A, B, C, D the strategy profiles (0,0), (1,0), (0,1),
(1,1) respectively (Fig. 4). We would like to construct a CE
where only these profiles have positive probability and µ(A) :
µ(B) : µ(C) : µ(D) = 1 : β1 : β1 : β1β2, where β1, β2 > 1.

Consider player 1 (the argument for player 2 is similar), we
have ∂g1(x)

∂x1
= f ′(x1 + αx2) + 1. Let

∂g1(A)

∂x1
= f ′(0) + 1 = −r1

∂g1(B)

∂x1
= f ′(1) + 1 = −r2

∂g1(C)

∂x1
= f ′(α) + 1 = r3

∂g1(D)

∂x1
= f ′(1 + α) + 1 = r4 (19)

where r1, r2, r3, r4 > 0, r1 > r2, r3 < r4 (consistent to the
convexity of f(·)) and satisfy

r1 = β1r3 and r2 = β2r4. (20)

Then, we have

µ(A|x1 = 0)
∂g1(A)

∂x1
+ µ(C|x1 = 0)

∂g1(C)

∂x1

∝ µ(A)
∂g1(A)

∂x1
+ µ(C)

∂g1(C)

∂x1

∝ −r1 + β1r3 = 0

and

µ(B|x1 = 1)
∂g1(B)

∂x1
+ µ(D|x1 = 1)

∂g1(D)

∂x1

∝ µ(B)
∂g1(B)

∂x1
+ µ(D)

∂g1(D)

∂x1

∝ −β1r2 + β1β2r4 = 0.

Therefore, by condition (17), it is the best response of
player 1 to obey the recommended actions (0 or 1) from the
distribution µ. Due to symmetry of the cost functions and the
distribution µ, player 2 also obeys the recommended actions.
Therefore µ is a CE.

Let the function f(y) satisfy the conditions in (19) and (20).
For example, Fig. 5 shows 1 + f ′(y) of such a function. For
convenience, 1+ f ′(y) is assumed to be piecewise linear, and
also satisfy 1+f ′(1+ǫ) = 0 (where ǫ > 0), 1+f ′(2+α) = 1,
and f(∞) = 0. Then f(1 + α), f(α), f(1) and f(0) can be
computed according to Fig. 5.

Hence, in the CE µ, the expected cost of player 1 is

Eµ(g1(x))

=
1

1 + 2β1 + β1β2
{f(0) + β1[f(1) + 1] +

β1f(α) + β1β2[f(1 + α) + 1]}

and by symmetry, Eµ(g2(x)) = Eµ(g1(x)). Thus the expected
social cost is Eµ(g1(x) + g2(x)) = 2Eµ(g1(x)).

Also, since 1 + f ′(1 + ǫ) = 0, we have yNE = 1 + ǫ. From
here the social costs of all three pure-strategy NE’s in Fig. 4
can be obtained.

To give a numerical example, let α = 5, β1 = 8, β2 =
4, r1 = 2.4, r2 = 2, r3 = 0.3, r4 = 0.5, ǫ = 1. Then, it
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Fig. 5. The shape of 1 + f ′(y)

can be computed that the expected social cost at the CE is
Eµ(g1(x)+g2(x)) = 4.351. And the social costs at the NE 1,
NE 2 and NE 3 in Fig. 4 are 7.467, 5.4 and 5.4 respectively.
Therefore the expected social cost at the CE is lower than all
pure-strategy NE’s.

A4. Proof of Lemma 2

Proof: The performance ratio between the discrete CE
µ(x) and the social optimal is

ρ(µ) =
G(µ)

G∗
=

E[
∑

i(fi(x) + xi)]
∑

i[fi(x∗) + x∗
i ]

where the expectation is taken over distribution µ(x).
Since fi(·) is convex for all i. Then for any x, fi(x) ≤

fi(x
∗) + (x̄ − x∗)T∇fi(x). So

ρ(µ)

≤
E[(x − x∗)T

∑

i ∇fi(x) + 1T x] +
∑

i fi(x
∗)

∑

i fi(x∗) + 1T x∗

=
E{−x∗T

∑

i ∇fi(x) + xT [1 +
∑

i ∇fi(x)]} +
∑

i fi(x
∗)

∑

i fi(x∗) + 1T x∗

Note that

xT [1 +
∑

i ∇fi(x)] =
∑

i xi[1 +
∑

k
∂fk(x)

∂xi
].

For every player i, for each xi with positive proba-
bility, there are two possibilities: (a) If xi = 0, then
xi[1 +

∑

k
∂fk(x)

∂xi
] = 0,∀x; (b) If xi > 0, then by (17),

E(∂fi(x)
∂xi

|xi) = −1. Since ∂fk(x)
∂xi

≤ 0 for all k, then

E(
∑

k
∂fk(x)

∂xi
|xi) ≤ −1. Therefore for both (a) and (b), we

have E[xi(1+
∑

k
∂fk(x)

∂xi
)|xi] = xi ·E[1+

∑

k
∂fk(x)

∂xi
|xi] ≤ 0.

So,

E{
∑

i

[xi(1 +
∑

k

∂fk(x)

∂xi

)]}

=
∑

i

E{E[xi(1 +
∑

k

∂fk(x)

∂xi

)|xi]} ≤ 0.

As a result,

ρ(µ) ≤
−E[x∗T

∑

i ∇fi(x)] +
∑

i fi(x
∗)

∑

i fi(x∗) + 1T x∗
. (21)

Consider two cases:
(i) If x∗

i = 0 for all i, then the RHS is 1, so ρ(µ) ≤ 1.
Since ρ(µ) cannot be smaller than 1, we have ρ(µ) = 1.

(ii) If not all x∗
i = 0, then 1T x∗ > 0. Note that the RHS

of (21) is not less than 1, by the definition of ρ(µ). So, if we
subtract

∑

i fi(x
∗) (non-negative) from both the numerator

and the denominator, the resulting ratio upper-bounds the
RHS. That is,

ρ(µ) ≤
−E[x∗T

∑

i ∇fi(x)]

1T x∗
≤ max

k
{E(−

∑

i

∂fi(x)

∂xk

)}

where
∑

i
∂fi(x̄)
∂xk

is the k’th element of the vector
∑

i ∇fi(x̄).
Combining cases (i) and (ii), we have

ρ(µ) ≤ max{1,max
k

E(−
∑

i

∂fi(x)

∂xk

)}.

Then, ρCE is upper-bounded by maxµ∈CD
ρ(µ).

A5. Proof of Proposition 10

Proof: Since µ(x) is a discrete CE, by (17), for any
xi with positive probability, E(−∂fi(x)

∂xi
|xi) ≤ 1. Therefore

E(−∂fi(x)
∂xi

) ≤ 1.
In the EI model, we have

−
∂fi(x)

∂xk

= βki[−
∂fi(x)

∂xi

].

Therefore

E(−
∑

i

∂fi(x)

∂xk

) = E(−
∑

i

βki

∂fi(x)

∂xi

) ≤
∑

i

βki.

So, ρCE ≤ maxk{1 +
∑

i:i6=k βki}, the same as the POA
in NE.

In the BT model, similar to the proof in Proposition 3, it’s
not difficult to see that the following holds for any x:

[−
∑

i:i6=j

∂fi(x)

∂xj

]/[−
∂fj(x)

∂xj

] ≤ max
i:i6=j

virji

vjrij

.

Then,

−
∑

i

∂fi(x)

∂xj

≤ (1 + max
i:i6=j

virji

vjrij

)[−
∂fj(x)

∂xj

].

If µ(x) is a discrete CE, then E(−
∂fj(x)

∂xj
) ≤ 1,∀j. There-

fore E(−
∑

i
∂fi(x)

∂xj
) ≤ (1 + maxi:i6=j

virji

vjrij
). So,

ρCE ≤ max
j

E(−
∑

i

∂fi(x)

∂xj

) ≤ (1 + max
(i,j):i6=j

virji

vjrij

),

which is also the same as the POA in NE in this model.


