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Abstract—In [1], [2], we proposed a family of distributed
scheduling and rate control algorithms to achieve the maximal
throughput in a general class of networks with interference
constraints, as well as approaching the optimal fairness among
different data flows. These algorithms were inspired by CSMA
(Carrier Sense Multiple Access). In this paper, we analyze and
prove the convergence of such a scheduling algorithm and the
queue stability it guarantees, with properly-chosen step sizes and
adjustment periods. Convergence of other algorithms in [1], [2]
can be proved similarly.

I. BASIC MODEL AND PROBLEM STATEMENT

For completeness, we first describe the basic model and

problem setup as in [2].

A. Network Interference Model

Assume there are K links in the network, where each link

is an (ordered) transmitter-receiver pair. The network is asso-

ciated with a link contention graph (or “LCG”) G = {V, E},

where V is the set of vertexes (each of them represents a

link) and E is the set of edges. Two links cannot transmit

at the same time (i.e., “conflict”) if and only if there is an

edge between them. This is a very general interference model

that can be applied to a general class of networks, including

wireless networks and stochastic processing networks (SPN)

[3].

Assume that G has N different Independent Sets (“IS”, not

confined to “Maximal Independent Sets”). Denote the i’th IS

as xi ∈ {0, 1}K , a 0-1 vector that indicates which links are

transmitting in this IS. The k’th element of xi, xi
k = 1 if

link k is transmitting, and xi
k = 0 otherwise. We also refer

to xi as a “transmission state”, and xi
k as the “transmission

state of link k”. Later, we also use x to generally denote a

transmission state, or simply a “state”.

B. Throughput-optimality Objective

Assume i.i.d. traffic arrival at each link k with a normalized

arrival rate λk. And denote the vector of arrival rates as

λ ∈ RK
+ . Without loss of generality, assume that λk > 0,∀k.

(The link(s) with zero arrival rate can be removed from the
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problem.) We say that λ is feasible if and only if λ =
∑

i p̄i ·xi

for some probability distribution p̄ ∈ RN
+ satisfying p̄i ≥ 0

and
∑

i p̄i = 1. That is, λ is a convex combination of the IS’s,

such that it is possible to serve the arriving traffic with some

transmission schedule. We say that λ is strictly feasible iff it is

in the interior of the capacity region, i.e., iff it can be written

as λ =
∑

i p̄i · xi where p̄i > 0 and
∑

i p̄i = 1. Denote the

set of strictly feasible λ as C.

Our objective is to design a distributed scheduling algorithm

to support any strictly feasible λ, such that all queues are

stabilized (i.e., no queue length goes to infinity) [2]. Such an

algorithm is said to be “throughput-optimal”.

II. A DISTRIBUTED CSMA ALGORITHM AND ITS

THROUGHPUT-OPTIMALITY

In [1], [2], a distributed algorithm based on CSMA (Carrier

Sense Multiple Access) was proposed. The basic CSMA

operation is described in the following. Before transmitting,

link k waits for a random period of time that is exponen-

tially distributed with rate Rk. If it does not sense another

transmission of a conflicting link during that time, then the

link starts transmitting; otherwise, it suspends its backoff

and resumes it after the conflicting transmission is over. 1

The transmission time of link k is exponentially distributed

with mean 1. Assuming that the sensing time is negligible,

given the continuous distribution of the backoff times, the

probability for two conflicting links to start transmission at

the same time is zero, so collisions are ignored. (Although

this is an approximation in wireless networks, it is not an issue

in a general class of networks such as stochastic processing

networks [3].) Define rk = log(Rk) as the “transmission

aggressiveness” (TA) of link k. And let r be the vector of

rk’s.

The key idea of the proposed algorithm is for each link k
to dynamically adjust rk according to its empirical arrival rate

and service rate. If the arrival rate is larger than the service

rate (i.e., the queue length of link k increases), then rk should

be increased. And vice versa.

A. TA adjustment Algorithm

The following algorithm is updated from “Algorithm 3” in

[2].

1If more than one backlogged links share the same transmitter, the trans-
mitter maintains independent backoff timers for these links.
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Algorithm 3: The vector r is updated at time ti, i =
1, 2, . . . . Let t0 = 0 and Ti := ti − ti−1, i = 1, 2, . . . . Define

“period i” as the time between ti−1 and ti, and r(i) be the

value of r at the end of period i, i.e., at time ti.
Initially, set r(0) = 0.2 Then at time ti (i = 1, 2, . . . ),

update

rk(i) = [rk(i−1)+α(i)(λ′
k(i)−s′k(i)+min{c/rk(i−1), w̄})]+

where λ′
k(i) and s′k(i) are the empirical average arrival rate

and service rate of link k in period i (note that E(λ′
k(i)) =

λk), c > 0, w̄ > 0 are small constants, and the step size

satisfies α(i) → 0 as i → ∞ and
∑

i α(i) = ∞,
∑

i α(i)2 <
∞. (Note: This is an enhancement of Algorithm 1 [1] where

the update is rk(i) = [rk(i − 1) + α(i)(λ′
k(i) − s′k(r(i)))]+.

It ensures that after convergence of the algorithm, the service

rate is strictly larger than the arrival rate for each link, which

in turn ensures that all queues are stable and the queue lengths

tend to be small.)

Also, the α(i) and Ti are chosen such that

∞
∑

m=0

[α(m + 1)

m
∑

i=1

α(i)]2 < ∞ (1)

and

∞
∑

m=0

[α(m + 1) ·
m

∑

i=1

α(i) · f(m)/Tm+1] < ∞ (2)

where

f(m) = exp{(5

2
K + 1) · [λmax ·

m
∑

i=1

α(i) + log(2)]} (3)

where K is the number of links, and λmax = λ̄ + w̄, where

λ̄ is the maximal average arrival rate in any time slot (It can

be taken as the maximal instantaneous arrival rate).

Example: The setting α(i) = 1/[(i + 1) log(i + 1)] and

Ti = i satisfies conditions (1) and (2). Note that this setting

does not depend on, or require the knowledge of K and λmax,

and thus can generally apply to any network.

Proof: For m ≥ 1, 0 ≤ ∑m
i=1 α(i) ≤ α(1) +

∫ m

1
1/[(x +

1) log(x + 1)]dx ≤ c1 + log log(m + 1) where c1 = α(1) −
log log 2 > 0. So

f(m) ≤ exp{(5

2
K + 1)[λmax log log(m + 1) +

λmaxc1 + log(2)]}

for m ≥ 1. When m = 0, α(m+1)·
∑m

i=1 α(i)·f(m)/Tm+1 =
0, so the L.H.S. of (2) is

∞
∑

m=1

[α(m + 1) ·
m

∑

i=1

α(i) · f(m)/Tm+1]

≤ exp{(5

2
K + 1) · [λmaxc1 + log(2)]} ·

∞
∑

m=1

[log(m + 1)](
5
2
K+1)·λmax [log log(m + 1) + c1]

(m + 1)(m + 2) log(m + 2)
.

2In fact, r(0) can be any finite value. We assume r(0) = 0 for the ease
of exposition.

When m ≥ M for a large enough M , [log(m +
1)](

5
2
K+1)·λmax [log log(m + 1) + c1] ≤ m1/2. Thus

∞
∑

m=M

[log(m + 1)](
5
2
K+1)·λmax [log log(m + 1) + c1]

(m + 1)(m + 2) log(m + 2)

≤
∞
∑

m=M

m1/2

m2 log(M + 2)

=
1

log(M + 2)

∞
∑

m=M

m−3/2 < ∞.

So (2) holds. It is easy to check that (1) also holds.

Similarly, it can be verified that α(i) = c0/[(a · i + b +
1) log(a · i + b + 1)] and Ti = a · i + b (with constants a >
0, b > 0, c0 > 0) also satisfy conditions (1) and (2).

B. Review of the ideas behind Algorithm 3

Before stating and proving the main convergence theorem

in this paper, we need some definitions and a review of the

ideas behind Algorithm 3.

Let x0(m − 1) be the “initial” state of the CSMA Markov

chain at the beginning of period m (i.e., at time tm−1).

Define the random vector U(m − 1) := (s′(m − 1), λ′(m −
1), r(m − 1), x0(m − 1)) for m > 1 and U(0) = (r(0) =
0, x0(0)). For m ≥ 1, let Fm−1 be the σ-field gener-

ated by U(0), U(1), . . . , U(m − 1). It is easy to see that

U(0), U(1), . . . is also a Markov process.

As in [2], Algorithm 3 above is a subgradient dual algo-

rithm to solve the following optimization problem3, but with

inaccurate subgradients:

maxu,w −
∑

i ui log(ui) + c
∑

k log(wk)
s.t.

∑

i(ui · xi
k) ≥ λk + wk,∀k

ui ≥ 0,
∑

i ui = 1
0 ≤ wk ≤ w̄,∀k

(4)

where λ is strictly feasible. Let r∗ ∈ RK
+ be the optimal dual

variables (to be further explained below) of problem (4). It

was shown in [2] that sk(r∗) > λk,∀k, where sk(r∗) is the

average service rate of link k with the TA vector r∗. So if our

algorithm makes r converge to r∗, then eventually the service

rate is strictly larger than the arrival rate for each link, which

in turn ensures that all queues are stable.

To see that Algorithm 3 is a subgradient dual algorithm

with inaccurate subgradients, note that a partial Lagrangian of

problem (4) is

L(u,w; r) = −∑

i ui log(ui) + c
∑

k log(wk)+
∑

k[rk(
∑

i ui · xi
k − λk − wk)]

= [−∑

i ui log(ui) +
∑

k(rk

∑

i ui · xi
k)]+

∑

k[c · log(wk) − rkwk] − ∑

k(rkλk)
(5)

where rk’s are dual variables.

Let L(r) := maxu,w L(u,w; r) subject to the constraints

that ui ≥ 0,
∑

i ui = 1 and 0 ≤ wk ≤ w̄,∀k. Also,

denote by u(r) and w(r) the maximizers. It follows from the

optimization theory [8] that the vector g ∈ RK whose k’th

3A slight difference of problem (4) from that in [2] is that here we impose
an upper bound w̄ to wk, ∀k.
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element gk :=
∑

i ui(r) · xi
k − λk − wk(r) is a subgradient

of L(·) at r. It was shown in [2] that
∑

i ui(r) · xi
k =

sk(r), and it’s easy to find that wk(r) = (c/rk) ∧ w̄ (since

∂L(u,w; r)/∂wk = c/wk − rk).

So given a vector of dual variables r(m−1) at the beginning

of the m’th period of Algorithm 3, the vector g(m) whose k’th

element gk(m) := sk(r(m − 1)) − λk − (c/rk(m − 1)) ∧ w̄
is a subgradient. To find r∗ that minimizes L(r), Algorithm

3 follows the opposite direction of g(m). However, we only

have an estimation of gk(m), denoted by

g′k(m) = s′k(m) − λ′
k(m) − (c/rk(m − 1)) ∧ w̄. (6)

The “error bias” in the k’th element of the estimated

subgradient is defined as

Bk(m) : = E[g′k(m)|Fm−1] − gk(m)

= E[s′k(m)|Fm−1] − sk(r(m − 1)). (7)

Define also the zero-mean “noise”

ηk(m) := (s′k(m) − E[s′k(m)|Fm−1]) − (λ′
k(m) − λk).

Since both s′k(m) and λ′
k(m) are bounded, the noise is also

bounded: |ηk(m)| ≤ c2 for some c2 > 0.

Then, we have

g′k(m) = gk(m) + Bk(m) + ηk(m). (8)

C. Main convergence theorem and the stability of queues

Theorem 1: Assume that λ is strictly feasible. Then with

Algorithm 3, r converges to r∗ with probability 1. Moreover,

all queues are stable (i.e., positive recurrent).

Proof:

The proof is composed of two parts. In the first part, we

show that with Algorithm 3 and condition (2), the error bias (7)

decreases “fast enough” with time. In the second part (Lemma

1), we use the result of part 1 and condition (1) to prove the

convergence of r to r∗.

In the following consider period m + 1 (i.e., from tm to

tm+1). At time tm with the TA vector r(m), denote the

corresponding CSMA Markov chain by X(t) (for convenience

we drop the index m + 1). X(t) is a continuous time Markov

chain (CTMC). The probability of state x in the stationary

distribution of X(t) is [1]

πx(r(m)) =
1

C(r(m))
exp(

∑

k

xkrk(m))

where C(r(m)) =
∑

x
′ exp(

∑

k x′
krk(m)).

Since r(m) ≥ 0,

C(r(m)) ≤
∑

x
′

exp(1T r(m)) ≤ 2K exp(1T r(m))

since there are at most 2K states. Also, exp(
∑

k xkrk(m)) ≥
1. So, the minimal probability in the stationary distribution

πmin(r(m)) ≥ 1/ exp(1T r(m) + K · log(2)).

Since λ′
k(i) + min{c/rk(i), w̄} ≤ λmax and s′k(r(i)) ≥

0, we have rk(i + 1) ≤ rk(i) + α(i)λmax,∀i, k. Recall that

rk(1) = 0,∀k. So rk(m) ≤ λmax

∑m
i=1 α(i),∀k. Thus,

πmin(r(m)) ≥ exp{−K · [λmax

m
∑

i=1

α(i) + log(2)]}.(9)

To proceed with the proof, we first “uniformize” the CSMA

Markov chain X(t). Through “uniformization”, one can use

certain results known for a DTMC (discrete time Markov

chain) to analyze a CTMC. Define a constant Am+1 = K ·
exp(λmax

∑m
i=1 α(i)), and let N(t) be a Poisson process with

rate Am+1. Denote Q as the transition rate matrix of X(t).
Define a DTMC Z(n), independent of N(t), with transition

probability matrix P , where P (x, x′) = Q(x, x′)/Am+1,∀x 6=
x′, and P (x, x) = 1 − ∑

x′ 6=x Q(x, x′)/Am+1. (To see that

P is a valid transition probability matrix, first note that
∑

x′ P (x, x′) = 1. Second, P (x, x′) ≥ 0,∀x′ 6= x. Also,

since rk(m) ≤ λmax

∑m
i=1 α(i),∀k, we have Q(x, x′) ≤

exp(λmax

∑m
i=1 α(i)). Notice that Q(x, x′) > 0 for at most

K different x′, i.e., state x can at most transit to K other

states by changing the state of any one of the K links, so
∑

x′ 6=x Q(x, x′) ≤ Am+1. Therefore, P (x, x) ≥ 0.) Note that

the stationary distribution of Zn is the same as that of X(t)
(since the detailed balance equations still hold).

An important observation is that the CTMC defined as

Y (t) := Z(N(t)) is equivalent to X(t). To see this, assume

that Y (t0) = x0, i.e., Z(N(t0)) = x0. Then the Markov chain

transits to state x′ 6= x0 before t0 + h (h is very small) with

probability Am+1h·P (x, x′)+o(h) = Q(x, x′)h+o(h) (since

this happens iff there is an arrival in N(t) before t0 + h and

the DTMC transits to x′ upon this arrival).

Now we are ready to estimate how far E[s′k(m + 1)|Fm]
is from the desired value sk(r(m)) (although it will take a

number of steps). Let the vector µx0
(r(m); t) be the probabil-

ities of all states at time tm + t (where 0 ≤ t ≤ Tm+1), given

that the initial state at time tm is x0(m) (where the subscript

x0 is a shorthand for x0(m)). And let µx0
(r(m); t,x′) be the

probability of x′ at time tm + t. Let x(tm + t) be the state

at time tm + t, and xk(tm + t) be link k’s state at that time.

Note that in the time interval [tm, tm +Tm+1], the TA is fixed

at r(m). We first compute E[s′k(m + 1)|Fm] as follows.

E[s′k(m + 1)|Fm]

= E[

∫ Tm+1

0

I(xk(tm + t) = 1)dt/Tm+1]

=

∫ Tm+1

0

P (xk(tm + t) = 1)dt/Tm+1

=
∑

x
′:x′

k
=1

[

∫ Tm+1

0

µx0
(r(m); t,x′)dt/Tm+1]

=
∑

x
′:x′

k
=1

µ̄x0
(r(m);Tm+1,x

′)

where

µ̄x0
(r(m);Tm+1,x

′) =

∫ Tm+1

0

µx0
(r(m); t,x′)dt/Tm+1

is the time-averaged probabilities of state x′ in the interval.

We use µ̄x0
(r(m);Tm) to denote the vector of probabilities

of all states.
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Let πx0
(r(m)) be the probability of x0 in the stationary

distribution of X(t). Use || · ||var to denote the variation

distance between two distributions. Let β1 be the second

largest eigenvalue of P . The following inequality [4] uses the

fact that Y (t) is equivalent to X(t),

||µx0
(r(m); t) − π(r(m))||var

≤ 1

2

√

1 − πx0
(r(m))

πx0
(r(m))

exp(−Am+1(1 − β1)t)

≤ 1

2

√

1

πmin(r(m))
exp(−Am+1(1 − β1)t).

So,

||µ̄x0
(r(m);Tm+1) − π(r(m))||var

= ||
∫ Tm+1

0

[µx(r(m); t) − π(r(m))]dt/Tm+1||var

≤
∫ Tm+1

0

||µx(r(m); t) − π(r(m))||vardt/Tm+1

≤ 1

2

√

1

πmin(r(m))

1 − exp(−Am+1(1 − β1)Tm+1)

Am+1(1 − β1)Tm+1

≤ 1

2

√

1

πmin(r(m))

1

Am+1(1 − β1)Tm+1
(10)

where the first inequality has used the fact that || · ||var is a

convex function.

Also, β1 can be bounded by [5]

β1 ≤ 1 − φ2/2 (11)

where φ is the “conductance” of P [5], defined as

φ := min
S⊂Ω,π(S)∈(0,1/2]

F (S, Sc)

πS(r(m))

where πS(r(m)) =
∑

x∈S πx(r(m)), and F (S, Sc)
is the “ergodic flow” from S to Sc: F (S, Sc) =
∑

x∈S,x′∈Sc F (x, x′) =
∑

x∈S,x′∈Sc πx(r(m))P (x, x′). Then

similar to [6], we have

φ ≥ min
S⊂Ω,π(S)∈(0,1/2]

F (S, Sc)

≥ min
x6=x′,P (x,x′)>0

F (x, x′)

= min
x6=x′,P (x,x′)>0

{πx(r(m)) · P (x, x′)}.

For any x 6= x′ such that P (x, x′) > 0, it must be

that Q(x, x′) > 0. Note that Q(x, x′) = 1 or Q(x, x′) =
exp(rk(m)) for some k. Since rk(m) ≥ 0 in our algorithm,

Q(x, x′) ≥ 1. So, P (x, x′) = Q(x, x′)/Am+1 ≥ 1/Am+1.

Plugging this into the last inequality, we find

φ ≥ min
x

πx(r(m))/Am+1 = πmin(r(m))/Am+1.

Combined with (11), β1 ≤ 1 − [πmin(r(m))/Am+1]
2/2.

Thus 1/(1 − β1) ≤ 2 · A2
m+1[πmin(r(m))]−2. Plugging this

into (10) and use (9), we have

||µ̄x0
(r(m);Tm+1) − π(r(m))||var

≤ Am+1[πmin(r(m))]−5/2/Tm+1.

≤ K · f(m)/Tm+1

where f(m) is defined in (3). So,

|E[s′k(m + 1)|Fm] − sk(r(m))|
= |

∑

x
′:x′

k
=1

µ̄x0
(r(m);Tm+1,x

′) − sk(r(m))|

≤ 2||µ̄x0
(r(m);Tm+1) − π(r(m))||var

≤ 2 · K · f(m)/Tm+1,∀k.

Also, E[λ′
k(m+1)] = λk. Therefore, the error bias Bk(m+

1) = E[s′k(m + 1)|Fm] − sk(r(m)) satisfies |Bk(m + 1)| ≤
2K · f(m)/Tm+1. Denote by B(m) the vector of Bk(m +
1)’s. Since |rk(m) − r∗k| ≤ r̄ + λmax

∑m
i=1 α(i), where r̄ =

maxk r∗k, we show that the term (r(m) − r∗)T ·B(m + 1) is

diminishing:

∞
∑

m=0

α(m + 1)|(r(m) − r∗)T · B(m + 1)|

≤ 2K2
∞
∑

m=0

[α(m + 1)(r̄ + λmax

m
∑

i=1

α(i)) · f(m)/Tm+1]

= 2K2 · λmax

∞
∑

m=0

[α(m + 1) ·
m

∑

i=1

α(i) · f(m)/Tm+1]

+ 2K2 · r̄
∞
∑

m=0

[α(m + 1) · f(m)/Tm+1] < ∞ (12)

where the last step has used condition (2).

Lemma 1: If (12) and (1) hold, then with Algorithm 3, r

converges to r∗ with probability 1.

The line of proof is similar to that of Theorem 3.1 in [7],

but with more intricacies. The complete proof is given in the

Appendix.

With Algorithm 3, r converges to the optimal value r∗.

Since sk(r∗) − λk ≥ δ(λ),∀k for some δ(λ) > 0, one can

then show that the queues are stable as follows.

Choose a large-enough time t′ when r has converged to r∗.

Choose T to be large enough such that in the time interval

[t, t + T ] where t ≥ t′, E(λ′
k − s′k) is very close to λk −

sk(r∗) such that E(λ′
k−s′k) ≤ −δ(λ)/2 (T can be found since

roughly speaking, the mixing time does not increase after t′

due to the convergence of r).

If Qk(t) > T , then the queue length of link k is always

positive before time t+T , because Qk at most decreases with

a rate of 1. Therefore Qk(t+T ) = Qk(t)+T · (λ′
k − s′k). So,

E(Qk(t+T )|Qk(t))−Qk(t) = T ·E(λ′
k−s′k) ≤ −T ·δ(λ)/2 <

0. In other words, the queue has negative drift if it’s large

enough after time t′. Therefore queue k is stable for any k.

D. A variation of Algorithm 3 with bounded r

If it is known that the optimal r∗ satisfies that r∗k ≤ rmax,∀k
for some rmax > 0, then the updated in Algorithm 3 can be

modified into

rk(i) = min{rmax, [rk(i − 1) + α(i)(λ′
k(i) − s′k(i)

+min{c/rk(i − 1), w̄})]+}

where α(i) → 0 as i → ∞ and
∑

i α(i) = ∞,
∑

i α(i)2 < ∞.
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Condition (2) can be relaxed to

∞
∑

m=0

[α(m + 1)/Tm+1] < ∞

and condition (1) is not needed.

For example, α(i) = 1/i and Ti = i are sufficient to

guarantee convergence of r and the stability of the queues.

The proof is similar and is thus omitted.

III. DIMINISHING STEP SIZE WITH EQUAL ADJUSTMENT

PERIOD

In the above algorithm, Ti increases with i. In this section

we consider updating r once every time slot with step sizes

β(t), t = 1, 2, 3, . . . . Specifically, for ti−1 ≤ t < ti =
ti−1 + Ti, let β(t) = α(i)/Ti. (In other words, we even out

the updates throughout period i instead of only update r at the

end of period i. Intuitively, this is very similar to the above

algorithms and should have similar results.

Assume that α(i) = 1/[(i+1) log(i+1)] and Ti = i. Since

the total time of the first n period is 1 + 2 + · · ·+ n = n(n +
1)/2 ≈ n2/2 when n is large, then time t is approximately in

period
√

2t. Thus,

β(t) ≈ α(
√

2t)/
√

2t

≈ 1/[
√

2t log(
√

2t)]/
√

2t

= 1/[t log(2t)].

Coincidentally, this is similar to the form of α(i). Although

not formally proved, setting the step size β′(t) = 1/[t log(2t)]
should also lead to throughput-optimal performance, as well

as β′(t) = c0/[(a · t + b) log(2(a · t + b))] where a, b, c0 > 0.

APPENDIX:PROOF OF LEMMA 1

Let r∗ be the optimal dual variables of problem (4). Use

|| · || to denote the L2 norm. Since rk(m) = [rk(m − 1) −
α(m) · g′k(m)]+ by Algorithm 3, we have

||r(m) − r∗||2

≤ ||r(m − 1) − α(m) · g′k(m) − r∗||2

= ||r(m − 1) − r∗||2 − α(m) · [r(m − 1) − r∗]T g′(m)

+ α2(m)||g′(m)||2

where the first inequality follows from the fact that the projec-

tion [·]+ is non-expansive [8]. Denote d(m) = ||r(m)− r∗||2.

Since ||g′(m)||2 is bounded (cf. (6)), write ||g′(m)||2 ≤ C.

Using this and (8),

d(m) ≤ d(m − 1) + α(m) · [r∗ − r(m − 1)]T g(m)

+α(m) · [r∗ − r(m − 1)]T [B(m) + η(m)]

+α2(m) · C. (13)

Assume that r(m − 1) /∈ Hµ := {r|L(r) ≤ µ + L(r∗)}.

Since g(m) is a subgradient of L(.) at r(m − 1), we have

[r∗ − r(m − 1)]T g(m) ≤ L(r∗) − L(r) ≤ −µ. So

E(d(m)|Fm−1)

≤ d(m − 1) − α(m)µ

+ α(m) · [r∗ − r(m − 1)]T B(m)

+ α2(m) · C. (14)

As shown before, |Bk(m)| ≤ 2 · f(m)/Tm in any real-

ization. So |
∑

m{α(m) · [r∗ − r(m − 1)]T B(m)}| < ∞ by

inequality (12) and
∑

m α2(m)·C < ∞. Then we use the same

super-martingale lemma (Lemma A.1) in [7] to conclude that

the set Hµ is recurrent for {r(m)}.

Next, by (13) we have for n ≥ m,

d(n) ≤ d(m − 1)

+

n
∑

i=m

{α(i) · [r∗ − r(i − 1)]T g(i)} (15)

+

n
∑

i=m

{α(i) · [r∗ − r(i − 1)]T [B(i) + η(i)]}(16)

+ C
n

∑

i=m

α2(i). (17)

Since C
∑∞

i=1 α2(i) < ∞, we have

lim
m→∞

C

∞
∑

i=m

α2(i) = 0. (18)

Also,
∞
∑

i=1

|α(i) · [r∗ − r(i − 1)]T B(i)| < ∞

by (12). So

lim
m→∞

∞
∑

i=m

|α(i) · [r∗ − r(i − 1)]T B(i)| = 0. (19)

Finally,

W (n) :=

n
∑

i=1

{α(i) · [r∗ − r(i − 1)]T η(i)}

is a martingale. To see this, note that

(a) W (n) ∈ Fn;

(b) E|W (n)| < ∞,∀n; and

(c) E(W (n)|Fn−1) − W (n − 1) = α(n) · [r∗ − r(n −
1)]T E[η(n)|Fn−1] = 0.

Also, since

|(r∗ − r(m − 1))T η(m)| ≤ K · c2[r̄ + λmax

m−1
∑

i=1

α(i)]

(recall that |ηk(m)| ≤ c2), we have

E{[α(m) · (r∗ − r(m − 1))T η(m)]2}
= α(m)2E[|(r∗ − r(m − 1))T η(m)|2]

≤ α(m)2K2c2
2[r̄ + λmax

m−1
∑

i=1

α(i)]2.
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Therefore

sup
n

E(W (n)2)

= sup
n

n
∑

m=1

E{[α(m) · (r∗ − r(m − 1))T η(m)]2}

≤
∞
∑

m=1

E{[α(m) · (r∗ − r(m − 1))T η(m)]2}

≤
∞
∑

m=1

{α(m)2K2c2
2[r̄ + λmax

m−1
∑

i=1

α(i)]2}

< ∞
where the last step follows from condition (1). By the L2

Martingale Convergence Theorem [9], W (n) converges with

probability 1. So

sup
n≥m≥N0

|
n

∑

i=m

{α(i) · [r∗ − r(i − 1)]T η(i)}|

= sup
n≥m≥N0

|W (n) − W (m − 1)| → 0 (20)

as N0 → ∞ with probability 1.

Combining (18), (19) and (20), we know that with proba-

bility 1, for any ǫ > 0, after r(m− 1) returns to Hµ for some

large enough m (due to recurrence of Hµ),

n
∑

i=m

{α(i) · [r∗ − r(i − 1)]T [B(i) + η(i)]}

+ C

n
∑

i=m

α2(i) ≤ ǫ

for any n ≥ m. Since the term (15) is always non-positive,

we have d(n) ≤ d(m − 1) + ǫ,∀n ≥ m. In other words, r

cannot move far away from Hµ after iteration m − 1. Since

the above argument hold for Hµ with arbitrarily small µ and

any ǫ > 0, r converge to r∗ with probability 1.
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